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 Silicibacter sp. TM1040 is a member of the Roseobacter clade. Roseobacters 

play an important role in sulfur cycling in the ocean by degrading 

dimethylsulfoniopropionate (DMSP). Roseobacters are found in communities 

associated with most marine habits, especially with marine algae. Therefore, the 

ability to sense, move towards and maintain the interaction is an important 

physiological trait for the symbiosis between roseobacters and dinoflagellate. 

Previous work from our laboratory demonstrated that TM1040 is chemotaxis towards 

DMSP and DMSP catabolites, and motility of TM1040 is important for growth of P. 

piscicida. In contrast to enteric bacteria, little is known about the genes regulating 

motility in roseobacter species. This study, revealed similarities between the genes 

associated with motility in TM1040 and those from other α-proteobacteria species, 

but most importantly, it identified three new regulators that maybe involved in 

regulating the motility of TM1040. 
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Chapter 1: Background 

1.1 Physiology and symbiosis of the Roseobacter clade 

1.1.1 Physiology of the Roseobacter clade 

 The Roseobacter clade is a taxonomic group in the α3-Proteabacteria branch. The 

members of this clade share >89% identity at the 16S rRNA level, and the clades is 

comprised of 17 genera that are represented by 36 species and hundreds of uncharacterized 

isolates and clone sequence (22). Roseobacters are responsible for 

dimethylsulfoniopropionate (DMSP) catabolism  (34), the major source of organic sulfur in 

the ocean (71). Dinoflagellates and other phytoplankton are primary producers of DMSP in 

the ocean (43, 117). The abundance and activity of Roseobacter species is significantly 

correlated with DMSP-producing dinoflagellates and other phytoplankton, establishing a 

physiological and ecological linkage between dinoflagellates and roseobacters (35, 121). 

There are two major pathways of DMSP degradation: (i) the lyase or cleavage pathway that 

produces dimethyl sulfide (DMS) (34, 50, 118), a volatile gas that is released into the 

atmosphere and oxidized into sulfur aerosols leading to cloudiness, and (ii) the 

demethylation/dethiolation pathway in which sulfur in the DMSP is maintained in the 

bacteria or ocean (Fig. 1) (40, 44, 106, 122). Therefore, the DMSP degradation is a key step 

in controlling the marine sulfur cycle (22, 33, 44).  

Roseobacters are exclusively marine or hypersaline and have diverse physiological 

traits (such as sulfur metabolism, secondary metabolites, rosette formation, toga-like 

morphologies, poly-β-hydroxybutyrate granules) that are unique adaptations for their diverse 

habits (22). In contrast to many other marine bacteria taxa, Roseobacters isolates can be 

readily grown in laboratory cultures (22). Motility in most of these species is achieved by 

means of one or more, flagella (33, 48, 66, 84, 87). DNA sequences from roseobacters can be 
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found in populations associated with coastal biofilms, sponges, sea grasses, diseased corals, 

cephalopods, hypersaline microbial mats, and polar sea ice. Moreover, roseobacters are most 

abundant in bacteria populations associated with marine algae (22).  

1.1.2 Interaction of roseobacters and dinoflagellates 

 Several studies on roseobacter species have reported on the interaction of 

roseobacters and their dinoflagellate hosts. For example, Silva et al. (1985) demonstrated that 

Gymnodinium splendens and Glenodinium foliaceum contain intranuclear bacteria, using light 

and electron microscopy (89, 90). Pfiesteria piscicida, a heterotrophic dinoflagellate that uses 

a feeding tube called peduncle to feed on phytoplanktons. This type of feeding is also called 

myzocytosis (55, 107). P. piscicida has also been demonstrated to absorb nitrogen 

compounds such as ammonia, nitrate, urea and glutamate (53). In addition, P. piscicida can 

also harbor intact chloroplasts after feeding on algae prey in its food vacuole (54), but it is 

still unclear on how much photosynthesis would contribute to the growth because these 

dinoflagellates cannot be grown autotrophically (23, 24). In 1997, P. piscicida was implicated 

in the deaths of fish in Chesapeake bay (41). P. piscicida can be maintained in laboratory 

culture with its associated bacterial community of which 50% of the isolates are members of 

the roseobacter clade (2). In an axenic culture of P. piscicida, the growth rate of the 

dinoflagellate decreases, indicating the requirement of its bacteria community (2). This 

interaction may be facilitated through the physiology stage of the members of the bacteria 

community.  Previous studies by Bruhn et al. (21), have shown that 57% of Roseobacter 

strains examined have a biphasic life: the motile stage, found in early-to-mid-exponential 

stages of growth, characterized by small flagellated, highly motile and chemotactic cells, 

while the sessile stage occurs in late stationary phase of  growth and lose of motility and 

flagella, and formation of a biofilm and  aggregates of cells called rosettes (21). 
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FIG1. Degradation pathway of DMSP. Degradation of DMSP may occur by lyase pathway, 

producing DMS and Acrylate. In some cases, DMS can also be oxidized to DMSO. The other 

degradation pathway of DMSP is demethylation/dethiolation pathway, producing MMPA. 

The MMPA may further be demethylate producing MPA followed by removal of hydrogen 

sulfide or dethiolation producing acrylate and MeSH.  

Lyase pathway 

Demethylation/dethiolation pathway 
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In addition to biofilm development, the sessile life stage is also characterized by the 

production of a yellow-brown extracellular pigment and an antibiotic compound, 

tropodithietic acid (32). The interactions between P. piscicida and the bacteria was shown by 

using fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy 

(CFLSM) indicating the location of the bacteria on the cell surface and within the P. piscicida 

cell (2). Dimethylsulfoniopropionate (DMSP) that is produced by Pfiesteria, DMSP 

metabolites, and heat labile molecule in Pfiesteria homogenate, are also chemotactic 

attractants of TM1040 (66).  Roseobacter isolates from the Pfiesteria culture can also 

enhance the predation rate of P. pisicicida on its prey, Rhodomonas, which increases growth 

(3).  

 The marine bacterium Silicibacter sp. TM1040 (hereafter TM1040) was originally 

isolated from a laboratory microcosm culture consisting of dinoflagellates, prey algae, plus 

naturally-occuring bacteria (2, 64). TM1040 is a member of the Roseobacter clade in the α-3 

subclass of the class Proteobacteria, and is motile via at least three polar flagella (Fig. 2) (66). 

In addition, TM1040 degrades DMSP using the demethylation pathway (64). 

TM1040 is actively chemotactic towards DMSP produced by P. piscicida, bacterial 

breakdown products of DMSP, ex. 3-methylmercaptopropionate (MMPA), and amino acids 

(66). In earlier work, we have demonstrated a symbiosis between TM1040 and P. piscicida. 

This symbiosis exists such that dinoflagellates obligately require TM1040 or physiologically 

equivalent bacteria for growth . through a combination of physical attachment of the bacteria 

to the dinoflagellate cell surface which the presence of bacteria enhances growth of the 

dinoflagellate (65). Motility TM1040 is also require by the P. piscicida in order to achieve 

normal growth rate (65). Previous work from our laboratory also demonstrates that TM1040 

has a biphasic life cycle, motile and sessile stage, that is hypothesis to facilitate in the 

association with P. piscicida (21). 
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Fig. 2 Scanning Electro Microscope of TM1040. The image shows the three polar flagella of 

TM1040. (A) Scale bar represents 500 nm and (B) Close up image of the polar flagella, scale 

bar representing 200 nm (image provided by Dr. Shin-ichi Aizawa, CREST Soft Nano-

Machine Project, Innovation Plaza Hiroshima, 3-10-23 Kagamiyama, Higashi-Hiroshima 

739-0046, Japan). 
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1.2 Mechanisms of bacteria motility 

1.2.1 Bacteria Chemotaxis 

 Bacteria swim towards attractant molecules by responding to the increasing chemical 

gradient, which causes a reversal of the rotation of the flagella in a behavior called 

chemotaxis. The change of direction of flagella rotation in enteric bacteria, such as 

Escherichia coli and Salmonella Typhimurium, causes two types of swimming behaviors, 

smooth swimming and tumbling (69). In smooth swimming the flagella rotate counter-

clockwise (CCW), defined by looking at the end of the flagellum, causing the filament to 

form a bundle. This causes the cell to move forward. When rotating in a clockwise direction, 

the flagellar bundle will disperse, causing the cells to tumble and change direction (69). In the 

absence of an attractant the frequency of tumble is increased, to change direction of the cell, 

and in contrast, in the presence of an attractant gradient, the duration of smooth swimming is 

extended (by tumbling suppression) and directs the cell up the attractant gradient (69).  

 The bacteria cell senses attractant and repellent signals through membrane receptor, 

chemotaxis proteins, also called methyl-accepting chemotaxis proteins (MCPs) (46). The 

MCPs have a transmembrane domain that contain a ligand binding domain and a cytoplasmic 

domain which is the signal transducer domain or HAMP (Histidine kinases, Adenylyl 

cyclases, Methyl binding proteins, Phosphatases) domain (109). In E. coli and S. 

Typhimurium, the MCPs are localized at the membrane. Both species have five MCPs, which 

four receptors are common in both species: Tar, Tsr, Trg, and Aer that senses serine, 

aspartate, ribose and galactose, and oxygen, respectively (14, 46, 97). The unique receptor in 

E. coli is Tap and in S. typhimurium is Tcp that senses dipeptides and citrate, respectively 

(61, 115). In an unoccupied MCP, CheW (adaptor protein) couples CheA (Histidine kinase) 

to the MCP receptor where CheA is simulated to autophosphorylate at a histidine residue 

(72). Phosphorylated CheA (CheA-P) donates its phosphate to both CheY (flagellar-motor-
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binding protein) and CheB (methylesterase) proteins at their aspartate residue (19, 58, 72). 

Phosphorylated CheY (CheY-P) then binds to FliM, a protein component of the C-ring of the 

flagellum, and alters the direction of the flagellum rotation from CCW to CW causing the cell 

to tumble (105, 111) (Fig. 3). When the MCP is occupied by the ligand, the 

autophosphorylation activity of CheA is reduced and leads to reduced tumbling and increased 

smooth swimming (101). 

 In order for the bacteria to respond to temporal changes or spatial concentration 

gradients of chemoeffectors rather than a uniform concentration, adaption must be achieved 

(76).  The process of adaption is achieved by methylation and demethylation of MCPs by the 

methyltransferase CheR and methylesterase CheB, respectively (52, 104).  Unoccupied MCPs 

are methylated by CheR, leading to autophosphorylation of CheA (11, 99). CheA-P can 

phosphorylate CheB (CheB-P) and increases the demethylation of MCPs, functioning as a 

feedback mechanism for demethylation of the receptors (10, 98). Another feedback 

mechanism is mediated by CheZ that dephosphorylates CheY and result in decreased 

frequency of CW rotation of the flagellum (47).   

 In contrast to the well-studied chemotaxis and motility mechanisms of the enteric 

bacteria, much less is known about these mechanisms in non-enteric bacteria. Many non-

enteric bacteria, like marine bacteria, live in chemically diverse environments that do not 

resemble the mammalian intestine. Therefore, it is not unexpected that the chemotaxis and 

motility behavior of these bacteria may be different from enteric bacteria mechanisms (8, 67).    

 Non-enteric bacteria such as Rhodobacter sphaeriodes and Sinorhizobium meliloti do 

not swim via a smooth swim-tumble motility like E. coli, but instead have a swim-stop 

behavior (8). The flagella of both species have a unidirectional motor that rotates only in a 

CW direction. Unlike E.coli, the cell changes its orientation by altering the flagellar motor 

speed in response to environmental signals (8, 36, 120). Upon sensing a reduction of 

attractant, R. sphaeroides responds by stopping its swimming. During this period the filament 
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winds up to form a coil against the cell, which reduces rotation and facilitates the re-

orientation of the cell (7, 8, 77).  In S. meliloti, asynchronous slow speed rotation of an 

individual flagellum causes the cell to change its path, but at high speed rotation the flagella 

comes together forming a bundle that propels the cell forward (8, 79). Another difference 

between E. coli and non-enteric bacteria, such as R. sphaeroides, is the chemotaxis 

mechanism. In E.coli, the MCPs are typically membrane-bound but, in contrast, some MCPs 

in R. sphaeroides are also localized in the cytoplasm (37). It is predicted that these 

cytoplasmic MCPs are used to monitor the metabolic state of the cells through an unknown 

mechanism (110). In support of this idea, a broad range of structurally unrelated metabolites 

were shown to inhibit the chemotaxis of R. sphaeroides suggesting that metabolic 

intermediates are involved in the sensory signaling system. This finding also couples the 

metabolic pathways to the chemotaxis systems (82). In contrast to E. coli, multiple copies of 

receptors and chemotaxis proteins are also present in R. sphaeroides and S. meliloti (8).  

Multiple copies of the sensory proteins could enhance chemotaxis by clustering of the 

receptors and signal transducer proteins to increase signal sensitivity (56). These adaptations 

in the chemotaxis mechanism are to facilitate survival in environments that are different from 

the enteric bacteria (8). 

The genome of Silicibacter sp. TM1040 contains 20 MCPs of which fourteen are 

likely to be located in the cytoplasm (70), suggesting that TM1040 is capable of sensing a 

wide variety of environmental signals. TM1040 is highly chemotactic towards heat-labile 

compounds in a dinoflagellate homogenate, DMSP and its metabolite products (acrylate, 

MMPA, and MPA), and amino acids, especially methionine (66). This suggests that TM1040 

has adapted its chemotaxis mechanisms to sense the dinoflagellate in order to respond and 

swim towards the dinoflagellate in oligotrophic environment like the ocean. 
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FIG. 3 Chemotaxis pathway of E. coli and S. Typhimurium. Unoccupied MCP, CheW 

couples CheA with MCP receptors and stimulate autophosphorylation of CheA (72). The 

phosphorylated CheA (CheA-P) proteins then transfer the phosphate to both CheY and CheB 

proteins (19, 58, 72). Phosphorylated CheY (CheY-P) binds to the C-ring of the flagellum 

and alters the direction of the flagellum rotation from CCW to CW causing the cell to tumble 

(105, 111). During adaptation process, unoccupied MCPs are methylated by CheR, leading to 

autophosphorylation of CheA (11, 99). CheA-P proteins can phosphorylate CheB (CheB-P) 

and increases the demethylation of MCPs, functioning as a feedback mechanism for 

demethylation of the receptors (10, 98). Another feedback mechanism is mediated by CheZ 

that dephosphorylates CheY and result in the decreased frequency of CW rotation of the 

flagellum (tumbling) (47).   
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1.2.2 Bacteria Flagellar biosynthesis 

 The critical structure that allows the bacterial cell to swim is the flagellum. The 

number per cell and position of flagella vary among the species, ranging from one polar 

flagellum (monotrichous) to multiple flagella around the cells (peritrichous). The bacterial 

flagellum is composed of 4 ring structure (C-ring, MS-ring, P-ring, and L-ring), a motor-

stator, hollow rod, hook, and filament (Fig. 4). It is assembled, in order, starting from the 

inner membrane cytoplasmic surface and extends through the membrane and out to the 

exterior of the cell. The assembly process begins with the formation of the MS-ring in the 

inner membrane by FliF, which interacts with and is followed in assembly by the C-ring 

(FliM, FliN, and FliG) that forms a cup-like structure in the cytoplasm. A type-III secretion 

system (TTSS) export apparatus is next formed in the middle of the C-ring by FlhA, FlhB, 

FliO, FliP, FliQ and FliR allowing the export of other flagellum specific components through 

the TTSS (59).  The rod (FlgB, FlgC, FlgF, FlgG, and FlgJ) is assembled traversing the 

periplasmic space along with the formation of P-ring (FlgI), and L-ring (FlgH) in the 

periplasmic space and outer membrane, respectively (59). The hook (FlgE) and hook junction 

proteins (FlgK and FlgL) are then formed at the exterior of the outer membrane after 

transition through the hollow rod. Similarly and following hook assembly, flagellins (FliC) 

are exported to form the filament extending from the hook junction proteins (59), and 

terminating in the capping protein, FliD (59).  At this point multiple copies of the motor 

proteins assemble around the basal-body (MS-ring, rod, P-ring, and L-ring) in the inner 

membrane and participate in torque generation to rotate the flagellum (20, 119). Torque is 

provided by proton motive force and protons in enterics and other terrestrial bacteria, and by 

sodium in the case of many marine bacteria (60). 

 Flagellum assembly is coordinated with the regulation of the flagellar genes. In 

enteric bacteria the flagella regulon is categorized into three hierarchical transcriptional  
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FIG. 4 Flagellar Structure base on E. coli. The flagellum is composed of the MS-ring (FliF), 

C-ring (FliG, FliM, FliN), Type Three Secretion System (TTSS) or export apparatus (FlhA, 

FlhB, FliO, FliP, FliQ and FliR), Rod (FlgB, FlgC, FlgF, FlgG, and FlgJ), P-ring (FlgI), L-

ring (FlgH), Hook (FlgE), Hook junction proteins (FlgK and FlgL), Filament (FliC) and 

Filament cap proteins (FliD). 
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classes (class I, class II, and class III) each of which is regulated by the expression of the 

previous class. Class I genes consists of the master regulator flhDC that encodes the 

transcription activator FlhD2C2 and upregulates the transcription of class II genes (26). Many 

regulators of flhDC have been discovered. For example, during high osmolarity, the OmpR 

negatively regulates the flhDC operon (88). In contrast, CAP-cAMP upregulates flagellum 

synthesis (1, 91). Histone-like-nucleoid-structuring (H-NS) proteins have both positive and 

negative regulation effect on flhDC expression (94, 95). Quorum sensing also play a role in 

the regulation of flhDC expression via QseCB (96).  

Class II genes encode proteins that form the C-ring, export apparatus, basal-body, 

hook, and hook junction proteins. The class II genes also include fliA (σ
28

 subunit) and flgM 

that encodes an anti-sigma factor inhibiting FliA function. FlgM binds to FliA and prevents 

premature expression of class III genes but after completion of the basal body and hook 

complex, FlgM is exported out of the cell, leaving FliA free to upregulate the class III genes 

(FliC, flagellin, and motAB, the motor proteins) (Fig. 5) (59). 

 Not all groups of bacteria follow this model of flagellar regulation. For example, in 

α-proteobacteria, S. meliloti utilizes LuxR-type transcription activators, VisN and VisR, as 

the class I master regulators (93).  The motor proteins (MotA, MotB, and MotC) are included 

into class IIB because the expression of the flagellin (class III) requires expression of class 

IIA genes (fliM and orf38) but not the motor proteins (Fig. 5) (93). Flagellar regulation in R. 

sphaeroides is regulated in a four-tiered hierarchical cascade. The master regulator (FleQ) is 

an enhancer-binding protein that, together with σ
54

, upregulates transcription of class II genes 

(81). The class II genes also include another enhancer-binding protein (FleT) that interacts 

with FleQ and improves binding to DNA (81). Together, FleQ/FleT and σ
54

, upregulate class 

III genes that also encode FliA (σ
28

) and the anti-sigma factor, FlgM (81). After completion 

of the hook-basal body complex, FlgM is exported out of the cell and FliA is free to 

upregulate the flagellin gene (FliC, class IV) (Fig. 5) (81).  
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Similarly, another well studied α-proteobacterium, Caulobacter crescentus, uses a 

two component signal transduction system CckA (histidine kinase) and CtrA (response 

regulator) as the class I master regulatory circuit (39, 85). In contrast to flhDC in E. coli that 

regulates flagellar and fimbriae synthesis, CtrA is also a global regulator that regulates genes 

involved in polar morphogenesis, DNA replication initiation, DNA methylation, cell division, 

and cell wall metabolism (49). The class II genes encode for two additional regulators, FlbD 

and FliX, that couple the transcription of early class II basal body complex genes to the 

expression of class III and class IV genes (73, 113). The flagellin (class IV) in C. crescentus 

is also regulated at the post-transcriptional level by FlbT and FlaF that function opposing one 

another in regulating the expression of flagellin (57).  FlbT negatively regulates flagellin by 

inhibiting translation and destabilize the mRNA while FlaF positively regulates filament 

synthesis by mediating flagellin secretion or assembly (Fig. 5) (6, 57). As mentioned above, 

regulation of flagella biosynthesis in α-proteobacteria is different from the well studied 

enteric bacteria and also varies among the members of the α-proteobacteria. It is tempting to 

propose that in the Roseobacter clade also have their unique way of regulating flagella 

biosynthesis. Little is known about regulation in flagella synthesis in roseobacters. Recent 

works from our laboratory has shown that TM1040 has homologs to both known and 

unknown flagella structural and regulatory genes (65, 70). To expand the knowledge of 

flagella biosynthesis in the roseobacter clade, this study has used genomic and genetic 

approaches to confirm the flagella gene homologs relation to flagella biosynthesis and to 

identify novel regulatory genes.   

  

 

 

 



 

 14 

 

Class I Class II Class III 

FlhD2C2 MS-Ring 

C-ring 

TTSS complex 

Hook basal body 

 

Filament 

Motor 

FliA / FlgM 

Class I Class IIA 

Class IIIB 

Class III 

VisN / VisR 
Filament 

motor 

Class I Class II Class III Class IV 

FleQ 

FliA / FlgM 

Hook basal body 

Motor 

Filament 

FleQ / FleT 

MS-Ring 

C-ring 

TTSS complex 

Class I Class II Class III Class IV 

CckA/CtrA 

FlbT / FlaF 

MS-Ring 

Switch 

TTSS complex 

Hook basal body 

Motor 

Filament 

FliX / FlbD 

FliM, orf38 

E. coli  

 

 

_____________________________________________________________________ 

S. meliloti 

 

 

 

 

R. sphaeroides 

 

 

 

 

_____________________________________________________________________ 

C. crescentus 

 

 

_____________________________________________________________________ 

 

Fig. 5 Flagellar regulation in E. coli, S. meliloti, R. sphaeroides, and C. crescentus. 
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Chapter 2: Genetic determinants of Silicibacter sp. TM1040 

motility 

2.1 Summary 

The alphaproteobacterium Silicibacter sp. TM1040, a member of the marine 

Roseobacter clade, that form a symbiosis with the dinoflagellate Pfiesteria piscicida. The 

initial phase of the symbiosis requires the bacteria to chemotacticly sense and respond by 

swimming toward the planktonic host which is followed by biofilm formation on the surface 

of the dinoflagellate. In this study, we identified genes involved in regulation and 

biosynthesis of the Silicibacter sp. TM1040 flagellum. A genomic analysis uncovered over 

40 Open Reading Frames (ORFs) with homology to known flagellar structural and regulatory 

genes, e.g., CckA, CtrA, FlaF and FlbT, proteins known to be crucial in the regulation of 

motility in other alphaproteobacteria. The genomic analysis also revealed two copies of 

MotA, MotB, and FlgF, and six copies of flagellin. The genomic results were supported by a 

genetic approach using random transposon mutagenesis to construct a bank of mutants with 

defects in motility. The genetic approach also suggests that among the multiple alleles of 

motA, motB, flgF, and fliC that only one of the copies (motA1, motB1, flgF2, and fliC3) may 

be required for motility. Among the regulatory genes identified by mutagenesis were cckA 

and flaF, as well as three new genes (flaB, flaC, and flaD) that encode novel proteins with 

sensory or regulatory domains. Bioinformatic and phenotypic analyses suggest that FlaC may 

function near the top of the regulatory hierarchy and acts to control the biphasic motile-to-

sessile switch, FlaB may function as a phosphorelay protein acting at a lower point in the 

hierarchy, while the role of FlaD is likely to involve participation as a transcription activator 

of the motor genes. The significance of this finding is that these three novel regulators are 
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involved with flagella function and biosynthesis of TM1040 and is also hypothesize to be 

similar in other members of the roseobacter clade.  

 

2.2 Material and Methods 

2.2.1. Bacterial strains and growth conditions 

The strains used in this study are listed in Table 2. Bacteria were routinely grown in 

2216 Marine broth (Difco) with shaking or on 2216 agar medium (2216 Marine Broth with 

15 g Bacto agar per 1 liter) at 30
o
C. Escherichia coli DH5α λpir was maintained in Luria-

Bertani (LB) broth (Sambrook et al, (1989)) or LB agar (LB broth plus 15g Bacto agar per 

liter) at 37
o
C. When required, kanamycin was added at a final concentration of 120 µg per ml 

for TM1040 and 40 µg per ml for E. coli. 

 

2.2.2. Genomic analysis 

The annotation of the genome TM1040 was recently published (70) and is available 

from GenBank (NC_008044) or Roseobase (www.roseobase.org). The annotation of a 

respective gene was confirmed using its deduced amino acid sequence in BLASTP searches 

(5) of the GenBank (www.ncbi.nlm.nih.gov) , Roseobase, and the Gordon and Betty Moore 

Foundation Marine Microbial Genome Sequencing Project 

(https://research.venterinstitute.org/moore/) database was used to search for homologs in 

other roseobacter genomes. Homologs with an E value cutoff of 10
-5

 or less were considered  
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Table 1. Bacterial strains used in this study 

 
Strains Genotypea Locus tagb of 

inserted gene 

Predicted Function Source or 

reference 

TM1040 Wild type   (66) 

DH5α λpir DH5α lysogenized 

with λpir 

  (45) 

HG1006 flaB::EZ-Tn5, Km TM1040_1206 Histidine kinase A 

(phosphoacceptor) domain 

This study 

HG1016 flaC::EZ-Tn5, Km TM1040_0051 Two component signal 

transduction response 

regulator   

,, 

HG1030 fliM::EZ-Tn5, Kam TM1040_1506 C-ring ,, 

HG1032 flhA::EZ-Tn5, Km TM1040_2953 Export apparatus ,, 

HG1033 motB1::EZ-Tn5, Km TM1040_2938 Motor complex ,, 

HG1036 flgL::EZ-Tn5, Km TM1040_2941 Hook junction protein ,, 

HG1039 flhB::EZ-Tn5, Km TM1040_2955 Export apparatus ,, 

HG1046 flaD::EZ-Tn5, Km TM1040_1731 Helix-turn-helix MarR 

domain 

,, 

HG1049 flaE::EZ-Tn5, Km TM1040_0722 Glycosyl transferase ,, 

HG1063 flgH::EZ-Tn5, Km TM1040_2958 L-ring ,, 

HG1091 fliR::EZ-Tn5, Km TM1040_2954 Export apparatus ,, 

HG1098 flgE::EZ-Tn5, Km TM1040_2939 Hook  ,, 

HG1099 fliG::EZ-Tn5, Km TM1040_1009 C-ring ,, 

HG1100 flaI::EZ-Tn5, Km TM1040_2975 Unknown function, 

ctyoplasmic protien, 13.4 

kDa, pI = 5.86 

,, 

HG1101 fliC3::EZ-Tn5, Km TM1040_2974 flagellin ,, 

HG1118 flaF::EZ-Tn5, Km TM1040_2973 Regulator ,, 

HG1122 flaG::EZ-Tn5, Km TM1040_3778 mannose-6-phosphate 

isomerase 

,, 

HG1135 pflI::EZ-Tn5, Km TM1040_2949 Motor associated ,, 

HG1139 flgF2::EZ-Tn5, Km TM1040_2971 Proximal Rod ,, 
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HG1148 fliF::EZ-Tn5, Km TM1040_2947 MS-ring ,, 

HG1162 flgG::EZ-Tn5, Km TM1040_2960 Distal rod ,, 

HG1192 fliL::EZ-Tn5, Km TM1040_2948 Motor associated ,, 

HG1205 flaA::EZ-Tn5, Km TM1040_2952 Motor associated ,, 

HG1212 motA1::EZ-Tn5, Km TM1040_2951 Motor complex ,, 

HG1216 flgK::EZ-Tn5, Km TM1040_2940 Hook junction protein ,, 

HG1234 flgI::EZ-Tn5, Km TM1040_2942 P-ring ,, 

HG1241 cckA::EZ-Tn5, Km TM1040_1228 Regulator ,, 

HG1245 fliK::EZ-Tn5, Km TM1040_2977 Hook-length control ,, 

HG1246 fliI::EZ-Tn5, Km TM1040_2966 Export ATPase ,, 

RSI01 TM1040 Rifr   ,, 

RSI02 flaC::pRSI507   ,, 

 

a
 Km, Kanamycin resistance; Rif

r
, Rifampicin resistance 

b
 Locus tag based on the NCBI GenBank database. 
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significant. Maps of the flagellar loci were made by importing the nucleotide sequence of 

each flagellar gene into GenomBench version 2.0.0 (a component of Vector NTI Advance 

10.0.01, Invitrogen, Carlsbad, California, USA).  

 

2.2.3. Transposon mutagenesis 

Electrocompetent cells of TM1040 were prepared as described in Appendix B (65). 

Random transposon mutagenesis using EZ-Tn5 <R6Kγori/KAN-2> (Epicentre, Madison, 

Wisconsin) was conducted as previously described by Miller et al, (2006) with minor 

changes. A 65-µl sample of electrocompetent cells of TM1040 was mixed with 25 ng of the 

transposome. The mixture was electroporated in a 0.2 cm electroporation cuvette at 2.5 Kv 

per cm, 400 ohms and 25 µF using a Bio-Rad Gene Pulser (Bio-Rad, Hercules, California). 

The cells were suspended in 1 ml of prewarmed HIASW (25 g Heart infusion medium 

[Difco] plus 15 g Instant Ocean sea salts [Aquarium Systems, Mentor, Ohio] per liter) and 

incubated at 30
o
C with shaking for 2 h. Following incubation, 100 µl samples of the culture 

were spread on HIASW agar (HIASW with 1.5% Bacto agar) containing kanamycin, and 

incubated for 48 h at 30
o
C. Kanamycin-resistant colonies were transferred to a 7-by-7 array 

on 2216 agar containing kanamycin to facilitate future analysis. The sequence flanking the 

transposon was obtained by rescue-cloning as described in Appendix B (65). 

 

2.2.4. Motility analysis 

Mutants with defects in wild-type swimming (Mot
-
) were screened as described by 

Miller and Belas (2006) using semi-solid 2216 motility plates (2216 Marine broth 

supplemented with 0.3 g Bacto agar per liter) or marine motility plates [0.1 % peptone, 200 

mM NaCl, 50 mM MgSO4, 10 mM KCl, 10 mM CaCl2.2H2O, 240 µM K2HPO4, (70 mM 

Tris-HCl pH 7.5), 0.3 % agar per 100 ml] and incubate at 30
o
C for 3 days.  
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In addition, 3 µl of overnight cultures of mutants, grown in 2216 Marine Broth at 

30
o
C with shaking, were also examined for motility using phase contrast microscopy with a 

20x objective lens on a Nikon Optiphot microscope. Mutants with one or more cells 

swimming were scored as motile. 

 

2.2.5. Measurement of the percentage of motile cells and cells in rosettes, in a 

population. 

TM1040 and HG1016 were grown in 2216 Marine broth at 30
o
C with shaking for 14 

h. Seven microliters of culture was examined by phase contrast microscopy (Olympus BX60, 

Center Valley, Pennsylvania) using 40x objective lens. Five random fields were recorded for 

1 sec (20 frames/sec) using a Qicam Fast 1394 camera. Analysis was done with Volocity 

software (V4.1.0, Improvision, England) as follows (measurement parameters are described 

in Appendix B).  

The culture was separated into three types of cells: (i) single motile cells, (ii) single 

non-motile cells, and (iii) cells in rosettes. The total number of cells in rosettes (a rosette was 

defined as cells aggregates > 5 µm
2
) was estimated by calculating the average number of cells 

in a rosette and multiplying this value by the total number of rosettes in the field. Single cells 

(both motile and nonmotile) were defined as bodies of ≤ 5 µm
2
. The percentage of motile 

cells was calculated using motion analysis of a 1 s video clip recorded from a field (five fields 

total). The number of motile cells obtained was then substracted from the total count of single 

cells in that field to determine the amount of non-motile single cells. The experiment was run 

in quadruplicate. The mean, standard deviation, and statistical analysis (Unpaired T Test, 

95% CI, P-value < 0.05) of all four flask for percentage of motile cells, single cells, and cells 

forming rosettes were determined using Prism 4.0 statistic software (GraphPad). 
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2.2.6. Flagellar staining 

Flagellar filaments were stained for light microscopy using the RYU flagellar stain 

(Remel, Lenexa, Kansas) according to the recommendations of the manufacturer. Overnight 

culture of TM1040 or mutant grown 2216 at 30
o
C with shaking was pipette onto a glass slide 

and covered with cover a cover slip. Ten microliters of RYU flagellar stain was added to the 

side of the cover slip, allowing the stain to flow between the cover slip and the side. After ten 

minutes of incubation at room temperature, the stained culture was observed with phase 

contrast microscope using 40x objective lens on a Nikon Optiphot microscope. 

 

2.2.7. Detection of flagellin protein 

Flagella were purified as described by Kanbe et al. (42), with the following changes. 

After overnight incubation, cells were removed from 2216 Marine broth by centrifugation 

(10,000 x g for 5 min at 4
o
C). Detach flagella were precipitated by adding polyethylene 

glycol (PEG 8000, Sigma) (8% PEG 8000, 0.4 mM NaCl) to a final concentration of 2%. 

After 60 m on ice, the bundles of flagella were precipitated by low speed centrifugation 

(17,400 x g for 15 min at 4
o
C). Flagella bundles were resuspend in 50 mM Tris-HCl pH 7.5, 

and the protein in each sample determined (BCA kit, Pierce, Rockford, IL). 

Flagellin protein was separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) by loading 3 µg of total protein (prior to mixing with 5x protein 

loading dye and boiling for 5 min) (see Appendix A for recipe) from the flagella preparation 

on a 15% polyacrylamide gel (see Appendix A for recipes) (31). Protein bands were 

visualized using a Typhoon 9410 (Amersham Biosciences, Piscataway, NJ) and a 555 nm 

emission filter and a 488 nm excitation filter after staining with Coomassie Fluor Orange 

Protein gel Stain (Molecular Probes, Invitrogen, Carlsbad, CA) following the manufacturer’s 

recommendation.  
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The size of the flagellin bands were calculated using ImageQuant software 

(Amersham Biosciences, Piscataway, NJ) by inputting the size of the Broad Range Marker 

(Bio-Rad, Hercules, CA) (200, 116, 97, 66, 45, 31, 21, 14, and 6.5 kDa) into the program for 

generating a standard curve with the migration distance in the gel. At this point, ImageQuant 

automatically calculate the size of the selected bands (flagellin) in the sample lane compare to 

the standard curve. The intensity of the flagellin bands were calculated by giving an arbitrary 

value of 1 to the 34 kDa flagellin band of TM1040, since the exact amount of flagellin is not 

known, to normalize the intensity of flagellins bands in HG1016. All calculation were done in 

ImageQuant software.  

 

2.2.8. Measurement of antibiotic production 

Antibiotic production was measured using the well diffusion assay with Vibrio 

anguillarum strain 90-11-287 described by Bruhn et al. (2007). Briefly, spent medium from a 

culture was added into a well that was created by using the end of a 200 µl pipette tip in a 1% 

agar plate containing V. anguillarum and incubated at room temperature for 24 h (see detailed 

protocol in Appendix B). After incubating room temperature, the diameter of the inhibition 

zone of each sample was measured.  

 

2.2.9. Congo red (CR) binding 

CR binding was used to qualitatively assess changes in the cell surface of Mot
-
 

mutants. Two microliters of an overnight culture was spotted on 2216 agar containing 100 µg 

CR per ml (27) and the bacteria were incubated at 30
o
C overnight. The relative color of the 

mutant colony was compared to a colony of TM1040 inoculated on the same plate as a 

control. Digital photographs of the colonies were cropped and the color contrast of the entire 
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plate was increased to show the difference in Congo red binding using Adobe Photoshop 

CS2.  

 

2.2.10. Biofilm formation 

Biofilm formation was assessed by crystal violet (CV) staining using the method of  

O’Toole and Kolter (74) with minor changes. Bacteria were incubated for 16 h at 30
o
C with 

vigorous shaking in 30 x 100 mm glass tubes containing 0.5 ml 2216 broth. Following 

incubation, the liquid culture was discarded and each tube rinsed with 35 ppt artificial 

seawater (ASW, 40 g of Instant Ocean in 1 liter of distilled water) to remove loosely attached 

cells. Cells attached to the tube wall as a biofilm were stained by adding 1 ml CV solution 

(Becton, Dickinson and company, Sparks, MD) for 30 min at room temperature, with a 

subsequent wash using ASW to remove unbound CV. CV was eluted from the stained 

bacteria with a 1:1 solution of dimethyl sulfoxide (DMSO) (Fisher Scientific, Hanover Park, 

IL) and 95% ethanol (Val Tech Diagnostics Inc., Brackenridge, PA). The amount of CV 

obtained was measured by spectroscopy at 560 nm using a Bio-Rad model 680 microplate 

reader. 

 

 

 

2.2.11. Chemotaxis assay 

A single colony of TM1040 and HG1016 was inoculated in marine motility broth and 

incubated at 30
o
C for 3 days. The periphery of motile colonies from both cultures were 

inoculated onto the same plate of marine basal medium formula #2 (described in Appendix 

A) containing 10 mM of attractant (one attractant per plate, Methionine, Valine, Glycine, 

Alanine, Phenylalanine, Succinic acid, Fumarate, malic acid, and acetate). Duplicate plates 
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containing each attractant were inoculated. The plates were incubated at 30
o
C for 3 days and 

the diameter of the motile colonies was measured.  

 

2.2.12. Cell elongation 

 Cell elongation was observed from overnight cultures of TM1040, HG1016, and 

RSI02 grown in marine motility broth or 2216 broth at 30
o
C with shaking. Five to seven 

microliters of culture was spotted on a glass slide, covered with a cover slip, and observed 

with phase contrast microscope. The Nikon Optiphot microscope was used for the 

preliminary experiments where data was recorded as (+) or (-) for elongation and non-

elongation, respectively. The Olympus BX60, Qicam Fast 1394 camera, and Volocity 

software were used for detailed measurement of cell elongation. Snap shots of at least five 

fields were taken and the cell length of 50 cells of each sample were measured in Volocity 

software, using the measure tool. The statistical analysis was done by using the Newman-

Keuls multiple comparison test in GraphPad software. 

 

2.2.13 Construction of pRSI506 for complementation of flaC mutant 

In order to complement the flaC mutant and over express FlaC, flaC was amplified 

from the genome using FlaC-F primer (CAGTCCCATCCTCAGATCCACTC) and FlaC-R 

primer (GACAGGGAGGATGCATATCGTGAC) that amplifies flaC with 235 bp upstream 

and 100 bp downstream which yields a PCR fragment of 1022 bp (Fig. 6A). The PCR 

fragment was ligated into the pCR2.1 (Invitrogen, Carlsbad, CA), electroporated into E. coli 

strain DH5α and selected for kanamycin resistant colonies to obtain pRSI505 (Fig. 6B). The 

flaC fragment was digested from pRSI505 with EcoRI and ligated into pRK415 that was 

digested with the same enzyme. The ligation reaction was then electroporated into E. coli 

strain S17-1λpir, screened with X-Gal (40 µg/ml), and selected for tetracycline (15 µg/ml) 
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resistance colonies to obtain pRSI506 (Fig. 7). The pRSI506 plasmid and pRK415 (control) 

was transferred into HG1016 (for complementation) and RSI01 (TM1040 rifampicin 

resistance) (for over expression of FlaC) by biparental mating. Colonies of HG1016 with 

pRSI506 or pRK415 were selected for kanamycin (120 µg/ml) and tetracycline (15 µg/ml) 

resistance on HIASW10 (heart infusion artificial sea water 10 ppt). The colonies of RSI01 

containing pRSI506 or pRK415 were selected for rifampicin (100 µg/ml) and tetracycline (15 

µg/ml) resistance on HIASW10. The presence of pRSI506 or pRK415 in HG1016 and RSI01 

were confirmed by colony PCR (Fig. 8). The pRK415 in both HG1016 and RSI01 were 

determined by using M13 Forward (-20) primer (GTAAAACGACGGCCAG) and M13 

Reverse primer (CAGGAAACAGCTATGAC) to amplify a 100 bp band from pRK415 (Fig. 

8A and Fig. 8 B, lane 6-9). The flaC::EZ-Tn5 (3022 bp) in HG1016 and wild-type flaC (1022 

bp) in RSI01 were also amplified to confirm that the host strains were correct (Fig. 8D, lane 

8-11). The pRSI506 in HG1016 was confirmed by amplifying a 1022 bp band (representing 

flaC on the plasmid) and 3022bp (representing flaC::EZ-Tn5 on the chromosome) using flaC-

F and flaC-R primers (Fig. 8C and Fig. 8D, lane 6 and 7). The pRSI506 in RSI01 was 

confirmed by using M13 Forward (-20) and M13 Reverse primers to amplify a 1055 bp band 

containing the flaC fragment from the plasmid (Fig. 8C and Fig. 8B, lane 10-11). In addition, 

inner-ctrA-F (CGCATTCTTCTGGTCGAGGATGAT) and inner-ctrA-R primers 

(AGCACATAGCCACGGCCCC) were used to amplify a 659 bp fragment from the ctrA 

gene on the chromosome of RSI01 to confirm that is was the correct host strain (Fig. 8 D, 

lane 14 and 15).  

 

2.2.14 Construction of pRSI507 for site specific mutagenesis of flaC 

 In order to try to reconstruct the mutation in flaC, the inner region of flaC contain 

456 bp (from bp 109-564) was amplified from pRSI505 using flaC-inner-F primer 
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(AACTGCAGGATGGCCAAGGAGCGATG, underline bases are PstI over hang with 2 bp 

for enzyme binding) and flaC-inner-R primer (TCCCCCGGGATTGTAGCCCCAGACCTC 

GT, underline bases are SmaI over hang with 3 bp for enzyme binding) (Fig. 9A). After 

digesting the PCR product with PstI and SmaI, it was ligated with pK18mobsacB that was 

digested with the same enzymes. The plasmid was called pRSI507 (Fig. 9B). The pRSI507 

was electroporated into TM1040 and select for kanamycin resistant (120 µg/ml) colonies on 

HIASW. The presence of pRSI507 was confirmed by colony PCR using a pair of primers that 

one primer binds to the kanamycin resistance gene on the pRSI507 (pK18mobsac-Kan-R 

primer) and the other primer binds on the chromosome (flaC-R primer) to amplify a 1982 bp 

band (Fig. 10A and B). An internal control that amplified an internal region of ctrA (659 bp) 

from the chromosome was also included (Fig. 10B). Nine clones out of 11 contained 

pRSI507 that recombined into flaC on the chromosome (Fig. 10B, lanes 4-8, 10-12, and 14). 

One of the nine clones chosen was called RSI02.  
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FIG. 6 Plasmid map of pRSI505. (A)DNA fragment containing flaC was amplified from the 

chromosome using flaC-F and flaC-R primers and ligated into pCR2.1 TOPO. (B)The new 

plasmid was called pRSI505. 
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FIG. 7 Plasmid map of pRSI506. The DNA fragment containing flaC was digested from 

pRSI505 with EcoRI and ligated into pRK415. The new plasmid was called pRSI506 and 

used for complementation and over expression of flaC.  
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FIG. 8 Confirming presence of pRSI506 in HG1016 and RSI01. (A) Plasmid map of pRK415 

indicating the binding site of M13 Forward (-20) and M13 Reverse primers. (B) Colony PCR 

using M13 Forward (-20) and M13 Reverse primers. (C) Plasmid map of pRSI506 indicating 

the binding site of flaC-F, flaC-R, M13 Forward (-20), and M13 Reverse primers. (D) Colony 

PCR using flaC-F, flaC-R, inter-ctrA-F, and inter-ctrA-R primers.   
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FIG. 9 Plasmid map of pRSI507. (A) The inner region of flaC (456 bp), starting from bp 

109-564 of flaC, was amplified using flaC-inner-F and flaC-inner-R primer. (B) The flaC-

inner region of flaC was ligated into pK18mobsacB. The plasmid was called pRSI507.  
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FIG. 10 Confirming the presence of pRSI507 in TM1040. (A) Diagram of pRSI507 

recombined into the chromosome. The primers that were used in the colony PCR reaction are 

labeled. (B) Colony PCR of pRSI507/TM1040 clone 1-11 using pK18mobsac-Kan-R primer 

(binds on the plasmid) and flaC-R primer (binds on the chromosome) that gives a PCR 

product of 1982 bp. Primers that bind in ctrA were used as an internal control that gives a 

PCR product of 659 bp.  

(A) 
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2.2.15 Measurement of cell elongation of site specific mutagenesis of flaC (RSI02) 

Overnight cultures of RSI02, TM1040, and HG1016, grown in 2216 and marine 

motility medium at 30
o
C with shaking, were observed with phase contrast microscopy. Snap 

shots of at least five fields were taken and the cell length of 50 cells of each sample were 

measured in Volocity software, using the measure tool. The statistical analysis was done by 

using Newman-Keuls multiple comparison test in GraphPad software. 
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2.3. Results 

2.3.1. Organization of the flagellar loci 

In a recent study, we identified more than 40 Open Reading Frames (ORFs) in the 

genome of TM1040 with homology to flagellar biosynthesis genes of other bacteria (38). To 

continue this effort, we analyzed these flagellar ORFs on the TM1040 genome by genomic 

and bioinformatic approaches to provide insight into the organization and regulation of 

flagellar biosynthesis. 

The genes responsible for the structural components of the flagellum are located in 9 

loci scattered around the 3.2 mb chromosome (70), with two genes (fliY and fliC1) harbored 

on pSTM1 (823 kb megaplasmid) as two separate loci.  No flagellar biosynthetic genes were 

found on pSTM2 (131 kb plasmid) (70) or pSTM3 (130 kb plasmid) (32). Among the 9 

flagellar loci, the largest locus contains genes encoding TTSS, a C-ring component, motor 

proteins, MS-ring, P-ring, L-ring, rod components, hook, hook junction proteins, and the 

basal body protein (fliL) (Fig. 11A) (13). The novel flagellar gene flaA, previously described 

by us (65), and a homolog of C. crescentus pflI, a protein involved in flagella positioning 

(75), are also located in this locus, as are three hypothetical proteins of unknown function. 

The flagella biosynthetic genes in, this large flagella loci (Fig. 11A), are class II and class III 

genes based on C. crescentus hierarchy.  

The first operon (motB1-flgI) (Fig. 11A) are class III genes encoding for motor, hook 

junction protein, P-ring, and hook which is organized exactly like in R. sphaeroides but in S. 

meliloti the flgI and motB are in different operons (Fig. 12).  

The second operon (fliF-fliP) (Fig. 11A) contains class II genes encoding MS-ring, 

C-ring component, and TTSS. This operon has the same orientation as in R. sphaeroides 

except for fliO that is substituted with fliH, but still encodes for TTSS components (Fig. 12).  
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FIG. 11 Flagellar loci on the TM1040 genome. Two large genetic loci (indicated by (A) and 

(B)) contain most of the flagellar structural genes and two regulatory genes. The white arrows 

indicate genes that were identified by genomic analysis, the black arrows are genes identified 

by mutagenesis, and the hashed arrows indicate hypothetical proteins that were identified by 

bioinformatic methods. ORFs that overlap are indicated by lowering the position of ORF. 
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FIG. 12 Flagellar loci of R. sphaeroides (fla2 flagellar loci) and S. meliloti. The white arrow 

represent the gene in the flagellar loci. Gene with small sizes are represent by vertical lines. 
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In S. meliloti, this operon is completes different, all of the gene are in separate operons (Fig. 

12).  

The third operon contains fliL (basal body component), pflI (flagellar localization 

protein), hypothetical protein (homolog to CC_2059, down stream of pflI in C. crescentus), 

motA1 (motor), and flaA (novel flagellar gene) (Fig. 11A). This operon in TM1040 is the 

similar to R. sphaeroides except for the flaA gene of TM1040 is substituted with an unknown 

function protein (RSP_1318) in R. sphaeroides which has low homology to flaA in TM1040 

(only 29% identity) (Fig. 12). In contrast, S. meliloti has the genes in different operons, the 

motA is in same operon as fliMNG (C-ring) and fliL is in the same operon as fliP (TTSS) (Fig. 

12).  

The fourth operon (flhA-hypothetical protein) (Fig. 11A), are class II genes, that 

encode for the TTSS. This is similar to R. sphaeroides except that the operon starts with 

flgJB2 that is a rod component (Fig. 12). This is also similar in S. meliloti except that flhB is 

in a separate operon with another unknown function protein (Fig. 12). 

The fifth operon (flgB-hypothetical protein) (Fig. 11A) contains both class II and 

class III genes, encoding for  proteins that assemble into the HBB complex (basal body rod 

proteins, hook basal body component, TTSS, proximal rod, L-ring). This operon is the same 

in R. sphaeroides (Fig. 12). In S. meliloti, fliQ is in a different operon but is still associated 

with genes encoding for the hook components, and flgF is upstream of flgB, in a different 

operon (Fig. 12). 

The sixth operon contains only fliI  (Fig. 11A), class II encoding for TTSS 

component, is the same in R. sphaeroides but slightly different in S. meliloti. In S. meliloti, 

the fliI is in the same operon as flgF that encodes for the proximal rod (Fig. 12). 
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The second largest locus (Fig. 11B) contains class III and IV genes, six of these 

genes are involved in hook and filament synthesis (flgD, flgF2, flgJ, fliC3, fliK). The first 

operon (fliC3-flgF2) (Fig. 11B), class III and class IV genes, encode for the proximal rod, 

flagellin regulators, and the flagellin. This operon is the same in R. sphaeroides but in S. 

meliloti, the flagellin is in a different operon than the flagellin regulators (flbT and flaF) (Fig. 

12). The second operon on this flagellar locus of TM1040, contains flgJ (encodes for rod 

assembly protein) and an unknown function protein named flaI (Fig. 11B). R. sphaeroides 

has two flgJ, named flgJA1 and flgJA2 that are separated in different operons (Fig. 12). The 

flgJA2 operon in R. sphaeroides is the one similar to the flgJ operon in TM1040. The slight 

difference is that R. sphaeroides has a gene encoding for an unknown function protein 

downstream of flgJA2 (RSP1333) whereas in TM1040 is flaI. S. meliloti do not contain this 

operon or homologs to flgJ or flaI from TM1040. This could suggest that there are other 

flagellar proteins substituting for their function in S. meliloti. The third operon on this 

TM1040 flagella locus (Fig. 11B) contains fliK and flgD, encoding for hook length control 

and hook capping protein. This operon is the same in R. sphaeroides but in S. meliloti, these 

two genes are separated in two operons, fliK is in an operon that encodes for the motor 

proteins while flgD is in the same operon as flbT and flaF that encode the flagellin regulators 

(Fig. 12). 

Besides the two large flagellar loci shown in Figure 11A and 11B, TM1040 has other 

small flagellar loci scattered around the genome (Fig. 13).  

The motA2 locus contains a gene encoding for ChaC-like protein upstream of motA2 

and motB2 downstream in the operon (Fig. 13). This is the same in R. sphaeroides, where 

RSP2288 and RSP2289 are homologs to motA2 and motB2, respectively. For S. meliloti  
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FIG. 13 Other flagellar loci on the genome of TM1040. The white arrows indicate genes that 

were identified by genomic analysis, the black arrows are genes identified by mutagenesis. 
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flagellar loci, besides motA and motB, it has another two mot genes that encode for MotC that 

binds to motB, and MotE that functions as a chaperon for proper folding (Fig. 12) (29). 

The fliG locus contains the class II gene fliG encoding for one of the C-ring 

components (Fig. 13). When compared to R. sphaeroides using the same criterion for genes 

in an operon organization as Poggio et al. (2007) (30 bp between stop and initiation codons of 

two continuing genes in the same orientation), the fliG in TM1040 is monocistronic and is the 

same as fliG in R. sphaeroides (Fig. 12). The fliG gene in S. meliloti also seems to be 

monocistronic based on the same criteria but is downstream of fliM and fliN that encodes for 

the other C-ring component whereas fliG in both TM1040 and R. sphaeroides are separated 

from fliM and fliN, and is also separated from the main flagellar loci (Fig. 12).  

The fliM locus contains the fliM gene encoding for one of the C-ring components and 

has a transcription response regulator, response regulator receiver protein, hypothetical 

proteins, and a sensory histidine kinase protein upstream in the same operon (Fig. 13). This 

could suggests that these unknown regulators upstream of fliM could regulate fliM and 

possibly other class II genes in TM1040. Similar orientation is seen in R. sphaeroides which 

upstream of fliM (RSP_6099) is a Na
+
/solute symporter, two hypothetical proteins, and a 

transcriptional regulator. In S. meliloti, the fliM is in same operon of fliN, that encodes for the 

other C-ring component, and motA (Fig. 12). Like fliG, fliM in S. meliloti is located in same 

locus as the other flagellar genes while in TM1040 and R. sphaeroides, fliG in both species 

are separated from the other flagellar loci and the other two components of the C-ring (fliG 

and fliN).  

TM1040 has six copies of putative flagellin genes called fliC1-6. The fliC3 gene is 

located on second largest flagellar loci (Fig. 11B) upstream of the flagellin regulators flaF 

and flbT while the other five flagellins are scattered though out the genome. This suggests 

that fliC3 may be the essential flagellin that is required for filament biosynthesis. The 

flagellin loci containing fliC1 (Fig. 13) is located on pSTM1 while the other four flagellin 
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genes reside on the chromosome.  The fliC4-6 are on the same locus with in the same 

orientation but is predicted to be monocistronic based on the bp between fliC4-5 is 329 bp, 

and fliC5-6 is 262 bp (Fig. 13). The fliC2 gene is separated on another locus containing fliC2 

and mutS (encoding for a DNA mismatch repair protein) (Fig. 13). The analysis of upstream 

regions of these flagellin genes indicate that fliC1, fliC3, fliC4, and fliC5 contain putative 

ribosome binding sites suggest that they could be transcribed (AGGAACT for fliC1 and 

fliC3, AGGTGCT for fliC 4 and fliC5) (the Shine-Dalgarno sequence in E. coli is 

AGGAGGT (68)). Further analysis upstream of these genes did not reveal a σ
54

 or σ
28

 binding 

sites based on mrNrYTGGCACG-N4-TTGCWNNw (12) and TAAA-N15-GCCGATAA 

(38), respectively. In R. sphaeroides, there is only one flagellin encoding gene in fla2 

flagellar loci, called flaA, which on the pRS241A3 plasmid (80) and the gene neighborhood is 

exactly like in fliC3 operon in TM1040 (Fig. 11B and Fig. 12). This suggests that regulation 

of the fliC3 in TM1040 and flaA in R. sphaeroides should be the same. S. meliloti has four 

gene that encode flagellin, flaA-D, they are all in the same orientation on the flagellar locus 

but are transcribed separately (Fig. 12) (86). The flagellin genes are not upstream of the 

flagellin regulator like TM1040 or R. sphaeroides. Scharf et al. (2001) has demonstrated that 

flaA is the most essential flagellin and at least one more flagellin subunit is required for 

filament biosynthesis (86).  

The class I genes in TM1040 (cckA/ctrA) are separately located in different loci on 

the chromosome. The ctrA locus contains ctrA with DNA ligase (ligA) and ATP-dependent 

DNA helicase (recG) downstream, in the gene neighborhood. On the other hand, the cckA 

locus has cckA with upstream genes encoding for sun family protein, iron sulfur cluster 

binding protein, and L-canitine dehydratase/bile acid-inducible protein (Fig. 13). To my 

knowledge, the class I regulator genes for the fla2 flagellar loci in R. sphaeroides has not be 

determined (80), but base on the high similarity of the organization of the flagellar gene 

between TM1040 and R. sphaeroides, it suggests that fla2 may also be regulated by cckA and 
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ctrA homologs in R. sphaeroides, RSP_0454 and RSP_2621, respectively. The cckA locus in 

R. sphaeroides contains a gene encoding for a sun family protein, upstream like in TM1040. 

The ctrA locus of R. sphaeroides is also exactly like in TM1040. In S. meliloti, the class I 

genes are visN and visR, and are located with other flagellar gene in one large flagellar loci 

(Fig. 12) (93). The location of these class I genes is not surprising, since visN and visR seem 

more specific to flagellar biosynthesis in S. meliloti, while cckA/ctrA in C. crescentus also 

known to regulate other phenotypes associated with cell life cycle. 

The fliY locus contains fliY, a class II gene encoding for one of the TTSS 

components, with downstream genes encoding for ABC transporter permease protein and 

ABC transporter-related protein (Fig. 13). In R. sphaeroides fla2 and S. meliloti flagellar loci 

do not contain fliY, it is possible to predict other proteins are compensating for its function. 

2.3.2. Identification of flagellar genes by transposon mutagenesis 

To provide functional significance to the flagellar ORFs that I found by genomic 

analyses and to identify novel genes involved in motility, I screened a mutant library 

containing 11,284 transposon mutants for defects in swimming motility (Mot
-
). 183 Mot

-
 

mutants were identified and the sequence of 77 of these genes was determined. The data 

revealed that the transposon had inserted in 21 out 37 flagellar structural genes and two 

flagellar regulatory genes (flaF and cckA) identified previously by the genomic approach, and 

also had inserted in six novel ORFs (flaB, flaC, flaD, flaE, flaG, flaI, Table 2). Interestingly, 

among the six flagellin alleles, only mutations in fliC3 resulted in Mot
- 
colonies; no mutations 

were found in any of the other fliC genes despite observing multiple separate mutations in 

several other biosynthetic genes. This suggests that the FliC3 flagellin is critical for 

swimming motility under laboratory conditions, while the function of the other five flagellin 

genes is not know. 
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All of the mutants were nonmotile, i.e. they did not swim under any condition, with 

the exception of mutations in flaC, flaE, flaG and flaI, which are partially motile (Table 2) 

(FIG. 14). Partial motility was observed as a motile colony that has a diameter less than 

TM1040 but larger than a nonmotile colony. Relative comparison in 2216 semi-solid agar, of 

the diameter of partial motile colonies compared to TM1040 (100%) show that partial motile 

colonies are only 16-70% of the diameter of TM1040 motile colony (Table 3).  The 

interesting point of this result is that partial motility is the hallmark of mutants defective in 

chemotaxis genes but in this case, the mutation is in a response regulator (flaC), glycosyl 

transferase (flaE), Mannose 1 phosphate isomerase (flaG) and a hypothetical protein in the 

flagellar loci (flaI). It is possible that these genes could be indirectly related to chemotaxis or 

flagellar function. 

 

2.3.3. Identification of three novel regulators  

An analysis of the deduced amino acid sequence of the 3 out of 6 novel ORFs (flaE, 

flaG, and flaI), suggest that flaE functions as a glycosyl transferase, flaG is a Mannose 1 

phosphate isomerase and flaI is a hypothetical protein in the flagellar loci. The mutations in 

these three genes have partial motility (as previously mentioned).   

Most importantly, the deduced amino acid sequence analysis indicated that three 

ORFs (flaB, flaC, and flaD) encode for proteins containing regulatory domains (Table 2), 

based on the following data. 
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Table 2. Phenotype of Mot
-
 mutants.  

Predicted function 

Transposon 

insertion 

Flagellaa 

(Flagella stain) 

Flagellab 

(SDS-PAGE) 

Motility in 

broth / semi solid agar 

plate 

C-ring fliM - - -/- 

 fliG - - -/- 

Export apperatus flhA - - -/- 

 flhB - - -/- 

 fliR - - -/- 

Export ATPase fliI - - -/- 

MS-ring fliF - - -/- 

P-ring flgI - - -/- 

L-ring flgH - - -/- 

Rod flgF2 - - -/- 

 flgG - - -/- 

Hook  flgE - - -/- 

Hook-length 

control 

fliK - - -/- 

HAP flgK - - -/- 

 flgL - - -/- 

Flagellin fliC3 - - -/- 

Motor complex motA1 + + -/- 

 motB1 + + -/- 

Motor associated fliL + - -/- 

 pflI - - -/- 

 flaA + + -/- 

Regulators flaB - - -/- 

 flaC + + +c/+d 

 flaD + + -/- 
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 flaF - - -/- 

 cckA - - -/- 

Unknown function flaE + + +e /+d 

 flaG - - +e /+d 

 flaI - - -/+d 

 

a 
(+), flagella and (-), cells lack flagella

 

b 
(+), culture is motile and (-), the culture is nonmotile.

 

c
 Population of motile cells is greater than wild type. 

d
 Diameter of the colony is smaller than wild type 

e 
Population of motile cells is less than wild type. 
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Table 3. Comparison of the diameter of partial motile colonies to TM1040, in 2216 semi-

solid motility agar plates 

Diameter of motile colonies (mm) 
Relative 

Strains 

Colony1 Colony2 Colony3 Colony4 

mean SD 

Percentagea 

TM1040 (wt) 

 

27.2 27.7 28.4 30 28.33 1.22 100 

HG1101b 

(nonmotile) 

 

3.1 3.3 3.3 2.3 3 0.48 10.59 

HG1016 

(flaC) 

 

18.2 20.7 21.2 19.3 19.85 1.36 70.07 

HG1049 

(flaE) 

 

5.1 6.2 4.7 4 5 0.92 17.65 

HG1100 (flaI) 

 
15 10.1 9 21.6 11.37 3.19 40.12 

HG1122 

(flaG) 

 

4.9 4.9 4.5 4.5 4.7 0.23 16.59 

 

a
 Relative percentage of the colony diameter, compared to TM1040 

b
 Nonmotile mutant HG1101 (fliC3) is included as a negative control 
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FIG. 14 Motility in semi-solid agar. TM1040, fliC3 mutant (representing nonmotile mutants), 

and flaC mutant (representing partial motility mutants) were grown on 2216 semi-solid agar 

plates (2216 motility plates). The flaC mutant has a smaller diameter of motile colony when 

compared to TM1040. 
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The first regulator, FlaB, has an N-terminal dimerization and phosphoacceptor 

domain that is frequently associated with sensory histidine kinases (15), but lacks an apparent 

C-terminal kinase domain typically found on these proteins (Fig. 15) (15). This suggests that 

FlaB may function as a phosphorelay protein. Underscoring this possibility FlaB has low 

homology (E = 5e-7) to Caulobacter virioides ChpT (DAA06031), a protein that functions to 

transfer phosphoryl groups from CckA to CtrA (16). The gene neighborhood of flaB indicates 

that it is monocistronic, but did not provide additional information about its function (Fig. 

16). The second regulator, FlaC, is predicted to be a DNA-binding regulatory protein, as it 

contains both an N-terminal CheY-phosphoacceptor domain and a C-terminal DNA binding 

domain (Fig. 15 and Table 2) (51, 62, 78). Proteins with similar domain architecture are often 

phosphorylated by a histidine kinase, as a part of a two-component system (100). To predict 

the histidine kinase that phosphorelates flaC, the deduced amino acid sequence of flaC was 

analyzed in the STRING database (Search Tool for the Retrieval of Interacting 

Genes/Proteins) (108). The result predicted that TM1040_1263, histidine kinase homolog, 

could phosphorylate flaC. The BLAST analysis of FlaC indicated that it has close homology 

(65% identity) to CenR in C. crescentus which play a role in cell envelop biogenesis and 

structure (92). Skerker et al. (2005), reported that CenR is phosphorylated by CenK. The 

homolog of CenK was also found in TM1040, TM1040_0316 having 34% identity to CenK. 

The gene neighborhood of flaC did not provide any further evidence of the function of flaC 

nor have a gene with homology to histidine kinase (Fig. 16). Upstream of flaC is a homolog 

to ribBA gene which in S. meliloti is required for the production of riboflavin (116), and 

downstream a gene predict to be a taurine catabolism dioxygenase. The third regulator, FlaD, 

is a MarR-type DNA-binding protein with a helix-turn-helix (HTH) domain (Fig. 15 and 

Table 2) (4, 51). 
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FIG. 15 Domains of the three new regulatory proteins. SMART analysis of the deduced 

amino acid sequence of the three new regulatory proteins. FlaB contains a phosphoacceptor 

domain at the N-terminus (BLAST). The FlaC has a phosphoacceptor domain at the N-

terminus (REC) and a DNA binding domain (PFAM). FlaD contains a MarR helix turn helix 

DNA binding domain. 
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FIG. 16 Genetic loci of flaB, flaC, and flaD. Arrows white arrows represent genes in the gene 

neighborhood and the black arrow represent flaB, flaC, and flaD. 
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The genes neighboring flaD suggest that flaD is in a operon of three genes, TM1040_1733, 

TM1040_1732 and flaD, with TM1040_1733 encoding a transcriptional regulator of the XRE 

family (112) and TM1040_1732 encoding a hypothetical protein (Fig. 16). 

 

2.3.4. Flagella are synthesized by some Mot
-
 mutants 

In Salmonella and other bacteria, defects in motA or motB result in the synthesis of 

nonfunctioning, paralyzed flagella (17, 18). Since motA1 and motB1 were mutated in our 

study, we hypothesized that these mutants, while nonmotile, still produced flagella. Using a 

combination of light and electron microscopy (Table 2) and SDS-PAGE (Fig. 17) (Materials 

and Methods), we found that strains with defect in motA1, motB1, fliL, flaA,  flaD, or flaE 

have flagella, but do not swim (Table 2 and Fig. 17). Since motA1, motB1, fliL, flaA, flaE, 

and flaD are non-motile (Table 2) but still have flagella, this suggests that the flagella are 

paralyzed. Supporting these data, the EM of motB1 mutant shows the present of a flagellum 

at the cell pole of the motB1 mutant (Fig. 18B) (kindly provided by Dr. Shin-ichi Aizawa,  

CREST Soft Nano-Machine Project, Innovation Plaza Hiroshima, 3-10-23 Kagamiyama, 

Higashi-Hiroshima 739-0046, Japan). In addition, mutation in flaD, motA1 and flaA seem to 

produce less flagellin that TM1040. This shows that mutation in flaD has the same affect on 

motA1 and flaA supporting the prediction that flaD is a regulator for the motor complex 

genes. Flagellin were not detected in the flaE mutants despite observation from a light 

microscope, perhaps indicating that the mutation has reduced expression of flagellin. Flagella 

were not detected in the remaining 22 mutants. 
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FIG. 17 SDS-PAGE detection of flagellin. Flagella of TM1040 and mutants were 

precipitated with Polyethylene Glycol and loaded onto 15% SDS-PAGE gel for detection of 

flagellin. The upper band migrates at ca. 34 kDa band while the lower is 32 kD. The non-

flagellated mutants did not show any bands but the amount of proteins were still measurable 

may be due to small peptides from the medium left over during the precipitation process 

which migrated off the SDS-PAGE.  
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FIG. 18 Electron microscopy of TM1040, motB1, flaC, and fliC3 mutants. (A) TM1040 cell 

pole with four polar flagella, (B) motB1 mutant with one flagellum still attached to the cell 

pole, (C) flaC mutant with a single flagellum attached to the cell pole, (D) fliC3 with no 

flagella at the cell pole (image provided by Dr. Shin-ichi Aizawa, CREST Soft Nano-

Machine Project, Innovation Plaza Hiroshima, 3-10-23 Kagamiyama, Higashi-Hiroshima 

739-0046, Japan). 

(A) (B) 

(C) (D) 

100 nm 100 nm 

200 nm 100 nm 
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During these studies, it became evident that two flagellin bands of 32 and 34 kDa 

were consistently observed in SDS-PAGE of those strains that synthesized flagella (Fig. 17). 

This was unexpected, since the mean molecular weight of FliC is 28.925 kDa and only FliC3 

(29 kDa) (Fig. 19) appears to be essential for motility. One hypothesis for the presence of two 

bands is that another flagellin is expressed and assembled into the filament, most likely is 

fliC1 because it has the most similarity to the promoter region of fliC3 (Fig. 20). The second 

hypothesis is that the lower band is a degradation product of the upper band. The hypothesis 

of the for an increase in size of flagellin on SDS-PAGE is that the flagellin is modified via 

glycosylation. Further experiments are required to support this hypothesis.  

2.3.5. Mutation in flaC bias the cell towards the motile phase  

In analyzing the relative abundance of flagellin obtained from the various mutants, it 

became apparent that defects in flaC resulted in a ca. 2 fold increase, measured by band 

intensity, in the amount of flagellin produced compared to wild-type (Fig. 17). Even though 

the amount of total protein loaded is known but the real amount of each band can not be 

accurately estimated because the samples contain tryptone from the medium. Therefore, the 

intensity of the flagellin bands were measured by using the normalization function in 

ImageQuant software. This gives a relative value of 1 to the 34 kDa band of TM1040 and 

calculates in comparison to other bands. The result showed that if the 34 kDa band of 

TM1040 is 1, then TM1040 32 kDa is 0.5, and for flaC mutant the 34 and 32 kDa band is 1.6 

and 1 respectively. This suggests that the amount of flagellin in flaC mutant has increased 

when compared to TM1040. There are two other phenotypes that coincided with the increase 

in FliC and provide hints about the function of FlaC. First, although initially scored as 

nonmotile, flaC cells are in fact poorly motile when grown in semi-solid agar media, taking 

much longer than TM1040 to swim outwards (Fig. 21). When calculating the expansion rate 

of the motile colony of from Figure 21 indicated that TM1040, flaC, and fliC3 had 1.75, 1,  
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FIG. 19 Flagellins of TM1040. The figure shows structural domains, size and molecular 

weight of all six flagellins (FliC1-6) of TM1040. The domains were generated by using 

SMART website (51) and the molecular weight was calculated by Vector nti suite software. 

The average molecular weight of FliC is 28.925 kDa. 
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PRO-FLIC1       TGTGGATTTGACT-----CAGATTTTCGGG--AGCGAGGCTTTGCAGAATTTTGC-GCGA 

PRO-FLIC3       AAAGGGTCTGGATGTCTACAATCGTTCGGGTCAGCGGACC-------AGCTTTGCCACCA 

                   ** * **  *     **    ******  ****   *       *  *****  * * 

 

PRO-FLIC1       TAGATGTTGCGCGCGCGACAGGGG-GCAAGTTGCCGTTCTGCGCAATTTGACTCGCATTT 

PRO-FLIC3       CGGGCAGC-CTCAAACTAGAGAAGCGCGCCTAACGGTTTTGG--AGGTCGGGACA-ATTT 

                  *      * *   * * **  * **   *  * *** **   *  * *   *  **** 

 

PRO-FLIC1       TAGACATATACGCCGACATT-TTAGCTCTTCATTAGCATCCT-CGCGTCAAGAGTTGGCC 

PRO-FLIC3       TAAAAATGCAAATTG-CACCATTAGCACTCTCTTAGCATCTAATACGGCAAT-GTCACCT 

                ** * **  *    * **   ***** **   ********     ** ***  **   *  

 

PRO-FLIC1       TGCATCTT-ATTGAGTTTGTTGTGGAGGCCGAAGTGCCCCGCACGTTCAGAAAGACGAGA 

PRO-FLIC3       TGCATCTCGAGCGAGGTGGC-GCGGATACCGCAAGGTGAAGCACGGTCAGAATGACGACA 

                *******  *  *** * *  * ***  *** *  *    ***** ****** ***** * 

 

PRO-FLIC1       GAGAACACCCCATAATGGGGGAAAGGG--AATATATC-GGGGCCAAAGTGCTCCTTGCTC 

PRO-FLIC3       GAGAGAGCTCCGGTATCGGAGCTGGGATTACCAAATCAGGGGCTAAAGCGCTCCA-AATC 

                ****   * **   ** ** *   **   *  * *** ***** **** *****    ** 

 

PRO-FLIC1       AAAGGAACTCATGCT 

PRO-FLIC3       AAAGGAACTCATGCT 

                *************** 

 

 

 

FIG. 20 Alignment of upstream region of fliC 3 and fliC1. The upstream region of fliC3 and 

fliC1 (300 bp upstream from start codon) was used to do a ClusterW alignment in 

http://www.ch.embnet.org/software/ClustalW.html. Asterisks indicates identical bases.  
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FIG. 21 Motility of TM1040 and flaC mutant (HG1016) in semi-solid agar plate. Transposon 

insertion in flaC has partial motility in semi-solid agar at 30
o
C. Diameter of motile colonies 

measured from 0-24 hrs. Symbols: TM1040 (■), flaC mutant (�), and fliC3 mutant (▲). 
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and 0.07 mm/hr suggesting an approximately 2 fold decrease in swimming rate in semi solid 

agar, of flaC when compared to TM1040. Second and quite unexpected, when grown in 2216 

broth, flaC population had many more motile cells than wild-type (Table 4). There are ca. 3 

times more motile cells in the flaC population than in the TM1040 population (20.85% vs. 

7.24% motile cells, Table 4) and ca. 2 times less cells in rosettes (14.47% vs. 30.03%, Table 

4).  Other phenotypic analysis indicate that pigment (Fig. 22A), antibiotic synthesis (Fig. 

22B), and biofilm formation (Fig. 23) are also defective in the FlaC
-
 strains. Regarding the 

biphasic life is determined by motile stage cells are small, highly motile and chemotaxtic 

cells while in sessile stage, cell form rosettes, biofilm, pigment production and antibiotic 

production. The FlaC
-
 phenotypes suggest that FlaC may be involved in the biphasic switch 

between motility and sessility in TM1040.  

 

2.3.6. Motility defects also alter the cell surface 

 We also noted that several of the Mot
-
 mutants displayed unusual characteristics, 

e.g., clumping and biofilm formation, suggesting that the mutation may have resulted in a 

change in outer surface properties. We assessed changes to the cell surface by addition of the 

dye Congo Red (CR) to 2216 agar, followed by observation of the binding of the dye to the 

resulting colony (27). Although most of the Mot
-
 mutants were wild-type in CR binding, 

there were notable exceptions (Fig. 24). FlaC defects resulted in increased CR binding (Fig. 

24) and decrease in biofilm formation (Fig. 23). This result that may be anticipated by the 

postulated role of the protein in involved in the biphasic switch. Mutations in flaC are 

therefore pleiotropic and affect the outer surface of the bacteria in addition to motility, 

pigment- and antibiotic-production. 
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FIG. 22 Defects in flaC result defect in pigment production and antibiotic prodution. (A) 

Pigment production. Mutation of flaC also results in a severe decrease in the yellow-brown 

extracellular pigment. (B) Antibiotic activity. A well-diffusion assay with Vibrio anguillarum 

as a tester strain (12) was used to detect antibiotic activity, demonstrated by a zone of 

clearing around the well containing the cell-free culture supernatant. Mutation of flaC results 

in a ca. 25% decrease in antibiotic during static growth compared to the controls. Symbols: 

TM1040 static culture (■), fliC3 static culture (▲), flaC static culture (�). 
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FIG. 23 Biofilm formation. Mutation in flaC showed defect in biofilm production when 

compare to TM1040 (wt). (A) Biofilm of TM1040 (left) and flaC mutant (right) on the test 

tube. (B) Bar graph of OD560nm reading of CV eluted from the biofilm. 
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Table 4. Comparison of % motile cells and % cells forming rosettes of TM1040 and flaC 

 

 

 

 

 

 

 

a 
Mean of % motile cells ± SD 

b 
Mean of % cells forming rosettes  or % non-motile single cells, ± SD  

c 
Means are statistically different based on unpaired t-test (95% CI, P-value < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strains
 

% Motile cells
a c % Cells forming 

rosettes
b c 

% non-motile 

single cells
b 

TM1040 7.24 ±4.66 30.03 ±12.75 62.73 ±11.73 

flaC 20.85 ±9.01 14.47 ±13.61 64.68 ±9.27 
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FIG. 24 Detection of outer cell surface changes. Congo Red binding. Mutations in flaC 

shows increase binding of dye compared to wild type and fliC3 indicating a change in outer 

surface properties.  
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2.3.8. Mutation in flaC is not defective in chemotaxis 

 One of the phenotypes of the flaC mutant mentioned previously, is that it has partial 

motility in semi-solid agar when compared to TM1040. This phenotype is also seen in some 

type of mutants with defects in chemotaxis. Therefore, the chemotaxis of the flaC mutant was 

tested in a basal medium containing 10 mM attractant, as described in Materials and Methods 

(Fig. 25). The result showed that the flaC mutant has wild-type response to all the attractants, 

suggesting that the mutation in flaC did not affect chemotaxis of the mutant.  

 

2.3.9. Mutation in flaC has filamentous cells 

 Another phenotype of flaC is that it produces elongated cells with blebs, when grown 

in Marine motility medium (Fig. 26). As previously mentioned that FlaC has high homology 

to CenR in C. crescentus, the cell elongation and bleb formation phenotype seen Fig. 26 of 

the flaC mutant correlates with the mutation in CenR (92).  In contrast, mutation in cenR is 

also lethal (92), while flaC is not. These data along with the bioinfomatic analysis of flaC, 

previously mentioned, supports the idea that FlaC functions similar, but not the same, as 

CenR because of the lethality of the mutation in cenR. 

The major difference in between 2216 broth and marine motility medium is the 

amount of nutrients. The 2216 broth has 0.5% peptone with 0.1% yeast extract while marine 

motility medium has only 0.1% peptone. Therefore, a preliminary experiment was performed 

to test the hypothesis that cell elongation in the flaC mutant is a response to decrease amount 

of nutrients. The preliminary experiment observed the population of cell elongation in marine 

motility broth supplemented with 1-0.0156% peptone in comparison to 2216 broth. 
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FIG. 25 Chemotaxis plate assay. Marine motility plate containing 10 mM of attractant [(A) 

Methionine, (B) Valine, (C) Alanine, (D) Phenylalanine, (E) acetate, (F) Glycine, (G) 

Succinic acid, (H) Fumarate, (I)  malic acid] were inoculated with TM1040 (left colony) and 

flaC mutant (right colony) from the periphery of a motile colony and incubated at 30
o
C for 2 

days.  
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FIG. 26 Filamentous cells of the flaC mutant. Phase contrast microscope images of TM1040 

(wt) and the flaC mutant grown in Marine motility broth at 30
o
C with shaking overnight. The 

flaC mutant forms filament-like cells. 
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The result showed no difference in population of elongated cells in the various concentrations 

of peptone which disagrees with the hypothesis (Table 5). To investigate the affect of growth 

phase on the population of elongated cells, cultures of flaC mutant grown in marine motility 

medium supplemented with 0.5% peptone and 0.5% peptone+0.1%yeast extract (to mimic 

2216) was observed for the population cells elongation compared to cultures grown in 2216 

(as described in Material and Methods). In addition, another set of samples was observed in 

25
o
C in comparison with 30

o
C to see the affect of temperature on the population of elongated 

cells. The result showed that 0-2 hrs the population of elongated cells were less than half of 

the cell population in all media in both 25C and 30C (Table 6). During this time, the reason 

for elongated cells of flaC mutant in 2216 is probably that the initial inoculum came directly 

from 2216 agar plate (Table 6). After 3 hrs of incubation, half of the cultures grown in 0.5% 

peptone and 0.5%peptone+0.1% yeast extract were elongated cells, in both temperature 

(Table 6). The population of elongated cells remains approximately half of the total 

population throughout the experiment (8 hr) (Table 6). This suggests that cell elongation 

correlates to cell growth. In addition, it also supports the idea that the cells could be defective 

in cells division because the population the elongated cells did not increase, beyond half of 

the population, at time points later than 3 hr (Table 6). The temperature between 25C and 

30C does not seem to have any effect on the cell elongation (Table 6).  
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Table 5. Comparison of cell elongation in various concentration of peptone 

 

 

Percent peptone supplemented in marine motility medium 
Strains 2216 

1% 0.5% 0.25% 0.125% 0.0625% 0.0156% 

TM1040 a - - - - - - - 

flaC a + ++++ ++++ ++++ ++++ ++++ ++++ 

 

a
 The population of elongated cells estimated by eye, where cultures with no elongated cells 

are represented by  (-) and cultures containing elongated cells are represented by (+). The 

cultures that contain distinguishable high amount of elongated cells when compared to the 

control in 2216 are represented by (++++).  
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Table 6. Comparison of cell elongation during growth at 25
o
C and 30

o
C 

 

Time of incubation 

flaC cultures 

Incubation 

temperature 0 hr 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8hr 

2216 25oC 
+ + 

- 
- - - - - 

Peptonea 

25oC + + ++ ++ ++ ++ ++ ++ 

Peptone+ yeastb 

25oC + + ++ ++ ++ ++ ++ ++ 

          

2216 30oC 
+ + - - - - - - 

Peptonea 

30oC + + ++ ++ ++ ++ ++ ++ 

Peptone+yeastb 

30oC + + ++ ++ ++ ++ ++ ++ 

 

a
 Marine motility broth supplemented with 0.5% peptone 

b
 Marine motility broth supplemented with 0.5% peptone + 0.1% yeast extract 
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2.3.10. Complementation of flaC mutant (HG1016) and over expression of FlaC 

 The first phenotype examined was pigment production. Spent medium of overnight 

cultures of pRSI506/HG1016 (complement), pRK415/HG1016 (control), pRSI506/RSI01 

(FlaC over expression), pRK415/RSI01 (control) grown at 30
o
C with shaking, were measure 

at OD389 nm for pigment production. Spent medium of HG1016 and RSI01, grown in the same 

condition, were used to blank the spectrophotometer for HG1016 strains and RSI01 strains 

respectively. The result shows that pRSI506/HG1016 (complement), pRK415/HG1016 

(control), pRSI506/RSI01 (FlaC over expression) did not rise above zero, indicating no 

pigment production above HG1016 (Table 7). The pRK415/RSI01 (control) seems to have 

slight increase to OD398nm to 0.0894, which is most likely background because this strain is a 

control (Table 7).  

 Antibiotic production of flaC complementation and over expression strain were also 

observed. Spent medium of static cultures of pRSI506/HG1016 (complement), 

pRK415/HG1016 (control), pRSI506/RSI01 (FlaC over expression), pRK415/RSI01 (control) 

grown at 30
o
C for 2 days in 2216 broth, were used in a well diffusion assay (Material and 

Method).  TM1040, RSI01, and HG1016, grown in the condition, were also used a controls. 

The result of the inhibition zone showed that pRSI506/HG1016 had a slightly larger diameter 

of inhibition zone (21.9 mm) than pRK415/HG1016 (control) (19.9 mm) and HG1016 (18.1 

mm), but is still not as large as TM1040 (33 mm) (Table 8). The slight increase of 2 mm in 
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Table 7. Pigment production of flaC complementation and FlaC over expression strains 

 

 

 

 

 

 

 

 

 

 

Strains OD398nm 

pRK415/HG1016 -0.0080 

pRSI506/HG1016  -0.0043 

pRK415/RSI01 0.0894 

pRSI506/RSI01 -0.0047 
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Table 8. Antibiotic production of flaC complementation and FlaC over expression strains 

 

 

 

 

 

Strains Inhibition zone (mm) 

TM1040 33 

HG1016 18.1 

pRK415/HG1016 19.9 

pRSI506/HG1016  21.9 

  

RSI01 31.5 

pRK415/RSI01 32.2 

pRSI506/RSI01 32.7 
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inhibition could be due background. This suggests that pRSI506 did not complement the 

antibiotic production defect in HG1016. For the overexpression of FlaC by pRSI506/RSI01 

had similar diameter of inhibition zone as pRK415/RSI01 (control), RSI01, and TM1040 

(32.7, 32.2, 31.5, and 33 mm, respectively) (Table 8). This suggests that either of over 

expression FlaC is not effecting antibiotic production or FlaC is not expressing from the 

pRSI506 plasmid. 

  Motility of flaC complementation and overexpression strain was observed in 2216 

semi-solid agar (Materials and Method). Cultures of pRSI506/HG1016 (complement), 

pRK415/HG1016 (control), HG1016, and TM1040 were inoculated in same 2216 semi-solid 

agar plate. Another set of cultures, pRSI506/RSI01 (FlaC over expression), pRK415/RSI01 

(control), RSI01, and TM1040 were inoculated another 2216 semi-solid agar. Each set of 

plates had four replicates and were incubated at 30
o
C for 2-3 days. The diameter of motile 

colonies was measured which the result showed that pRSI506/HG1016 (6.78 mm) had similar 

diameter to HG1016 (5.45 mm) and below the pRK415/HG1016 control (12.2 mm) (Table 

9). This suggests that pRSI506 is not complementing the motility defect in semi-solid agar of 

HG1016. The FlaC over expression strain, pRSI506/RSI01 (24.05 mm), had similar 

diameters to all of the controls (21.43, 25.38, and 22.18 mm for TM1040, RSI01, and 

pRK415/RSI01, respectively) (Table 9).  The result suggests that FlaC over expression is not 

affecting motility in semi-solid agar or FlaC is not expressing from pRSI506.  

 Motility of flaC complementation and over expression strain were also observed in 

2216 broth. The population of motile cells from overnight cultures of pRSI506/HG1016 

(complement), pRK415/HG1016, pRSI506/RSI01 (FlaC overexpression), TM1040, RSI01, 

and HG1016 grown in 2216 broth at 30
o
C with shaking, was observed with phase contrast 

microscopy (Materials and Methods). The result shows that pRSI506/HG1016 had the same 

population of motile cells as HG1016 and pRK415/HG1016 (Table 10). This suggests that 

the pRSI506 did not complement the high population of motile cells of HG1016.  
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Table 9. Motility in 2216 semi-solid agar of flaC complementation and FlaC over expression 

strains, at 30
o
C 

 

 

 

 

 

Diameter of motile colony (mm) 

Strains 

Colony 1 Colony 2 Colony 3 Colony 4 

mean SD 

TM1040 23.5 15.1 20.5 12.8 17.98 4.9 

HG1016 4.1 7.8 6.2 3.7 5.45 1.91 

pRK415/HG1016 12.1 15 10.3 11.4 12.2 2.01 

pRSI506/HG1016  8.2 5.3 8.1 5.5 6.78 1.59 

       

TM1040 20.4 24.5 22 18.8 21.43 2.43 

RSI01 29.3 28.9 22 21.3 25.38 4.31 

pRK415/RSI01 17.1 24.5 23.6 23.5 22.18 3.41 

pRSI506/RSI01 29.9 23.3 23.2 19.8 24.05 4.23 
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Table 10. Observation of population of motile cells in flaC complementation and FlaC over 

expression strains 

 

 

 

 

Strains Observation of motile cell population 

HG1016 ++++ 

pRK415/HG1016 ++++ 

pRSI506/HG1016  ++++ 

  

TM1040 ++ 

RSI01 ++++ 

pRSI506/RSI01 ++ 
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In contrast, it is also possible that the experiment was not quantitative enough to distinguish 

the difference between samples and control. The population of motile cells for 

pRSI506/RSI01 (over expression) was the same as TM1040 (Table 10). Unexpectedly, the 

RSI01 had about twice the amount of motile cells of TM1040 (Table 10).  This could suggest 

that the spontaneous mutation in RSI01 may have indirectly affected the population of motile 

cells in broth. Even though the pRSI506 seems to reduce the amount of motile cells of RSI01 

to the same level as TM1040, due to this unexpected result from RSI01, it is not clear weather 

over expression of FlaC had affect on the same pathway that caused increase of motile cells 

in HG1016.  

 Cell elongation of flaC complement strain in Marine motility medium was also 

observed. The population of elongated cells from overnight cultures of pRSI506/HG1016 

(complement), pRK415/HG1016 (control), TM1040, and HG1016 grown in marine motility 

medium at 30
o
C with shaking, was observed with phase contrast microscopy (Table 11). The 

population of the elongated cells was estimated by eye. The result shows pRSI506/HG1016 

had the same amount of elongated cells as pRK415/HG1016 and HG1016, while TM1040 did 

not elongate. This suggests that pRSI506 did not complement the elongation phenotype in 

HG1016.  
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Table 11. Cell elongation of flaC complementation. 

 

 

 

 

Strains Observation of cell elongation population 

TM1040 - 

HG1016 ++ 

pRK415/HG1016 ++ 

pRSI506/HG1016  ++ 
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2.3.11. flaC mutation via site specific recombination 

 Cell elongation was observed and the cell length of the RSI02 were compared to 

TM1040 and HG1016, in 2216 and marine motility broth (described in Material and 

Methods). The result shows that in marine motility medium, TM1040 cells (1.596 µm) does 

not elongated but HG1016 (5.813 µm) and RSI02 (6.208 µm) elongates (Fig. 27 A). Base on 

Newman-Keuls multiple comparison test, TM1040 is significantly different from RSI02 and 

HG1016, while RSI02 and HG1016 cells length are not significantly different. In 2216, 

TM1040 and HG1016 do not elongate while RSI02 cells are elongated (Fig. 27B). The statics 

analysis base on Newman-Keuls multiple comparison test, indicate that the average cell 

length of TM1040 (1.615 µm) and HG1016 (1.773 µm) are not significantly different in 2216 

broth, but RSI02 (8.557 µm) is significantly different from both strains (Fig. 27B). This 

unexpected result leads to hypothesize that genotype of HG1016 and RSI02 are different. 

One possible explanation is that there is another mutation in HG1016.  

  Motility analysis of RSI02 in 2216 semi-solid agar was observed in comparison to 

HG1016 and TM1040. Cultures of RSI02, TM1040 and HG1016 were inoculated in the same  

2216 semi-solid agar and incubated at 30
o
C for 3 days. Triplicates were made in order to find 

the average diameter of each motile colony. The result shows that RSI02 has a flare-like 

motile colony with an average of 2.7 mm while HG1016 has a partial motile colony with an 

average of 20.7 mm when compared to TM1040 (32.3 mm) (Fig. 28). This result further 

supports the idea that RSI02 is not the same as HG1016. The same explanation mention 

above can be used to explain this result, that is, HG1016 could have a second mutation.  

Since originally HG1016 was screened as a nonmotile mutant, it is also possible that the 

original stock of HG1016 contains two types of strains, one partially motile and the  
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FIG. 27 Comparison of cell elongation of RSI02 to TM1040 and HG1016. Phase contrast 

microscopy of RSI02 compared to TM1040 and HG1016, grown in (A) marine motility broth 

and (B) 2216 broth at 30
o
C with shaking overnight. The scale bar at the lower left corner  

equals to 4.5 µm.  
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FIG. 28 Motility of RSI02 on 2216 semi solid agar compared to TM1040 and HG1016. 

Cultures of TM1040, HG1016, and RSI02 were grown on 2216 semi-solid agar for 3 days at 

30
o
C.  
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other is nonmotile or produces a very small flare-like motile colony during long incubation 

time. 
 

2.3.11. The second transposon in the flaC mutant 

 After an unsuccessful attempt to complement the flaC mutant and the observation of 

unrelated phenotypes between HG1016 and RSI02, which further supports the idea that 

HG1016 has a second mutation, a thorough examination was conducted to confirm the 

mutation in HG1016. The HG1016 was originally rescue cloned using NcoI to digest the 

chromosome followed by self-ligation and electroporation into E.coli DH5αλpir (Preston 

Miller, intern). The rescue cloning of the flaC mutant was repeated in order to confirm that 

only one transposon exists in its genome. A slight modification was made by substituting 

NcoI with SmaI to digest the chromosome. This modification should not affect the out come 

because both enzymes do not digest within the EZ::Tn5 transposon. After the rescue clone 

process, 10 rescue plasmids were analyzed by linearizing the plasmid with SmaI and the size 

were compared to the SmaI fragement containing flaC including the size of the transposon 

(4,788 bp).  Unexpectedly, the result of the restriction analysis did not show any plasmids 

containing a 4,788 bp band, instead, a 9,568 bp band was observed in all 10 clones (Fig. 

29A), suggesting that the transposon is not in flaC. In argument with this idea, the flaC::EZ-

Tn5 transposon fragment was successfully amplified from a colony of HG1016 (flaC
-
) using 

primers flanking the flaC allele (Fig. 29B and C), meaning that the transposon was definitely 

inserted in flaC.  Therefore, this leads to hypothesize that two transposons are present in  
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FIG. 29 PCR of flaC::EZ-Tn5 fragment and restriction analysis HG1016 rescue clone 

plasmid. (A) Restriction analysis of 10 rescue clone plasmids (lane 2-11) from rescue cloning 

HG1016 (flaC
-
), using SmaI digest. (B) Colony PCR from TM1040 (lane 2) and HG1016 

(flaC
-
) (land 3) using primers flanking flaC gene. (C) Diagram of flaC::EZ-Tn5 fragment and 

primer binding site used to amplify flaC::EZ-Tn5 fragment in (B).  

 

 

(A) (B) 

(C) 
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HG1016 (flaC
-
), one in flaC and a second transposon in a different location on the genome. 

Sequence analysis of the unexpected 9568 bp band revealed that the second transposon was 

inserted in TM1040_3871 encoding for β-glucuronidase on the pSTM2 (Fig. 30). This 

enzyme is classified as glycoside hydrolases that hydrolyzes glucuronides (28). It is still 

unclear whether the mutation in β-glucuronidase is contributing to the phenotypes seen in 

HG1016 but the gene neighborhood indicates a GntR-like regulator down stream of the β-

glucuronidase gene (Fig. 30). It makes sense to suggest that there is a polar effect affecting 

transcription of the GntR-like protein, which could have direct or indirect effect towards the 

multiple phenotypes seen in HG1016.  The finding of this second transposon supports the 

idea of a second mutation in HG1016 that would explain the different phenotype between 

RSI02 and HG1016. As for the failure to complement HG1016, it is most likely that flaC on 

the pRSI506 was not transcribed because no affect was seen in over expression of flaC 

(pRSI506/RSI01) from the phenotypes that were observed.   

The hypothesis to explain the lose of the rescue clone plasmid containing the 

flaC::EZ-Tn5 fragment (4,788 bp), is that a mutation occurred on the kanamycin resistance 

gene on the transposon and caused the lose of the clone during selection on kanamycin. By 

sequencing the transposon from the PCR production containing flaC::EZ-Tn5 revealed a 

point mutation that changed the Glutamic acid at position 269 (full length is 272 aa) to 

Glycine (Fig. 31). The Glu269 is one of the kanamycin binding sites at the C-terminus of the 

aminoglycoside phosphotransferase (Kan
r
) (103). Mutation in this position may have caused 

a defect in kanamycin resistance resulting in the lost of the flaC::EZ-Tn5 rescue clone 

plasmid. 

 In addition, by re-streaking the original -80
o
C stock, further clarified the situation by 

the presence of two types of colonies, one type has dark pigment while the type has lighter 

pigment. The lighter pigment colony looks like the same type used in this work that is  
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FIG. 30 β-glucuronidase operon. The second transposon in HG1016 inserted in the β-

glucuronidase gene (black arrow) on pSTM3. Besids the β-glucuronidase gene this operon 

contains a gene that encodes for TRAP dicarboxylate transpoter, upstream and has genes 

encoding GntR family transcriptional regulator and mannose dehydratase, downstream, 

respectively.  
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FIG. 31 Mutation in kanamycin resistant gene in EZ-Tn5 transposon. Point mutation in the 

kanamycin resistant gene changed Glutamic acid at position 269 (full length is 272 aa) to 

Glycine. 
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represented as HG1016 in this thesis. This would explain why the initial rescue clone 

succeeded.  

 

2.3.12. Distribution of the flagellar genes among the Roseobacter clade  

The genomes of the sequenced and annotated species of Roseobacter currently 

available in the database were searched for homologs to TM1040 flagellar genes (Table 12). 

Overall, flagellar genes are well conserved amongst the roseobacters, emphasizing that most 

species are motile (21). For example, nearly 80% (11 out of the 14) of the Roseobacter 

genomes analyzed possess homologs of the C-ring, MS-ring, export apparatus, L-ring, P-ring, 

rod, hook, hook associate proteins, filament and regulators proteins (flaF, flbT, flaB, flaC and 

flaD) found in TM1040. Only six species (Jannaschia sp. CSS1, Silicibacter pomeroyi DSS-

3, Sagittula stellata E-37, Oceanicola granulosus HTCC2516, Roseovarius sp. HTCC260, 

and Roseovarius sp. TM1035) have homologs to fliL, pflI and flaA. This is interesting 

because these genes are proposed to encode proteins that function to stabilize, localize, or 

energize the filament. FliL is proposed to function in surface sensing in Proteus mirabilis 

(13) and withstand torsional stress in Salmonella enterica (9).  

PflI plays a role in correct localization of flagellum to the cell pole (75). The flaA 

gene is located in the same cluster as motA1 (Fig. 11A), suggesting that it may be required for 

flagellar rotation. In contrast, Roseovarius nubinhibens ISM and Rhodobacterales bacterium 

HTCC2654 lack homologs to most of the flagellar genes found in TM1040. Roseovarius 

nubinhibens ISM is motile (33) which implies that it may use alternative proteins or 

mechanisms to swim.  
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Table 12. Comparison of TM1040 flagellar genes with other Roseobacter clade genomes
a
.  

 

P
re

d
ic

te
d

 f
u

n
ct

io
n

 

T
M

1
0
4

0
 

J
a

n
n

a
sc

h
ia

 s
p
. 

 s
tr

a
in

 C
S

S
1

 

R
o

se
o
va

ri
u

s 
n

u
b

in
h

ib
en

s 
IS

M
 

S
il

ic
ib

a
ct

er
 p

o
m

er
o

yi
 D

S
S

-3
 

S
u

lf
it

o
b
a

ct
er

 s
p
 E

E
-3

6
 

S
u

lf
it

o
b
a

ct
er

 N
A

S
-1

4
.1

 

S
a

g
it

tu
la

 s
te

ll
a

ta
 s

tr
a

in
 E

-3
7

 

L
o
k

ta
n

el
la

 v
es

tf
o

ld
en

si
s 

st
ra

in
 S

K
A

5
3

 

O
ce

a
n

ic
o

la
 b

a
ts

en
si

s 
st

ra
in

 H
T

C
C

2
5

9
7

 

O
ce

a
n

ic
o

la
 g

ra
n

u
lo

su
s 

st
ra

in
 H

T
C

C
2

5
1
6

 

R
h

o
d

o
b
a

ct
er

a
le

s 
b

a
ct

er
iu

m
 H

T
C

C
2
6

5
4

 

R
o

se
o
b
a

ct
er

 s
p

. 
M

E
D

1
9
3

 

R
o

se
o
va

ri
u

s 
sp

. 
st

ra
in

 2
1

7
 

R
o

se
o
va

ri
u

s 
sp

. 
st

ra
in

 H
T

C
C

2
6
0
1

 

R
o

se
o
va

ri
u

s 
sp

. 
T

M
1
0

3
5

 

C-ring fliM + + +   + +  + + + + + + 

 fliN   + + + +  + +   + + + 

 fliG + + +   + +  + + + + + + 

 fliY + + + + + + + + + + + + + + 

Export apparatus flhA +  + + + + + + +   + + + 

 flhB +  + + + + + + +   + + + 

 fliO +  +   +   +   + + + 

 fliP +  + + + + + + +   + + + 

 fliQ +  + + + + + + +   + + + 

 fliR +  + + + + + + +   + + + 

Export ATPase fliI + + + + + + + + + + + + + + 

MS-ring fliF +  + + + + + + +   + + + 

MS-ring rod junction fliE +  + + + +  + +  + + + + 

P-ring flgI +  + + + + + + +   + + + 

Chaperon of P-ring protein flgA +  + + + + + + +   + + + 

L-ring flgH +  + + + + + + +   + + + 

Rod flgB +  + + + +  + +  + + + + 

 flgC +  + + + + + + +  + + + + 

 flgF1 +  + + + + + + +   + + + 

 flgF2 +  + + + +  + +  + + + + 

 flgG +  + + + + + + +  + + + + 

 flgJ + + +   + +  + + + + + + 
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Hook-capping protein flgD + + + + + + + + + + + + + + 

Hook  flgE +  + + + + + + +  + + + + 

Hook-length control fliK + + +   + +   + + + + + 

HAP flgK +  + + + + + + +  + + + + 

 flgL +  + + + +  + +   + + + 

flagellin fliC1 +  + + + + + + +  + + + + 

 fliC2 +  + + + + + + +  + + + + 

 fliC3 +  + + + + + + +  + + + + 

 fliC4 +  + + + + + + +  + + + + 

 fliC5 +  + + + + + + +  + + + + 

 fliC6 +  + + + + + + +  + + + + 

Motor complex motA1 +  + + + +  + +    + + 

 motA2 + + + + + + + + + + + + + + 

 motB1 +  + + + +  + +  + + + + 

 motB2 + + + + + + + + + + + + + + 

Motor associated fliL +  +   +   +    + + 

 pflI +  +   +   +    + + 

 flaA +  +   +   +    + + 

Regulators ctrA + + + + + + + + + + + + + + 

 cckA + + + + + + + + + + + + + + 

 flaF +  + + + +  + +  + + + + 

 flbT +  + + + +  + +  + + + + 

 flaB + + + + + + + + + + + + + + 

 flaC + + + + + + + + + + + + + + 

 flaD + + + + + + + + + + + + + + 

Unknown function flaI  + +   +   + +  + + + 

 

a
Amino acids sequence of TM1040 flagellar genes were used to identify flagellar genes in 

other Roseobacter strains based on BLASTp in www.roseobase.org and 

https://research.venterinstitute.org/moore/ . The “+” indicate hits that have E value of 10
-5

 or 

less. Blank space indicates the absence of the gene. 
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2.4 Conclusion 

 In conclusion, to this study, the genomic analysis identified genes involved in 

flagellar regulation and biosynthesis based on homologs to known genes. The analysis 

revealed similarity in flagellar loci orientation of TM1040 to fla2 flagellar loci in R. 

sphaeroides with some minor difference. This includes the differences in the location of the 

flagellin locus in R. sphaeroides (flaA (flagellin), flaF, flbT, and flgF) that is on the plasmid 

while in TM1040, although the gene are in same orientation, is located on the chromosome. 

This suggests that the regulation and function of fla2 flagellar loci in R. sphaeroides is similar 

but not exactly like TM1040. The genetic analysis using random mutagenesis confirmed the 

flagellar gene relation to flagella synthesis and function. Moreover, the genetic analysis 

indicated the essential copy of the flagellar genes with multiple alleles. Most importantly, the 

genetic analysis uncovered three new regulators that are involved in regulating motility in 

TM1040. Based on their predicted function and mutant phenotype, all three regulators can be 

arrange in a hierarchy which control cell phase and motility. At the upper level of the 

hierarchy is FlaC, a response regulator that upregulates sessile phase and down regulates the 

motile phase of TM1040. Further down the hierarchy or in the same level as FlaC is FlaB, a 

phosphorelay protein that shuttles phosphate from CckA to CtrA and/or between unknown 

regulators for class III genes. At the bottom of the hierarchy is FlaD, a transcriptional 

regulator that regulates the mot genes of the flagellar motor complex.   

In further studies of the function of flaC, pRSI506 was used to complement the flaC 

mutant but was unsuccessful indicating that either flaC was not expressed from the plasmid 

and/or the flaC mutant has a second mutation. Although, a secondary mutation was found in a 

gene encoding for β-glucuronidase it still is unclear if this mutation plays a role in any of the 

phenotypes of the HG1016 (flaC
-
) mutant. If this mutation is involved in the phenotypes of 
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HG1016, it is most likely that it is because polar effect on the gene encoding a GntR-like 

regulator downstream of the β-glucuronidase gene.  

In the attempt to repeat the rescue clone of HG1016, I was unable to obtain the rescue 

and further discovered that a mutation had occurred in the kanamycin resistant gene. In 

addition, going back to observe the original stock of HG1016 by re-streaking the stock, I  also 

found that there was two types of colonies, one with dark yellow pigment and the other with 

lighter pigment. It is possible that the original rescue clone of HG1016 was successfully 

obtained from the dark yellow pigment colony because HG1016 in this study has a lighter 

yellow pigment colony. This could also explain why the original strain of HG1016 was 

screened as nonmotile in semi-solid agar while the HG1016 strain in this study is partially 

motile.   
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Chapter 3: Discussion 
 

Previous studies from our laboratory have shown that chemotaxis and motility plays 

a crucial role in the symbiosis between TM1040 and P. piscicida (65, 66). TM1040 utilizes 

motility mediated chemotaxis behavior to sense, move towards, and maintain its interaction 

with the dinoflagellate host (65, 66). Defects adversely affecting swimming significantly 

reduce the ability of TM1040 to colonize and interact with P. piscicida (65).  

In the current study, the genome analysis revealed that the majority of flagellar genes 

in TM1040 were organization in two large loci, that closely resemble the fla2 cluster 

organization in R. sphaeroides (Fig. 11 and Fig. 12) (80), with minor differences. Although 

the fliO in the fliF operon in TM1040 is substituted with fliH in R. sphaeroides, both genes 

encode for a component of the TTSS. Therefore, it is most likely that the fliF operon in 

TM1040 is the same as the fliF operon in R. sphaeroides, encoding for the MS-ring and 

TTSS components.  Another minor difference between TM1040 and R. sphaeroides fla2 is 

that it has only one copy of flgJ (rod assembly protein) while R. sphaeroides has two copies 

(flgJA2 and flgJB2). Both flgJA2 and flgJB2 have a Shine Dalgarno, suggesting that both 

genes could be expressed. This could also suggest that both genes are required, or at least one 

FlgJ is required for rod assembly in R. sphaeroides. The presence of fliY in TM1040 and the 

absence of this gene in R. sphaeroides is another difference. The fliY gene encodes for one of 

the TTSS components, the periplasmic amino acid binding protein. It is possible that R. 

sphaeroides has another protein that compensates for the function of FliY. The amount of 

copies of flagellin gene in TM1040 versus R. sphaeroides is different as well. In TM1040, 

there are six copies of fliC (fliC1-6), which only four copies are predicted to be expressed 

(fliC1, fliC3, fliC4, and fliC5) because they contain a Shine Dalgarno sequence upstream of 

the start codon. On the other hand, R. sphaeroides has only two copies of flagellin, fliC for 
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fla1 flagellar loci and flaA for fla2 flagellar loci (80). The electron microscopy image of 

TM1040 and R. sphaeroides flagellar indicates that both species have plain flagella (66, 80). 

Since the gene neighborhood of fliC3 is the same as flaA in fla2 of R. sphaeroides, and only 

insertion in fliC3 was found from the transposon mutagenesis that gave rise to a nonmotile 

mutant, suggests that fliC3 is the major flagellin for the flagellar filament in TM1040. The 

last, but probably the most interesting, difference between the flagellar gene organization of 

TM1040 and fla2 of R. sphaeroides is in the fliL operon. The last gene in fliL operon of 

TM1040 contains flaA, an unique gene for roseobacters (65).  Original studies, indicate that 

mutation in flaA of TM1040 results in a nonmotile and non-flagellated mutant (65). A more 

thorough study in this work indicates that flaA has paralyzed flagella, a phenotype related to 

mutation in motor genes. This suggests that flaA is involved in the function flagellar rotation 

or motor complex. In R. sphaeroides, RSP_1318 has low homology (29% identity) to flaA in 

TM1040. It is also located at the same position, which is downstream of motA, as flaA in 

TM1040. The function of RSP1318 is still unknown but base on the location in the operon, it 

is possible to predict that it could be involved with the flagellar motor complex as well. The 

regulation of fla2 flagellar loci of R. sphaeroides is still unknown. These minor differences 

between TM1040 and fla2 flagellar loci of R. sphaeroides suggest that flagellar gene 

regulation and swimming behavior in both species, although not exactly the same but could 

be similar.  

The genome of TM1040 contains two copies of motA and motB, that genes encoding 

for H
+
 ion motor proteins (20, 119), but does not contain motX and motY that are for Na

+
 ion 

motors (114). This suggests that the flagellar motor in TM1040 is energized by H
+
 ions. 

Further studies from our laboratory show that motility of TM1040 is sensitive to FCCP and 

phenamil, proton and sodium ion channel inhibitors, respectively (63). This suggest that 

TM1040 has both H
+
 and Na

+
 motor (63).  Supporting this idea is a recent study in Bacillus 

calusii that shows MotA and MotB can switch between proton and sodium ion without 
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another distinct set of mot protein for sodium ion (102). The presence of two set motA and 

motB in TM1040 could come from horizontal gene transfer because motA2 and motB2 are not 

located in the two main flagellar loci.  

In contrast to other α-proteobacteria, TM1040 does not possess homologs to genes 

that encode σ
54

, FliA (σ
28

) and FlgM (an anti-sigma factor). These data suggest that TM1040 

and possibly other roseobacters utilize an alternative system to regulate the expression of the 

flagellar genes.  

As mentioned above, the genome of TM1040 contains six copies of putative 

flagellin-encoding genes; however, based on genetic analysis, only one allele, FliC3, appears 

to be essential for motility, and genomic analysis predicts four flagellins (FliC1, FliC3, FliC4 

and FliC5) can be expressed. The SDS-PAGE in Figure 17 reveals two flagellin bands instead 

of one, which could be explained by degradation of the flagellin or flagellin expression from 

another copy of fliC. This result is in correlation with S. meliloti that also contains multiple 

copies of flagellin-encoding genes. The S. meliloti has four flagellin genes (flaA-D), FlaA is 

the principle flagellin and is required to form the filament with at least one other secondary 

flagellin for normal flagellar assembly (86). It is certainly possible that a second flagellin-

encoding gene of TM1040 is required and was missed by the mutagenesis, but it is more 

likely that it may be due to one or more modifications affecting FliC3. The SDS-PAGE in 

Figure 17 also shows that both flagellin bands are larger than the predicted size from the 

amino acid sequence. This could be due post translation modification by glycosylation (83).  

In contrast to enteric bacteria, little is known about flagellar regulatory genes of the 

roseobacters. Therefore, perhaps one of the most significant findings of this study is the 

identification of three novel and previously unknown regulatory proteins involved in 

controlling flagellum biosynthesis and function. Based on its domain architecture and 

resulting mutant phenotype, I propose that FlaB functions as a phosphorelay protein, shuttling 

phosphate between CckA and CtrA. This is because the domain architecture of FlaB has only 
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a phosphoacceptor domain but no response domain, suggesting that it can only receive 

phosphate. The genetic analysis indicates that mutation in flaB does not produce flagella 

which suggest that FlaB is most likely to regulate class III flagellar gene or above. In 

addition, FlaB has low homolog to ChpT in C. crescentus, which functions to shuttle 

phosphate from CckA to CtrA. Therefore, it is possible that FlaB has a similar function to 

ChpT and phosphorelays phosphate between CckA and CtrA (16). It is also equally relevant 

to hypothesize that FlaB phosphorelays phosphate to activate a transcription activator that 

regulates class III flagellar genes since down regulation of class III genes would result in lack 

of filament as well. Further analysis with electronmicroscopy at the cell pole of the flaB 

mutant to observe the presence of a hook would support this idea. FlaD
-
 cells are nonmotile 

with paralyzed flagella. This phenotype is also seen in mutations in motA and motB of 

Salmonella typhimurium that encode for the flagellar motor (30). In addition, the bioformatic 

analysis of the FlaD indicates that it is a MarR-type DNA binding protein (Fig. 15). This 

leads to hypothesize that FlaD may be involved in regulation of mot gene in TM1040. To my 

knowledge, there has not been any report on MarR-type DNA binding protein that regulates 

mot genes. For example, in enteric bacteria like S. typhimurium, uses σ
28

 and FlgM 

(antisigma factor) to regulate the mot genes (25).  In R. sphaeroides, the mot genes are 

regulated by enhancer proteins FleQ/FleT (81) while in S. meliloti utilizes the LuxR-type 

proteins, VisN and VisR (93). If this hypothesis is true, then this could be a novel feature for 

flagellar regulation in TM1040. The last and most interesting putative regulator gene encodes 

FlaC. Defect in flaC has pleiotropic phenotypes. The population is bias towards motile cells 

and defective in expressing phenotypes associated with the sessile phase e.g., less rosettes, 

defect in biofilm formation, significant decrease in pigment production and antibiotic activity. 

The results suggest that FlaC is involved in upregulation of the sessile stage phenotypes. 

Bioinformatic analysis of FlaC predicts that FlaC is a response regulator in a two component 

signal transduction system. FlaC has close homology to CenR of C. crescentus that functions 
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to control cell envelope biogenesis and structure (92). CenR interacts with a histidine kinase, 

CenK, as part of a two-component signal circuit. Deletion of both cenR and cenK are lethal 

(92), but mutation in flaC is not deleterious, implying that FlaC and CenR may regulate 

different phenotypes. The pleiotropic nature of the defect in flaC implicates it as a regulator 

involved in multiple functions of the cell, perhaps acting at early stages in a regulatory 

hierarchy to control the biphasic swim-or-stick switch. The genome of TM1040 also encodes 

a protein, TM1040_0316, with strong homology to CenK. The important aspect to explore in 

future studies of this sensory protein is the signal that it senses. The prediction would be that 

this extracellular signal from the environment or dinoflagellate would determine the cells 

phase of TM1040 (swim-or-stick).  

Combine the information on FlaB, FlaC and FlaD together, it is hypothesize that 

FlaC is in the upper level of the hierarchy controlling the cell phase by upregulating the 

sessile phase and down regulating the motile phase through indirect regulation of CtrA level 

(Fig. 32). FlaB is in the same or lower position in the hierarchy shuttling phosphate between 

CckA and CtrA, and/or between unknown regulators for class III genes (Fig. 32). The FlaD is 

positioned in the same level or lower than FlaB in the hierarchy which regulates the mot 

genes of the flagellar motor complex (Fig. 32).   

Complementation of the flaC mutant (HG1016) with pRSI506 plasmid did not restore 

the wild-type phenotype. Two possibilities can explain this situation, (i) pRSI506 is not 

expressing FlaC and/or (ii) HG1016 has a second mutation. The over expression of FlaC in 

RSI01 (TM1040 rifampicin resistance) did not show any changes in the phenotype when 

compared to TM1040. This implies that pRSI506 is not expressing FlaC. Observing the 

population of motile cells from pRSI506 in RSI01 background, the result shows that it is the 

same as TM1040 but unexpectedly the RSI01 without the plasmid had increase amount of the 

population of motile cells. The reason for this occurrence is unclear; one possibility is that the 
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FIG. 32 Predicted diagram of TM1040 hierarchy including FlaBCD. FlaC is predicted to 

control the cell phase (swim-or-stick) by upregulating the sessile phase and down regulating 

the motile phase through indirect regulation of CtrA level. The phosphorelated FlaB (FlaB-

(P)) shuttles phosphate between CckA and CtrA, and/or between unknown regulators for 

class III genes. The FlaD is predicted to regulate the mot genes of the flagellar motor 

complex.  
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spontaneous mutation in RSI01 may have an indirect affect on this phenotype. However, 

since the control (RSI01) itself is different from TM1040, no further experiments were done 

to continue the investigation.  

Although a second mutation in the flaC mutant (HG1016) was discovered, in the 

gene that encoded β-glucuronidase on pSTM2, it is still unclear if this mutation also 

contributes to the multiple phenotypes of the flaC mutant. Downstream of β-glucuronidase 

gene is a gene encoding for a GntR-like regulator, it is most like that the pleiotropic 

phenotypes may come from polar effect affecting the transcription of this gene.    

For future studies, it is certainly worth constructing the null mutant of flaC and 

complementing this mutant, for a more thorough investigation of the function of FlaC. In 

addition, further studies of the function, molecular mechanisms, and the proteins that interact 

with FlaC would certainly reveal a great volume of useful information on roseobacter gene 

regulation of the biphasic mode of life and its role in the symbiosis between TM1040 its 

phytoplankton hosts. 
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 Appendix A: Media and Solutions 
 

A.1. Media 

A.1.1. Luria Bertani (LB) Broth 

Tryptone   10 g 

NaCl     5 g 

Yeast Extract    5 g 

H2O     1000 ml 

Autoclave at 121
o
C for 20 min 

 

A.1.2. Luria Bertani (LB) Agar 

Tryptone   10 g 

NaCl     5 g 

Yeast Extract    5 g 

Bacto Agar    15 g 

H2O         1000 ml 

Autoclave at 121
o
C for 20 min 

 

A.1.3. 2216 Marine Broth 

 2216 Marine Broth   37.4 g 

 H2O    1000 ml 

Autoclave at 121
o
C for 20 min 

 

A.1.4. 2216 Marine Agar 
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 2216 Marine Broth  37.4 g 

 Bacto Agar   15 g 

 H2O    1000 ml 

Autoclave at 121
o
C for 20 min 

 

A.1.5. Heart Infusion Artificial Sea Water (HIASW) Broth 

 Heart infusion powder  25 g 

 Instant Ocean sea salts 15 g 

 H2O    1000  ml 

Autoclave at 121
o
C for 20 min 

 

A.1.6. Heart Infusion Artificial Sea Water (HIASW) Agar 

 Heart infusion powder  25 g 

 Instant Ocean sea salts 15 g 

 Bacto Agar   15 g 

 H2O    1000  ml 

Autoclave at 121
o
C for 20 min 

 

A.1.7. 2216 Marine Motility Agar  

2216 Marine Broth  37.4 g 

 Bacto Agar   0.3 g 

 H2O    1000 ml 

Autoclave at 121
o
C for 20 min 
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A.1.8. Marine Motility Agar 

 

(Stock A)  Make 2X Sea Salts (1000 ml)  

400 mM NaCl   23.2  g/250 ml H2O 

100 mM MgSO4   12 g/250 ml H2O 

20   mM KCl   1.5  g/250 ml H2O 

20   mM CaCl2.2H2O  2.94  g/250 ml H2O  

 

Autoclave separately, then mix together to make 2X sea salts 1000 ml 

 

(Stock B) Make 4X BM (-NH4Cl) (525 ml) 

1M Tris-HCl pH 7.5 150 ml 

K2HPO4  87 mg 

H2O   375 ml 

  Autoclave 

 

(Stock C) Make 1% Peptone (200 ml) 

  Peptone  2 g 

  H2O   200 ml 

  Autoclave 

 

(Stock D) Make 2% agar (30ml) 

  Bacto Agar  0.6 g 

  H2O   30 ml 

  Autoclave 
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After autoclaving stock A, B, C, and D separately, let stock A, B, and C cool down to room 

temperature. Place Stock D in 50
o
C water bath to bring the temperature down to 50

o
C. Mix 

Stock A 50 ml : Stock B 25 ml : Stock C 10 ml and warm to 50
o
C. Then add 15 ml of pre-

warmed Stock D to the mixture and mix. Immediately pour into petri dishes. 

 

A.1.9. Marine Motility broth 

(Stock A)  Make 2X Sea Salts (1000 ml)  

400 mM NaCl   23.2  g/250 ml H2O 

100 mM MgSO4   12 g/250 ml H2O 

20   mM KCl   1.5  g/250 ml H2O 

20   mM CaCl2.2H2O  2.94  g/250 ml H2O  

 

Autoclave separately, then mix together to make 2X sea salts 1000 ml 

 

(Stock B) Make 4X BM (-NH4Cl) (525 ml) 

1M Tris-HCl pH 7.5 150 ml 

K2HPO4  87 mg 

H2O   375 ml 

  Autoclave 

 

(Stock C) Make 1% Peptone (200 ml) 

  Peptone  2 g 

  H2O   200 ml 

  Autoclave 
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After autoclaving stock A, B, and C separately, let them cool down to room temperature. Mix 

Stock A 50 ml : Stock B 25 ml : Stock C 10 ml : Sterile H2O 15 ml.  

 

 

A.1.10. Marine Basal Medium Formula #2 agar plates 

 Formula #2  agar plates 100 ml 

  H2O   10  ml 

  FeEDTA  5 ml 

  2x ASW  50 ml 

  BM   25 ml 

  RPMI vitamin stock 0.1 ml 

  10x attractant   10 ml 

  Bacto Agar  0.275 g 

 

 2X ASW (1000 ml)  

NaCl   23.2  g/250 ml H2O 

MgSO4   12 g/250 ml H2O 

KCl   1.5  g/250 ml H2O 

CaCl2.2H2O  2.94  g/250 ml H2O  

Autoclave separately, then mix together to make 2X ASW 1000 ml 

 

4X BM (525 ml) 

1M Tris-HCl pH 7.5 150 ml 

K2HPO4  87 mg 

NH4Cl   1.5 g 

H2O   375 ml 
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  Autoclave 

 

 FeEDTA 

  FeEDTA  50 mg 

  H2O   100 ml 

 

A.1.11.  Heart Infusion Artifical Sea Water 10 ppt (HIASW10) broth 

Heart infusion   25 g 

Seasalts (Sigma)  10 g 

H2O    1000  ml 

Autoclave 

 

A.1.12.  Heart Infusion Artifical Sea Water 10 ppt (HIASW10) agar plates 

Heart infusion   25 g 

Seasalts (Sigma)  10 g 

Bacto agar   15 g 

H2O    1000  ml 

Autoclave 
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A.2. Solutions 

A.2.1. Lysis buffer (for Quick Prep plasmid extraction) 

 40% Glucose (filter steriled)  2.5 ml 

 0.5M EDTA pH 8.0    2 ml 

 1 M Tris-HCl pH 8.0   2.5  ml 

 H2O     93 ml 

On day of use, dispense desired volume to sterile tube and add 2 mg/ml lysozyme. 

 

A.2.2. Alkaline SDS (for Quick Prep plasmid extraction) 

 NaOH     0.8 g 

 BioRad SDS    1 g 

 H2O     100 ml 

 Filter sterilize 

 

A.2.3. Potassium Acetate (for Quick Prep plasmid extraction) 

 Concentrated Acetic acid  28.74 ml 

 H2O     60 ml 

 Add KOH pellets to pH 4.8 

 Adjust volume to 100 ml and filter sterilize 

 

A.2.4. Tris-EDTA (TE) 

 1M Tris-HCl pH 7.5  10  ml 

 0.5M EDTA    2 ml 

 Adjust volume to 1000 ml with H2O 
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A.2.5. 50x Tris-Acetic acid-EDTA (TAE) 

 Tris Base   242 g 

 Glacial Acetic Acid  57.1 ml 

 EDTA    37.2 g 

 Adjust volume to 1000 ml with H2O 

 

A.2.6. 4x Polyethylene Glycol Solution (PEG) 

 Polyethylene glycol 8000 80 g 

 NaCl    23 mg 

 H2O    1000 ml 

 

A.2.7. 5x Protein loading dye 

 1M Tris-HCl pH 6.8  1.56  ml 

 Glycerol   2.5 ml 

 20% SDS   2.5  ml 

 2-β mercaptoethanol  1.25 ml 

 Bromphenol blue  5 mg 

 H2O    2.19 ml 

  

A.2.8. 15% SDS-PAGE Polyacrylamide gel 

 30% acrylamide/0.8% bisacrylamide 

  Acrylamide    30 g 

  N,N’-methylenebisacrylamide 0.8  g 

  Adjust volume to 100 ml with H2O  

  Filter through 0.45 µm filter 
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 4xTris-HCl/SDS, pH 6.8 

  0.5 M Tris-HCl  100 ml 

  SDS    0.4 g 

  Filter through 0.45 µm filter 

 

 4xTris-HCl/SDS, pH 8.8 

  1.5 M Tris-HCl  500 ml 

  SDS    2 g 

  Filter through 0.45 µm filter 

 

 Separation Gel 

  30% acrylamide/0.8% bisacrylamide  7.5 ml 

  4xTris-HCl/SDS, pH 8.8   3.75 ml 

  H2O      3.75 ml 

  10% Ammonium persulfate   0.05 ml 

  TEMED     0.01 ml 

 

 Stacking Gel 

  30% acrylamide/0.8% bisacrylamide  0.65 ml 

  4xTris-HCl/SDS, pH 6.8   1.25 ml 

  H2O      3.05 ml 

  10% Ammonium persulfate   0.025 ml 

  TEMED     0.005 ml 

 



 

 105 

 

A.2.9. 5x SDS-PAGE electrophoresis buffer 

 Tris base   15.1 g 

 Glycine    72 g 

 SDS    5 g 

 Add H2O to 1000 ml 

  

A.2.10. 35 ppt ASW 

 Instant Ocean sea salts  40  g 

 H2O    1000 ml 

 

A2.11. 5x M9 salts  

Na2HPO4.7H2O   64 g 

KH2PO4   15 g 

NaCl    150 g 

NH4Cl    5 g 

H2O    1000 ml 
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Appendix B: Protocols 
 

B.1. TM1040 electrocompetent cells 

1. Inoculate single colony of TM1040 into 2ml HIASW broth and incubate at 

30
o
C overnight with shaking. 

2. Transfer the culture into 250 ml HIASW broth in 1L flask and incubate at 

30
o
C with shaking until OD600 is 0.6. 

3. Cool the cells in ice for 30 min. 

4. Transfer the culture to pre-chilled 250 ml centrifuge bottles and centrifuge at 

9000 r.p.m. for 10 min. at 4
o
C. 

5. Discard supernatant and wash the cells four times in 200 ml ice-cold sterile 

water using the same centrifuge conditions as step 4. 

6. Resuspend cells in 1 ml 10% glycerol (sterile). 

7. Dispend 65 µl of mixture in 1.5 ml centrifuge tubes and store at -80
o
C until 

ready to use. 

 

B.2. Transposon mutatgenesis  

1. Add 25 ng of EZ-Tn5 transposome (Epitcentre, Madison, Wisconsin) into 65 

µl of TM1040 electrocompetent cells. 

2. Incubate on ice for 30 min. 

3. Transfer the mixture to pre-chilled 0.2 cm Electroporation cuvette and 

electroporate at 2.5 Kv per cm, 400 ohms and 25 µF using Bio-Rad Gene 

Pulser (Bio-Rad, Hercules, California). 

4. Transfer the cells into 1 ml HIASW, pre-warmed at 30
o
C. 
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5. Incubate at 30
o
C with shaking for 2 h.  

6. Spread 100 µl of culture on HIASW agar plates containing Kanamycin 

(120µg/ml). 

7. Incubate at 30
o
C for 48 h. 

8. Pick the Kanamycin resistant colonies onto a 7-by-7 array on 2216 agar 

plates containing Kanamycin 120µg/ml (Kan120) and incubate at 30
o
C ~2 

days. 

9. Screen for motility defect mutants by inoculating the transposon mutants 

from the 2216 agar + Kan120 plates to 2216 Marine motility plates and 

incubate at 30
o
C. 

 

B.3. CTAB Chromosomal extraction  

1. Grow 50 ml of the desired strain in the appropriate medium and condition. 

2. Transfer the culture into 40 ml Polypropylene centrifuge tube and centrifuge 

at 5000 r.p.m. for 5 min at 4
o
C in Beckman JA21 rotor. 

3. Discard supernatant and resuspend the cells in 5.5 ml TE. 

4. Add 300 µl of 10% SDS. Mix by hand until solution is homogeneous. Then 

add 60 µl of 10 mg/ml Proteinase K, and mix thoroughly. 

5. Incubate at 37
o
C for 60 min so the solution appears clear. 

6. Add 1 ml 5M NaCl and mix thoroughly by hand ~7 min. 

7. Add 800 µl 10% CTAB, 0.7M NaCl (pre-warm to 65
o
C) and mix thoroughly 

by hand for 5 min. 
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8. Extract once with 6 ml CHCl3: Isoamyl Alcohol (24:1) and mix thoroughly by 

hand. 

9. Centrifuge in Beckman JA21 rotor at 6000 r.p.m. for 10 min at 4
o
C. 

10. Remove supernatant into a new centrifuge tube and add 6 ml of buffer phenol: 

CHCl3: Isoamyl Alcohol (25:24:1). Mix thoroughly by hand. 

11. Centrifuge in Beckman JA21 rotor at 6000 r.p.m. for 10 min at 4
o
C. 

12. Remove supernatant into a new tube. 

13. Add 5 ml isopropanol, mix, and spool the DNA onto a Pasteur pipette (with 

sealed end). 

14. Remove the isopropanol by dipping the spooled DNA into 70% EtOH. Invert 

the Pasteur pipette so that the spooled DNA faces upward and allow the 

excess 70% EtOH to drain. 

15. Resuspend the genomic DNA by dipping the spooled DNA up and down 

repeatedly in 1 ml TE. 

 

B.4. Rescue-cloning TM1040 transposon mutants 

1. Extract the transposon mutant genome either by CTAB method or DNeasy Kit 

(Qiagen, Valencia, California). 

2. Digest the genome with NcoI using the following mixture: 

Genome extract  2  µg 

NcoI (10 U/µl)  1 µl 

NEBuffer 3   2 µl 

Adjust volume to 20 µl with H2O 
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Incubate at 37
o
C for 90 min and heat inactivate for 25

o
C  

 

3. Self-ligate the digested fragments using the following mixture: 

NcoI digest reaction  20  µl 

10x T4 ligase buffer  4 µl 

T4 ligase    1 µl 

H2O    15 µl 

Incubate at 16
o
C for 4 h. 

4. Desalt the Ligation reaction: 

a. Mix 20 µl of ligation reaction with 20 µl of 7.5 M Ammonium Acetate 

and 10 µl of tRNA (10 µg/µl H2O). 

b. Add 100 µl of absolute Ethanol and incubate on ice for 15 min. 

c. Centrifuge at 14,000 r.p.m. for 15 min. at 4
o
C and discard supernatant. 

d. Wash with 1 ml 70% Ethanol and centrifuge at 14,000 r.p.m. for 15 

min at room temperature. 

e. Discard supernatant and resuspend pellet with 20 µl sterile H2O. 

5. Mix 1 µl of the desalted ligation reaction with 65 µl of DH5α λpir 

electrocompetent cells on ice and vortex. 

6. Immediately transfer the mixture to a pre-chilled 0.2 cm electroporation 

cuvette and electroporate at 2.5 Kv per cm, 200 ohms and 25 µF using Bio-

Rad Gene Pulser (Bio-Rad, Hercules, California). 

7. Transfer the cells into 1 ml LB, pre-warmed at 37
o
C. 

8. Incubate at 37
o
C static 30 min followed 37

o
C with shaking for 1 h.  
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9. Spin down 1 ml of the culture and discard supernatant. 

10. Resuspend the cells with 100 µl of LB broth and spread on LB agar plates 

containing Kanamycin 60 µ/ml (Kan60). 

11. Incubate at 37
o
C overnight. 

12. Extract the plasmid from the transformant and sequence the flanking DNA 

using the primers supplied in the EZ-Tn5 transposome kit (Epicentre catalog # 

TSM08KR). 

 

B.5. Quick Prep procedure for plasmid extraction 

1. Grow 2ml of overnight culture of the strain harboring the plasmid in the 

appropriate medium and antibiotic.  

2.  Spin down the cells in a desktop centrifuge at maximum speed for 10-15 

seconds to pellet the cells. 

3. Aspirate off the supernatant leaving behind ~50 µl to aid in resuspension of 

the cells pellet. 

4. Vortex the tube to resuspend the cells. 

5. Add 100 µl of Lysis solution and vortex. Incubate at room temperature for 5 

min. 

6. Add 200 µl of Alkaline SDS and vortex. Incubate on ice for 5 min. 

7. Add 150 µl of sterile 5M Potassium Acetate and mix thoroughly. Incubate on 

ice for 5 min. 

8. Centrifuge at maximum speed for 5 min. 

9. Transfer 360 µl of the clear fluid to a new microcentrifuge tube. 
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10. Add 720 µl of ice cold 100% EtOH and vortex. Incubate at room temperature 

for 5 min. 

11. Centrifuge at maximum speed for 5 min. 

12. Aspirate off the fluid leaving a small pellet containing the plasmid in the tube. 

13. Add 500 µl of ice cold 70% EtOH to the tube and vortex. 

14. Centrifuge at maximum speed for 5 min. 

15. Dry the pellet in Savant Speed-Vac for 10 min without heat. 

16. Resuspend the pellet in 50 µl TE. 

 

B.6. Motility analysis in semi-solid agar 

1. Inoculate TM1040 or transposon mutant from a colony onto 2216 Marine 

Motility agar or Marine Motility agar. 

2. Incubate at 30
o
C for 3 days. 

3. Use a sterile toothpick to inoculate from the periphery of the motile colony 

onto a new 2216 Marine Motility agar or Marine Motility agar plate. 

4. Incubate at 30
o
C for 1 day. 

 

B.7. Motility analysis in broth 

1. Inoculate a single colony of TM1040 or transposon mutant into 2 ml 2216 

Marine broth. 

2. Incubate at 30
o
C with shaking overnight. 

3. Pipette 7 µl onto a glass slide and cover with a cover slip. 
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4. Observe motility through phase contrast microscope with 20x or 40x objective 

lens. 

 

B.8. Measurement of population of motile cells, single non-motile cells, and cells 

in rosettes 

1. Use 14 h culture of TM1040 and HG1016 grown in 2216 Marine broth at 

30
o
C with shaking. 

2. Pipette 7 µl of culture onto a glass slide and cover with a cover slip. 

3. Examine the population of the culture through a phase contrast microscope 

(Olympus BX60, Center Valley, Pennsylvania) and record five random fields 

using Qicam Fast 1394 camera. Record 1 sec (20 frame / sec) of each field for 

analysis using Volocity software (V4.1.0, Improvision, England). 

4. Separated the population into (i) single cells, (ii) single non-motile cells, and 

(iii) cells in rosettes as follow. 

a. Count the total amount of rosette in the field using these Volocity 

settings. 

i. Find Object by intensity; choose area from “black” to “the base 

of the background peak”. 

ii. Exclude Object by size: < 5-9 µm
2
 

iii. Record the amount of rosettes (objects) that Volocity has 

selected. 

b. Find the average amount of cells in a rosette. 
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i. In Volocity, zoom-in the selected rosettes and count the 

amount of cells in a rosette. Repeat this count for all the 

rosettes in the field and calculate the average of cells per 

rosette. 

c. Find the amount of total single cells (non-motile and motile cells). 

i. Use the same setting in (a.i) but set “Exclude Object size” to > 

5-9 µm
2
 

ii. Add in another “exclude object size” and set to < 1 µm
2
 

iii. Record the amount of total single cells (objects) that Volocity 

has selected. 

d. Find the amount of motile cells 

i. Use the same setting as (c) to select total single cells 

ii. Add in “Track Objects” and set to  

1. Tracking model: Shortest path 

2. Ignore static objects 

3. Ignore new objects 

4. Automatically join broken tracks 

5. Maximum distance between objects: use this distance: 

10 µm 

iii. Then measure all time points 

iv. Save the measure by “Make Measure Item” 

v. Open the “measure Item” that was just  saved and pull down 

the filter drop bar and set to “Tracks” 
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vi. Click on “Edit Filter icon” ad set to “Displacement (µm) is 

more than 1.5” 

vii. Record the amount of tracks shown (amount of motile cells). 

e. Find percentage of cells forming rosettes. 

i. Total cells forming rosettes in the field = (average cells per 

rosette) x (amount of rosette) 

ii. Total cells in the field = (amount of total single cells) + (total 

cells forming rosettes in the field) 

iii. Percent cells forming rosette = [(cells forming rosettes in the 

field) x 100] / Total cells in the field 

f. Find percentage motile cells 

i. Percentage motile cells = [(amount of motile cells) x 100] / 

Total cells in the field 

g. Find percentage of nonmotile cells 

i. Percentage of nonmotile cells = [(Total single cells – amount 

motile cells) x 100] / Total cells in the field 

5. Do this calculation for all five fields. 

6. Do the experiment in quadruplicate. 

7. Use Prism 4.0 static software (GraphPad) to determine the mean, standard 

deviation, and statistic analysis [One-way ANOVA (non parametric) and 

Newman-Keuls (95% CI and P-value 0.05)]. 
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B.9. Flagellar staining 

1. Pipette 5 µl of culture onto a glass slide and cover with a cover slip. 

2. Add 10 µl of RYU Flagellar stain (Remel, Lenexa, Kansas) to the side of the 

cover slip so that the stain carefully defuses into the culture. 

3. Incubate at room temperature for 10 min. and observe through phase contrast 

microscope using 40x object lens.  

 

B.10. Flagella precipitation and detection of flagellin 

1. Use overnight cultures of TM1040 or mutants grown in 50 ml 2216 Marine 

Broth in a 500 ml flask at 30
o
C with shaking. 

2. Transfer the culture to a 40 ml centrifuge tube and centrifuge at 10,000 x g for 

5 min. at 4
o
C.  

3. Transfer the supernatant, containing the detached flagella, to a new centrifuge 

tube and centrifuge like step 2. 

4. Carefully pipette 30 ml of the supernatant to a new centrifuge tube and add 10 

ml of 4x polyethylene glycol solution (8% PEG 8000, 0.4 mM NaCl). 

5. Vortex and incubate the tube on ice for 60 min. 

6. Centrifuge the tube at 17,400 x g for 15 min at 4
o
C to precipitate the flagella 

bundles. 

7. Discard the supernatant and resuspend the flagella bundles in 50 mM Tris-

HCl pH 7.5. 

8. Determine the amount of total protein in the sample with BCA kit (Pierce, 

Rockford, Illinois). 
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9. To separate the flagellin, load 3 µg of flagella preparation on a 15% SDS-

PAGE gel and run the gel until the dye run off bottom. 

10. Stain the with Coomassie Fluor Orange Protein gel stain (Molecular Probes, 

Invitrogen, Carlasbad, California) following the manufacturer’s 

recommendation. 

11. Visualize the bands by scan the gel with the Typhoon 9410 (Amersham 

Biosciences, Piscataway, New Jersey) using 555 nm emission filter and a 488 

nm excitation filter. 

 

B.11. Measurement of antibiotic production 

1. Use overnight cultures of TM1040, HG1016, and HG1101 to inoculate 1:100 

in 2216 Marine broth. 

2. Make two sets of samples. 

3. Incubate one set of samples at 30
o
C with shaking and the other at static. 

4. Pipette 1 ml of culture into a microcentrifuge tube at 0, 24, 48, 72, and 96 h. 

5. Centrifuge in a desktop centrifuge at maximum speed for 1 min to pellet the 

cells. 

6. Transfer the supernatant to a new tube and freeze at -20
o
C until finish 

collecting all time points. 

7. Inoculate Vibrio anguillarum in 2216 Marine broth and incubate at room 

temperature overnight. 

8. Autoclave water containing 0.5 g agar and hold it at 44
o
C in order to keep the 

agar molten.  
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9. Add 5 µl of 1M CaCl2, 0.1 ml 1M MgSO4, 10 ml 5xM9 salts, 1 ml 20% 

glucose, 1.5 ml 10% casamino acids.  

10. Make sure the agar is at 44
o
C and then add 50 µl of overnight V. anguillarum 

and immediately pour into large petri dish (150x15 mm). 

11. After the plate has solidified, punch wells in the agar with the end of 200 µl 

pipette tip. 

12. Add 60 µl of spent medium from the bacteria culture and incubate at room 

temperature until a inhibition zone is seen (~24 h). 

 

B.12. Congo red binding 

1. Make congo red plates by making 2216 Marine agar and add filter sterilized 

Congo Red to a final concentration of 100 µg/ml while the agar is still molten.  

2. Pour mixture into a petri dish and let it solidify at room temperature overnight. 

3. Inoculate single colony of TM1040 and mutants in 2ml 2216 Marine broth 

and incubate at 30
o
C with shaking overnight. 

4. Spot 2 µl of culture on the same Congo red plate 

5. Incubate at 30
o
C overnight 

 

B.13. Biofilm staining 

1.  Grow TM1040 and mutants in 2ml 2216 Marine broth at 30
o
C with shaking 

for 24 h.   

2. Inoculate 3 µl of culture into 300µl of fresh 2216 Marine broth in small glass 

test tube (1:100). 
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3. Incubate at 30
o
C with shaking overnight. 

4. Aspirate out the culture.  

5. Rinse with gentle streams of 35 ppt ASW 

6. Stain with 1 ml Gram Crystal Violet solution (BD Bioscience, Sparks, 

Maryland) for 30 min at room temperature. 

7. Rinse with gentle streams of 35 ppt ASW. 

8. Elute with 400 µl DMSO:Ethanol (50:50). 

9. Pipette into 96 well plates 

10. Take OD560 nm 

 

Note: used acid washed small test tubes (acid wash by leaving the tubes in 1% HCl 

overnight then wash with RBS-PF) 

 

B.14. Chemotaxis plate assay 

1. Inoculate a single colony of TM1040 and HG1016 in Marine motility agar 

2. Incubate at 30
o
C for 3 days 

3. Inoculate from the periphery of the motile colony into Marine Basal 

Medium Formula #2 agar plates containing 10 mM of attractant (one 

attractant per plate, Methionine, Valine, Glycine, Alanine, Phenylalanine, 

Succinic acid, Fumarate, malic acid, and acetate). 

4. Inoculate both TM1040 and HG1016 on the same plate for comparison. 

5. Incubate at 30
o
C for 3 days and measure diameter of the motile colony. 

6. Make duplicates of every plate. 
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B.15. Biparental mating 

1. Grow overnight culture of pRSI506/S17-1 and pRK415/S17-1 in 2 ml 

of LB with tetracycline (15 µg/ml) at 37
o
C with shaking. 

2. Grow overnight culture of HG1016 in 2216 with kanamycin (120 

µg/ml) and RSI01 in 2216 with rifampicin (100µg/ml) at 30
o
C with 

shaking. 

3. Set up the mating mixture as fellow, in a microcentrifuge tube; 

Mixture HG1016 RSI01 pRSI506/S17-1 pRK415/S17-1 

pRSI506.S17-1 + 

HG1016 

100 µl - 100 µl - 

pRK415/S17-1 + 

HG1016 

100 µl - - 100 µl 

pRSI506.S17-1 + 

RSI01 

- 100 µl 100 µl - 

pRK415/S17-1 + 

RSI01 

- 100 µl - 100 µl 

 

4. Include HG1016, RSI01, pRSI506/S17-1, and pRK415/S17-1 

seperately as controls. 

5. Mix the culture by vortexing the tubes and centrifuge at maxium speed 

to pellet the cells.  

6. Discard the supernatant and leave 20 µl for resuspending the pellet. 

7. Spot all of the culture on HIASW10 plate 

8. Incubate at 30
o
C for 24 hrs. 
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9. Take the cultures up with a sterile loop and resuspend in 200 µl of 

10ppt ASW. 

10. Make 100 fold serial dilution in 10 ppt ASW (10 µl culture into 990 µl 

ASW). 

11. Spread 100 µl on HIASW10 plates with appropriate antibiotic. For 

selection of pRSI506/HG1016 and pRK415/HG1016 use tetracycline 

(15 µg/ml) + kanamycin (120 µg/ml). For selection of pRSI506/RSI01 

and pRK415/RSI01 use tetracycline (15 µg/ml) + rifampicin (100 

µg/ml).  

12. Incubate the plates at 30
o
C for 2 days. 

 

B.16. Electroporation of pRSI507 into TM1040  

1. Add 100 ng to 1 µg pRSI507 into 65 µl of TM1040 electrocompetent 

cells. 

2. Incubate on ice for 30 min. 

3. Transfer the mixture to pre-chilled 0.2 cm Electroporation cuvette and 

electroporate at 2.5 Kv per cm, 400 ohms and 25 µF using Bio-Rad Gene 

Pulser (Bio-Rad, Hercules, California). 

4. Transfer the cells into 1 ml HIASW, pre-warmed at 30
o
C. 

5. Incubate at 30
o
C with shaking for 2 h.  

6. Spread 100 µl of culture on HIASW agar plates containing Kanamycin 

(120µg/ml). 
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7. Centrifuge the remaining culture in the desktop centrifuge at maximum 

speed for 1 min to pellet the cells. 

8. Discard the supernatant and leave about  100 µl to resuspend the cells 

9. After resuspending the cells, spread the culture on HIASW agar plates 

containing Kanamycin (120µg/ml). 

10. Incubate at 30
o
C for 24 - 48 hr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 122 

 

Reference 

1. Adler, J., and B. Templeton. 1967. The effect of environmental conditions on the 

motility of Escherichia coli. J. Gen. Microbiol. 46:175-84. 

2. Alavi, M., T. Miller, K. Erlandson, R. Schneider, and R. Belas. 2001. Bacterial 

community associated with Pfiesteria-like dinoflagellate cultures. Environ. 

Microbiol. 3:380-396. 

3. Alavi, M. R. 2004. Predator/prey interaction between Pfiesteria piscicida and 

Rhodomonas mediated by a marine alpha proteobacterium. Microb. Ecol. 47:48-58. 

4. Alekshun, M. N., and S. B. Levy. 1999. The mar regulon: multiple resistance to 

antibiotics and other toxic chemicals. Trends Microbiol. 7:410-413. 

5. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic 

local alignment search tool. J. Mol. Biol. 215:403-410. 

6. Anderson, P. E., and J. W. Gober. 2000. FlbT, the post-transcriptional regulator of 

flagellin synthesis in Caulobacter crescentus, interacts with the 5' untranslated region 

of flagellin mRNA. Mol. Microbiol. 38:41-52. 

7. Armitage, J. P., and R. M. Macnab. 1987. Unidirectional, intermittent rotation of 

the flagellum of Rhodobacter sphaeroides. J. Bacteriol. 169:514-8. 

8. Armitage, J. P., and R. Schmitt. 1997. Bacterial chemotaxis: Rhodobacter 

sphaeroides and Sinorhizobium meliloti--variations on a theme? Microbiology 143 ( 

Pt 12):3671-82. 

9. Attmannspacher, U., B. E. Scharf, and R. M. Harshey. 2008. FliL is essential for 

swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer 

cells of Salmonella enterica. Mol. Microbiol. 68:328-41. 



 

 123 

 

10. Barnakov, A. N., L. A. Barnakova, and G. L. Hazelbauer. 2002. Allosteric 

enhancement of adaptational demethylation by a carboxyl-terminal sequence on 

chemoreceptors. J Biol Chem 277:42151-6. 

11. Barnakov, A. N., L. A. Barnakova, and G. L. Hazelbauer. 1999. Efficient 

adaptational demethylation of chemoreceptors requires the same enzyme-docking site 

as efficient methylation. Proc Natl Acad Sci U S A 96:10667-72. 

12. Barrios, H., B. Valderrama, and E. Morett. 1999. Compilation and analysis of 

sigma(54)-dependent promoter sequences. Nucleic Acids Res 27:4305-13. 

13. Belas, R., and R. Suvanasuthi. 2005. The ability of Proteus mirabilis to sense 

surfaces and regulate virulence gene expression involves FliL, a flagellar basal body 

protein. J. Bacteriol. 187:6789-803. 

14. Bibikov, S. I., R. Biran, K. E. Rudd, and J. S. Parkinson. 1997. A signal 

transducer for aerotaxis in Escherichia coli. J Bacteriol 179:4075-9. 

15. Bilwes, A. M., L. A. Alex, B. R. Crane, and M. I. Simon. 1999. Structure of CheA, 

a signal-transducing histidine kinase. Cell 96:131-141. 

16. Biondi, E. G., S. J. Reisinger, J. M. Skerker, M. Arif, B. S. Perchuk, K. R. Ryan, 

and M. T. Laub. 2006. Regulation of the bacterial cell cycle by an integrated genetic 

circuit. Nature 444:899-904. 

17. Blair, D. F., and H. C. Berg. 1991. Mutations in the MotA protein of Escherichia 

coli reveal domains critical for proton conduction. J Mol Biol 221:1433-1442. 

18. Blair, D. F., D. Y. Kim, and H. C. Berg. 1991. Mutant MotB proteins in 

Escherichia coli. J. Bacteriol. 173:4049-4055. 

19. Bourret, R. B., J. F. Hess, and M. I. Simon. 1990. Conserved aspartate residues and 

phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl 

Acad Sci U S A 87:41-5. 



 

 124 

 

20. Braun, T. F., S. Poulson, J. B. Gully, J. C. Empey, S. Van Way, A. Putnam, and 

D. F. Blair. 1999. Function of proline residues of MotA in torque generation by the 

flagellar motor of Escherichia coli. J Bacteriol 181:3542-51. 

21. Bruhn, J. B., L. Gram, and R. Belas. 2007. Production of antibacterial compounds 

and biofilm formation by Roseobacter species are influenced by culture conditions. 

Appl. Environ. Microbiol. 73:442-450. 

22. Buchan, A., J. M. Gonzalez, and M. A. Moran. 2005. Overview of the Marine 

Roseobacter Lineage. Appl. Environ. Microbiol. 71:5665-77. 

23. Burkholder, J. M., and J. Glasgow, H. B. 1995. Interactions of a toxic estuarine 

dinoflagellate with microbial predators and prey. Arch. Fur. Protisten. 145:177 - 188. 

24. Burkholder, J. M., and J. Glasgow, H. B. 1997. Trophic controls on stage 

transformations of a toxic ambush-predator dinoflagellate. J. Euk. Microbiol. 44:200-

205. 

25. Chilcott, G. S., and K. T. Hughes. 2000. Coupling of flagellar gene expression to 

flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. 

Microbiol Mol Biol Rev 64:694-708. 

26. Claret, L., and C. Hughes. 2002. Interaction of the atypical prokaryotic 

transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. 

J Mol Biol 321:185-99. 

27. Collinson, S. K., P. C. Doig, J. L. Doran, S. Clouthier, T. J. Trust, and W. W. 

Kay. 1993. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to 

fibronectin. J. Bacteriol. 175:12-18. 

28. Doyle, M. L., P. A. Katzman, and E. A. Doisy. 1955. Production and properties of 

bacterial beta-glucuronidase. J Biol Chem 217:921-30. 



 

 125 

 

29. Eggenhofer, E., M. Haslbeck, and B. Scharf. 2004. MotE serves as a new 

chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium 

meliloti. Mol Microbiol 52:701-12. 

30. Enomoto, M. 1966. Genetic studies of paralyzed mutant in Salmonella. I. Genetic 

fine structure of the mot loci in Salmonella typhimurium. Genetics 54:715-26. 

31. Gallagher, S. R. 1999. One-Dimensional SDS-PAGE Gel Electrophoresis of 

Proteins, p. 10.2A.1-10.2A.9. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. 

Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in 

molecular biology, vol. 2. John Wiley & Sons, Inc. 

32. Geng, H., J. B. Bruhn, K. F. Nielsen, L. Gram, and R. Belas. 2008. Genetic 

dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl. Environ. 

Microbiol. 74:1535-45. 

33. Gonzalez, J. M., J. S. Covert, W. B. Whitman, J. R. Henriksen, F. Mayer, B. 

Scharf, R. Schmitt, A. Buchan, J. A. Fuhrman, R. P. Kiene, and M. A. Moran. 

2003. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., 

dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int. J. 

Syst. Evol. Microbiol. 53:1261-1269. 

34. Gonzalez, J. M., R. P. Kiene, and M. A. Moran. 1999. Transformation of sulfur 

compounds by an abundant lineage of marine bacteria in the alpha-subclass of the 

class Proteobacteria. Appl. Environ. Microbiol. 65:3810-3819. 

35. Gonzalez, J. M., and M. A. Moran. 1997. Numerical dominance of a group of 

marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. 

Appl. Environ. Microbiol. 63:4237-4242. 

36. Harrison, D. M., H. L. Packer, and J. P. Armitage. 1994. Swimming speed and 

chemokinetic response of Rhodobacter sphaeroides investigated by natural 

manipulation of the membrane potential. FEBS Lett 348:37-40. 



 

 126 

 

37. Harrison, D. M., J. Skidmore, J. P. Armitage, and J. R. Maddock. 1999. 

Localization and environmental regulation of MCP-like proteins in Rhodobacter 

sphaeroides. Mol Microbiol 31:885-92. 

38. Helmann, J. D. 1991. Alternative sigma factors and the regulation of flagellar gene 

expression. Mol Microbiol 5:2875-82. 

39. Jacobs, C., I. J. Domian, J. R. Maddock, and L. Shapiro. 1999. Cell cycle-

dependent polar localization of an essential bacterial histidine kinase that controls 

DNA replication and cell division. Cell 97:111-120. 

40. Jansen, M., and T. A. Hansen. 2001. Non-growth-associated demethylation of 

dimethylsulfoniopropionate by (homo)acetogenic bacteria. Appl Environ Microbiol 

67:300-6. 

41. Kaiser, J. 2002. Microbiology. The science of Pfiesteria: elusive, subtle, and toxic. 

Science 298:346-9. 

42. Kanbe, M., J. Yagasaki, S. Zehner, M. Gottfert, and S. Aizawa. 2007. 

Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum. J. 

Bacteriol. 189:1083-1089. 

43. Keller, M. D., and W. Korjeff-Bellows. 1996. Physiological aspects of the 

production of dimethylsulfoniopropionate (DMSP) by marine phytoplankton, p. 131-

153. In R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (ed.), Biological 

and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum 

Press, New York. 

44. Kiene, R. P., L. J. Linn, and J. A. Bruton. 2000. New and important roles for 

DMSP in marine microbial communities. J. Sea Res. 43:209-224. 

45. Kolter, R., M. Inuzuka, and D. R. Helinski. 1978. Trans-complementation-

dependent replication of a low molecular weight origin fragment from plasmid R6K. 

Cell 15:1199-208. 



 

 127 

 

46. Kondoh, H., C. B. Ball, and J. Adler. 1979. Identification of a methyl-accepting 

chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. 

Proc Natl Acad Sci U S A 76:260-4. 

47. Kuo, S. C., and D. E. Koshland, Jr. 1987. Roles of cheY and cheZ gene products in 

controlling flagellar rotation in bacterial chemotaxis of Escherichia coli. J Bacteriol 

169:1307-14. 

48. Lafay, B., R. Ruimy, C. R. de Traubenberg, V. Breittmayer, M. J. Gauthier, and 

R. Christen. 1995. Roseobacter algicola sp. nov., a new marine bacterium isolated 

from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int. J. 

Syst. Bacteriol. 45:290-296. 

49. Laub, M. T., S. L. Chen, L. Shapiro, and H. H. McAdams. 2002. Genes directly 

controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proceedings of 

the National Academy of Science of the United States of America 99:4632-7. 

50. Ledyard, K., and J. Dacey. 1994. Dimethylsulfide production from 

dimethylsulfoniopropionate by a marine bacterium. Mar. Ecol. Prog. Ser. 110:95-

103. 

51. Letunic, I., R. R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork. 2006. 

SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 

34:D257-260. 

52. Levit, M. N., and J. B. Stock. 2002. Receptor methylation controls the magnitude of 

stimulus-response coupling in bacterial chemotaxis. J Biol Chem 277:36760-5. 

53. Lewitus, A. J. 1999. Mixotrophy and nitrogen uptake by pfiesteria piscicida 

(dinophyceae). J. Phycol. 35:1430-1437. 

54. Lewitus, A. J., J. Glasgow, H. B., and J. M. Burkholder. 1999. Kleptoplastidy in 

the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J. Phycol. 35:303-312. 



 

 128 

 

55. Litaker, R. W., M. W. Vandersea, S. R. Kibler, V. J. Madden, E. J. Noga, and P. 

A. Tester. 2002. Lifecycle of the heterotrophic dinoflagellate Pfiesteria piscicida 

(Dinophyceae). J. Phycol. 38:442-463. 

56. Liu, Y., M. Levit, R. Lurz, M. G. Surette, and J. B. Stock. 1997. Receptor-

mediated protein kinase activation and the mechanism of transmembrane signaling in 

bacterial chemotaxis. EMBO J 16:7231-40. 

57. Llewellyn, M., R. J. Dutton, J. Easter, D. O'Donnol, and J. W. Gober. 2005. The 

conserved flaF gene has a critical role in coupling flagellin translation and assembly 

in Caulobacter crescentus. Mol. Microbiol. 57:1127-1142. 

58. Lupas, A., and J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain 

activates the CheB methylesterase in bacterial chemotaxis. J Biol Chem 264:17337-

42. 

59. Macnab, R. M. 2003. How bacteria assemble flagella. Annu Rev Microbiol 57:77-

100. 

60. Macnab, R. M. 2004. Type III flagellar protein export and flagellar assembly. 

Biochimica et Biophysica Acta 1694:207-217. 

61. Manson, M. D., V. Blank, G. Brade, and C. F. Higgins. 1986. Peptide chemotaxis 

in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 

321:253-6. 

62. Martinez-Hackert, E., and A. M. Stock. 1997. The DNA-binding domain of 

OmpR: crystal structures of a winged helix transcription factor. Structure 5:109-124. 

63. Miller, T. R. 2004. SWIMMING FOR SULFUR: ANALYSIS OF THE 

ROSEOBACTER-DINOFLAGELLATE INTERACTION. Ph.D. thesis. University 

of Maryland, College Park. 

64. Miller, T. R., and R. Belas. 2004. Dimethylsulfoniopropionate metabolism by 

Pfiesteria-associated Roseobacter spp. Appl. Environ. Microbiol. 70:3383-91. 



 

 129 

 

65. Miller, T. R., and R. Belas. 2006. Motility is involved in Silicibacter sp. TM1040 

interaction with dinoflagellates. Environ. Microbiol. 8:1648-1659. 

66. Miller, T. R., K. Hnilicka, A. Dziedzic, P. Desplats, and R. Belas. 2004. 

Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl. 

Environ. Microbiol. 70:4692-701. 

67. Mitchell, J. G., L. Pearson, A. Bonazinga, S. Dillon, H. Khouri, and R. Paxinos. 

1995. Long Lag Times and High Velocities in the Motility of Natural Assemblages 

of Marine Bacteria. Appl Environ Microbiol 61:877-882. 

68. Moat, A., J. Foster, and M. Spector. 2002. Microbial Physiology, Fourth Edition 

ed. Wiley-Liss, Inc., New York. 

69. Moat, A., J. Foster, and M. Spector. 2002. Microbial Physiology, Fourth Edition 

ed. Wiley-Liss, Inc., New York. 

70. Moran, M. A., R. Belas, M. A. Schell, J. M. Gonzalez, F. Sun, S. Sun, B. J. 

Binder, J. Edmonds, W. Ye, B. Orcutt, E. C. Howard, C. Meile, W. Palefsky, A. 

Goesmann, Q. Ren, I. Paulsen, L. E. Ulrich, L. S. Thompson, E. Saunders, and 

A. Buchan. 2007. Ecological Genomics of Marine Roseobacters. Appl. Environ. 

Microbiol. 73:4559-4569. 

71. Moran, M. A., J. M. Gonzalez, and R. P. Kiene. 2003. Linking a bacterial taxon to 

sulfur cycling in the sea: Studies of the marine Roseobacter group. Geomicrobiol. J. 

20:375-388. 

72. Morrison, T. B., and J. S. Parkinson. 1994. Liberation of an interaction domain 

from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli. Proc 

Natl Acad Sci U S A 91:5485-9. 

73. Muir, R. E., T. M. O'Brien, and J. W. Gober. 2001. The Caulobacter crescentus 

flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar 

assembly to transcription. Mol Microbiol 39:1623-37. 



 

 130 

 

74. O'Toole, G. A., and R. Kolter. 1998. Initiation of biofilm formation in 

Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling 

pathways: a genetic analysis. Mol Microbiol 28:449-461. 

75. Obuchowski, P. L., and C. Jacobs-Wagner. 2008. PflI, a protein involved in 

flagellar positioning in Caulobacter crescentus. J. Bacteriol. 190:1718-29. 

76. Okumura, H., S. Nishiyama, A. Sasaki, M. Homma, and I. Kawagishi. 1998. 

Chemotactic adaptation is altered by changes in the carboxy-terminal sequence 

conserved among the major methyl-accepting chemoreceptors. J Bacteriol 180:1862-

8. 

77. Packer, H. L., H. Lawther, and J. P. Armitage. 1997. The Rhodobacter 

sphaeroides flagellar motor is a variable-speed rotor. FEBS Lett 409:37-40. 

78. Pao, G. M., and M. H. Saier, Jr. 1995. Response regulators of bacterial signal 

transduction systems: selective domain shuffling during evolution. J. Mol. Evol. 

40:136-154. 

79. Platzer, J., W. Sterr, M. Hausmann, and R. Schmitt. 1997. Three genes of a 

motility operon and their role in flagellar rotary speed variation in Rhizobium 

meliloti. J Bacteriol 179:6391-9. 

80. Poggio, S., C. Abreu-Goodger, S. Fabela, A. Osorio, G. Dreyfus, P. Vinuesa, and 

L. Camarena. 2007. A Complete Set of Flagellar Genes Acquired by Horizontal 

Transfer Coexists with the Endogenous Flagellar System in Rhodobacter 

sphaeroides. J. Bacteriol. 189:3208-16. 

81. Poggio, S., A. Osorio, G. Dreyfus, and L. Camarena. 2005. The flagellar hierarchy 

of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-

binding proteins. Mol Microbiol 58:969-83. 

82. Poole, P. S., M. J. Smith, and J. P. Armitage. 1993. Chemotactic signalling in 

Rhodobacter sphaeroides requires metabolism of attractants. J Bacteriol 175:291-4. 



 

 131 

 

83. Power, P. M., and M. P. Jennings. 2003. The genetics of glycosylation in Gram-

negative bacteria. FEMS Microbiol Lett 218:211-22. 

84. Pukall, R., D. Buntefuss, A. Fruhling, M. Rohde, R. M. Kroppenstedt, J. 

Burghardt, P. Lebaron, L. Bernard, and E. Stackebrand. 1999. Sulfitobacter 

rnediterraneus sp. nov.,a new sulfite-oxidizing member of the a-Proteobacteria. 

hternational Journal of Systematic Bacteriology 49:513-519. 

85. Quon, K. C., G. T. Marczynski, and L. Shapiro. 1996. Cell cycle control by an 

essential bacterial two-component signal transduction protein. Cell 84:83-93. 

86. Scharf, B., H. Schuster-Wolff-Buhring, R. Rachel, and R. Schmitt. 2001. 

Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti 

flagellin genes: importance of flagellin A for flagellar filament structure and 

transcriptional regulation. J. Bacteriol. 183:5334-5342. 

87. Shiba, T. 1991. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter 

denitrificans sp. nov., aerobic pink-pigmented bacteria which contain 

bacteriochlorophyll a. Syst. Appl. Microbiol. 14:140-145. 

88. Shin, S., and C. Park. 1995. Modulation of flagellar expression in Escherichia coli 

by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696-702. 

89. Silva, E. S. 1985. The association dinoflagellate-bacteria: Their ultrastructural 

relationship in two species of dinoflagellates. Protistologica 21:429-446. 

90. Silva, E. S. E. 1978. Endonuclear bacteria in two species of dinoflagellates. 

Protistologica 14:113-119. 

91. Silverman, M., and M. Simon. 1974. Characterization of Escherichia coli flagellar 

mutants that are insensitive to catabolite repression. J Bacteriol 120:1196-203. 

92. Skerker, J. M., M. S. Prasol, B. S. Perchuk, E. G. Biondi, and M. T. Laub. 2005. 

Two-component signal transduction pathways regulating growth and cell cycle 

progression in a bacterium: a system-level analysis. PLoS Biol. 3:e334. 



 

 132 

 

93. Sourjik, V., P. Muschler, B. Scharf, and R. Schmitt. 2000. VisN and VisR are 

global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium 

(Rhizobium) meliloti. J. Bacteriol. 182:782-788. 

94. Soutourina, O., A. Kolb, E. Krin, C. Laurent-Winter, S. Rimsky, A. Danchin, 

and P. Bertin. 1999. Multiple control of flagellum biosynthesis in Escherichia coli: 

role of H-NS protein and the cyclic AMP-catabolite activator protein complex in 

transcription of the flhDC master operon. J Bacteriol 181:7500-8. 

95. Soutourina, O. A., E. Krin, C. Laurent-Winter, F. Hommais, A. Danchin, and P. 

N. Bertin. 2002. Regulation of bacterial motility in response to low pH in 

Escherichia coli: the role of H-NS protein. Microbiology 148:1543-51. 

96. Sperandio, V., A. G. Torres, and J. B. Kaper. 2002. Quorum sensing Escherichia 

coli regulators B and C (QseBC): a novel two-component regulatory system involved 

in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 

43:809-21. 

97. Springer, M. S., M. F. Goy, and J. Adler. 1977. Sensory transduction in 

Escherichia coli: two complementary pathways of information processing that 

involve methylated proteins. Proc Natl Acad Sci U S A 74:3312-6. 

98. Springer, M. S., and B. Zanolari. 1984. Sensory transduction in Escherichia coli: 

regulation of the demethylation rate by the CheA protein. Proc Natl Acad Sci U S A 

81:5061-5. 

99. Springer, W. R., and D. E. Koshland, Jr. 1977. Identification of a protein 

methyltransferase as the cheR gene product in the bacterial sensing system. Proc Natl 

Acad Sci U S A 74:533-7. 

100. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal 

transduction. Annu. Rev. Biochem. 69:183-215. 



 

 133 

 

101. Tawa, P., and R. C. Stewart. 1994. Kinetics of CheA autophosphorylation and 

dephosphorylation reactions. Biochemistry 33:7917-24. 

102. Terahara, N., T. A. Krulwich, and M. Ito. 2008. Mutations alter the sodium versus 

proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus 

subtilis motors. Proc Natl Acad Sci U S A 105:14359-64. 

103. Thompson, P. R., J. Schwartzenhauer, D. W. Hughes, A. M. Berghuis, and G. D. 

Wright. 1999. The COOH terminus of aminoglycoside phosphotransferase (3')-IIIa 

is critical for antibiotic recognition and resistance. J Biol Chem 274:30697-706. 

104. Toews, M. L., M. F. Goy, M. S. Springer, and J. Adler. 1979. Attractants and 

repellents control demethylation of methylated chemotaxis proteins in Escherichia 

coli. Proc Natl Acad Sci U S A 76:5544-8. 

105. Toker, A. S., and R. M. Macnab. 1997. Distinct regions of bacterial flagellar switch 

protein FliM interact with FliG, FliN and CheY. J Mol Biol 273:623-34. 

106. Visscher, P. T., B. F. Taylor, and R. P. Kiene. 1995. Microbial consumption of 

dimethyl sulfide and methanethiol in marine coastal sediments. FEMS Microbiol. 

Ecol. 18:145-154. 

107. Vogelbein, W. K., V. J. Lovko, J. D. Shields, K. S. Reece, P. L. Mason, L. W. 

Haas, and C. C. Walker. 2002. Pfiesteria shumwayae kills fish by micropredation 

not exotoxin secretion. Nature 418:967-70. 

108. von Mering, C., L. J. Jensen, M. Kuhn, S. Chaffron, T. Doerks, B. Kruger, B. 

Snel, and P. Bork. 2007. STRING 7--recent developments in the integration and 

prediction of protein interactions. Nucleic Acids Res. 35:D358-362. 

109. Wadhams, G. H., and J. P. Armitage. 2004. Making sense of it all: bacterial 

chemotaxis. Nat Rev Mol Cell Biol 5:1024-37. 



 

 134 

 

110. Ward, M. J., D. M. Harrison, M. J. Ebner, and J. P. Armitage. 1995. 

Identification of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. 

Mol Microbiol 18:115-21. 

111. Welch, M., K. Oosawa, S. Aizawa, and M. Eisenbach. 1993. Phosphorylation-

dependent binding of a signal molecule to the flagellar switch of bacteria. Proc Natl 

Acad Sci U S A 90:8787-91. 

112. Wood, H. E., K. M. Devine, and D. J. McConnell. 1990. Characterisation of a 

repressor gene (xre) and a temperature-sensitive allele from the Bacillus subtilis 

prophage, PBSX. Gene 96:83-8. 

113. Wu, J., A. K. Benson, and A. Newton. 1995. Global regulation of a sigma 54-

dependent flagellar gene family in Caulobacter crescentus by the transcriptional 

activator FlbD. J Bacteriol 177:3241-50. 

114. Yagasaki, J., M. Okabe, R. Kurebayashi, T. Yakushi, and M. Homma. 2006. 

Roles of the intramolecular disulfide bridge in MotX and MotY, the specific proteins 

for sodium-driven motors in Vibrio spp. J Bacteriol 188:5308-14. 

115. Yamamoto, K., and Y. Imae. 1993. Cloning and characterization of the Salmonella 

typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc 

Natl Acad Sci U S A 90:217-21. 

116. Yang, G., T. V. Bhuvaneswari, C. M. Joseph, M. D. King, and D. A. Phillips. 

2002. Roles for riboflavin in the Sinorhizobium-alfalfa association. Mol Plant 

Microbe Interact 15:456-62. 

117. Yoch, D. C. 2002. Dimethylsulfoniopropionate: its sources, role in the marine food 

web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 

68:5804-5815. 



 

 135 

 

118. Yoch, D. C., J. H. Ansede, and K. S. Rabinowitz. 1997. Evidence for Intracellular 

and Extracellular Dimethylsulfoniopropionate (DMSP) Lyases and DMSP Uptake 

Sites in Two Species of Marine Bacteria. Appl Environ Microbiol 63:3182-3188. 

119. Zhou, J., L. L. Sharp, H. L. Tang, S. A. Lloyd, S. Billings, T. F. Braun, and D. F. 

Blair. 1998. Function of protonatable residues in the flagellar motor of Escherichia 

coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729-35. 

120. Zhulin, I. B., A. F. Lois, and B. L. Taylor. 1995. Behavior of Rhizobium meliloti in 

oxygen gradients. FEBS Lett 367:180-2. 

121. Zubkov, M. V., B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, and P. H. 

Burkill. 2001. Linking the composition of bacterioplankton to rapid turnover of 

dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ. 

Microbiol. 3:304-311. 

122. Zubkov, M. V., B. M. Fuchs, S. D. Archer, R. P. Kiene, R. Amann, and P. H. 

Burkill. 2001. Linking the composition of bacterioplankton to rapid turnover of 

dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ 

Microbiol 3:304-11. 

 

 


