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Dissertation directed by: Professor C. David Levermore
Applied Mathematics and Scientific Computation

We investigate aspects of entropy-based moment closures which are used to sim-

plify kinetic models of particle systems. Closures of this type use variational prin-

ciples to formally generate balance laws for velocity moments of a kinetic density.

These balance laws form a symmetric hyperbolic system of partial differential equa-

tions that satisfies an analog of Boltzmann’s famous H-Theorem. However, in spite

of this elegant structure, practical implementation of entropy-based closures requires

that several analytical and computational issues be settled.

Our presentation is devoted to the development of electron transport models in

semiconductor devices. In this context, balance laws for velocity moments are gen-

erally referred to as hydrodynamic models. Such models provide a reasonable alter-

native to kinetic and Monte Carlo approaches, which are usually expensive, and the



well-known drift-diffusion model, which is much simpler but a has a limited range of

validity.

We first analyze the minimization problem that defines the entropy closure. It

is known that there are physically relevant cases for which this problem is ill-posed.

Using a dual formulation, we find so-called complementary slackness conditions which

give a geometric interpretation of ill-posed cases in terms of the Lagrange multipliers

of the minimization problem. Under reasonable assumptions, we show that these

cases are rare in a very precise sense.

We also develop pertubations of well-posed entropy-based closures, thereby mak-

ing them useful for modeling systems with heat flux and anisotropic stress. Heat

flux has long been known to be an important component of electron transport in

semiconductors. However, we also observe that anisotropy in the stress tensor also

plays an important role in regions of high electric field. This conclusion is made

based on our simulations of two different devices.

Finally, we devise a new split scheme for hydrodynamic models. The split-

ting is based on the balance of forces in the hydrodynamic model that recovers the

drift-diffusion equation in the asymptotic limit of small mean-free-path. This scheme

removes numerically stiffness and excessive dissipation typically associated with stan-

dard shock-capturing schemes in the drift-diffusion limit. In addition, it significantly

reduces numerical current oscillations near material junctions.



ENTROPY-BASED MOMENT CLOSURES IN SEMICONDUCTOR MODELS

by

Cory David Hauck

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Committee:

Professor C. David Levermore, Chair
Professor Stuart S. Antman
Professor Jian-Guo Liu
Professor Martin Peckerar
Professor André L. Tits



c°Copyright by

Cory D. Hauck

2006



DEDICATION

To the memories of my grandfather, R. D. Driskill
and my friend, C. I. Kwon;

To my mother, Karen, and my father, Bob;
To my son, Miles; and most of all,

To my wife, Heather.

ii



ACKNOWLEDGEMENTS

I thank Dave Levermore for serving as my advisor and for introducing me to the
field of kinetic theory. I am grateful for his support and guidance over the last five
years. Throughout the many ups and downs of my graduate career, Dave has been
a guidepost for me–not only with his words, but also by his example. I will carry
the lessons he has taught with me long after I have left Maryland.

I thank Stuart Antman for his many excellent lectures, both in the classroom
and in various seminars. I thank him for his support and advice, for the individual
instruction he gave me in his office, and for many friendly discussions about mathe-
matics, physics, and teaching.

I thank Andre Tits for an excellent course in optimal control theory. Although
technically an engineering course, it was one of the best math classes I’ve ever taken.
I would also like to thank Andre for his consultation on various topics in optimization
and for his insights and suggestions which were immensely helpful in writing Chapter
4 of this dissertation.

I thank Jian-Guo Liu for serving on my committee and for his continuing interest
in my work.

I thank Professor Martin Peckerar for agreeing to serve on my committee and for
providing an engineering perspective to modeling semiconductors.

I thank Eitan Tadmor for many helpful conversations about the numerics of hy-
perbolic PDE.

I thank Professor Orazio Muscato for giving me the Monte Carlo data that was
used for comparisons in Chapter 5.

I thank Jack Calcut, Henry King, and Elmar Winkelnkemper for their assistance
in understanding concepts in topology and algebra with which I was unfamiliar.

iii



Contents

List of Abbreviations xiv

1 Introduction 1

1.1 A Kinetic Model of Electron Transport . . . . . . . . . . . . . . . . . 3

1.2 Drift-Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Moment Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Closures Based on Entropy Methods . . . . . . . . . . . . . . . . . . 12

1.5 Entropy Closures for Well-Posed Minimization Problems . . . . . . . 13

1.6 Issues in Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Preview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 From Semi-Classical Transport to the Drift-Diffusion Model 24

2.1 Basic Physics of Semiconductors . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Energy Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Collision Operators . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Generation/Recombination Operators . . . . . . . . . . . . . . 31

iv



2.2.3 Notions of Equilibrium . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Unipolar Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Low Density Approximation . . . . . . . . . . . . . . . . . . . 39

2.3.3 Parabolic Band Approximation . . . . . . . . . . . . . . . . . 41

2.4 Drift-Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 Chapman-Enskog Expansion . . . . . . . . . . . . . . . . . . . 49

3 Hydrodynamic Models 52

3.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Formal Kinetic Properties . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Moment Systems . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Evaluation of the Collision Operator . . . . . . . . . . . . . . 60

3.2 The Bløtekjær, Baccarani, Wordemann (BBW) Model . . . . . . . . . 62

3.2.1 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2 Reduction to Second Order . . . . . . . . . . . . . . . . . . . 67

3.2.3 The Baccarani-Wordemann Expressions . . . . . . . . . . . . . 70

3.2.4 Discussion of the BBW Model . . . . . . . . . . . . . . . . . . 72

3.3 The Anile and Pennisi (AP) Model . . . . . . . . . . . . . . . . . . . 75

3.3.1 Extended Thermodynamics . . . . . . . . . . . . . . . . . . . 76

3.3.2 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.3 Reduction to Second Order . . . . . . . . . . . . . . . . . . . 81

v



3.3.4 Discussion of the AP Closure . . . . . . . . . . . . . . . . . . 83

3.4 Entropy-Based Closures . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Relationship with Extended Thermodynamics . . . . . . . . . 85

3.4.2 Relative Entropy Formulation . . . . . . . . . . . . . . . . . . 88

3.4.3 Well-Posedness of Entropy-Based Closures . . . . . . . . . . . 93

3.4.4 Generalized BGK Collision Operators . . . . . . . . . . . . . . 95

3.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Perturbations of Entropy-Based Moment Closures . . . . . . . . . . . 113

3.5.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5.2 Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.5.3 Entropy Dissipation . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Entropy Minimization and Realizability 124

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.1 Admissible Spaces . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1.2 Construction of Admissible Spaces . . . . . . . . . . . . . . . 128

4.1.3 The Entropy Functional . . . . . . . . . . . . . . . . . . . . . 134

4.1.4 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.1.5 Semi-algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2 Entropy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.2 The Dual Function . . . . . . . . . . . . . . . . . . . . . . . . 145

vi



4.2.3 Duality Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.3 The Relationship between α and ρ . . . . . . . . . . . . . . . . . . . 155

4.3.1 Justification of the Formal Legendre Duality . . . . . . . . . . 155

4.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.3.3 Degenerate Densities . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.4 Geometry of Rm\Rexp
m . . . . . . . . . . . . . . . . . . . . . . 163

4.3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.4 Appendix: Duality Theorems . . . . . . . . . . . . . . . . . . . . . . 174

5 Simulation of an n+-n-n+ Diode 181

5.1 Reduction to One Dimension . . . . . . . . . . . . . . . . . . . . . . . 182

5.1.1 The Case m = (1, v, 1
2
|v|2)T . . . . . . . . . . . . . . . . . . . 183

5.1.2 The Case m = (1, v, v ∨ v)T . . . . . . . . . . . . . . . . . . . 184

5.2 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2.1 Bløtekjær-Type Models. . . . . . . . . . . . . . . . . . . . . . 186

5.2.2 The Benchmark Device . . . . . . . . . . . . . . . . . . . . . . 194

5.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 195

5.3 The Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.3.1 Finite Volume Formulation . . . . . . . . . . . . . . . . . . . . 197

5.3.2 Flux Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.3.3 Remaining Discretization . . . . . . . . . . . . . . . . . . . . . 205

5.3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

vii



5.4.1 Bløtekjær-Type Models . . . . . . . . . . . . . . . . . . . . . . 210

5.4.2 Anile-Pennisi Models . . . . . . . . . . . . . . . . . . . . . . . 212

5.4.3 Entropy-Based Models . . . . . . . . . . . . . . . . . . . . . . 213

6 Computational Issues: Stiffness and Balance 249

6.1 The Benchmark Problem . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.2 Drift-Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

6.2.1 Non-Dimensionalization . . . . . . . . . . . . . . . . . . . . . 255

6.2.2 The Drift-Diffusion Scaling . . . . . . . . . . . . . . . . . . . . 258

6.2.3 The Drift-Diffusion Limit . . . . . . . . . . . . . . . . . . . . 260

6.2.4 Physical Validity . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.2.5 Preview of Numerical Issues . . . . . . . . . . . . . . . . . . . 262

6.3 Numerical Background . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.3.1 A Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.3.2 Systems of Balance Laws . . . . . . . . . . . . . . . . . . . . . 268

6.3.3 Previous Computations of the Hydrodynamic Model . . . . . 270

6.4 A New Splitting Approach to the Hydrodynamic Model . . . . . . . . 274

6.4.1 Two Step Splitting . . . . . . . . . . . . . . . . . . . . . . . . 277

6.4.2 Three Step Splitting . . . . . . . . . . . . . . . . . . . . . . . 278

6.5 Details of the Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6.5.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . 282

6.5.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . 288

6.6 Numerical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

viii



6.6.1 The Transition Regime . . . . . . . . . . . . . . . . . . . . . . 290

6.6.2 The Drift-Diffusive Regime . . . . . . . . . . . . . . . . . . . . 290

6.6.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 299

6.7 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 302

7 Simulation of a Unipolar MESFET Device 304

7.1 Modeling Two Dimensional Transport . . . . . . . . . . . . . . . . . 308

7.1.1 Equations in Two Dimensions . . . . . . . . . . . . . . . . . . 308

7.1.2 The Benchmark Device . . . . . . . . . . . . . . . . . . . . . . 313

7.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

7.2.1 Discretization of Convective Terms . . . . . . . . . . . . . . . 316

7.2.2 Discretization of Diffusive Terms . . . . . . . . . . . . . . . . 318

7.2.3 Multigrid Poisson Solver . . . . . . . . . . . . . . . . . . . . . 320

7.2.4 Discretization of Field and Collision Terms . . . . . . . . . . . 328

7.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Bibliography 353

ix



List of Tables

6.1 Convergence rate of scheme S3S-I-2. . . . . . . . . . . . . . . . . . . 301

6.2 Convergence rate of scheme S1-2. . . . . . . . . . . . . . . . . . . . . 302

6.3 Convergence rate of scheme S2-2. . . . . . . . . . . . . . . . . . . . . 302

x



List of Figures

5.1 The n-n+-n diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.2 Electron concentration for Bløtekjær-type models. . . . . . . . . . . . 215

5.3 Electron concentration for Bløtekjær-type models, magnified view. . . 216

5.4 Electron current for Bløtekjær-type models. . . . . . . . . . . . . . . 217

5.5 Electron velocity for Bløtekjær-type models. . . . . . . . . . . . . . . 218

5.6 Electron velocity for Bløtekjær-type models, magnified view. . . . . . 219

5.7 Thermal energy for Bløtekjær-type models. . . . . . . . . . . . . . . . 220

5.8 Electron energy for Bløtekjær-type models. . . . . . . . . . . . . . . . 221

5.9 Electric field for Bløtekjær-type models. . . . . . . . . . . . . . . . . 222

5.10 Heat flux for Bløtekjær-type models. . . . . . . . . . . . . . . . . . . 223

5.11 Heat flux for Bløtekjær-type models, magnified view. . . . . . . . . . 224

5.12 Electron energy flux for Bløtekjær-type models . . . . . . . . . . . . . 225

5.13 Electron energy flux for Bløtekjær-type models, magnidified view. . 226

5.14 Electron concentration for AP models. . . . . . . . . . . . . . . . . . 227

5.15 Electron concentration for AP models, magnified view. . . . . . . . . 228

5.16 Electron current for AP models. . . . . . . . . . . . . . . . . . . . . . 229

5.17 Electron velocity for AP models. . . . . . . . . . . . . . . . . . . . . . 230

5.18 Electron velocity for AP models, magnified view . . . . . . . . . . . . 231

xi



5.19 Electron thermal energy for AP models. . . . . . . . . . . . . . . . . 232

5.20 Electron energy for AP models. . . . . . . . . . . . . . . . . . . . . . 233

5.21 Electric field for AP models. . . . . . . . . . . . . . . . . . . . . . . . 234

5.22 Heat flux for AP models. . . . . . . . . . . . . . . . . . . . . . . . . . 235

5.23 Electron energy flux for AP models. . . . . . . . . . . . . . . . . . . . 236

5.24 Electron energy flux for AP models, magnidified view. . . . . . . . . . 237

5.25 Electron concentration for entropy-based models. . . . . . . . . . . . 238

5.26 Electron concentration for entropy-based models, magnified view. . . 239

5.27 Electron current for entropy-based models. . . . . . . . . . . . . . . . 240

5.28 Electron velocity for entropy-based models. . . . . . . . . . . . . . . . 241

5.29 Electron velocity for entropy-based models, magnified view. . . . . . . 242

5.30 Electron thermal energy for entropy-based models . . . . . . . . . . . 243

5.31 Electric field for entropy-based models. . . . . . . . . . . . . . . . . . 244

5.32 Electron heat flux for entropy-based models. . . . . . . . . . . . . . . 245

5.33 Electron energy flux for entropy-based models. . . . . . . . . . . . . . 246

5.34 Anistropic stress meσ
n
for AP and PEB models. . . . . . . . . . . . . 247

5.35 Components of thermal energy for perturbed Gaussian closures. . . . 248

6.1 The one dimensional n-n+-n diode of length L. . . . . . . . . . . . . . 254

6.2 Steady state current oscillations for Scheme S1. . . . . . . . . . . . . 275

6.3 Steady state current oscillations for Scheme S2. . . . . . . . . . . . . 276

6.4 Steady state results for S1 and S3E-1. . . . . . . . . . . . . . . . . . 291

6.5 Steady state current oscillations for scheme S3. . . . . . . . . . . . . 292

xii



6.6 Steady state results for S3E-1 vs. drift-diffusion results with 1600

meshpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

6.7 Steady state results for S3E-1 vs. drift-diffusion results with 200mesh-

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

6.8 Steady state current oscillations in the drift diffusion regime. . . . . . 297

6.9 Current oscillations for various values of ε. . . . . . . . . . . . . . . . 298

7.1 Schematic representation of the MESFET device. . . . . . . . . . . . 315

7.2 Steady-state electron concentration. . . . . . . . . . . . . . . . . . . . 331

7.3 Steady-state momentum, x-component. . . . . . . . . . . . . . . . . . 332

7.4 Steady-state momentum, y-component. . . . . . . . . . . . . . . . . . 333

7.5 Steady-state velocity, x-component. . . . . . . . . . . . . . . . . . . . 334

7.6 Steady-state velocity, y-component. . . . . . . . . . . . . . . . . . . . 335

7.7 Steady-state potential. . . . . . . . . . . . . . . . . . . . . . . . . . . 336

7.8 Steady-state electric field, x-component. . . . . . . . . . . . . . . . . 337

7.9 Steady-state electric field, y-component. . . . . . . . . . . . . . . . . 338

7.10 Steady-state energy profile. . . . . . . . . . . . . . . . . . . . . . . . . 339

7.11 Steady-state temperature. . . . . . . . . . . . . . . . . . . . . . . . . 340

7.12 Anisotropy in the Maxwellian closure . . . . . . . . . . . . . . . . . . 341

7.13 Anisotropy in the Gaussian closure. . . . . . . . . . . . . . . . . . . . 342

xiii



List of Abbreviations

Rd Space of real d-dimensional vectors

Sd−1 Unit sphere in Rd

kB Boltzmann constant

m∗
e effective electron mass

qe magnitude of electron charge

= (x) electric permittivity

θ , T semiconductor lattice temperature, T = m∗eθ
kB

µ = µ(x) electron mobility

a = a(x) electron diffusivity

x,∇x position vector, spatial gradient

v,∇v velocity vector, velocity gradient

t, ∂t time, time derivative

F = F (x, v, t) kinetic density

M lattice Maxwellian distribution

C collision operator

Φ = Φ(x, t) electric potential

E = E(x, t) electric field, E = −∇xΦ

D = D(x) doping profile

m =m(v) vector of polynomials in v

xiv



h·i integration over velocity space

ρ = ρ(x, t) spatial density, hmF i

n = n(x, t) electron concentration

u = u(x, t) electron mean velocity

θ = θ(x, t) electron temperature

Θ = Θ(x, t) electron temperature matrix

Σ = Σ(x, t) electron anisotropic stress tensor

q = q(x, t) electron heat flux vector

Q = Q(x, t) electron heat flux tensor

Mn,u,θ Maxwellian distribution

Gn,u,Θ Gaussian distribution

U ∨ V symmetric tensor product of tensors U and V

U∨s symmetric tensor power, U∨s = U∨(s−1) ∨ U

xv



Chapter 1

Introduction

This work address several mathematical and computational issues on the topic of

moment systems in kinetic theory, particularly as they pertain to modeling electron

transport in semiconductor devices. In a kinetic description, the distribution of a

large number of particles is interpreted mathematically by a kinetic density F , which

is a non-negative function in phase space. Moment systems are models that simplify

the kinetic description of these particles by tracking the evolution of only a handful

of physically relevant statistical averages of F , called moments. Moment systems

require a closure, meaning that assumptions about the functional form of F must be

made in order to make up for the loss of information that occurs in the averaging

process.

Moment systems have several important functions. They can be used as stand-

alone models, presumably with the flexibility to improve accuracy by adding more

moments. They can be used in highly efficient hybrid schemes for modeling multi-

scale phenomenon. Such schemes combine a variety of different models in such a way

as to maximize efficiency for a given level of accuracy. Thus, expensive models are

used only in regimes where they are absolutely needed. Finally, moments systems

1



can be used as preconditioners for more complicated models that may suffer from

numerical stiffness.

One of the great challenges of creating moment systems is to find an appropriate

closure–one that retains the fundamental physical and mathematical structure of

the original kinetic description. As the name suggests, entropy-based moment clo-

sures impose that structure through the optimization of a convex functional which

is thermodynamic potential directly related to the kinetic entropy. In [51, 53], it

is shown that entropy-based closures formally generate moment systems which are

symmetric hyperbolic systems of partial differential equations (usually referred to as

balance laws). Furthermore, it is shown that these moment systems satisfy an analog

of Boltzmann’s H-Theorem, i.e., that solutions dissipate a Lyapunov function derived

from the thermodynamic potential and that the dissipation vanishes only for closures

that assume the distribution of particles is in thermodynamic equilibrium.

Below, Section 1.1 gives the kinetic formulation of electron transport in semi-

conductors that will be the focus of this dissertation. Section 1.2 is about the

drift-diffusion model that accurately approximates the kinetic description in certain

physical regimes. Section 1.3 is an introduction to moment systems in general, and

Section 1.4 describes entropy-based closures. Sample closures are given in Section

1.5. In Section 1.6, numerical challenges related to stiffness and asymptotic limits

are discussed. Finally, Section 1.7 gives a preview of results and lays out a map for

the remainder of the dissertation.
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1.1 A Kinetic Model of Electron Transport

Semiconductors are crystalline materials composed of atoms that are bound together

in a periodic lattice. Because the number of atoms is very large, their common energy

levels decouple into many closely spaced levels which can be treated as a continuous

band. Rather than being identified with a particular shell of a particular atom,

electrons in a semiconductor are characterized by the energy band in which they are

found. Charge is transported in semiconductors by the flow of carrier electrons,

which are unbound electrons in the conduction band of a semiconductor, and holes,

which are vacancies in the valence band.

In the model which is the focus of this dissertation, we consider only the flow

of carrier electrons, which are treated as classical particles with effective mass m∗
e

[59] and charge −qe. These electrons exist in a semiconductor material which is

represented mathematically by a bounded domain Ω ⊂ R3, and their distribution

in position-momentum phase space is given by a kinetic density F = F (x, v, t) that

is defined for positions x ∈ Ω ⊂ R3, velocities v ∈ R3, and times t ≥ 0. The

interpretation of F is that for any Λ ⊂ Ω×R3, the integral

Z Z
Λ

F (x, v, t) dvdx

gives the number of particles at time t with positions x and velocities v such that

(x, v) ∈ Λ. The evolution of F is governed by the so-called Boltzmann transport
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equation:

∂tF + v ·∇xF +
qe
m∗

e

∇xΦ ·∇vF = C(F ) . (1.1)

The left-hand side of (1.1) describes the action of carrier electrons under their own

inertia and by the force derived from the electric potential Φ that satisfies the Poisson

equation

−∇x · ( ∇xΦ) = qe(D − hF i) . (1.2)

Here = (x) is the electric permittivity of the semiconductor material andD = D(x)

is a fixed concentration of charge called the doping profile. The bracket notation used

in (1.2) is a shorthand for integration over all velocity space–that is, for any function

g = g(v),

hgi ≡
Z
R3
g(v) dv .

The collision operator C on the right-hand side of (1.1) is an integral operator that

describes collisions (energy-momentum exchanges) between carrier electrons and the

vibrations of the semiconductor lattice known as phonons. It can be generalized to

include other type of interactions such as electron-electron and three-particle Auger

collisions [74], but electron-phonon collisions are usually the dominant mechanism.

For Maxwell-Boltzmann statistics, C is linear and takes the form

C(f) =
Z
R3
σ(x, v, v0) (M f 0 −M 0f) dv0 , (1.3)

4



where

M (v) ≡ 1

(2πθ )3/2
exp

Ã
− |v|

2

2θ

!
(1.4)

is the lattice Maxwellian and primes in (1.3) denote evaluation at v0 rather than v.

The transition kernel σ describes the rate at which incoming particles with velocity

v emerge from a phonon collision with velocity v0. It satisfies the detailed balance

relation, σ(x, v, v0) = σ(x, v0, v).

Together (1.1) and (1.2) form the Boltzmann-Poisson system. We leave unspeci-

fied the boundary conditions that give the flux of electrons into Ω along with whatever

external potential is applied to drive the system. Rigorous results concerning the

existence and uniqueness of solutions of this system can be found in [66,68].

The collision operator satisfies several important properties which impose struc-

ture on solutions to (1.1). One such property is that hC(f)i = 0 for all f ∈ Dom(C).

Thus, upon integrating (1.1) over all of velocity space, one finds a conservation law

for the electron concentration n = n(x, t) ≡ hF (x, ·, t)i:

∂tn+∇x · hvF i = 0 . (1.5)

This law reflects the fact that electrons are conserved by phonon collisions.

Another property of the collision operator which relates C to the relative entropy

density

κ(f) ≡ f log

µ
f

M

¶
− f , (1.6)
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is that

(i) h∂fκ(f)C(f)i ≤ 0, ∀ f ∈ Dom(C) , (1.7)

(ii) h∂fκ(f)C(f)i = 0 ⇐⇒ C(f) = 0 .

The condition C(f) = 0 defines the equilibria of C. For C given by (1.3), the equilibria

are positive multiples ofM . The relationship between C and κ implies that solutions

of the Boltzmann-Poisson system satisfy the local dissipation relation [53]

∂t

µ
K(F ) +

2m∗
eθ
|∇xΦ|2

¶
(1.8)

+∇x ·
µ
I(F )−

θ
Φ∂t∇xΦ−

qe
θ
Φ hvF i

¶
= h∂fκ(F )C(F )i ≤ 0 ,

where the relative entropy and the relative entropy flux are given by

K(f) ≡ hκ(f)i and I(f) ≡ hv κ(f)i , (1.9)

respectively. In addition, the dissipation in (1.8) vanishes if and only if C(F ) = 0.

1.2 Drift-Diffusion

Approximate solutions for the Boltzmann-Poisson system have be computed using

Monte Carlo methods [48, 87] as well as direct discretizations [18—20] of (1.1)-(1.2).

Both methods can be prohibitively expensive. For this reason, electron transport in

semiconductors has traditionally been modeled by the much simpler drift-diffusion-
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Poisson system [35,62] which describes the evolution of n and Φ according to

∂tn−∇x · (a∇xn− µn∇xΦ) = 0 , (1.10a)

−∇x · ( ∇xΦ) = qe(D − n) . (1.10b)

Here the electron diffusivity a = a(x) and the electron mobility µ = µ(x) are positive

transport coefficients that come from the collision operator and satisfy the so-called

Einstein relations [59]:

a

µ
=

m∗
e

qe
θ .

Often (1.10) is referred to simply as the drift-diffusion system and (1.10a) as the drift-

diffusion equation. The flux in the drift-diffusion equation is actually the electric

current, modulo the constant factor −qe. Boundary conditions for (1.10) must still

be specified.

If the potential and thermal energy of carrier electrons is on the order of the lattice

energy m∗
eθ , then the drift-diffusion system provides an accurate approximation for

the Boltzmann-Poisson system in the limit of small mean-free-path. In this limit,

F is driven toward local thermal equilibrium. Indeed, it is proved rigorously in [68]

that in the interior of Ω,

F (x, v, t) = n(x, t)M (v) +O(ε) , (1.11)

where ε is the the ratio of mean-free-path to device length and the evolution of n is

governed by (1.10a).
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The flux in (1.10a) comes from an asymptotic analysis of (1.1), where the first-

order correction to (1.11) is given by

−M g ·
∙
θ ∇xn−

qe
m∗

e

n∇xΦ

¸
(1.12)

and for the collision operator in (1.3), g satisfies

C(M g) =M v , hM gi = 0 . (1.13)

It turns out that (1.13) has a unique solution and that

hvF i
O(ε2)
' hvM gi = τ

∙
θ ∇xn−

qe
m∗

e

n∇xΦ

¸
, (1.14)

where

τ ≡ m∗
e

qe
µ = −1

3
trace hv ⊗M gi .

The flux in (1.10a) is recovered upon substituting (1.14) into the conservation law

(1.5).

As its name suggests, the drift-diffusion model attributes the evolution of n to the

balance between the diffusive term a∇xn and the drift term µn∇xΦ that together

make up the flux in (1.10a). A physical explanation is as follows. In the absence

of external forces, the random thermal motion of carrier electrons creates a pressure,

and any gradient in the pressure causes carrier electrons to diffuse. The charge that

is displaced by diffusing electrons induces a potential gradient (i.e. an electric field)
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that acts on carrier electrons to exactly counterbalance the diffusion. Current flows

only when an external voltage (such as a battery) is applied, in which case carrier

electrons move through the semiconductor with mean velocity

u = a
∇xn

n
− µ∇xΦ .

The drift-diffusion model is usually sufficient for simulating the behavior devices on

the micron scale. Such devices are large enough that carrier electrons can be treated

like a continuum fluid near a local thermal equilibrium with the semiconductor lattice

(in the sense of (1.11)). Meanwhile, the net effect of the fast scale dynamics that

occur in between collisions can be accurately represented by the perturbation g given

in (1.12).

For smaller, more modern devices, the near-equilibrium assumption is no longer

valid and the dynamics of carrier electrons in between lattice interactions must be

considered in more detail. Furthermore, the external voltage applied to devices does

not usually scale with the device size. The result in small devices is the formation

of regions where the electric field E = −∇xΦ is quite large. When potential energy

from the electric field in these regions is converted into thermal energy, so-called hot

electrons are created. These electrons are characterized by a temperature θ that

differs significantly from the lattice temperature, in which case the drift-diffusion

system is no longer an accurate model of their behavior. To see how drift-diffusion

fails, consider as an example the pressure of the electron distribution, which is given

by p = nθ. Electrons undergo force due the pressure gradient which depends on
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spatial variations in both n and θ. However, the drift-diffusion model assumes that

θ = θ so that any variation in θ is ignored. Only the variation in n, which generates

the diffusion term a∇xn in (1.10a), is taken into account. Thus hot electron effects

can not be accommodated by the drift-diffusion model.

1.3 Moment Systems

The practical issue for smaller devices is how to improve upon the drift-diffusion

model without reverting back to a computationally expensive kinetic description.

Moment methods provide an alternative approach to semiconductor modeling in so-

called transition regimes, where the electron distribution is no longer in equilibrium,

yet still maintains structure at the macroscopic level. Rather than resolve (1.1) in

full detail, moment systems track the evolution of a finite set of velocity moments

hmF i where m is a vector of polynomials in v. This approach significantly reduces

the complexity of (1.1) by replacing the velocity dependence of F by a finite number

of parameters. Moreover, this approach is natural because it is the moments which

are experimentally measurable quantities.

For functions F that satisfy (1.1), the system of moment equations with respect

to m is

∂t hmF i+∇x · hvmF i− qe
m∗

e

∇xΦ · h∇vmF i = hmC(F )i , (1.15)

where all integrals are assumed to be well-defined. This system is not closed, meaning

that there are more dependent variables than equations. However, if there exists a

function F such that F = F [ hmF i], then the flux terms hvmF i, field terms h∇vmF i,
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and collision terms hmC(F )i can be related to the spatial densities ρ = ρ (x, t) ≡

hmF (x, ·, t)i to provide a closed system the form

∂tρ+∇x · f(ρ)−
qe
m∗

e

∇xΦ · l(ρ) = r(ρ) , (1.16)

where

f(ρ) = hvmF [ρ]i , l(ρ) = h∇vmF [ρ]i , r(ρ) = hmC(F [ρ])i .

(The square bracket notation here denotes possible non-local dependence on ρ such as

spatial derivatives). However, F is an element of an infinite dimensional vector space

and typically cannot be expressed by any finite number of components. Therefore,

any closure of (1.2) will require that F be approximated by a function of ρ and its

spatial derivatives, in which case (1.4) only approximates the evolution of ρ. The goal

then is to devise an approximation that maintains the key physical and mathematical

features of (1.1).

We note that the drift-diffusion equation (1.10a) can be placed into the framework

of moment systems with the choice m = 1 and the approximation

F = nM −M g ·
∙
∇xn−

qe
θ m∗

e

n∇xΦ

¸

where n = hF i and g satisfies (1.13). However, to model systems in the transition

regime, we will employ variational principles with the relative entropy.
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1.4 Closures Based on Entropy Methods

One way to devise a closure for (1.15) in transition regimes is with entropy methods.

For many particle-based systems, equilibria can be characterized as minimizers for a

physically meaningful convex functional. This characterization of equilibrium is a

classical result from statistical mechanics, and it motivates a choice for approximating

F , even for systems not in equilibrium.

In the case of electron transport, the appropriate convex functional is the relative

entropy K, which is defined in (1.6) and (1.9). In the classical setting, the entropic

projection is defined as the minimizer for the problem

min
f∈Fm

{K (f) : hmfi = ρ} , (1.17)

where ρ = hmF i and

Fm ≡
©
g ∈ L1

¡
RD
¢
: g ª 0 and h|msg|i <∞, (s = 0, . . . , l − 1)

ª
.

The minimizer for (1.17)–if it exists–is a projection of F (in velocity space) onto

a finite-dimensional subspace parametrized by ρ, thus providing a candidate for F

that closes (1.2). Such a closure is termed an entropy-based closure, and the resulting

moment system inherits important structural features from the Boltzmann-Poisson

system. In particular, (1.16) becomes a symmetric hyperbolic system with solutions

that satisfy the dissipation relation (1.8) evaluated at F = F . In addition, the

dissipation vanishes if and only if F is an equilibrium density–that is C(F) = 0.
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The main advantage of entropy-based closures is their formal structure. Another

advantage is their ability to recover the drift-diffusion system for F near equilibrium.

The main challenge of entropy-based closures is that for most choices of m, there

exists a set D of physically realizable values of ρ for which a minimizer (1.17) does

not exist. Such densities are termed degenerate. Understanding the geometry of

D is an important step in modifying entropy-based closures in cases where (1.17) is

ill-posed. In practice, it may be that an entropy closure will naturally avoid the set

D as ρ evolves in time according to (1.16) or that the moment system can be adapted

to avoid D in a way that is physically reasonable.

1.5 Entropy Closures for Well-Posed Minimization Problems

There are choices of m for which (1.17) is well-posed, meaning that there exists

a minimizer for all physically realizable values of ρ. Indeed, in cases where the

polynomial components ofm are of degree two or less, entropy-based closures generate

several well-known models. A simple example is the drifted-diffusion model, which

is generated by an entropy-closure for the choice m = {1, v}. The model is

∂tn+∇x · (nu) = 0 , (1.18a)

∂t (nu) +∇x · (nu ∨ u+ nθ I)− qe
m∗

e

n∇xΦ = hv C(Mn,u,θ )i , (1.18b)
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where the ‘∨’ notation denotes the symmetric tensor product 1. The variables n and

u are defined by the relations

n = hF i and nu = hvF i , (1.19)

and the entropic projection is

F [ρ](v) =Mn,u,θ (v) ≡
n

(2πθ )3/2
exp

Ã
− |v − u|2

2θ

!
.

This model replaces the constitutive relation for the current in the drift-diffusion

system with equation (1.18b). The evolution of the current is now driven by the

isotropic stress tensor nθ I, the electric field, and the (yet to be evaluated) collision

term on the right-hand side. Often this collision term is evaluated using a relaxation

approximation of the operator C that gives

hv C(Mn,u,θ )i ' −
qe
µm∗

e

nu .

With this expression, the drift-diffusion current can be recovered from (1.18b) by

neglecting the time derivative and the flux term nu ∨ u on the left-hand side–an

argument can be formalized using an asymptotic analysis of (1.18). However, because

θ = θ , drifted-diffusion is still insufficient for modeling hot electrons.

The next example is a second-order model (i.e. one based on polynomial compo-

1Given an s-fold tensor U and an r-fold tensor V , the symmetric tensor product W = U ∨ V is
an (s+ r)-fold tensor Wa1,...,as+r = |Π|−1

P
π∈Π Uπ(a1),...,π(as)Vπ(as+1),...,π(as+r) , where Π is the set

of all permutations of a1, . . . , as+r and |Π| is the cardinality of Π.
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nents of maximum degree two). It is generated by the Maxwellian closure, which

is based on the choice m =
©
1, v, 1

2
|v|2
ª
. This closure takes its name from the fact

that the entropic projection is a Maxwellian distribution,

F [ρ](v) =Mn,u,θ(v) ≡
n

(2πθ)3/2
exp

Ã
− |v − u|2

2θ

!
,

that is traditionally expressed in terms of the variables (n, u, θ). These variables

correspond to the moments hmF i via the relation

nθ =
1

3


|v − u|2 F

®
(1.20)

and the relations already given in (1.19).

The moment system generated by the Maxwellian closure is

∂tn+∇x · (nu) = 0 , (1.21a)

∂t (nu) +∇x · (nu ∨ u+ nθI)− qe
m∗

e

n∇xΦ = hv C(Mn,u,θ)i , (1.21b)

∂t

µ
1

2
n |u|2 + 3

2
nθ

¶
+∇x ·

µ
1

2
n |u|2 u+ 5

2
nθu

¶
− qe
m∗

e

nu ·∇xΦ =

¿
1

2
|v|2C(Mn,u,θ)

À
, (1.21c)

where the evaluation of the collision terms on the right-hand side of (1.21b) and (1.21c)

depends on the explicit form of C. Like the drifted-diffusion model, (1.21) recovers

the drift-diffusion equation near thermal equilibrium; and it has the added benefit of

tracking the electron temperature (θ 6= θ ) via the addition of the energy equation
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(1.21c). Even so, the stress tensor nθI for the Maxwellian closure is isotropic. In

other words, the anisotropic stress tensor

Σ ≡
¿µ
(v − u) ∨ (v − u)− 1

3
|v|2
¶
F

À

vanishes identically when F = Mn,u,θ. This means that, in the reference frame of

the mean velocity u, the stress that electrons undergo is assumed to be independent

of direction–a property that will be violated in the presence of a strong electric

field. Another shortcoming of the closure is that the heat flux q, which is known

to be a critical component of modeling electron transport, is zero for the Maxwellian

closure–that is,

q ≡ 1
2


|v − u|2(v − u)F

®
vanishes identically when F =Mn,u,θ.

The third and final well-posed example is the model generated with the Gaussian

closure, which uses m = {1, v, v ∨ v, }. The entropic projection in this case is a

Gaussian distribution,

F [ρ](v) = Gn,u,Θ ≡
np

det (2πΘ)
exp

µ
−1
2
(v − u)T Θ−1 (v − u)

¶
,

where the additional variable Θ is defined by the relation

nΘ = h(v − u) ∨ (v − u)F i .
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Therefore nΘ = Σ+ nθI and traceΘ = 3θ. The moment system is

∂tn+∇x · (nu) = 0 , (1.22a)

∂t (nu) +∇x · (nu ∨ u+ nΘ)− qe
me

n∇xΦ = hv C(Gn,u,Θ)i , (1.22b)

∂t (nu ∨ u+ nΘ) +∇x · (nu ∨ u ∨ u+ 3nΘ ∨ u)

−2 qe
me

nu ∨∇xΦ = hv ∨ v C(Gn,u,Θ)i , (1.22c)

where, like (1.21), the collision terms on the right-hand side have yet to explicitly

evaluated.

The Gaussian model enjoys all the benefits of the Maxwellian model. In addition,

Σ is generally non-zero. However, the heat flux q still vanishes identically when

F = Gn,u,Θ.

Devising systems that properly model the anisotropic stress and heat flux is very

challenging. In order to recover non-zero values for Σ (in the Maxwellian case) and

q (in either case), many closures have been posed for systems beyond second order.

Strictly speaking, however, entropy-based closures are not well-posed in these cases.

1.6 Issues in Numerical Simulation

As mentioned previously, one of the positive aspects of entropy-based closures is that

they formally recover the drift-diffusion equation (1.10a) in the drift-diffusion regime,

i.e., when F is near local thermal equilibrium. However, when computing numerical

solutions for entropy-based systems, one must take great care to ensure that the
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choice of numerical scheme preserves this asymptotic behavior. This fact is true for

all moment systems, regardless of the closure that is employed.

Standard discretization techniques for hyperbolic balance laws are often plagued

by numerical stiffness and excessive dissipation in the drift-diffusion regime. Stiffness

is due to the fact that the diffusion time scale is much longer than the convective time

scale in the drift-diffusion regime. However, the typical discretization of a hyperbolic

system requires time steps on the order of the convective scale in order to ensure

numerical stability. Such restrictions are physically unnatural, and they require

many time steps in order to observe the slower dynamics associated with the drift-

diffusion balance. Excessive dissipation is also the result of stability restrictions

that are commonly found in shock-capturing schemes. These schemes introduce

numerical dissipation on the order of the hyperbolic wave speeds in order to prevent

numerical oscillations. In the drift-diffusion regime, these speeds are quite large,

and the resulting numerical dissipation can overshadow the real physical diffusion

in (1.10a). In such cases, the discretization of the moment system will not be an

accurate approximation of (1.10a) in the drift-diffusion regime.

In addition to poor asymptotic behavior, standard discretizations often have dif-

ficulty capturing the delicate balance of forces found at the continuum level which

give rise to key physical properties of a given system. Therefore, one must devise

intelligent techniques to mimic these balances. This problem arises in semiconductor

models due to the presence of the source term n∇xΦ in the momentum equation.

(See, for example, equations (1.21b) and (1.22b)). It is not unusual for simulations

to display to find heavy, non-physical oscillations near material boundaries due to a
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lack of proper numerical balance.

1.7 Preview of Results

In this dissertation, I have addressed some of the unresolved issues discussed in the

proceeding sections. My main results are the following

1. A geometrical description of D. I have analyzed a modified minimization

problem that was first introduced in [73] by relaxing the constraints in (1.17),

thereby ensuring the existence of a minimizer. In applying a dual formulation

to this problem, I have found complementary slackness conditions which I use

to describe D. Under reasonable assumptions, D is the finite union of fiber

bundles, each of codimension one or greater in the space of physically realizable

densities. The fibers of these bundles are cones given by the complementary

slackness conditions. This characterization of D recovers results found in [42,

43], where the largest degree polynomial inm is radially symmetric. However, it

also applies to more general choices ofm, which can be useful in devising systems

for capturing the anisotropic behavior of F . Numerical results (discussed below)

provide evidence that anisotropy plays an important role in modeling electron

transport in semiconductors.

2. A new hierarchy of closures. I have derived a new hierarchy of closures

based on a combination of entropy-based variational principles and perturbative

analysis. To simplify evaluation of the collision terms r(ρ) in (1.4), I have

constructed a generalized Bhatnagar-Gross-Krook (GBGK) to approximate C.
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This operator is an algebraic function of the state variables that allows each

state variable to relax to its equilibrium value at a different rate. It therefore

strikes a balance between the macroscopic simplicity and microscopic detail in

a way that is consistent with the philosophy of the moment approach.

At the base of this new hierarchy is the drift-diffusion equation, but more impor-

tantly, the hierarchy includes pertubations of the Maxwellian closure (PM) that

introduces anisotropic stress and heat flux terms in (1.21) and perturbations of

the Gaussian closure (PG) which introduce heat flux terms in (1.22). Heat

flux has long been known to be an important component in models describing

the flow of hot electrons in semiconductors, and more recently, direct kinetic

simulations have shown that an electron distribution will be highly anisotropic

in regions where the electric field is strong [19, 20]. The benefit of the PM

and PG closures is that they may be able to capture such behavior without

the burden of expensive kinetic or Monte Carlo simulations. With standard

entropy-based closures, these corrections could only be introduced through the

additional of higher degree polynomials in m, in which case the minimizer in

(1.17) does not always exist.

I have used PM and PG models to simulate the behavior of a unipolar n+-n-

n+ diode with slab symmetry and a unipolar n+-n-n+ MESFET device with

translational symmetry, and I have compared the numerical results with other

hydrodynamic models found in the literature. In doing so, I have observed that

anisotropy plays an important role in the velocity and temperature profiles of
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both devices and that differences between the PM and PGmodels are nontrivial.

This is not entirely surprising, since Σ is a diffusive term in the PM closure that

comes directly from the perturbation analysis, whereas in the PG closure, Σ is a

convective term whose evolution is determined by the addition of state variables

as in (1.22c). Numerical results show that introducing non-zero values for Σ has

a significant impact on the simulated behavior of the MESFET near regions of

high-electric field. They also show that the perturbed Gaussian closure provides

a more consistent approximation of Σ than the perturbed Maxwellian closure

does.

3. A new numerical scheme for simulating hydrodynamic models. I

have adapted a split scheme which was originally introduced in [40] to simulate

a stiff 2 × 2 hyperbolic system much like the drifted-diffusion system. This

new scheme can be applied to any hydrodynamic model with the form given in

(1.4). The splitting is based on the balance of forces in (1.4) that dominate

the behavior of solutions in the drift-diffusion regime.

I have tested the new scheme with PM model to simulate an n+-n-n+ diode

with slab symmetry. In addition to being accurate in the transition regime, the

scheme lacks the stiffness and excessive dissipation of standard shock capturing

schemes in the drift-diffusion regime. Furthermore, the splitting significantly

reduces the size of the numerical current oscillations at the diode junctions when

compared to other methods.
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We now lay out the organization of this dissertation. Chapter 2 is a review of

selected topics, with most mathematical results being due to Frédéric Poupaud. We

begin with a review of the basic physics of semiconductors and a semi-classical de-

scription of electron-hole transport. The semi-classical description is then simplified

through a series of assumptions to arrive at the classical Boltzmann-Poisson system

(1.1)-(1.2). Equation (1.1) will serve as our master equation from which all simplified

models will be derived. We then present the formal asymptotic analysis of (1.1) and

formally derive the drift-diffusion equation.

In Chapter 3, we present a more detailed formulation of moment systems for

semiconductor transport along the lines of Section 1.1. We discuss several popular

models from the literature and then derive the hierarchy of perturbed entropy-based

(PEB) models.

Chapter 4 is a detailed analysis of the minimization problem upon which entropy

closures are based. In it, we introduce the dual function associated with (1.17), state

and prove duality theorems, and show how the complementary slackness condition

can be used to characterize D.

Chapter 5 is a return to the old and new hydrodynamic models from Chapter

3. In it, we compute numerical solutions for three families of models for the axially

symmetric n+-n-n+ diode. These families are: (i) variations on Bløtekjær’s model

[13,14], (ii) variations on the Anile-Pennisi model [4], and (iii) pertubations of (1.21)

and (1.22). We compare various models using an n+-n-n+ diode as a benchmark

device.
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Chapter 6 is a computational study of the new splitting method. After describing

the scheme, we perform simulations of n+-n-n+ diodes of different lengths, some of

which are accurately described by the drift-diffusion model and others which require

more detailed models. We validate the effectiveness of the scheme in both situations.

Finally, in Chapter 7, we compute numerical solutions of perturbed Maxwellian

and Gaussian models used to simulate the behavior of a MESFET device with trans-

lational symmetry. We compare our results to a typical Bløtekjær-type model, which

has the form of (1.21) with the ad-hoc addition of a diffusive heat flux.
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Chapter 2

From Semi-Classical Transport to the Drift-Diffusion Model

This chapter is a review of concepts that will serve as a backdrop for work in later

chapters. Section 1 gives a brief introduction to the physics of semiconductors. In

Section 2, a mathematical formulation of semi-classical charge transport is presented,

and in Section 3, simplifying assumptions are introduced to establish the classical

Boltzmann equation of electron transport, from which all subsequent models will be

derived. This includes drift-diffusion, which is the traditional model of choice for

simulating the behavior of semiconductor devices and is derived in Section 4. A

large portion of Sections 2, 3, and 4 is based on the original work of Poupaud [66,68].

2.1 Basic Physics of Semiconductors

The ability to transport charge through a solid material depends primarily on the

energy required to free electrons from their bound states. For conductors, the re-

quired energy is very small and therefore electrons flow freely when subjected to an

electrical potential. For insulators, the required energy is prohibitively large, thereby

preventing substantial electron flow. The term semiconductor describes a class of

materials for which electron transport is possible, but the energy needed to excite
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bound electrons and make them available for transport is substantially larger than

that of conductive materials. As a consequence, the conductive properties of semicon-

ductors can be easily manipulated to create devices with a various, highly nonlinear

current-voltage characteristics. It is for this reason that semiconductors are used in

the fabrication of nearly all modern electronic devices.

This section contains a very brief introduction to the physics of semiconductors.

Material is presented here only at the level required for the development of subsequent

chapters. For a thorough treatment of the physical aspects of semiconductors, the

reader is referred to [44]. For an engineering perspective that includes a discussion

of devices see [62,84]. For a summary of the mathematical theory, see [59].

2.1.1 Crystal Structure

Semiconductors are crystalline solids. Their crystal structure consists of a lattice

L = {ia1 + ja2 + la3 : i, j, l ∈ Z} ,

where a1, a2, a3 are linearly independent vectors in R3, and a basis that is attached

to each point in L. The basis that may be a single atom or a collection of atoms.

The crystal is held together by bonds between these atoms.

Associated with L is the reciprocal lattice

L̂ =
©
ia1 + ja2 + la3 : i, j, l ∈ Z

ª
,
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where a1, a2, a3 are vectors in R3 such that ai · aj = 2πδij. The structure of

the reciprocal lattice is important because it determines the dispersion relation–

the relationship between the energy e and the momentum ~k of an electron moving

through the crystal. (Here k is the electron wave number and ~ is the reduced Planck’s

constant.) For example, the energy is periodic with respect to the reciprocal lattice.

Therefore, the momentum component of electron transport can be restricted to the

Brillouin zone, defined as the set of all points in momentum space that lie closer to

the origin that to any other point of the reciprocal lattice:

B ≡
n
k ∈ R3 : |k| < |k − k0| ∀k0 ∈ L̂\{0}

o
.

2.1.2 Energy Bands

Recall from basic chemistry that the electrons in an individual, isolated atom are

found in discrete energy levels called shells. The outermost shell is called the valence

shell, and electrons in unfilled valence shells often interact with other atoms or ions

to form various molecular structures. In crystalline solids, the common energy level

of N different atoms will actually split in N different levels separated by very narrow

gaps. This is because the Pauli exclusion principle limits the number of electrons

that can be found in a given level. AsN becomes large, these levels form–practically

speaking–a continuum of possible energies called an energy band. The shape of an

energy band in energy-momentum space is determined by the graph of the dispersion

relation, and for each different band, the dispersion relation changes.

What makes a semiconductor unique is the energy gap between the valence band

26



(the highest energy band of bound electrons) and the conduction band (the lowest

energy band of free electrons). For conductive materials, these bands are very close

together or even overlap. Thus a large number of electrons will flow freely under the

influence of external forces. For insulators, the band gap is too large for an electron

in the valence band to be excited into the conduction band. Therefore the application

of an external forces will not result in the flow of current. For semiconductors, the

gap is somewhere in between so that thermal energy can excite some electrons into

the conduction band where they are free to move. When this happens, a positively

charged ion is left behind in the valence band which creates a "hole" in the lattice.

This hole is effectively filled in by other electrons in the valence band which in turn

leaves holes elsewhere in the lattice. It turns out that these holes can be described

mathematically as freely moving, positively charged particles.

2.1.3 Doping

At room temperature, thermal energy induces the creation of approximately 1010 cm−3

electron-hole pairs which is much too small to provide a usable operating current.

Therefore the creation of free electrons and holes is augmented through a process

known as doping, in which atoms or molecules, called dopants, are injected into a

semiconductor material. Dopants can have either too many valence electrons (n-

type) or too few valence electrons ( p-type) to fit naturally into the bonding pattern

of the crystal lattice structure. Those with too few valence electrons will cause

ionization of atoms in the lattice to fill in the gaps, thus creating holes in the valence

band. Those with too many valence electrons will ionize, thereby sending extra
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electrons into the conduction band.

The effect of the doping process is two-fold. First, it significantly increases the

concentration of holes and free electrons: typical concentrations range from 1016 cm−3

to 1018 cm−3. Second, because electrons and holes are no longer created in pairs,

ionized dopants create a distribution of fixed charge in the spatial domain. This

distribution of charge is known as the doping profile. It gives rise to an internal

electric field that plays an important role in the dynamics of electron transport.

2.2 Mathematical Formulation

We consider a system of particles with electrons in a single valley of an conduction

band and holes in a single peak of a valence band. The semiclassical description

of the kinetic densities F1(x, k, t) for electrons and F2(x, k, t) for holes–defined for

positions x ∈ Ω ⊂ R3, wave number k ∈ B, and time t ≥ 0–is given by the Boltzmann

transport equations

∂tF1 + v1(k) ·∇xF1 + qe∇xΦ ·∇kF1 = Q1(F1) +R1(F1, F2) , (2.1a)

∂tF2 + v2(k) ·∇xF2 − qe∇xΦ ·∇kF2 = Q2(F2) +R2(F1, F2) . (2.1b)

The dispersion relations for the conduction and valence bands are given by e1(k) and

e2(k), respectively, and vi(k) = ∇kei(k) is the group velocity [34] for electrons in each

band. The constant qe is the magnitude of an electron charge and Q1, Q2, R1, and R2

are integral operators that model collisions and generation/recombination processes.
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The quantity Φ is the electrical potential that satisfies Poisson’s equation

−∇x · ( ∇xΦ) = qe (D − hF1i+ hF2i) , (2.2)

where = (x) is the electric permittivity of the semiconductor material, D = D(x)

is the doping profile, and the notation h·i indicates integration over all k ∈ B.

Together (2.1) and (2.2) will be referred to as the Boltzmann-Poisson system. It

still requires boundary conditions, which for Φ are usually specified by separating Ω

into two parts. Artificial and insulating boundaries typically take Neumann condi-

tions, while Ohmic and Schottky contacts take Dirichlet conditions [74]. Conditions

for Fi are specified according to the characteristics of (2.1). For any x ∈ ∂Ω, let ν(x)

be the outward normal vector to ∂Ω at x. Then conditions for Fi must be given at

all (x, k) ∈ Ω× B such that v(k) · ν(x) < 0–where the characteristics of (2.1) enter

the domain. This can be done by specifying boundary data for Fi at these points or

by providing a rule that relates the incoming and outgoing data according to some

physical process at the boundary of the spatial domain.

It should be noted that a quantum version of (2.1) exists that is derived directly

from the Schrödinger equation. See, for example, Sections 1.4-1.5 of [59].

2.2.1 Collision Operators

The collision operators Qi considered here model particle-phonon scattering, which is

the exchange of momentum and energy between particles (carrier electrons or holes)

and quantum vibrations in the crystal lattice of the semiconductor known as phonons.

29



These phonons are assumed to be in a state of thermal equilibrium that is character-

ized by the lattice temperature T .

The collision operators are expressed mathematically as integral operators of the

form

Qi(f) =

Z
B
[si(x, k

0, k)f 0(1− f)− si(x, k, k
0)f(1− f 0)] dk0 , (2.3)

where the local scattering rate s is a periodic function of k and k0. The prime

notation attached to f in (2.3) and elsewhere implies dependence on k0 rather than

k. For a fixed position x ∈ Ω, s(x, k0, k) gives the rate at which particles with initial

wave vector k emerge from a phonon collision with wave vector k0. Although such

interactions typically do not conserve energy or momentum, they do preserve particle

number. This property is confirmed by the fact that hQi(f)i = 0, which follows from

the symmetry in the right-hand side of (2.3) with respect to the k and k0 variables.

An important concept in scattering is the principle of detailed balance which as-

serts that the transition probabilities between any two states must be equal for a

system in equilibrium–that is, for any equilibrium density Feq, the local scattering

rate satisfies

s(x, k0, k)F 0
eq(1− Feq) = s(x, k, k0)Feq(1− F 0

eq) . (2.4)

In other words, equilibrium cannot be maintained by cyclical processes.

Although not considered here, there are more general collision operators that

model additional physical processes. This includes particle-particle scattering and

Auger scattering, the latter of which occurs when a carrier electron is absorbed by the

lattice and its energy is transferred to bound electron that escapes the lattice. We
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refer the interest reader to [59, 69] and references therein for detailed mathematical

expressions for operators describing each type of collision and to [44] for a discussion

of the physics involved.

2.2.2 Generation/Recombination Operators

The generation/recombination operators model the creation and annihilation of

electron-hole pairs. They have the form

R1(f1, f2) =

Z
B
[g(x, k0, k)(1− f 01)(1− f2)− r(x, k, k0)f1f

0
2] dk

0 ,

R2 (f1, f2) =

Z
B
[g(x, k, k0)(1− f 01)(1− f2)− r(x, k0, k)f 01f2] dk

0 ,

where g and r and periodic functions of k and k0 that, in analogy with (2.4), satisfy

g(x, k0, k)(1− F 0
1,eq)(1− F2,eq) = r(x, k, k0)F1,eqF

0
2,eq) . (2.5)

By symmetry, hR2(f1, f2)i = hR1(f2, f1)i, and since hQi(f)i = 0, the difference be-

tween the L1(dk) norms of the electron and hole kinetic densities is preserved by the

flow described by (2.1):

∂t (hF2i− hF1i) +∇x · (hv2F2i− hv1F1i) = 0 .

Physically, this is just a statement of charge conservation.
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2.2.3 Notions of Equilibrium

The Boltzmann-Poisson system is said to be in local equilibrium at a point x ∈ Ω if

Q1(F1) +R1(F1) = Q2(F2) +R2(F1, F2) = 0 ,

If local equilibrium holds for every x, then the densities F1 and F2 are constant along

particle trajectories that are characteristics of (2.1). Physically this means that

collision and generation/recombination processes do not contribute to the evolution

of the system.

We now restrict our attention to the case where Qi models particle-phonon colli-

sions. The relative entropy plays an important role here in characterizing equilibria

of the Boltzmann-Poisson system. It also describes the trend of solutions toward

such equilibria. For i = 1 (electrons) and i = 2 (holes), the relative entropy is

Ki(f) = hκi(f, ·)i, where

κi(z, k) ≡ z log z − z + (1− z) log(1− z) + (−1)i+1 ei(k)− e0i
kBT

z . (2.6)

Here kB is Boltzmann’s constant and T is the temperature of the lattice, which is

assumed to be in equilibrium. The constant e0i gives the value of the respective band

edge. For electrons, it is the conduction band minimum (e01 ≤ e1(k)), and for holes

it is the valence band maximum (e02 ≥ e2(k)). In the language of thermodynamics,

Ki is the Massieu function corresponding to the Helmholtz free energy [17].

The relationship between the relative entropies and equilibria of (2.1) is based on
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Legendre duality. In general, the Legendre transform of a convex scalar function

ξ(z), z ∈ Rn, is defined by the implicit relation

ξ(z) + ξ∗(y) = yTz , y = ∂zξ ∈ Rn . (2.7)

Differentiating (2.7) shows that z = ∂yξ
∗ and, consequently, (ξ∗)∗ = ξ. The Legendre

transform of κ can be computed explicitly:

κ∗i (y, k) = log

∙
1 + exp

µ
(−1)i+1ei(k)− e0i

kBT
− y

¶¸
, y = ∂zκi(z, k) , (2.8)

and z can be computed in terms of y:

z = ∂yκ
∗
i (y, k) =

∙
1 + exp

µ
(−1)i+1 ei(k)− e0i

kBT
− y

¶¸−1
. (2.9)

In [57,58] it is shown that, when restricted to particle-phonon collisions, the null-

spaces Qi are given by functions of the form

Fi,eq =
1

1 + (−1)i+1g(e) exp
³
e1(k)
kBT

´ , (2.10)

where g(e+ ~ν) = g(e) and ν is the frequency of the phonon involved in a collision.

However, in practice, there are collisions of many non-commensurate frequencies (i.e.

ν1/ν2 is not rational). Therefore, g is a constant and the expression in (2.10) reduces
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to the well-known Fermi-Dirac distribution:

Fi,eq =

∙
1 + exp

µ
(−1)i+1e(k)− ω

kBT

¶¸−1
, (2.11)

where ω is the chemical potential. By comparing (2.9) and (2.11), we see that

Fi,eq = ∂yκ
∗
i (φi, k) , φi ≡ (−1)i

e0i − ω

kBT
.

With the form of Fi,eq given in (2.9), relations (2.4) and (2.5) become

s(x, k, k0) = s(x, k0, k) exp

µ
(−1)i e(k)− e(k0)

kBT

¶
, (2.12a)

r(x, k, k0) = g(x, k0, k) exp

µ
e1(k)− e2(k

0)

kBT

¶
. (2.12b)

In [66], it is shown that (2.12a) and (2.12b) are necessary and sufficient conditions to

prove the following Theorems:

Theorem 1 (Poupaud) Suppose that s > 0 is a bounded function that satisfies

(2.12a). Then

h∂zκi(f, ·)Qi(f)i ≤ 0

for any measurable function f . Furthermore, the following are equivalent

1. Qi(f) = 0 ;

2. h∂zκi(f, ·)Qi(f)i = 0 ;
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3. There exists a constant φi such that

f(k) = ∂yκ
∗
i (φi, k) .

Theorem 2 (Poupaud) Suppose that r and g are bounded functions related by

(2.12b). Then

h∂zκ1(f1, ·) (Q1(f1) +R1(f1, f2))i+ h∂zκ2(f2, ·) (Q2(f2) +R2(f1, f2))i ≤ 0

for any measurable functions f1 and f2. Furthermore, the following are equivalent:

1. R1(f1, f2) = R2(f1, f2) = 0 ;

2. Q1(f1) +R1(f1, f2) = Q2(f2) +R2(f1, f2) = 0 ;

3. h∂zκ1(f1, ·) [Q1(f1) +R1(f1, f2)]i+ h∂zκ2(f2, ·) [Q2(f2) +R2(f1, f2)]i = 0 ;

4. If ω is the chemical potential, then

fi(k) = ∂yκ
∗
i (φi, k) ,

where

φi = (−1)i
(e0i − ω)

kBT
.

Theorem (2) implies the following corollary, which relates equilibria to the dissipation

of an entropy-based Lyapunov functional.
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Corollary 3 If (2.12) holds, then the Boltzmann-Poisson system locally dissipates

the quantity

hκ(F1, ·)i+ hκ(F2, ·)i+
2kBT

|∇xΦ|2 .

The dissipation rate is zero if and only if

F1 =
1

1 + exp
³
e1(k)−ω
kBT

´ and F2 =
1

1 + exp
³
ω−e2(k)
kBT

´
for some constant ω.

Proof. The proof is a calculation. We sketch the details. Multiplying (2.1) by κi

and integrating over the Brillouin zone gives,

∂t hκi(Fi, ·)i+∇x · hκi(Fi, ·)i (2.13)

+qe∇xΦ · h∂zκi(Fi, ·)∇kFii = h∂zκi(Fi, ·) (Qi(Fi) +Ri(F1, F2))i ,

where, by the periodicity of B,

∇xΦ · h∂zκ(Fi, ·)∇kFii = −∇xΦ · h∂kκ(Fi, ·)i

=
(−1)i+1~
kBT

∇xΦ · hvFii

=
(−1)i+1~
kBT

(∇x · (Φ hvFii)− Φ∇x · hvFii)

=
(−1)i+1~
kBT

³
∇x · (Φ hvFii)

− Φ (∂t hFii− hRi(F1, F2)i)
´
. (2.14)
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Combining (2.13) and (2.14) with the fact that hR2(f1, f2)i = hR1(f2, f1)i gives

∂t

µ
hκ(F1, ·)i+ hκ(F2, ·)i+

2kBT
|∇xΦ|2

¶
+∇x ·

µ
hκ(F1, ·)i+ hκ(F2, ·)i+

qe
kBT

Φ (hvF1i− hvF2i) +
kBT

Φ∂t(∇xΦ)

¶
= h∂zκ1(F1, ·) (Q1(F1) +R1(F1, F2))i+ h∂zκ2(F2, ·) (Q2(F2) +R2(F1, F2))i .

The result now follows directly from Theorem (2).

In light of (2.12a), the collision operator can be written in the form

Qi(f) =

Z
B
[s̃i(x, k

0, k)Mif
0(1− f)−M 0

if(1− f 0)] dk0 , (2.15)

where

M i ≡ 1

N i
exp

µ
(−1)i ei(k)

kBT

¶
, N i ≡

¿
exp

µ
(−1)i ei(k)

kBT

¶À

and s̃i > 0 is symmetric in the k and k0 variables with

s̃i(x, k
0, k) ≡ si(x, k

0, k)

M i
=

si(x, k, k
0)

(M i)0
≡ s̃i(x, k, k

0) ,

2.3 Simplifications

In this section, we present a series of successive approximations that simplify the

Boltzmann-Poisson system. Our goal is to reduce (2.1) to a unipolar (electron only)

model with a parabolic dispersion relation. The order in which approximations are

presented is not intended to imply any type of hierarchical structure, but rather to
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reach the simplified model as quickly as possible.

2.3.1 Unipolar Model

In some cases, F1 À F2 (or vice-versa), and in such cases, it is common to set F2 = 0

and R1 = R2 = 0 and to drop the remaining subscripts in (2.1). The Boltzmann-

Poisson system for F = F1 becomes

∂tF + v(k) ·∇xF + qe∇xΦ ·∇kF = Q(F ) (2.16a)

−∇ · ( ∇xΦ) = qe (D − hF i) , (2.16b)

where Q = Q1 is given by (2.15). Since hQi = 0, the L1(dk) norm of F is preserved

by the flow of (2.1):

∂t hF i+∇x · hvF i = 0 . (2.17)

The relative entropy density κ = κ1 and its Legendre transform κ∗ = κ∗1 are given by

(2.6) and (2.8), respectively. The following is a corollary of Theorem 1.

Corollary 4 If (2.12a) holds for i = 1, then the unipolar Boltzmann-Poisson system

(2.16) locally dissipates the quantity

hκ(F, ·)i+
2kBT

|∇xΦ|2 .
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The dissipation rate is zero if and only if

F =
1

1 + exp
³
e(k)−ω
kBT

´
for some constant ω.

Proof. The proof is a calculation along the lines of the proof of Corollary 3. It

shows that solutions of (2.16) satisfy

∂t

µ
hκ(F, ·)i+

2kBT
|∇xΦ|2

¶
+∇x ·

µ
hκ(F1, ·)i+

qe
kBT

Φ hvF i+
kBT

Φ∂t(∇xΦ)

¶
= h∂zκ(F, ·) Q(F )i .

The result now follows immediately from Theorem 1.

2.3.2 Low Density Approximation

For 0 < F ¿ 1 the collision operator can be linearized, giving

C(f) ≡
Z
B
s̃(x, k0, k)(M f 0 −M 0f) dk0 ,

where now

M (k) =
1

N
exp

µ
−e(k)
kBT

¶
, N =

¿
exp

µ
−e(k)
kBT

¶À
. (2.18)
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Let H1/M be the Hilbert space with inner product

(f, g)1/M =

¿
fg

M

À
.

Using symmetry in the k and k0 variables, one may readily show that C is self-adjoint

with respect this inner product:

(g, C(f))1/M =

Z
B

Z
B

∙
s̃(x, k0, k)

µ
gf 0 − M 0

M
gf

¶¸
dk0dk

=

Z
B

Z
B

∙
s̃(x, k0, k)

µ
g0f − M 0

M
gf

¶¸
dk0dk

= hfC(Mg)i ,

and also negative definite:

hfC(Mf)i = −1
2

Z
B

Z
B

∙
s̃(x, k0, k)

µ
M 0

M
f2 − 2ff 0 + M

M 0 (f
0)2
¶¸

dk0dk (2.19)

= −1
2

Z
B

Z
B

"
s̃(x, k0, k)

µ
M 0

M
f − M

M 0f
0
¶2#

dk0dk ≤ 0 .

The entropy density and its Legendre transform in the low density approximation are

κ(z, k) = z log z − z +
e(k)− e0

kBT
z ,

κ∗(y, k) = exp

µ
−e(k)− e0

kBT
− y

¶
.
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with equilibria are given by

Feq = ∂yκ
∗(φ, k) , φ = −(e

0 − ω)

kBT
.

2.3.3 Parabolic Band Approximation

If the energy of carrier electrons lies near the conduction band minimum at k0, then

∇ke(k0) = 0 and the dispersion relation can be expanded to second order as

e(k)− e(k0) =
1

2

¡
∇2ke

¢
(k) : (k − k0)∨2 +O(|k − k0|3) .

Upon a rotational change of coordinates, we may assume that the Hessian of e is

diagonal with positive entries. Thus, if we ignore terms that are O(|k − k0|3), then

e(k)− e(k0) =
1

2

3X
i=1

∂2e

∂k2i
(ki − k0i )

2 . (2.20)

Equation (2.20) is called the parabolic approximation

For spherical bands, the diagonal entries of the Hessian will all be equal, but

in general, this is not the case. Still, it is common to introduce a spherical ap-

proximation, thereby expressing curvature of the band with a single scalar quantity.

Typically, the value of this quantity is chosen in such a way that preserves the density

of states, which is defined as the number of different momentum states consistent

with a given energy. The Hessian of e enters the formula for the density of states via
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the determinant

det
¡
∇2ke

¢
=

3Y
i=1

µ
∂2e

∂k2i

¶
.

Therefore, (2.20) is replaced by the expression

e(k)− e(k0) =
~
2m∗

e

|k − k0|2 , 1

m∗
e

=

Ã
3Y

i=1

µ
∂2e

∂k2i

¶!1/3
.

The dispersion relation now has the form of a classical particle with mass m∗
e. This

value is called the effective electron mass and is usually expressed as a fraction of the

true electron mass me.

In the spherical, parabolic band approximation, the group velocity is

v(k) = ∇ke(k) =
~
m∗

e

(k − k0) . (2.21)

and the function M in (2.18) reduces to

M =
1

(2πθ )3/2
exp

Ã
− |v|

2

2θ

!
, (2.22)

where θ = kBT /m∗
e. (Because kB/m∗

e is constant, it is common to refer to θ as

the lattice temperature when, in fact, is has units of velocity squared.) In light of

(2.21), the kinetic equation (2.16a) is typically rewritten with velocity replacing wave

42



number as an independent variable:

∂tF + v ·∇xF +
qe
m∗

e

∇xΦ ·∇vF = C(F ) (2.23a)

−∇ · ( ∇xΦ) = qe (D − hF i) , (2.23b)

where

C(f) =
Z
R3
[σ(x, v0, v) (Mf 0 −M 0f)] dv , (2.24)

and the new scattering rate σ is an approximation of s̃. Because the parabolic

approximation is local in momentum space, consistency requires that the Brillouin

zone be extended to all of R3. Moreover, any dependence of the dispersion relation on

the reciprocal lattice–beyond the numerical value of m∗
e–is removed. This means,

in particular, that the scattering rate σ is rotationally invariant–that is, for any

orthogonal matrix O ∈ R3×3,

σ(x,OTv0, OTv) = σ(x, v0, v) . (2.25)

2.4 Drift-Diffusion Equations

In this section, we formally derive the drift-diffusions equations, beginning with the

simplified Boltzmann-Poisson system given in (2.23). A rigorous statement and

proof concerning the relation between the Boltzmann-Poisson system and the drift-

diffusion-Poisson system can be found in [68]. The drift-diffusion equation [35, 59]
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is

∂tn−∇x · (a∇xn− µn∇xΦ) = 0 , (2.26)

where n ≡ hF i is the electron concentration, µ = µ(x) is the electron mobility, and

a = a(x) is the electron diffusivity. It must be supplemented by Poisson’s equation

(2.23b) for the potential Φ. Boundary conditions for (2.26) are usually specified

by separating the boundary of Ω into two parts: at Ohmic and Schottky contacts,

Dirichlet conditions for n are given; and at insulating and artificial boundaries, the

flux in (2.26) is set to zero.

The drift-diffusion equation can be derived from the Boltzmann equation, begin-

ning with the conservation law (2.17):

∂tn+∇x · hvF i = 0 . (2.27)

This law requires a closure that expresses the flux hvF i in terms of n. The drift-

diffusion equations are based on a closure that assumes F is near equilibrium. Before

deriving it, let us first review the properties [59] of the collision operator C given in

(2.24).

1. C is self-adjoint with respect to the inner product

hf, gi1/M =

Z
R3
f (v) g (v)

dv

M(v)
,

where M is given by (2.22). C is a Fredholm operator with a null-space com-

posed entirely of multiples of M . The equation C(f) = g has a solution if and
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only if hgi = 0. This solution is unique given the restriction that hfMi = 0.

We denote this solution by f = C−1(g).

2. For any orthogonal matrix O ∈ R3×3, define the operator O by

(Og) (v) ≡ g (Ov) .

Then (2.25) implies that C and O commute, i.e.,

OC(g) = C(Og).

As a consequence,

hg1C(g2)i = hO (g1C(g2))i = hOg1C(Og2)i , ∀ g1, g2 ∈ Dom(C) , (2.28a)

for all g1, g2 ∈ Dom(C) and


g1C−1(g2)

®
=

O
¡
g1C−1(g2)

¢®
=

Og1C−1(Og2)

®
, ∀ g1, g2 ∈ Dom

¡
C−1

¢
(2.28b)

for all g1, g2 ∈ Dom(C−1) .

2.4.1 Scaling

The behavior of solutions to the Boltzmann-Poisson system depends heavily on the

ratio of the mean-free-path between collisions to the length of a device and also on
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the size of the electrons’ thermal velocity relative to the drift velocity induced by the

electric field E = −∇xΦ. To understand how these parameters play a role, one must

first non-dimensionalize (2.23a). First, we rescale the independent variables

x = x0x̂ , v = v0v̂ , t = t0t̂ . (2.29)

Here a "naught" subscript denotes the magnitude of the associated dimensional vari-

able and a carat denotes the new dimensionless variable. The value x0 is the physical

device scale, v0 is the free velocity (set to capture the slowest dynamics of problem),

and t0 = x0/v0 is the time it takes a particle at velocity v0 to traverse the distance

x0. Next, we rescale the dependent variables:

F (x, v, t) = F0F̂
¡
x̂, v̂, t̂

¢
, C(F ) = C0Ĉ(F̂ ) , (2.30)

Φ (x, v, t) = [Φ0]Φ̂
¡
x̂, v̂, t̂

¢
.

Here [Φ0] is the voltage drop across the device. With the non-dimensional variables

given in (2.29) and (2.30), the transport equation is (with hats removed)

1

t0
∂tF +

v0
x0
v ·∇xF −

1

v0x0

qe
m
[Φ0]∇xΦ ·∇vF =

C0
F0
C(F ) . (2.31)

In addition to the free velocity, there are two other important velocity scales: the

thermal velocity θ1/20 and the drift velocity vE due to the electric field. The thermal
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velocity is given by

θ
1/2
0 =

mean-free-path
τ 0

,

where the relaxation time scale τ 0 ≡ C0/F0 characterizes the average time between

electron-phonon collisions and the mean-free-path is the average distance between

collisions. A reference value for the drift velocity is found by considering a particle

initially at rest at time zero that is accelerated by a constant electric field E0 = − [Φ0]x0
.

Just before a collision at time τ 0, the particle has drift velocity

vE ≡
qE0
m∗

e

τ 0 =
qe
m∗

e

[Φ0]

x0
.

In order to capture the dynamics at both of these velocity scales, we set v0 =

min(θ
1/2
0 , vE).

We now identify several non-dimensional parameters. First is the scaled Knudsen

number ε, which gives the ratio of mean-free-path to device length:

ε ≡ mean-free-path
x0

=
v0τ 0
x0

,

and also relates the reference times t0 and τ 0:

t0
τ 0
= ε

θ
1/2
0

u
.

There are also two velocity ratios, η and δ, which measure the ratio of the free to
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thermal velocity and the drift to thermal velocity, respectively:

η =
v0

θ
1/2
0

, δ =
vE

θ
1/2
0

=
qeτ 0
m∗

e

[Φ0]

v0x0
.

In terms of these three ratios, (2.31) becomes

η∂tF + ηv ·∇xF −
δ

εη
∇xΦ ·∇vF =

1

ε
C(F ) . (2.32)

Several asymptotic limits can be realized based on the size of ε and δ.

1. The drift-diffusion balance. Assume that collision processes dominate the

dynamics of electron transport, so the drift velocity is small compared to the

thermal velocity. Then ε = δ = η and (2.32) becomes

ε∂tF + v ·∇xF +∇xΦ ·∇vF =
1

ε
C(F ) . (2.33)

2. The drift-collision balance. Assume that the electric field force is large

enough to balances the collision forces, so the drift velocity and thermal velocity

are of comparable size. Therefore ε¿ δ = 1, and (2.32) becomes

∂tF + v ·∇xF +
1

ε
∇xΦ ·∇vF =

1

ε
C(F ) .

Other possible limits exist. For example, one can consider a high field ballistic

scaling [1,2,18,77] in which a nontrivial proportion of carrier electrons pass through
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the semiconductor material without being slowed by collisions. There are also vari-

ations on the drift-collision balance [67, 70]. However, we will not consider these

cases here. In fact, in what follows, we will concentrate entirely on the small-field

approximation that leads to the drift-diffusion balance.

2.4.2 Chapman-Enskog Expansion

We now use a Chapman-Enskog expansion to approximate F in the asymptotic limit

ε → 0 of the drift-diffusion scaling, thereby re-deriving the closure used in (2.27).

We formally expand F to first order ε:

F = nM̂ + εM̂ F (1)[n] , (2.34)

where n = hF i,

F (1)[n]

®
= 0, and M̂ is the rescaled version of (2.22) given by

M̂ =
1

(2π)3/2
exp

Ã
− |v|

2

2

!
.

(Note that square brackets around dependent variables indicate non-local depen-

dence.) Plugging (2.34) into (2.33) and comparing powers of ε gives

C(M̂ F (1)) = −v ·∇x(nM̂ ) +∇xΦ ·∇vnM̂ (2.35)

= −M̂ v · [∇xn+ n∇xΦ] .
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Because hvMi = 0, (2.35) is solvable for F (1):

F (1) = − 1

M̂
C−1(M̂ v) · [∇xn+ n∇xΦ] ,

whereby

hvF i = −
D
v ⊗ C−1(M̂ v)

E
· [∇xn+ n∇xΦ] . (2.36)

We note that upon rescaling that C retains the properties given in (2.28) with

M replaced by M̂ , Using these properties, one can show that
D
v ⊗ C−1(M̂ v)

E
is a

multiple of the identity. This multiple defines the mobility µ:

µ ≡
D
v1 ⊗ C−1(M̂ v1)

E
=
D
v2 ⊗ C−1(M̂ v2)

E
=
D
v3 ⊗ C−1(M̂ v3)

E
,

Setting (2.36) into (2.27) gives the drift-diffusion equation in non-dimensional form:

∂tn−∇x · (µ (∇xn− n∇xΦ)) = 0 .

In dimensional variables,

∂tn−∇x ·
µ
µ

µ
m∗

eθ

qe
∇xn− n∇xΦ

¶¶
= 0 , (2.37)

and by comparing (2.37) with (2.26), we recover the so-called Einstein relations [84]:

a =
m∗

eθ

qe
µ =

kBT

qe
µ .
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In [66], it is proven rigorously that

F = nM +O(ε) ,

where F solves (2.23a) and n solves (2.37). This result depends on appropriate

specification of boundary conditions and the introduction of a boundary layer.
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Chapter 3

Hydrodynamic Models

In this chapter, we analyze several moment models of electron transport, which in the

context of semiconductors are generally referred to as hydrodynamic models or some-

times extended hydrodynamic models. These models provide a reasonable alternative

to highly complex kinetic equations, and unlike drift-diffusion, their derivation is not

based on any near-equilibrium assumptions. Our main result is the derivation of a

new hierarchy of models based on perturbations of standard entropy-based closures.

The motivation for these new closures is to incorporate a description of the heat flux

(which plays an important role in electron transport) into well-posed entropy-based

models in a way that is justifiable at the kinetic level.

Extensive studies have been done on a variety hydrodynamic models by electrical

engineers, physicists and applied mathematicians. Although many models exist in

the literature (see [33] for a survey), most of them are variations or extensions of the

works by Bløtekjær [13, 14] and Stratton [81]. The continuing challenge of creating

credible models is to find an accurate description of electron transport in high-field,

hot-electron regimes. Our approach is to derive models beginning from a kinetic

description.
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The chapter is laid out as follows. In Section 3.1, we give mathematical formu-

lation of electron transport at the kinetic level, which will form a foundation for the

remainder of the chapter. This includes a general recipe for constructing moments

models from a kinetic description. In Section 3.2, we review the widely used model

attributed to Bløtekjær [13,14] and Baccarani andWordemann [8]. In Section 3.3, we

review the model of Anile and Pennisi [4] in the context of extended thermodynamics.

In Section 4, we lay out the formal framework for closures based on entropy mini-

mization [51—53]. Finally in Section 3.5, we derive the new perturbed entropy-based

closures and present several examples.

3.1 Mathematical Background

Let F = F (x, v, t) be the kinetic density of free electrons in a single conduction band

of a semiconductor material. In a classical description, F evolves according to the

Boltzmann transport equation

∂tF + v ·∇xF +
qe
m∗

e

∇xΦ ·∇vF = C(F ) . (3.1)

Here v ∈ R3 is the velocity coordinate, x ∈ Ω ⊂ R3 is the spatial coordinate, and

t ≥ 0 is time. The constant qe is the magnitude of the electron charge, and m∗
e

is the effective electron mass that characterizes the conduction band in the classical

parabolic limit [59].

The left-hand side of (3.1) describes the evolution of particles under their own

inertia and by the force derived from the electric potential Φ that satisfies Poisson’s
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equation

−∇x · ( ∇xΦ) = qe (D − hF i) . (3.2)

Together (3.1) and (3.2) are the Boltzmann-Poisson system. The new quantities in

(3.2) are the doping profile D = D(x) and the electric permittivity = (x). The

angle brackets denote integration with respect to the velocity variable–that is for

any function g = g (v)

hgi ≡
Z
R3
g(v)dv .

The collision operator C on the right-hand side of (3.1) is the integral operator intro-

duced in (2.24) of Chapter 2 that describes collisions between particles and phonons

in the semiconductor lattice which are assumed to be in thermal equilibrium with

lattice temperature θ .

3.1.1 Formal Kinetic Properties

We recall several important properties of the collision operator. First, for any function

ξ = ξ (v), the following are equivalent:

(i) hξC(f)i = 0 for all f ∈ Dom(C) ; (3.3a)

(ii) ξ is constant. (3.3b)

In particular, ξ = 1 gives the conservation law for electron concentration

∂t hF i+∇x · hvF i = 0 . (3.4)
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Second, for all f ∈ Dom(C),

¿
log

µ
f

M

¶
C(f)

À
≤ 0 , (3.5)

where

M (v) ≡ 1

(2πθ )3/2
exp

Ã
− |v|

2

2θ

!
(3.6)

is the lattice Maxwellian. Finally, there is an H-Theorem. For all f ∈ Dom(C), the

following statements are equivalent characterizations of the equilibria of C:

(i) C(f) = 0 . (3.7a)

(ii) f = hfiM . (3.7b)

(iii)

¿
log

µ
f

M

¶
C(f)

À
= 0 , (3.7c)

The kinetic entropy H and the relative kinetic entropy K are defined as

H(f) = hf log(f)− fi , (3.8a)

K(f) =
¿
f log

µ
f

M

¶
− f

À
. (3.8b)

The kinetic entropy arises in the study of dilute gases where a different collision
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operator, Cgas, satisfies an H-Theorem similar to (3.7) with

(ii0) f = Mn,u,θ , (3.9a)

(iii0) hlog(f)Cgas(f)i = 0 , (3.9b)

whereMn,u,θ is a Maxwellian:

Mn,u,θ(v) ≡
n

(2πθ)3/2
exp

Ã
|v − u|2

2θ

!

for some parameters (n, u, θ) ∈ R+ ×R3 ×R+ depending on x and t. The evolution

equation for H is

∂tH(F ) +∇x · J (F ) = D(F ) , (3.10)

where the kinetic entropy flux J and the entropy dissipation D are given by

J (F ) = hv(F log(F )− F )i and D(F ) = hlog(F ) C(F )i . (3.11a)

In general, H will be locally dissipated by solutions of (3.1) if

hlog(M ) C(f)i = 1

2θ


|v|2C(f)

®
≤ 0 .

The relative kinetic entropy derives its name from the fact that it is essentially

the difference between the kinetic entropy of a function f and the kinetic entropy of
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M :

K(f) +M = H(f)−H(M ) . (3.12)

In fact, the left-hand side of (3.12) is often defined as the kinetic entropy. This

makes little difference in any of the subsequent results and we use (3.8b) as a matter

of convenience.

We stress that K is the appropriate thermodynamic potential for describing the

Boltzmann-Poisson system. To see this fact, consider that the left-hand side of

(3.7c) can be interpreted as a statement that collision processes do not change K at

equilibrium. Indeed, for a general functional T , define the formal differential

δT (f ; g) ≡ lim
δ→0

∂

∂δ
T (f + δg) ,

then by (3.5)

δ(K; C(f)) .
=

¿
log

µ
f

M

¶
C(f)

À
≤ 0

with equality, by (3.7c), if and only if f = M . (Above we use the notation .
= to

show that equality is formal. The differential does not always exist). In conjunction

with (3.3), equation (3.7c) implies (3.7b) automatically. On the other hand, the

statement

δ(H; C(f)) .
= hlog(f) C(f)i = 0

implies, also in conjunction with (3.3), that f is a positive constant. This is clearly

not the appropriate characterization of the equilibria of C, because f in that case

would not even be integrable. Thus from a mathematical point of view, it is K,
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not H, that is the correct object to describe the distribution F that satisfies (3.1).

Indeed, K satisfies the local dissipation law

∂t

Ã
K(F ) + |∇xΦ|2

2m∗
eθ

!
(3.13)

+∇x ·
µ
J (F )− Φ∂t∇xΦ− qeΦ hvF i

m∗
eθ

¶
=

¿
log

µ
F

M

¶
C (F )

À
< 0 ,

which includes the contribution of the electric potential Φ. (The reader is

referred to the appendix of [17] for an explanation of how electric and magnetic fields

are incorporated in a thermodynamic description of physical system.)

From a physical point of view, K should be written in the form

K = H−
¿
|v|2
2θ

f

À
,

which makes it more recognizable as the Massieu function corresponding to the non-

equilibrium version of the Helmholtz free energy [17]. Because electrons are in contact

with the thermal bath that is the semiconductor lattice, we see that K is the correct

object to describe the physical system.

3.1.2 Moment Systems

Rather than attempt to resolve (3.1) in full detail, one may instead track the vector

hmF i, where m = (m0, . . . ,ml−1)
T is a vector whose l components are linearly in-

dependent polynomials in v. (Often m will be referred to as a polynomial vector.)

This significantly reduces the complexity of the problem by replacing the velocity
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dependence of F by a finite number of macroscopic variables that depend on x and

t. For functions F in the set

Fm =
©
g ∈ L1

¡
RD
¢
: g ª 0 and h|msg|i <∞, (s = 0, . . . , l − 1)

ª
(3.14)

that satisfy (3.1) and decay sufficiently fast for large |v|, the evolution of spatial

densities ρ = ρ (x, t) ≡ hmF i is given by

∂tρ+∇x · hvmF i−∇xΦ · h∇vmF i = hmC(F )i . (3.15)

For any function ξ = ξ(v), the integral hξF i will be referred to as the moment of

F with respect to ξ. Thus components of hmF i are moments with respect to the

polynomials ms. The order of hmsF i is the degree of ms. The set of moment

equations that make up (3.15) is called the moment system for F with respect to m,

and the order of this system is the degree of the highest degree polynomial component

of m. We note that in the context of semiconductors, these moment systems are

generally referred to as hydrodynamic models.

In general, (3.15) is not closed, meaning that there are more dependent variables

than equations. However, if we can find a function F : Rl → Fm such that F = F [ρ],

(3.15) becomes a closed system of the form

∂tρ+∇x · f(ρ)−
qe
m∗

e

∇xΦ · l(ρ) = r(ρ) , (3.16)
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where

f(ρ) = hvmF [ρ]i , l(ρ) = h∇vmF [ρ]i , r(ρ) = hmC(F [ρ])i .

(The bracket notation here denotes possibly non-local dependence on ρ). The com-

ponents of f will be referred to as flux terms or simply fluxes; components of l will be

referred to as field terms; and components of r will be referred to as collision terms.

In practical situations it is ρ, and not F , that is a measurable quantity.

Because Fm is an infinite dimensional vector space, a generic function in Fm cannot

be expressed by any finite number of components. Therefore, any closure for (3.15)

will require that F be approximated by a function F [ρ], in which case (3.16) only

approximates the evolution of ρ. The goal then is to identity candidates for F for

which (3.16) maintains the key physical and mathematical features of (3.15) as well

as the original Boltzmann-Poisson system.

3.1.3 Evaluation of the Collision Operator

Once a suitable candidate for F is found, evaluation of f and l is, in theory, straight-

forward. However, evaluation of the full collision operator C is a nontrivial computa-

tion. For detailed kinetic and Monte Carlo simulations, the amount of work required

for such a computation is justifiable. However, for hydrodynamic models that track

only a handful of velocity moments, a more sensible approach is to use simple ap-

proximations that are easier to calculate yet still maintain the key features of full the

collision operator. In particular, an approximation should dissipate the relative ki-
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netic entropy K, satisfy an H -Theorem as described by (3.7), and capture the correct

relaxation properties in the equilibrium limit. The standard BGK model [12] is a

popular choice. It takes the form

C̃(f) = −1
τ

µ
f − hτ−1fi

hτ−1M iM
¶
,

where τ = τ (x, v) is the microscopic relation time and M is given in (3.7c). In the

parabolic limit, τ is usually modeled by a power law with the factored form [33]

τ (x, v) = τ̄ (x)

µ
|v|2
2θ

¶γ

, (3.17)

where the exponent γ is a fitting parameter. When multiple scattering processes are

involved γ is given by some average representative value.

Since the point of moment models is to average out the velocity dependence of f ,

the microscopic relaxation time is often replaced by a macroscopic relaxation time τ 1

that depends on the macroscopic variables and is velocity independent, in which case

C̃(f) = − 1
τ 1
(f − hfiM ) .

However, by removing the local velocity dependence from τ , moments of the kinetic

distribution are forced to relax to their equilibrium value at the same rate, which is

very inaccurate.

In [13], a generalized BGK operator is introduced in which a kinetic density is as-

sumed to relax to equilibrium through a sequence of intermediate states. The states
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are not given explicitly; rather, they are specified only by their relevant moments–

that is, only moments of interest in the hydrodynamic model are given. This relax-

ation operator maintains the conservation properties of the full collision operator and

allows different moments to relax to equilibrium at different rates. In this way, some

degree of microscopic information from τ is retained.

A similar multi-stage operator is presented in [51] in the context of neutral fluids

that uses a sequence of fully specified intermediate states. The benefit is a relaxation

operator that satisfies the same conservation and entropy dissipation properties as

the full collisional operator.

A drawback to the approach in [51] for the neutral fluid case is that it fails to

capture the correct transport coefficients in the incompressible Navier-Stokes limit.

At issue there is the ability to obtain the correct Prandtl number–essentially the

ratio of viscosity to thermal conductivity. However, in the context of electron-lattice

collisions, the analog of the Navier-Stokes limit is the drift-diffusion limit. In this

limit, there is only one transport coefficient: the mobility. Thus the approach in [51]

will be satisfactory for the electron transport model.

3.2 The Bløtekjær, Baccarani, Wordemann (BBW) Model

The use of moment equations to describe electron transport was pioneered by

Bløtekjær in [13, 14]. We briefly review the derivation in [13], beginning with a

third-order system based on the vector

m = (1, v, v ∨ v, v ∨ v ∨ v)T . (3.18)
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The densities associated with these moments are the

concentration: hF i ,

momentum: hvF i ,

velocity flux tensor: hv ∨ v F i ,

and the unnamed third-order tensor hv ∨ v ∨ v F i. Typically moment equations are

expressed in terms of the concentration n, the bulk velocity u, the temperature tensor

Θ, the heat flux tensor Q, and the unnamed fourth-order tensor R. They are related

to F by

n = hF i , u =
1

n
hvF i , Θ =

1

n
h(v − u) ∨ (v − u)F i , (3.19)

Q =

(v − u)∨3 F

®
, R =


(v − u)∨4 F

®
.1

Often Θ is split into its trace and traceless parts

Θ = nθI + Σ

where θ = trace(Θ) is the (scalar) temperature and

Σ =

¿µ
v ∨ v − 1

3
|v|2
¶
F

À
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is the anisotropic stress. With the variables defined in (3.19), the moment equations

for F with respect to m are given by (3.16) with

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

nu

nu ∨ u+ nΘ

nu∨3 + 3nΘ ∨ u+Q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu

nu ∨ u+ nΘ

nu∨3 + 3nΘ ∨ u+Q

nu∨4 + 4nQ ∨ u+ 6nΘ ∨ u ∨ u+R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∇xΦ · l(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

n∇xΦ

2nu ∨∇xΦ

(3nu ∨ u+ nΘ) ∨∇xΦ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that R and the collision terms have yet to be specified.

3.2.1 Closure

The closure process consists in approximating the flux terms and the collision terms.

The field terms are already given in terms of the densities.
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3.2.1.1 Flux Terms Finding a closure for f amounts to specifying R. In [13], this

is done by replacing F in the expression for R by a Gaussian distribution,

Gn,u,Θ (v) ≡
np

det (2πΘ)
exp

µ
−1
2
(v − u)T Θ−1 (v − u)

¶
,

which gives

R = 3nΘ ∨Θ . (3.20)

It should be noted that G is constructed in order to recover the correct values for n,

u, and Θ. However, G cannot be used evaluate the heat flux Q. Since, G(v + u) =

G(−(v+u)), a simple symmetry argument shows that the heat flux tensor associated

with G is identically zero.

3.2.1.2 Collision Terms The next step is to find an expression for the collision terms

r(ρ). Bløtekjær’s approach here is to approximate the collision operator by a series

of relaxation terms,

C̃(F ) = −
2X

s=0

ηs (F − fs) , (3.21)

where the relaxation rates ηs > 0 depend on the moments hmF i. The quantity fs

is a distribution with concentration ns, bulk velocity us, and temperature θs that is

spherically symmetric about us, meaning

fs
¡
OT (v − us)

¢
= fs (v − us)
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for any orthogonal matrix O. For example, fs could be a Maxwellian distribution of

the form

Mns,us,θs (v) ≡
ns

(2πθs)
3/2
exp

µ
− |v − us|2

2θs

¶
,

but it need not be.

Approximating the collision operator in this fashion allows each of the spatial

densities for F to relax to their corresponding equilibrium values independently .

In [13], the choice

(n0, u0, θ0) = (n, 0, θ )

models the relaxation of energy to the thermal energy of the lattice; the choice

(n1, u1, θ1) =

µ
n, 0,

1

3
|u|2 + nθ

¶

models relaxation of momentum to zero while energy is conserved; and finally, the

choice

(n2, u2, θ2) =
¡
n, u, n|u|2 + 3nθ

¢
models relaxation to an isotropic density while both energy and momentum are con-

served. These choices produce a multi-stage relaxation approximation to C that,
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when substituted into (3.21), yields the following collision terms:

D
v C̃(F )

E
=− 1

τ p
nu (3.22a)D

v ∨ v C̃(F )
E
=− 1

τ p

µ
nu ∨ u− n|u|2

3
I

¶
− 1

τw

µ
n|u|2
3

I + n(θ − θ )I

¶
(3.22b)

− 1

τσ
(nΘ− nθI)D

v ∨ v ∨ v C̃(F )
E
=− 1

τσ

¡
nu∨3 + 3nΘ ∨ u+Q

¢
, (3.22c)

where

1

τw
= η0 ,

1

τ p
= η1 + η0 ,

1

τσ
= η2 + η1 + η0 .

Here τw is the energy relaxation time, τ p is the momentum relaxation time, and τσ

is the relaxation time Σ.

3.2.2 Reduction to Second Order

With the collision terms in (3.22), the evolution for the heat flux tensor is

∂tQ+ u ·∇xQ+∇x · (nQ ∨ u+ 3nΘ ∨ u ∨ u)− 3nΘ ∨ (∇ ·Θ)

= − 1
τσ

Q− 1

τ p

¡
n|u|2I ∨ u

¢
+
1

τw

¡
n|u|2 + 3n(θ − θ )

¢
I ∨ u . (3.23)

Several simplifying assumptions can be made to express Q in terms of lower-order

moments. If a stationary balance is assumed, then the time derivative in (3.23)

disappears; and if the kinetic energy of the system is assumed to be small relative to

the thermal energy, then terms involving the bulk velocity u can be neglected. By
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employing these assumptions and the approximation (3.20) for R, one finds a simple

expression for Q:

Q = −3τσn (Θ ·∇) ∨Θ . (3.24)

In his original work [13], Bløtekjær further reduces his model by limiting the

dynamics of the problem to one dimension. In such cases, Θ reduces to a diagonal

matrix

Θ = diag (θL, θT , θT ) .

where θL is the temperature component along the dynamic axis and θT is the tem-

perature component in each of the two transverse directions. Thus,

θ =
1

3
(θL + 2θT ) .

After further simplifications, θT is expressed in terms of θL, which leads to a closed

system in terms of the variables n, u, and θL. However, a more natural approach is to

take one-half times the trace of the stress equation and then use θ as a fundamental

variable rather than θL. The resulting system is a closed set of equations that

68



describes the evolution of concentration, momentum, and energy associated with F :

∂tn+∇x · (nu) = 0 (3.25a)

∂t(nu) +∇x · (nu2 + nθ)− qe
m∗

e

n∇xΦ = −
1

τ p
nu (3.25b)

∂t

µ
n|u|2
2

+
3nθ

2

¶
+∇x ·

µ
n|u|2u
2

+
5nθu

2
+ q

¶
− qe
m∗

e

nu ·∇xΦ = −
1

τw

µ
n|u|2
2

+
3n

2
(θ − θ )

¶
, (3.25c)

where the variable q ≡ 1
2
trace (Q) is the heat flux vector. For Q given by (3.24),

q = −5
2
τσnθ∇xθ .

Because (3.25) suppresses any non-isotropic features of Gn,u,Θ, one might as well

start with a Maxwellian distribution,

Mn,u,θ(v) =
n

(2πθ)3/2
exp

Ã
|v − u|2

2θ

!
,

and an approximate collision operator

C̃(F ) = −η1 (F − f1)−−η0 (F − f0) (3.26)

that is the same as (3.21), but without the non-isotropic relaxation. (As with the

Gaussian, the heat flux cannot be evaluated with Mn,u,θ directly). The result is
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the same expression for R as in (3.20) and the same collision terms as in (3.22).

Indeed, the advantage of using a Gaussian distribution is lost when the content of Θ

is retained in only one component. The Maxwellian distribution is the starting point

for the model investigated in [14], where the heat flux is simply given by

q = −κ∇xθ , (3.27)

but the heat diffusivity κ is left unspecified. With the approximate collision operator

given in (3.21) and the choice of intermediate states that follow,

κ =
5

2
τσnθ .

However, in [14], κ is never actually specified–only the form of q in (3.27) and the

requirement that κ > 0.

3.2.3 The Baccarani-Wordemann Expressions

The most popular version of the Bløtekjær model (3.25) is that of Baccarani and

Wordemann [8] who find analytical formulas for the heat conduction κ and the relax-

ation times τ p and τw. The heat conduction is expressed with the Wiedmann-Franz

law [44],

κ =

µ
5

2
+ γ

¶
τ pnθ, −5/2 ≤ γ ≤ 0 , (3.28)

where the parameter γ is the exponent found in the expression for the microscopic

relaxation time (3.17). However, as a practical matter, the choice of γ has become

70



a fit parameter that is chosen to fit Monte Carlo or experimental data. Two values

commonly found in the literature are γ = −1.0 [25,28] and γ = −2.1 [25,32].

The momentum relaxation time, τ p, is assumed to vary inversely with tempera-

ture:

τ p =
m∗

e

q

θ

θ
µ0 . (3.29)

Here µ0 is the low field mobility that depends on the doping profile and, to a lesser

extent, the temperature. To model the energy relaxation time, the mobility µ = q
m∗e

τ p

is assumed to vary according to the Caughley-Thomas formula [74],

µ = µ0

"
1 +

µ
µ0 |∇xΦ|

vs

¶2#−1/2
, (3.30)

where vs is the saturation velocity [44,84] of the electrons. Then both the momentum

and energy relaxation times are required to be consistent with the stationary, space-

homogeneous form of (3.25)–that is, they are assumed to satisfy

qe
m∗

e

n ·∇xΦ =
1

τ p
nu , (3.31a)

qe
m∗

e

nu ·∇xΦ =
1

τw

µ
n|u|2
2

+
3n (θ − θ )

2

¶
, (3.31b)

Combining (3.29)-(3.31) yields an expression for the relaxation time τw:

τw =
1

2

µ0m
∗
e

q

θ

θ

µ
1 +

3θ

v2sat (θ + θ )

¶
. (3.32)

The system (3.25), with the heat flux given in (3.27), the heat diffusion in (3.28),

71



and the relaxation times in (3.29) and (3.32), will henceforth be referred to as the

Bløtekjær-Baccarani-Wordeman (BBW) model.

3.2.4 Discussion of the BBW Model

The system (3.25) possesses a great deal of structure because–except for the heat

flux–it is completely derivable from the kinetic equations using the approximate

collision operator in (3.26) and setting F [ρ] =Mn,u,θ. In this case C̃ satisfies (3.5)

since

D
log(Mn,u,θ)C̃(Mn,u,θ)

E
= −1

2

n

θθ

¡
(θ + θ ) |u|2 + 3 (θ − θ )2

¢
< 0 .

Therefore, the transport equation (3.1) implies formally that

∂tH(Mρ,u,θ) +∇x · J (Mρ,u,θ) < 0 .

and if q locally dissipates the quantity

H(Mρ,u,θ) = n log

µ
n

(2πθ)3/2

¶
− 5
2
n ,

thenH(Mρ,u,θ) will be dissipated by solutions of (3.25). To show that q is dissipative,

introduce the energy variable

e =
1

2
n|u|2 + 3

2
nθ .
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A short calculation shows that

∂

∂e
(H(Mρ,u,θ)) = −

1

θ

and then

− 1
2θ
∇x · q = ∇x ·

µ
1

2θ
κ∇xθ

¶
−∇x

µ
1

2θ

¶
· κ∇xθ

= ∇x ·
µ
1

2θ
κ∇xθ

¶
+

κ

2θ2
|∇xθ|2 .

Since κ > 0, q dissipates the entropy H(Mρ,u,θ). Moreover, as shown in [53], (3.5)

implies that (3.25) also dissipates the quantity

K(Mρ,u,θ) +
2m∗

eθ
|∇xΦ|2 ,

which takes into account interactions between electrons and the lattice as well as

presence of the electrical potential Φ. As explained in Section 3.1.1, K is a more

appropriate object than H for studying the Boltzmann-Poisson system.

From a computational viewpoint, it is important to note that the convective part

of (3.25) is just the Euler equations for a compressible fluid; in particular, (3.25) is

hyperbolic. It has wave speeds u and u±a, where a =
q

5
3
θ is the sound speed. It is

possible that solutions to (3.25) possess shocks, in which case special shock capturing

methods must be used in numerical simulations. Computation of the BBW model

can be found in several places. For time-dependent solutions, see [25] for an ENO
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method, [72] for a central scheme approach, and [41] for a relaxation scheme approach.

Stationary schemes can be found in [28,29].

A general criticism of Bløtekjær’s model is that the flux closure lacks consistency.

As stated in [14], the inclusion of the term q = −κ∇xθ, is to incorporate the most

"important effect of a non-Maxwellian distribution function". However, using a

Gaussian or Maxwellian distribution to then evaluate R in (3.20) is inconsistent with

the non-zero heat flux assumption. Thus, the Bløtekjær’s approach for expressing

fluxes does not fall into the framework presented in the introduction that leads from

(3.15) to (3.22). More consistent approaches for deriving q will be presented later in

this chapter.

The Baccarani and Wordemann expression for heat diffusion and relaxation times

are also subject to criticism. The expression of the heat diffusivity is based on

a phenomenological argument rather than a kinetic based derivation, and the use

of r as a fitting parameter is very suspect. Its value is varied to compensate for

inaccuracies in the model, and it is usually the case that there is a trade-off. Choices

of r that produce "good" results for one macroscopic variable (say, the bulk velocity)

invariably produce "bad" results for another (say, the temperature). The expressions

for the relaxation times are also phenomenological, and the assumptions in (3.31) used

to derive the relaxation times lead to significant errors, especially where convective

gradients are known to be large.
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3.3 The Anile and Pennisi (AP) Model

In [4], a moment model is formulated based on the vector

m =
¡
1, v, v ∨ v, v|v|2

¢T
.

The moment system takes the form (3.16) where

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

nu

nu ∨ u+ nΘ

nu2 + 2nΘ · u+ 3nθu+ 2q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.33a)

f(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu

nu ∨ u+ nΘ

nu∨3 + 3nΘ ∨ u+Q

(n|u|2 + 3nθ)u ∨ u+ |u|2Θ+ 4(Θ · u) ∨ u

+2Q · u+ 4q ∨ u+ r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.33b)

∇xΦ · l(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

n∇xΦ

2nu ∨∇xΦ

2n (u ·∇xΦ)u+ n∇xΦ|u|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.33c)
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All of the variables used here have been previously defined except for r ≡ trace (R).

The collision terms have yet to be specified.

3.3.1 Extended Thermodynamics

The closure in [4] is based on the principles of extended thermodynamics [61], which

impose an entropy structure at the continuum level. For an arbitrary vector m,

this formulation is based on two assumptions: first, that the moments hvmfi and

hmC(f)i can be expressed in terms of the densities ρ = hmfi to provide a closure of

the form (3.16) and, second, that there exists a strictly convex entropy h = h(ρ), an

entropy flux j = j(ρ), and a dissipation term d(ρ) such that

∂th(ρ) +∇x · j(ρ) = d(ρ) , (3.34)

where d(ρ) ≤ 0. (Actually, the sign convention for physical entropy is minus the

mathematical entropy, so that the inequality in reversed in most physics texts and

−d is called a production term.)

The existence of a strictly convex entropy provides a great deal of structure to the

system (3.16). It turns out that h∗, the Legendre transform of h, plays an important

role. If h is sufficiently smooth, then h∗ is defined through the implicit relation

h(ρ) + h∗(α) = αTρ (3.35)
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where

α =

∙
∂h

∂ρ
(ρ)

¸T
. (3.36)

One may readily verify that

ρ =

∙
∂h∗

∂α
(α)

¸T
, (3.37)

whereby (h∗)∗ = h. Because of (3.37), h∗ is frequently referred to as the density

potential.

Multiplying (3.16) by α gives

∂th(ρ) +α
T

µ
∇x · f(ρ)−

qe
m∗

e

∇xΦ · l(ρ)− r(ρ)
¶
= 0

whenever ρ is continuously differentiable. If we identify

d(ρ) = αT (∇xΦ · l(ρ) + r(ρ)) ,

it follows then that

∂h

∂ρ

∂f

∂ρ
=

∂j

∂ρ
(3.38)

and, by taking derivatives with respect to ρ, that

∂2h

∂ρ2
∂f

∂ρ
+

∂h

∂ρ

∂2f

∂ρ2
=

∂2j

∂ρ2
.
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For clarity, we repeat this last relation using indical notation:

∂2h

∂ρa∂ρs

∂fab
∂ρr

+
∂h

∂ρa

∂2fab
∂ρr∂ρs

=
∂2jb

∂ρr∂ρs

Because the Hessians of f and j are symmetric in the r and s indices, it follows

that

∂2h

∂ρ2
∂f

∂ρ
=

∙
∂2h

∂ρ2
∂f

∂ρ

¸T
. (3.39)

Since h is convex, its Hessian is symmetric and positive definite. By (3.39), it

therefore symmetrizes ∂f/∂ρ, which makes (3.16) a symmetric hyperbolic system [27].

If the flux potential j∗ is defined by

j∗(α) ≡ αT f(ρ)− j(ρ) , (3.40)

then (3.38) implies

f(ρ) =

∙
∂j∗

∂α
(α)

¸T
, (3.41)

This relation justifies the name for j∗ and allows one to write (3.16) in the potential

form

∂t

Ã∙
∂h∗

∂α
(α)

¸T!
+∇x ·

∙
∂j∗

∂α
(α)

¸T
−∇xΦ · l

Ã∙
∂h∗

∂α
(α)

¸T!
= r

Ã∙
∂h∗

∂α
(α)

¸T!
.
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3.3.2 Closure

The closure process consists of approximating the flux terms and the collision terms.

The field terms are already given in terms of the densities.

3.3.2.1 Flux Terms In theory, the closure of f is computed as follows. Given the

densities ρ and the entropy h(ρ), one first computes the variable α using (3.36).

Then α is used to evaluate the flux f(ρ) = j∗α(α). However in practice, an analytical

expression for the entropy is often lacking and finding α is non-trivial. The standard

approach in extended thermodynamics is to expand α around some fixed value for

which h(ρ) has a known analytical expression. Often this is at thermal equilibrium

or at what is referred to as partial thermal equilibrium [4]. Expansions are then

truncated to provide analytical expressions with which to approximate α and f .

For the system (3.33a)-(3.33c) a closure for f amounts to specifying Q and r.

Using the extended thermodynamics approach, these terms are given in [4] by

Q =
2

5
q ∨ I, r = nθ

µ
7Θ− 16

3
θI

¶
.

3.3.2.2 Collision Terms The procedure for closing collision terms is more ambigu-

ous. Extended thermodynamics places restrictions on these terms, but does not

always specify them completely. Therefore, based on physical considerations, Anile
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and Pennisi use collision terms borrowed from Bløtekjær’s model (3.22)

hv C(F )i =− 1

τ p
nu (3.42a)

hv ∨ v C(F )i =− 1

τ p

µ
nu ∨ u− 1

3
|u|2I

¶
− 1

τw

µ
1

3
n|u|2I + n(θ − θ )I

¶
(3.42b)

− 1

τσ
(n (Θ− θI))


v|v|2C(F )

®
=− 1

τ q
(2q + 5nθu) . (3.42c)

Note that (3.42c) is almost the trace of the collision term in (3.22c) with Θ = θI and

τ q = τσ. The difference is a term n|u|2 that, because u is considered small in some

sense, will be neglected anyway in the reduction that follows. The parameter τ q is the

relaxation time for the energy flux, which is the moment with respect to 1
2
|v|2v. The

remaining relaxation times are the same as for the Bløtekjær derivation. It turns out

[4] that the entropy dissipation relation places restrictions on their relative values. In

practice, they are usually some functional form in terms of the average electron energy

or the energy flux-to-energy ratio. The parameters for these forms are fit according

to Monte-Carlo data. It is generally accepted that such fits are more accurate than

the Bacarrani-Wordeman expressions. However, they are device dependent, meaning

that change in physical specifications or applied voltage requires a new fit. Using

these Monte Carlo calculations, it has been found that 0 < τw < τ p < τσ < τ q for all

relevant ranges of the energy [63].
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3.3.3 Reduction to Second Order

As in the Bløtekjær case, the model of Anile and Pennisi is reduced to a smaller

system, this time by an asymptotic analysis known as Maxwellian iteration [61] that

proceeds as follows. First, the stress tensor Θ is separated into its trace and traceless

parts:

Θ = θI +
1

n
Σ .

The equation for Σ is

∂tΣ+∇x·(Σu)+
2

5
(∇x ∨ q)−

2

15
∇x·q+2 (nΘ ·∇x)∨u−

2

3
nΘ : ∇xuI = −

1

τσ
Σ . (3.43)

Beginning with s = 0, the Maxwellian iteration is performed by placing the s iterate

of Σ on the left hand side of (3.43), and then solving for the s+1 iterate on the right-

hand side. Terms that are nonlinear in the s+ 1 iterate are neglected (which is why

neglecting n|u|2 in (3.42c) is not an issue). The zeroth iterate, Σ(0) = 0, corresponds

to the value of Σ at thermal equilibrium. The result at the first iteration is a balance

between the right hand side of (3.43) and the last two terms of the left hand side

evaluated at Θ = θI. If Σ(1) is used to approximate Σ, then

Σ = −2τσnθ
µ
∇x ∨ u−

1

3
(∇ · u) I

¶
(3.44)

= −τσnθ
µ
∇xu+ (∇xu)

T − 2
3
(∇ · u) I

¶
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The next step is to find a simple expression for q, whose evolution is given by

∂tq + u ·∇xq +
7

5
q (∇x · u) +

5

2
nθ∇xθ

− 7
2
nθΣ ·∇xn+

2

5
(∇xu) · q + θ∇x · Σ

+
5

2
Σ ·∇x (nθ) +

7

5
q ·∇xu− Σ · (∇x · Σ)

= − 1
τ q

µ
q +

5

2
nuθ

¶
+
1

τ p

µ
5

2
nθu+ Σ · u

¶
.

Maxwell iteration for q gives the first-order balance

5

2
nθ∇xθ = −

1

τ q

µ
q +

5

2
nuθ

¶
+
1

τ p

5

2
nθv

which implies that

q = −5
2
τ qnθ∇xθ +

5

2
nθu

µ
τ q
τ p
− 1
¶

. (3.45)

The balances for Σ and q reduce (3.16),(3.33) to a second-order, closed system of

equations for the concentration, momentum, and energy:

∂tn+∇x · (nu) = 0 (3.46a)

∂t(nu) +∇x · (nu2 + nθ + Σ) +
qe
m∗

e

n∇xΦ = −
1

τ p
nu (3.46b)

∂t

µ
n|u|2
2

+
3nθ

2

¶
+∇x ·

µ
n|u|2u
2

+
5nθu

2
+ q

¶
+

qe
m∗

e

nu ·∇xΦ = −
1

τw

µ
n|u|2
2

+
3n

2
(θ − θ )

¶
, (3.46c)
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where Σ and q are given by (3.44) and (3.45), respectively. This system (3.46) will

henceforth be referred to as the Anile-Pennisi (AP) model.

3.3.4 Discussion of the AP Closure

One of the primary objectives of the AP closure was to have a more rigorous derivation

of the heat flux that includes a convective component as seen in (3.45) and argued

for in [49, 80] that the heat flux should have a convective component . However, it

remains to be seen how much the convective component really affects the accuracy of

lower-order moments. Difficulties with any of these models usually occur at material

junctions where spatial gradients are large. Thus is it reasonable to expect that

diffusive contributions to the heat flux will dominate in these areas. In the next

chapter, we will check numerically if this is indeed the case.

The extended thermodynamic approach assumes the existence of a strictly convex

entropy as a fundamental principle from which hyperbolicity results. However, it is

not clear if either property survives the expansion process used to approximate the

Lagrange multipliers or the process of Maxwell iteration used to deduce (3.34) from

the original third-order system. Moreover, the extended thermodynamic approach

is a bit awkward when considering the potential Φ. In fact, nowhere in (3.46) is it

actually clear where Φ plays a role. As we shall see later, the formal presentation

must be altered slightly to allow for more general situations.

Numerical results for the AP model can be found in [63,72]. However, neither of

references uses the exact form of the closure given in (3.46). In [72], the authors use a
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splitting method with central schemes [54,65] to compute a hydrodynamic model that

uses the expression for q from the AP closure, but sets Σ = 0. In [63], an iterative

Newton-type scheme is used to find steady-state solutions for a model that uses q

and Σ in the energy equation, but ignores Σ in the momentum equation. In both

cases, the relaxation times are computed with Monte Carlo simulations as functions

of the average energy. Although it is generally accepted that this approach is more

accurate than the Baccarani-Wordemann expressions, it is still subject to criticism

since it discounts the effect of other macroscopic variables or variations in the electric

field.

3.4 Entropy-Based Closures

Given a polynomial vector m and densities ρ = hmF i, there are an infinite number

of functions f ∈ Fm such that hmfi = ρ. The minimum entropy principle (or

maximum entropy principle if you are a physicist) provides a criterion for selecting

the appropriate function F [ρ] to approximate F . It states that the most likely

distribution that is consistent with the constraints hmfi = ρ is the distribution

that minimizes the kinetic entropy of the system. This discovery of this principle

in the context of equilibrium thermodynamics is usually attributed to E.T. Jaynes,

although in his first paper on the subject [37], Jaynes states, "The mathematical facts

concerning the maximization of entropy ... were pointed out long ago by Gibbs." He

continues by crediting also C.E. Shannon, whose work in information theory [75,79]

showed that "the expression for entropy has a deeper meaning, quite independent
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of thermodynamics." Thus "the fact that a probability distribution maximizes the

entropy subject to certain constraints becomes the essential fact which justifies use

of that distribution for inference."

3.4.1 Relationship with Extended Thermodynamics

In [61], it is proved that kinetic closures based on entropy minimization are formally

equivalent to the systems derived from extended thermodynamics. Given a density

F and a vector of polynomials m, let ρ = hmF i and let F [ρ] be the minimizer that

solves

h(ρ) ≡ min {H (f) : hmfi = ρ} . (3.47)

If the minumun in (3.47) exists, and ifH is differentiable at the solution, then standard

Lagrange multiplier theory implies that

F [ρ] = exp(αTm) . (3.48)

It is clear from (3.47) that α ∈ Rn is related to ρ through the constraints:


m exp(αTm)

®
= ρ . (3.49)

We now that this relation is invertible for α as a function of ρ.

Following [51], one can identify explicitly the density and flux potentials

h∗(α) ≡

exp(αTm)

®
and j∗(α) ≡


v exp(αTm)

®
.
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Formally differentiating h∗ with respect to α recovers the constraint relations in

(3.48). Hence

h(ρ) + h∗(α) = αTρ (3.50)

which implies that h∗ is, in fact, the Legendre dual of h. Moreoever, because

∂2h∗

∂α2
(α) =


mmT exp(αTm)

®

is positive definite, the relation (3.49) may be inverted for α as a function of ρ. As

a result, the closure

∂tρ+∇x · hvmF [ρ]i−∇xΦ · h∇vmF [ρ]i = hmC(F [ρ])i (3.51)

possesses an auxiliary entropy equation of the form (3.34), where

h(ρ) = H(F [ρ]) , j(ρ) = J (F [ρ]) , d(ρ) = D(F [ρ]) .

Furthermore, differentiating (3.50) with respect to ρ shows that

α =

∙
∂h

∂ρ
(ρ)

¸T
. (3.52)

and that

∂2h

∂ρ2
=

∙
∂2h∗

∂α2

¸−1
is positive definite. Thus h is convex.
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In order to fit into the framework of extended thermodynamics, it must one must

also show that h is dissipated by solution of (3.51). This can be done by rewriting

(3.51) in the form

∂tρ+∇x · j∗α(α)−
qe
m∗

e

∇xΦ ·

∇vm exp(αTm)

®
=

mC(exp(αTm))

®

where α is given by (3.52). Multiplying this equation by αT gives

∂th(ρ) +α
T∇x · j∗(α)

− qe
m∗

e

∇xΦ ·

∇v(α

Tm) exp(αTm)
®
=

αTmC(exp(αTm)

®

Using the fact that

αT∇x · j∗(α) = ∇x · (αT j∗(α))− (∇T
xα) · j∗(α)

= ∇x · (αT j∗(α)− j∗(α))

and 
∇v(α

Tm) exp(αTm)
®
=

∇vexp(α

Tm)
®
= 0 ,

it follows that h satisfies (3.34), where

j(ρ) = αT j∗(α)− j∗(α) , d(ρ) =

αTmC(exp(αTm))

®
. (3.53)

However, since H is not always dissipated by solutions of (3.1), there is no guarantee
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that d(ρ) < 0 in (3.53).

In addition to an explicit, kinetic-based formulation, the minimum entropy method

also provides an algorithm for computing α that is not readily available in the ex-

tended thermodynamics theory. Instead of resorting to approximations near local

equilibrium, one can instead solve the dual problem for (3.47)

h∗(α̂) = min
α∈Rn

©
αTρ− h(ρ)

ª
. (3.54)

However, an algorithm based on (3.54) is still lacking. Issues that preclude a standard

implementation of (3.54) will be discussed in the following chapter.

3.4.2 Relative Entropy Formulation

Even though the entropy H gives rise to an extended thermodynamic closure, its

validity at the kinetic level is questionable because it does not give rise to an H -

Theorem. Indeed, as discussed in Section 3.1, the condition

δ(H; C(f)) .
= hlog(f)C (f)i = 0

does not correctly characterize the manifold of equilibria for C. (Recall that .
=

denotes a formal calculation.) Moreover, there is no guarantee that h(ρ) will be

dissipated. The discrepancy here is due to the fact that H neglects the presence of

the electrostatic potential Φ and the interaction of the electrons with the lattice.

Rather than H, the relevant object to consider [53] is the entropy relative to the
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lattice, given by

K (f) ≡
¿
f log

µ
f

M

¶
− f

À
.

and the dissipation law (3.7) gives rise to an extended thermodynamic description.

The entropy minimization problem for K is

k(ρ) ≡ min {K (f) : hmfi = ρ} , (3.55)

and its formal solution is given by

F [ρ] =M exp(βTm) , (3.56)

where M is given by (3.6) and β is determined by the constraint equations


mM exp(βTm)

®
= ρ . (3.57)

The minimization problems (3.47) and (3.55) are equivalent if and only if |v|2 ∈

span{m}, in which case their minimizer is the same and

βTm+
|v|2
2θ

= αTm .

All of the formal structure in the previous section remains modulo this simple change
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of variables between α and β. Plugging (3.56) into (3.55) gives

k(ρ) = K(M exp(βTm)) = h(ρ)−
¿
|v|2
2θ

F

À
,

and it easy to see from (3.48) and (3.56) that

k∗(β) ≡

M exp(βTm)

®
= h∗(a) .

Thus, k and k∗ are strictly convex Legendre duals that satisfy

k(ρ) + k∗(β) = βTρ ,

where

β =

∙
∂k

∂ρ
(ρ)

¸T
, ρ =

∙
∂k∗

∂β
(β)

¸T
.

When m = {1} or m = {1, v}, then (3.47) and (3.55) will differ since H is no

longer bounded below on the set Fm. However (3.55) still possess a finite solution

and, with it, all of the formal structure described here.

Following [53], one can identify a locally dissipation law for the moment closure

based on (3.55) that is an analog for the kinetic law stated in (3.13).

Proposition 5 (Levermore) If F [ρ] is defined as the minimizer of (3.55), then

solutions of (3.51) formally a local dissipation law for the quantity

K(ρ,∇xΦ) ≡ k(ρ) +
2m∗

eθ
|∇xΦ|2 (3.58)
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The dissipation vanishes if and only if F [ρ] = n.

Proof. The closure (3.51) takes the form

∂tρ+∇x · i∗β(β)−
qe
m∗

e

∇xΦ ·

∇vmM exp(βTm)

®
=

mC

¡
M exp(βTm)

¢®
, (3.59)

where

i∗(β) =

vM exp(βTm)

®
.

Multiplying (3.59) by βT gives

∂tk(ρ) + β
T∇x · i∗β(β) (3.60)

− qe
m∗

e

∇xΦ ·

∇v(β

Tm)M exp
¡
βTm

¢®
=

βTmC

¡
M exp(βTm)

¢®
. (3.61)

We first put the flux term into divergent form:

βT∇x · i∗(β) = ∇x · (βT i∗(β))− (∇T
xβ) · i∗(β)

= ∇x · (βT i∗(β)− i∗(β))

≡ i(ρ) .
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Now to handle the field term, we compute


∇v(β

Tm)M exp(βTm)
®
=

M ∇v

¡
exp(βTm)

¢®
=

∇v

¡
M exp(βTm)

¢®
−

(∇vM )exp(βTm)

®
= − 1

θ


vM exp(βTm)

®

so that (3.60) becomes

∂tk(ρ) +∇x · i(ρ) (3.62)

− qe
m∗

eθ
∇xΦ ·


vM exp(βTm)

®
=

βTmC(M exp(βTm))

®
.

To put the field term into divergence form, we differentiate by parts:

∇xΦ ·

vM exp(βTm)

®
=∇x · Φ


vM exp(βTm)

®
(3.63)

− Φ∇x ·

vM exp(βTm)

®
,

then use Poisson’s equation with fact that

M exp

¡
βTm

¢®
= hF i to manipulate the

non-divergent term on the right-hand side of (3.63):

Φ∇x ·

vM exp(βTm)

®
= −Φ∂t


M exp(βTm)

®
= − 1

qe
Φ∂t (∇x · ( ∇xΦ)) (3.64)

=
1

qe
∂t

³
2
|∇xΦ|2

´
−∇x · ( Φ∂t∇xΦ) .
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Together (3.62), (3.63), and (3.64) give

∂t

µ
k(ρ) +

2m∗
eθ
|∇xΦ|2

¶
+∇x ·

µ
i(ρ)−

θ
Φ∂t∇xΦ)−

qe
m∗

eθ
Φ

vM exp(βTm)

®¶
− qe

m∗
eθ
∇xΦ ·


vM exp(βTm)

®
=

βTmC(M exp(βTm)(

®
,

and according to (3.5),


βTmC(M exp(βTm)

®
=


log(exp(βTm)) C(M exp(βTm))

®
≤ 0 .

with equality if and only if exp(βTm) = n. This concludes the proof.

3.4.3 Well-Posedness of Entropy-Based Closures

So far, the discussion of entropy-based closure has been completely formal, and the

issue of when solutions to (3.47) and (3.55) exist has been largely suppressed. Indeed,

it is known that there are functions f ∈ Fm whose moments cannot be realized by

any exponential function–that is, for no value of α ∈ Rn does


m exp(αTm)

®
= hmfi .

93



In such degenerate cases, neither (3.47) or (3.55) will yield a solution [42, 43, 73].

Roughly speaking, these cases occur because neither H or K inflicts a strong enough

penalty on distributions with too much mass in the tails. When this happens, a

minimizing sequence {gs}∞s=1 for H or K will still converge in L1 to a function g.

However, g will no longer satisfy the constraint equation, i.e., hmgi 6= hmfi.

The issue of non-realizability leads one to question whether entropy minimization

is equivalent to extended thermodynamics. This objection was first raised in [42].

The problem is that the extended thermodynamic approach assumes the existence of

the entropy h which is explicitly provided by the minimizer of either H or K. When

a minimizer does not exist, extended thermodynamics still finds coefficients α that

are obtained through an approximate expansion. In such cases, the two approaches

are significantly different.

In [3] (and references therein), higher-order closures (greater than two) are based

on the entropy minimization problem (3.47) for H. Since these models include |v|2

(or the energy equivalent in the non-parabolic case), the discrepancies betweenH and

K do not matter here. However, the closures derived in these studies continue to

follow the extended thermodynamics practice of approximate expansions that result

in analytical closures, even when the entropy minimization problem does not have a

solution. In such degenerate cases, it is not clear whether these systems are hyperbolic

or even dissipate an entropy.

In the next chapter, we will investigate the minimization problem in detail using

the machinery of optimization theory [56]. The goal there is to characterize the set

of non-realizable functions as completely as possible. In doing so we will recover and
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extend many of the results found in [42,43] and in [73].

3.4.4 Generalized BGK Collision Operators

In this subsection, we will develop generalized BGK (GBGK) operators for a full

collision operator C. These operators were first introduced in [51] in the context

of neutral fluids. Specifying a collision operator is important not only for evaluat-

ing macroscopic collision terms, but also for the pertubation procedure that will be

introduced in the next section. We begin with some notation.

We define an admissible space M as any linear space of polynomials in v such

that:

(i)M ⊃M0 ≡ span{1};

(ii)M is invariant with respect to rotation;

(iii) The cone Mc = {p ∈M : hexp(p)i <∞} has nonempty interior.

Suppose that we are building a moment system with a vector m whose l components

are polynomials that form a basis for M, and let

M0 ( M1 ( . . . ( Ms ( M

be a finite sequence of admissible spaces. For each r, 0 ≤ r ≤ s, let m(r) be a vector
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whose l(r) components are polynomials that form a basis for Mr and set

ρ = hmF i , ρ(r) =

m(r)F

®
, 0 ≤ r ≤ s.

(We note that the use of parentheses in the subscripts are to differentiate m(r) from

the quantity mr introduced and frequently used in the the next chapter). For a

given function f ∈ Fm, the entropic projection of f with respect to m is defined as

the solution of (3.55) and is denoted E(f ;m). Similarly, E(f ;m(r)) is the entropic

projection of f with respect to m(r) and is defined as the solution (3.55)–when it

exists–except with the constraints

m(r)f

®
= ρ(r). In what follows, we will use the

shorthand notation

Ef ≡ E(f ;m) and Erf ≡ E(f ;m(r)).

With this notation, E0f is the equilibrium associated with f , i.e., E0f = hfiM .

The sequence {Erf}sr=0 of entropic projection is used to construct an approxima-

tion of the full collision operator C. This approximation is a multi-stage relaxation

operator:

C̃(f) = −νs
¡
f − Esf

¢
−

s−1X
r=0

νr
¡
Er+1f − Erf

¢
, Dom(C̃) = Dom(C) ∩ Fm , (3.65)

where {νr}sr=0 is an increasing sequence of positive numbers, each of which depends

on ρ(r). Each νr is the rate at which Er+1f relaxes to Erf while νs is the rate at which f
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relaxes to Esf . To understand how the relaxation operator behaves at the macroscopic

level, take any polynomial p ∈Mr+1 and compute


pEr+1f

®
=

p1Er+1f

®
+

p2Er+1f

®
=
D
p1Erf

E
+

p2Er+1f

®
,

where p1 ∈Mr and p2 ∈Mr+1\Mr. As a result,


p
¡
Er+1f − Erf

¢®
=

p2
¡
Er+1f − Erf

¢®
, (3.66)

which means that the collision operator relaxes moments with respect to functions in

the space Mr+1\Mr to zero at a rate νr. Another important implication of (3.66) is

that

E(E(f ;m(r1));m(r2)) = E(f ;m(r2))

whenever r2 ≤ r1.

Another way understand C̃ is to rewrite it in the following way:

C̃(f) = −
sX

r=0

ηr
¡
f − Erf

¢
, (3.67)

where ηr = νr − νr−1 > 0. In this form, C̃ is reminiscent the operator used by

Bløtekjær (3.21) . It is a generalization of (3.21) in the sense that it allows for an

arbitrary number of relaxation processes. It is more specific in the sense that the

intermediate distributions are specified exactly. The benefit of this added detail is

that C̃ satisfies an H -Theorem. Also, the choice of the intermediate states is certainly
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not arbitrary since they represent the most likely distribution that is consistent with

the constraints

m(r)f

®
= ρ(r).

Proposition 6 (Levermore) The collision operator C̃ satisfies

1. Conservation:

C̃(f)

®
= 0 for all f ∈ Dom(C̃) .

2. Dissipation:
D
f log

³
f
M

´
C̃(f)

E
≤ 0 for all f ∈ Dom(C̃) .

3. Characterization of Equilibrium: For all f ∈ Dom(C̃), the following state-

ments are equivalent:

(i) C̃(f) = 0 ; (3.68a)

(ii)

¿
log

µ
f

M

¶
C̃ (f)

À
= 0 ; (3.68b)

(iii) f = hfiM . (3.68c)

4. Affine Behavior: For any function f ∈ Fm

C̃(f) = C̃ (E(f ;m))− νs (f − E(f ;m)) . (3.68d)

Proof.

1. The proof of property (1) is trivial since

Erf
®
= hfi for 0 ≤ r ≤ s .

2. We use the general fact that, for any y and z ∈ R,

(z − y) log

µ
z

y

¶
≥ 0 , (3.69)
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with equality if and only if y = z; but first, let f ∈ Dom(C̃). Then

¿
log

µ
f

M

¶
C̃(f)

À
= −

s−1X
r=0

ηr

¿¡
f − Erf

¢
log

µ
f

M

¶À
.

Using the fact that

¿¡
f − Erf

¢
log

µ Erf
M

¶À
= βT

r

¡
f − Erf

¢
m(r)

®
= 0 ,

we conclude that

¿¡
f − Erf

¢
log

µ
f

M

¶À
=

*¡
f − Erf

¢
log

Ã
f

Erf

!+
. (3.70)

which is non-negative due to (3.69) and, when applied (3.67), gives

¿
log

µ
f

M

¶
C̃(f)

À
≤ 0 .

3. First, the fact that (i)⇒ (ii) is trivial. Next, if f = hfiM , then Erf = hfiM

for each r. Hence (iii) ⇒ (i). Finally, from (3.69) and (3.70), it follows that,

for each r,

*¡
f − Erf

¢
log

Ã
f

Erf

!+
= 0 if and only if f = Erf
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which implies

¿
log

µ
f

M

¶
C̃(f)

À
= 0 if and only if f = Erf = Er−1f = . . . = E0f .

Hence (ii)⇔ (iii).

4. Since the mapping E is a projection,

E
¡
E(f ;m(r)),m(r)

¢
= E(f ;m(r)), 0 ≤ r ≤ s .

The result now follows immediately when plugging f and E(f ;m) into formula

(3.65) for C̃.

3.4.4.1 Linearization of C̃ Define the linear operator L acting on a function g by

Lg = − 1

M
DC̃(M )M g = − 1

M
lim
δ→0

∂

∂δ

³
C̃(M (1 + δg))

´
. (3.71)

Using the calculation

DfE(f ;m)g ≡ lim
δ→0

∂

∂δ
E(f + δg;m) = E(f ;m)mT


mmTE(f ;m)

®−1 hmgi (3.72)

with (3.65) and the identity E(M ;m) =M , L can be calculated explicitly:

Lg =
sX

r=0

νr (Pr+1 − Pr) , (3.73)
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where Ps+1 ≡ I and

Prg =m
T
(r)


m(r)m

T
(r)M

®−1 
m(r)M g

®
, 0 ≤ r ≤ s, (3.74)

is the orthogonal projection of g ontoMr in the Hilbert space HM
with inner product

(f, g)
M
=

Z
R3
f (v) g (v)M (v)dv .

Proposition 7 The operator L is bounded, positive, and self-adjoint from H
M
to

H
M
. The null space of L is M0, and it has a well defined pseudo-inverse from R (L)

to R (L), given by

L−1 =
sX

r=0

1

νr
(Pr+1 − Pr) . (3.75)

Proof. Each projection is bounded and self-adjoint in H
M
:

kPrfkM = kfkM − k(I − Pr) fkM ≤ kfkM ,

hfM Prgi =

fM mT

(r)

® 
m(r)m

T
(r)M

®−1 
m(r)M g

®
= hgM Prfi .

Hence, L is also bounded and self-adjoint. Moreover, since Mr ⊂Mr+1,

hgM Prgi ≤ hgM Pr+1gi . (3.76)

Plugging (3.76) into (3.73) shows that Lg ≥ 0 and that Lg = 0 if and only if

(Pr+1 − Pr) g = 0 for all r. In particular, Lg = 0 if and only if g = P0g; hence
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N (L) = M0. By general Hilbert space theory, L has a unique pseudo inverse L−1

from R(L) to R(L∗) =M⊥
0 , and since L is self-adjoint, R(L∗) = R(L). Finally, if g

is decomposed into orthogonal components,

g =
sX

r=0

gr , gr ≡
sX

r=0

(Pr+1 − Pr) g ,

then

Lg =
sX

r=0

νrgr

and

1

νr
(Pr+1 − Pr)Lg = (Pr+1 − Pr) gr. (3.77)

Summing (3.77) over r proves the formula for L−1given in (3.75).

3.4.4.2 Relaxation Rates The Boltzmann equation with the GBGK operator (3.67)

is

∂tF + v ·∇xF +
qe
m∗

e

∇xΦ ·∇vF = −
sX

r=0

ηr (F − ErF ) .

The choice of the intermediate states ErF is based on the relative sizes of the relaxation

rates. This is because the property ηr = νr−νr−1 > 0 is crucial to proving Proposition

6.2. In addition, C̃ should recover the correct mobility in the drift-diffusion limit.

Recall from Chapter 2 that the mobility is given by

µ = −1
3

q

m∗
eθ
trace

¡
vC−1 (vM)

®¢
(3.78)
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(Here, the operator C−1 is the pseudo-inverse of the full collision operator, which is

linear.) Thus when replacing C by C̃, one must choose values of νr such that


vM L−1v

®
= −


vC−1(vM )

®
.

Proposition 8 Let Ma be the smallest smallest space containing the polynomial v

and suppose that

vm(r)M

®
= 0 for all r < a. Then


vM L−1 v

®
=

θ

νa
I .

Proof. Write out hvL−1 (vM )i in three pieces:


vM L−1 v

®
=

a−2X
r=0

1

νr
hvM (Pr+1(v)− Pr(v))i

+
1

νa
hvM (Pa(v)− Pa−1(v))i

+
sX

r=a

1

νr
hvM (Pr+1(v)− Pr(v))i .

All of the terms in the first line of this sum are zero by hypothesis as is the second

term of the second line. The terms of the third line are also zero since Pr (v) = v for

all r ≥ a. The only remaining term is

¿
1

νa
vM Pa (v)

À
=

¿
1

νa
(v ∨ v)M

À
=

θ

νa
I .
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Given this proposition, it is clear that the correct mobility is recovered by an

appropriate choice of the relaxation rate va. In practice, /νa = τ−1p , where τ p is the

momentum relaxation time. To recover the correct mobility, we set

τ p = −
1

3θ
trace


vC−1 (vM )

®
,

which is consistent with the well-known relation [44,62]

µ =
qe
m∗

e

τ p . (3.79)

The numerical values for µ and the remaining relaxation rates can be determined

in several ways. They can be computed using the full collision operator or by Monte

Carlo simulations. In the latter case, rates are determined for a device with specific

parameters. If physical characteristics such as doping profile or device dimension

or external potential are changed, then new rates must be calculated. In some

cases–such as the Baccarani-Wordeman model discussed later in this chapter–rates

are specified based on phenomenological arguments that combine a mixture of theory,

experiment, and approximation to justify analytical formulas for the rates as functions

of the macroscopic variables. It is generally understood the such approximations are

less accurate than the Monte-Carlo approach. However, they do not require re-

calibration for each new device.
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3.4.5 Examples

We present several entropy-based closures that are known to be well-posed–that is,

for which (3.55) has a solution. These closures all have the form

∂tρ+∇x · f(ρ)−
qe
m∗

e

∇xΦ · l(ρ) = r(ρ) .

3.4.5.1 The Equilibrium Closure. In the trivial case,m = {1}. The moment system

is

∂tn+∇x · hvF i = 0 .

where n = hF i. The entropic projection of F with respect to m is

E(F ;m) = nM .

Approximating F by F [ρ] = E(F ;m) gives

∂tn = 0 .

As is, this closure is quite trivial, and the collision operator does not play a role.

However, in the next section, we will show how perturbations of F [ρ] lead to the

drift-diffusions equations.

105



3.4.5.2 The Drifted Diffusion Closure Let s = 0 and set

m(0) = 1, m =

⎛⎜⎜⎝ 1

v

⎞⎟⎟⎠ .

The moment system is

∂tn+∇x · (nu) = 0

∂t(nu) +∇x · (v ∨ v F )−
qe
m∗

e

n∇xΦ = hvC (F )i ,

where

n = hF i , u =
1

n
hvF i . (3.80)

The entropic projection for evaluating the flux terms is a Maxwellian

E(F ;m) =Mn,u,θ ,

which gives

(v ∨ v F ) = (nu ∨ u+ nθ ) .

The entropic projection used to evaluate collision terms is

E0F = E(F ;m(0)) = nM .
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The GBGK operator reduces to the standard BGK operator,

C̃ (F ) = −ν0 (F − nM ) ,

where ν0 is the rate at which momentum relaxes to zero. It is to traditional [13,44]

to write

ν0 =
1

τ p

where τ p is related to µ by (3.79). (The subscript p here stands for momentum.)

Therefore the collision term is

D
v C̃ (F )

E
= − 1

τ p
nu .

3.4.5.3 The Maxwellian Closure Let s = 2 with

m(0) = 1, m(1) =

⎛⎜⎜⎝ 1

1
2
|v|2

⎞⎟⎟⎠ , m =

⎛⎜⎜⎜⎜⎜⎜⎝
1

v

1
2
|v|2

⎞⎟⎟⎟⎟⎟⎟⎠ .
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The moment system is

∂tn+∇x · (nu) = 0 , (3.81a)

∂t (nu) +∇x · (nu ∨ u+ nθI + Σ)− qe
m∗

e

n∇xΦ =
D
v C̃ (F )

E
, (3.81b)

∂t

µ
n|u|2
2

+
3nθ

2

¶
+∇x ·

µ
n|u|2u
2

+
5nθu

2
+ Σu+ q

¶
(3.81c)

− qe
m∗

e

nu ·∇xΦ =

¿
|v|2
2
C̃ (F )

À
,

where n and u are given in (3.79) and

θ =
1

n


|v − u|2F

®
, Σ =

¿µ
(v − u) ∨ (v − u)− 1

3
|v − u|2

¶
F

À
q =


|v − u|2(v − u)F

®
.

The entropic projection for evaluating the flux terms is a Maxwellian,

E(F ;m) =Mn,u,θ ,

which gives

Σ = 0 , q = 0.

The entropic projections used to evaluate the collision terms are

E0F = E(F ;m(0)) = nM ,

E1F = E(F ;m(1)) =Mn,0,ω ,
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where

ω =
2

3n


|v|2F

®
=
1

3
|u|2 + θ .

The collision operator,

C̃ (F ) = −ν1
¡
F − E1F

¢
− ν0

¡
E1F − E0F

¢
, (3.82)

models a two-part relaxation process. The relaxation from F to E1F corresponds to

the relaxation to a state with zero average momentum at a rate ν1. The relaxation

from E1F to E0F corresponds to the relaxation of energy to the thermal energy of the

lattice at a rate ν0 < ν1. Traditionally, these rates are defined in terms of their

corresponding relaxation times [13]:

ν0 =
1

τw
and ν1 =

1

τ p
.

(As before, the subscript p is for momentum while the subscript w stands for energy.)

The production terms take the form

D
v C̃ (F )

E
= − 1

τ p
nu ,¿

1

2
|v|2C̃ (F )

À
= − 1

τw

µ
1

2
n|u|2 + 3

2
n (θ − θ )

¶
.

Remark 9 At first glance, the choice of the intermediate state E1 in this example
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may seem a bit strange. In fact, it might seem more natural to replace m(1) by

m̃(1) =

⎛⎜⎜⎝ 1

v

⎞⎟⎟⎠

and E1F by Ẽ1F =Mn,u,θ . The resulting collision operator models the combination of

a fast(er) process of heat relaxation to the thermal lattice temperature and a slow(er)

process of momentum relaxation. Such an operator is inconsistent with the fact that

momentum relaxes faster than temperature.

In gas dynamics, their is no preferred inertial frame, and the choice of m(1) would

not be appropriate since span {1, |v|2} is not invariant under Galilean shifts. How-

ever, for electron-lattice collisions in a semiconductor, a preferred frame is provided

by the lattice. Hence invariance under Galilean shift is no longer expected to hold.

Related to this discussion is the quantity ω, which serves the role of temperature

in the Maxwellian that is the intermediate state E1F . Since the kinetic density E1F has

mean velocity zero, ω represents the entire energy of the system. It is in this way

that momentum and energy relaxation are handled as two distinct processes.
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3.4.5.4 The Gaussian Closure Let s = 3 with

m(0) = 1 , m(1) =

⎛⎜⎜⎝ 1

1
2
|v|2

⎞⎟⎟⎠ ,

m(2) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

v

1
2
|v|2

⎞⎟⎟⎟⎟⎟⎟⎠ , m =

⎛⎜⎜⎜⎜⎜⎜⎝
1

v

v ∨ v

⎞⎟⎟⎟⎟⎟⎟⎠ .

The moment system is

∂tn+∇x · (nu) = 0 , (3.84a)

∂t (nu) +∇x · (nu ∨ u+ nΘ)− qe
m∗

e

n∇xΦ =
D
v C̃ (F )

E
, (3.84b)

∂t (nu ∨ u+ nΘ) +∇x ·
¡
nu∨3 + 3nΘ ∨ u+Q

¢
(3.84c)

−2 qe
m∗

e

nu ∨∇xΦ =

¿
|v|2
2
C̃ (F )

À
,

where n and u are defined in (3.79) and

Θ =
1

n
h(v − u) ∨ (v − u)F i , Q =


(v − u)∨3F

®
.

The entropic projection for evaluating the flux terms is a Gaussian

E(F ;m)(v) = Gn,u,Θ(v) ,
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which gives Q = 0. The entropic projections used to evaluate C̃ are

E0F = E(F ;m(0)) = nM ,

E1F = E(F ;m(1)) =M (n, 0, ω) ,

E2F = E(F ;m(2)) =M (n, u, θ) .

The collision operator,

C̃(F ) = −ν2 (F − E2)− ν1 (E2 − E1)− ν0 (E1 − E0) , (3.85)

models a three-part relaxation process: first is relaxation to the isotropic distribution

E2 at the rate v2; next is momentum relaxation to the distribution E1 with zero mean

velocity at the rate v1; finally there is relaxation to the local equilibrium E0 at the

temperature θ at the rate v0. Again, it is traditional [13] to write

ν0 =
1

τw
, ν1 =

1

τ p
, ν2 =

1

τσ
,

where the additional subscript σ connotes Σ, the anisotropic part of the stress tensor.

The production terms for the Gaussian system are

D
v C̃ (F )

E
= − 1

τ p
nu ,D

v ∨ v C̃ (F )
E
= − 1

τσ
(nΘ− nθI)− 1

τ p

µ
nu ∨ u− 1

3
n|u|2

¶
− 1

τw

µ
1

3
n|u|2I + n (θ − θ ) I

¶
.
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Remark 10 As with the Maxwellian closure, there are other possible choices for the

vectors mr that determine the intermediate states. However, just as before, our

choice is guiding by the ordering of relaxation rates that ensures that C̃ dissipates

entropy. In this case, experiments confirm that τσ < τ p < τw which justifies our

choice of mr.

3.5 Perturbations of Entropy-Based Moment Closures

A particular drawback of the Maxwellian and Gaussian closures, as compared to the

BBW and AP closures, is that they fail to capture heat flow, which experiments

have found to be an important aspect in the dynamics of electron transport. Many

attempts have been made to extend moment systems to high order to capture these

effects more accurately. As mentioned previously, a series of papers (see [3] and

references therein), have developed higher-order closures (meaning order greater than

two) in the framework of extended thermodynamics that is formally justified by the

principle of minimum entropy applied to the kinetic entropy H. However, from a

mathematical point of view, entropy closures for systems of order greater than two

are not well-posed. Thus we propose a new approach that combines well-posed

entropy closures with a perturbative analysis. The basic idea is to assume that the

kinetic density is a small perturbation from its entropic projection, and then use this

perturbation to derive more accurate expressions for the stress and heat flux. We

find that such pertubations lead to convective and diffusive corrections that agree

with other closures in some respects and differ in others. A numerical investigation

into the effects of these corrective terms is the topic of Chapter 5. We call the new
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hierarchy of closures perturbed entropy-based (PEB) closures.

3.5.1 General Setting

We begin with Boltzmann transport equation,

∂tF + v ·∇xF +
qe
m∗

e

∇xΦ ·∇vF = C̃(F ) , (3.87)

where C̃ is given by (3.65). As usual, (3.87) can be integrated against a vector m of

polynomials in v to give

∂t hmF i+∇x · hvmF i+ qe
m∗

e

∇xΦ · hm∇vF i =

mC̃(F )

®
. (3.88)

Here we assume that the components of m are a basis for an admissible polynomial

space M. Let EF = E(F ;m) and write F as EF plus a perturbation:

F = EF
¡
1 + F̃

¢
, (3.89)

where D
mEF F̃

E
= 0 . (3.90)

By plugging (3.89) into (3.88), we find an evolution for the spatial density ρ = hmF i:

∂tρ+∇x ·
D
vmEF

¡
1 + F̃

¢E
− qe

m∗
e

∇xΦ ·
D
∇vmEF

¡
1 + F̃

¢E
=

m C̃(EF

¡
1 + F̃

¢
)
®
.

To simplify this expression, note first that if M is invariant under translations of
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v, then the components of ∇vm will be linear combinations of the components of m.

Thus (3.90) implies 
∇vm EF F̃

®
= 0 .

Moreover, by (3.68d),

C̃
¡
EF
¡
1 + F̃

¢¢
= C̃(EF )− νsEF F̃ ,

where νs is the largest relaxation rate in (3.65). Therefore


m C̃

¡
EF
¡
1 + F̃

¢¢®
=

m C̃(EF )

®
.

The evolution equation for ρ simplifies to

∂tρ+∇x · hvmEF i+∇x ·

vmEF F̃

®
− qe

m∗
e

∇xΦ · h∇vmEF i =

m C̃(EF )

®
. (3.91)

So far, everything has been exact except for the approximation C̃ of the full colli-

sion operator C. We now approximate F̃ in order to close this system. (Note that

we recover the entropic closure by simply setting F̃ = 0). Using (3.87) and (3.88),

we find that F̃ satisfies

∂t
¡
EF F̃

¢
EF

+ P̃EF

Ã
v ·∇x

¡
EF
¡
1 + F̃

¢¢
EF

!

+
qe
m∗

e

∇xΦ · P̃EF

Ã
∇v

¡
EF
¡
1 + F̃

¢¢
EF

!
= P̃EF

Ã
C̃(EF )
EF

!
− νsF̃ , (3.92)
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where P̃EF
= I − PEF

and

PEF
g =

1

EF
DfE(F ;m)EFg =mT


mmT EF

®−1 hmEFgi
is computed using (3.72). The mapping PEF

is the orthogonal projection of F onto

M is the Hilbert space HEF with inner product

(f, g)
EF
≡
Z
R3
f (v) g (v) EF (v) dv .

Thus P̃EF
g isolates the components of the function g that are orthogonal to m in

HEF .

The contribution from the electric field to the closure depends on whether or not

v ∈M. To see this, we compute

µ
∇vEF
EF

¶
(v) = ∇v(logEF ) = βT∇vm (v)−

v

θ
.

Thus, if M is invariant under translations of v and if v ∈M, then the components of

∇vm will be linear combinations of components in m. This implies that in (3.92),

P̃EF

µ
∇vEF
EF

¶
= 0 . (3.93)

Note that (3.93) does not hold in the case m = 1.
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3.5.2 Balance

We assume that (3.93) holds and that the potential energy associated with the electric

fields in a given device is on the same order as the thermal energy, in which case the

scaled version of (3.92) is

ε3
∂t
¡
EF F̃

¢
EF

+ εP̃EF

Ã
v ·∇x

¡
EF
¡
1 + δF̃

¢¢
EF

!

+ε2∇xΦ · P̃EF

Ã
∇v

¡
EF F̃

¢
EF

!
= P̃EF

Ã
C̃(EF )
EF

!
− ενsF̃ , (3.94)

where ε is the scaled Knudsen number. Although we are no longer in the equilibrium

limit, the value of ε is still relatively small. For example, in today’s most modern

semiconductor devices, ε is roughly 0.01 to 0.1. By retaining terms in (3.92) through

order ε, the behavior of F̃ is approximated by the balance

P̃EF

µ
v ·∇xEF
EF

¶
= P̃EF

Ã
C̃(EF )
EF

!
− νsF̃ ,

so that

F̃ = −τ s

"
P̃EF

µ
v ·∇xEF
EF

¶
− P̃EF

Ã
C̃(EF )
EF

!#
. (3.95)

It should be noted that the scaling (3.94)–and hence the balance in (3.95)–is

subject to criticism. The issue here is not so much the fact that ε ¿ 1 no longer

holds. Rather, it is the fact that, in smaller devices, the electric field can become

large, especially around material junctions where the doping concentration may vary

by several orders of magnitude. Including electric field effects gives a new balance
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for approximating F̃ :

P̃EF

µ
v ·∇xEF
EF

¶
+

qe
m∗

e

∇xΦ · P̃EF

⎛⎝∇v

³
EF F̃

´
EF

⎞⎠ = P̃EF

Ã
C̃(EF )
EF

!
− νsF̃ .

The closure derived from this balance is the subject of future work. For the moment,

we continue to work with the balance given in (3.95).

3.5.3 Entropy Dissipation

In general, the expression for F̃ in (3.95) provides two corrective terms to the closure

in (3.91): a gradient term that produces diffusive corrections and a collision term

that produces convective corrections. Recall that (3.91) dissipates the quantity

K(ρ,∇xΦ) given in (3.58) whenever F̃ = 0. The addition of the diffusive terms only

helps the situation. Following the calculation of Section (3.4.2), we need only show

the following

Proposition 11 The diffusive term in (3.95) locally dissipates the entropy k (and

hence K).

Proof. The chain rule gives

−∂k
∂ρ
∇x·

¿
τ sv EFm P̃EF

µ
v ·∇xEF
EF

¶À
(3.96)

= ∇x
∂k

∂ρ
·
¿
τ svmEF P̃EF

µ
v ·∇xEF
EF

¶À
−∇x ·

µ
∂k

∂ρ

¿
τ svmEF P̃EF

µ
v ·∇xEF
EF

¶À¶
,
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and the second term on the right-hand side of (3.96) is in divergence form. Thus, it

remains to show then that the first term has the appropriate sign. Note that

v ·∇xEF
EF

= v ·∇x(log(EF )) = v ·∇x(β
Tm) , (3.97)

where β =
³
∂k
∂ρ

´T
. Using the fact that P̃EF

is self-adjoint in HEF gives

∇x
∂k

∂ρ
·
¿
vmEF P̃EF

µ
v ·∇xEF
EF

¶À
=
D
v ·∇x(β

Tm) EF P̃EF
v ·∇x(β

Tm)
E

=

¿
EF
³
P̃EF
(v ·∇x(β

Tm))
´2À

≥ 0 ,

which concludes the proof.

The key to Proposition 11 is the unique form of (3.97) which is not shared by the

convective term in (3.95). It is therefore unclear whether inclusion of this term in

(3.91) will preserve entropy dissipation or hyperbolicity. The effects of both diffusive

and convection corrections in numerical simulations will be examined in the next

chapter.

3.5.4 Examples

3.5.4.1 The Equilibrium Closure For the case m = 1, the entropic projection is

just the equilibrium distribution: E(F ;m) =M hF i, and the closure for the density

n = hF i is trivial:

∂tn = 0 .
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However, it is instructive to see that the perturbation procedure outlined above re-

duces to the drift-diffusion model in this simple case. We note first that, since

C̃ (hF iM ) = 0, there are no convective corrections. However, since (3.93) does not

hold, then there will be an electric field contribution.

The perturbation F̃ satisfies

F̃ = −τp
∙
P̃EF

µ
v ·∇xEF
EF

¶
+

qe
m∗

e

∇xΦ · P̃EF

µ
∇vEF
EF

¶¸
= −τp

∙µ
v ·∇xn

n

¶
− q

m∗
eθ
∇xΦ · v

¸
.

and therefore the perturbed flux is

D
vEF F̃

E
= −τ p

∙
θ ∇xn−

qe
m∗

e

n∇xΦ

¸
= −m

∗
eθ

q
µ∇xn− µn∇xΦ ,

which is the just drift-diffusion flux with the mobility formula (3.79).

3.5.4.2 The Maxwellian Closure Recall that the entropic projection for F is a

Maxwellian,

E(F ;m) =Mn,u,θ =
n

(2πθ)3/2
exp

Ã
− |v − u|2

2θ

!
, (3.98)

and the resulting moment equations are given by (3.81). For simplicity of notation,

we will henceforth drop subscripts and setM ≡Mn,u,θ. If F =M, then Σ and q are

identically zero. In order to find non-vanishing expression for Σ and q, we assume
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that F has the form

F =M(1 + F̃ ) ,

where

mMF̃

®
= 0. According to (3.95), the perturbation F̃ is given by

F̃ = −τ p

"
P̃M

µ
v ·∇xM
M

¶
− P̃M

Ã
C̃(M)

M

!#

where P̃M = I − PM and

PMg =mT

mmTM

®−1 hmMgi (3.99)

=
1

n

µ
hMgi+ c

θ
hcMgi+ 2

3

µ
|c|2
2θ
− 3
2

¶¿µ
|c|2
2θ
− 3
2

¶
Mg

À¶
.

It is convenient to write Σ = Σ1 + Σ2 and q = q1 + q2, where

Σ1 = −τ p
¿µ

c ∨ c− 1
3
|c|2I

¶
MP̃M

µ
v ·∇xM
M

¶À
, (3.100a)

Σ2 = τ p

*µ
c ∨ c− 1

3
|c|2I

¶
MP̃M

Ã
C̃(M)

M

!+
, (3.100b)

and

q1 =
τ p
2

*
|c|2cMP̃M

Ã
C̃(M)

M

!+
, (3.101a)

q2 = −
τ p
2

¿
|c|2cMP̃M

µ
v ·∇xM
M

¶À
. (3.101b)

The terms Σ1 and q1 generate diffusive corrections while Σ2 and q2 generate convective

corrections. By plugging (3.82),(3.98), and (3.99) into (3.100) and (3.101), we find
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that

Σ1 = −nθτ p
µ
∇xu+ (∇xu)

T − 2
3
(∇x · u) I

¶
,

Σ2 = nu ∨ u− 1
3
n|u|2I ,

and

q1 = −
5

2
nθτ p∇xθ ,

q2 = −
4

3
n|u|2u+ τ p

τw

µ
5

6
n|u|2u+ 5

2
n (θ − θ )u

¶
.

3.5.4.3 The Gaussian Closure The entropic projection of F in this case is now a

Gaussian:

E(F ;m) = Gn,u,Θ =
np

det (2πΘ)
exp

µ
−1
2
(v − u)T Θ−1 (v − u)

¶
(3.102)

and the resulting moment equations are given by (3.84). For simplicity of notation,

we will henceforth drop the subscripts and set Gn,u,θ ≡ G. If F = E(F ;m), then Q

is identically zero. In order to derive non-vanishing values for Q, we assume that F

has the form

F = G
¡
1 + F̃

¢
,

where

mGF̃

®
= 0. The perturbation F̃ is given by

F̃ = −τ s

"
P̃G

µ
v ·∇xG
G

¶
− P̃G

Ã
C̃(G)
G

!#
,
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where P̃G = I − PG ,

PGg =
1

n

µ
hGgi+ ψ · hcGgi+ 1

2

¡
ψ ∨ ψ −Θ−1

¢
: h(c ∨ c−Θ)Ggi

¶
, (3.103)

and ψ = Θ−1 (v − u).

It is convenient to write Q = Q1 +Q2, where

Q1 = −τσ
¿
(v − u) ∨ (v − u) ∨ (v − u)GP̃G

µ
v ·∇xG
G

¶À
, (3.104a)

Q2 = τσ

*
(v − u) ∨ (v − u) ∨ (v − u)GP̃G

Ã
C̃(G)
G

!+
. (3.104b)

Then the term Q1 is a diffusive correction and the term Q2 is a convective correction.

By plugging (3.84), (3.85), and (3.103) into (3.104), we find that

Q1 =− 3τσn (Θ ·∇x) ∨Θ ,

Q2 =−
τσ
τ p

¡
nu ∨ u ∨ u+ n|u|2I ∨ u+ 3n (θI −Θ) ∨ u

¢
+

τσ
τw

¡
n|u|2 + 3n (θ − θ )

¢
I ∨ u .
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Chapter 4

Entropy Minimization and Realizability

In this Chapter, we will examine the minimization problem upon which entropy-based

closures for semiconductor models are based. Recall that the relative kinetic entropy

is given by

K(f) ≡
¿
f log

µ
f

M

¶
− f

À

and that

Fm ≡
©
g ∈ L1

¡
RD
¢
: g ª 0 and h|msg|i <∞, (s = 0, . . . , l − 1)

ª
.

The entropy minimization problem is then

min
g∈Fm

{K(g) : hmgi = ρ} . (4.1)

Our main result is a characterization of the set of D of degenerate densities. These

are densities ρ for which ρ = hmfi for some f ∈ Fm, but the minimizer in (4.1) does

not exist. Thus if F is a solution of the Boltzmann equation and if f = F (x, v, t)

for some fixed (x, t), then the entropy closure will not be well-defined. There two

possible ways to address this issue.
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1. Ensure that values ρ ∈ D will never be attained by the moment system gener-

ated by the entropy closure. One can either (i) show that the set of densities for

which (4.1) does have a solution is invariant under the dynamics of the moment

system or (ii) impose this condition in a way that is physically reasonable and

mathematically justifiable.

2. Develop a modified approach that (i) is well-posed for all physically realizable

values of ρ, (ii) agrees with the minimum entropy approach for well-posed cases

of (4.1), and (iii) produces closures that generate symmetric hyperbolic systems

that dissipate a physically meaningful entropy.

For both cases, it is important–at the very least–to show that D is small in some

sense; and under reasonable conditions, we show that D is the finite union of lower

dimensional fiber bundles. The fibers in each bundle are cones which we describe

using the complementary slackness condition that comes from the dual formulation

of (4.1)

For simplicity of exposition, we actually consider the minimization problem for

the functional H rather than K:

h(ρ) = min
g∈Fm

{H(g) : hmgi = ρ} , (4.2)

where

H(f) ≡ hf log f − fi .

As mentioned in Chapter 3, (4.1) and (4.2) generate the same closure whenever m
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contains polynomial elements of degree two or greater. Previous studies of (4.2) can

be found in [42, 43, 73], where the definition of h is altered in an attempt to handle

ill-posed cases. In [43] h is redefined by relaxing the minimum in (4.2) to an infimum:

h(ρ) = inf
g∈Fm

{H(g) : hmgi = ρ} . (4.3)

Meanwhile in [73], an alternative definition of h is given by

h(ρ) = inf
g∈Fm

{H(g) : hmgi ¹∗ ρ} , (4.4)

where the notation hmgi ¹∗ ρ means–roughly speaking–that inequalities between

certain components are allowed. Later in the chapter, we will attach a precise meaning

to this notation.

It has been shown in [73] that (4.4) has a unique minimizer with a specific form that

can easily expressed with Lagrange multipliers, and it turns out that the Lagrange

multipliers are intimately related to the question of whether or not (4.2) also has a

solution. We analyze this relationship in detail by applying a dual formulation to (4.4)

based on the theory of convex optimization. We prove the important complementary

slackness condition which is used to characterize the set D. In the process of our

investigation, we recover and extend previous results from [42,43] and [73]. We also

show that the definitions of h in (4.4) and (4.3) are equivalent, i.e., that the respective

infima are equal. This implies that the minimizer of (4.4) is also the unique minimizer

of (4.2) whenever (4.2) has a minimum.
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The organization of the chapter is as follows. In Section 2, we introduce prelimi-

nary notation and background. In Section 3, we present the minimization problem,

formulate its dual, and prove the complementary slackness condition. In Section 4,

we analyze the relationship between ρ and the Lagrange multipliers from the dual

problem, and two examples are given. Finally, in the Appendix, we include proofs

of the duality theorems, including the complementary slackness condition.

4.1 Preliminaries

4.1.1 Admissible Spaces

For a given moment system, the choice of m must satisfy criteria based on physical

considerations such as conservation and invariance under coordinates changes. We

require that components of m form a basis for a linear space M of multivariate

polynomials over the field of real numbers that satisfies the following conditions:

I. M ⊃ span{1, |v|2} ;

II. M is invariant under rotation ;

III. The cone Mc = {p ∈M : hexp (p)i <∞} has non-empty interior .

Spaces that satisfy Conditions I-III will be called admissible.

In Condition I, the constant functions are included in M so that any moment

closure will include the conservation law for the electron concentration n. Most

spaces also include multiples of the polynomial v, which gives a balance law for the
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momentum, but we do not explicitly require it here. Multiples of |v|2 give a balance

law for the energy, although this is not a requirement for solving (4.4). Rather, we

require |v|2 ∈M to ensure the minimization problems for H and for K are equivalent

(see Chapter 3). Thus we have intentionally excluded the cases M = span {1} and

M = span {1, v}, even though these spaces are known to produce well-posed closures.

In Condition II, invariance under rotation means that M is unchanged when v 7→

OTv for any orthogonal matrix O. This is a prerequisite of classical dynamics. For

many cases, invariance under translation is also necessary, which means that M is

also unchanged when v 7→ v − u for any v ∈ Rd (typically d = 3). In such cases,

consistency implies that Condition I should include the polynomial v. However, this

is not the case for semiconductors since the lattice provides a fixed frame of reference.

Condition III requires, at a minimum, that M contain polynomials of even maximal

degree to ensure the decay necessary for integrability. The reason for imposing this

condition will become clear when we examine the dual problem to (4.4).

4.1.2 Construction of Admissible Spaces

We now discuss the practical issue of constructing an admissible space. Given the

integers N ≥ 2 and d ≥ 1, let PN be the set of polynomials from Rd to R of degree

less than or equal to N . An admissible space M ⊂ PN is constructed by choosing

homogeneous polynomials of degree j ≤ N , beginning with N . Let Qj be the space

of homogeneous polynomials from Rd to Rof degree j. Each polynomial pj ∈ Pj can
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be represented by a symmetric j-fold tensor Bj = Bj(pj) via the tensor dot product

pj (v) = Bj · v∨j ,

in which case the components of Bj are just the coefficients of p. The tensor dot

product is applied by simply summing over all available indices. Meanwhile, the

superscript notation is used to denote symmetric tensor power.

The space Qj can be decomposed into the direct sum

Qj =

⎧⎪⎪⎨⎪⎪⎩
Hj ⊕ |v|2Hj−2 ⊕ |v|4Hj−4 ⊕ . . .⊕ |v|j , j even

Hj ⊕ |v|2Hj−2 ⊕ |v|4Hj−4 ⊕ . . .⊕ |v|j−1H1 , j odd
(4.5)

where Hi is the space of harmonic polynomials of degree i [26]. This series terminates

at |v|j for j. If Y i is the spherical harmonic tensor of degree i, defined for ω ∈ Sd−1,

then any polynomial qi ∈ Hi can be expressed with a tensor dot product

qi (v) = |v|i B̃i · Y i (ω) , ω =
v

|v| , (4.6)

where B̃i is a symmetric, traceless i-fold tensor. Together (4.5) and (4.6) show that

pj ∈ Qj can be written as the product of the homogeneous term |v|j times linear

combinations of spherical harmonic functions evaluated on the unit sphere. If j is

even, then only even spherical harmonics will be included; if j is odd, then only odd
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spherical harmonics will be included. If ω = v/|v|, then

pj (v) = |v|j
j/2X
i=0

B̃2i · Y 2i (ω) , j even,

pj (v) = |v|j
(j−1)/2X
i=0

B̃2i+1 · Y 2i+1 (ω) , j odd.

It is known [26] that the decomposition in (4.5) is the minimal decomposition of Pj

into orthogonal, rotationally invariant subspaces (meaning that no proper subspace of

Hj is rotationally invariant). Therefore, in order to satisfy Condition II, an admissible

space M must be a direct sum of some combination of these subspaces taken from

each Pj, j ≤ N . To satisfy Condition III, M must include polynomials from PN to

dominate the behavior of odd polynomials of lower degree for large |v|. Furthermore,

amongst the degree N polynomials, M must include |v|N . This is because spherical

harmonics other than Y 0 ≡ 1 take on both positive and negative values on the unit

sphere. Excluding |v|N would therefore lead to polynomials p such that

lim
r→∞

p(rω) =∞

for ω contained in a subset of the sphere Sd−1 with positive measure. In such cases

exp(p) will not integrable and Condition III will be violated.

For illustration, we construct admissible spaces in the simple case that N = 2.

The spherical harmonics up to order two are

Y 0(ω) = 1 , Y 1(ω) = ω , Y 2(ω) = ω ∨ ω − 1
d
|ω|2 .
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Any polynomial p ∈M is the sum of its homogeneous components:

p (v) = p2 (v) + p1 (v) + p0 (v) .

We begin with the polynomial p2 ∈ P2:

p2 (v) = B2 · v∨2 =
dX

i,j=1

B2
ijvivj (4.7)

for some symmetric 2-tensor B2. In terms of spherical harmonics,

p2 (v) = |v|2
h
B̃0 · Y 0 + B̃2 · Y 2

i
= B̃0|v|2 +

dX
i,j=1

B̃2
ij

µ
vivj −

1

d
|v|2δij

¶
, (4.8)

and comparing (4.7) with (4.8) gives explicit relations between B2 and the tensors

B̃0 and B̃2:

B̃0 =
1

d
trace(B2) and B̃2

ij = B2
ij, i 6= j .

The homogeneous polynomials of lower degree can be trivially expressed in the

same way:

p1(v) = B1 · v , p0 = B0 · 1 .

The linear polynomial p1 is just the usual dot product between the 1-tensor (vector)

B1 and v, and p0 = B0 is just a constant. For these trivial cases, B̃1 = B1 and
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B̃0 = B0. Combining p2, p1, and p0, we have

p(v) =
dX
i.j

B2
ijvivj +

dX
i=1

B1
i vi +B0

i

or, in terms of the harmonic polynomials,

p (v) = B̃0|v|2 +
dX

i,j=1

B̃2
ij

µ
vivj −

1

d
|v|2δij

¶
+

dX
i=1

B̃ivi + B̃0
i .

There are four admissible spaces for which N = 2:

M1 = span{1, |v|2} ,

M2 = span{1, v ∨ v} , (4.9)

M3 = span{1, v, |v|2} ,

M4 = span{1, v, v ∨ v} .

The only degree two polynomials in the first and third spaces are constant multiples

of the radial component |v|2, in which case B̃2 is identically zero. Degree two polyno-

mials in the second and fourth spaces, on the other hand, include components of the

spherical harmonic Y 2 and are therefore useful for modeling anisotropies. The spaces

M3 andM4 are used to construct the Maxwellian and Gaussian closures, respectively,

discussed in the previous chapter. Notice that they are the only two spaces that are

translation invariant. This property is important for neutral fluids where there is

no preferred frame of reference. However, with semiconductors, the crystal lattice
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provides a preferred frame, and translation invariance is not needed.

For larger values of N , it is simpler to represent polynomials more abstractly. Let

m be an array of l ≡ dim (M) polynomials that form a basis for M, and introduce

the decomposition

m = (m0,m1,m2, . . . ,mN)
T , (4.10)

where the lj components of mj are the jth degree polynomials components of m.

Consistency requires that
PN

j=0 lj = l. The sub-arrays mj may be thought of as

vector or as tensors. For example, if M = span{1, v, v ∨ v}, then

m0 = 1 , m1 = v , m2 = v ∨ v .

Any polynomial p ∈M is the sum of its homogeneous components:

p(v) = αTm(v) =
NX
j=1

αT
jmj (v) ,

where α is an array of l constant coefficients that decomposes as

α = (α0,α1,α2, . . . ,αN)
T

and αT
jmj is the appropriate inner product. For each j, the array αj has lj com-

ponents. If one considers mj and αj as symmetric j-fold tensors, then αT
jmj is

just the usual tensor dot product. Because of the vector representation, we will

frequently refer to m and α and their subarrays as vectors. In particular, m and its
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subarrays are frequently referred to as polynomial vectors because their components

are polynomials.

4.1.3 The Entropy Functional

The strictly convex entropy functional H : Fm 7→ R ∪ {∞} is given by

H(g) ≡ hg log g − gi .

By employing the convention 0 log 0 = 0–which is consistent with the fact that

limz→0 z log z = 0–one can make sense of the integrand when g(v) = 0. It is possible

that H(g) = +∞; however, to ensure that H is well-defined, it must be shown that

the negative contribution to the integral is finite. By convexity of the mapping

z 7→ z log z − z, the following inequality holds for all z, y > 0:

z log z − z ≥ y log y − y + (log y) (z − y) (4.11a)

= z log y − y . (4.11b)

Identifying z = g (v) and y = e−|v|
2
gives–after integration over the set

P =
©
v ∈ Rd : g (v) log g (v)− g (v) < 0

ª
–

H− (g) ≡ −
Z
P

(g(v) log g(v)− g(v)) dv

≤
Z
P

³
|v|2g(v) + e−|v|

2
´
dv (4.12)

≤
Z
Rd

³
|v|2g(v) + e−|v|

2
´
dv.
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Since |v|2 ∈M,
R
Rd |v|2g (v) dv is finite for all g ∈ Fm and so too is H−.

4.1.4 Cones

The minimization problem is essentially a study of cones. A subset C of a vector

space X is a cone if, for all real numbers λ > 0, x ∈ C if and only if λx ∈ C. It is

said to be pointed if x ∈ C and −x ∈ C implies that x = 0.

One cone that we have already seen is Fm, which is both convex and pointed.

Another important cone is the normal cone. Given a convex set Ω ⊂ X and a point

x ∈ ∂Ω, the normal cone of Ω at x is

NC(Ω, x) ≡ {x∗ ∈ X∗ : x∗(y − x) ≤ 0 , ∀ y ∈ Ω} .

(Here X∗ is the dual space of X). If X = Rl and ∂Ω is a C1 (continuously differen-

tiable) manifold at x, then NC(Ω, x) is a ray with base point at the origin that points

in the direction normal to ∂Ω at x. Even if ∂Ω is not C1 at x, a standard result of

differential geometry is that

dimNC(Ω, x) = l − j ,

where j is the dimension of the largest C1 submanifold embedded in Ω that contains

x.

An important function of cones is to expand the concept of scalar inequalities to

general vector spaces. Given x and y in a vector space X, we say that x ≤ y, or
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y ≥ x, (with respect to C) if and only if y − x ∈ C. The dual (or polar) cone C∗

consists of all elements x∗ ∈ X∗ such that the pairing x∗(x) ≥ 0 for all x ∈ C. Given

x∗ and y∗ in X∗, we say that x∗ ≤ y∗, or y∗ ≥ x∗, (with respect to C∗) if and only if

y∗ − x∗ ∈ C∗. Consider, for example, the convex cone

A ≡
©
α ∈ Rl : αTm ≥ 0

ª

and its dual

A∗ ≡
©
σ ∈ Rl : αTσ ≥ 0 ∀ α ∈ A

ª
,

both of which depend on the vectorm. Given a vector α,σ ∈ Rl, we say that α ≥ 0

(or 0 ≤ α) if and only if α ∈ A. and σ ≥∗ 0, or 0 ≤∗ σ, if and only if σ ∈ A∗.

Similar convex cones, corresponding to each vector mj of even degree polynomials,

are given by

Aj ≡
©
αj ∈ Rlj : αT

jmj(ω) ≥ 0 ∀ ω ∈ Sd−1
ª
, j even, j ≤ N (4.13a)

A∗j ≡
©
σj ∈ Rlj : αT

j σj ≥ 0 ∀ αj ∈ Aj

ª
, j even, j ≤ N (4.13b)

In the following subsections, we will discuss several other important cones.

4.1.4.1 Realizable Densities When solving (4.4), we are only interested in those

vectors ρ that are physically realizable–that is, they are moments of a function

f ∈ Fm with respect to m. The image of Fm under the moment mapping g 7→ hmgi
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is called the set of realizable densities:

Rm ≡
©
ρ ∈ Rl : ρ = hmgi , g ∈ Fm

ª
.

A density ρ ∈ Rm has a natural decomposition based on the decomposition of m in

(4.10):

ρ = (ρ0,ρ1,ρ2, . . . ,ρN)
T ,

where ρj = hmjgi for some g ∈ Fm. The set Rm has some very nice properties.

Theorem 12 The set Rm is an open, pointed, convex cone in Rl. In fact, Rm is

the dual cone A∗, and every vector in Rm can be realized by a non-negative function

supported on a compact set.

Proof. The fact that Rm is a pointed, convex cone follows directly from those same

properties of Fm. To show that it is open, choose any ρ ∈ Rm, and let g ∈ Fm be

such that hmgi = ρ. Then there exists a compact set E ⊂ Rd with positive measure

and a constant c > 0 such that g ≥ c on E. Define the linear map p : RN → RN by

β 7→ p(β) ≡
R
E
(βTm)m. (4.14)

Then p(0) = 0, and

∂p

∂β
=
R
E
mTm

is a constant, positive-definite matrix, which implies that p has a continuous in-

verse defined on all of Rl. Hence, for each δ > 0, the image of the set Bδ ≡
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©
β ∈ Rl : |β| < δ

ª
under p is open.

Define gβ ∈ L1(Rd) by

gβ (v) ≡

⎧⎪⎪⎨⎪⎪⎩
βTm (v) , v ∈ E ,

0, otherwise .
(4.15)

Then p(β) is realized by gβ, and

g + gβ ≥ 0

whenever |βTm| < c. This means that g + gβ ∈ Fm whenever |βTm| < c, in which

case ½
σ ∈ Rl : σ = hm (g + gβ)i , |β| <

c

supv∈E(|m|)

¾

is an open subset of Rm that contains ρ. Thus Rm is open.

We now prove Rm = A∗. Let ρ ∈ Rm be realized by a function f ∈ Fm. Then

for any α ∈ A,

αTρ =

αTmf

®
≥ 0 .

Therefore Rm ⊂ A∗. Conversely, for any ρ ∈ A∗, define the function z : RN → R by

α 7→ z (α;ρ, E) ≡ αTρ−
R
E
exp(αTm)

where E is now any compact subset of Rd. Following the arguments found in the ap-

pendix of [42], it is straight-forward to show that z is convex and that lim|α|→∞ z (α) =

138



−∞. (The proof utilizes the fact that, since ρ ∈ A∗, αTρ ≥ 0 whenever α ∈ A).

These properties imply that z has a maximum at some point ᾱ ∈ Rl, and first-order

optimality conditions imply that

ρ =
R
E
exp(ᾱTm) .

Therefore ρ is realized by a non-negative function in Fm with compact support and

A∗ ⊂ Rm.

4.1.4.2 Exponentially Realizable Densities An important subset of Rm consists of

those vectors ρ that can be realized by functions of the form

Gα ≡ exp(αTm) . (4.16)

Define the set

Am ≡
©
α ∈ Rl :mGα ∈ L1

¡
Rd
¢ª

(4.17)

and the function r : Am → Rl given by

r(α) ≡ hmGαi . (4.18)

The image of Am under r is the set of exponentially realizable densities:

Rexp
m ≡

©
ρ ∈ Rl : ρ = r(α) , α ∈ Am

ª
.
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This set is a cone and clearly Rexp
m ⊂ Rm.

Characterizing the set Am turns out to be very important. Like Rm, it is a

pointed, convex cone in Rl. However, generally speaking, Am is not open. Its

interior is simple:

intAm =
©
α ∈ Rl : αT

NmN(ω) < 0 for all ω ∈ Sd−1
ª

(4.19)

=
©
α ∈ Rl : αN ∈ − intAN

ª
.

Notice that Condition III is equivalent to intAm being non-empty. If α ∈ intAm,

then the behavior of p = αTm will be dominated for large |v| by the homogeneous

component pN = αT
NmN , and

lim
|v|→∞

p(v) = lim
|v|→∞

pN(v) = lim
|v|→∞

|v|NpN (v/|v|) = −∞ .

Therefore Gα will decay exponentially, in which case all of its moments will be finite.

The boundary component Am ∩ ∂Am is much more complicated. If α ∈ ∂Am,

then pN(ω) = 0 for at least one ω ∈ Sd−1, and it may be that there are unbounded

sequences {vi}∞i=1 such that limi→∞ p(vi) > −∞. Whether Gα has finite moments in

these cases is not entirely clear. We therefore introduce the first of two conditions.

Condition 13 The set Am ∩ ∂Am can be decomposed into a finite union of disjoint

smooth manifolds of codimension two or greater in Rl. If s is one such manifold,

then the projection α 7→ (α0,α1, . . . ,αN−1) maps s onto a manifold of codimension

one or greater in Rl−lN .
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This decomposition of Am ∩ ∂Am is called a stratification. The manifolds that

are its elements are called strata.

Let us discuss the dimensional restrictions of this condition. Clearly ∂Am ⊂©
α ∈ Rl : αN ∈ ∂(−AN)

ª
, the latter of which has codimension one in Rl. Then, in

order to maintain integrability condition (4.17) that defines Am, we expect further

restrictions on the components αj, j < N that reduce the dimension of Am ∩ ∂Am

by at least one degree.

4.1.5 Semi-algebraic Sets

In this subsection, we briefly discuss semi-algebraic sets, which will serve as a tool for

later results.

Definition 14 The class of semi-algebraic subsets of Rl is the smallest Boolean al-

gebra of subsets of Rl which contains sets of the form

©
x ∈ Rl : p(x) > 0

ª

for any polynomial function p : Rl → R.

By definition, the class of semi-algebraic sets is closed under finite unions, inter-

sections, complements, and Cartesian products. The reader is referred to [10,31,60]

for a thorough discussion that includes the following facts.

Lemma 15 Let Ω ⊂ Rl be a semi-algebraic set. Then the following hold.

1. If p : Rj → Rl is a polynomial mapping, then p−1(Ω) is semi-algebraic
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2. (Tarski-Seidenberg Theorem) If p : Rl → Rj is a polynomial mapping, then

p(Ω) is semi-algebraic. This holds in particular when j < l and p projects

elements in Rl onto any set of j coordinates.

3. The closure, interior, and boundary of a semi-algebraic sets are semi-algebraic.

4. Ω can be written as a finite disjoint union of smooth manifolds of codimension

one or greater.

We use several of these facts to prove another lemma.

Lemma 16 Let Aj be given by (4.13a). Then the following hold.

1. The cone Aj and its boundary are semi-algebraic for j even, 2 ≤ j ≤ N .

2. The sets intAm, clAm, and ∂Am are all semi-algebraic.

Proof. To prove the first statement, let m be given, and let j be an even integer.

Define the set

Sj =
©
(αj, ω) ∈ Rlj × Sd−1 : αT

jmj(ω) < 0
ª
.

Clearly Sj is algebraic. Furthermore, the cone Aj is the complement of the projection

of Sj onto its first lj components:

Aj =
©
αj ∈ Rlj : (αj, ω) /∈ Sj

ª
.

Lemma 15.2 implies that Aj is semi-algebraic, and Lemma 15.3 implies that ∂(Aj) is

semi-algebraic as well. The second statement then follows immediately from (4.19)

and Lemma 15.3.

142



It should be noted that one way to show Condition 13 holds is to prove that

∂Am∩Am, or equivalently Am itself, is semi-algebraic. The simple form of Gα leads

us to believe that this is a plausible result, but we have not been able to prove or

disprove it.

4.2 Entropy Minimization

4.2.1 Formulation

Given ρ = (ρ0, . . . ,ρN) ∈ Rm, we seek a solution of (4.4), where the relation hmgi ¹∗

ρ (or, equivalently, ρ º∗ hmgi) is a shorthand for

hmjgi = ρj , 0 ≤ j ≤ N − 1 , (4.20a)

hmNgi ≤∗ ρN , (4.20b)

and the inequality in (4.20b) is understood in the sense of the dual cone A∗N . The

components of hmjgi, 0 ≤ j < N , will be referred to as lower-order moments, and

the components of hmNgi will be referred to as higher-order moments.

The main result in [73] concerning (4.4) is the following theorem.

Theorem 17 (Schneider) Problem (4.4) possesses a unique minimizer of the form

Ga(ρ), where Gα is given by (4.16) and a(ρ) ∈ Rl is a vector of Lagrange multipliers.

We briefly sketch the existence proof below. See [73] for details. Uniqueness of

the minimizer follows immediately from the strict convexity ofH, and we will re-prove

the form of the minimizer during the course of the discussion that follows.
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Sketch of Proof (Existence). Let Cm = {g ∈ Fm : hmgi ¹∗ ρ}. Since H(g)

is bounded below on Cm (see equation (4.12)), there exists a minimizing sequence

{gi}∞i=1 ⊂ Cm such that H(gi) → h(ρ). The fact that the entropy sequence H(gi)

and the sequence of moments hmNgii are bounded implies, via the Dunford-Pettis

Lemma, that gi converges weakly in L1 through a subsequence. Let ĝρ be the limit

of that subsequence. Then Fatou’s Lemma implies hmj ĝρi ≤∗ ρj, 0 ≤ j ≤ N . Using

the fact that gi converges weakly in L1 and that hmNgii ≤∗ ρN , it can be shown that

hmj ĝρi = ρj for 0 ≤ j < N . Thus ĝρ is feasible and solves (4.4).

Note that if one were to take {gi}∞i=1 ⊂ C0
m ≡ {g ∈ Fm : hmgi = ρ} rather than

in Cm, then {gi}∞i=1 would still converge with hmj ĝρi = ρj for j < N . However,

Fatou’s Lemma implies only that hmN ĝρi ≤∗ ρN , and there is no way to ensure that

hmN ĝρi = ρN . This is precisely why (4.20b) is an inequality constraint: Cm is

closed in the weak-L1 topology whereas C0
m is not.

Such behavior begs the following question: For what values of ρ does the sequence

{gi}∞i=1 not converge inside C0
m? In other words, what does the set Rm\Rexp

m look

like? In [73], the author attempts to address this issue in the following theorem.

Theorem 18 (Schneider) Problem (4.3) has a minimum if and only if there exists

no function of the form Gα in Cm\C0
m.

The proof of this theorem follows immediately from uniqueness of the minimizer

and the remarks following the proof of Theorem 17. The result, however, is of little

practical use. In particular, it provides no insight into the geometry of Rm\Rexp
m .
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On the other hand, a geometric interpretation of Rm\Rexp
m is given in [42,43] for the

special case whenmN = |v|N . Our goal here is to describe the geometry of Rm\Rexp
m

in the general setting. We do so by formulating the dual problem for (4.3) and then

analyzing the relationship between ρ and a(ρ) given by the complementary slackness

conditions. In the process, we will recover results from [42,43] and also [73].

4.2.2 The Dual Function

Because H is convex on Fm and the constraints are linear, (4.4) can be solved via the

dual formulation [56]. Define the Lagrangian function L :
¡
Fm ×RN ×Rm

¢
7→ R by

L (g,α,ρ) ≡ H(g) +αT (ρ− hmgi) (4.21)

and the dual function ψ : RN ×Rm 7→ R by

ψ(α,ρ) ≡ inf
g∈Fm

L (g,α,ρ) . (4.22)

We can compute ψ(α,ρ) explicitly.

Theorem 19 For all α ∈ RN and ρ ∈ Rm,

ψ(α,ρ) =

⎧⎪⎪⎨⎪⎪⎩
αTρ− hGαi ,

−∞,

Gα ∈ L1(Rd)

Gα /∈ L1(Rd)

. (4.23)
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Proof. Suppose first that Gα ∈ L1(Rd). Then refer to the inequality (4.11b) and

make the identification z = g (v) and y = Gα (v) to derive the point-wise inequality

(g log g − g) ≥ g logGα −Gα = αTmg −Gα

which implies that

(g log g − g)−αTmg ≥ −Gα. (4.24)

Integration of (4.24) over Rd and addition of αTρ to both sides gives a lower bound

on L (and hence ψ):

ψ(α,ρ) ≥ αTρ− hGαi . (4.25)

However, if Gα ∈ L1
¡
Rd
¢
, then L (Gα,α,ρ) = αTρ − hGαi and (4.25) becomes an

equality.

If Gα /∈ L1
¡
Rd
¢
, then define for any set measurable K ⊂ Rd, the function

GK
α (v) =

⎧⎪⎪⎨⎪⎪⎩
Gα (v) ,

0,

v ∈ K

otherwise

.

Then GK
α ∈ Fm whenever K is bounded, and

L
¡
GK
α ,α,ρ

¢
= αTρ−

Z
K

Gα dv.
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If {Ki} is a sequence of compact sets with K1 ⊂ K2 ⊂ K3 ⊂ · · · and ∪iKi = Rd, then

ψ(α,ρ) ≤ lim
i→∞

L
¡
GKi
α ,α,ρ

¢
= −∞.

It should be noted that ψ differs only by a linear term from the density potential

h∗ that was introduced in Chapter 3:

h∗(α) = hGαi = αTρ− ψ(α,ρ).

Because optimality conditions are frequently expressed in terms of first and second

derivatives, the smoothness properties of ψ are important. This is true both when

trying to identify analytical solutions and when developing numerical algorithms.

Theorem 20 For any ρ ∈ Rm, the following hold

1. For any α,α+ δ ∈ Am, the function

φ(τ) ≡ ψ(α+ τδ,ρ)

is a twice differentiable function with

φ0(τ) = δTr(α+ τδ)− δTρ , (4.26a)

φ00(τ) =
D¡
δTm

¢2
Gα+τδ

E
. (4.26b)
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Its first derivative is an increasing function of τ .

2. ψ(·,ρ) is strictly convex on Am and infinitely Fréchet differentiable on intAm,

with derivatives

∂ψ

∂α
(α,ρ) = r(α)− ρ , (4.26c)

∂(i)ψ

∂α(i)
(α,ρ) =


m∨(i)Gα

®
, i > 1 . (4.26d)

.

Proof. For the proofs of these statements, we refer the reader to Lemmas 5.1 and 5.2

in [43] along with a few comments. First, the lemmas in [43] refer to h∗ rather than

ψ(·,ρ). This makes little difference since they differ only by a linear factor. Also,

the proofs in [43] are constructed specifically for the special case when mN = |v|N ;

however, modifications to the general setting are straight-forward.

In spite of the smoothness properties given by Theorem 20, the dual function is

not even continuous at the boundary of Am. Indeed, given a sequence {αi}∞i=1 ∈ Am

with limit α ∈ Am ∩ ∂Am, it is possible that

h∗(α) < lim
i→∞

h∗(αi).
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As an example, consider the one-dimensional case whenm = (1, v, v2, v3, v4)
T , which

has been studied in detail in [42]). Given the following five points in the (v, w) plane:

(v0, w0) = (0, 0) , (v1, w1) = (1, 0) , (v2, w2) =
¡
i,−i2

¢
,

(v3, w3) = (2i, i) , (v4, w4) = (2i+ 1, 0) ,

the unique degree four polynomial interpolating these points is

pi(v) = (α)
T
i m(v) =

4X
j=0

(αj)iv
j ,

where

(α0)i = 0 , (α1)i =
2i+ 1

4i− 2 +
4i2 + 2i

i2 − 1 , (α2)i = −
4i2 + 6i+ 1

i2 − 1 − 2i
2 + 4i+ 1

4i2 − 2i

(α3)i =
4i+ 2

i2 − 1 +
3i+ 2

4i2 − 2i , (α4)i = −
1

i2 − 1 −
1

4i2 − 2i

(The notation (α)i denotes a sequence of vectors rather than the usual notation αi,

which denotes the components of a single vector α corresponding to polynomials of

degree i). As i→∞, (α)i → α = (0, 3/4,−9/2, 0, 0)T ; hence Gα is integrable. How-

ever, one may readily check that p is positive and concave on the interval [2i, 2i+ 1],

149



in which case

h∗(αi) = hGαii

>

Z 2i+1

2i

epi(v) dv

>

Z 2i+1

2i

(1 + pi(v)) dv

> 1 +
i

2
→∞ as i→∞ .

Note that positivity of pi on [2i, 2i+ 1] gives the second inequality above since ex >

1+x for x > 0, and concavity implies that the graph of pi lies above the line segment

joining the points (2i, i) and (2i+ 1, 0) in the (v, w) plane. Therefore the integral

of pi over [2i, 2i + 1] is bounded below by the area of the triangle formed by , the

v-axis, and the line {v = 2i}. The area of this triangle is i/2. A similar argument

shows that, for any j ≥ 0,


|v|jGαi

®
→∞ as i→∞

while hvjGαi is finite.

The reason that ψ(·,ρ) is discontinuous at the boundary of Am is the same reason

that the minimization problem (4.2) with equality constraints fails: because mass at

the tails of the functions escapes as i →∞. In the example above, this is precisely

what happens to the mass of Gαi that is supported on the interval [2i, 2i + 1]. A

similar effect occurs with the minimizing sequence {gi}∞i=1 in the proof of Theorem 17.

The difference is that only the highest moments fail to converge in the minimizing
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sequence, whereas none of moments in this example converge. The reason for this

difference is that the moments hmgii from the minimizing sequence are all bounded.

In particular, the bound on |hmNfii| ensures that, for each j < N and for all i,

lim
R→∞

Z
|v|<R

|mjfi| dv = lim
R→∞

Z
|v|<R

¯̄̄̄
mj

mN
mNfi

¯̄̄̄
dv

≤ lim
R→∞

1

R

Z
|v|<R

|mNfi| dv

≤ lim
R→∞

Const.
R

= 0 .

Thus not enough mass is lost in the limit to make a difference for the lower-order

moments. A similar result would hold for the sequence {Gαi}
∞
i=1 if the moments of

Gαi were controlled in some way. Controlling the moments is, in effect, the same as

requiring αi → α is along a specified path. In fact, we see later that the function

ψ (a(ρ),ρ), where a(ρ) is the Lagrange multiplier associated with ρ, is a continuous

function of ρ.

Unfortunately, the smoothness properties given by Theorem 20 are not enough for

our purposes, and we will need to assume another condition concerning the behavior

of the dual function when restricted to ∂Am ∩Am.

Condition 21 Let s be an element of the stratification of ∂Am ∩Am as described in

Condition 13, and let ψs(·, ρ) be the restriction of ψ to s. Then ψs(·, ρ) is infinitely

Fréchet differentiable on s with derivatives given by (2).
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We remark that this condition holds in one dimension and that, like the one

dimensional example, the lack of smoothness in ψ(·,ρ) at the boundary is due to the

loss of mass at the tails of the integrand. However, the behavior of polynomials in

multiple dimensions in much more complex and we have, this in case, no conditions

by which to define the elements in the stratification of ∂Am ∩Am. Clearly one must

first prove Condition 13 before the validity of Condition 21 can really be addressed.

4.2.3 Duality Theorems

We present two duality theorems which, in conjunction with the explicit expression

for ψ, provide a solution to (4.4). In addition, we establish a complementary slackness

condition which will be later used to describe the geometry of the set Rexp
m .

Theorem 22 Let ρ ∈ Rm, and let h and ψ be given by (4.4) and (4.23), respectively.

Then

h(ρ) = max
αN≤0

ψ(α,ρ) , (4.27)

where the maximum on the right is achieved by a unique α̂ ∈
©
α ∈ RN : αN ≤ 0

ª
.

Furthermore if ĝρ solves (4.4), then ĝρ and α̂ satisfy the complementary slackness

condition,

α̂T (ρ− hmĝρi) = 0 , (4.28)

and ĝρ minimizes L (g, α̂,ρ) over Fm, i.e.,

ψ(α̂,ρ) = L (ĝρ, α̂,ρ) . (4.29)
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The proof of this theorem is a bit technical and therefore left to the appendix.

The argument makes no assumptions about the differentiability of H; rather, it is

based purely on convex analysis.

With respect to (4.27), we may assume α̂N is such that Gα̂ ∈ L1(Rd), since

otherwise ψ(α̂,ρ) = −∞. Knowing Gα̂ ∈ L1(Rd) allows us to compute

L (Gα̂, α̂,ρ) = α̂Tρ− hGα̂i = ψ(α̂,ρ) . (4.30)

Because L is strictly convex in first argument, its minimizer is unique. Consequently,

(4.29) and (4.30) imply that ĝρ = Gα̂, where α̂ solves (4.27). In order to satisfy the

primary feasibility conditions, α̂ ∈ Am, and (4.27) becomes

α̂T (ρ− hmGα̂i) = 0 . (4.31)

Since ρj = hmjGα̂i for j < N , the really important part of (4.31) is that

α̂T
N (ρN − hmNGα̂i) = 0 . (4.32)

The following useful result is an immediate consequence of the complementary

slackness condition.

Corollary 23 Let ρ ∈ Rm and let α̂ solve (4.27). Then

h(ρ) = inf
g∈Fm

©
H(g) : α̂T hmgi = α̂Tρ

ª
.
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A duality theorem similar to Theorem 22 exists for the minimization problem

h̃(ρ) = inf
g∈Fm

{H(g) : hmgi = ρ} . (4.33)

Theorem 24 Let ρ ∈ Rm, and let h̃(ρ) and ψ be given by (4.33) and (4.23), respec-

tively. Then

h̃(ρ) = max
α

ψ(α,ρ) (4.34)

where the maximum on the right is achieved a unique α̃ ∈ RN . Furthermore, if

the infimum in (4.33) is attained by some function g̃ρ ∈ Fm satisfying the equality

constraints, then g̃ρ minimizes L (g, α̃,ρ), i.e.,

ψ(α̃,ρ) = L (g̃ρ, α̂,ρ) .

The proof of this theorem is analogous to that of Theorem 22. See the appendix for

additional comments. As with Theorem 22, we may assume in (4.34) that α̃ ∈ Am.

Therefore the infimum in (4.4) is the same as in (4.33)–that is,

h(ρ) = h̃(ρ) = max
α∈Am

ψ(α,ρ) ,

and ĝρ = g̃ρ whenever the latter exists. The equivalence of (4.4) and (4.33) shows

that (4.2) has a solution if and only if ρ ∈ Rexp
m .

Corollary 25 The infimum in (4.33) is a minimum if and only if ρ ∈ Rexp
m . Thus

(4.2) has a solution if and only if ρ ∈ Rexp
m .
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Proof. If a minimum g̃ρ exists, then it is given by Gα̂ where α̂ solves (4.34). Thus

ρ ∈ Rexp
m . Conversely, if there exists a function Gα̂ such that hmGα̂i = ρ, then

H(Gα̂) ≤ H(g)−αT (hmgi− hmGα̂i) = H(g)

for all functions g in the constraint set of (4.33). Hence Gα̂ is a minimum of (4.33),

i.e., h̃(ρ) = H(Gα̂).

4.3 The Relationship between α and ρ

The motivation for studying (4.4) is its application to an evolution equation for ρ.

It is therefore important to understand the relationship between ρ and α as ρ varies

over Rm.We should note that a similar analysis to what follows can be found in [43]

for the special case when mN = |v|N .

4.3.1 Justification of the Formal Legendre Duality

Let a : Rm → Rl be the function that maps each ρ ∈ Rm to the multiplier α̂ ∈ Am

that solves (4.4). Because ψ(·,ρ) is strictly convex on Am, a(ρ) is uniquely defined

for each ρ ∈ Rm so that

ĝρ = Ga(ρ) and h(ρ) = ψ(a(ρ),ρ) . (4.35)

It turns out that a and the function r defined in (4.18) are inverses of one another.

Theorem 26 The function r is one-to-one from Am onto Rexp
m with inverse a, and
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it is a is diffeomorphism between intAm and intRexp
m .

Proof. We first identify a as the inverse of r. Since r is (by definition) onto Rexp
m ,

we need only to show that a(r(α)) = α for each α ∈ Am; and since the solution of

the dual problem is unique, it is sufficient to show that

ψ(α, r(α)) = ψ(a(r(α)), r(α)) ∀α ∈ Am. (4.36)

Because H is convex,

H(Gα) ≥ H(Gα∗) + hlog (Gα∗) (Gα −Gα∗)i ∀α,α∗ ∈ Am ,

which, from the definitions of H and Gα, gives

ψ(α, r(α)) ≥ ψ(α∗, r(α)) ∀α,α∗ ∈ Am .

This proves (4.36).

We now show that r is a diffeomorphism. For α ∈ intAm, r is the derivative of

the density potential h∗:

r(α) =
∂h∗

∂α
(α) .

Therefore r inherits smoothness properties from h (see Theorem 20). In particular,

its Jacobian is

∂r

∂α
(α) =

∂2h

∂2α
(α,ρ) =


mTmGα

®
,
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is a positive-definite matrix. Thus, by the inverse function theorem, r is a diffeomor-

phism from intAm onto intRexp
m . This means that a = r−1 is smooth on intRexp

m

with Jacobian

∂a

∂ρ
(ρ) =

∙
∂r

∂α
(a(ρ))

¸−1
.

Remark 27 It should be noted that if Conditions 13 and 21 hold, then r is a smooth

diffeomorphism when restricted to any manifold in the stratification of Am ∩ ∂Am.

This theorem rigorously establishes the formal Legendre duality relations used

in Sections 4 and 5 of Chapter 3 when Am = intAm and Rm = Rexp
m . From the

definitions of h, h∗, and ψ, we deduce that

h(ρ) + h∗(a(ρ)) = a(ρ)Tρ , (4.37)

where ∙
∂h∗

∂α
(a(ρ))

¸T
= r (a(ρ)) = ρ , ρ ∈ Rexp

m . (4.38)

Moreover, differentiating (4.38) with respect to ρ gives

∙
∂h

∂ρ
(r(α))

¸T
= a (r(α)) = α , α ∈ Am (4.39)

(Note that the calculation in (4.39) requires that a be differentiable). Finally,

∂2h

∂ρ2
(ρ) =

∂2h∗

∂2α
(a(ρ))
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is positive-definite so that h is strictly convex. Recall from Chapter 3 that strict con-

vexity of h is required in order for entropy based closures to be symmetric hyperbolic

systems.

4.3.2 Examples

For N = 2, Am = intAm and Rm = Rexp
m . We recall specifically the following cases

from Chapter 3.

1. Maxwellian closure. If m = (1, v, 1
2
|v|2)T , the minimizer of (4.2) is a

Maxwellian distribution:

Mn,u,θ(v) =
n

(2πθ)3/2
exp

Ã
− |v − u|2

2θ

!
,

where the fluid variables (n, u, θ) are related to the densities ρi by

ρ0 = n , ρ1 = nu , ρ2 =
1

2
nu2 +

3

2
nθ

and to the Lagrange multipliers α̂i by

α̂0 = log

Ã
n

(2πθ)3/2

!
− |u|

2

2θ
, α̂1 =

u

θ
, α̂2 = −

1

θ
.

2. Gaussian closure. If m = (1, v, v ∨ v)T , the minimizer of (4.2) is a Gaussian
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distribution:

Gn,u,Θ(v) =
np

det(2πΘ)
exp

µ
−1
2
(v − u) ·Θ−1 · (v − u)

¶
,

where the fluid variables (n, u,Θ) are related to the densities ρi by

ρ0 = n , ρ1 = nu , ρ2 = nu ∨ u+ nΘ

and to the Lagrange multipliers α̂i by

α̂0 = log

Ã
np

det(2πΘ)

!
− 1
2
u ·Θ−1 · u , α̂1 = Θ−1 · u , α̂2 = −

1

2
Θ−1 .

In both of these examples, the expressions for α̂ and ρ can be used to find a(ρ)

explicitly.

4.3.3 Degenerate Densities

If Rm\Rexp
m is non-empty, then there are densities ρ ∈ Rm such that ρ 6= r(α) for

any α ∈ Am. In such cases (4.2) has no solution, and the Legendre duality between

h and h∗ is no longer valid. In particular, h is no longer strictly convex, r (a(ρ)) 6= ρ,

and (4.38) no longer holds. We call such densities dengenerate. Unfortunately, it

turns out in most cases that Rm\Rexp
m is non-empty.

Theorem 28 The set Rm\Rexp
m is empty if and only if Am is open.
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Proof. Suppose that Am is open. Then for each ρ ∈ Rm, ψ(·,ρ) is smooth on all

of Am. First order optimality conditions for the dual problem imply that

∂ψ

∂α
(a(ρ),ρ) = 0 =⇒ ρ =


mGa(ρ)

®
.

Therefore ρ ∈ Rexp
m .

Now suppose thatAm∩∂Am is non-empty and α ∈ Am∩∂Am. Choose a nonzero

element σ º∗ 0 such that αTσ = 0. Then αTσ ≤ 0 for any α ∈ Am and Theorem

12 implies that r(α) + σ ∈ Rm. Therefore

ψ(α, r(α)) = ψ(α, r(α) + σ)

≤ ψ(a (r(α) + σ) , r(α) + σ)

≤ ψ(a (r(α) + σ) , r(α))

≤ ψ(α, r(α))

so that

ψ(α, r(α)) = ψ(a (r(α) + σ) , r(α)).

Uniqueness of the dual solution implies that a (r(α) + σ) = α . If r(α)+σ ∈ Rexp
m ,

then

r(α) + σ = r(α) ,

which contradicts the fact that σ is nonzero. Thus r(α) + σ ∈ Rm\Rexp
m .
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For N > 2, Am ∩ ∂Am is non-empty and thus Theorem 28 shows that the well-

posed examples of the last subsection are the exception rather than the rule. However,

in spite of the difficulties encountered for α ∈ Am ∩ ∂Am, (4.37) still holds for all

ρ ∈ Rm, and the following theorem states that (4.39) does as well.

Theorem 29 The function h has a continuous Fréchet derivative everywhere on Rm

that is given by

∂h

∂ρ
(ρ) = a(ρ) .

Proof. Let ρ ∈ Rm. Because h minimizes the dual function ψ,

h(ρ+ δ) = ψ (a(ρ+ δ),ρ+ δ) (4.40)

≥ ψ (a(ρ),ρ+ δ)

= ψ (a(ρ),ρ) + a(ρ)Tδ

= h(ρ) + a(ρ)Tδ

and, similarly,

h(ρ+ δ) ≤ h(ρ) + a(ρ+ δ)Tδ . (4.41)

Together (4.40) and (4.41) imply that

¯̄
h(ρ+ δ)− h(ρ)− a(ρ)Tδ

¯̄
δ

≤ |a(ρ+ δ)− a(ρ)| .

Thus we need to show that a is continuous.
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Equation (4.40) implies also that a(ρ) is a subgradient of h at ρ [11]. The set of

all subgradients is called the subdifferential of h at ρ and is denoted by ∂h(ρ). It is

a general result from convex analysis [71] that the set

∂h(S) ≡ {∂h(ρ) : ρ ∈ S}

is bounded whenever S ⊂ Rl is bounded. In particular, if
©
ρj
ª∞
j=1
⊂ Rm converges

to ρ ∈ Rm, then {a(ρj)}∞j=1 is a bounded sequence. Let α∗ be any subsequential

limit for this sequence. Then

ψ(a(ρ),ρ) = lim
i→∞

ψ
¡
a(ρ),ρji

¢
≤ lim

i→∞
ψ
¡
a(ρji),ρji

¢
≤ ψ(α∗,ρ) ≤ ψ(a(ρ),ρ) ,

(4.42)

where {ji}∞i=1 is any sequence of integers such that α∗ = limi→∞ a(ρji). Note that

the first and last inequalities in (4.42) follow because ψ(a(ρ),ρ) maximizes ψ(·,ρ),

whereas the middle inequality is a consequence of Fatou’s Lemma.

From (4.42), we deduce that

ψ(α∗,ρ) = ψ(a(ρ),ρ) ,

and since a(ρ) is the unique minimizer of ψ(·,ρ), it follows that α∗ = a(ρ). Finally,

because this result holds for any subsequential limit of {a(ρj)}∞j=1, a is continuous

and thus h is continuously differentiable.
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One important facet of this result in that h(ρ) = ψ(a(ρ),ρ) is a differentiable

function of ρ even though ψ(·,ρ) may not be continuous for α ∈ Am ∩ ∂Am.

4.3.4 Geometry of Rm\Rexp
m

Even if Rm\Rexp
m is non-empty, there is evidence to suggest that the dynamics of

entropy closure is such that vectors in this set might never be attained–that is, if

ρ ∈ Rexp
m initially, then it will continue to be so for all later times. Consider, for

example, the following.

Proposition 30 Suppose that the function

χ(ρ) ≡

|vm|Ga(ρ)

®
(4.43)

is bounded on an open set O containing ρ∗ ∈ Rm. Then r is continuous at ρ∗.

Proof. Let {ρj}∞j=1 ⊂ O be any sequence such that ρj → ρ. Then for any constant

R > 0,

0 <

¯̄̄̄Z
|v|>R

mGa(ρ) dv

¯̄̄̄
≤ 1

R

Z
Rd
|vm|Ga(ρ) dv → 0 as R→∞ . (4.44)

Since a is continuous, a(ρj) → a(ρ) and the sequence Ga(ρj) is uniformly bounded

on {v ∈ Rd : |v| ≤ R}. Hence the Lebesgue Bounded Convergence Theorem implies

that

lim
j→∞

Z
|v|<R

mGa(ρj) dv =

Z
|v|<R

mGa(ρ) dv . (4.45)

Together (4.44) and (4.45) give the result.

163



In light of Proposition 30, let us suppose that ρ∗ ∈ Rm\Rexp
m , {ρj}∞j=1 ⊂ Rexp

m ,

and ρj → ρ∗. Then a(ρj)→ a(ρ∗), and if r is continuous, then

ρ∗ = lim
j→∞

ρj = lim
j→∞

r(a(ρj)) = r(a(ρ∗)) ,

which contradicts the fact that Rm\Rexp
m . We conclude that r is not continuous,

whereby the function χ given in (4.43) cannot be bounded near Rm\Rexp
m . Such

behavior was first observed for the one dimensional example in [42]. In particular it

was found that

vmNGa(ρ)

®
diverged to positive or negative infinity as ρj → ρ∗ ∈

Rm\Rexp
m , depending on the direction of approach. Note that


vmNGa(ρ)

®
is the flux

associated with the moment ρN in the entropy based moment closure, and as pointed

out in [42] the divergent behavior of this flux raises the possibility that intRexp
m is

invariant under the dynamics of the closure.

Now suppose it can be proven that vectors ρ ∈ Rm\Rexp
m will never be attained

during the dynamics of an entropy closure. Then if ρ ∈ Rexp
m initially, (4.2) will

always have a solution and the formal properties of the closure based on the Legendre

duality between h and h∗ will be maintained. However, in order for such closures to

be physically relevant, it must be shown–at a minimum–that Rm\Rexp
m is small is

some sense. This is our current objective.

Define the projection π : Rm → Rexp
m by

π(ρ) ≡ r(a(ρ)) .
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Then π(ρ) is the spatial density that is realized by the minimizer of (4.4). Theorem

26 implies that

(i)π is the identity on Rexp
m ; (4.46a)

(ii)π(Rm\Rexp
m ) = r (Am ∩ ∂Am) = Rexp

m ∩ ∂Rexp
m ; (4.46b)

(iii)a(π(ρ)) = a(ρ)) . (4.46c)

Like α and ρ, the functions r, a, and π all have a natural decomposition based

on the decomposition of m in (4.10):

r = (r0, r1, . . . , rN)
T , a = (a0,a1, . . . , aN)

T , π = (π0,π1, . . . ,πN)
T ,

so that

Ga(ρ) = exp

Ã
NP
j=1

aj(ρ)
Tmj

!
,

rj(α) = hmjGαi ,

πj(ρ) = rj(a(ρ)) .

With this decomposition, πj(ρ) = ρj for all j < N . Roughly speaking, the following

theorem says that Rm\Rexp
m is constructed by attaching a cone to each point in

Rexp
m ∩ ∂Rexp

m .

Theorem 31 The vector ρ ∈ Rm\ intRexp
m if and only if ρj = ρ̄j for all j < Nand
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ρN ∈ ρ̄N +NC(−AN ,aN(ρ̄)) for some vector ρ̄ ∈ Rexp
m ∩ ∂Rexp

m .

Proof. Begin with the "only if" part. Let ρ ∈ Rm\ intRexp
m and set ρ̄ = π(ρ).

According to (4.46), ρ̄ ∈ Rexp
m ∩ ∂Rexp

m and a(ρ) = a(ρ̄). The complementary

slackness condition (4.32) implies that

aN(ρ̄)
TρN = aN(ρ̄)

T ρ̄N ,

where aN(ρ̄)T ∈ ∂(−AN); and the feasibility condition in (4.4) implies that

αT
NρN ≤ αT

N ρ̄N

for all αN ∈ −AN . Therefore,

(αN − aN(ρ̄))T (ρN − ρ̄N) ≤ 0

for all αN ∈ −AN , which means that ρN−ρ̄N is in the normal cone of −AN at aN(ρ̄):

ρN − ρ̄N ∈ NC(−AN , α).

Now prove the "if" part. Suppose that there exists ρ ∈ Rl and ρ̄ ∈ Rexp
m ∩ ∂Rexp

m

such that ρj = ρ̄j for all j < N and ρN − ρ̄N ∈ NC(−AN , aN(ρ̄)). Then

(αN − aN(ρ̄))T (ρN − ρ̄N) ≤ 0 ∀αN ∈ −AN . (4.47)
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Setting αN = 0 and then αN = 2aN(ρ̄) in (4.47) gives

aN(ρ̄)
T (ρN − ρ̄N) ≥ 0 and aN(ρ̄)

T (ρN − ρ̄N) ≤ 0 ,

respectively. Therefore

aN(ρ̄)
T (ρN − ρ̄N) = 0 . (4.48)

Next, setting αN = aN(ρ̄) + aN(ρ) in (4.47) gives

aN(ρ)
T (ρN − ρ̄N) ≤ 0 . (4.49)

Since ρj = ρ̄j for all j < N , (4.48) and (4.49) imply that

ψ(a(ρ̄), ρ̄)
(4.48)
= ψ(a(ρ̄),ρ) ≤ ψ(a(ρ),ρ)

(4.49)
≤ ψ(a(ρ), ρ̄) ≤ ψ(a(ρ̄), ρ̄) . (4.50)

Here, the first and last inequalities follow because ψ(a(ρ),ρ) maximizes ψ(·,ρ). Fur-

thermore, since this maximizer is unique, (4.50) shows that a(ρ̄) = a(ρ), which means

that either ρ = ρ̄ ∈ Rexp
m ∩∂Rexp

m or ρ ∈ Rm\Rexp
m . In either case, the claim is proven.

Theorem 31 provides a nice description of the degenerate values of ρ associated

with each ρ̄ ∈ Rexp
m ∩ ∂Rexp

m . However, a clean description of Rm\ intRexp
m requires

also thatRexp
m ∩∂Rexp

m itself possess some nice structure, and the purpose of Conditions

13 and 21 it to ensure that this is the case. Condition 13 ensures that the set

Am ∩ ∂Am is a "nice" in a well-defined sense while Condition 21 ensures its image
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under r, Rexp
m ∩ ∂Rexp

m , is also nice.

A (continuous) fiber bundle [36] B consists of topological spaces B, called the

base space, and F , called a fiber space, along with a projection P : B → B such that

P−1(B) is locally homeomorphic to the cross product of B and F . Roughly speaking,

B is constructed by attached a (topological equivalent) copy of F to each point in B.

Theorem 32 Suppose Conditions 13 and 21 hold. Then Rm\ intRexp
m is the finite

union of smooth bundles of codimension one or greater in Rl. The base space of each

bundle is a smooth manifold in Rexp
m ∩ ∂Rexp

m . The fiber attached to each point ρ̄ in

the base space is the cone NC(−AN ,aN(ρ̄)).

Before proving this theorem, we need to address a technical point. Let S be a

stratification of Am ∩ ∂Am and T be a stratification of ∂(−AN), the latter of which

was proven to exist in Lemma 16. The projection α 7→ αN of an element s ∈ S onto

RlN , which we denote by sN , is a subset of ∂(−AN). Since each stratification is a

finite union of smooth manifolds, sN can be further decomposed, if necessary, into a

finite union of smooth manifolds, each of which is a subset of a unique element of T .

We summarize with following lemma.

Lemma 33 Let S be a stratification of Am ∩ ∂Am and T be a stratification of

∂(−AN), and suppose that Condition 13 holds. Then, without loss of generality,

we may assume that the projection α 7→ αN applied to any element of S is a subset

of an element of T .

For simplicity of exposition, we maintain the assumption given in the proceeding

lemma for the proof of Theorem 32.
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Proof of Theorem 32. Let S be a stratification of Am ∩ ∂Am and T be a

stratification of ∂(−AN). Let s ∈ S and sN ⊂ t ∈ T . Then, for any α ∈ s, αN ∈ t

and

dim(N (−AN ,αN)) = lN − dim(t) ≤ lN − dim(sN) . (4.51)

According to Condition 13,

lN − dim(sN) < l − dim(s) , (4.52)

while by Condition 21, r is diffeomorphic when restricted to s so that set r(s) is also a

smooth manifold with the same dimension as s. Attached to each point r(α) ∈ r(s)

is the cone N (−AN ,αN). The complete structure is a fiber bundle with base r(s)

and fibers N (−AN ,α), α ∈ s. If we denote the bundle by B(s), then (4.51) and

(4.52) imply that

dim(B(s)) = dim(s) + dim(N (−AN ,αN)) ≤ dim(s) + (lN − dim(sN)) < l .

Finally Rm\ intRexp
m is the union of all sets B that are generated by strata in S, of

which it is assumed there are a finite number.

As a consequence of this theorem, we see that if Conditions 13 and 21 hold, then

Rm\Rexp
m is a set with no interior and zero measure. Determining cases for which

these (or appropriate similar) conditions hold is therefore an important open question.
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4.3.5 Examples

We will assume that Conditions 13 and 21 hold in the following examples.

4.3.5.1 Junk’s example The example mN = |v|N has been studied in [42, 43] and

[73], particularly when N = 4. For general N ,

AN = {αN ∈ R : αN ≥ 0} and ∂(−AN) = {0} .

If ρ ∈ Rm and aN(ρ) = 0, then aN−1(ρ) = 0 as well; otherwise, Ga(ρ) /∈ Fm. With

this fact in mind, we recall from Corollary 23 that

H(Ga(ρ)) = min
g∈Fm

©
H(g) : a(ρ)T hmgi = a(ρ)Tρ

ª
.

Therefore Ga(ρ) is the actually the minimizer of H subject to fewer constraints:

H(Ga(ρ)) = min
g∈Fm

©
H(g) : hmjgi = ρj , j ≤ N − 2

ª
. (4.53)

Let m̄ contain the components of m of degree N̄ ≡ N − 2 and less:

m̄ = (m0,m1, . . . ,mN−2) ,

and let the variables ᾱ and ρ̄ and the functions r̄, ā, and π̄ be defined similarly. For

this example,

Am ∩ ∂Am ⊂ Am̄ × {αN−1 = 0} × {αN = 0} , (4.54)
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but these two sets are not necessarily equal, since that latter may include α for which

Gα ∈ Fm̄, but Gα 6∈ Fm. However, one may readily conclude that Gα ∈ Fm for all

ᾱ ∈ intAm̄. Hence,

intAm̄ × {αN−1 = 0} × {αN = 0} ⊂ Am ∩ ∂Am .

Let S be a stratification of Am∩∂Am. The projection of any s ∈ S onto ∂ (−AN)

is the point {αN = 0}, so the normal cone attached to α ∈ s is just a ray:

NC(−AN , αN) = (−AN)
∗ = AN = {αN : αN ≥ 0} .

Therefore

Rm\Rexp
m = {ρ : ρN > rN(α), α ∈ Am ∩ ∂Am} , (4.55)

Because AN is one-dimensional, the inequality in (4.55) is scalar.

If N = 4, the situation simplifies further, because intAm̄ = Am̄ and the inclusion

in (4.54) becomes an equality. In addition, Rm̄ = Rexp
m̄ and r̄ is a diffeomorphism on

all of Am̄. Therefore

Rm\Rexp
m = {ρ : ρN > rN(α), ᾱ ∈ Am, αN = αN−1 = 0} .

=
©
ρ : ρN > πN(0, 0, ā(ρ̄)), ρN−1 = πN−1(0, 0, ā(ρ̄)), ρ̄ ∈ Rm̄

ª
.
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The components πN(0, 0, ā(ρ̄)) and πN−1(0, 0, ā(ρ̄)) are simple to compute since

π(0, 0, ā(ρ̄)) =

mGā(ρ̄)

®
,

and ā(ρ̄) has an explicit formula when N̄ = 2. (See the examples in Section 4.3.2.)

4.3.5.2 A Non-Junkian Example The situation becomes more complicated when

mN includes polynomials other than |v|N because the inequality constraints in (4.4)

are no longer scalar. The simplest example of this type occurs when

mN = (v ∨ v) |v|N−2 .

We examine in detail the two-dimensional case (d = 2) and write αN in the form of

a symmetric matrix:

αN =

⎛⎜⎜⎝ (αN)11 (αN)12

(αN)21 (αN)22

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a+ b c

c a− b

⎞⎟⎟⎠ . (4.56)

With respect to the (a, b, c) coordinates, the set AN is a cone in R3 that can be found

in a high school geometry text:

AN =
n
(a, b, c) ∈ R3 : a2 ≥

√
b2 + c2

o
,
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and the boundary of −AN is

∂(−AN) =
n
(a, b, c) ∈ R3 : a = −

√
b2 + c2

o
. (4.57)

Let S be the stratification of Am ∩ ∂Am and let s ∈ S so that sN ∈ ∂(−AN). The

set ∂(−AN) has a stratification T consisting of two manifolds: t1 is the origin in R3

and t2 is the remainder of the cone. We consider each manifold separately.

1. αN ∈ t1. In this case, a = b = c = 0 and

NC(−AN ,αN) = (−AN)
∗ = AN

The situation essentially reduces to the Junkian case, and the bundle associated

with s ⊂ {Am ∩ ∂Am : αN = 0} is

B(s) = {ρ : ρN >∗ rN(α), α ∈ s } , (4.58)

and if N = 4,

B(s) =
©
ρ : ρN >∗ πN(0, 0, ā(ρ̄)), ρN−1 = πN−1(0, 0, ā(ρ̄)), ρ̄ ∈ Rm̄

ª
(4.59)

However, unlike the Junkian case, the inequality in (4.58) and (4.59) is no longer

scalar. Rather, it must be understand in terms of the dual cone A∗N .

2. αN ∈ t2. In this case a ≥ |b| > 0. In the (a, b, c) coordinates NC(−AN ,αN) is
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a ray given by n
λ
³√

b2 + c2, b, c,
´
: λ ≥ 0

o
.

Therefore

NC(−AN ,αN) =

⎧⎪⎪⎨⎪⎪⎩λ

⎛⎜⎜⎝
√
b2 + c2 + b c

+c
√
b2 + c2 − b

⎞⎟⎟⎠ : λ > 0

⎫⎪⎪⎬⎪⎪⎭ , (4.60)

which can expressed in terms of the components of αN by inverting (4.56). The

bundle associated with any s ⊂ {Am ∩ ∂Am : αN 6= 0} is

B(s) =
©
ρ : ρN = rN(α) +NC(−AN ,αN),ρj = rj(α) , j < N ,α ∈ s

ª
.

(4.61)

The set Rm\Rexp
m is the union of bundles of the type given in (4.58) and (4.61).

4.4 Appendix: Duality Theorems

Proof of Theorem 22. The form of the constraints in (4.4) requires that m

be separated into lower-order and higher-order polynomials. Define the polynomial

vector of lower degree polynomials

mL = (m1,m2, . . .mN−1) (4.62)
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and let lL = l0 + . . . + lN−1 be the number of components in mL. Let ρ ∈ Rm and

introduce the sets

A ≡
©
(η,σL,σN) ∈ R× RlL ×RlN :

η ≥ H(g), σL = hmLgi , σN ≥∗ hmNgi for some g ∈ Fm} ,

B ≡
©
(η,σL,σN) ∈ R× RlL ×RlN : η ≤ h(ρ), σL = ρL, σN ≤∗ ρN

ª
,

B̃ ≡
©
(η,σL,σN) ∈ R× RlL ×RlN : η ≤ h(ρ), σL ≤∗ ρL, σN ≤∗ ρN

ª
.

Here the vectors ρL, σL, and αL are defined in a manner analogous to 4.62. Using

the convexity of H, it is fairly easy to show that A and B̃ are convex and that B̃

has a non-empty interior that is disjoint from A. Therefore the Eidelheit Separation

Theorem (see Theorem 3 in Section 5.12 of [56]) implies that A and B̃ are separated

by a hyperplane in R×RlL ×RlN . Since B ⊂ B̃, this hyperplane separates A and B

as well. This means that there exists (η̂, α̂L, α̂N) ∈ R×RlL ×RlN , not all zero, such

that

η̂ηA + α̂T
Lσ

A
L + α̂

T
Nσ

A
N ≥ η̂ηB + α̂T

Lσ
B
L + α̂

T
Nσ

B
N (4.63)

for all
¡
ηA,σAL,σ

A
N

¢
∈ A and

¡
ηB,σBL,σ

B
N

¢
∈ B, or since σBL = ρL,

η̂ηA + α̂T
Lσ

A
L + α̂

T
Nσ

A
N ≥ η̂ηB + α̂T

LρL + α̂
T
Nσ

B
N . (4.64)

The relation in (4.63) can be written more compactly as

η̂ηA + α̂TσA ≥ η̂ηB + α̂TσB .

175



The nature of A and B now leads to conclusions about the elements η̂ and α̂N .

For example, letting σAL = σBL = ρL and σ
A
N = σBN = ρN in (4.64) yields

η̂ηA ≥ η̂ηB

for all ηB ≤ h(ρ) and all ηA ≥ H(g) with g ∈ Fm. Thus η̂ ≥ 0. (Note that the choice

of σAL and σ
A
N is possible since ρ is assumed to be inRm.) Also letting σAL = σBL = ρL,

ηB = h(ρ), σAN = ρN , and ηA → h(ρ) yields

α̂T
NρN ≥ α̂T

Nσ
B
N

for all σBN ≤∗ ρN and therefore α̂N ≥ 0. (Recall that inequalities between vectors

are interpreted in the sense of cones as described in Section 2.4).

We now prove by contradiction that η̂ is positive. If η̂ = 0, then letting σBN = ρN

in (4.64) gives,

α̂T
¡
σA − ρ

¢
= α̂T

L

¡
σAL − ρL

¢
+ α̂T

N

¡
σAN − ρN

¢
≥ 0 . (4.65)

for all σAL = hmLgi and σAN ≥ hmNgi with g ∈ Fm. In particular (4.65) holds for

σ = ρ. Thus, since Rm is open, there exist ρ ∈ Rm such that α̂T
¡
σA − ρ

¢
< 0

unless α̂ = 0 which, assuming that η̂ = 0, contradicts the Eidelheit Separation

Theorem. We conclude that η̂ > 0, and by multiplying (4.64) by an appropriate

constant, we may assume, without loss of generality, that η̂ = 1. In this case, (4.64)
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becomes

ηA + α̂T
Lσ

A
L + α̂

T
Nσ

A
N ≥ ηB + α̂T

LρL + α̂
T
Nσ

B
N (4.66)

for all
¡
ηA,σAL,σ

A
N

¢
∈ A and

¡
ηB,σBL,σ

B
N

¢
∈ B.

We next utilize (4.66) understand the relationship between α̂ and h(ρ). If¡
ηB,σBN

¢
= (h(ρ),ρN), then (4.66) gives

h(ρ) ≤ ηA + α̂T
¡
σA − ρ

¢
(4.67)

for all
¡
ηA,σA

¢
∈ A. Considering that (h(ρ),ρ) ∈ A, it follows then that

h(ρ) = inf
(η,σ)∈A

©
η + α̂T (σ − ρ)

ª
. (4.68)

In addition, by letting ηA = H(g) and σA = hmgi for any g ∈ Fm, (4.67) gives

h(ρ) ≤ inf
g∈Fm

©
H(g) + α̂T (hmgi− ρ)

ª
. (4.69)

Therefore,

h(ρ) ≤ inf
g∈Fm

©
H(g) + α̂T (hmgi− ρ)

ª
(4.70)

≤ inf
g∈Fm

©
H(g) + α̂T (hmgi− ρ) : hmgi ¹∗ ρ

ª
≤ inf

g∈Fm
{H(g) : hmgi ¹∗ ρ}

= h(ρ) .
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The first inequality in (4.70) is just (4.69); the second follows from the fact that

the set of feasible functions g ∈ Fm has been restricted; the third follows because

α̂T (hmgi− ρ) ≤ 0 whenever hmgi ¹∗ ρ.

From (4.70), it follows that

h(ρ) = inf
g∈Fm

©
H(g) + α̂T (hmgi− ρ)

ª
, (4.71)

and since H(ĝρ) = h(ρ), (4.71) implies that

H(ĝρ) ≤ H(ĝρ) + α̂T (hmĝρi− ρ) ≤ H(ĝρ) .

This proves the complementary slackness condition (4.28) and also that

h(ρ) = L (ĝρ, α̂,ρ) . (4.72)

Furthermore, given any α such that αN ≥ 0,

inf
g∈Fm

©
H(g) +αT (hmgi− ρ)

ª
≤ inf

g∈Fm

©
H(g) +αT (hmgi− ρ) : hmgi ¹∗ ρ

ª
(4.73)

≤ inf
g∈Fm

{H(g) : hmgi ¹∗ ρ}

= h(ρ) .

The first inequality above holds because the set of possible functions g ∈ Fm has

been restricted, and the second inequality holds because αT (hmgi− ρ) ≤ 0 whenever

hmgi ¹∗ ρ. In addition, (4.71) shows that both inequalities become equalities when
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α = α̂. This means that

h(ρ) = inf
g∈Fm

©
H(g) + α̂T (hmgi− ρ)

ª
(4.74)

= max
αN≥0

inf
g∈Fm

©
H(g) +αT (hmgi− ρ)

ª
= max

αN≤0
inf
g∈Fm

©
H(g) +αT (ρ− hmgi)

ª
= max

αN≤0
inf
g∈Fm

L (g,α,ρ)

= max
αN≤0

ψ(α,ρ) ,

which proves (4.27), and moreover, that the maximum in (4.27) is attained by α̂, i.e.,

h(ρ) = ψ(α̂,ρ) . (4.75)

Together (4.75) and (4.72) give (4.29).

The proof of Theorem 24 is very similar to that of Theorem 22, and the differ-

ences are fairly transparent. First, the sign of αN is not determined, although it is

determined later. (See the remarks following Theorem 24). Even so, one may still

deduce that η̂ > 0 using the fact that Rm is open. Also, because the constraints in

(4.33) are all equalities, the condition

αT (hmgi− ρ) ≤ 0

holds trivially. It is this fact that is key to the arguments in (4.70) and (4.71).

It should be noted that this proof is based on arguments found in [56]. In
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particular, one should consult Theorem 1 in section 8.3, Theorem 1 in section 8.6,

and Exercise 7 at the end of Chapter 8. Many other texts discuss duality theory in

a variety of contexts, but most assume that the argument of the objective (H in this

case) lives in a linear vector space, which Fm is not.
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Chapter 5

Simulation of an n+-n-n+ Diode

In this chapter, we compute numerical solutions for several second-order models gener-

ated by closures from Chapter 3. An n+-n-n+ diode [41] acts as a benchmark problem

for comparing and contrasting various aspects of these models. It is assumed that

the diode is endowed with a slab symmetry, which means that the distribution of

electrons is constant when restricted to planes perpendicular to a given axis. This

assumption is often employed when the length scale of a device along such an axis is

much smaller than the length scales perpendicular to the axis.

We confirm several previously known facts. The first is that the use of Monte

Carlo relaxation coefficients improves numerical results. The second is that heat

flux is a necessary component of an accurate model. However, most expressions for

the heat flux in the models studied here are not sufficient to accurately describe the

behavior of the diode. This includes convective corrections derived in [4] which have

little effect in the diode drain where velocity overshoot [33] is prevalent.

We also make some new observations. Most important among these is the fact

that anisotropic stress plays a major role in the velocity and temperature profiles of

the Anile-Penisi (AP) and perturbed entropy-based (PEB) models. When treated
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as a diffusive pertubation, the anisotropic stress removes velocity overshoot effect in

the diode drain at the cost of smearing the temperature profile. When treated as an

independent variable in the Gaussian closure, it has less effect on velocity overshoot

but also less smearing in the temperature profile.

We now lay out the organization of the chapter. In Section 5.1, we reduce moment

systems to one spatial dimension by slab symmetry along the x1 axis. In Section

5.2, we give a complete list of models which we will study. In Section 5.3, we discuss

the central-upwind scheme [45] that is the basis for our computations. Finally, in

Section 5.4, we present results and provide comments.

5.1 Reduction to One Dimension

In this section, we invoke the slab symmetry of the diode to reduce all second-order

models to a description in one spatial dimension. All of these models of are derived

using moments of the polynomial vector

m =

⎛⎜⎜⎜⎜⎜⎜⎝
1

v

1
2
|v|2

⎞⎟⎟⎟⎟⎟⎟⎠ or m =

⎛⎜⎜⎜⎜⎜⎜⎝
1

v

v ∨ v

⎞⎟⎟⎟⎟⎟⎟⎠
and are supplemented by a Poisson equation for Φ:

−( Φx)x = qe(D − n) . (5.1)
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5.1.1 The Case m = (1, v, 1
2
|v|2)T

Models based on the polynomial vector m = (1, v, 1
2
|v|2)T all have the form

∂tn+∇x · (nu) = 0 , (5.2a)

∂t (nu) +∇x · (nu2 + nθI + Σ)− n∇xΦ = −
1

τ p
nu , (5.2b)

∂t

µ
nu2

2
+
3nθ

2

¶
+∇x ·

µ
nu3

2
+
5

2
nuθ + Σ · u+ q

¶
− nu ·∇xΦ = C1

2
|v|2 , (5.2c)

where

C 1
2
|v|2 −

1

τw

Ã
n |u|2

2
+
3n (θ − θ )

2

!
.

The fact that the diode has slab symmetry means that

∇x =

⎛⎜⎜⎜⎜⎜⎜⎝
∂
∂x1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , u =

⎛⎜⎜⎜⎜⎜⎜⎝
u1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , q =

⎛⎜⎜⎜⎜⎜⎜⎝
q1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and that

Θ = diag(θL, θT , θT ) ,

Σ = ndiag(θL − θ, θT − θ, θT − θ) ,

θ =
1

3
(θL + 2θT ) .

For convenience, we abuse notation by dropping the subscript from the compo-

nents x1, u1, and q1. Since the remaining components of these vectors play no role in
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what follows, their should be no chance of confusion. With this notation, the balance

equations for concentration, momentum, and energy are

∂tn+ ∂x (nu) = 0 (5.4a)

∂t (nu) + ∂x(nu
2 + nθ + σ)− qe

m∗
e

n∂xΦ = −
1

τp
nu (5.4b)

∂t

µ
nu2 + 3nθ

2

¶
+ ∂x

µ
nu3 + nu(3θ + 2θL)

2
+ q

¶
(5.4c)

− qe
m∗

e

nu∂xΦ = −
1

τw

µ
nu2 + 3n(θ − θ)

2

¶
,

where σ = n(θL − θ) is the anisotropy. A closure can then be specified by giving θL

and q in terms of n, u, and θ.

5.1.2 The Case m = (1, v, v ∨ v)T

Models based on the polynomial vector m = (1, v, v ∨ v)T all have the form

∂tn+∇x · (nu) = 0 (5.5a)

∂t (nu) +∇x · (nu ∨ u+ nΘ)− qe
m∗

e

n∇xΦ = −
1

τ p
nu (5.5b)

∂t (nu ∨ u+ nΘ) +∇x ·
¡
nu∨3 + 3nΘ ∨ u+Q

¢
− qe

m∗
e

nu ·∇xΦ = Cv∨v , (5.5c)

where

Cv∨v = −
1

τσ
(nΘ− nθI)− 1

τ p

µ
nu ∨ u− 1

3
n|u|2

¶
− 1

τw

µ
1

3
n|u|2I + n(θ − θ) I

¶
.
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The assumption of slab symmetry implies that the only nonzero components of Q

are Q111 and all permutations of Q122 = Q133. Equations (5.5a) and (5.5b) and

the one-half of the trace of (5.5c) give provide a description for the evolution for the

concentration, momentum, and energy that is analogous to (5.4):

∂tn+ ∂x (nu) = 0 (5.6a)

∂t (nu) + ∂x(nu
2 + nθL)−

qe
m∗

e

n∂xΦ = −
1

τp
nu (5.6b)

∂t

µ
nu2 + 3nθ

2

¶
+ ∂x

µ
nu3 + nu(3θ + 2θL)

2
+ q

¶
(5.6c)

− qe
m∗

e

nu∂xΦ = −
1

τw

µ
nu2 + 3n(θ − θ)

2

¶
.

(Note the same abuse of notation with the subscripts from x1, u1, and q1 all dropped).

There is one more independent scalar equation that may be extracted from (5.5).

By taking the (1, 1) component of (5.5c) and subtracting one-third of the trace of

(5.5c), one finds that

∂t

µ
2

3
nu2 + n(θL − θ)

¶
(5.6d)

+ ∂x

µ
2

3
nu3 + nu

µ
8

3
θL − θ

¶
+ q̃

¶
− 4
3

qe
m∗

e

nu∂xΦ+ q̃

= − 1
τσ

µ
2

3
nu2 + n(θL − θ)

¶
+
2

3

µ
1

τp
− 1

τσ

¶
nu2 ,

where

q̃ =

µ
Q111 −

1

3
(Q111 +Q122 +Q133)

¶
.
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This additional equation is to track the anisotropy of Θ which is known once θL , θT ,

or σ is determined. A closure for (5.6) is specified by giving q and q̃ in terms of n,

u, θ, and θL.

5.2 The Models

5.2.1 Bløtekjær-Type Models.

Several variations of the Bløtekjær model, all of which have the form (5.2), are listed

below. As in Chapter 3, q and σ are separated into diffusive components , σ(1) and

q(1), and their convective components, σ(2) and q(2).

• Maxwellian Baccarani-Wordeman (MBW). Maxwellian closure with

Baccarani-Wordeman formulas for relaxation times:

σ(1) = σ(2) = 0 ,

q(1) = q(2) = 0 .

• Maxwellian Monte Carlo (MMC). Maxwellian closure with Monte-Carlo

relaxation times:

σ(1) = σ(2) = 0 ,

q(1) = q(2) = 0 .
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• Bløtekjær Baccarani-Wordeman 1 (BBW1). Bløtekjær, Baccarani,

Wordemann model with γ = −1.0:

σ(1) = σ(2) = 0 .

q(1) = −3
2
nθτbwp ∂xθ , q(2) = 0 .

• Bløtekjær Baccarani-Wordeman 2 (BBW2). Bløtekjær, Baccarani,

Wordemann model with γ = −2.1:

σ(1) = σ(2) = 0 ,

q(1) = −0.4nθτbwp ∂xθ , q(2) = 0 .

• Bløtekjær Monte Carlo 1 (BMC1). Same as BBW1, except relaxation

times are Monte Carlo:

σ(1) = σ(2) = 0 ,

q(1) = −3
2
ρθτMCp ∂xθ , q(2) = 0 .

• Bløtekjær Monte Carlo 2 (BMC2). Same as BBW2, except relaxation
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times are Monte Carlo:

σ(1) = σ(2) = 0 ,

q(1) = −0.4nθτMCp ∂xθ, q
(2) = 0 .

The BBW1 and BBW2 models can be found in various places in the literature.

(See [25,28,29,41,72].).We include the models MBW and MMC to see the effects of

the heat flux and the models BMC1 and BMC2 to see the improved results provided

by Monte Carlo relaxation times when contrasted with the analytical expressions

of Baccarani and Wordemann. The Monte Carlo relaxation times are modeled as

functions of the electron energy and can be found in [63].

5.2.1.1 Anile-Pennisi Models The next group of models are variants of the Anile-

Pennisi closure [4] that is based on extended thermodynamics. Each of them has the

form of (5.2), except for APPV1 and APPV2. These models make inconsistent use

of the anisotropy σ, which is included in the energy equation but not the momentum

equation. Several of these models include an important aspect of the Anile-Pennisi

closure, which is a convective contribution to the heat flux.
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• Anile-Pennisi No Viscosity 1 (APNV1). Anile-Pennisi model with Monte

Carlo relaxation times. No anisotropy:

σ(1) = σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) =

5

2
nθu

µ
τMCq

τMCp

− 1
¶

.

• Anile-Pennisi No Viscosity 2 (APNV2). Anile-Pennisi model with Monte

Carlo relaxation times. No anisotropy and no convective heat correction:

σ(1) = σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) = 0 .

• Anile-Pennisi Partial Viscosity 1 (APPV1). Anile-Pennisi model with

Monte Carlo relaxation times. Anisotropy applied only in the energy equation:

σ(1) =
4

3
nθτMCσ ∂xu = 0 , σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) =

5

2
nθu

µ
τMCq

τMCp

− 1
¶

.

• Anile-Pennisi Partial Viscosity 2 (APPV1). Anile-Pennisi model with

Monte Carlo relaxation times. Anisotropy applied only in energy equation.
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No convective corrections to the heat flux:

σ(1) =
4

3
nθτMCσ ∂xu = 0 , σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) = 0 .

• Anile-Pennisi Full Viscosity 1 (APFV1). Anile-Pennisi model with Monte

Carlo relaxation times. Viscous anisotropy applied in the momentum and

energy equations:

σ(1) =
4

3
nθτMCσ ∂xu = 0 , σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) =

5

2
nθu

µ
τMCq

τMCp

− 1
¶

.

• Anile-Pennisi Full Viscosity 2 (APFV2). Anile-Pennisi model with Monte

Carlo relaxation times. Viscous anisotropy applied in the momentum and

energy equations. No convective corrections to heat flux:

σ(1) = −4
3
nθτMCσ ∂xu = 0 , σ(2) = 0 ,

q(1) = −5
2
nθτMCq ∂xθ , q(2) = 0 .
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Computational results for APNV1 and APPV1 can be found in [72] and [63],

respectively. We believe that the inclusion of anisotropic effects is an important

calculation, which is why APFV1 and APFV2 have been included. In addition, we

believe it is important to examine the real effects of the convective heat flux corrections

that are the main advance of the Anile-Pennisi closure. Many times, difficulties with

accurate modeling occur at places in the physical domain of the problem where the

spatial gradients of macroscopic variables are large, in which case diffusive corrections

will likely dominate convective corrections. The three models APNV2, APPV2, and

APFV2 provide comparisons to determine if this in the case.

5.2.1.2 Perturbed Entropy-Based Closures The final group of models are the en-

tropy based models discussed in Chapter 3. The first three of these are based on the

Maxwellian Closure and have the form of (5.2).

• Maxwellian Monte-Carlo (MMC). Maxwellian closure with Monte-Carlo

relaxation times (already considered with the Bløtekjær models):

σ(1) = σ(2) = 0 ,

q(1) = q(2) = 0 .

• PerturbedMaxwellianMonte Carlo 1 (PMMC1). PerturbedMaxwellian

191



closure with Monte-Carlo relaxation times:

σ(1) = −4
3
nθτMCp ∂xu , σ(2) =

2

3
n|u|2 .

q(1) = −5
2
nθτMCp ∂xθ , q(2) = −4

3
nu3 +

τMCp

τMCw

µ
5

6
nu3 +

5

2
n (θ − θ )u

¶
.

• PerturbedMaxwellianMonte Carlo 2 (PMMC2). PerturbedMaxwellian

closure with Monte-Carlo relaxation times. Convective corrections are left out:

σ(1) = −4
3
nθτMCp ∂xu , σ(2) = 0 .

q(1) = −5
2
nθτMCp ∂xθ , q(2) = 0 .

The remaining cases come from the Gaussian closure and take the form (5.6). In

all of the previous models σ is expressed as a function of the variables n, u, and θ.

Now, however, the evolution of σ is determined by an additional equation, and it is

q and q̃ must be specified via the closure. The term q̃ can be written as the sum of

a diffusive part q̃(1) and a convective part q̃(2). There are three models to consider.

• Gaussian Monte Carlo (GMC). Gaussian closure with Monte-Carlo relax-

ation times:

q = q̃ = 0 .

• Perturbed Gaussian Monte Carlo 1 (PGMC1). Perturbed Gaussian
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closure with Monte-Carlo relaxation times but no convective corrections:

q(1) = −1
2
nτMCσ θL∂x (3θL + 2θT ) ,

q(2) = −τ
MC
σ

τMCp

µ
4

3
nu3 + n(θ − θL)u

¶
+

τMCσ

τMCp

µ
5

6
nu3 +

5

2
n(θ − θ )u

¶
,

q̃(1) = −1
2
nτMCσ θL∂x

µ
8

3
θL − 2θ

¶
,

q̃(2) = −τ
MC
σ

τMCp

µ
8

9
nu3 +

7

3
n(θ − θL)u

¶
+

τMCσ

τMCp

µ
4

9
nu3 +

4

3
n(θ − θ )u

¶
.

• Perturbed Gaussian Monte Carlo 2 (PGMC2). Perturbed Gaussian

closure with Monte-Carlo relaxation times but no convective corrections:

q(1) = −1
2
nτMCσ θL∂x (3θL + 2θT ) , q(2) = 0 ,

q̃(1) = −1
2
nτMCσ θL∂x

µ
8

3
θL − 2θ

¶
, q(2) = 0 .

To the author’s knowledge, these are the first computations of their kind in the

context of semiconductor models. We will compare and contrast these models with

the AP models. We will also investigate whether the additional equation provided

by the Gaussian closure improves the accuracy of results, especially with respect to

the velocity and temperature profiles near the diode drain. Finally, as with the AP

models, we will examine the effects of the convective corrections.
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5.2.2 The Benchmark Device

The benchmark device is an n+-n-n+ diode that is used to simulate the channel in

MOSFET and MESFET devices [84]. We assume it made of silicon with electric

permittivity = 1.04 × 10−16C/µm and effective mass m∗
e = 0.32me, where me =

9.109× 10−31 kg is the free electron mass [84]. Because of slab symmetry, the diode

can be represent by an interval of length L = 0.6 microns with a doping profile

D (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1.0× 1018 cm−3, 0.0µm < x < 0.1µm

1.0× 1016 cm−3, 0.1µm < x < 0.5µm

1.0× 1018 cm−3, 0.5µm < x < 0.6µm

.

The left end is called the source, the right end is called the drain, and the center

portion is the channel. An external battery with a potential Vbias = 1V is attached

to the device. The temperature of the device is T = 300K = 0.0259 eV.
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Figure 5.1: The n-n+-n diode.

5.2.3 Boundary Conditions

Boundary conditions for (5.4) and (5.6) have not yet been given. Depending on the

form of Σ, q, and q̃, boundary conditions can be of hyperbolic or mixed parabolic-

hyperbolic type [82] [7]. However, as in [25], we find that our numerical solutions are

not at all sensitive to over-specification of the boundary conditions. We therefore

apply the following boundary conditions, which are consistent with a boundary layer
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in thermal equilibrium:

n(0) = D(0) , n(L) = D(L) , (5.7a)

∂xu(0) = ∂xu(L) = 0 , (5.7b)

∂xθ(0) = ∂xθ(L) = 0 . (5.7c)

Equation (5.6d) for the Gaussian based models requires the additional boundary

condition

∂xθL(0) = ∂xθL(L) = 0 .

The boundary condition for the Poisson equation is

Φ(L) = Φ(0)− log
µ
n(L)

n(0)

¶
+ Vbias . (5.8)

Since Φ is a relative quantity, the specification of Φ(0) can be arbitrary and has

no effect on the numerics. We ignore traditional convention [59], and simply set

Φ(0) = 0. Given, (5.2a), this means that Φ(L) = Vbias .

5.3 The Numerical Scheme

The models presented in the last section will be computed using central-upwind

schemes. The schemes adapt central schemes into a traditional semi-discrete frame-

work [47,50]. They maintain the key feature of central schemes–simplicity, but with

less dissipation and without the cumbersome problems involved with staggering. For

completeness we give a brief description below. Following traditional notation [47,50],
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we let u (rather than ρ) be the vector of spatial densities.

5.3.1 Finite Volume Formulation

All of the models in the last section has the form

ut + f(u)x = l(u)Φx + (D(u) · g(u)x)x + r(u) , (5.9)

where f(u) is the vector of fluxes, l(u) is the vector of field terms, r(u) is a vector

of collision terms and D(u) · g(u)x is a vector of diffusive terms. The matrix D(u)

is called the diffusion matrix. We assume that (5.9) is hyperbolic–that is, its

homogeneous version

ut + f(u)x = 0 (5.10)

is hyperbolic–and let λ1 < λ2 < . . . < λr be the eigenvalues of the linearized flux

matrix

A =
∂f

∂u
.

The domain [0, L] is divided into N uniform cells Ii ≡
£
xi−1/2, xi+1/2

¤
with centers

{xi}Ni=1. A semi-discrete, finite-volume formulation is obtained by integrating (5.9)
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in space over each of these cells:

d

dt
ūi(t) =−

f(u
¡
xi+1/2, t

¢
)− f(u

¡
xi−1/2, t

¢
)

∆x
(5.11)

+
1

∆x

Z
Ii

l(u(x, t))Φx(x) dx

+
D(u(xi+1/2, t)) · g(u)x(xi+1/2, t)−D(u(xi−1/2, t)) · g(u)x(xi−1/2, t)

∆x

+
1

∆x

Z
Ii

r(u(x, t)) dx .

Here, the cell average ūi is given by

ūi(t) ≡
1

∆x

Z
Ii

u(x, t) dx . (5.12)

Any algorithm for updating the evolution of ū requires that all of the terms on the

right hand side of (5.11) be evaluated, at least approximately.

5.3.2 Flux Evaluation

In light of the fact that u may be discontinuous, the main issue in developing (5.11) is

how to evaluate the fluxes at cell edges. This is done with a reconstruction procedure

coupled with an efficient Riemann solver. We will use a Riemann solver found with

central-upwind schemes [45].
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5.3.2.1 Reconstruction The first step in evaluating the flux at an interface is to

(approximately) reconstruct u with a function

p(x) =
NX
i=1

pi(x)χi(x) , (5.13)

where χi is the indicator function on the interior of Ii and pi is a polynomial that

satisfies

1

∆x

Z
Ik

pi(x) = ūk (5.14)

for all k in the stencil of xi. This stencil, S(i; s1, s2), is a collection of mesh points

S(i; s1, s2) = {xi−s1, . . . , xi, . . . , xi+s2−1} ,

where the integers s1 and s2 are chosen based on two factors. The first of these is

formal accuracy. If u is smooth, then a stencil with s = s1+ s2 points gives an order

s approximation of u on Ii:

pi(x) = u(x, t) +O(∆x)s , x ∈ Ii

Because u may be discontinuous, the other major consideration when choosing a

stencil is that p reproduce the discontinuities in u without producing spurious oscil-

lations. For second-order spatial accuracy, the reconstruction of u is a simple linear

interpolation:

u(x, t) = ūi(t) + u
0
i(t)(x− xi) .
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Here

u0i = SL(ūi−1, ūi, ūi+1) ,

where SL can be any appropriate slope limiter [47,50]. For our calculations,

SL(ūi−1, ūi, ūi+1) = minmod

µ
ūi+1 − ūi

∆x
,
ūi+1 − ūi−1
2∆x

,
ūi − ūi−1

∆x

¶
,

where the minmod function is applied to a vector component-wise.

5.3.2.2 Riemann Solver Given reconstructions pi and pi+1, the (approximate) value

of f(u
¡
xi+1/2

¢
)must be determined. Because pmay be discontinuous at xi+1/2–that

is, beyond the smooth order of accuracy error between pi
¡
xi+1/2

¢
and pi+1

¡
xi+1/2

¢
–

an (approximate) Riemann solver [47] [50] must be employed. Given the Riemann

problem

vt + f(v)x = 0

v(x, 0) =

⎧⎪⎪⎨⎪⎪⎩
pi
¡
xi+1/2

¢
, x < xi+1/2

pi+1
¡
xi+1/2

¢
, x > xi+1/2

,

an (approximate) Riemann solver R gives an (approximate) solution

v(xi+1/2, t+ τ) = R(pi
¡
xi+1/2

¢
,pi+1

¡
xi+1/2

¢
, t+ τ)
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for all τ sufficiently small. This solution is then used to approximate f(u
¡
xi+1/2

¢
, t+

τ) by the numerical flux

Fi+1/2(t+ τ) = f
¡
v(xi+1/2, t+ τ)

¢
.

5.3.2.3 Central Schemes ARiemann solver computes v(xi+1/2, t+τ) by determining

how waves emanate from discontinuities of p across adjacent cells. The computation

cost associated with R can be large because it involves diagonalizing the matrix

A(u) at each cell interface in order to analyze the local wave structure. Moreover,

exact solvers may require iterative methods. Motivating by the desire to avoid

Riemann solvers, the authors in [65] introduced central schemes, which use an integral

formulation of (5.10) over the staggered cell Ii+1/2 = (xi, xi+1).

A fully discrete central scheme for the homogeneous equation with step size ∆t is

ūi+1/2(t+∆t)− ūi+1/2(t)
∆t

+

Z t+∆t

t

f(u (xi+1, τ))− f(u (xi, τ))
∆x

dτ = 0 . (5.15)

The staggered average ūi+1/2 is updated by calculating ūi+1/2(t) and the time integral

in (5.15) using a reconstruction that interpolates the unstaggered averages ūi(t). If

p is an order s reconstruction of u that satisfies (5.14), then

ūi+1/2(t) =

Z xi+1/2

xi

pi (x, t) dx+

Z xi+1

xi+1/2

pi+1 (x, t) dx+O(∆x)s . (5.16)

However, the key to central schemes is in the evaluation of the time integrals in

(5.15). Since the reconstruction of u occurs on the unstaggered cells Ii, p will be
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smooth at each xi as long as discontinuities do not propagate there from neighboring

cell interfaces. This will be the case as long as ∆t ≤ 1
2
λ∆x, where

λ = max
0≤x≤L

max
1≤a≤r

{|λa(u (x))|} . (5.17)

Given the restriction on ∆t, the time integral in (5.15) can be evaluated by replacing

u with p and applying standard quadrature formulas. For an in-depth review see [83].

5.3.2.4 Central-Upwind Schemes The benefit of central schemes is that rather than

try to resolve the wave structure at cell-interfaces with a Riemann solver, one may sim-

ply integrate over any discontinuities that occur between adjacent cells, as prescribed

in (5.16). The result is a very simple algorithm for solving (5.15), but there is a price

for this simplicity. Central schemes do not possess a semi-discrete formulation, and

the numerical dissipation associated with (5.15) for an order s reconstruction will be

O(∆x2s−1/∆t) [46]. For steady state problems with small steps sizes, the cumulative

effects of the numerical dissipation can degrade the final accuracy of the solution.

It is possible to recover a semi-discrete scheme by using non-uniform staggered

cells and then projecting solutions from these cells onto the original unstaggered grid.

This projection idea was first proposed in [38] as a way to remove the staggering

which, as a practical matter, can be tedious to implement. Then in [45, 46], a

non-uniform staggering was introduced to address the dissipation issue specifically.

The authors found that the O(1/∆t) dissipation could be removed by introducing

cells with widths just wide enough to capture any discontinuities emanating from cell

202



interfaces. Because point-wise interpolation with non-uniform cells is not possible

[76], the finite volume formulation is a requirement here. These schemes, which we

describe below, are called central-upwind schemes.

Let λ1 ≤ λ2 ≤ · · · ≤ λr be eigenvalues of the linearized flux matrix A and set

a+i+1/2 = max
©
λr
¡
pi(xi+1/2

¢
), λr

¡
pi+1(xi−1/2

¢
, 0
ª
, (5.18a)

a−i+1/2 = min
©
λ1
¡
pi(xi+1/2

¢
, λ1

¡
pi+1(xi−1/2

¢
, 0
ª
. (5.18b)

It can be shown that any discontinuity propagating from the cell interface at xi+1/2

between Ii and Ii+1 is contained in the the interval.

Ĩi+1/2 = (xi+1/2,l , xi+1/2,r) ≡ (xi+1/2 + a−i+1/2∆t , xi+1/2 + a+i+1/2∆t)

for τ ∈ (t, t+∆t). The integral formulation of (5.10) on Ĩi+1/2 is

w̄i+1/2(t+∆t)− w̄i+1/2(t)

∆t
dx+

Z t+∆t

t

f(u
¡
xi+1/2,r, τ

¢
)− f(u

¡
xi+1/2,l, τ

¢
)

∆x
dτ = 0 ,

(5.19)

where

w̄i+1/2(t) =
1

xi+1/2,r − xi+1/2,l

Z xi+1/2,r

xi+1/2,l

u (x, t) dx . (5.20)

The remainder of the spatial domain is composed of cells

Ĩi = (xi−1/2,r , xi+1/2,l) ,
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and the integral formulation of (5.10) on Ĩi is

w̄i(t+∆t)− w̄i(t)

∆t
dx+

Z t+∆t

t

f(u
¡
xi+1/2,l, τ

¢
)− f(u

¡
xi−1/2,r, τ

¢
)

∆x
dτ = 0 , (5.21)

where

w̄i(t) =
1

xi+1/2,l − xi−1/2,r

Z xi+1/2,l

xi−1/2,r

u (x, t) dx . (5.22)

We now outline the steps of the semi-discrete scheme.

1. Given cell averages ūi(t), construct an approximation p of u of desired spatial

accuracy.

2. Use the reconstruction p to compute w̄i(t) via (5.22) and w̄i+1/2(t) via (5.20).

3. Replace u with p in the flux integrals in (5.19) and (5.21). Then use standard

quadrature formulas to evaluate the integrals.

4. Update w̄i and w̄i+1/2 using (5.19) and (5.21) and the calculations from steps

2 and 3.

5. Find a polynomial reconstruction q that interpolates the averages w̄i(t + ∆t)

and w̄i+1/2(t+∆t).

6. Use q to compute ūi(t+∆t) with (5.12).

It is shown in [46] that in the limit∆t→ 0, that fully discrete formulation recovers
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the semi-discrete homogeneous form of (5.11) with numerical flux

Fi+1/2 =
a+i+1/2fi+1/2(pi+1(xi+1/2))− a−i+1/2fi+1/2(pi(xi+1/2))

a+i+1/2 − a−i+1/2
(5.23)

+
a+i+1/2a

−
i+1/2

a+i+1/2 − a−i+1/2
(pi+1(xi+1/2)− pi(xi+1/2) .

Notice that there is no explicit dependence on the intermediate staggered averages

w̄i and w̄i+1/2 or the reconstruction q.

5.3.3 Remaining Discretization

We discretize the fluxes in (5.11) using the central-upwind flux. Then a spatial

discretization of the diffusive, field, and collision terms must be given, and a temporal

discretization must be specified.

To discretize the remaining terms in (5.11), we use the fact that for any smooth

function ψ

1

∆x

Z
Ii

ψ(u(x, t)) dx = ψ(ūi(t)) +O(∆x2) . (5.24)

The diffusive terms and the electric potential can be safely discretized with center
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differences, which in conjunction with (5.24) gives

1

∆x

Z
Ii

l(u(x, t))Φx(x) dx = l(ūi(t))

∙
Φi+1 − Φi−1

2∆x

¸
+O(∆x2) , (5.25a)

D(u(xi+1/2, t)) =

∙
D(ūi(t)) +D(ūi+1(t))

2

¸
+O(∆x2) , (5.25b)

g(u)x(xi+1/2, t) =

∙
g(ūi+1(t))− g(ūi−1(t))

2∆x

¸
+O(∆x2) (5.25c)

1

∆x

Z
Ii

r(u(x, t)) = r(ūi(t)) +O(∆x2) . (5.25d)

The Poisson equation is discretized with standard central differences. Since is

constant in the benchmark problem,

−Φi+1 + 2Φi − Φi+1

∆x2
=

q ¡
D̄i − n̄i

¢
+O(∆x)

where the bar denotes averages over a given cell. Finally, the averages ūi are evolved

with a simple forward Euler method:

d

dt
ūi =

ūi(t+∆t)− ūi(t)
∆t

+O(∆t) ,

which should be sufficient for steady-state calculations. Higher-order methods are

easily implementable for studying transient behavior [76].
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5.3.4 Remarks

Some remarks about the choices for our scheme are in order. We freely acknowledge

that the scheme outlined above is not the most efficient or well-behaved from a com-

putational viewpoint. However, our primary interest at this point is to compare the

qualitative features of the models. We briefly mention a few issues here so that the

reader may be aware of them. Some of these issues will be addressed in the next

chapter in the development of better schemes.

1. Temporal accuracy and stiffness. Because we are interested primarily in

steady-state calculations, the use of a first-order in time method should suffice.

However, there is also a problem with efficiency. The system (5.9) in its non-

dimensional form may take on the scaling

ut +
1

ε
f(u)x =

1

ε
l(u)Φx + (D(u) · g(u)x)x +

1

ε2
r(u)

in the drift-diffusion limit or

ut + f(u)x =
1

ε
l(u)Φx + (D(u) · g(u)x)x +

1

ε
r(u)

in the drift-collision limit. In cases where ε is small, these equations become

stiff, in which case the use of implicit schemes is in order. This can be particu-

larly difficult for the first scaling since the fluxes are approximated in a highly

nonlinear fashion. Furthermore, if the diffusive terms are nonzero, than an ex-

plicit scheme forces an additional restriction in the time step ∆t ∼ ∆x2. These
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issues are addressed in the next chapter.

2. Spatial accuracy. Increasing the order of spatial accuracy in (5.24) with a fi-

nite volume method requires a reconstruction method that incorporates function

averages from adjacent cells. The best option in this case is to change to a finite

difference formulation. However, this means abandoning the central-upwind

approach, and for this reason, we limit the spatial accuracy to second-order.

3. Well-balanced schemes. The use of central differences in (5.25) means that

the scheme will not be well-balanced. Well-balanced schemes are numerical

schemes that formulate non-conservative terms into a conservative framework.

This means that the semi-discrete scheme for the balance law (5.9) would have

the form

d

dt
ūi(t) = −

F̂j+1/2 − F̂j−1/2

∆x
,

in analogy with the semi-discrete formulation of the homogeneous equation

(5.10). This type of formulation is used to preserve certain properties of a

numerical solution such a positivity or a particular steady state. Usually, the

form of F̂ depends heavily known information about the solution. Examples

where well-balanced schemes have proven fruitful can be found in [6] and [24].

The problems studied in these cases have a form similar to (5.9) but are generally

much simpler than the models we are interested in here.

The lack of a well-balanced scheme will be evident in our benchmark compu-

tations at the source and drain junctions of the diode, most noticeably is the
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results for the current J = −qnu. (Current and momentum differ only by a

constant). For most of the diode, the computed steady-state current will be

constant, as expected. However, large oscillations will appear at the junctions.

Such behavior can be found in similar computations [3,9,16,25].

4. Hyperbolicity. The reader should be reminded that it is not known whether

the schemes APNV1, APPV1, APFV1, PMMC1, and PGMC1 are really hyper-

bolic. Because they are all based on pertubations and/or reductions of hyper-

bolic systems, it is reasonable to believe they are hyperbolic in some non-trivial

subset the state space of densities. Whether or not such a subset incorporates

all physically realized values is unknown. For computational purposes, we ig-

nore this fact and use the wave structure of their hyperbolic counterparts to

compute λ given by (5.17) and the values a±i+1/2 given by (5.18). This means

we use the wave structure of APNV2 for computing APNV1 and the wave struc-

ture of APPV1 for computing APPV2 an so on. Experience has shown that

the same time step restrictions are required for stable computations.

5.4 Numerical Results

Below we present the results of calculations. Each simulation is allowed to run until

the following stop criterion is reached

PN
i=1 [ni(tk)− ni(tk +∆tk)]PN

i=1 ni(tk)
≤ tol ·∆tk

Here we set the tolerance tol = 10−4.
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5.4.1 Bløtekjær-Type Models

Figures 5.2-5.13 contain results for the six Bløtekjær-type models. Most figures

consists of six subplots shadowed by the corresponding data taken from Monte-Carlo

experiments. The exception is Figure 5.9, which shows the electric fields. No Monte

Carlo data was available for this figure.

Figures 5.2 and 5.3 are the electron concentration. Figure 5.2 shows that each

model has the same basic behavior. One must refer to Figure 5.3 to see the differences.

From these rescaled pictures, several things are clear. First is the need to add

corrections to the straight-forward Maxwellian closure (MBW, MMC). Second is

effect of a non-zero heat flux, which has the greatest effect at the drain junction even

most of the models do not necessary give improved results. Finally, the accuracy

gained by using Monte-Carlo relaxation times is very noticeable. Quite surprisingly

the model BMC2 gives among the best results of all the models presented in the

chapter. It would be interesting to see if this accuracy is robust by varying the

device parameters.

In Figure 5.4, the Monte Carlo relaxation times give slightly better results. How-

ever, the most noticeable features in Figure 5.4 is the presence of large oscillations

at the junctions x = 0.1 and x = 0.5. This will be the case for all current figures

presented here.

Velocity results can be seen in Figure 5.5 and with a zoomed view in Figure 5.6.

As with most of the models in this chapter, the majority of Bløtekjær-type models

underestimate the velocity in the channel region yet display a velocity overshoot
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effect at the drain junction that is characteristic of hydrodynamic models. Changes

in the heat diffusion coefficient κ make a significant difference in both areas. Note

again the accuracy of models BMC1 and BMC2 which use Monte-Carlo relaxations

times as compared to the BBW1 and BBW2 models which use Baccarani-Wordeman

relaxation times.

Temperature results are given in Figure 5.7 in units of thermal energy. In addition

to the remarkable accuracy of model BMC2, we note the small spike just before the

drain junction in the MBW and MMC models. This spike is not a numerical defect,

but rather a small shock in the temperature profile which is smoothed away by the

heat dissipation in the other models. The energy profile in Figure 5.8 shows the same

behavior.

The electric field results are displayed in Figure 5.9. We have no Monte Carlo

data to compare here and thus use the MBW model as a reference. Note the large

spike in the electric field at the drain junction which is made sharper by the addition

of a heat flux

Heat flux and energy flux results are given in Figures 5.10-5.13. None of the

models correctly predict the heat flux, although the models BBW1 and BMC1 are

closer than the BBW2 and BMC2 models. Even so, the energy flux for BBW2

and BMC2 is much closer to Monte Carlo data than BBW1 and BMC1 at the drain

junction. Once again, the BMC2 model is surprisingly accurate.

211



5.4.2 Anile-Pennisi Models

The results for the six AP models are given in Figures 5.14-5.24. The basic features

are the same as the Bløtekjær models. Among the AP models, variation in results

depends mostly on the presence of diffusive terms in momentum equations. This fact

is apparent in Figures 5.15, 5.17 and 5.18, where the full viscosity models APFV1 and

APFV2 gives much improved results near the drain. However, there is a noticeable

degradation in accuracy for the temperature results in Figure 5.19.

There seems to be very little difference between models that do or do not include

the convective heat flux correction in the energy equations. The most noticeable

difference is seen in the heat flux results themselves, given in Figure 5.22. Here the

models APNV1, APPNV2, and APNV3 are much more accurate than there counter-

parts APNV2, APNV3, and APNV4 in the channel of the diode. However, they show

no substantial improvement at the drain junction, which is always the most problem-

atic area. This is consistent with our earlier stance that convective corrections may

be dominated by diffusive corrections at places what gradients are large–such as at

the drain junction. Also, the increased accuracy in the heat flux actually translates

to decreased accuracy in the energy flux, which is the flux that actually drives the

energy equation. This last fact should not be considered a weakness of the AP model;

rather one should that there is still important dynamics that has not yet been given

a thorough accounting.
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5.4.3 Entropy-Based Models

Results for the entropy based models are given in Figures 5.25-5.35. These figures

include the same type of results as the Anile-Pennisi and Bløtekjær-type models with

the same general behavior. In addition, Figure 5.34 compares the anisotropy σ

of several of the models and Figure 5.35 compares the longitudinal and transverse

temperature components of the perturbed Gaussian models.

From Figures 5.25-5.30, we make several observations. First, the electron con-

centration in the MMC an GMC models is very similar–both cases show the need

for a non-zero heat flux near the drain junction. The perturbed Maxwellian closures

are more accurate than their Gaussian counterparts near the drain but slightly less

accurate near the source and along the center of the channel. The current results

from the perturbed Gaussian models are also slightly more accurate.

The perturbed Maxwellian closures have a significantly smaller velocity overshoot

than their Gaussian counterparts. This is due to the fact that the anisotropy in

the Gaussian model is not a diffusive correction. However, as with the different AP

models, there is a trade-off that comes in the form of degraded temperature results.

Although the velocities in PGMC1 and PGMC2 show a significant overshoot at the

drain junction, this overshoot is much smaller than most of the other models that do

not include diffusive effects in the momentum equation. Again, the notable exception

is BMC2. A marked similarity of these two models in a smaller diffusive heat flux.

The heat diffusivity for PGMC1 and PGMC2 is significantly greater than that of

BMC2, but it is less than for all other models.
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The anisotropy for APFV1, APFV2, PMMC1, PMMC2, PGMC1, and PGMC2

is plotted in Figure 5.34. Here one can see the similarities in the diffusive models

APFV1, APFV2, PMMC1, PMMC2 and also how they differ from the Gaussian

models PGMC1 and PGMC2.

For the most part, the differences between PMMC1 and PMMC2 and between

PGMC1 and PGMC2 are small. The model PGMC1 is slightly better predictor

of the temperature than is PGMC2, but the inclusion of convective corrections is

most notable in the heat flux data, although none of the entropy based models is as

accurate in this respect as the APNV1, APPV1, and APFV1 models are. Similar to

the AP results, the increased accuracy in the heat flux translates to a loss of accuracy

in the energy flux, and moreover, the heat flux results at the drain junction are still

quite inaccurate for all of the models considered.

Finally, Figure 5.35 gives a comparison of the temperature components for the

perturbed Gaussian models. The values θL and θT do not suffer any significant

changes when moving from PGMC1 to PGMC2. In both cases, θL > θT . This is

expected since the kinetic distribution is stretched in the longitudinal direction by

the electric field.
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Figure 5.2: Electron concentration n for Bløtekjær-type models. Dashed line is Monte Carlo data.
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Monte Carlo data.
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Figure 5.4: Electron current J = −qnu for Bløtekjær-type models. Dashed line is Monte Carlo

data.
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Figure 5.5: Electron velocity u for Bløtekjær-type models. Dashed line is Monte Carlo data.
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Figure 5.6: Electron velocity u for Bløtekjær-type models, magnified view. Dashed line is Monte

Carlo data.
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Figure 5.7: Thermal energy meθ for Bløtekjær-type models. Dashed line is Monte Carlo data.
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Figure 5.9: Electric field E = −∂xΦ for Bløtekjær-type models. Dashed line is MBW model.
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Figure 5.10: Heat flux me

n q for Bløtekjær-type models. Dashed line is Monte Carlo data.
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Figure 5.11: Heat flux me

n q for Bløtekjær-type models, magnified view. Dashed line is Monte Carlo

data.
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Figure 5.14: Electron concentration n for AP models. Dashed line is Monte Carlo data.
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Figure 5.15: Electron concentration n for AP models, magnified view. Dashed line is Monte Carlo

data.
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Figure 5.16: Electron current J = −qnu for AP models. Dashed line is Monte Carlo data.
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Figure 5.17: Electron velocity u for AP models. Dashed line is Monte Carlo data.

230



0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APNV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APNV2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APPV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APPV2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APFV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
x 10

6

µm

cm
/s

ec

APFV2

Figure 5.18: Electron velocity u for AP models, magnified view. Dashed line is Monte Carlo data.
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Figure 5.19: Electron thermal energy meθ for AP models. Dashed line is Monte Carlo data.
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Figure 5.20: Electron energy 1
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2 + 3
2meθ for AP models. Dashed line is Monte Carlo data.
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Figure 5.21: Electric field E = −∂xΦ for AP models. Dashed line is MBW model.
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Figure 5.22: Heat flux me

n q for AP models. Dashed line is Monte Carlo data.
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n for AP models. Dashed line is Monte Carlo

data.

236



0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APNV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APNV2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APPV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APPV2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APFV1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5
x 10

6

µm

eV
 c

m
/s

ec

APFV2

Figure 5.24: Electron energy flux 1
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3 +me
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n for AP models, magnified view. Dashed
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Figure 5.25: Electron concentration n for entropy-based models. Dashed line is Monte Carlo data.
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Figure 5.26: Electron concentration n for entropy-based models, magnified view. Dashed line is

Monte Carlo data.
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Figure 5.27: Electron current J = −qnu for entropy based models. Dashed line is Monte Carlo

data.
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Figure 5.28: Electron velocity u for entropy-based models. Dashed line is Monte Carlo data.
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Figure 5.29: Electron velocity u for entropy-based models, magnified view. Dashed line is Monte

Carlo data.
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Figure 5.30: Electron thermal energy meθ for entropy based models. Dashed line is Monte Carlo

data.
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Figure 5.31: Electric field E = −∂xΦ for entropy based models. Dashed line is MBW model.
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Figure 5.32: Electron heat flux me

n q for entropy-based models. Dashed line is Monte Carlo data.
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Figure 5.33: Electron energy flux 1
2meu

3 +me
5
2θ +me

q
n for entropy based models. Dashed line is

Monte Carlo data.
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Figure 5.34: Anistropic stress meσ
n for AP and PEB models. Dashed line is APFV1 model.
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Figure 5.35: Components of thermal energy for perturbed Gaussian closures.
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Chapter 6

Computational Issues: Stiffness and Balance

In Chapter 5, we computed solutions for several hydrodynamic models without much

concern for the computational issues involved. In the current chapter, we examine

some of the important numerical aspects of these closures which are commonly found

in hyperbolic systems with relaxation and source terms. We then present a new

scheme based on a splitting method that was first introduced in [40]. This splitting

is based on the balance of forces in hydrodynamic models that, for regimes with small

electric field, recover the drift-diffusion system in the asymptotic limit of small mean-

free-path. The advantage of the scheme is that it removes stiffness and excessive

dissipation which is often found with standard discretizations of hydrodynamic models

in the drift-diffusion regime. In addition, the scheme also significantly reduces the

size of numerical current oscillations found at material junctions in a n+-n-n+ diode

with slab symmetry.

For the purposes of this chapter, the term hydrodynamic model will refer specifi-
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cally to the following system:

∂tn+ ∂x (nu) =0 , (6.1a)

∂t (nu) + ∂x(nu
2 + nθ + σ)− qe

m∗
e

n∂xΦ =−
1

τ p
nu , (6.1b)

∂t

µ
nu2

2
+
3nθ

2

¶
+ ∂x

µ
nu3

2
+
5nuθ

2
+ σu+ q

¶
(6.1c)

− qe
m∗

e

nu∂xΦ =−
1

τw

µ
nu2

2
+
3n (θ − θ )

2

¶
.

with appropriate boundary conditions. Here the fluid variables are the electron

concentration n, the bulk velocity u, and the temperature θ. The constants qe

and m∗
e are the electron charge and effective mass, and θ is the temperature of the

semiconductor lattice. The quantities τ p and τw are relaxation times for momentum

and energy that are fit with Monte Carlo calculations as functions of electron energy.

Their exact form can be found in [63]. The anisotropy σ and the heat flux q are

given by the constitutive relations

σ = −4
3
τ pnθ∂xθ , q = −5

2
τ pnθ∂xθ . (6.2)

Finally, Φ is the electric potential that satisfies Poisson equation,

−∂x( ∂xΦ) = qe(D − n) , (6.3)

with appropriate boundary conditions. The derivative −∂xΦ is the electric field.

The variable = (x) is the electric permittivity, and D = D(x) is the doping profile
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that is created by the ionization of atoms in the crystal lattice of the semiconductor

material. The shape of the doping profile is set during the fabrication process of a

device. Together, (6.1) and (6.2) make up the drift-diffusion-Poisson system.

The behavior of solutions to (6.1) is heavily dependent on the relative sizes of

the different forces that act free electrons in the semiconductor. For regimes in

which the potential energy and thermal energy balance and the mean free path of

electrons is small compared to the device length, the electron concentration is formally

approximated by the drift-diffusion equation

∂tn+ ∂x (µn∂xΦ− a∂xn) = 0 , (6.4)

where there mobility and diffusivity are given by

µ =
qeτ p
m∗

e

and a = τ pθ

respectively, and Φ still satisfies (6.3). In such cases, θ = θ and u is determined by

a balance between electrical and diffusive forces:

u = µ∂xΦ− a∂x(log(n)) .

Rigorous results connecting the hydrodynamic and drift-diffusion models can be found

in [22,23,30].

When solving (6.1) numerically, two issued must be addressed. The first issue

is numerical stiffness for systems in the drift-diffusion regime, when the evolution of
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n given in (6.1) can be accurately approximated by (6.4). In this situation, stiff

flux terms in (6.1) can create excessive numerical dissipation that leads to a distorted

approximation of the diffusive term in (6.4). In addition, stiff flux terms imply large

wave speeds and a hyperbolic CFL condition that is much more restrictive than the

natural diffusive CFL condition, ∆t ∼ ∆x2 associated with (6.4). Therefore, explicit

schemes for (6.1) will be highly inefficient in the drift-diffusion regime. On the

other hand, a standard implicit approach is impractical for modern shock capturing

methods which approximate fluxes in a highly nonlinear fashion.

The second numerical issue is that of balance. At steady state, the current profile

for (6.1) is constant in space. However, the existence of non-conservative electric

field terms in (6.1) often leads to non-physical oscillations. This is because standard

discretization for (6.1) fail to mimic the balance of forces at the continuum level

that give rise to steady-state solutions. In places where the fluid variables and the

potential vary rapidly, the effects can be quite dramatic. Results such as these are

found in other applications such as shallow water models and chemotaxis [6,24]. In

fact almost any hyperbolic system with a non-conservative force term is subject to this

behavior. In some cases, so-called well-balanced schemes have been developed that

the preserve the balance of forces in the steady state at the discrete level. Although

frequently successful, these schemes require explicit information from the steady-state

equations that is typically not available with the hydrodynamic model.

In this chapter, we adapt a splitting method that was originally put forth to fix

the problems with efficiency and numerical dissipation associated with stiff flux terms

in a simple 2 × 2 hyperbolic system [40, 64, 78]. Our new splitting is based on the
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balance of dominant forces in the drift-diffusion regime. We find that, in addition

to removing stiff fluxes, this split scheme significantly reduces the presence of non-

physical oscillations in the steady-state current profile. We are hopeful that these

results will lead to more general concepts of well-balanced schemes that are more

robust and applicable to transient as well as steady-state problems.

The outline of the chapter is as follows. In Section 2, we describe the benchmark

problem for testing our scheme. In Section 3, we formally derive the drift-diffusion

scaling of (6.1), the drift-diffusion limit, and discuss the numerical issues that arise.

In Section 3, we present previous work and numerical results. In Section 4, a new

scheme is introduced with details presented in Section 5. In Section 6, numerical

results are given. Section 7 is for discussion and conclusions.

6.1 The Benchmark Problem

As in Chapter 5, we will be simulating electron transport for an n+-n-n+ diode (see

Figure 6.1) of length L that is used to simulate the channel in MOSFET andMESFET

devices [84]. The diode possesses slab symmetry and is therefore described in one

spatial dimension. The left end of the diode is called the source; the right end is

called the drain; and the center portion is the channel. The boundaries between

these regions are called junctions. It is here that numerical oscillations in the current

tend to appear.

We assume the diode is made of silicon with constant electric permittivity =

1.04×10−16C/µm and effective massm∗
e = 0.32me, whereme = 9.109×10−31 kg is the

free electron mass [84]. The device length is L = 0.6x0, where x0 is a representative
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length scale, and the doping profile is

D (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
10D0, 0 < x < L/6

0.1D0, L/6 < x < 5L/6

10D0, 5L/6 < x < L

, (6.5)

where D0 is a representative concentration. In the Chapter 5, the value of x0 was

fixed at 1µm and D0 was fixed at 1017 cm−3. However, we now consider the behavior

of the device over a range of values for D0 and x0.

  L/6   L/6  2L/3

n+ n+n

+−
Vbias

Figure 6.1: The one dimensional n-n+-n diode of length L.

Current is driven by an external battery that creates a potential across the diode.
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The temperature of the diode is

T ≡ m∗
eθ

kB
= 300K.

We apply the following boundary conditions, which are consistent with thermal equi-

librium at the boundary:

n(0) = D(0) , n(L) = D(L) , (6.6a)

∂xu(0) = ∂xu(L) = 0 , (6.6b)

∂xθ(0) = ∂xθ(L) = 0 , (6.6c)

Φ(0) = 0 , Φ(L) = Vbias . (6.6d)

6.2 Drift-Diffusion

6.2.1 Non-Dimensionalization

We begin by recasting the hydrodynamic model (6.1) in a non-dimensional form. To

this end, we define independent variables x̂ and t̂ by

x = x0x̂ , t = t0t̂ .

Here carats denote non-dimensional variables and "naught" subscripts denote ref-

erence values associated with each dimensional variable. We also define the non-
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dimensional dependent variables that are functions of x̂ and t̂:

n = n0n̂ , u = u0û , θ = θ0θ̂ , Φ = [Φ0]Φ

τ p = τ 0τ̂ p , τw = τ 0τ̂w , D = D0D̂ .

Here the notation [Φ0] denotes the potential drop across the device.

The hydrodynamic model is characterized by three energy scales: the kinetic

energy u20, the thermal energy θ0, and the potential energy drop
qe
m∗e
[Φ0]. Associated

with each of these energies scales is a reference velocity: the bulk velocity u0, the

thermal velocity θ
1/2
0 , and the drift velocity vE. The thermal velocity is typically

given by the lattice temperature, i.e., θ1/20 = θ
1/2. To find a value for the drift

velocity, we consider a particle initially at rest at time zero that is accelerated by a

constant electric field E0. Just before a collision at time τ 0, the particle has velocity

vE =
qE0
m

τ 0 ,

If E0 = − [Φ0]x0
, then the drift velocity is

vE = ε
qe
m∗

e

[Φ0]

θ
1/2
0

.

The bulk velocity is then given by

u0 = min(θ
1/2
0 , vE) .
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This will ensure that dynamics at both the thermal and drift velocities will be taken

into account.

The hydrodynamic model has two important time scales. The reference time t0

is defined as the time it takes a particle of speed u0 to traverse the distance x0:

x0 = u0t0 . (6.7)

The time τ 0 is the mean collision time between an electron and the semiconductor

lattice. If θ1/20 is the thermal velocity, then

mean free path = τ 0θ
1/2
0 . (6.8)

We now introduce several dimensionless ratios and place (6.1) in a non-dimensional

form. First is the scaled Knudsen number which is the ratio of the mean free path

to the length scale of the device:

ε ≡ θ
1/2
0 τ 0
x0

. (6.9)

Together (6.7)-(6.9) relate the two times scales τ 0 and t0 via the thermal and bulk

velocities:

t0
τ 0
= ε

θ
1/2
0

u0
. (6.10)
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Next are the dimensionless velocity ratios

η ≡ u0

θ
1/2
0

, δ ≡ vE

θ
1/2
0

= ε
qe
m∗

e

[Φ0]

θ0
,

which measure the relative size of the bulk to thermal velocity and the drift to thermal

velocity. With these ratios, the non-dimensional hydrodynamic model is (dropping

hats)

∂tn+ ∂x (nu) =0 , (6.11a)

∂t (nu) + ∂x

µ
nu2 +

1

η2
nθ +

ε

η
σ

¶
− δ

εη2
n∂xΦ =−

1

ηε

1

τ p
nu , (6.11b)

∂t

µ
nu2

2
+
1

η2
3nθ

2

¶
(6.11c)

+∂x

µ
nu3

2
+
1

η2
5nuθ

2
+

ε

η
σu+

ε

η3
q

¶
− δ

εη2
nu∂xΦ = −

1

ηε

1

τw

µ
nu2

2
+
1

η2
3n (θ − 1)

2

¶
.

where q and σ retain the form given in (6.2) but with rescaled variables.

6.2.2 The Drift-Diffusion Scaling

The behavior of solutions to (6.11) depends heavily on the relative sizes of ε, η, and

δ. The drift-diffusion scaling assumes that the potential energy and thermal energy

balance, in which case δ = ε and vE = εθ
1/2
0 . In light of (6.10), u0 = vE and η = ε,
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in which case (6.11) becomes

∂tn+ ∂x (nu) =0 , (6.12a)

∂t (nu) + ∂x

µ
nu2 +

1

ε2
nθ + σ

¶
− 1

ε2
n∂xΦ =−

1

ε2
1

τ p
nu , (6.12b)

∂t

µ
nu2

2
+
1

ε2
3nθ

2

¶
(6.12c)

+∂x

µ
nu3

2
+
1

ε2
5nuθ

2
+ σu+

1

ε2
q

¶
− 1
ε2
nu∂xΦ =−

1

ε2
1

τw

µ
nu2

2
+
1

ε2
3n (θ − 1)

2

¶
.

The Poisson equation must also be recast in non-dimensional form. It turns out

that the electron concentration is dominated by the doping profile so that D0 = n0.

Hence, the non-dimensional Poisson equation is (in scaled variables)

−λ2∂x ( ∂xΦ) = (D − n) , (6.13)

where the scaled Debye length is given by

λ =
0[Φ0]

qD0x20
. (6.14)

This parameter characterizes the distance over which the potential responds to vari-

ations in the charge distribution. In particular, is determines the effective thickness

of the diode junctions. In practice, λ must be a small fraction of the device length in

order to maintain well-defined source, channel, and drain regions. For our numerical
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experiments, we would like maintain a constant value of λ and therefore impose the

condition that D0x
2
0 be held constant as x0 changes.

6.2.3 The Drift-Diffusion Limit

The drift-diffusion scaling gets its name from the limiting equations derived from

(6.12) in the limit ε→ 0. Formally, this limit (in non-dimensional variables) that

∂tn+ ∂x(τ pn∂xΦ) = ∂x (τ p∂xn) (6.15a)

nu = τ pn∂xΦ− τ p∂xn (6.15b)

θ = 1 (6.15c)

It is important to note that (6.15a) can be rewritten in conservative form

∂tn+ ∂x
¡
τ pe

Φ∂x(e
−Φn)

¢
= 0 .

The quantity e−Φn is called a Slotboom variable. It plays an important role in the

behavior of (6.15) near steady-state solutions that satisfy u = 0.

6.2.4 Physical Validity

It is important to consider the size of ε, η, and δ is a realistic setting and to assess

the validity of the drift-diffusion scaling. At room temperature,

ε ∼ 10
−8m

x0
.
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For devices 15 years ago, x0 ∼ 10µm and ε ∼ 10−3. In modern devices , x0 ∼

0.1 − 1µm and ε ∼ 10−2 − 10−1. Unlike many other types of kinetic systems, the

physics of the collision process requires that ε < 1. In fact, ε ∼ 10−1 is approaching

the limit of semiconductor operation.

Although the local value of ε is roughly constant throughout the device, the local

values of η and δ can vary by several orders of magnitude. In many modern devices,

channel sizes are small enough that the local potential energy is larger than the

thermal energy near diode junctions, even though ε is still relatively small (ε ∼ 10−2).

Rather than apply the drift-diffusion scaling, it is more appropriate in these cases to

set δ = η = 1. The non-dimension form of (6.1) becomes

∂tn+ ∂x (nu) =0 ,

∂t (nu) + ∂x
¡
nu2 + nθ + εσ

¢
− 1

ε
n∂xΦ =−

1

ε

1

τ p
nu ,

∂t

µ
nu2

2
+
3nθ

2

¶
+ ∂x

µ
nu3

2
+
5nuθ

2
+ εσu+ εq

¶
−1
ε
nu∂xΦ =−

1

ε

1

τw

µ
nu2

2
+
3n (θ − 1)

2

¶
.

This scaling is known as the drift-collision scaling due to the leading-order balance

between the collision terms on the right-hand side and the field terms on the left-hand

side of the momentum and energy equations. Asymptotic limits for the drift-collision

scaling have been studied in [21], and a numerical investigation of the n+ − n − n+

diode can be found in [18]. It should be noted that (6.1) may not be an appropriate

model for this scaling. This is because the closure is derived based on the assumption
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that forces due to the electric field are dominated by collisional effects. As mentioned

in Chapter 3, the constitutive relations for σ and q must be re-examined when the

electric field is large. High field effects in the context of hydrodynamic models will

be the subject of future work.

6.2.5 Preview of Numerical Issues

A desirable property for any numerical scheme used to simulate (6.1) is that it recover

the drift-diffusion behavior given by (6.4) when ε is small–that is when devices are

large relative to the mean free path. It is clear from (6.12) that the relaxation, field,

and flux terms are all stiff when ε is small, i.e., when the device size is large. In

particular, the wave speeds of (6.12) are

λ = u, u± 1
ε

r
5

3
θ .

Stiffness leads to two problems. The first, which is fairly obvious, is that when

ε ¿ ∆x, the stiff terms in (6.12) imply a time step condition that is much more

restrictive than the explicit diffusive condition for that is natural for (6.15c), i.e.,

∆t ∼ (∆x)2. For the relaxation and field terms these restrictions can be overcome

by an implicit time discretization. However, for Godunov-type schemes that employ

spatial reconstructions beyond first-order, the implicit evaluation of flux terms is not

very practical. This is because the reconstructions–whether they be slope-fitting

or ENO or WENO–are very nonlinear and often discontinuous functions of the cell

data.
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The second, more subtle problem is excessive numerical dissipation. Even in the

semi-discrete case, Godunov type schemes introduce numerical dissipation in positive

correlation with the size of the wave speeds of the linearized fluxmatrix. In particular,

a semi-discrete differencing of (6.12a) will result in an approximation for the spatial

derivative of the momentum that looks like

d

dt
nj = −

(nu)j+1/2 − (nu)j−1/2
∆x

= −∂x (nu) + higher-order terms

Included in the higher-order terms is numerical dissipation. In the drift-diffusion

approximation, u is given by (6.15b) in which case

d

dt
nj = −∂x (τ pn∂xΦ− τ p∂xn) + higher-order terms

which appears to be a consistent discretization for (6.15b). However, when ε¿ ∆x

the numerical dissipation can be quite large–comparable to or even greater that the

physical diffusion term ∂xτ p∂xn. A more detailed calculation of this phenomenon is

given in the next section a simple 2× 2 linear model.

Another issue is that of balance. Numerical solutions of (6.1) are often charac-

terized by non-physical oscillations in the current profile. For steady-state solutions,

the current should be constant in space. However, many time-dependent schemes

evolve to a steady-state in which large oscillations appear at the diode junctions. The

size of these oscillations depends on the sharpness of the junction. For the sharp

doping profile given in (6.5), the size of these oscillations can be of the same order
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as the current itself. For transient solutions, such behavior can even break down a

numerical scheme [9].

6.3 Numerical Background

In this section, we present previous work on the numerical issues introduced at the

end of the last section, and discuss what ideas may carry over the hydrodynamic

model. We begin with a simple 2 × 2 stiff hyperbolic system with relaxation and

then consider the presence of additional source terms. We also present some results

based on previous computations of the hydrodynamic model to emphasize the problem

with current oscillations at the diode junctions.

6.3.1 A Model Problem

The stiffness and numerical issues introduced in the last section can be understood

through the study of the model problem

∂tn+ ∂xm = 0 , (M1)

∂tm+
1

ε2
∂xn = −

1

ε2
m,

which as ε→ 0 is approximated by the diffusion equation

∂tn = ∂2xn , m = −∂xn . (6.16)
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Here, it is understood that the momentum m = nu. The only contribution to the

momentum flux here is the pressure p = ε−2n. The temperature is constant and

equal to one. Numerical studies of (M1) can be found in [40, 55, 64] and references

therein. Like the hydrodynamic model, (M1) is stiff when ε ¿ 1. In addition to

the obvious time step restrictions, the stiff flux in the momentum equation of (M1)

creates excessive numerical dissipation in the concentration equation of (M1), thereby

reducing its accuracy when approximating for (6.16) near the diffusive limit.

6.3.1.1 Numerical Diffusion For a given mesh size ∆x, most numerical schemes of

order s compute exact solution to a modified equation [50] for (M1) of the form

∂tn+ ∂xm+
∞X
k=s

¡
ak ∂

(k)
x m+ bk ∂

(k)
x n

¢
(∆x)k = 0 ,

∂tm+
1

ε2
∂xn+

∞X
k=s

¡
ck ∂

(k)
x m+ dk ∂

(k)
x n

¢
(∆x)k = − 1

ε2
m,

where the coefficients ak, bk, ck, and dk depend on ε. For example, a center-difference,

second-order, upwind scheme for (M1) has a modified equation

∂tn+ ∂xm−
1

12
(∆x)2∂3xm+

1

8

(∆x)3

ε
∂4xn+O

¡
ε, (∆x)4

¢
= 0 , (6.17a)

∂tm+
1

ε2
∂xn−

1

12

(∆x)2

ε2
∂3xn+

1

8

(∆x)3

ε
∂4xm+O

¡
ε, (∆x)4

¢
= − 1

ε2
m. (6.17b)

If terms in (6.17b) are balanced according to powers of ε, then

m = −∂xn+
1

12
(∆x)2∂3xn+O

¡
ε, (∆x)3

¢
,
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Substituting this expression for m into (6.17a) gives the following modified diffusion

equation

∂tn− ∂2xn−
1

12
(∆x)2∂3xm+

1

8

(∆x)3

ε
∂4xn+O(ε, (∆x)3) = 0 (6.18)

which is inconsistent with (6.16) in the limit

ε→ 0 , ∆x→ 0 ,
(∆x)3

ε
= const.

In practice, solutions to (6.17) will be smeared by the numerical dissipation from the

term ∂4xn in (6.18) whenever (∆x)3 is a reasonable fraction of ε [55]. It should also

be noted that slope-limiting does not correct this problem, and that a similar result

holds for central schemes. However, discontinuous Galerkin methods can remove the

numerical dissipation is some cases [55].

6.3.1.2 Simple Splitting Approaches In [40], a split scheme is introduced to address

the problems associated with the stiff system. The scheme consists of two steps.

The first is a relaxation step:

∂tn = 0 , (6.19a)

∂tm+

µ
1

ε2
− 1
¶
∂xn = −

1

ε2
m, (6.19b)
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followed by a convection step:

∂tn+ ∂xm = 0 , (6.20a)

∂tm+ ∂xn = 0 . (6.20b)

When ε¿ 1, the (6.19b) projects the solution into the diffusion balance

m = −∂xn+O(ε2) . (6.21)

This property has been shown in [39] to be an important aspect of capturing the

proper behavior described in (6.16) when ε ¿ 1. Meanwhile, the convective step is

a hyperbolic system with wave speeds that are independent of ε.

When ε ¿ ∆x, the splitting improves efficiency by relaxing the hyperbolic CFL

condition of the original stiff system. Because ∂tn = 0 in the relaxation step, implicit

and explicit updating the stiff flux term in (6.19b) is the same. Given that the

convective step (6.20) is updated explicitly, the natural CFL condition for the entire

scheme in the diffusive regime is ∆t ∼ (∆x)2 À ε∆x.

The splitting also removes excessive numerical dissipation when ε ¿ ∆x. The

modified equations for (6.20) for a center-difference, second-order, upwind scheme are

∂tn+ ∂xm−
1

12
(∆x)2∂3xm+

1

8
(∆x)3∂4xn+O(∆x)4 = 0 , (6.22a)

∂tm+ ∂xn−
1

12
(∆x)2∂3xn+

1

8
(∆x)3∂4xm+O(∆x)4 = 0 . (6.22b)
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Substituting (6.21) into (6.22a) gives

∂tn = ∂2xn+O(ε2, (∆x)2) ,

which lacks the numerical dissipation term O((∆x)3/ε) found in (6.18).

6.3.2 Systems of Balance Laws

Simulation of balance laws containing source terms with spatial derivatives in non-

divergent form is a challenging task. Numerical schemes often fail to capture key

physical features of a system because of the difficulty involved with capturing the

delicate balance of forces found at the continuum level. Such is the case in the

following system, which is obtained by adding a source term and a convective term

to the momentum equation in (M1):

∂tn+ ∂xm = 0 , (M2)

∂tm+ ∂x

µ
m2

n
+
1

ε2
n

¶
− 1

ε2
n∂xz = −

ν

ε2
m.

Here z is either given or solved self-consistently as a function of n. The quantity

ν is a relaxation rate or a friction coefficient that depends on n and m. Note that

(M2) is essentially the drifted-diffusion system from in Chapter 3. A study of stiff

numerics in this context can be found in [64].

Recently, well-balanced schemes [6,15,24,88] have been developed for solving (M2)

in several special cases. These schemes are devised in order preserves certain steady-
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state solutions which formally satisfy

∂xm = 0 , (6.23a)

∂x

µ
1

2
u2 +

1

ε2
log(n)− 1

ε2
z

¶
= − ν

ε2
u . (6.23b)

When ν = 0, the steady-state solutions are

m = Const. (6.24a)

1

2
u2 +

1

ε2
log(n)− 1

ε2
z = Const. (6.24b)

The idea of well-balanced schemes is to construct a conservative approximation of

(M2) that incorporates the information from (6.24) in order to preserve the steady-

state:

d

dt
ui +

F̂i+1/2 − F̂i−1/2

∆x
= 0 ,

where u = (n,m) and

F̂i+1/2 = F (ui+1,ui, zi, zi+1)

for some smooth function F that satisfies an appropriate consistency condition. For

example, when u = 0, the Slotboom variable e−zn is constant. This fact is utilized

in [24] to develop well-balanced schemes for chemotaxis models when ν = 0 near the

steady-state u = 0. A more general approach is proposed in [15] to model systems

near any subsonic steady state. The scheme is applied to the Saint-Venant sys-
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tem of shallow water equations and the Euler-Poisson system for collisionless charge

transport, which are similar to (M2) except for the right-hand side is zero.

The well-balanced approaches from these examples are not directly applicable to

the hydrodynamic model for several reasons. First of all, both conditions ν = 0 and

u = 0 are far from being satisfied, and the Slotboom variable e−Φn may vary by 10 to

20 orders of magnitude over the length of the diode. Furthermore, the hydrodynamic

model has a temperature dependent pressure given by p = p(n, θ) = ε−2nθ, where the

evolution of θ is derived from an independent equation (6.12c) for the energy. Even if

σ = q = 0 in (6.12), the statement analogous to (6.23b) for the hydrodynamic model

is

∂x

µ
1

2
u2 + θ − 1

ε2
Φ

¶
+
1

ε2
θ ∂x log(n) = −

1

ε2
1

τ p
u

which has the form of (6.23b) if and only if θ = 1.

6.3.3 Previous Computations of the Hydrodynamic Model

Even though there are several versions of the hydrodynamic model in the literature

with different expressions for σ, q, τ p, the general behavior of solutions and the major

computational issues are essentially the same. Steady state computations based

on iterative methods can be found in [28, 29, 63], but our focus is on time-evolution

methods, particular Godunov-type schemes. Once such scheme can be found in [25],

where the authors use a sixth-order ENO reconstruction method with explicit, first-

order time steps. In cases when ε¿ 1 this scheme is stiff, and in the drift-diffusion

regime, it is subject to all of the limitations discussed above. These limitations are
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partially circumvented by the high-order accuracy of the scheme.

In [72], split scheme is devise central schemes. There, the splitting separates the

system into a relaxation component:

∂tn = 0 , (6.25a)

∂t (nu) +
ε

η
∂xσ −

δ

εη2
n∂xΦ = −

1

ηε

1

τ p
nu , (6.25b)

∂t

µ
nu2

2
+
1

η2
3nθ

2

¶
+ ∂x

µ
ε

η
σu+

ε

η3
q

¶
(6.25c)

− δ

εη2
nu∂xΦ = −

1

ηε

1

τw

µ
nu2

2
+
1

η2
3n (θ − 1)

2

¶
.

and a convective component

∂tn+ ∂x (nu) = 0 , (6.26a)

∂t (nu) + ∂x

µ
nu2 +

1

η2
nθ

¶
= 0 , (6.26b)

∂t

µ
nu2

2
+
1

η2
3nθ

2

¶
+ ∂x

µ
nu3

2
+
1

η2
5nuθ

2

¶
= 0 , (6.26c)

that has the form of the Euler equations for a compressible neutral-particle gas. This

splitting is compatible with the drift-collision scaling when η = δ = 1 and ε¿ 1. In

such cases, only (6.25) is stiff and implicit methods can be used. However, in the drift-

diffusion regime when η = δ = ε ¿ 1, this splitting does not address the restrictive

CFL condition or numerical dissipation associated with stiff flux terms. Moreover,

central schemes are not recommended for computing steady-state solutions with small

time steps due to the cumulative effects of numerical dissipation [46].
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Another important point is that the numerical experiments in [25] and [72] use

a smoothed doping profile. The result is that the gradients of n and Φ are much

smaller at the junctions than for the stiff doping profile given in (6.5). Even with

such smoothing, oscillations still exist. In fact, it is noted in [25] that, even will the

smoothed doping profile, the accuracy of a third-order ENO scheme is not sufficient

to remove oscillations from the steady-state current profile.

To get an idea of the oscillatory nature of the numerical current at the junctions,

we compute steady-state results for an explicit non-split scheme and a scheme based

on the splitting in (6.25)-(6.26). The former will be denoted S1 and the latter S2.

Both schemes evaluate numerical fluxes using central-upwind techniques [45] that are

second-order in space. The time step for S1 is

∆t = cmin

µ
∆x

2 sp(A)
,∆x2,

1

ηε

¶
(6.27)

where A is the linearized flux matrix, ρ(A) is its spectral radius, and c < 1 is an

O(1) constant. For S2, the fact that (6.25) can be updated implicitly allows for a

less restrictive time step

∆t = c
∆x

2 sp(A)
. (6.28)

We note that ρ(A) = O(1/η).

Simulation results for S1 and S2 are given in Figure 6.2 and Figure 6.3, respec-

tively. The schemes are tested with different mesh size, time step, and doping profiles.

The oscillatory nature of the steady-state current is clear. For the non-split scheme,
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these oscillations are not reduced by decreasing the time steps or by increasing the

temporal-order. Increasing the spatial resolution does help as does the introduction

of a smoothed doping profile

D̃ = D − 0.99
2

µ
tanh

µ
x− L/6

0.2

¶
− tanh

µ
x− 5L/6
0.2

¶¶
, (6.29)

where D is given in (6.5). However, a smoothed doping profile significantly alters

the value of the steady-state current, which we would like to avoid.

For the split scheme, decreasing the size of the time steps does reduce current

oscillations somewhat as does the implementation of the second-order time marching

used in [72]. However, the oscillations are still quite large. Increasing the spatial

resolution has mush less effect than it does for S1, and smoothing the doping profile

does not help much either.
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6.4 A New Splitting Approach to the Hydrodynamic Model

In this section, we present a new approach based on the split method in [40]. We

find that splitting the hydrodynamic model in a way that respects the drift-diffusion

balance yields a scheme that bypasses the strict CFL condition and removes the

excessive numerical dissipation in the drift-diffusion regime. At the same time, it

significantly reduces oscillations in the steady-state solution for a range of ε that

extends well into the transition regime.

Our split scheme will be expressed in terms of n, the current m = nu (called

momentum in previous contexts), and the relative energy

r =
nu2

2
+
1

ε2
3n (θ − 1)

2
,

which is identically zero at equilibrium (u = 0, θ = 1). Rewriting (6.12) in these

new variables gives:

∂tn+ ∂x (nu) = 0 ,

∂tm+ ∂x

µ
2

3

m2

n
+
2

3
r +

1

ε2
n+ σ

¶
− 1

ε2
n∂xΦ = −

1

ε2
1

τ p
m, (H)

∂tr + ∂x

µ
5

3

rm

n
− 1
3

m3

n2
+
1

ε2
m+ σu+

q

ε2

¶
− 1

ε2
nu∂xΦ = −

1

ε2
1

τw
r ,

where the anisotropy and heat flux are

σ =
4

3
nθτ p∂x

³m
n

´
, q = ε2

5

2
nθτ p∂x

µ
2

3

r

n
− 1
3

m2

n2

¶
. (6.30)
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Figure 6.2: Steady state current oscillations around the spatial average for diode of length L =
0.6× 10−6m. The scheme is S1 with time step given in (6.27) (a) First order in time, 200 points,
c = 0.2. (b) First order in time, 200 points, c = 0.02. (c) Second order in time, 200 points, c = 0.2.
(d) First order in time, 400 points, c = 0.2. (e) First order in time, 200 points, c = 0.02, with
smoothed doping (6.29). (f) Comparison of scaled current from (a) and (e).
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Figure 6.3: Steady state current oscillations around the spatial average for diode of length L =
0.6× 10−6m. The scheme is S2 with time step given in (6.28) (a) First order in time, 200 points,
c = 0.2. (b) First order in time, 200 points, c = 0.02. (c) Second order in time, 200 points, c = 0.2.
(d) First order in time, 400 points, c = 0.2. (e) First order in time, 200 points, c = 0.02, with
smoothed doping (6.29). (f) Comparison of scaled current from (a) and (e).

276



6.4.1 Two Step Splitting

Following the splitting for the model problem (M1), we break (H) into a relaxation

step:

∂tn = 0 ,

∂tm+ ∂x

µ
1

ε2
n+ σ

¶
− 1

ε2
n∂xΦ = −

1

ε2
1

τ p
m,

∂tr + ∂x

µ
1

ε2
m+

σm

n
+

q

ε2

¶
− 1

ε2
m∂xΦ = −

1

ε2
1

τ p
r ,

and a convection step:

∂tn+ ∂xm = 0 ,

∂tm+ ∂x

µ
m2

n
+ r

¶
= 0 ,

∂tr + ∂x

µ
5

3

rm

n
− 1
3

m3

n2

¶
= 0 .

The relaxation step projects m and r into the correct drift-diffusion limit, and the

convective step looks like the Euler equations. Because r is the relative energy, the

convective step has wave speeds

u, u±
r
5

3
(θ − 1) .

Thus, although the convective step is not stiff, it fails to be hyperbolic when θ < 1.

It so happens that this condition occurs at the source junction of the diode where the

electric field traps low-energy electrons. We therefore try a new approach.
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6.4.2 Three Step Splitting

The problem with the two step splitting is essentially the nonlinear terms. We

therefore remove the nonlinear convective components of (H),

∂tn = 0 , (6.31a)

∂tm+ ∂x

µ
2

3

m2

n

¶
= 0 , (6.31b)

∂tr + ∂x

µ
5

3

rm

n
− 1
3

m3

n2

¶
= 0 . (6.31c)

which, by themselves, form a hyperbolic system with wave speeds

λ = 0,
4

3
u,
5

3
u .

The remainder of (H) is

∂tn+ ∂x (nu) = 0 , (6.32a)

∂tm+ ∂x

µ
2

3
r +

1

ε2
n+ σ

¶
− 1

ε2
n∂xΦ = −

1

ε2
1

τ p
m, (6.32b)

∂tr + ∂x

µ
1

ε2
m+

σm

n
+

q

ε2

¶
− 1

ε2
nu∂xΦ = −

1

ε2
1

τw
r . (6.32c)

It should be noted that if σ = q = 0 and we identify τ p = µ−1, then equations

(6.32a)-(6.32b) recover (M2) exactly when θ = 1.
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The remainder (6.32) can now be broken into two parts: a relaxation step,

∂tn = 0 , (6.33a)

∂tm+ ∂x

µµ
1

ε2
− 1
¶
n+ σ

¶
− 1

ε2
n∂xΦ = −

1

ε2
1

τ p
m, (6.33b)

∂tr + ∂x

µµ
1

ε2
− 1
¶
m+

σm

n
+

q

ε2

¶
− 1

ε2
nu∂xΦ = −

1

ε2
1

τw
r . (6.33c)

and a convective step,

∂tn+ ∂xm = 0 , (6.34a)

∂tm+
2

3
∂xr + ∂xn = 0 , (6.34b)

∂tr + ∂xm = 0 , (6.34c)

that is hyperbolic with wave speeds

λ = 0,±
r
5

3
.

The relaxation step (6.33) projects the variables into the drift-diffusion limit. By

freezing τ p and τw at the current time, this step can be updated implicitly. Since

∂tn = 0 in (6.33a), an implicit evaluation of n is trivial and (6.33b) is updated using

the current value of n. The new value of m is then used to update (6.33c). In this

way, we obtain an easily implemented semi-implicit scheme. Note that σ and q may

also be updated implicitly. Even though these terms are not stiff (recall from (6.30)

that q = O(ε2)) and do not play a role in the drift-diffusion balance, their explicit
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evaluation will require that a diffusive step ∆t ∼ (∆x)2 be enforced. Although we

desire this type of time step for ε¿ 1, it becomes restrictive when ε = O(1).

The relaxation step is followed by the linear convective step (6.34) and then the

nonlinear convective step (6.32). Comparing powers of ε in (6.33b) gives

m = −∂xn+ n∂xΦ+O(ε2)

which, when substituted into (6.34a), recovers (6.15c) in the limit ε → 0. More-

over, since the wave speeds in both convective steps are independent of ε, excessive

numerical dissipation is no longer an issue.

6.5 Details of the Scheme

In this section, we present the details of our scheme. The algorithm computes each

step in the following order.

1. Relaxation

∂tn = 0 , (6.35a)

∂tm+

µ
1

ε2
− 1
¶
∂xn+ ∂xσ −

1

ε2
n∂xΦ = −

1

ε2
1

τ p
m, (6.35b)

∂tr +

µ
1

ε2
− 1
¶
∂xm+ ∂x

³σm
n
+

q

ε2

´
− 1

ε2
m∂xΦ = −

1

ε2
1

τw
r . (6.35c)
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2. Linear Convection

∂tn+ ∂xm = 0 , (6.36a)

∂tm+
2

3
∂xr + ∂xn = 0 , (6.36b)

∂tr + ∂xm = 0 . (6.36c)

3. Nonlinear Convection

∂tn = 0 , (6.37a)

∂tm+ ∂x

µ
2

3

m2

n

¶
= 0 , (6.37b)

∂tr + ∂x

µ
5

3

rm

n
− 1
3

m3

n2

¶
= 0 . (6.37c)

The electric field is updated after each iteration of these three steps using standard

methods. The boundary conditions for the problem are given in (6.6). As in Chapter

5, we over-specify these conditions on both sides of the diode and enforce them after

each step in the splitting. The initial condition is determined by setting m = r = 0

and solving the steady-state drift-diffusion-Poisson system,

∂x
¡
τ pe

Φ∂x(e
−Φn)

¢
= 0,

−λ2∂x ( ∂xΦ) = (D − n),
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with boundary conditions given in (6.6a) and (6.6b) and Vbias set to zero. The

computation is performed with an iterative scheme based on Newton’s method. Once

this scheme converges, Vbias is set to 1.0 Volts, and the ensuing potential drop across

the device drives the system to a steady state.

6.5.1 Spatial Discretization

If we let u = (n,m, r)T , then the convective steps have the form

∂tu+ ∂xf(u) = 0

where

flinear =

µ
m,
2

3
r + n,m

¶T

fnonlinear =

µ
0,
2

3

m2

n
,
5

3

rm

n
− 1
3

m3

n2

¶T

In either case let

A =
∂f

∂u

be the linearized flux matrix with eigenvalues λ1 < λ2 < λ3.

We use a finite-volume, central-upwind scheme [45] which updates u component-

wise as

d

dt
ūi +

Fi+1/2 − Fi−1/2

∆x
= 0
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where

ūi(t) ≡
1

∆x

Z
Ii

u(x, t) dx

is the cell average of u over the interval Ii = (xi−1/2, xi+1/2) centered at xi and Fi+1/2

is a numerical flux computed via a reconstruction of u:

Fi+1/2 =
a+i+1/2f(pi+1(xi+1/2))− a−i+1/2f(pi(xi+1/2))

a+i+1/2 − a−i+1/2
(6.38)

+
a+i+1/2a

−
i+1/2

a+i+1/2 − a−i+1/2
(pi+1(xi+1/2)− pi(xi+1/2) . (6.39)

The values a±i+1/2 depends on the local wave speeds and are given by

a+i+1/2 = max
©
λ3
¡
pi(xi+1/2

¢
), λ3

¡
pi+1(xi−1/2

¢
, 0
ª
,

a−i+1/2 = min
©
λ1
¡
pi(xi+1/2

¢
, λ1

¡
pi+1(xi−1/2

¢
, 0
ª
,

where pi is a non-oscillatory reconstruction of u in cell i.

The benefit of the central-upwind scheme is its simplicity. It has a semi-discrete

formulation but does not require wave decompositions or a Riemann solver. However,

its usefulness here is limited to second-order. This is because evaluating the field and

relaxation terms from the relaxation step in a finite volume setting requires a recon-

struction process in order to achieve spatial accuracy beyond second-order. In light of

the implicit time stepping, it is therefore more natural to work with finite differences

when going to higher-order, which means abandoning the central-upwind method.

We therefore use a second-order reconstruction with slope limiters to approximate
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derivatives of u:

pi(x) = ūi + u
0
i(x− xi) , x ∈ Ii

where u0i is a slope-limited numerical derivative

u0i = minmod

µ
ūi+1 − ūi

∆x
,
ūi+1 − ūi−1
2∆x

,
ūi − ūi−1

∆x

¶
.

The CFL condition for this scheme ∆t = 0.5sp(A)∆x where sp(A) is the spectral

radius of A.

The relaxation step can be updated in several ways. Because Φ satisfies a Poisson

equation, it is natural to use center differences to compute its derivatives. However,

it is not entirely clear how to compute the derivatives n and m. This is because the

relaxation system is not hyperbolic. The convective flux in this case is

f(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

n

m

⎞⎟⎟⎟⎟⎟⎟⎠ .

(The viscosity and heat flux are diffusive terms and not included in f). Therefore, the

matrix A is degenerate with eigenvalues that are all zero. Even if one were to use a

method for hyperbolic problems, it is unclear how to enforce any kind of upwinding at

cell interfaces. The central upwind flux (6.38), for example, is not well-defined since
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a+i+1/2 = a−i+1/2 = 0 for all i. We therefore consider the slightly perturbed system

∂tn+ ω∂xm = 0 ,

∂tm+

µ
1

ε2
− 1
¶
∂xn+ ∂xσ −

1

ε2
n∂xΦ = −

1

ε2
1

τ p
m,

∂tr +

µ
1

ε2
− 1
¶
∂xm+ ∂x

³σm
n
+ q
´
− 1

ε2
m∂xΦ = −

1

ε2
1

τw
r .

where ω > 0. Since ε < 1, this system is hyperbolic with eigenvalues

λ = 0,±
sµ

1

ε2
− 1
¶
ω .

The numerical flux is

Fi+1/2 =
f(pi+1(xi+1/2)) + f(pi(xi+1/2))

2

+

sµ
1

ε2
− 1
¶
ω
pi+1(xi+1/2)− pi(xi+1/2)

2
.

and

Fi+1/2 =
f(pi+1(xi+1/2)) + f(pi(xi+1/2))

2
as ω → 0. (6.40)

For this reason, the flux terms at the interfaces are approximated by a simple average

of the interpolated values from the two adjacent cells.
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The remaining terms are discretized in the finite volume setting as follows:

1

∆x

Z xi+1/2

xi−1/2

∂xσ dx =
σi+1/2 − σi−1/2

∆x

1

∆x

Z xi+1/2

xi−1/2

∂x
³σm

n

´
dx =

1

∆x

∙
σi+1/2mi+1/2

ni+1/2
− σi−1/2mi−1/2

ni−1/2

¸
+O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

∂xq dx =
1

∆x

£
qi+1/2 − qi−1/2

¤
1

∆x

Z xi+1/2

xi−1/2

n∂xΦ dx =
1

∆x
n̄j (Φi+1 − Φi−1) +O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

m∂xΦ dx =
1

∆x
m̄j (Φi+1 − Φi−1) +O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

1

τ p
m dx =

1

∆x

1

(τ p)i
m̄i +O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

1

τ p
r dx =

1

∆x

1

(τw)i
r̄i +O(∆x)2

Here ni+1/2 and mi+1/2 are computed by the average in (6.40), while

σi+1/2 =
σi + σi+1

2
, qi+1/2 =

qi + qi+1
2

.

and

(τ p)i = τ p(ūi) , (τw)i = τw(ūi) .

The relaxation times are evaluated using a Monte-Carlo fitting [63] of the energy.

It must be noted that, physically, these values are only accurate when L = 0.6µm.

However, we continue to use these values for a range of length scales for the explicit

purpose of computational comparisons.

Another way to discretize the relaxation step is to first use Slotboom variables to
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place it in conservation form. Because n is constant in time during the relaxation

step, so too is Φ. Therefore, (6.32) is formally equivalent to

∂t
¡
e−ψn

¢
= 0 , (6.41a)

∂t
¡
e−ψm

¢
+
1− ε2

ε2
∂x
¡
e−ψn

¢
+ e−ψ∂xσ = −

1

ε2
1

τ p

¡
e−ψm

¢
, (6.41b)

∂t
¡
e−ψr

¢
+
1− ε2

ε2
∂x
¡
e−ψm

¢
+ e−ψ∂x

³σm
n
+ q
´
= − 1

ε2
1

τw

¡
e−ψr

¢
, (6.41c)

where ψ = Φ
1−ε2 . Note when m = σ = q = 0, (6.41b) recovers the expression

e−ψn = const ,

which is reminiscent of the well balanced approach in [24]. The discretization pro-

ceeds as before, simply replacing n, m, and r by there respective Slotboom counter-

parts. The only difference of note is the approximation of the diffusive terms which

are given by

1

∆x

Z xi+1/2

xi−1/2

e−ψ∂xσ =
e−ψi

∆x

¡
σi+1/2 − σi−1/2

¢
+O(∆x)2 ,

1

∆x

Z xi+1/2

xi−1/2

e−ψ∂x
³σm

n
+ q
´
=

e−ψi

∆x

µ
σi+1/2mi+1/2

ni+1/2
− σi−1/2mi−1/2

ni−1/2

¶
+O(∆x)2 ,

1

∆x

Z xi+1/2

xi−1/2

e−ψ∂x
³σm

n
+ q
´
=

e−ψi

∆x

¡
qi+1/2 − qi−1/2

¢
+O(∆x)2 .

Finally, to transfer numerically between the original and the Slotboom variables, we
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use

1

∆x

Z xi+1/2

xi−1/2

e−ψn dx = e−ψin̄i +O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

e−ψm dx = e−ψim̄i +O(∆x)2

1

∆x

Z xi+1/2

xi−1/2

e−ψr dx = e−ψi r̄i +O(∆x)2

We will see that using the Slotboom variables improves the behavior of the scheme in

the drift-diffusion limit. (We have also observed this fact when computing steady-

state solutions of the drift-diffusion-Poisson system.) The three step split scheme

that uses the Slotboom variables in this way will be denoted S3S.

6.5.2 Time Discretization

Both of the convective steps, (6.36) and (6.37), are updated explicitly. The field

terms in the relaxation step are updated implicitly, and the relaxation terms are

updated semi-implicitly ("semi" only because the relaxation times are frozen at the

current time step). The time step of our temporal first-order scheme is

∆t = max

µ
c(∆x)2, ε

∆x

2

¶
, (6.42)

where the value of c depends on how σ and q are updated. For smaller devices, we find

experimentally that an explicit update of these variables requires c ≤ 0.3, whereas

implicit updating allows c ≤ 1.0. For larger devices, smaller values are required for

stability. (See the numerical results in the next section).
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We use Richardson extrapolation [5] to make the scheme second-order in time.

Let T be the evolution operator for the numerical scheme with

T (U(t),∆t) = U(t+∆t) +O(∆t)

and set

Uk+1
1 = T (Uk,∆t) ,

Uk+1
2 = T

µ
T

µ
Uk,

∆t

2

¶
,
∆t

2

¶
,

Uk+1 = 2Uk+1
2 − Uk+1

1 .

Then it is straightforward to show that Uk+1 = U(t +∆t) + O(∆t)3. Local third-

order accuracy implies second-order global accuracy. The entire process requires

three cycles of the three step scheme per time step.

6.6 Numerical Results.

In this section we present numerical results. In our discussion, we will refer to the

following schemes:

• S1-τ : non-split scheme, order τ in time.

• S2-τ : split scheme in (6.25)-(6.26), order τ in time.

• S3-E-τ : three step scheme in (6.35)-(6.37), explicit update of σ and q, order

τ in time.
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• S3-I-τ : three step scheme in (6.35)-(6.37), implicit update of σ and q, order τ

in time.

• S3S-I-τ : three step scheme in (6.35)-(6.37), discretization of Slotboom vari-

ables in the relaxation step, implicit update of σ and q, order τ in time.

6.6.1 The Transition Regime

Our initial computations are for the diode of Chapter 5 with length L = 0.6µm, in

which case ε = 2.0× 10−2. The time step in this case is ∆t ∼ ε∆x where ∆x ∼ ε.

Figure (6.4) is a comparison of scheme S3 with the non-split scheme S1. It is

clear that the two methods give nearly identical results. The only notable exception

is the current oscillations at the junctions which are reduced by a factor of ten when

using S3 as compared to S1.

Figure (6.5) gives current oscillations for several variations of S3. In the top

left plot, the computation uses explicit updates of the diffusive terms σ and q and

requires a value of c = 0.2 in (6.42) in order to maintain stability. In the top right

plot, c = 0.1 and the oscillations decrease by a factor of 0.75. In the bottom left plot,

σ and q are updated implicitly, thereby allowing a larger value of c = 1.0. However,

the oscillations increase by a factor of five. This problem is resolved by going to a

scheme that is second-order in time (bottom right).

6.6.2 The Drift-Diffusive Regime

To examine the diffusive regime, we consider a device of length L = 0.6 cm, in which

case ε = 2× 10−6. Results for these computations are given in Figures 6.6-6.9. The
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Figure 6.4: Steady state results for S-1 (solid line) and S3E-1 (pluses). Each scheme uses 200
meshpoints. Note that the top right plot is just a magnified version of top left in the diode channel.
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Figure 6.5: Steady state current oscillations around the spatial average using scheme S3. Each plot
uses 200 points, with timestep given by (6.42). L = 0.6 × 10−6m and ε = 2 × 10−2. (a) S3E-1,
c = 0.2. (b) S3E-1, c = 0.1. (c) S3I-1, c = 1.0 (c) S3E-2, c = 1.0 .
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time step is ∆t ∼ ∆x2 with ∆x > ε. It is important to note that a device of this

size is much too large to be physical. In practice, devices as small as 10µm can

be adequately described by the drift-diffusion equations. However, we would like to

push the limits of the scheme much further.

Figures (6.6) and (6.7) compare the results from the hydrodynamic model with

the drift-diffusion model. For simplicity, the scaled relaxation times τ p and τw are

set equal to one for these computations. As expected, the results of the two models

are very similar. We recall the discussion of numerical dissipation from Section

6.3.1.1, in which the numerical dissipation of a simple non-split model was found to

be proportional to (∆x)3 /ε. The computation in Figure (6.6) uses 1600 mesh points;

therefore (∆x)3 ∼ 2× 10−5ε. By contrast, the computation in Figure (6.7) uses 200

mesh points; therefore (∆x)3 ∼ 1×10−2ε. Even though the agreement in the current

profile deteriorates slightly with the larger mesh, the concentration n shows none of

the effects of numerical dissipation.

A serious problem encountered with the three step scheme in the diffusive regime

is the onset of new current oscillations at the diode junctions that spread into the

rest of the domain, as seen in the top two plots of Figure 6.8. We find that these

oscillations can be reduced significantly by using the discretization based on the Slot-

boom variables. The bottom right plot of Figure 6.8 shows these results. Note,

however, that the value of c in the time step (6.42) must be less than 0.1 in order

for the computation to be stable. Otherwise, the current oscillations in the junction

and the drain become completely unmanageable (bottom left plot). Plots of current

oscillations for a selection of device lengths are given Figure 6.9.
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The presence of these ringing type of oscillations is indeed curious. We find that

they exist in the transition regime as well; they are just much smaller. However, it is

not clear whether the source of the ringing is a balance problem, a problem with the

scheme itself, or a combination of the two. There are at least two possible defects in-

troduced by the splitting: boundary problems and large dispersive effects. Generally

speaking, over-specification of boundary conditions is known to cause oscillations that

can pollute the interior of a computational domain. However, no such problems have

been observed with the hydrodynamic model. Even so, several alternative implemen-

tations of the boundary conditions have been tried with no positive results. One idea

was to apply boundary conditions based on characteristics at each convective step in

the scheme. Another was to enforce appropriate boundary conditions inherited from

the original system. In all cases, it has been observed that oscillations originate at

the junctions and spread to the boundary, and not from the boundary to the junc-

tions. Therefore, an analysis of the dispersive terms in the modified equations for

the split system will be our next step.
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Figure 6.6: Steady state results for S3E-1 vs. drift-diffusion results. Channel length L = 0.6 ×
10−2m. Each scheme uses 1600 meshpoints. Note that the top right plot is just a magnified version
of top left plot in the diode channel.
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Figure 6.7: Steady state results for S3E-1 vs. drift-diffusion results. Channel length is L =
0.6× 10−2m. Each scheme uses 200 meshpoints. Note that the top right plot is just a magnified
version of top left plot in the diode channel.
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Figure 6.8: Steady state current oscillations around the spatial average. Each plot uses 200 points,
with timestep given by (6.42). L = 0.6× 10−6m and ε = 2× 10−2. (a) S3I-2, c = 0.8. (b) S3I-2,
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Figure 6.9: Current oscillations around average spatial value for various values of ε. Each plot uses
scheme S3I-2 with 200 points and timestep given by (6.42) with c = 0.1.
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6.6.3 Convergence Analysis

In Table 6.1, L1 and L∞ convergence data for a representative calculation of scheme

S3S-I-2 is presented. Calculations are performed for a range of device lengths with

meshes of 100, 200, 400, 800, and 1600 points. The error is defined as the norm

of the difference between approximate solutions for two successive meshes. These

approximate solutions are piecewise linear reconstruction that are generated from the

mesh data. An approximate convergence rate is given by

ratek =
log(errork/errork+1)

log(∆xk/∆xk+1)
. (6.43)

The errors and rates are computed for the scaled versions of the variables n, m,

and θ. In studying Table 6.1, the following should be noted.

1. None of the convergence rates for n, m, and θ are consistently second-order.

2. The convergence rate of n is consistently first-order, regardless of the device size

or the topology in which the error is measured.

3. The convergence rate of m in the L1 topology doesn’t follow any sort of trend

with respect to the mesh size. In the L∞ topology, the convergence rate floats

between one and two. (It should be noted that the L∞ norm is essentially a

measure of the non-physical current oscillations at the junctions.) Typically

the rate increases as the mesh is refined near the drift-diffusion regime and

decreases near the transition regime.

4. In the L∞ topology, θ displays first-order convergence. However, in the L1
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topology, the convergence rate of θ drops off significantly in the drift-diffusion

regime. This is because any error is effectively washed out by the asymptotic

limit θ = 1+O(ε2). For larger devices, ε¿ ∆x and therefore refining the mesh

has little effect. This behavior is confirmed by Figures (6.6) and (6.7), where

the temperature results across the device are virtually identical and equal to

one.

Finally, for purposes of comparison, we present convergence rates for schemes S1-

2 and S2-2 when L = 0.6µm. (Analysis of larger devices is not practical given

the restrictive time step for these schemes.) In most cases, the convergence rate of

these schemes is comparable to that of S3S-I-2. There are a few cases where the

convergence rate is faster than that of S3S-I-2, but only because the initial errors

of these schemes are significantly larger. As expected, the issues that lead to poor

accuracy of S1-2 and S2-2 are alleviated when the mesh is refined.
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x0 100-200 rate 200-400 rate 400-800 rate 800-1600
10−7 6.04E-02 9.97 3.03E-02 1.03 1.49E-02 0.96 7.65E-03
10−6 5.95E-02 1.00 2.97E-02 1.00 1.49E-02 1.00 7.43E-03

n 10−5 6.21E-02 1.06 2.99E-02 1.01 1.49E-02 1.00 7.43E-03
10−4 6.11E-02 1.02 3.02E-02 1.02 1.49E-02 1.00 7.43E-03
10−3 6.11E-02 1.02 3.02E-02 1.02 1.49E-02 1.00 7.43E-03
10−2 6.11E-02 1.02 3.02E-02 1.02 1.49E-02 1.00 7.43E-03
10−7 2.99E-02 1.98 7.55E-03 3.25 7.89E-04 2.45 1.44E-04
10−6 2.68E-02 -1.00 5.39E-02 1.83 1.52E-02 0.50 1.07E-02

m 10−5 1.61E-01 -0.21 1.86E-01 2.05 4.51E-02 0.38 3.46E-02
L1 10−4 2.88E-01 0.38 2.21E-01 2.07 5.28E-02 0.44 3.88E-02

10−3 2.90E-01 0.38 2.22E-01 2.06 5.31E-02 0.45 3.88E-02
10−2 2.90E-01 0.38 2.22E-01 2.07 5.31E-02 0.45 3.88E-02
10−7 7.08E-02 4.75 2.63E-03 -0.48 3.67E-03 0.30 2.97E-03
10−6 4.63E-02 1.84 1.29E-02 2.18 2.85E-03 0.43 2.12E-03

θ 10−5 1.73E-03 1.36 6.75E-04 2.51 1.18E-04 0.10 1.10E-04
10−4 2.46E-05 1.64 7.90E-06 2.55 1.28E-06 0.07 1.30E-06
10−3 2.49E-07 1.65 7.92E-08 2.54 1.36E-08 0.08 1.28E-08
10−2 2.49E-09 1.65 7.91E-10 2.56 1.34E-10 0.06 1.29E-10
10−7 1.73 1.04 8.45E-01 0.94 4.41E-01 1.05 2.13E-01
10−6 2.59 0.84 1.44 1.17 6.42E-01 1.10 3.00E-01

n 10−5 3.03 0.84 1.70 1.33 6.73E-01 0.95 3.49E-01
10−4 3.05 0.83 1.72 1.34 6.79E-01 0.94 3.53E-01
10−3 3.05 0.83 1.72 1.34 6.78E-01 0.94 3.53E-01
10−2 3.05 0.83 1.72 1.34 6.78E-01 0.94 3.53E-01
10−7 2.05E-01 2.40 3.88E-02 1.77 1.14E-02 1.32 5.54E-03
10−6 1.19 2.04 2.89E-01 2.60 4.75E-02 0.78 2.76E-02

m 10−5 1.97 1.54 6.76E-01 2.02 1.67E-01 1.08 7.89E-02
L∞ 10−4 3.59 1.68 1.12 1.19 4.90E-01 2.25 1.29E-01

10−3 3.64 1.67 1.14 1.15 5.13E-01 1.99 1.29E-01
10−2 3.64 1.67 1.14 1.15 5.13E-01 1.99 1.29E-01
10−7 2.29E-01 4.59 9.53E-03 -0.69 1.54E-02 0.73 9.28E-03
10−6 3.94E-01 2.13 9.00E-02 0.75 5.36E-02 1.39 2.04E-02

θ 10−5 1.30E-02 1.65 4.15E-03 0.82 2.35E-03 1.15 1.06E-03
10−4 1.84E-04 1.94 4.84E-05 1.06 2.33E-05 1.06 1.11E-05
10−3 1.86E-06 1.93 4.87E-07 1.06 2.33E-07 0.94 1.19E-09
10−2 1.87E-08 1.94 4.85E-09 1.04 2.35E-09 0.91 1.25E-09

Table 6.1: Convergence rate of scheme S3S-I-2 for the n+ − n− n+ diode at various lengths. The
time step is given by (6.42) with c = 0.2. The first column gives the topology in which the error
is measured. The second column gives the variable of interest. The third column gives the device
length. Columns 4, 6, 8, and 10 give the error computed when the mesh is refined by a factor of
two. Columns 5, 7, and 9 give the convergence rate of the adjacent errors, computed according to
(6.43).
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100-200 rate 200-400 rate 400-800 rate 800-1600
n 6.47E-02 1.10 3.01E-02 1.02 1.49E-02 1.00 7.43E-03

L1 m 4.07E-01 1.63 1.31E-01 2.35 2.57E-02 1.13 1.17E-02
θ 2.58E-02 1.22 1.11E-02 1.77 3.25E-03 0.75 1.94E-03
n 2.07 0.88 1.13 0.90 6.03E-01 1.00 3.01E-01

L∞ m 1.34E+01 2.19 2.94 2.06 7.06E-01 2.05 1.71E-01
θ 3.57E-01 1.51 1.26E-01 1.43 4.66E-02 1.01 2.31E-02

Table 6.2: Convergence rate of scheme S1-2 for the n+ − n − n+ diode. The device length is
L = 0.6µm and the time step is given by (6.27) with c = 0.2.. The first column gives the topology
in which the error is measured. The second column gives the variable of interest. Columns 3, 5, 7,
and 9 give the error computed when the mesh is refined by a factor of two. Columns 4, 6, and 8
give the convergence rate of the adjacent errors, computed according to (6.43).

100-200 rate 200-400 rate 400-800 rate 800-1600
n 6.57E-02 1.13 3.01E-02 1.02 1.49E-02 1.00 7.43E-03

L1 m 3.65E-01 1.52 1.27E-01 1.71 3.87E-02 0.89 2.09E-02
θ 2.75E-02 1.32 1.10E-02 1.86 3.03E-03 0.65 1.93E-03
n 2.12 0.92 1.12 0.84 6.26E-01 1.08 2.96E-01

L∞ m 9.25 2.20 2.01 1.10 9.40E-01 0.95 5.02E-01
θ 3.14E-01 1.28 1.29E-01 1.65 4.12E-02 0.85 2.28E-03

Table 6.3: Convergence rate of scheme S2-2 for the n+ − n − n+ diode. The device length is
L = 0.6µm and the time step is given by (6.27) with c = 0.2. The first column gives the topology
in which the error is measured. The second column gives the variable of interest. Columns 3, 5, 7,
and 9 give the error computed when the mesh is refined by a factor of two. Columns 4, 6, and 8
give the convergence rate of the adjacent errors, computed according to (6.43).

6.7 Conclusions and Discussion

We have found that the drift-diffusion balance plays an important role in numerical

schemes for the hydrodynamic model in both the transition and the drift-diffusion

regimes. Using a splitting method that is based on this balance yields a scheme that

is free from excessive numerical dissipation and stiff fluxes in the drift-diffusion limit

and significantly reduces the oscillations that are typically found at the junctions
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of the n+-n-n+ diode. One drawback to the three-step scheme is the presence of

ringing oscillations that emanate from the junctions of large devices. Removing

these oscillations will be the subject of future work.
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Chapter 7

Simulation of a Unipolar MESFET Device

In this chapter, we compute two-dimensional solutions for perturbed entropy-based

(PEB) models derived in Chapter 3. Recall that numerical experiments from Chapter

5 show a noticeable effect on the behavior of an n+-n-n+ diode with slab symmetry

when Σ 6= 0, particularly near the drain junction. Even though this setting is

not really natural for studying anisotropic effects (since the velocity u varies only

is one dimension), it does raise our interest in the behavior of more complicated

devices. Our suspicion is supported by kinetic simulations [19, 20] which confirm

that the electron distribution is highly anisotropic in regions of high electric field.

As expected, our results show that the anisotropy does affect the simulated behavior

of a MESFET device. This device is assumed to possess translation symmetry,

meaning that the electron distribution is constant along lines perpendicular to a

given plane. This means that the dynamics of electron transport can be described

by equations in two spatial dimensions. Anisotropic effects are most visible near

material junctions, where both the drift-diffusion model and standard hydrodynamic

models show particularly poor performance. In these regions, we determine that a

perturbed Gaussian closure is clearly a better option than a perturbed Maxwellian
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closure, based on the way that anisotropy is introduced in each case. It is therefore

feasible that a perturbed Gaussian model contains enough detail to replace expensive

kinetic simulations in some instances.

Recall from the derivations in Chapter 3 that corrections to the basic Maxwellian

and Gaussian closures yield both diffusive and convective terms. We consider only

the models that include diffusive terms, which dissipate the entropy in each system.

There are two reasons for this choice, both of which are highlighted in Chapter 3.

First, it is not clear if hyperbolicity or entropy dissipation is preserved when con-

vective corrections are included. Second, corrections to the basic (non-perturbed)

Maxwellian and Gaussian closures are likely to be important in regions where the

spatial gradients of some or all state variables are large. In such cases, diffusive

terms (two derivatives) will dominate convective terms (one derivative). Indeed, this

behavior was observed in the one-dimensional experiments conducted in Chapter 3.

The Maxwellian model we will study is

∂tn+∇x · (nu) = 0 , (7.1a)

∂t (nu) +∇x · (nu ∨ u+ nθI + Σ)− qe
m∗

e

n∇xΦ = Cv , (7.1b)

∂t

µ
n|u|2
2

+
3nθ

2

¶
+∇x ·

µ
n|u|2u
2

+
5nθu

2
+ Σu+ q

¶
(7.1c)

− qe
m∗

e

nu ·∇xΦ = C |v|2
2

,

where the so-called fluid variables are the concentration n, velocity u, and temperature
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θ, and Φ is the electrical potential which satisfies

∇x · ( ∇xΦ) = qe(D − n) . (7.2)

The constants m∗
e and qe are the electron effective mass [44] and electron charge

magnitude, respectively. The quantity = (x) is the electric permittivity of the

semiconductor andD = D(x) is the doping profile, a concentration of positive charges

created when dopants ionize and release free electrons.

The collision terms on the right-hand side of (7.1) are

Cv =
1

τ p
nu and C 1

2
|v|2 =

1

τw

µ
1

2
n|u|2 + 3

2
n(θ − θ

¶
,

where τ p and τw are momentum and energy relaxation times, respectively, and θ is

the lattice temperature.

The anisotropic stress Σ and the heat flux vector q are diffusive corrections to the

basic Maxwellian closure. In terms of the fluid variables,

Σ = −nθτ p
µ
∇xu+ (∇xu)

T − 2
3
(∇x · u) I

¶
, q = −5

2
nθτ p∇xθ . (7.3)

The difference between (7.1) and most other hydrodynamic models in the fact that

Σ is non-zero. However, the expressions in (7.3) are valid only when the anisotropy

in the underlying kinetic distribution is small.
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The Gaussian model we will study is

∂tn+∇x · (nu) = 0 , (7.4a)

∂t (nu) +∇x · (nu ∨ u+ nΘ)− n∇xΦ = Cv , (7.4b)

∂t (nu ∨ u+ nΘ) +∇x · (nu ∨ u ∨ u+ 3nΘ ∨ u+Q)− 2nu ∨∇xΦ = Cv∨v , (7.4c)

where Φ is given by (7.2) and the temperature matrix Θ is related to the anisotropy

by the relation nΘ = nθI + Σ. The collision terms on the right-hand side of (7.4)

are

Cv =−
1

τ p
nu ,

Cv∨v =−
1

τσ
(nΘ− nθI)− 1

τ p

µ
nu ∨ u− 1

3
n|u|2

¶
I

− 1

τw

µ
1

3
n|u|2I + n (θ − θ ) I

¶
,

and the heat flux tensor Q is

Q = −3τσn (Θ ·∇x) ∨Θ ,

where τσ is the anisotropic relaxation time. The heat flux tensor is a diffusive

correction to the basic Gaussian closure that comes from the perturbative analysis.

Like the Maxwellian model, the Gaussian model differs from most other hydrody-

namic models in that the anisotropic stress tensor Σ is nonzero. However unlike the

Maxwellian model, which uses a closure relation to express Σ, the Gaussian model
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determines Σ with the addition of state variables that evolve according to (7.4c).

Note that the trace of (7.4c) recovers (7.1c) when Σ = 0.

To see the effects of the different closures for Σ, we compare numerical simulations

of (7.1) and (7.4) to a more traditional Bløtekjær-type model, which is just the basic

Maxwellian closure with a diffusive heat flux added. To create such a model, we

start with (7.1), set Σ = 0, and denote it the reference model.

The remainder of the chapter is organized as follows. In Section 7.1, we write out

the equations in two dimensions and introduce the benchmark device for testing our

models. In Section 7.2, we describe the numerical scheme used in our computations,

and in Section 7.3 we present results of our computations.

7.1 Modeling Two Dimensional Transport

7.1.1 Equations in Two Dimensions

In two dimensions, (7.1) and (7.4) have the form

∂tρ+ ∂xf(ρ) + ∂yg(ρ) + l(ρ)∂xΦ+ s(ρ)∂yΦ = r(ρ) + ∂xc(ρ) + ∂yd(ρ) , (7.5)

where Φ satisfies

∂x( ∂xΦ) + ∂y( ∂yΦ) = −qe(D − n) . (7.6)

The spatial densities in (7.5) have been collected into the vector ρ; the fluxes in the

x and y directions are given by f(ρ) and g(ρ), respectively; the vectors l(ρ) and s(ρ)

are field terms; the vector r(ρ) contain collision terms; and the vectors c(ρ) and d(ρ)
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contain diffusive terms.

7.1.1.1 The Maxwellian closure The Maxwellian closure is given by (7.5) with

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

nu1

nu2

1
2
(n|u|2 + 3nθ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu1

nu21 + nθ

nu1u2

1
2
(n|u|2 + 5nθ)u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, g(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu2

nu1u2

nu22 + nθ

1
2
(n|u|2 + 5nθ)u2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

l(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

n

0

nu1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, s(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

n

nu2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 1
τp
nu1

− 1
τp
nu2

1
2τw
(n|u|2 + 3n(θ − θ ))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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c(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

4
3
∂xu1 − 2

3
∂yu2

∂xu2 + ∂yu1

τ pnθ
£¡
4
3
∂xu1 − 2

3
∂yu2

¢
u1 + (∂xu2 + ∂yu1)u2

¤
+ 5

2
τ pnθ∂xθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

d(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

∂xu2 + ∂yu1

−2
3
∂xu1 +

4
3
∂yu2

τ pnθ
£
(∂xu2 + ∂yu1)u1 +

¡
−2
3
∂xu1 +

4
3
∂yu2

¢
u2
¤
+ 5

2
τ pnθ∂xθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

7.1.1.2 The Gaussian Closure The Gaussian closure is given by (7.5) with

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n

nu1

nu2

1
2
n|u|2 + 3

2
nθ

nu21 + nΘ11

nu22 + nΘ22

nu1u2 + nΘ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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f(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu1

nu21 + nΘ11

nu1u2 + nΘ12¡
1
2
n|u|2 + 3

2
nθ + nΘ11

¢
u1 + nΘ12u2

(nu21 + 3nΘ11)u1

(nu1u2 + 2nΘ12)u2 + nΘ22u1

nΘ11u2 + (nu1u2 + 2nΘ12) u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

g(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nu2

nu1u2 + nΘ12

nu22 + nΘ22

nΘ12u1 +
¡
1
2
n|u|2 + 3

2
nθ + nΘ22

¢
u2

(nu1u2 + 2nΘ12)u1 + nΘ11u2

(nu22 + 3nΘ22)u2

nΘ22u1 + (nu1u2 + 2nΘ12)u2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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l(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

n

0

nu1

2nu1

0

nu2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, s(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

n

nu2

0

2nu2

nu1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

r(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−nu1

−nu2

1
2
n|u|2 + 3

2
n(θ − θ )

− 1
τσ
n (Θ11 − θ)− 1

τp

¡
2
3
u21 − 1

3
u22
¢
− 1

τw
(n|u|2 + n(θ − θ ))

− 1
τσ
n (Θ22 − θ)− 1

τp

¡
2
3
u22 − 1

3
u21
¢
− 1

τw
(n|u|2 + n(θ − θ ))

− 1
τσ
nΘ12 − 1

τp
nu1u2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

312



c(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

Θ11

¡
3
2
∂xθ + ∂xΘ11

¢
+Θ12

¡
∂xΘ12 + ∂yΘ11 +

3
2
∂yθ
¢
+Θ22∂yΘ12

3Θ11∂xΘ11 + 3Θ12∂yθ11

Θ11∂yΘ22 +Θ12(2∂xΘ12 + ∂yΘ22) + 2Θ11∂xΘ12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

Θ11∂xΘ12 +Θ12

¡
∂yΘ12 + ∂xΘ22 +

3
2
∂xθ
¢
+Θ22

¡
3
2
∂yθ + ∂yΘ22

¢
2Θ11∂xΘ12 +Θ12(2∂yΘ12 + ∂xΘ11) +Θ22∂yΘ11

3Θ12∂xθ22 + 3Θ22∂yΘ22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

7.1.2 The Benchmark Device

Computation of the Maxwellian and Gaussian closures will be performed for a MES-

FET (Metal Semiconductor Field Effect Transistor) device [84] that is represented on

the two-dimensional domain

Ω = {(x, y) ∈ [0, 0.6]× [0, 0.2]}
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by doping profile

D (x, y) =

⎧⎪⎪⎨⎪⎪⎩
3.0× 1017 cm−3 ,

1.0× 1017 cm−3 ,

(x, y) ∈ [0.15, 0.20]× ([0, 0.1] ∪ [0.5, 0.6])

elsewhere .

The device, which is shown in Figure 7.1, has three contacts. The source and drain

sit above the heavily doped n+ regions of the MESFET and the gate is centered above

the low doped n region.

We assume that the device is made entirely of silicon in which case = 1.04 ×

10−16C/µm. The effective mass is m∗
e = 0.32me, where me = 9.109× 10−31 kg is the

free electron mass. The lattice temperature is θ = kB
m∗e

T , where T = 300K.

The boundary conditions are

• At the source, n = 3.0×1017 cm−3,Φ = 0.0V, u1 = 0 cm/ s, θ = Θ11 = Θ22 = θ ,

Θ12 = 0, u2 satisfies Neumann condition;

• At the gate, n = 3.0×1017 cm−3,Φ = −0.8V, u1 = 0 cm/ s, θ = Θ11 = Θ22 = θ ,

Θ12 = 0, u2 satisfies Neumann condition;

• At the drain, n = 3.9× 105 cm−3,Φ = 1.0V, u1 = 0cm/ s, θ = Θ11 = Θ22 = θ ,

Θ12 = 0, u2 satisfies Neumann condition;

• At all other boundaries, Neumannn conditions are imposed for all variables.
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Figure 7.1: Schematic representation of the MESFET device.

The initial conditions at time t = 0 are

n = D , u1 = u2 = 0 , Φ = 0 ,

θ = Θ11 = Θ22 = θ , Θ12 = 0 .

Finally, the relaxation times τw, τ p, and τ s for this device are modeled as functions

of energy, using a Monte-Carlo fitting [63]. One should note that these values are

for a one-dimensional n+-n-n+diode. Therefore, our results could be improved by

re-calibrating the relaxation times specifically for the MESFET device. In particular,

one should expect different values for τ p and τ s in different directions.
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7.2 Numerical Scheme

In this Section, we present details of the numerical scheme used to compute solutions

of the Maxwellian and Gaussian closures. Their are four main components to the

scheme: discretization of convective terms, discretization of diffusive terms, a Poisson

solver for (7.6), and discretization of the collision and field terms. The scheme

proceeds by computing Φ with a Poisson solver and then using Φ to update the

components of ρ via a discretization of (7.5). The new value of n is then used to

find Φ and the process continues until the steady state is achieved.

We introduce a uniform rectangular grid {(xi, yj)}Ni Nj

i=0,j=0 with spacing∆x = xi+1−

xi and ∆y = yi+1 − yi. The domain Ω is divided into cells of the form

Cij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]

where xi±1/2 = xi ± 0.5∆x and yj±1/2 = yj ± 0.5∆y. We will construct a scheme

that is second-order in space and first-order, explicit in time. The scheme is easy to

implement with higher-order Runge-Kutta methods to examine transient behavior,

but first-order time steps will be sufficient for steady-state solutions.

7.2.1 Discretization of Convective Terms

For the convective terms, a shock-capturing scheme is employed with fluxes that are

evaluated using a central-upwind approach [45]. For a standard conservation law in

two dimensions:

∂tu+ ∂xf(u) + ∂yg(u) = 0 ,
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a second-order central-upwind scheme has the semi-discrete form

d

dt
uij +

Fi+1/2,j − Fi−1/2,j

∆x
+
Gi,j+1/2 −Gi,j−1/2

∆y
= 0 ,

where

uij =
1

∆x∆y

Z yi+1/2

yi−1/2

Z xi+1/2

xi−1/2

u(x, y) dxdy ,

Fj+1/2,k =
a+i+1/2,jf(u

W
i+1,j)− a−i+1/2,jf(u

E
ij)

a+i+1/2,j − a−i+1/2,j
+

a+i+1/2,ja
−
i+1/2,j

a+i+1/2,j − a−i+1/2,j
(uWi+1,j − uEij) ,

Gj+1/2,k =
b+i,j+1/2f(u

S
i,j+1)− b−i,j+1/2f(u

N
ij )

b+i,j+1/2 − b−i,j+1/2
+

b+i,j+1/2b
−
i,j+1/2

b+i,j+1/2 − b−i,j+1/2
(uSi,j+1 − uNij ) ,

a+i+1/2,j = max

½
λ+
µ
∂f

∂u
(uWi+1,j)

¶
, λ+

µ
∂f

∂u
(uEij)

¶
, 0

¾
,

a−i+1/2,j = −min
½
λ−
µ
∂f

∂u
(uWi+1,j)

¶
, λ−

µ
∂f

∂u
(uEij)

¶
, 0

¾
,

b+i,j+1/2 = max

½
λ+
µ
∂g

∂u
(uSi,j+1)

¶
, λ+

µ
∂g

∂u
(uNij )

¶
, 0

¾
,

b−i,j+1/2 = −min
½
λ−
µ
∂g

∂u
(uSi,j+1)

¶
, λ−

µ
∂g

∂u
(uEij)

¶
, 0

¾
,

uEij = u(xij) +
∆x

2
(ux)ij , uWij = u(xij)−

∆x

2
(ux)ij ,

uNij = u(xij) +
∆y

2
(uy)ij , uSij = u(xij)−

∆y

2
(uy)ij .
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The values (ux)ij and (uy)ij are second-order approximations of the derivatives ∂xu

and ∂yu. We use a minmod-type approximation:

(ux)ij = minmod

µ
ui+1,j − ui,j

∆x
,
ui+1,j − ui−1,j

2∆x
,
ui,j − ui−1,j

∆x

¶
,

(uy)ij = minmod

µ
ui,j+1 − ui,j

∆y
,
ui,j+1 − ui,j−1

2∆y
,
ui,j − ui,j−1

∆y

¶
.

7.2.2 Discretization of Diffusive Terms

Our approach to discretizing the diffusive terms in (7.5) is based on their entropy

dissipative properties. These terms can be written in the form:

∂xc(ρ) + ∂yd(ρ) = ∇x · (T (ρ) ·∇xβ(ρ)) (7.7)

(see Chapter 3, Section 5), where β is a tensor of Lagrange multipliers associated

with ρ and T is a tensor that induces a positive, symmetric bilinear form FT . Given

tensors v and w (of appropriate size),

FT (u)(v,w) ≡
Z
Ω

v · T (u) ·w dxdy =

Z
Ω

w · T (u) · v dxdy .

and

FT (u)(v,v) ≥ 0 .
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For the Maxwellian closure, β =
¡
u
θ
, 1
θ

¢
and T can be written in the form of a block

tensor:

T = τnθ2

⎛⎜⎜⎝ 3I ∨ I − 5
3
I ⊗ I 3I ∨ u− 5

3
I ⊗ u

3I ∨ u− 5
3
u⊗ I 5

2
nθI + 1

3
u ∨ u+ |u|2I

⎞⎟⎟⎠ .

For the Gaussian closure, β = 1
2
Θ−1 and T can be written in the form of a six tensor:

T ijklmn = τn(ΘilΘjmΘkn +ΘilΘjnΘkm +ΘimΘjlΘkn

+ΘimΘjnΘkl +ΘinΘjlΘkm +ΘinΘjmΘkl) .

We proceed with a weak formulation for the right-hand side of (7.7). Let φ be

any smooth function on Ω. Then

Z
Ω

φ∇x ·(T (ρ)·∇xβ) dxdy = −FT (ρ)(∇xφ,∇xβ)+

Z
∂Ω

(φT (ρ) ·∇xβ)·ν dxdy , (7.8)

where ν(x, y) is the outward normal to ∂Ω at (x, y) ∈ ∂Ω. In particle, if we assume

formally that β is smooth, then setting φ = β gives the entropy dissipation associated

with c and d. Since we are only interested in discretizing in the interior of Ω, we

use ghost points to implement boundary conditions and then choose φ with compact

support on Ω. This means the boundary term on the right-hand side of (7.8) vanishes.

We use the following quadrature to approximate FT (ρ)(∇xφ,∇xβ):

Z
Ω

∇xφ · T (ρ) ·∇xβ dxdy '

X
ij

(Dφ)i+1/2,j+1/2 · (T (ρ))i+1/2,j+1/2 · (Dβ)i+1/2,j+1/2 ,
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where (Dφ)i+1/2,j+1/2 is an approximation of the gradient of φ at (xi+1/2, yj+1/2):

(Dφ)i+1/2,j+1/2 =

⎛⎜⎜⎝
¡
φi+1,j − φi,j

¢
2∆x

+

¡
φi+1,j+1 − φi,j+1

¢
2∆x¡

φi,j+1 − φi,j
¢

2∆y
+

¡
φi+1,j+1 − φi+1,j

¢
2∆y

⎞⎟⎟⎠ ,

and (Dβ)i+1/2,j+1/2 is defined similarly. Finally, (T (ρ))i+1/2,j+1/2 is the average of

the four surrounding values of T :

T (ρi+1/2,j+1/2) =
1

4

X
T (ρi,j) + T (ρi+1,j) + T (ρi,j+1) + T (ρi+1,j+1) .

A discretization for (7.7) at (xi, yj) is computed by setting φkl = δikδjl. The actual

formulas that result are extremely long and tedious and are therefore omitted.

7.2.3 Multigrid Poisson Solver

A linear discretization for (7.6) takes the form Φ

(LΦ)ij =
qe
(Dij − nij) (7.9)

where Dij and nij are cell average values of D and n on the cell Cij and (LΦ)ij

is a finite volume approximation of −∇2Φ. (Actually, pointwise values at the cell

centers are equivalent since the scheme is second-order in space). Solving the linear

matrix equation that arises from (7.9) is not easy because, unlike the standard one-

dimensional case, the matrix representation of L is not tri-diagonal. Rather, standard

discretization of the Laplacian operator in two dimensions produces a matrix with
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three center diagonal bands representing differentiation in one direction plus two

additional bands, one above and one below, representing differentiation in the other

direction. These additional bands are spaced either Ni or Nj places from the main

diagonal, depending on how the matrix variables in (7.9) are organized into vector

form. In either case, unless the grid is very coarse, the matrix is sparse and inversion

of (7.9) requires non-standard methods.

Popular iterative methods for solving (7.9) include the alternate-direction implicit

method (ADI), successive over-relaxation (SOR), and multigrid methods. See [85]

for a brief synopsis of each method along with algorithms and additional references.

We choose a multigrid method for solving (7.9). As the name suggests, multigrid

methods use a hierarchy of grids to substantially improve the classical relaxation

techniques for solving (7.9). Our current presentation follows that of [86].

We endow Ω with M different grids,

Gm = {(xmi , ymj )}
Nm
i Nm

j

i=0,j=0 , m = 1, . . . ,M .

Here GM is the original grid for solving (7.5)-(7.6) so that

Ni = Nm
i and Nj = Nm

j ,

and G1 is a grid which is coarse enough for linear equations such as (7.9) to be solved
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explicitly with a small number of operations. For m < M , Gm is defined by setting

(xm−1i , ym−1j ) = (xm2i, y
m
2j) , 1 ≤ m < M , 0 ≤ i ≤ Nm

i , 0 ≤ j ≤ Nm
j .

Note that this definition implies that Ni and Nj are constant multiples of some power

of two.

Let Φm
i,j ≡ Φ(xmi , y

m
j ) and let D

m
ij and n

m
ij be cell average values of D and n on the

cell

Cm
ij ≡ [xmi−1/2, xmi+1/2]× [ymj−1/2, ymj+1/2] ,

where

xmi±1/2 = xmi ±
∆xm

2
, ∆xm =

∆x

2M−m

ymi±1/2 = ymi ±
∆ym

2
, ∆ym =

∆y

2M−m
.

We approximate (7.6) on Gm by the discretization

(LΦ)mij =
qe
(Dm

ij − nmij ) , (7.10)

where

(LΦ)mij ≡ −
(Φm

i+1,j − 2Φm
i,j + Φm

i−1,j)

(∆xm)2
−
(Φm

i,j+1 − 2Φm
i,j + Φm

i,j+1)

(∆ym)2
, (7.11a)

Fm
ij ≡ qe

(Dm
ij − nmij ) . (7.11b)
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Substituting (7.11) into (7.10) and rearranging terms gives Φm = X(Φm), where the

relaxation operator X is

(X(Φm))ij ≡
1

2

1

(∆xm)2 + (∆ym)2

h
(∆xm∆ym)2Fm

ij

+ (∆xm)2(Φm
i,j+1 + Φm

i,j+1) + (∆ym)2(Φm
i+1,j + Φm

i−1,j)
i
.

One approach to solving (7.10) is by relaxation–that is, by updating Φm ←

X(Φm) iteratively until it converges. In this instance, relaxation can be implemented

with so-called red-black iteration, where all Φij are computed first with (i + j) even

and then with (i+j) odd, thereby updating all of the red (even) and then black (odd)

values of Φij in the pattern of a checkerboard.

The problem with relaxation methods is that they tend to act as a filter that

effectively removes high frequency modes from the error. However, the remaining

low frequency modes lead to overall slow convergence. The basic idea of multigrid

methods is to improve convergence at low frequencies by solving the residual equation

for (7.10) on the coarsened grid Gm−1, where the frequency of modes relative to the

grid is doubled. The solution to the residual equation on Gm−1 is used to correct the

current approximation of Φm on Gm−1.

Let us describe a two-grid algorithm in more detail. Suppose that Φ̂m is an

approximation of Φm after applying X a prescribed number of times. Then the error

Υm ≡ Φm − Φ̂m (7.12)
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is dominated by modes that are low frequency with respect to Gm. Since L is linear,

Υm satisfies

(LΥ)mij = (LΦ)
m
ij − (LΦ̂)mij =

qe
(Dm

ij − nmij )− (LΦ̂)mij , (7.13)

1 ≤ m < M , 0 ≤ i ≤ Nm
i , 0 ≤ j ≤ Nm

j ,

whereΥ and Φ̂ are smooth functions such thatΥm
i,j = Υ(xmi , y

m
j ) and Φ̂

m
i,j = Φ̂(xmi , y

m
j ).

If (7.13) can be solved for Υm, then Υm can be substituted into (7.12) to find Φm.

However, like (7.10), (7.13) is only solved approximately forΥm. Moreover, relaxation

techniques for solving (7.12) iteratively will converge slowly sinceΥm is composed pre-

dominantly of low frequency modes. The solution to this dilemma is to map (LΥ)m

onto Gm−1 with a restriction operator R:

(LΥ)m−1ij = R((LΥ)m)ij (7.14)

≡ 1

16

£
(LΥ)m2i−1,2j−1 + (LΥ)

m
2i−1,2j+1 + (LΥ)

m
2i+1,2j−1 + (LΥ)

m
2i+1,2j+1

¤
+
1

8

£
(LΥ)m2i,2j−1 + (LΥ)

m
2i,2j+1 + (LΥ)

m
2i−1,2j + (LΥ)

m
2i+1,2j

¤
+
1

4
(LΥ)m2i,2j .

The frequency of error modes relative to the grid is therefore doubled, making relax-

ation of the residual equation more effective.

Suppose now that Υ̂m−1 is an approximation of Υm−1 after application of X to

(7.13) on the grid Gm−1 a prescribed number of times. The approximate error Υ̂m−1

is then mapped back to Gm with an interpolation operator I. If Υm = I(Υm−1),
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then

Υm
2i,2j = Υm−1

ij

Υm
2i+1,2j =

1

2

¡
Υm−1
ij +Υm−1

i+1,j

¢
Υm
2i,2j+1 =

1

2

¡
Υm−1
ij +Υm−1

i,j+1

¢
Υm
2i+1,2j+1 =

1

4

¡
Υm−1
ij +Υm−1

i,j+1 +Υm−1
i+1,j +Υm−1

i+1,j+1

¢
.

and Φ̂m is updated by

Φ̂m ← Φ̂m + Υ̂m

Afterward X is applied again for a prescribed number of iterations in order to remove

any high frequency errors that may have been introduced by the interpolation.

In practice there are more than two grids; and rather than accept the value of Υ̂m−1

as the approximate error, the entire process described above is repeated again–this

time between grids Gm−1and Gm−2–to find

Υm−1 ≡ Υm − Υ̂m = Φm − Φ̂m − Υ̂m .

In this way, a nested algorithm proceeds to remove errors at lower frequencies by

solving residual equations on coarser grids. The nesting terminates when m = 1, in

which case an exact solution is easy to compute. The process of moving from the

finest to coarsest grid and back again is called a cycle.

We summarize the recursive algorithm for the so-called µ-cycle Mµm.
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Υm ←Mµm(Υm, Fm, s1, s2):

// µ, s1 and s2 are positive integers.

• If m = 1, solve L(Υ)m = Fm exactly.

• Else,

1. Relax Φm = X(Φm) s1 times with initial guess Υm.

2. Update the residual and restrict to Gm−1:

Fm−1 ← R(Fm − (LΥ)m) .

3. Update Υm−1 ←Mµm(Υm−1, Fm−1, s1, s2) µ times with initial

condition Υm−1 = 0.

4. Interpolate Υm−1 onto Gm and correct Υm: Υm ← Υm + I(Υm−1)

5. Relax Φm = X(Φm) s2 times with initial guess Υm.

The procedure ΦM ←Mµm(ΦM , FM , s1, s2), where

FM
ij =

qe
(Dij − nij) , (7.15)

produces highly accurate solution for (7.9). It works particularly well for solving

the Poisson equation because the restriction operator R is an approximation of the

inverse Laplacian operator.
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Convergence of the µ-cycle is greatly improved by a good initial guess. This is

done by restricting FM
ij to the grid GM−1 and computing

ΦM−1 ←Mµm(ΦM−1, FM−1, s1, s2)

which is then interpolated ontoGM as an initial guess forΦM . In turn, an initial guess

will be needed for ΦM−1. This recursive process continues until an exact solution is

computed on G1. The full multigrid algorithm is

Υm ← FMG(Fm, s0, s1, s2):

// s0,s1, and s2 are positive integers.

• If m = 1, solve L(Υ)m = Fm exactly.

• Else

1. Restrict to Gm−1: Fm−1 ← R(Fm).

2. Update Υm−1 ← FMG(Υm−1, Fm−1, s0, s1, s2) s0 times.

3. Interpolate to Gm: Υm ← I(Υm−1).

The electric potential Φ is updated at each time step by

Φ(t+∆t) = FMG(Φ(t), F, s0, s1, s2)) ,

where F = FM is given by 7.15 and s0, s1, and s2 are chosen to optimize convergence.
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7.2.4 Discretization of Field and Collision Terms

We now present the remaining details of the scheme. The collision terms are approx-

imated by using

1

∆x∆y

Z
Cij

r(ρ) = r(ρij) +O((∆y)2 + (∆x)2)

with similar expressions for the field terms l and s. The electric field is approximated

with center differences:

1

∆x∆y

Z
Cij

∂xΦ =
Φi+1,j − Φi+1,j

∆x
+O((∆y)2 + (∆x)2)

1

∆x∆y

Z
Cij

∂yΦ =
Φi,j+1 − Φi,j−1

∆y
+O((∆y)2 + (∆x)2) .

7.3 Numerical Results

Numerical computations are performed on a 96× 32 grid. The scheme is allowed to

run until the following steady-state criteria is achieved:

||ρ(t+∆t)− ρ(t)||L1(Ω)
||ρ(t)||L1(Ω)

≤ 10−4∆t .

Results are presented below in Figures 7.2-7.13. Most of these figures show results

from the Maxwellian and Gaussian models and the differences of each with respect

to the reference model.

Figure 7.2 is a plot of electron concentration. Both models show the same general

behavior with a large drop-off in the region just below the gate. Differences are only
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noticeable to the eye when comparing to the reference model. The two models differ

from the reference model in a similar fashion near the drain contact of the MESFET.

However, the Maxwellian model also displays major differences between the source

and the gate contacts and near the artificial lateral boundaries of the MESFET at

x = 0 and x = 0.6.

Figures 7.3 and 7.4 are plots of electron momentum density. The region just

under the gate show very little current flow because of the charge depletion there.

Instead, current flows out from the source, below the depletion region, then across the

MESFET and up to the drain contact. The vertical current flow in and out of the

contacts is larger for Gaussian model than it is for the Maxwellian model. The lack

of current between contacts for the Maxwellian model is compensated by a horizontal

flow at the lower lateral boundaries. As in Figure 7.2, the Maxwellian model displays

larger variations from the reference than the Gaussian model between the source and

the gate contacts and at the lateral boundaries.

Figures 7.5 and 7.6 are plots of electron bulk velocity. The Maxwellian models

tends to produce velocity spikes near contacts. We note the rather large deviation

of the Gaussian model from the reference in the depletion region of the MESFET,

between the gate and drain.

Figure 7.7 shows the steady-state potential, and Figures 7.8 and 7.9 are electric

field plots. The Gaussian model is not much different from the reference model.

However, the Maxwellian model displays a noticeable drop in the x-component of

the electric field, which is consistent with the horizontal current flow observed at the

lower lateral boundaries.
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Figures 7.10 and 7.11 are plots of electron energy and temperature, respectively.

The main point to take from these plots is that the spike (in both plots) that occurs at

the edge of the gate contact in both theMaxwellian and reference models is not present

in the Gaussian model. A spike does appear in the temperature matrix component

Θ11 (see Figure 7.13), which replaces θ in the pressure term of the momentum equation

when passing from the Maxwellian to the Gaussian model. However, this new spike

is substantially smaller.

The results displayed in Figures 7.2-7.9 follow two basic trends. First, the

Gaussian model agrees with the reference model over most of the device; for the

most part, major corrections appear only near the gate-drain end of the MESFET,

where the electron temperature is greatest and where one might expect the greatest

deviation from a drift-diffusion model. Second, the Maxwellian model appears to

produce corrections similar to the Gaussian model in the gate-drain area, but it also

deviates from the reference model at the lower lateral boundaries of the MESFET and

especially near the source-gate region. It may be then that the Maxwellian model is

not an appropriate for simulating transport in these regions of the MESFET.

We recall that the key assumption for the perturbed Maxwellian closure is that

the underlying kinetic distribution is close to being anisotropic, which implies Σ is

small. Therefore, in Figures 7.12, we check the validity of the Maxwellian model by

computing the size of each component of Σ relative to the isotropic pressure nθ. It

turns out that the results are inconsistent with the smallness assumption on Σ near

both sides of the gate contact. On the drain side, their is a very localized spike in
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Figure 7.2: Steady-state electron concentration.

Σ. However, on the source side, Σ is quite large over a much greater area.

Analogous results for the Gaussian model are given in 7.13. Clearly Σ is much

smaller than for the Maxwellian model, but still rather large: Σ ∼ 10−1, with the

largest variations appearing close to the MESFET contacts. We therefore conjecture

that the anisotropy of the underlying kinetic distribution is small, but certainly not

small enough to treat it as a perturbation. Our conjecture–and the accuracy of

the Gaussian model in general–must still be tested against kinetic or Monte Carlo

simulations. This will be the subject of future work.
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Figure 7.3: Steady-state momentum, x-component.
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Figure 7.4: Steady-state momentum, y-component.
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Figure 7.5: Steady-state velocity, x-component.
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Figure 7.6: Steady-state velocity, y-component.
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Figure 7.7: Steady-state potential.
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Figure 7.8: Steady-state electric field, x-component.
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Figure 7.9: Steady-state electric field, y-component.
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Figure 7.12: Anisotropy in the Maxwellian closure
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