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1.1 Introduction

1.1.1 Statement of the main result

We study a two-center two-body problem. Consider two fixed centers Q1 and

Q2 of masses m1 = m2 = 1 located at distance χ from each other and two small

particles Q3 and Q4 of masses m3 = m4 = µ� 1. Qis interact with each other via

Newtonian potential. If we choose coordinates so that Q2 is at (0, 0) and Q1 is at

(−χ, 0) then the Hamiltonian of this system can be written as

H =
|P3|2

2µ
+
|P4|2

2µ
− µ

|Q3|
− µ

|Q3 − (−χ, 0)|
− µ

|Q4|
− µ

|Q4 − (−χ, 0)|
− µ2

|Q3 −Q4|
.

(1.1.1)

We assume that the total energy of the system is zero.

We want to study singular solutions of this system, that are solutions which

can not be continued for all positive times. We will exhibit a rich variety of singular

solutions. Fix ε0 < χ. Let ω = {ωj}∞j=1 be a sequence of 3s and 4s.

Definition 1. We say that (Q3(t), Q4(t)) is a singular solution with symbolic

sequence ω if there exists a positive increasing sequence {tj}∞j=0 such that

• t∗ = limj→∞ tj <∞.

• |Q3(tj)−Q2| ≤ ε0, |Q4(tj)−Q2| ≤ ε0.

• If ωj = 4 then for t ∈ [tj−1, tj], |Q3(t) − Q2| ≤ ε0 and {Q4(t)}t∈[tj−1,tj ] winds

around Q1 exactly once.

If ωj = 3 then for t ∈ [tj−1, tj], |Q4(t) − Q2| ≤ ε0 and {Q3(t)}t∈[tj−1,tj ] winds

around Q1 exactly once.
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• |Q̇i(t)| → ∞ as t→ t∗.

During the time interval [tj−1, tj] we refer to Qωj as the traveling particle and

to Q7−ωj as the captured particle. Thus ωj prescribes which particle is the traveler

during the j trip.

We denote by Σω the set of initial conditions of singular orbits with symbolic

sequence ω. Note that if ω contains only finitely many 3s then there is a collision

of Q3 and Q2 at time t∗. If ω contains only finitely many 4s then there is a collision

of Q4 and Q2 at time t∗. Otherwise at we have a collisionless singularity at t∗.

Theorem 1. There exists µ∗ � 1 such that for µ < µ∗ the set Σω 6= ∅.

Moreover there is an open set U in the phase space and a foliation of U by

two-dimensional surfaces such that for any leaf S of our foliation Σω∩S is a Cantor

set.

Remark 1. By rescaling space and time variables we can assume that χ � 1. In

the proof we shall make that assumption and set ε0 = 2.

Remark 2. It follows from the proof that the Cantor set described in Theorem 1

can be chosen to depend continuously on S. In other words Σω contains a set which

is local a product of a five dimensional disc and a Cantor set. The fact that on

each surface we have a Cantor set follows from the fact that we have a freedom of

choosing how many rotations the captured particle makes during j-th trip.

Remark 3. The construction presented in this paper also works for small nonzero

energies. Namely, it is sufficient that the total energy is much smaller than the
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kinetic energies of the individual particles. The assumption that the total energy

is zero is made to simplify notation since then the energies of Q3 and Q4 have the

same absolute values.

Remark 4. One can ask if Theorem 1 holds for other choices of masses. The fact

that the masses of the fixed centers Q1 and Q2 are the same is not essential and is

made only for convenience. The assumption that Q3 and Q4 are light is important

since it allows us to treat their interaction as a perturbation except during the

close encounters of Q3 and Q4. The fact that the masses of Q3 and Q4 are equal

allows us to use an explicit periodic solution of a certain limiting map (Gerver map)

which is found in [G1]. It seems likely that the conclusion of Theorem 1 is valid if

m3 = µ,m4 = cµ where c is a fixed constant close to 1 and µ is sufficiently small

but we do not have a proof of that.

1.1.2 Motivations.

1.1.2.1 Non-collision singularity in N-body problem

Our work is motivated by the following fundamental problem in celestial me-

chanics. Describe the set of initial conditions of the Newtonian N-body problem

leading to global solutions. The compliment to this set splits into the initial condi-

tions leading to the collision and non-collision singularities.

It is clear that the set of initial conditions leading to collisions is non-empty

for all N > 1 and it is shown in [Sa1] that it has zero measure. Much less is known

about the non-collision singularities. In particular the following basic problems are
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still open.

Conjecture 1. The set of non-collision singularities is non-empty for all N > 3.

Conjecture 2. The set of non-collision singularities has zero measure for all N > 3.

Conjecture 1 probably goes back to Poincaré who was motivated by King

Oscar II prize problem about analytic representation of collision less solutions of

the N body problem. It was explicitly mentioned in Painlevé’s lectures [Pa] where

the author proved that for N = 3 there are no non-collision singularities. Soon

after Painlevé, von Ziepel showed that if the system of N bodies has a non-collision

singularity then some particle should fly off to infinity in finite time. Thus non-

collision singularities seem quite counterintuitive. However in [MM] Mather and

McGehee constructed a system of four bodies on the line where the particles go

to infinity in finite time after an infinite number of binary collisions (it was known

since the work of Sundman [Su]) that binary collisions can be regularized so that the

solutions can be extended beyond the collisions). Since Mather-McGehee example

had collisions it did not solve Conjecture 1 but it made it plausible. Conjecture 1

was solved independently by Xia [X] for the spacial five-body problem and by Gerver

[G1] for a planar N body problem where N is sufficiently large. The problem still

remains open for N = 4 and for small N in the planar case. However in [G1] Gerver

sketched a scenario which may lead to a non-collision singularity in the planar four-

body problem. Gerver has not published the details of his construction due to a

large amount of computations involved (it suffices to mention that even technically

simpler large N case took 68 pages in [G1]). The goal of this paper is to realize
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Gerver’s scenario in the simplified setting of two-center-two-body problem.

Conjecture 2 is mentioned by several authors, see e.g. [Sim, Sa3, K]. It is

known that the set of initial conditions leading to the collisions has zero measure

[Sa1] and that the same is true for non-collisions singularities if N = 4. To obtain the

complete solution of this conjecture one needs to understand better of the structure

of the non-collision singularities and our paper is one step in this direction.

1.1.2.2 Well-posedness in other systems

Recently the question of global well-posedness in PDE attracted a lot of at-

tention motivated in part by the Clay Prize problem about well-posedness of the

Navier-Stokes equation (see e.g. [LS]). One approach to constructing a blowup so-

lutions for PDEs is to find a fixed point of a suitable renormalization scheme and

to prove the convergence towards this fixed point. The same scheme is also used to

analyze two-center-two-body problem and so we hope that the techniques developed

in this paper can be useful in constructing singular solutions in more complicated

systems.

1.1.2.3 Poincaré’s second species solution.

In his book [Po] , Poincaré claimed the existence of the so-called second species

solution in three-body problem, which are periodic orbits converging to collision

chains as µ→ 0. The concept of second species solution was generalized to the non-

periodic case. In recent years significant progress was made in understanding second
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species solutions of both restricted [BM, FNS] and full [BN] three-body problem.

However the understanding of general second species solutions generated by infinite

aperiodic collision chains is still incomplete. Our result can be considered as a

generalized version of second species solution. All masses are positive and there are

infinitely many close encounters. Therefore the techniques developed in this paper

can be useful in the study of the second species solutions.

1.1.3 A glimpse of the 4-body problem

Consider the same setting as in our main result but suppose that Q1 and

Q2 are also free (not fixed). Then we can expect that during each encounter light

particle transfers a fixed proportion of their energy and momentum to the heavy

particle . The exponential growth of energy and momentum would cause Q1 and

Q2 to go to infinity in finite time leading to a non-collision singularity.

A proof of this would however involve a significant amount of additional com-

putation due to higher dimensionality of the full four-body problem. Indeed planar

four-body problem has 16 dimensions since each particle has two position and two

momentum coordinates. Removing the translation invariance we are left with 12

dimensions. Taking into account the rotation invariance leaves us with 10 dimen-

sions. Energy conservation and taking a Poincaré section kills two more dimensions

so we obtain a eight dimensional Poincaré map. We expect however that similarly

to the problem at hand the Poincaré of the full four-body problem will have only

two strongly expanding directions while other directions will be dominated by the
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most expanding ones. This would allow our strategy to extend to the full four-body

problem leading to the complete solution of the Painlevé conjecture.

1.1.4 Plan of the paper.

The paper is organized as follows. Section 2.2 and 3.3 constitute the main

framework of the proof. We give a proof of the main Theorem 1 based on a careful

study of the hyperbolicity of the Poincaré map. In Section 3.3, we summarize all

later calculations and we prove the hyperbolicity results of Section 3.3. All the

later sections provide calculations needed in Section 3.3. We define the local map

to study the local interaction between Q3 and Q4 and global map to cover the

time interval when Q4 is traveling between Q1 and Q2. The Section 4.1, 4.3, 4.4

and 4.5 are devoted to the calculations of the derivative of the global map, while

Section 5.1,5.2, and 5.3 computes the derivative of the local map. Finally, we have

two appendices. In Appendix A.1, we include an introduction to the Delaunay

coordinates for Kepler motion, which is used extensively in our calculation. In

Appendix B.2, we summarize the main information concerning Gerver’s model in

[G1].

7



2.2 Proof of the main theorem

2.2.1 Idea of the proof.

The proof of the Theorem 1 is based on studying the hyperbolicity of the

Poincaré map. Our system has four degrees of freedom. We pick the zero energy

surface and then consider a Poincaré section. The resulting Poincaré map is six

dimensional. In turns out that for orbits of interest (that is, the orbits where the

captured particle rotates around Q2 and the traveler moves back and forth between

Q1 and Q2) there is an invariant cone which consists of vectors close to a certain

two dimensional subspace such that all vectors in the cone are strongly expanding.

This expansion comes from the combination of shearing (there are long stretches

then the motion of the light particles is well approximated by the Kepler motion

and so the derivatives are almost upper triangular) and twisting caused by the close

encounters between Q4 and Q3 and between Q4 and Q1. We restrict our attention

to a two dimensional surface whose tangent space belong to the invariant cone

and construct on such a surface a Cantor set of singular orbits as follows. The two

parameters coming from the two dimensionality of the surface will be used to control

the phase of the close encounter between the particles and their relative distance.

The strong expansion will be used to ensure that the choices made at the next step

will have a little effect on the parameters at the previous steps. This Cantor set

construction based on the instability of near colliding orbits is also among the key

ingredients of the singular orbit constructions in [MM] and [X].
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2.2.2 Main ingredients.

In this section we present the main steps in proving Theorem 1. In Subsection

2.2.3 we describe a simplified model for constructing singular solutions given by

Gerver [G1]. This model is based on the following simplifying assumptions:

• µ = 0, χ =∞.

• The particles do not interact except during a close encounter.

• Velocity exchange during close encounters can be modeled by an elastic colli-

sion.

• The action of Q1 on light particles can be ignored except that during the

close encounters of the traveler particle with Q1 the angular momentum of the

traveler with respect to Q2 can be changed arbitrarily.

The main conclusion of [G1] is that the energy of the captured particle can be

increased by a fixed factor while keeping the shape of its orbit unchanged. Gerver

designs a procedure with two steps of collisions having the following properties:

• The incoming and outgoing asymptotes of the traveler are horizontal.

• The major axis of the captured particle remains vertical.

• After two steps of collisions, the elliptic orbit of the captured particle has

the same eccentricity but smaller semimajor compared with the elliptic orbit

before the first collision (see Fig 1 and 2).

9



For quantitative information, see the Appendix B.2.

Since the shape is unchanged after the two trips described above the procedure

can be repeated. Then the kinetic energies of the particles grow exponentially and

so the time needed for j-th trip is exponentially small. Thus the particles can make

infinitely many trips in finite time leading to a singularity. Our goal therefore is to

get rid of the above mentioned simplifying assumptions.

Figure 1: Angular momentum transfer collision

In Subsection 2.2.4 we study near collision of the light particles. This assump-

tion that velocity exchange can be modeled by elastic collision is not very restrictive

since both energy and momentum are conserved during the exchange and any change

of velocities conserving energy and momentum amounts to rotating the relative ve-

10



Figure 2: Energy transfer collision

locity by some angle and so it can be effected by an elastic collision. We recall a

formula relating the angle of rotation to the minimal distance between the particles.

In Subsection 2.2.5 we state a result saying that away from the close encounters

we can disregard interaction between the light particles and the action of Q1 to the

particle which is captured by Q2 can indeed be disregarded. In Subsection 2.2.6 we

study the Poincaré map corresponding to one trip of one light particle around Q1.

After some technical preparations we present the main result of that section Lemma

2.2.6 which says that after this trip the angular momentum of the traveler particle

indeed can change in an arbitrary way. Finally in Subsection 2.2.7 we show how to

combine the above ingredients to construct a Cantor set of singular orbits.
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2.2.3 Gerver map.

Following [G1], we discuss in this section the limit case µ = 0, χ = ∞. We

assume that Q3 has elliptic motion and Q4 has hyperbolic motion with respect to the

focus Q2. Since µ = 0, Q3 and Q4 do not interact unless they have exact collision.

Since we assume that Q4 just comes from the interaction from Q1 located at (−∞, 0)

and the new traveler particle is going to interact with Q1 in the future, the slope of

incoming asymptote θ−4 of Q4 and that of the outgoing asymptote θ̄+ of the traveler

particle should satisfy θ− = 0, θ̄+ = π.

The Kepler motions of Q3 and Q4 has three first integrals Ei, Gi and gi whereEi

denotes the energy, Gi denotes the angular momentum and gi denotes the argument

of periapsis. Since the total energy of the system is zero we have E4 = −E3. It turns

out convenient to use eccentricities ei =
√

1 + 2G2
iEi instead of Gi since the proof

of Theorem 1 involves a renormalization transformation and ei are scaling invariant.

The Gerver map describes the parameters of the elliptic orbit change during the

interaction of Q3 and Q4. The orbits of Q3 and Q4 intersect in two points. We pick

one of them. We use a discrete parameter j ∈ {1, 2} to describe if the points meet

at the first or at the second intersection (the intersection points will be numbered

chronologically along the orbit of Q4).

Since Q3 and Q4 only interact when they are at the same point the only effect

of the interaction is to change their velocities. Any such change which satisfies

energy and momentum conservation can be described by an elastic collision. That

12



is, velocities before and after the collision are related by

v+
3 =

v−3 + v−4
2

+

∣∣∣∣v−3 − v−42

∣∣∣∣n(α), v+
4 =

v−3 + v−4
2

−
∣∣∣∣v−3 − v−42

∣∣∣∣n(α), (2.2.1)

where n(α) is a unit vector making angle α with v−3 − v−4 .

With this in mind we proceed to define the Gerver map Ge4,j,ω(E3, e3, g3). This

map depends on two discrete parameters j ∈ {1, 2} and ω ∈ {3, 4}. The role of j

has been explained above, and ω will tell us which particle will be the traveler after

the collision.

To define G we assume that Q4 moves along the hyperbolic orbit with pa-

rameters (−E3, e4, g4) where g4 is fixed by requiring that the incoming asymptote

of Q4 is horizontal. We assume that Q3 and Q4 arrive to the j-th intersection point

of their orbit simultaneously. At this point their velocities are changed by (2.2.1).

After that the particle proceed to move independently. Thus Q3 moves on an orbit

with parameters (Ē3, ē3, ḡ3), and Q4 moves on an orbit with parameters (Ē4, ē4, ḡ4).

If ω = 4, we choose α so that after the exchange Q4 moves on hyperbolic orbit

and θ̄+
4 = π and let

Ge4,j,4(E3, e3, g3) = (Ē3, ē3, ḡ3).

If ω = 3 we choose α so that after the exchange Q3 moves on hyperbolic orbit and

θ̄+
3 = π and let

Ge4,j,3(E3, e3, g3) = (Ē4, ē4, ḡ4).

In the following, to fix our notation, we always call the captured particle Q3

and the traveler Q4.
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We will denote the ideal orbit parameters in Gerver’s paper [G1] of Q3 and

Q4 before the first (respectively second) collision with * (respectively **). Thus, for

example, G∗∗4 will denote the angular momentum of Q4 before the second collision.

Moreover, the realistic values after the first (respectively, after the second) collisions

are denoted with a bar or double bar.

Note G has a skew product form

ē3 = fe(e3, g3, e4), ḡ3 = fg(e3, g3, e4), Ē3 = E3fE(e3, g3, e4).

This skew product structure will be crucial in the proof of Theorem 1 since it will

allow us to iterate G so that E3 grows exponentially while e3 and g3 remains almost

unchanged.

The following fact plays a key role in constructing singular solutions.

Lemma 2.2.1. ([G1]) There exist (e∗3, g
∗
3), such that for sufficiently small δ̄ > 0

given ω′, ω′′ ∈ {3, 4}, there exist λ0 > 1 and functions e′4(e3, g3), e′′4(e3, g3), defined

in a small (depending on δ̄) neighborhood of (e∗3, g
∗
3), such that

(a) for e∗4, e
∗∗
4 given by e′4(e∗3, g

∗
3) = e∗4 and e′′4(e∗3, g

∗
3) = e∗∗4 , we have

(e3, g3, E3)∗∗ = Ge∗4,1,ω
′ (e3, g3, E3)∗ , (e3,−g3, λ0E3)∗ = Ge∗∗4 ,2,ω′′ (e3, g3, E3)∗∗ ,

(b) If (e3, g3) lie in a δ̄ neighborhood of (e∗3, g
∗
3), we have

(ē3, ḡ3, Ē3) = Ge′4(e3,g3),1,ω′ (e3, g3, E3) , (¯̄e3,−¯̄g3,
¯̄E3) = Ge′′4 (e3,g3),2,ω′′

(
ē3, ḡ3, Ē3

)
,

and

¯̄e3 = e∗3, ¯̄g3 = g∗3,
¯̄E3 = λ(e3, g3)E3

where λ0 − δ̄ < λ < λ0 + δ̄.
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Part (a) is the main result of the above lemma. It allows us to increase

energy after two collisions without changing the shape of the orbit in the limit case

µ = 0, χ = ∞. Part (b) is of the mrs technical nature, which allows us to fight

against the effect of perturbations coming from the fact that µ > 0 and χ <∞.

Lemma 2.2.1 is a slight restatement of the main result of [G1]. Namely part

(a) is proven in Sections 3 and 4 of [G1] and part (b) is stated in Section 5 of [G1]

(see equations (5-10)–(5-13)). The proof of part (b) proceeds by a routine numerical

computation. For the reader’s convenience we review the proof of Lemma 2.2.1 in

Appendix B.2 through explaining how the numerics is done.

Remark 5. 1. In fact Gerver produces a one parameter family of the periodic

solution. Namely one can take e∗3 to be any number between 0 and
√

2
2

and

g∗3 = 0. In the course of the proof of Theorem 1 we need to check several

non-degeneracy conditions. This will be done numerically for e∗3 = 1
2
.

2. We try to minimize the use of numerics in our work. The use of numerics

is always preceded by mathematical derivations. Readers can see that the

numerics in this paper can also be done without using computer, but we do

not expect interesting mathematics there.

2.2.4 Asymptotic analysis. Local map.

We assume that the two centers are at distance χ � 1 and that Q3, Q4 have

positive masses 0 < µ � 1. We also assume that Q3 and Q4 have initial orbit

parameters (E3, `3, e3, g3, e4, g4) in the section {x4(0) = −2, ẋ4(0) > 0} (Here `3
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stands for the mean anomaly of Q3, see Appendix A.1). We let particles move until

one of the particles reach the surface {x4 = −2, ẋ4 < 0} moving on hyperbolic orbit.

We measure the final orbit parameters (Ē3, l̄3, ē3, ḡ3, , ē4, ḡ4). We call the mapping

moving initial positions of the particles to their final positions the local map L. In

Fig 3, the local map is to the right of the section {x = −2}.

Lemma 2.2.2. Suppose that the initial orbit parameters (E3, `3, e3, g3, e4, g4) are

such that the traveler particle(s) satisfy θ− = O(µ) and θ̄+ = π + O(µ) then the

following asymptotics holds uniformly

(Ē3, ē3, ḡ3) = Ge4(E3, e3, g3) + o(1),

as µ→ 0, χ→∞.

The lemma tells us Gerver map is a good approximation of the local map L

for the real case 0 < µ � 1 � χ < ∞ for the orbits of interest. Lemma 2.2.2 will

be proven in Section 5.3 where we also present some additional information about

the local map (see Lemma 5.2.2).

2.2.5 Asymptotic analysis. Global map.

As before we assume that the two centers are at distance χ � 1. We as-

sume that initially Q3 moves on an elliptic orbit, Q4 moves on hyperbolic orbit and

{x4(0) = −2, ẋ4(0) < 0}. We assume that |y4(0)| < C and after moving around Q1

it hits the surface {x4 = −2, ẋ4 > 0} so that |y4| < C. We call the mapping moving

initial positions of the particles to their final positions the global map G. In Fig
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3, the global map is to the left of the section {x = −2}. We let (E3, `3, e3, g3, e4, g4)

denote the initial orbit parameters measured in the section {x4 = −2, ẋ4 < 0}

and (Ē3, l̄3, ē3, ḡ3, ē4, ḡ4) denote the final orbit parameters measured in the section

{x4 = −2, ẋ4 > 0}.

Lemma 2.2.3. Assume that |y4| < C holds both at initial and final moments. Then

uniformly in χ, µ we have the following estimates

(a) Ē3 − E3 = O(µ), Ḡ3 −G3 = O(µ), ḡ3 − g3 = O(µ).

(b) θ+
4 = π +O(µ), θ̄−4 = O(µ).

The proof of this lemma is given in Section 4.1.

2.2.6 Admissible surfaces.

Given a sequence ω we need to construct orbits having singularity with sym-

bolic sequence ω.

We will study the Poincaré map P = G ◦ L to the surface {x4 = −2, ẋ4 > 0}.

It is a composition of the local and global maps defined in the previous sections.

Given δ consider open sets in the phase space defined by

U1(δ) =

{∣∣∣∣E3 −
(
−1

2

)∣∣∣∣ , |e3 − e∗3|, |g3 − g∗3|, |θ−4 | < δ, |e4 − e∗4| <
√
δ

}
,

U2(δ) =
{
|E3 − E∗∗3 |, |e3 − e∗∗3 |, |g3 − g∗∗3 |, |θ−4 | < δ, |e4 − e∗∗4 | <

√
δ
}
.

We will also need the renormalization map R defined as follows. Partition our

section into cubes of size 1/
√
χ and on each cube we rescale the space and time so

that

17



• in the center of the cube Q3 has elliptic orbit with energy −1
2
.

• the potential of the fixed centers is still 1/|Q−Qj|.

In addition we reflect the coordinates with respect to x axis.

After the rescaling we apply the dynamics until x4 becomes equal to −2 again.

Note that the rescaling changes (for the orbits of interest, increases) the distance

between the fixed centers by sending χ to λχ. Observe that at each step we have the

freedom of choosing the centers of the cubes. We describe how this choice is made

in the next section. In the following we give a proof of the main theorem based on

the three lemmas, whose proofs are in the next section.

Lemma 2.2.4. There are cone families K1 on Tx(T
∗T3), x ∈ U1(δ) and K2 on

Tx(T
∗T3), x ∈ U2(δ), each of which contains a two dimensional plane, such that

(a) dP(K1) ⊂ K2, d(R ◦ P)(K2) ⊂ K1.

(b) If v ∈ K1, then ||dP(v)|| ≥ cχ||v||. If v ∈ K2, then ||d(R ◦ P)(v)|| ≥ cχ||v|| for

some c > 0 independent of χ.

We call a C1 surface S1 ⊂ U1(δ) (respectively S2 ⊂ U2(δ) admissible if

TS1 ⊂ K1 (respectively TS2 ⊂ K2).

Lemma 2.2.5. (a) The vector w̃ = ∂
∂`3

is in Ki.

(b) Any plane Π in Ki the map projection map πe4,`3 = (de4, d`3) : Π→ R2 is

one-to-one. In other words (e4, `3) can be used as coordinates on admissible surfaces.

We call an admissible surface essential if πe4,`3 is an I × T1 for some interval

I. In other words given e4 ∈ I we can prescribe `3 arbitrarily.
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Lemma 2.2.6. (a) Given an essential admissible surface S1 ∈ U1(δ) and ẽ4 ∈ I(S1)

there exists l̃3 such that P((ẽ4, l̃3)) ∈ U2(δ). Moreover if dist(ẽ4, ∂I) > 1/χ then there

is a neighborhood V (ẽ4) of (ẽ4, l̃3) such that πe4,`3 ◦ P maps V surjectively to

{|e4 − e∗4| < Kδ} × T1.

(b) Given an essential admissible surface S2 ⊂ U2(δ) and ẽ4 ∈ I(S2) there

exists l̃3 such that R ◦ P((ẽ4, l̃3)) ∈ U1(δ). Moreover if dist(ẽ4, ∂I) > 1/χ then there

is a neighborhood V (ẽ4) of (ẽ4, l̃3) such that πe4,`3 ◦ R ◦ P maps V surjectively to

{|e4 − e∗∗4 | < Kδ} × T1.

(c) For points in V (ẽ4) from parts (a) and (b), the particles avoid collisions

before the next return and µδ ≤ d ≤ µ
δ
.

Note that by Lemma 2.2.4 the diameter of V (ẽ4) is O(δ/χ).

2.2.7 Construction of the singular orbit.

Fix a small ε� 1/χ. Let S0 be an admissible surface such that the diameter

of S0 is much larger than 1/χ and such that on S0 we have

|e3 − ê3| < ε, |g3 − ĝ3| < ε.

where (ê3, ĝ3) is close to (e∗3, g
∗
3). For example, we can pick a point x ∈ U1(δ) and

let ŵ be a vector in K1(x) such that ∂
∂ψ3

(ŵ) = 0. Then let

S0 = {(E3, `3, e3, g3, e4, g4)(x) + aŵ + (0, b, 0, 0, 0, 0)}a≤ε/K̄

where K̄ is a large constant.
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We wish to construct a singular orbit in S0. We define Sj inductively so that Sj

is component of P(Sj−1)∩U2(δ) if j is odd and Sj is component of (R◦P)(Sj−1)∩

U1(δ) if j is even (we shall show below that such components exist). Let x =

limj→∞(RP2)−jS2j. We claim that x has singular orbit. Indeed by Lemma 2.2.1 the

unscaled energy of Q4 satisfies E(j) ≥ (λ0− δ̃)j/2 where δ̃ → 0 as δ → 0. Accordingly

the velocity of Q4 during the trip j is bounded from below by c
√
E(j) ≥ c(λ0− δ̃)j/4.

Therefore tj+1 − tj = O((λ0 − δ̃)−j/4) and so t∗ = limj→∞ tj <∞ as needed.

It remains to show that if we can find a component of P(S2j) inside U2(δ) and

a component of (R◦P(S2j+1)) inside U1(δ). Note that Lemma 2.2.6 allows to choose

such components inside larger sets U2(Kδ) and U1(Kδ).

First note that by Lemma 2.2.3 on P(S2j)
⋂
U2(Kδ) and on (R◦P2)(S2j)

⋂
U2(Kδ)

we have θ−4 = O(µ). Also by Lemma 2.2.6 e4 can be prescribed arbitrarily. In other

words we have a good control on the orbit of Q4.

In order to control the orbit of Q3 note that by Lemma 2.2.4(b) the preimage

of S2j has size O(1/χ) and so by Lemmas 2.2.2, 2.2.3 and 2.2.5 given ε we have that

e3 and g3 have oscillation less than ε on S2j if µ is small enough. Namely part (b)

of Lemma 2.2.5 shows that e3 and g3 have oscillation O(1/χ) on the preimage of S2j

while Lemmas 2.2.2 and 2.2.3 show that the oscillations do not increase much after

application of local and global map. Thus there exist (ê3, ĝ3) such that on S2j we

have

|e3 − ê3| < ε, |g3 − ĝ3| < ε.
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Also due to rescaling we have
∣∣E3 − (−1

2
)
∣∣ = O(1/

√
χ). Set

S̃2j+1 = PV (e′(ê3, ĝ3)), S̃2j+2 = (R ◦ P)V (e′′(ê3, ĝ3)). (2.2.2)

Then on S̃2j+1 we shall have

|e3 − e∗∗3 | < Kε, |g3 − g∗∗3 | < Kε and |E3 − E∗∗3 | < Kε

while on S̃2j+2 we shall have

|e3 − e∗3| < K2ε, |g3 − g∗3| < K2ε and

∣∣∣∣E3 −
1

2

∣∣∣∣ < K/
√
χ.

Denote

S2j+1 = S̃2j+1 ∩ {|e4 − e′′(e∗3, g∗3)| <
√
δ}, S2j+2 = S̃2j+2 ∩ {|e4 − e′(e∗3, g∗3)| <

√
δ}.

Taking ε so small that K2ε < δ we get that S2j+1 ∈ U2(δ), S2j+2 ∈ U1(δ) as needed.

Finally we use the freedom to choose the appropriate partition in the defini-

tion of R to ensure that R is continuous on the preimage of V (e′(ê3, ĝ3)) so that

V (e′(ê3, ĝ3)) is a smooth surface.

Remark 6. In fact we do not need to use exactly e′(ê3, ĝ3) and e′′(ê3, ĝ3) in (2.2.2).

Namely any V (e†4) and V (e‡4) would do provided that

∣∣∣e†4 − e′4(ê3, ĝ3)
∣∣∣ < ε,

∣∣∣e‡4 − e′′4(ê3, ĝ3)
∣∣∣ < ε.

Different choices of e†4 and e‡4 allow us obtain different orbits. Since such freedom

exists at each step of our construction we have a Cantor set of singular orbits with

a given symbolic sequence ω.
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3.3 Hyperbolicity of the Poincaré map

3.3.1 Construction of invariant cones

Here we derive Lemma 2.2.4, 2.2.5 and 2.2.6 from the asymptotics of the

derivative of local and global maps.

Lemma 3.3.1. Suppose x ∈ Ui(δ) and L(x) satisfies θ−4 = O(µ), θ̄+
4 = π + O(µ).

Then there exist a linear functional l̂i and a vector ûi such that

dL(x) =
1

µ
u(x)⊗ l(x) +B(x) + o(1).

Moreover

l = l̂i + o(1), u = ûi + o(1), B = B̂i + o(1), as δ, µ, 1/χ→ 0,

This lemma is proven in Section 5.3.

We further define two new sets in the phase space:

Û1(δ̂) = {|(e3, g3, E3)−Ge∗4
(e∗3, g

∗
3, E

∗
3)| < δ̂, |θ+

4 | < δ̂ and |G3+G4−(G∗3+G∗4)| < δ̂},

Û2(δ̂) = {|(e3, g3, E3)−Ge∗∗4
(e∗∗3 , g

∗∗
3 , E

∗∗
3 )| < δ̂, |θ+

4 | < δ̂ and |G3+G4−(G∗∗3 +G∗∗4 )| < δ̂}.

Note that if δ̂ ≥ Constδ then by Lemma 2.2.2 Ûi(δ̂) contains the part of Ui

consisting of the orbits which will have a close encounter with Q1 during the next

excursion around Q1.

Lemma 3.3.2. (a) For each C there exists C̃ such that if |y(x)| ≤ C and |y(G(x))| ≤

C then Q4 passes within distance C̃/χ from Q1.
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(b) Let x and y = G(x) be such that |y(x)| ≤ C, |y((y))| ≤ C and Q4 passes

within distance C̃/χ from Q1. Then there exist linear functionals l̄(x) and ¯̄l(x) and

vectorfields ū(y) and ¯̄u(y) such that

dG(x) = χ2ū(y)⊗ l̄(x) + χ¯̄u(y)⊗ ¯̄l(x) +O(µ2χ).

Moreover there exist vector wj and linear functionals l̄i,
¯̄li such that if x ∈ Ûi(δ̂) and

δ̂ → 0 then

l̄(x)→ l̄i,
¯̄l(x)→ ¯̄li,

In addition, if y ∈ R−1U1(δ) and δ → 0 then

span(ū(y), ¯̄u(y))→ span(w1, w̃)

and In addition, if y ∈ U2(δ) and δ → 0 then

span(ū(y), ¯̄u(y))→ span(w2, w̃)

where w̃ = ∂
∂`3
.

This Lemma is proven in Section 3.3.

Lemma 3.3.3. The following non degeneracy conditions are satisfied.

(a1) span(û1, B(̂l1(w̃)dRw2− l̂1(dRw2)w̃)) is transversal to Ker(̄l1)∩Ker(̄̄l1).

(a2) de4(dRw2) 6= 0.

(b1) span(û2, B(̂l2(w̃)w1 − l̂2(w1)w̃)) is transversal to Ker(̄l2) ∩Ker(̄̄l2).

(b2) de4(w1) 6= 0.

This Lemma is proven in Section 3.3.
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Definition 2. We now take K1 to be the set of vectors which make an angle less

than a small constant η with span(dRw2, w̃2), and K2 to be the set of vectors which

make an angle less than a small constant η with span(w1, w̃1).

Proof of Lemma 2.2.4. Consider for example the case where x ∈ U2(δ). We claim

that if δ, µ are small enough then dL(span(w1, w̃)) is transversal to Ker̄l2 ∩ Ker̄̄l2.

Indeed take Γ such that l(Γ) = 0. If Γ = aw1 + ãw̃ then al(w1) + ãl(w̃) = 0. It

follows that the direction of Γ is close to the direction of Γ̂ = l̂2(w̃)w1 − l̂2(w1)w̃.

Next take Γ̃ = bw+ b̃w̃ where bl(w1) + b̃l(w̃) 6= 0. Then the direction of dLΓ̃ is close

to û2 and the direction of dL(Γ) is close to B(Γ̂) so our claim follows.

Thus for any plane Π close to span(w1, w̃) we have that dL(Π) is transversal

to Ker̄l2 ∩Ker̄̄l2. Take any Y ∈ K2. Then either Y and w1 are linearly independent

or Y and w̃ are linearly independent. Hence dL(span(Y,w1)) or dL(span(Y, w̃)) is

transversal to Ker̄l2 ∩Ker̄̄l2. Accordingly either l̄2(dL(Y )) 6= 0 or ¯̄l2(dL(Y )) 6= 0. If

l̄2(dL(Y )) 6= 0 then the direction of d(G ◦L)(Y ) is close to ū. If l̄2(dL(Y )) = 0 then

the direction of d(G ◦ L)(Y ) is close to ¯̄u. In either case d(RG ◦ L)(Y ) ∈ K1 and

||d(G ◦ L)(Y )|| ≥ cχ||Y ||. This completes the proof in the case x ∈ U2(δ). The case

where x ∈ U1(δ) is similar.

Proof of Lemma 2.2.5. Part (a) follows from the definition of Ki. Also by part (b)

of Lemma 3.3.3 the map π : span(w, w̃) → R2 given by π(Γ) = (d`3(Γ), de4(Γ)) is

invertible. Namely if Γ = aw + ãw̃ then

a =
de4(Γ)

de4(w)
, ã = dl3(Γ)− adl3(w).

Accordingly π is invertible on planes close to span(w, w̃) proving our claim.
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To prove Lemma 2.2.6 we need two auxiliary results.

Sublemma 3.3.4. Given ẽ4 there exists l̃3 such that P(ẽ4, l̃3) ∈ U2(δ).

The proof of this Sublemma is postponed to Section 3.3.

Sublemma 3.3.5. Let F be a map on R2 which fixes the origin and such that if

|F(z)| < R then ||dF(X)|| ≥ χ̄||X||. Then for each a such that |a| < R there exists

z such that |z| < R/χ̄ and F(z) = a.

Proof of Lemma 2.2.6. (a) Similarly to the proof of Sublemma 3.3.4 it suffices to

show that for each (ē4, l̄3) such that |ē4 − e∗∗4 | <
√
δ there exist (ê4, l̂3) such that

P(ê4, l̂3) = (ē4, l̄3) (3.3.1)

since then the restrictions on (E3, e3, g3) and θ−4 will be satisfied automatically. Our

coordinates allow us to treat P as a map R× T→ R× T. Due to Lemma 2.2.4 we

can apply Sublemma 3.3.5 to the covering map P̃ : R2 → R2 with χ̄ = cχ obtaining

(3.3.1). Part (b) of the lemma is similarly proven.

We give the proof of the part (c) in the part (b) of Lemma 5.2.2.

3.3.2 Expanding directions of the global map

Estimating the derivative of the global map is the longest part of the paper.

It occupies Sections 4.2–4.5.

It will be convenient to use the Delaunay coordinates (L3, `3, G3, g3) for Q3 and

(G4, g4) for Q4. Delaunay coordinates are action-angle coordinates for the Kepler

problem. We collect some facts about the Delaunay coordinates in Appendix A.1.
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We divide the plane into several pieces by lines x4 = −2 and x4 = −χ
2

. Those

lines cut the orbit of Q4 into 4 pieces:

• {x4 = −2, ẋ4 < 0} →
{
x4 = −χ

2
, ẋ4 < 0

}
. We call this piece (I).

•
{
x4 = −χ

2
, ẋ4 < 0

}
→
{
x4 = −χ

2
, ẋ4 > 0

}
turning around Q1. We call it

(III).

•
{
x4 = −χ

2
, ẋ4 > 0

}
→ {x4 = −2, ẋ4 > 0}. We call it (V )

• {x4 = −2, ẋ4 > 0} → {x4 = −2, ẋ4 < 0} turning around Q2.

We composition of the first three pieces constitutes the global map. The last piece

defines the local map. See Fig 3.

Figure 3: Poincaré sections

The line x4 = −χ
2

is convenient because if Q4 is moving to the right of the

line x4 = −χ
2

, its motion can be treated as a hyperbolic motion focused at Q2 with

perturbation caused by Q1 and Q3. If Q4 is moving to the left of this line, its motion

can be treated as a hyperbolic motion focused at Q1 perturbed by Q2 and Q3.

Since we use different guiding centers to the left and right of the line of x4 =

−χ
2

we will need to change variables when Q4 hits this line. This will give rise
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to two more matrices for the derivative of the global map: (II) will correspond

to the change of coordinates from right to left and (IV ) will correspond for the

change of coordinates from left to right. Thus dG = (V )(IV )(III)(II)(I). In turn,

each of the matrices (II) and (IV ) will be products of three matrices corresponding

to changing one variable in the times. Thus we will have (II) = [(iii)(ii)](i) and

(IV ) = (iii′)[(ii′)(i′)].

The asymptotics of the above mentioned matrices is presented in the two

propositions below.

To refer to a certain subblock of a matrix (]), we use the following convention:

(]) =


(])33 (])34

(])43 (])44

 .
Thus (])33 is a 4 × 4 matrix and (])44 is a 2 × 2 matrix. To refer to the (i, j) − th

entry of a matrix (]) (in the Delaunay coordinates mentioned above) we use (])(i, j).

For example, (I)(1, 3) means the derivative of L3 with respect to G3 when the orbit

moves between sections {x4 = −2} and
{
x4 = −χ

2

}
.

Proposition 3.3.6. Under the assumptions of Lemma 3.3.2 the matrices introduced
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above satisfy the following estimates.

(I) =



1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)

O(χ) O(µχ) O(µχ) O(µχ) O(µχ) O(µχ)

O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)

O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)

O(1) O(µ) O(µ) O(µ) O(1) O(1)

O(1) O(µ) O(µ) O(µ) O(1) O(1)



,

(i) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

G̃4R/kRL̃3

k2RL̃
2
3+G̃2

4R

+O( 1
χ) O( 1

χ2 ) O( 1
χ2 ) O( 1

χ2 ) − 1
k2RL̃

2
3+G̃2

4R

+O( 1
χ)

1

kRL̃3

+O( 1
χ)



,

[(iii)(ii)] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3)
1

kR
χ

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) − 1

kRL̃3

+O(1/χ) − χ

L̃3

+O(1)



,
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(III) =



1 +O(1/χ) O(1/χ) O(1/χ) O(1/χ) O(µ/χ) O(µ/χ)

O(χ) O(1) O(1) O(1) O(1) O(1)

O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ) O(µ/χ) O(µ/χ)

O(1/χ) O(1/χ) O(1/χ) 1 +O(1/χ) O(µ/χ) O(µ/χ)

O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(1)

O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(1)



,

[(ii′)(i′)] =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

O(1) O(1/χ2) O(1/χ2) O(1/χ2)
kRχ

L̂2
3

+O(1)
kRχ

L̂3

+O(1)

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) − 1

L̂2
3

+O(1/χ) − 1

L̂3

+O(1/χ)



,

(iii′) =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

Ĝ4R/(kR)

(k2RL̂
2
3+G2

4R)
+O( 1

χ) O( 1
χ2 ) O( 1

χ2 ) O( 1
χ2 ) − kRL̂3

k2RL̂
2
3+Ĝ2

4R

+O( 1
χ) −kRL̂3 +O( 1

χ)



,
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(V ) =



O(µ2χ) O(µ) O(µ) O(µ) O(µ) O(µ)

O(χ) 1 +O(µ) O(µ) O(µ) O(1) O(1)

O(µ2χ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)

O(µ2χ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)

O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)

O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)



.

where kR = 1 + µ, L3 = L̃3 + O(µ) = L̂3 + O(µ) = L̄3 + O(µ), G3 = G̃3 + O(µ),

Ḡ3 = Ĝ3 +O(µ). Here L3 and G3 are the values of the Delaunay coordinates at the

initial point and L̄3 and Ḡ3 are the values of the Delaunay coordinates at the final

point.

Proposition 3.3.7. The O(1) blocks in Proposition 3.3.6 can be written as a sum

of continuous functions of x and y and an error which vanishes in the limit µ →

0, χ→∞. Moreover the O(1) blocks have the following limits for orbits of interest.

(I)44 =


1 +

L̃2
4

2(L̃2
4 + G̃2

4)
− L̃4

2

L̃3
4

2(L̃2
4 + G̃2

4)2
1− L̃2

4

2(L̃2
4 + G̃2

4)

 , (V )44 =


1− 1/2L̂2

4

L̂2
4 + Ĝ2

4

−1/2L̂4

1/2L̂3
4

(L̂2
4 + Ĝ2

4)2
1 +

1/2L̂2
4

L̂2
4 + Ĝ2

4

 ,

(III)44 =


1

2
−L4

2

3

2L4

1

2

 .
In addition for map (I) we have

((I)(5, 1), (I)(6, 1))T =

(
− G̃4L̃4

2(L̃2
4 + G̃2

4)
,− G̃4L̃

2
4

2(L̃2
4 + G̃2

4)2

)T

.

Here and below the phrase after the first collision means that the initial orbit

has parameters (1
2
, e∗∗3 , g

∗∗
3 )+o(1) for Q3, G4 satisfies G4 +G∗∗3 = G∗3 +G∗4 +o(1) and
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that at the final moment the angular momentum of Q4 is close to G∗∗4 . The phrase

after the second collision means that the initial orbit has parameters (1
2
, e∗3, g

∗
3)+o(1)

for Q3, G4 satisfies G4 + G∗3 = G∗∗3 + G∗∗4 + o(1) and that at the final moment the

angular momentum of Q4 is close to G∗4.

The estimates of (I), (III), (V ) from Proposition 3.3.6 are proven in Sections

4.1–4.4. The estimates of (II), (IV ) are given in Section 4.5. Proposition 3.3.7 is

proven in Section 4.3.2.

In the following, we prove Lemma 3.3.2 based on the Proposition 3.3.7.

Proof of Lemma 3.3.2. dG is a product of several matrices. We will divide the

product into three groups. The following estimates are obtained from Proposition

3.3.6 by direct computation.

(i)(I) =



1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)

O(χ) O(µχ) O(µχ) O(µχ) O(µχ) O(µχ)

O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)

O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)

O(1) O(µ) O(µ) O(µ) O(1) O(1)

O(1) O(µ) O(µ) O(µ) O(1) O(1)



,

31



M = [(ii′)(i′)](III)[(iii)(ii)]

=



1 +O(1/χ) O(1/χ) O(1/χ) O(1/χ) O(1/χ2) O(1/χ)

O(χ) O(1) O(1) O(1) O(1) O(χ)

O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ) O(1/χ2) O(1/χ)

O(1/χ) O(1/χ) O(1/χ) 1 +O(1/χ) O(1/χ2) O(1/χ)

O(1) O(µ) O(µ) O(µ) O(χ) O(χ2)

O(1/χ) O(µ/χ) O(µ/χ) O(µ/χ) O(1) O(χ)



,

(V )(iii′) =



O(µ2χ) O(µ) O(µ) O(µ) O(µ) O(µ)

O(χ) 1 +O(µ) O(µ) O(µ) O(1) O(1)

O(µ2χ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)

O(µ2χ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)

O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)

O(µ2χ) O(µ) O(µ) O(µ) O(1) O(1)



.

32



We decompose (i)(I) and (V )(iii′) as

(i)(I) =



1 +O(µ) O(µ) O(µ) O(µ) 0 0

O(χ) O(µχ) O(µχ) O(µχ) 0 0

O(µ) O(µ) 1 +O(µ) O(µ) 0 0

O(µ) O(µ) O(µ) 1 +O(µ) 0 0

0 0 0 0 1 0

0 0 0 0 0 1



·



1 0 0 0 O(µ) O(µ)

0 1 0 0 O(µ) O(µ)

0 0 1 0 O(µ) O(µ)

0 0 0 1 O(µ) O(µ)

O(1) O(µ) O(µ) O(µ) O(1) O(1)

O(1) O(µ) O(µ) O(µ) O(1) O(1)



:= [b][a]

(3.3.2)
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(V )(iii′) =



1 0 0 0 O(µ) O(µ)

0 1 0 0 O(1) O(1)

0 0 1 0 O(µ) O(µ)

0 0 0 1 O(µ) O(µ)

O(1) O(µ2) O(µ) O(µ) O(1) O(1)

O(1) O(µ2) O(µ) O(µ) O(1) O(1)



·



O(µ2χ) O(µ) O(µ) O(µ) 0 0

O(χ) 1 +O(µ) O(µ) O(µ) 0 0

O(µ2χ) O(µ) 1 +O(µ) O(µ) 0 0

O(µ2χ) O(µ) O(µ) 1 +O(µ) 0 0

0 0 0 0 1 0

0 0 0 0 0 1



:= [d][c]

Note that [d] and [a] are bounded so they do not change the order of magnitude of

the derivative growth. On the other hand, denoting D = [c]M [b] we obtain

D =



O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)

O(χ) O(µχ) O(µχ) O(µχ) O(1) O(χ)

O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)

O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(µ) O(µχ)

O(µχ) O(µ2χ) O(µ2χ) O(µ2χ) O(χ) O(χ2)

O(µ) O(µ2) O(µ2) O(µ2) O(1) O(χ)



.
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Note that D44 = M 44. In particular

D(5, 6)

χ2
=

(
kR
L2

3

,
kR
L3

)
(III)44

 1

1
L3

+ o(1).

It follows that if χ is large and µ is small then
D(5, 6)

χ2
is uniformly bounded from

above and below. Hence D can be represented as

D = χ2ū′ ⊗ l̄′ + χ¯̄u′ ⊗ ¯̄l
′
+O(µ2χ),

where

ū′ = (O(µ/χ), O(1/χ), O(µ/χ), O(µ/χ), 1, O(1/χ))T , l̄′ = (0, 0, 0, 0,
D(5, 5)

D(5, 6)
, 1),

¯̄u′ = (O(µ), 1, O(µ), O(µ), O(µ), 0)T , ¯̄l
′
= (1, O(µ), O(µ), O(µ), 0, 0)

and we have used the fact that D(5,5)
D(5,6)

= O
(

1
χ

)
.

Since dG is obtained from D by multiplying from the right and the left by

bounded matrices we get

dG = χ2ū⊗ l̄ + χ¯̄u⊗ ¯̄l +O(µ2χ),

where

ū = [d]ū′, ¯̄u = [d]¯̄u′, l̄ = l̄′[a], ¯̄l = ¯̄l
′
[a].

In the limit µ→ 0, χ→∞, we have

ū′ = (0, 0, 0, 0, 1, 0)T , l̄′ = (0, 0, 0, 0, 0, 1),

¯̄u′ = (0, 1, 0, 0, 0, 0)T , ¯̄l
′
= (1, 0, 0, 0, 0, 0)
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Let [a] = limχ→∞,µ→0[a]. Then [a] =

 Id 0

0 (I)44

, where the limiting ex-

pression of (I)44 is given in Proposition 3.3.7. This allows us to compute the lim-

iting values of l̄ and ¯̄l. Similarly Proposition 3.3.7 shows that as χ → ∞, µ → 0

¯̄u→ (0, 1, 0, 0, 0, 0)T and it allows us to compute the limiting components of ū except

that we do not have the exact expression for dl2(ū). However we do not need to know

this component because we only interested in the span of ū and ¯̄u and dl2(ū) can be

suppressed by subtracting a suitable multiple of ¯̄u. Thus the asymptotic parameters

of dG can be summarized as follows:

l̄ =

(
G̃4L̃4

L̃2
4 + G̃2

4

, 0, 0, 0,− 1

L̃2
4 + G̃2

4

, 1

)
, ¯̄l = (1, 0, 0, 0, 0, 0),

w =

(
0, 0, 0, 0, 1,− L̂4

L̂2
4 + Ĝ2

4

)T

, w̃ = (0, 1, 0, 0, 0, 0)T .

(3.3.3)

3.3.3 Checking transversality

We study the local map numerically. The O(1/µ) part of dL in Lemma 3.3.1

is

Lemma 3.3.8. The O(1/µ) part of the matrix dL =
∂(L3, `3, G3, g3, G4, g4)+

∂(L3, `3, G3, g3, G4, g4)−
is

(using the notation of Lemma 3.3.1):

(a) for the first collision,

l1 = [∗, ∗, ∗, ∗,−3.34129, 2.47981].
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û1 = [0.48639, 0.670896,−0.318336,−0.0030828, 0.202124, 0.642799].

(b) For the second collision:

l2 = [∗, ∗, ∗, ∗,−1.3908, 0.1897].

û2 = [−1.72492, 4.40127, 0.911991,−0.740133, 0.591504,−0.495709].

(c) If Q3 and Q4 switch roles after the collisions, the vectors û1 and û2 get a “−”

sign. The computation is done using the choice of E∗3 = −1

2
and e∗3 =

1

2
, at Gerver’s

collision points.

To check the nondegeneracy condition, it is enough to know the following.

Lemma 3.3.9. If we take the directional derivative of the local map along a di-

rection Γi ∈ span{w3−i, w̃}, such that l̄i · (dLΓi) = 0, then we have in the case

µ = 0, χ → ∞, for the both collisions i=1,2,
∂E+

3

∂Γi
6= 0, where E+

3 is the energy of

Q3 after the close encounter with Q4. These derivatives are computed in Gerver’s

case starting with E∗3 = −1/2, e∗3 = 1/2 and evaluated at Gerver’s collision points.

See the Appendix B.2.2 for concrete values.

The proof of the two Lemmas are postponed to Section 5.3.

Now we can check the nondegeneracy condition.

Proof of Lemma 3.3.3. The items (a2) and (b2) are seen directly using (3.3.3) and

Lemma 3.3.8. We focus on items (a1) and (b1). For instance, to check (b2), de4w 6= 0.

We notice de4 =
1

e4

(
G4

L2
4

dG4 −
G2

4

L3
4

dL4

)
because of e4 =

√
1 + (G4/L4)2. So we get

de4w =
G4

L2
4

6= 0 using (3.3.3). Item (a2) is proven in the same way.
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We can equivalently formulate the transversality condition as follows:

det

 l̄i(ûi) l̄i(B̂i(li(w̃)w3−i − li(w3−i)w̃))

¯̄li(ûi)
¯̄li(B̂i(li(w̃)w3−i − li(w3−i)w̃))

 6= 0, (3.3.4)

where the subscript i = 1, 2 indicates the first or the second collision. The case i = 1

is equivalent to (a1) if we substitute w2 by dRw2. The case i = 2 is equivalent to

(b1).

The computation of ûi’s are done in Lemma 3.3.8. We have l̄i · ûi 6= 0 based

on these numerics.

When checking the nondegeneracy condition (3.3.4), we denote Γ′i = li(w̃)w3−i −

li(w3−i)w̃ and we can replace Γ′i by Γi satisfying l̄i · (dLΓi) = 0. Indeed, dLΓi as a

vector in span{ûi, B̂iΓ
′
i}, can be represented as

dLΓi = biûi + b̃iB̂iΓ
′
i.

We should have bi = −l̄i · B̂iΓ
′
i and b̃i = l̄i · ûi 6= 0 up to a multiple of a nonzero

constant in order to make sure dLΓi ∈ Kerl̄i. We have the following equality.

det

 l̄i(ûi) l̄i(B̂iΓ
′
i)

¯̄li(ui)
¯̄li(B̂iΓ

′
i)

 =
1

b̃i
det

 l̄i(ûi) l̄i(dLΓi)

¯̄li(ûi)
¯̄li(dLΓi)


From the hypothesis of Lemma 3.3.9, we have l̄i(dLΓi) = 0. We only need to make

sure ¯̄li(dLΓi) 6= 0 to guarantee the nondegeneracy of the determinant. Indeed,

¯̄li = (1, 0, 0, 0, 0, 0). So ¯̄li(dLΓi) 6= 0 holds if the vector dLΓi has nonzero first entry.

As we know dLΓi means to take directional derivative of the local map along the

direction Γi. This is exactly the
∂E+

3

∂Γi
checked in Lemma 3.3.9.
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3.3.4 The reflection and renormalization

The above calculations address two steps of collisions in Gerver’s model (c.f.

Appendix B.2.1 and [G1]). After two steps, we are supposed to get an ellipse of the

same eccentricity but smaller semimajor (c.f. part (b) of Lemma 2.2.1) and then we

zoom in the picture such that the ellipse has the original size. We call this procedure

the renormalization. Notice in part (b) of Lemma 2.2.1, ¯̄g3 gets a “-” sign. In fact,

after two steps of collisions in Gerver’s model, the ellipse gets reflected along the

x-axis. We should treat four steps of collisions and two renormalizations as a period.

However, the calculations for the third and fourth step of collisions can be obtained

from the first and the second respectively by studying the reflection carefully.

In the following, we formulate a lemma explaining the effect of reflection and

then discuss the renormalization as a remark. We stress that in the calculation of

the local and global map, we already take into account the renormalization. We

only explain how the computations are done.

3.3.4.1 The reflection

Lemma 3.3.10. If we reflect the our system along the x-axis, then under the same

assumption as Lemma 3.3.1 and 3.3.2, we have the following result for the global

and local maps.

(a) The statement of Lemma 3.3.2 remains unchanged. The vectors and functionals

¯̄l, w, w̃ in (3.3.3) remain unchanged, while l̄ gets a “-” sign in its first entry.

(b) The statement of Lemma 3.3.1 remains the same.
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The vectors and functionals l1, l2, û1, û2 in Lemma 3.3.8 and the vector
∂E+

3

∂Γi
in

Lemma 3.3.9 get a “-” sign in their last four entries.

(c) The nondegeneracy conditions Lemma 3.3.3 hold.

Proof. After the second collision, we need to apply the renormalization R. Simul-

taneously, there is a reflection along the x-axis. As a matter of fact, we see this by

comparing the smaller ellipse in Fig 2 with the rounder ellipse in Fig 1. The effect

of the reflection is to give a “−” sign to the G3, g3, G4, g4 variables while keep L3, `3

unchanged. Therefore, if we look at the global map, the reflected matrix dG would

be the same as the old one in the diagonal blocks
∂(L3, `3)f

∂(L3, `3)i
and

∂(G3, g3, G4, g4)f

∂(G3, g3, G4, g4)i

(where i means “initial”, f means ”final”) while the remaining entries get a “−”

sign. We see from (3.3.3) that after the reflection, l̄ gets a “-” sign since G4 does

while other vectors remains the same.

For the local map part, we notice li has the form of
∂−

∂(L3, `3, G3, g3, G4, g4)−
, ûi

has the form of
∂(L3, `3, G3, g3, G4, g4)+

∂−
and

∂E+
3

∂Γi
=

∂E+
3

∂(L3, `3, G3, g3, G4, g4)−
for

i = 1, 2 and the superscripts “±” standing for entering and exiting the section

|Q3 −Q4| = µκ. As a result, we need to make the changes stated in the lemma.

To check the nondegeneracy condition, we proceed as in the proof of Lemma

3.3.3. Essentially, we need l̄i · ûi 6= 0 and the first entry of
∂E+

3

∂Γi
is nonzero. These

can be easily verified.
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3.3.4.2 The renormalization

The renormalization occurs after the second collision (see Fig 2). When calcu-

lating the matrices and vectors, we already take into account the renormalization.

Let us explain how the information of Appendix B.2.2 is fit into the matrices. For

the global map, we always choose L3 to be close to 1. In (I) and (i), we use

the information after the second collision with the renormalization L̃3 = 1 and

G̃4 = G4/L3, G̃3 = G3/L3. This is where the renormalization occurs. For the other

calculations, such as (iii′) and (V ) before the first and the second collision, and (I)

and (i) after the first collision, no renormalization is needed.

For the local map part, only the vector û2 in Lemma 3.3.8 undergoes such a

rescaling. We divide the first, third, and fifth entries of û2 by L3 after the second

collision in Appendix B.2.2.
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Chapter 4

The global map

4.1 C0 estimates for global map

4.1.1 Equations of motion in Delaunay coordinates

We use Delaunay variables to describe both the motions of Q3 and Q4 (see

the Appendix A.1 for an introduction). We have eight variables (L3, `3, G3, g3) and

(L4, `4, G4, g4). We eliminate L4 using the energy conservation and `4 will play the

role of independent variable.

After setting v3,4 = P3,4/µ and dividing (1.1.1) by µ the Hamiltonian (1.1.1)

takes the form

H =
v2

3

2
+
v2

4

2
− 1

|Q3|
− 1

|Q4|
− 1

|Q3 − (−χ, 0)|
− 1

|Q4 − (−χ, 0)|
− µ

|Q3 −Q4|
. (4.1.1)

When Q4 is moving to the left of the section {x4 = −χ/2}, we consider the motion

of Q3 as elliptic motion with focus at Q2, and Q4 as hyperbolic motion with focus

at Q1, perturbed by other interactions. We can write the Hamiltonian in terms of

Delaunay variables as

HL = − 1

2L2
3

+
1

2L2
4

− 1

|Q4|
− 1

|Q3 − (−χ, 0)|
− µ

|Q3 −Q4|
.

When Q4 is moving to the right of the section {x4 = −χ/2}, we consider the mo-

tion of Q3 as an elliptic motion with focus at Q2, and that of Q4 as a hyperbolic
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motion with focus at Q2 attracted by the pair Q2, Q3 which has mass 1 + µ plus a

perturbation. For |Q4| ≥ 2 we have the following Taylor expansion

µ

|Q3 −Q4|
=

µ

|Q4|
+
µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
.

Hence the Hamiltonian takes form

H =
v2

3

2
+
v2

4

2
− 1

|Q3|
−1 + µ

|Q4|
− 1

|Q3 − (−χ, 0)|
− 1

|Q4 − (−χ, 0)|
−µQ3 ·Q4

|Q4|3
+O

(
µ

|Q4|3

)
.

In terms of the corresponding Delaunay variables we have

HR = − 1

2L2
3

+
(1 + µ)2

2L2
4

− 1

|Q3 + (χ, 0)|
− 1

|Q4 + (χ, 0)|
− µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
.

(4.1.2)

We shall use the following notation. The coefficients of
1

2L2
4

in the Hamiltonian will

be called kL = 1 and k2
R = (1 + µ)2. The terms in the Hamiltonian containing Q4

will be denoted by

VR = − 1

|Q4 + (χ, 0)|
− µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
, and VL = − 1

|Q4|
− µ

|Q3 −Q4|
.

(4.1.3)

Here subscripts L and R mean that the corresponding expressions are used when Q4

is to the left (respectively to the right) of the line Q = −χ
2
. Likewise for the terms

containing Q3 we define

UR = − 1

|Q3 + (χ, 0)|
− µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
,

UL = − 1

|Q3 − (−χ, 0)|
− µ

|Q3 −Q4|
.

(4.1.4)

The use of subscripts R,L here is the same as above. Let us write down the full
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Hamiltonian equations with the subscripts R and L suppressed.

L̇3 = −∂Q3

∂`3

· ∂U
∂Q3

, ˙̀
3 =

1

L3
3

+
∂Q3

∂L3

· ∂U
∂Q3

,

Ġ3 = −∂Q3

∂g3

· ∂U
∂Q3

, ġ3 =
∂Q3

∂G3

· ∂U
∂Q3

,

L̇4 = −∂Q4

∂`4

· ∂V
∂Q4

, l̇4 = − k
2

L3
4

+
∂Q4

∂L4

· ∂V
∂Q4

,

Ġ4 = −∂Q4

∂g4

· ∂V
∂Q4

, ġ4 =
∂Q4

∂G4

· ∂V
∂Q4

.

(4.1.5)

Next we use the energy conservation to eliminate L4. We have

L3
4

k2
R

= kRL
3
3 ·
(

1− 3L2
3

( 1

|Q3 + (χ, 0)|
+

1

|Q4 + (χ, 0)|

+
µQ4 ·Q3

|Q4|3
+O

(
µ

|Q4|3

)
+O(1/χ2)

))
:= kRL

3
3 +WR,

L3
4

k2
L

= kLL
3
3

(
1− 3L2

3

(
1

|Q3 + (χ, 0)|
+

1

|Q4|
− µ

|Q4 −Q3|
+O(1/χ2)

))
:= kLL

3
3 +WL.

(4.1.6)

We use `4 as the independent variable. Dividing (4.1.5) by ˙̀
4 and using (4.1.6)

to eliminate L4 we obtain



dL3

d`4

= (kL3
3 +W )

∂Q3

∂`3

· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
d`3

d`4

= −(kL3
3 +W )(

1

L3
3

+
∂Q3

∂L3

· ∂U
∂Q3

)

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
dG3

d`4

= (kL3
3 +W )

∂Q3

∂g3

· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
dg3

d`4

= −(kL3
3 +W )

∂Q3

∂G3

· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
dG4

d`4

= (kL3
3 +W )

∂Q4

∂g4

· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
dg4

d`4

= −(kL3
3 +W )

∂Q4

∂G4

· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)

+O

(
µ

|Q4|3
+ 1/χ2

)
.

(4.1.7)
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We shall use the following notation X = (L3, `3, G3, g3), Y = (G4, g4).

4.1.2 A priori bounds

4.1.2.1 Estimates of positions

We have the following estimates for the positions.

Lemma 4.1.1. We assume that the position of Q3 is bounded and the y-component

of Q4 is also bounded. Namely, suppose that

|Q3| < C and |Q4y| < C (4.1.8)

for some constant C. We also assume that the initial energy of Q3 is −1/2.

(a) We have ∣∣∣∣∂Q3

∂X

∣∣∣∣ < C ′ (4.1.9)

for some constant C ′ independent of µ and χ.

(b) When Q4 is moving to the right of the section {x = −χ/2} and to the left

of {x = −2}, then we have the estimates

|Q4 −Q3| = (1 +O(µ))t, |Q4 −Q3| ∈ [1, χ/2] and |Q4 + (χ, 0)| ≥ χ/2. (4.1.10)

(c) When Q4 is moving to the left of the section {x = −χ/2}, we have the following

estimates

|Q4 −Q1| = χ− (1 +O(µ))t, |Q4 −Q1| ∈ (0, χ/2] and |Q4|, |Q4 −Q3| ≥ χ/2.

(4.1.11)
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The intuition behind this lemma is the following. Since the total energy of

the system is zero and Q3 and Q4 interact only weakly with each other, then both

particle have energies close to 1/2 in absolute value. Since Q4 spends most of the

time away from Q1, Q2 and Q3 most of its energy is kinetic energy so it moves with

approximately unit speed. Since it makes a little progress in y direction its velocity

is almost horizontal most of the time. This explains (4.1.10) and (4.1.11). To give

the complete proof we have to use the Hamiltonian equations. See section 4.1.3.

Lemma 4.1.2. If inequalities (4.1.8), (4.1.10) and (4.1.11) are valid and in addition

1/C ≤ |L3|, |L4| ≤ C, |G3|, |G4| < C, (4.1.12)

then we have

∂Q4

∂`4

= O(1),
∂Q4

∂(L4, G4, g4)
= O(t),

∂Q4

∂g4

·Q4 = 0 and
∂Q4

∂G4

·Q4 = O(t)

as t→∞.

Proof. This follows directly from Lemma A.1.2 in Appendix A.1.4. We point out

that the estimate
∂Q4

∂G4

·Q4 = O(t) is nontrivial.

4.1.2.2 Estimates of potentials

Lemma 4.1.3. Under the assumptions of Lemma 4.1.2 we have the following esti-

mates for the potentials U, V,W :

VR = O

(
1

χ
+
µ

t2

)
, UR = O

(
1

χ
+
µ

t2

)
, t ∈ [2, χ/2],

46



VL = O

(
1

χ

)
, UL = O

(
1

χ

)
, WL = O

(
1

χ

)
, t ∈ [χ/2, χ].

Proof. This follows directly from equations (4.1.3), (4.1.4) and (4.1.6).

4.1.2.3 Estimates of gradients of potentials

To take partial derivatives w.r.t. Delaunay variables, we use the formulas

∂

∂X
=
∂Q3

∂X
· ∂

∂Q3

,
∂

∂Y
=
∂Q4

∂Y
· ∂

∂Q4

.

Lemma 4.1.4. Under the assumptions of Lemma 4.1.2 we have the following esti-

mates for the gradients of the potentials U, V

∂UR
∂Q3

= O

(
1

χ2
+
µ

t2

)
,
∂VR
∂Q4

= O

(
1

χ2
+
µ

t3

)
,

∂Q4

∂(G4, g4)

∂VR
∂Q4

= O

(
1

χ2
+
µ

t2

)
, t ∈ [2, χ/2],

∂UL
∂Q3

= O

(
1

χ2

)
,

∂VL
∂Q4

= O

(
1

χ2

)
,

∂Q4

∂(G4, g4)

∂VL
∂Q4

= O

(
1

χ2

)
, t ∈ [χ/2, χ].

(4.1.13)

Proof. The estimates for the
∂

∂Q3,4

terms are straightforward. Indeed, we only need

to use the fact that the derivative of functions of the form
1

(1 + x)k
has the form of

−k
(1 + x)k+1

together with the estimates in Lemma 4.1.1.

The estimates of all
∂

∂(G4, g4)
terms are similar. We consider for instance

∂Q4

∂G4

∂VR
∂Q4

. We have

∂Q4

∂G4

∂VR
∂Q4

=
∂Q4

∂G4

Q4 + (χ, 0)

|Q4 + (χ, 0)|3
+O

(
µ

∣∣∣∣∂Q4

∂G4

∣∣∣∣ |Q4|−3

)
. (4.1.14)

The second term here is O(µ/t2) due to (4.1.10) and Lemma A.1.2(a). To handle

the first term let
∂Q4

∂G4

= (a, b), Q4 = (x, y). Note that equations (A.1.3), (A.1.4),
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(4.1.8), (4.1.10) and (4.1.12) show that x, ` and t are all comparable in the sense that

the ratios between any two of these qualities are bounded from above and below. On

the other hand Lemma A.1.2(a) tells us that ax+y = O(t). Since by = O(b) = O(t)

we conclude that ax = O(t) and thus a = O(1). Thus the first term in (4.1.14) is

∂Q4

∂G
·Q4 + aχ

|Q4 + (χ, 0)|3
.

The numerator here is O(χ) while the denominator is at least (χ/2)3. This completes

the estimate of ∂Q4

∂G4

∂VR
∂Q4

. Other derivatives are similar.

Plugging the above estimates into (4.1.7) we obtain the following.

Lemma 4.1.5. Under the assumptions of Lemma 4.1.2 we have the following esti-

mates on the RHS of (4.1.7).

(a) When Q4 is moving to the right of the section {x = −χ/2} and to the left

of the section {x = −2}, we have t ∈ [2, χ/2] and

dL3

d`4

,
dG3

d`4

,
dg3

d`4

,
dG4

d`4

,
dg4

d`4

= O

(
1

χ2
+
µ

t2

)
,

d`3

d`4

= O(1).

(b) When Q4 is moving to the left of the section {x = −χ/2}, we have t ∈ [χ/2, χ]

and

dL3

d`4

,
dG3

d`4

,
dg3

d`4

,
dG4

d`4

,
dg4

d`4

= O

(
1

χ2

)
,

d`3

d`4

= O(1).

In Section 4.3 we will need the following bounds on the second derivatives.

Lemma 4.1.6. Under the assumptions of Lemma 4.1.2 we have the following esti-
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mates for the second derivatives.

∂2UR
∂Q2

3

= O

(
1

χ3
+
µ

t2

)
,
∂2VR
∂Q2

4

= O

(
1

χ3
+
µ

t4

)
,
∂2(UR, VR)

∂Q3∂Q4

= O
( µ
t3

)
, t ∈ [2, χ/2]

∂2UL
∂Q2

3

= O

(
1

χ3

)
,

∂2VL
∂Q2

4

= O

(
1

χ3

)
,

∂2(UL, VL)

∂Q3∂Q4

= O

(
1

χ3

)
t ∈ [χ/2, χ].

(4.1.15)

We omit the proof since it is again direct computation.

4.1.3 Proof of Lemma 4.1.1

proof of Lemma 4.1.1. We first impose an assumption

1

2
|L3(0)| ≤ |L3(t)| ≤ 2|L3(0)|.

This is always correct if the time t is small due to the continuity of the Hamiltonian

flow. Then using formula (A.1.3), we find |Q4| ≥
1

4
L3(0)2|`4|. Using the estimate of

potentials in Lemma A.1.2 and Lemma 4.1.5, we get
dL3

d`4

= O

(
1

χ2
+
µ

t2

)
, where t

is actually |Q4| without using Lemma 4.1.1. Then we integrate the equation w.r.t.

`4, we find the oscillation of L3 is O(µ) for `4 ∈ [2, 2 + δ) and δ small. As a result

our assumptions on L3 always hold and we can integrate over time of order χ and

get that the oscillation of L3 is O(µ). Similar argument holds for other variables

G3, g3, G4, g4. So we get that the oscillations of the variables G3, g3, G4, g4 are O(µ).

To show part (a), we notice
∂Q3

∂X
depends on `3, g3 periodically according to

equation (A.1.1). So it is enough to bound L3 and G3. This follows from the above

argument.
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To show part (b) and (c), we use the Hamiltonian equation ˙̀
4 =
−1

L3
4

+ O(µ).

The O(µ) oscillation estimates above together with the equation A.1.3 show that

|Q4| grows linearly. This completes the proof of the Lemma 4.1.1.

4.1.4 Avoiding collisions

Here we exclude the possibility of collisions. The only possible collisions may

occur for the pair Q3, Q4 and the pair Q1, Q4. The fact that Q3 and Q4 do not

collide to each other will be shown in Lemma 5.2.2 in Section 5.3. Now we prove

there is no collision between Q4 and Q1.

Lemma 4.1.7. If the angular momentum G4 has O(1) change when evaluated on

the section {x4 = −2} after applying the global map compared with the value before

applying the global map, then there is no collision between Q4 and Q1.

Proof. Suppose there is such a collision, we derive some estimates. Consider the

Hamiltonian equations for the Q4 part. Let us write the Hamiltonian equations as

Y ′ = V ,

where Y = (G4, g4) and V is the RHS of the corresponding Hamiltonian equations.

We run the orbit coming to a collision backward so that we can compare two

orbits exiting collisions. If we write the equation as Y ′in = Vin orbit coming to

collision with time arrow reversed and Y ′out = Vout for orbit exiting collision, we have

Vin − Vout = O

(
µ

|Q4 −Q3|2

)
. This difference is created by the motion of Q3.
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We have

(Yin − Yout)′ =
∂V
∂Y

(Yin − Yout) +O

(
µ

|Q4 −Q3|2

)

We integrate the equation along an orbit starting fromQ1 and ending at {x4 = −χ/2}.

The initial condition is Yin−Yout = 0 since G4, g4 are conserved quantities for Kepler

motion and they assume the same values before and after the Q4, Q1 collision. Using

the fact that

∫ `f4

`i4

∂V
∂Y

d`4 = O(1), and

∫ `f4

`i4

O

(
µ

|Q4 −Q3|2

)
d`4 = O(µ/χ), we have

Yin − Yout = O(µ/χ) (4.1.16)

in the section {x4 = −χ/2}.

Let us see what happens to the angular momentum of Q4 when measured w.r.t. Q2.

From equation (4.1.17) and the Appendix A.1, we have the formula

G4R/kR = G4L + v4yχ.

Here v4y is the y component of the velocity ofQ4 measured in the section {x4 = −χ/2}.

Using the equation (A.1.5) in the Appendix A.1.2, equation (A.1.3) and equa-

tion (4.1.16) that we obtained just now, we have v4y,in − v4y,out = O(µ/χ). This

means, if we measure the angular momentum ofQ4 w.r.t. Q2 in the section {x = −χ/2},

we have

G4R,in −G4R,out = O(µ)

However, as we know, if we measure the angular momentum of Q4 w.r.t. Q2

along orbits after close encounter with Q3 and before the next close encounter, in

Gerver’s construction, the angular momentum differ by O(1). The difference is still
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O(1) when measured in the section {x = −χ/2} according to Lemma 2.2.3. This is

a contradiction. So collision between Q4 and Q1 is excluded.

4.1.5 C0 estimates, Proof of Lemma 2.2.3

Proof of Lemma 2.2.3. We use Lemma 4.1.5.

dL3

d`4

,
dG3

d`4

,
dg3

d`4

,
dG4

d`4

,
dg4

d`4

= O

(
1

χ2
+
µ

t2

)
,

For part (a) of the lemma, we integrate the equations of
dL3

d`4

,
dG3

d`4

,
dg3

d`4

, over t ∈ [2, χ]

twice since Q4 moves far from Q2 then comes back. Therefore we get

2

∫ χ

2

µ

t2
+

1

χ2
dt = O(µ) after integration.

For part (b) of the lemma, we integrate the equations of
dG4

d`4

,
dg4

d`4

, over t ∈ [2, χ/2].

We get O(µ) again after integration.

The next lemma gives more information about the Q4 part of the orbit than

Lemma 2.2.3.

Lemma 4.1.8. Under the same hypothesis as Lemma 4.1.1, we have:

(a) when Q4 is moving to the right of the section {x = −χ/2}, we have

tan g4 = ±G4

L4

+O(µ/t+ 1/χ), u ≷ 0, |t| → ∞.

(b) when Q4 is moving to the left of the section {x = −χ/2}, then G, g = O(1/χ)

as χ→∞.

Proof. We prove part (b) first. We have shown that there is no collision between

Q4 and Q1 in Section 4.1.4. When Q4 and Q1 are close, their motion is a Kepler
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motion perturbed by Q2 and Q3. If we neglect the perturbation. The angle formed

by the two asymptotes are O(1/χ) since the vertical drift of Q4 is O(1) when its

horizontal distance to Q1 becomes O(χ). In terms of Delaunay variables, this angle

is 2 arctan
G

L
. This shows G = O(1/χ) since L is close to 1. The argument of

periapsis g is also O(1/χ), since the x-axis lies inside the O(1/χ) angle formed by

the two asymptotes. If we introduce the perturbations from Q2 and Q3, then using

Lemma 4.1.5, after integrating over time χ, the perturbations from Q2 and Q3 give

rise to an O(1/χ) oscillation of G4, g4.

Then consider part (a). This condition g = ± arctanG/L means horizontal

asymptote (see equation (A.1.5)). We want to allow the asymptotes to be slightly

tilted. Part (b) shows that when measured at the section {x = −χ/2}, we have

|G4L|, |g4L| = O(1/χ), the slope of the asymptotes of Q4 expressed using the coor-

dinates system of the left of the section {x = −χ/2} is g4L± arctan
G4L

L4L

= O(1/χ).

When passing through the section {x = −χ/2}, we need to express the asymptote

using the coordinates system of the right. This is g4R − arctan
G4R

L4R

= O(1/χ).

Then we want to see the propagation of the error as Q4 moves towards Q2. In the

right case.

dG4

d`4

,
dg4

d`4

= O

(
1

χ2
+
µ

t2

)
, as χ→∞.

Notice here t goes from χ/2 to 2 ifQ4 goes from the section {x = −χ/2} to {x = −2}.

We define a new variable s = χ/2 − t. Suppose when s = 0, we have t = χ/2, we

want to know the behavior of G, g at time s = T , then we have

g(T )− g(0), G(T )−G(0) =

∫ T

0

µ

t2
+

1

χ2
ds = O

(
µ

χ/2− T

)
+O(1/χ) as χ→∞.
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We identify χ/2− T = |t| to get part (a) of the lemma.

4.1.6 Choosing angular momentum

Proof of the Sublemma 3.3.4. The Poincaré map P restricted on the admissible sur-

face S0 is a function of two variables. If we fix e4 = ẽ4, then P becomes a function

of one variable `3. By working out the vectors and functionals of Lemma 3.3.1

and Lemma 3.3.2 in (3.3.3), we see that
∂

∂`3

does not lie in the Kerli. Therefore

dL(x)
∂

∂`3

=
c(x)

µ
ui(x) + O(1), for some number c depending on x smoothly. We

also have l̄i(L(x)) · ui(x) 6= 0 (This is done when checking the nondegeneracy con-

dition). In Lemma (3.3.3), we see that l̄i contains nonzero ∂/∂e4 component. This

implies, the projection of P = G◦L to the e4 component, i.e. πe4P(`3, ẽ4) : T1 → R1

as a function of `3 with e4 = ẽ4 fixed is strongly expanding with derivative O(χ2/µ).

Since we have the relation e =
√

1 + 2(G/L)2, we study G4 instead of e4. We

denote by MR the angular momentum of Q4 measured w.r.t. Q2 and by ML that

measured w.r.t. Q1. We have

ML = MR − v4 × (−χ, 0) = MR − v4yχ, (4.1.17)

where v4 and v4y are velocity and the y component of velocity of Q4 respectively.

When Q4 is moving to the left of x4 = −χ/2, the angular momentum ML is almost

conserved. We can adjust v4y to make ML negative or positive. The physical

meaning is, by varying ψ3, we can make the orbit of Q4 turn around Q1 clockwisely,

or anti-clockwisely. If we increase the closest distance between Q4 and Q1 from 0,

in the first case, Q4 tends to stay in the upper half plane, and in the second case, it
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tends to stay in the lower half plane whose image in the section {x4 = −2, ẋ4 > 0}

can be below any prescribed y coordinate.

It follows from the proof of Lemma 4.1.7 that the range of πe4P(`3, ẽ4) contains

a point in a O(µ) neighborhood of ẽ4. Indeed, if Q4 collides with Q1, the G4, L4

variables of the returning orbit deviate only by O(µ) from its initial values. Then it

follows from the strong expansion of the map πe4P(`3, ẽ4) that a C neighborhoods

of ē4 is covered if `3 varies in a Cµ/χ2 neighborhood. We choose C large enough to

cover a
√
δ neighborhood of e∗∗4 . The function πe4P(`3, ẽ4) is continuous since the

Poincaré map P is. Then we use the Intermediate Value Theorem to find `3 such

that |ē4 − e∗∗4 | <
√
δ.

Since e4 changes substantially Q4 must pass close to Q1 and hence L(ẽ4, l̃3)

must have θ+
4 small. Therefore by Lemma 2.2.2 L(ẽ4, l̃3) has (E3, e3, g3) close to

Gẽ4,2,4(E3(ẽ4, l̃3), e3(ẽ4, l̃3), g3(ẽ4, l̃3)). It follows that

|E3 − E∗∗3 | < Kδ, |e3 − e∗∗3 | < Kδ, |g3 − g∗∗3 | < Kδ.

Next Lemma 2.2.3 shows that after the application of G, (E3, e3, g3) change little

and θ−4 becomes O(µ).

Proof of Sublemma 3.3.5. Without the loss of generality we may assume that a =

(r, 0). Let V (z) be the direction field defined by the condition that the direction of

dF(V (z)) is parallel to (1, 0). Let γ(t) be the integral curve of V passing through the

origin and parameterized by the arclength. Then F(γ(t)) has form (σ(t), 0) where

σ(0) = 0 and |σ̇(t)| ≥ χ̄ as long as |σ| < R. Now the statement follows easily.
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4.2 Derivatives of the Poincaré map

In computing C1 asymptotics of both local and global maps we will need

formulas for the derivatives of Poincaré maps between two sections. Here we give

the formulas for such derivatives for the later reference.

Recall our use of notations. X denotes Q3 part of our system and Y denotes

Q4 part. Thus

X = (L3, `3, G3, g3), Y = (G4, g4).

(X, Y )i will denote the orbit parameters at the initial section and (X, Y )f will denote

the orbit parameters at the final section. Likewise we denote by `i4 the initial “time”

when Q4 crosses some section, and by `f4 final “time” when Q4 arrives at the next.

We abbreviate the RHS of (4.1.7)) as

X ′ = U , Y ′ = V .

Here ′ is the derivative w.r.t. `4. We also denote Z = (X, Y ) and W = (U ,V) to

simplify the notations further.

Suppose that we want to compute the derivative of the Poincaré map between

the sections Si and Sf . Assume that on Si we have `4 = `i4(Zi) and on Sf we have

`4 = `f4(Zf ). We want to compute the derivative D of the Poincaré map along the

orbit starting from (Zi
∗, `

i
∗) and ending at (Zf

∗ , `
f
∗). We have D = dF3dF2dF1 where

F1 is the Poincaré map between Si and {`4 = `i∗}, F2 is the flow map between the

times `i∗ and `f∗ , and F3 is the Poincaré map between {`4 = `f∗} and Sf . We have

F1 = Φ(Zi, `4(Zi), `i∗) where Φ(Z, a, b) denotes the flow map starting from Z at time
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a and ending at time b. Since

∂Φ

∂Z
(Zi
∗, `

i
∗, `

i
∗) = Id,

∂Φ

∂a
= −W

we have dF1 = Id−W(`i4)⊗ D`i4
DZi

. Inverting the time we get

dF3 =

(
Id−W(`f4)⊗ D`f4

DZf

)−1

.

Finally dF2 = DZ(`f∗)
DZ(`i∗)

is just the fundamental solution of the variational equation

between the times `i∗ and `f∗ . Thus we get

D =

(
Id−W(`f4)⊗ D`f4

DZf

)−1
DZ(`f4)

DZ(`i4)

(
Id−W(`i4)⊗ D`i4

DZi

)
. (4.2.1)

Next, we study the fundamental solution
DZ(`f∗)

DZ(`i∗)
of the variational equation. We

consider Q3 and Q4 individually. The variational equation takes form(
∂X

∂X(`i∗)

)′
=
∂U
∂X

∂X

∂X(`i∗)
+
∂U
∂Y

∂Y

∂X(`i∗)
,

(
∂X

∂Y (`i∗)

)′
=
∂U
∂X

∂X

∂Y (`i∗)
+
∂U
∂Y

∂Y

∂Y (`i∗)
,(

∂Y

∂X(`i∗)

)′
=
∂V
∂Y

∂Y

∂X(`i∗)
+
∂V
∂X

∂X

∂X(`i∗)
,

(
∂Y

∂Y (`i∗)

)′
=
∂V
∂Y

∂Y

∂Y (`i∗)
+
∂V
∂X

∂X

∂Y (`i∗)
,

Using the Duhamel principle we see that the solution of the variational equation

should satisfy

∂X(`f∗)

∂X(`i∗)
= U(`i∗, `

f
∗) +

∫ `f∗

`i∗

U(`4, `
f
∗)
∂U
∂Y

∂Y

∂X(`i∗)
d`4,

∂X

∂Y (`i4)
=

∫ `f∗

`i∗

U(`4, `
f
∗)
∂U
∂Y

∂Y

∂Y (`i∗)
d`4,

∂Y

∂Y (`i4)
= V(`i∗, `

f
∗) +

∫ `f∗

`i∗

V(`4, `
f
∗)
∂V
∂X

∂X

∂Y (`i∗)
d`4,

∂Y

∂X(`i4)
= U(`4, `

f
∗)
∂V
∂X

∂X

∂X(`i∗)
d`4

(4.2.2)

where U and V denote the fundamental solutions of

U′ =
∂U
∂X

U and V′ =
∂V
∂Y

V

respectively.
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4.3 Variational equation

The next step in the proof is the C1 analysis of the global map. It occupies

sections 4.3-4.5. We shall work under the assumptions of Lemma 3.3.2. In particular

we will use the estimates of Section 4.1 and Appendix A.1.

The plan of the proof of Proposition 3.3.6 is the following. Matrices (I), (III)

and (V) are treated in Sections 4.3 and 4.4. Namely, in Sections 4.3 we study

the variational equation while in Section 4.4 we describe the contribution of the

boundary terms. Finally in Section 4.5 we compute matrices (II) and (IV) which

describe the change of variables between the Delaunay coordinates with different

centers which are used to the left and to the right of the line x = −χ
2
.

4.3.1 Estimates of the coefficients

Lemma 4.3.1. We have the following estimates for the RHS of the variational

equation.

(a) When Q4 is moving to the right of the section {x = −χ/2}, we have t ∈

[2, χ/2] and 
∂UR
∂X

∂UR
∂Y

∂VR
∂X

∂VR
∂Y

 =
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O





1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2
1

χ2
+

µ

|Q4|2

1

χ
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ3
+

µ

|Q4|2
1

χ
+

µ

|Q4|2
1

χ
+

µ

|Q4|2




In addition we have

∂V
∂Y

= − 1

χ


ξL4sign(ẋ4)

(G2 + L2)(1− ξ)3

ξL3

(1− ξ)3

−ξL5

(G2 + L2)2(1− ξ)3

−ξL4sign(ẋ4)

(G2 + L2)(1− ξ)3

+O

(
µ

χ
+

µ

|Q4|2

)
,

∂V
∂L3

= − 1

χ

(
−ξG4L

3
4sign(ẋ4)

(L2
4 +G2

4)(1− ξ)3
,

ξG4L
4
4

(L2 +G2
4)2(1− ξ)3

)T
+O

(
µ

χ
+

µ

|Q4|2

)
,

where ξ =
|Q4|
χ

=
|Q4 −Q2|

χ
.

(b) When Q4 is moving to the left of the section x = −χ/2, we have t ∈ [χ/2, χ]

and


∂UL
∂X

∂UL
∂Y

∂VL
∂X

∂VL
∂Y

 = O





1

χ2

1

χ2

1

χ2

1

χ2

µ

χ2

µ

χ2

1

χ

1

χ2

1

χ2

1

χ2

1

χ2

1

χ2

1

χ2

1

χ2

1

χ2

1

χ2

µ

χ2

µ

χ2

1

χ2

1

χ2

1

χ2

1

χ2

µ

χ2

µ

χ2

1

χ2

µ

χ2

µ

χ2

µ

χ2

1

χ

1

χ

1

χ2

µ

χ2

µ

χ2

µ

χ2

1

χ

1

χ




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In addition we have

∂V
∂Y

= − 1

χ


ξL2sign(ẋ4)

(1− ξ)3

ξL3

(1− ξ)3

−ξL
(1− ξ)3

−ξL2sign(ẋ4)

(1− ξ)3

+O

(
µ

χ

)
,

where ξ =
|Q4 −Q1|

χ
.

Proof. (a) We estimate the four blocks of the derivative matrix separately.

• We begin with
∂UR
∂X

part. We consider first the partial derivatives of `′3 since it is

the largest component of U . Opening the brackets in the second line of (4.1.7) we

get

d`3

d`4

= −k+
1

L3
3

W+kL3
3

∂Q3

∂L3

· ∂U
∂Q3

+k2L3
3

∂Q4

∂L4

· ∂V
∂Q4

+2kW
∂Q4

∂L4

· ∂V
∂Q4

+O

(
1

χ2
+

µ

|Q4|3

)
.

(4.3.1)

Note that by (4.1.6)

WR = kR3L5
3

(
1

|Q3 + (χ, 0)|
+

1

|Q4 + (χ, 0)|
+
µQ4 ·Q3

|Q4|3

)
+O

(
µ

|Q4|3

)
= O

(
1

χ
+

µ

|Q4|2

)
(4.3.2)

Observe that the RHS of (4.3.1) depends on L3 in three ways. First, in contains

several terms of the form Lm3 . Second, Q3 depends on L3 via (A.1.2). Third, Q4

depends on L3 via (A.1.5) and L4 depends on L3 via (4.1.6). In particular we need

to consider the contribution to
∂

∂L3

d`3

d`4

coming from

∂L4

∂L3

∂

∂L4

=
∂L4

∂L3

∂Q4

∂L4

∂

∂Q4

.

By Lemma A.1.2 and equation 4.1.10 we have
∂Q4

∂L4

= O(|Q4|). Therefore the main
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contribution to (2,1) entry is O

(
1

χ
+

µ

|Q4|2

)
and it comes from

∂WR

∂Q4

∂Q4

∂L4

∂L4

∂L3

,

WR
∂

∂L3

1

L3
3

and
∂L4

∂L3

∂

∂L4

(
k2L3

3

∂Q4

∂L4

· ∂V
∂Q4

)
.

For the (2, 2), (2, 3), (2, 4) entries, the computations are similar. We need to act

∂

∂`3

,
∂

∂G3

,
∂

∂g3

on (4.3.1). (4.1.6) and (4.3.2) show that the contribution coming from

∂L4

∂(`3, G3, g3)
is O

(
1

χ2
+

µ

|Q4|2

)
. It remains to consider the contribution coming

from
∂Q3

∂(`3, G3, g3)

∂

∂Q3

. Now the bound for (2, 2), (2, 3) and (2, 4) entries follows

directly from Lemmas 4.1.1, 4.1.3, 4.1.4, and 4.1.6.

Next, consider (1, 1) entry. We need to estimate

∂

∂L3

(
(kL3

3 +W )
∂Q3

∂`3

· ∂U
∂Q3

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

))
.

Using the Leibniz rule we see that the leading term comes from
∂

∂L3

(
kL3

3

∂Q3

∂`3

· ∂U
∂Q3

)
which is of order O

(
1

χ2
+

µ

|Q4|2

)
. The estimates for other entries of the

∂UR
∂X

part

are similar to the (1, 1) entry. This completes the analysis of
∂UR
∂X

.

• Next, we consider
∂VR
∂Y

.

Using the Leibniz rule again we see that the main contribution to the deriva-

tives of V comes from differentiating

 L3
3

∂Q4

∂g4

· ∂V
∂Q4

−L3
3

∂Q4

∂G4

· ∂V
∂Q4


Consider the (5, 5) entry. The main contribution to this entry comes from

∂

∂G4

(
L3

3

∂Q4

∂g4

· ∂V
∂Q4

)
= L3

3

(
∂2Q4

∂G4∂g4

· ∂V
∂Q4

+
∂Q4

∂g4

· ∂
2V

∂Q2
4

· ∂Q4

∂G4

)
.

By Lemmas 4.1.4 and 4.1.6 the first term is |Q4|·O
(

1

χ2
+

µ

|Q4|3

)
= O

(
1

χ
+

µ

|Q4|2

)
and the second term is |Q4|2 · O

(
1

χ3
+

µ

|Q4|4

)
= O

(
1

χ
+

µ

|Q4|2

)
. This gives the

desired upper bound of the (5, 5) entry. Notice that O(1/χ) term comes from
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L3
3

∂

∂G4

(
∂Q4

∂g4

· ∂Ṽ
∂Q4

)
where Ṽ = − 1

|Q4 + (χ, 0)|
. Thus we need to find the asymp-

totics of

L3
3

∂

∂G4


∂Q4

∂g4

· (Q4 + (χ, 0))

|Q4 + (χ, 0)|3

 . (4.3.3)

Let
∂Q4

∂g4

= (a, b). Arguing in the same way as in the estimation of (4.1.14) we see

that a = O(1). Accordingly the numerator in (4.3.3) is O(χ) so if we differentiate the

denominator of (4.3.3) the resulting fraction will be of order O(χ)O(χ−3) = O(χ−2).

Hence O(1/χ) term comes from

L3
3

∂

∂G4

(
∂Q4

∂g4

· (Q4 + (χ, 0))

)
|Q4 + (χ, 0)|3

.

The numerator here equals to

∂

∂G4

(
∂Q4

∂g4

·Q4

)
+

∂2Q4

∂G4∂g4

· (χ, 0).

The first term is O(χ) due to Lemma A.1.2(a) so the main contribution comes from

the second term. Using Lemma A.1.3 we see that (5, 5) entry equals to

− L3
3L

2
4√

L2
4 +G2

4

χ sinhu

|Q4 + (χ, 0)|3
+O

(
µ

χ
+

µ

|Q4|2

)
.

Recall that L3 = L4(1 + o(1)) (due to (4.1.6)) and sinhu = sign(u)
|`4|L4√
L2

4 +G2
4

(due

to (A.1.4)). Since Lemma 4.1.1 implies that |Q4| = |`4|/L2
4(1 + o(1)) we obtain that

O(1/χ)-term in (5, 5) is asymptotic to

−L
4sign(u)

L2 +G2

χ|Q4|
(χ− |Q4|)3

.

Since u and ẋ4 have opposite signs we obtain the asymptotics of O(1/χ)-term

claimed in part (a) of the Lemma 4.3.1. The analysis of other entries of
∂VR
∂Y

is

similar.
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• Next, consider the
∂UR
∂Y

term.

The analysis of (2, 5) entry is similar to the analysis of (2, 2) entry except that

∂

∂G4

(
k2L3

3

∂Q4

∂L4

∂V

∂Q4

)
contains the term k2L3

3

∂2Q4

∂L4∂G4

∂V

∂Q4

which is of order O(1/χ)

due to Lemmas 4.1.6 and A.1.3 which provides the leading contribution for large t.

The analysis of (2, 6) is similar to (2, 5).

The estimate of the remaining entries of
∂UR
∂Y

is similar to the analysis of (1, 1)

entry.

• Thus to complete the proof of (a) it remains to consider
∂V
∂X

. We begin with

(5, 1) entry. We need to act by
∂

∂L3

+
∂L4

∂L3

∂

∂L4

on

(kL3
3 +W )

∂Q4

∂g4

· ∂V
∂Q4

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
.

The leading term for the estimate of (5, 1) comes from

(
∂

∂L3

+
∂L4

∂L3

∂

∂L4

)(
∂Q4

∂g4

· ∂V
∂Q4

)
=
∂L4

∂L3

∂

∂L4

(
∂Q4

∂g4

· ∂V
∂Q4

)
+O

(
1

χ2
+

µ

|Q4|2

)
= O

(
1

χ
+

µ

|Q4|2

)
.

Observe that O(1/χ) term here comes from
∂

∂L4

(
∂Q4

∂g4

· ∂V
∂Q4

)
which can be an-

alyzed in the same way as (5, 5) term. The analysis of (6, 1) is the same as of

(5, 1).

The (5, 2) entry is equal to

(
∂

∂`3

+
∂L4

∂`3

∂

∂L4

)[(
∂Q4

∂g4

· ∂V
∂Q4

)
Γ

]
where

Γ = kL3
3 +W + k2L6

3

∂Q4

∂L4

· ∂V
∂Q4

+ 2kL3
3W

∂Q4

∂L4

· ∂V
∂Q4

+W 2∂Q4

∂L4

· ∂V
∂Q4

.

Now the estimate of the (5, 2) entry follows from the following estimates

Γ = O(1),

(
∂Q4

∂g4

· ∂V
∂Q4

)
= O

(
1

χ2
+

µ

|Q4|2

)
,
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(
∂

∂`3

+
∂L4

∂`3

∂

∂L4

)(
∂Q4

∂g4

· ∂V
∂Q4

)
=
∂Q4

∂g4

· ∂
∂`3

∂V

∂Q4

+
∂L4

∂`3

∂

L4

(
∂Q4

∂g4

· ∂V
∂Q4

)
= O

(
µ

|Q4|2
+

(
1

χ2
+

µ

|Q4|2

)(
1

χ
+

µ

|Q4|2

))
= O

(
1

χ3
+

µ

|Q4|2

)
,

and (
∂

∂`3

+
∂L4

∂`3

∂

∂L4

)
Γ = O

(
1

χ2
+

µ

|Q4|2

)
.

The remaining entries of
∂V
∂X

are similar to the (5, 2) entry. This completes the

proof of part (a).

(b)• The estimate of
∂VL
∂Y

and
∂UL
∂X

are the same as in part (a) however,

now |Q4| is of order χ so O(µ/|Q4|2) is dominated by other terms. In addition to

compute the leading part we need to use part (c) Lemma A.1.3 rather than part

(b). Moreover, in order to be able to use the formulas of that Lemma we need to

shift the origin to Q1. Therefore the coordinates of Q2 become (χ, 0). Then we have

∂VL
∂Y

= L3
3


∂2Q4

∂G∂g
· (−χ, 0)

|Q4 − (χ, 0)|3
∂2Q4

∂g2
· (−χ, 0)

|Q4 − (χ, 0)|3

−∂
2Q4

∂G2
· (−χ, 0)

|Q4 − (χ, 0)|3
− ∂

2Q4

∂G∂g
· (−χ, 0)

|Q4 − (χ, 0)|3

+O

(
µ

χ

)
.

Now the asymptotic expression of
∂VL
∂Y

follows directly from Lemma A.1.3(c). We

point out the subtle point that the “−” sign in front of the matrices of
∂V

∂Y
and

∂V

∂L3

comes from the fact that the new time `4 that we are using satisfies
d`4

dt
= − 1

L3
4

+o(1)

as µ→ 0, χ→∞.

• Next, we consider the
∂UL
∂Y

term.

First consider (1, 5). We need to find G4 derivative of

[
∂Q3

∂`3

· ∂U
∂Q3

]
(kL3

3 +W )

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

)
.
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Differentiating the first factor we get using Lemma 4.1.6

∂

∂G4

(
∂Q3

∂`3

· ∂U
∂Q3

)
=
∂Q3

∂`3

· ∂2U

∂Q3∂Q4

∂Q4

∂G4

= O

(
µ

χ2

)
. (4.3.4)

When we differentiate the product of the remaining factors then the main contribu-

tion comes from

∂

∂G4

(
∂Q4

∂L4

· ∂V
∂Q4

)
=

∂2Q4

∂L4∂G4

· ∂V
∂Q4

+
∂Q4

∂L4

· ∂

∂G4

(
∂V

∂Q4

)
. (4.3.5)

To bound the last expression we use Lemma A.1.3. Namely, the second derivative

∂2Q4

∂G4∂L4

= O(1) + `4(0, 1), is almost vertical for `4 ∈ [χ/2, χ], and
∂VL
∂Q4

=
Q4

|Q4|3
+

µ(Q4 −Q3)

|Q4 −Q3|3
is almost horizontal. This shows that

∂2Q4

∂G4∂L4

· ∂V
∂Q4

=
1

χ2
. The main

contribution to the second summand in (4.3.5) comes from
∂

∂G4

(
∇
(

1
Q4

))
. Using

Lemma A.1.2, we get

∂Q4

∂L4

· ∂
∂G4

(
∇
(

1

Q4

))
= (`4(1, 0)+O(1))

(
−Id
|Q4|3

+ 3
Q4 ⊗Q4

|Q4|5

)
(`(0, 1)+O(1)) =

1

χ2

for `4 ∈ [χ/2, χ]. Since
∂Q3

∂`3

· ∂U
∂Q3

= O(1/χ2) we get the required estimate for (1, 5)

entry.

The estimates of other
∂UL
∂Y

terms are similar to the estimate of (1, 5) entry,

except for (2, 5) and (2, 6) entries which are different because
d`3

d`4

is larger than the

other coordinates of U .

Now consider (2, 5). We need to compute

− ∂

∂G4

(
(kL3

3 +W )(
1

L3
3

+
∂Q3

∂L3

· ∂U
∂Q3

)

(
1 + (kL3

3 +W )
∂Q4

∂L4

· ∂V
∂Q4

))
= − ∂

∂G4

(
k +

1

L3
3

W + kL3
3

∂Q3

∂L3

· ∂U
∂Q3

+ k2L3
3

∂Q4

∂L4

· ∂V
∂Q4

+ 2kW
∂Q4

∂L4

· ∂V
∂Q4

+
1

χ3

)
= 0 +

1

χ2
+

µ

χ2
+

1

χ2
+

1

χ3
+

1

χ3
= O

(
1

χ2

)
(4.3.6)
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where the analysis of the leading terms is similar to (4.3.4), (4.3.5).

• Finally, we consider
∂VL
∂X

. We begin with (5, 1). We need to compute[
∂

∂L3

+
∂L4

∂L3

∂

∂L4

]((
∂Q4

∂g4

· ∂V
∂Q4

)
Γ

)
where

Γ = kL3
3 +W + k2L6

3

∂Q4

∂L4

· ∂V
∂Q4

+ 2kL3
3W

∂Q4

∂L4

· ∂V
∂Q4

+W 2∂Q4

∂L4

· ∂V
∂Q4

.

The main contribution to

[
∂

∂L3

+
∂L4

∂L3

∂

∂L4

](
∂Q4

∂g4

· ∂V
∂Q4

)
comes from

∂L4

∂L3

∂

∂L4

(
∂Q4

∂g4

· ∂V
∂Q4

)
=
∂L4

∂L3

∂2Q4

∂L4∂g4

· ∂V
∂Q4

+
∂L4

∂L3

∂Q4

∂g4

· ∂
2V

∂Q2
4

∂Q4

∂L4

.

The two summands above can be estimated by O(1/χ2) by the argument used to

bound (4.3.5). Next a direct calculation shows that Γ = O(1),

[
∂

∂L3

+
∂L4

∂L3

∂

∂L4

]
Γ =

O(1) while

(
∂Q4

∂g4

· ∂V
∂Q4

)
= O(1/χ2) by Lemma 4.1.4 This gives the required bound

for the (5, 1) entry. The bound for the (6, 1) entry is similar.

Next, consider (5, 2). It equals to[
∂

∂`3

+
∂L4

∂`3

∂

∂L4

]((
∂Q4

∂g4

· ∂V
∂Q4

)
Γ

)
The main contribution to

[
∂

∂`3

+
∂L4

∂`3

∂

∂L4

](
∂Q4

∂g4

· ∂V
∂Q4

)
comes from

∂

∂`3

(
∂Q4

∂g4

· ∇
(

µ
|Q4−Q3

))
and it is of orderO

(
µ

χ2

)
.On the other hand the main contribution to

[
∂

∂`3

+
∂L4

∂`3

∂

∂L4

]
Γ

comes from
∂W

∂`3

and it is of order O

(
1

χ2

)
. Combining this with C0 bounds men-

tioned used in the analysis of (5, 1) we obtain the required estimate on the (5, 2)

entry. The remaining entries of
∂VL
∂X

are similar to (5, 2).

4.3.2 Estimates of the solutions

We integrate the variational equations to get the
∂(X, Y )(`f4)

∂(X, Y )(`i4)
in equation (4.2.1).
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Recall that map (I) describes the transition between sections {x = −2} and{
x = −χ

2

}
, map (III) describes the transition between sections

{
x = −χ

2
, ẋ < 0

}
and

{
x = −χ

2
, ẋ > 0

}
and map (V) describes the transition between sections

{
x = −χ

2

}
,

and {x = −2} .

Lemma 4.3.2. The following estimates are valid

(a) For maps (I) and (V ),

∂(X, Y )(`f4)

∂(X, Y )(`i4)
=



1 +O(µ) O(µ) O(µ) O(µ) O(µ) O(µ)

O(1) 1 +O(µ) O(µ) O(µ) O(1) O(1)

O(µ) O(µ) 1 +O(µ) O(µ) O(µ) O(µ)

O(µ) O(µ) O(µ) 1 +O(µ) O(µ) O(µ)

O(1) O(µ) O(µ) O(µ) O(1) O(1)

O(1) O(µ) O(µ) O(µ) O(1) O(1)



.

(4.3.7)

(b) For map (III),

∂(X, Y )(`f4)

∂(X, Y )(`i4)
=



1 +O( 1
χ
) O( 1

χ
) O( 1

χ
) O( 1

χ
) O(µ

χ
) O(µ

χ
)

O(1) 1 +O( 1
χ
) O( 1

χ
) O( 1

χ
) O( 1

χ
) O( 1

χ
)

O( 1
χ
) O( 1

χ
) 1 +O( 1

χ
) O( 1

χ
) O(µ

χ
) O(µ

χ
)

O( 1
χ
) O( 1

χ
) O( 1

χ
) 1 +O( 1

χ
) O(µ

χ
) O(µ

χ
)

O( 1
χ
) O(µ

χ
) O(µ

χ
) O(µ

χ
) O(1) O(1)

O( 1
χ
) O(µ

χ
) O(µ

χ
) O(µ

χ
) O(1) O(1)



.

(4.3.8)
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(c)
∂Y (`f4)

∂Y (`i4)
has the following limits as µ→ 0, χ→∞

Map (I):


1 +

L̃2
4

2(L̃2
4 + G̃2

4)
− L̃4

2

L̃3
4

2(L̃2
4 + G̃2

4)2
1− L̃2

4

2(L̃2
4 + G̃2

4)

 , Map (V):


1− L̂2

4

2(L̂2
4 + Ĝ2

4)
− L̂4

2

L̂3
4

2(L̂2
4 + Ĝ2

4)2
1 +

L̂2
4

2(L̂2
4 + Ĝ2

4)

 ,

Map (III):


1

2
−L4

2

3

2L4

1

2

 .

In addition for map (I) we have
∂Y

∂L3

→

(
− G̃4L̃4

2(L̃2
4 + G̃2

4)
,− G̃4L̃

2
4

2(L̃2
4 + G̃2

4)2

)T

.

Proof. (a) We divide the proof into several steps.

Step 1. Keeping in mind the integrals

∫ χ/2

0

1

χ
dt = O(1), and

∫ χ/2

0

µ

|Q4|2(t)
dt = O(µ)

we conclude using the Gromwall Inequality that if (δX, δY )(`i4) = O(1) then (δX, δY )(t) =

O(1) for all t ∈ [`i4, `
f
4 ].

Step 2. Plugging the estimate of step 1 back into the variational equation

we see that (δL3, δG3, δg3)(t)− (δL3, δG3, δg3)(0) = O(µ). This proves the required

bound for (δL3, δG3, δg3).

Step 3. Steps 1 and 2 imply that

˙δY (t) =
∂V
∂Y

(t)δY (t) +
∂V
∂L3

(t)δL3(0) +O

(
µ

1 + t2

)
.

We treat this as a nonhomogeneous linear equation for δY. Thus

δY (t) = V(0, t)δY (0) +

(∫ t

0

V(s, t)
∂V
∂L3

(s)ds

)
δL3(0) +

∫ t

0

O

(
||V(s, t)|| µ

1 + s2

)
ds

(4.3.9)
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where V(s, t) denotes the fundamental solution of the corresponding homogeneous

equation. (4.3.9) immediately implies the required bound for δY.

Step 4. Plugging the estimates of steps 2 and 3 into the equation for δ`3 we

see that if (δL3, δG3, δg3)(0) = 0 and hence (δL3, δG3, δg3)(t) = O(µ) for all t then

˙δ`3 = O
(

µ
1+t2

)
proving the required bound for δ`3.

(b) We use the same steps as in part (a). On step 1 we show that (δX, δY )(t) =

O(1) for all t. On step 2 we conclude that (δL3, δG3, δg3)(t) − (δL3, δG3, δg3)(0) =

O(1/χ). On step 3 we prove the result of part (b) for δY. On step 4 we use the

results of step 3 to show that if δX(0) = 0 then (δL3, δG3, δg3)(t) = O(µ/χ) and

δ`3(t) = O(1/χ).

To prove (c) we need to find the asymptotics of V. Consider map (I) first. V

satisfies

V̇ =
∂V
∂Y

V.

By already established part (a) V = O(1) so the above equation can be rewritten as

V̇ =
ξL2

χ(1− ξ)3
AV +O

(
µ

t2 + 1
+
µ

χ

)
.

where A =


− L2

(G2 + L2)
L

− L3

(G2 + L2)2

L2

(G2 + L2)

 . Now Gronwall Lemma gives V ≈ Ṽ

where Ṽ is the fundamental solution of ˙̃V = ξL2

χ(1−ξ)3AṼ. Using ξ as the independent

variable we get
dṼ
dξ

= − ξ

(1− ξ)3
AṼ. Note that ξ(`i4) = o(1), ξ(`f4) =

1

2
+ o(1).

Making a further time change dτ =
ξdξ

(1− ξ)3
we obtain the constant coefficient

linear equation
dṼ
dτ

= −AṼ. Observe that Tr(A) =det(A) = 0 and so A2 = 0.
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Therefore

Ṽ(σ, τ) = Id− (τ − σ)A. (4.3.10)

Since τ =
ξ2

2(1− ξ)2
we have τ(0) = 0, τ

(
1

2

)
=

1

2
. Plugging this into (4.3.10) we

get the claimed asymptotics for map (I). The analysis of map (V) is similar. To

analyze map (III) we split

∂Y (`f4)

∂Y (`i4)
=
∂Y (`f4)

∂Y (`m4 )

∂Y (`m4 )

∂Y (`i4)

where `m4 =
`i4 + `f4

2
. Using the argument presented above we obtain

∂Y (`m4 )

∂Y (`i4)
=


3
2
−L

2

1
2L

1
2

 ,
∂Y (`f4)

∂Y (`m4 )
=


1
2
−L

2

1
2L

3
2

 .

Multiplying the above matrices we obtain the required asymptotics for map (III).

Next using the same argument as in analysis of
∂Y (`f4)

∂Y (`i4)
we obtain

∂Y

∂L3

≈ W

where

Ẇ =
ξL2

χ(1− ξ)3

[
AW +

(
GL

(L2 +G2)
,

GL2

(L2 +G2)2

)T]
.

In terms of the new time this equation reads

dW
dτ

= −

[
AW +

(
GL

(L2 +G2)
,

GL2

(L2 +G2)2

)T]
.

Solving this equation using (4.3.10) and initial condition (0, 0)T , we obtain the

asymptotics of
∂Y

∂L3

.
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4.4 Boundary contributions and the proof of Proposition 3.3.6

According to (4.2.1) we need to work out the boundary contributions in order

to complete the proof of Proposition 3.3.6.

4.4.1 Dependence of `4 on variables (X, Y )

To use the formula (4.2.1) we need to work out (U ,V)(`i4) ⊗ ∂`i4
∂(X, Y )i

and

(U ,V)(`f4)⊗ ∂`f4
∂(X, Y )f

. Consider x4 component of Q4 (see equation (A.1.5)).

x4 = cos g4(L2
4 sinhu4 − e4)− sin g4(L4G4 coshu4).

For fixed x4 = −χ/2 or −2, we can solve `4 as a function of L4, G4, g4. From

the calculations in the Appendix A.1.2, Lemma A.1.2, and the implicit function

theorem, we get

for the section x4 = −χ/2,
(
∂`4

∂L4

,
∂`4

∂G4

,
∂`4

∂g4

) ∣∣∣
x4=−χ/2

= (O(χ), O(1), O(1)),

for the section x4 = −2,

(
∂`4

∂L4

,
∂`4

∂G4

,
∂`4

∂g4

) ∣∣∣
x4=−2

= (O(1), O(1), O(1)).

Using equation (4.1.6) which relates L4 to L3, we obtain for the section {x4 = −χ/2},

∂`4

∂(X, Y )

∣∣∣
x4=−χ/2

= (O(χ), O(1/χ), O(1/χ), O(1/χ), O(1), O(1)),

(U ,V)
∣∣∣
x4=−χ/2

= (O(1/χ2), O(1), O(1/χ2), O(1/χ2), O(1/χ2), O(1/χ2))T ,

(4.4.1)

For the section {x4 = −2},

∂`4

∂L3

∣∣∣
x4=−2

= (O(1), O(µ), O(µ), O(µ), O(1), O(1)),

(U ,V)
∣∣∣
x4=−2

= (O(µ), O(1), O(µ), O(µ), O(µ), O(µ))T .

(4.4.2)
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The matrix (U ,V)⊗ ∂`4

∂(X, Y )

∣∣∣
x4=−χ/2

has rank 1 and the only nonzero eigenvalue is

O(1/χ), and (U ,V)⊗ ∂`4

∂(X, Y )

∣∣∣
x4=−2

has rank 1 and the only nonzero eigenvalue is

O(µ). So the inversion appearing in (4.2.1) is valid.

4.4.2 Asymptotics of matrices (I), (III), (V ) from the Proposition 3.3.6

Here we complete the computations of matrices (I), (III) and (V).

The boundary contribution to (I). In this case, `i4 stands for the section

{x4 = −2} and `f4 stands for the section {x4 = −χ/2}. So we use equation (4.4.2)

to form (U ,V)(`i4) ⊗ ∂`i4
∂(X, Y )i

in equation (4.2.1) and equation (4.4.1) to form

(U ,V)(`f4)⊗ ∂`f4
∂(X, Y )f

. We have

(
Id− (U ,V)(`f4)⊗

∂`f4
∂(X,Y )f

)−1

=

1 +O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) O(1/χ2) O(1/χ2)

O(χ) 1 +O(1/χ) O(1/χ) O(1/χ) O(1) O(1)

O(1/χ) O(1/χ3) 1 +O(1/χ3) O(1/χ3) O(1/χ2) O(1/χ2)

O(1/χ) O(1/χ3) O(1/χ3) 1 +O(1/χ3) O(1/χ2) O(1/χ2)

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) 1 +O(1/χ2) O(1/χ2)

O(1/χ) O(1/χ3) O(1/χ3) O(1/χ3) O(1/χ2) 1 +O(1/χ2)


(4.4.3)

Now we use equation (4.2.1) and Lemma 4.3.2 to obtain the asymptotics of the

matrix (I) stated in Proposition 3.3.6.

The boundary contribution to (III)

This time we use equation (4.4.1) to form both (U ,V)(`i4) ⊗ ∂`i4
∂(X, Y )i

and
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(U ,V)(`f4)⊗ ∂`f4
∂(X, Y )f

in equation (4.2.1).

The matrix

(
Id− (U ,V)(`f4)⊗ ∂`f4

∂(X, Y )f

)−1

has the same form as (4.4.3). Now we

use equation (4.2.1) and Lemma 4.3.2 to obtain the asymptotics of the matrix (III)

stated in Proposition 3.3.6.

The boundary contribution to (V )

This time we use equation (4.4.1) to form (U ,V)(`i4) ⊗ ∂`i4
∂(X, Y )i

and equa-

tion (4.4.2) to form (U ,V)(`f4)⊗ ∂`f4
∂(X, Y )f

in equation (4.2.1).

The matrix

(
Id− (U ,V)(`f4)⊗ ∂`f4

∂(X, Y )f

)−1

has the form



1 +O(µ) O(µ2) O(µ2) O(µ2) O(µ) O(µ)

O(1) 1 +O(µ) O(µ) O(µ) O(1) O(1)

O(µ) O(µ2) 1 +O(µ2) O(µ2) O(µ) O(µ)

O(µ) O(µ2) O(µ2) 1 +O(µ2) O(µ) O(µ)

O(µ) O(µ2) O(µ2) O(µ2) 1 +O(µ) O(µ)

O(µ) O(µ2) O(µ2) O(µ2) O(µ) 1 +O(µ)


Now we use equation (4.2.1) and Lemma 4.3.2 to obtain the asymptotics of the

matrix (V ) stated in Proposition 3.3.6.

4.5 Switching foci

Recall that we treat the motion of Q4 as a Kepler motion focused at Q2 when

it is moving to the right of the section {x = −χ/2} and treat it as a Kepler motion

focused at Q1 when it is moving to the left of the section {x = −χ/2}. Therefore,
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we need to make a change of coordinates when Q4 crosses the section {x4 = −χ/2}.

These are described by the matrices (II) and (IV ). Under this coordinate change

the Q3 part of the Delaunay variables does not change. The change of G4 is given

by the difference of angular momentums w.r.t. different reference points (Q1 or Q2).

To handle it we introduce an auxiliary variable v4y-the y component of the velocity

of Q4. Relating g4 with respect to the different reference points to v4y we complete

the computation.

4.5.1 From the right to the left

We have (II) =
∂(L3, `3, G3, g3, G4L, g4L)

∂(L3, `3, G3, g3, G4R, g4R)

∣∣∣
x4=χ/2

= (iii)(ii)(i) where matrices

(i), (ii) and (iii) correspond to the following coordinate changes.

(G, g)4R

(χ
2

)
(i)−→ (G, vy)4R

(χ
2

)
(ii)−→ (G, v)yL

(χ
2

)
(iii)−→ (G, g)4L

(χ
2

)
.

proof of matrices (i) and (iii)(ii) in Proposition 3.3.6. (i) is given by the relation

G4R = G4R, v4y =

− 1

L4R

sinhu4R sin g4R +
G4R

L2
4R

cos g4R coshu4R

1− e4R coshu4R

< 0, L4R = kRL3−
WR

3L2
3

.

where last relation follows from (4.1.6). Recall that by Lemma 4.1.8 g4R = arctan
G4R

L4R

+

O(1/χ). In addition (4.5.1) below and the fact that G4R and G4L are O(1) implies

v4y = O(1/χ). Now the asymptotics of (i) is obtain by direct computation. We

compute dv4y
dL3

the other derivatives are similar but easier. We have dv4y
dL3

= dv4y
dL4R

∂L4R

∂L3
.

The second term is kR +O(1/χ). On the other hand

dv4y

dL4

=

∂
∂L4R

(
− 1

L4R

sinhu4R sin g4R +
G4R

L2
4R

cos g4R coshu4R

)
1− e4R coshu4R

+v4R

∂e4R
∂L4R

coshu4R

1− e4R coshu4R

+
∂v4R

∂`4R

∂`4R

∂L4R

.
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The main contribution comes from the first term which equals

− G4R

L4R(L2
4R +G2

4R)
+O(1/χ).

The second term is O(1/χ) since v4R = O(1/χ). Next rewriting

v4y =

− 1

L4R

tanhu4R sin g4R +
G4R

L2
4R

cos g4R

(1/ coshu4R)− e4R

we see that

∂v4y

∂`4R

∂`4R

∂L4R

= O(1/χ2)×O(χ) = O(1/χ)

since ∂`4R
∂L4R

= O(χ) by (4.4.1).

(ii) is given by

GL = GR/kR + χv4y. (4.5.1)

Here G4R and v4y are independent variables so the computation of the derivative of

(ii) is straightforward.

To compute the derivative of (iii) we use the relation

GL = GL, v4y =

− 1

L4L

sinhu4L sin g4L +
G4L

L2
4L

cos g4L coshu4L

1− e4L coshu4L

.

where uL < 0. Arguing the same way as for (i) and using the fact that by Lemma

4.1.8, GL, gL = O(1/χ), − sinhuL, coshuL '
`4L

eL
we obtain

δv4y = −δG4L

k2
RL

2
3

− δg4L

kRL3

+HOT

Hence

δg4R = −δG4L

kRL3

− kRL3δv4y +HOT = −(δG4R/kR) + χδv4y

kRL3

+HOT

completing the proof of the lemma.
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4.5.2 From the left to the right

At this step we need to compute

(IV ) =
∂(L3, `3, G3, g3, G4R, g4R)

∂(L3, `3, G3, g3, G4L, g4L)

∣∣∣
x4=χ/2

= (iii′)(ii′)(i′).

where the matrices (iii′), (ii′) and (i′) correspond to the following changes of vari-

ables.

(G, g)L

(χ
2

)
(i′)−→ (G, v4y)L

(χ
2

)
(ii′)−→ (G, v4y)R

(χ
2

)
(iii′)−→ (G, g)R

(χ
2

)
.

proof of matrices (iii’) and (ii’)(i’) in Proposition 3.3.6. (i′) is given by

v4y =

− 1

L4L

sinhu4L sin g4L +
G4L

L2
4L

cos g4L coshu4L

1− e4L coshu4L

< 0.

Here uL > 0 and G4L, g4L = O(1/χ).

(ii′) is given by

GR/kR = GL − χv4yL.

Now the analysis is similar to Subsection 4.5.1. In particular the main contribution

to [(ii′)(i′)]44 comes from

∂(G4R, v4y)

∂(G4Lg4L)
=
∂(G4R, v4y)

∂(G4Lv4y)

∂(G4L, v4y)

∂(G4Lg4L)
=

 kR −kRχ

0 1


 1 0

− 1

L2
3

+O
(

1
χ

) 1

L3

+O
(

1
χ

)
 .

The analysis of 43 part is similar.

(iii′) is given by

GR = GR, v4y =

− 1

L4R

sinhu4R sin g4R +
G4R

L2
4R

cos g4R coshu4R

1− e4R coshu4R

< 0.
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Here u4R < 0, and by Lemma 4.1.8 tan g4R = −G4R

L4R

+ O(1/χ). To get the asymp-

totics of the derivative we first show that similarly to Subsection 4.5.1, we have

dv4y =

(
G4R

L3(k2
RL

2
3 +G2

4R)
+O(1/χ), O(1/χ2), O(1/χ2), O(1/χ2),− 1

k2
RL

2
3 +G2

4R

,− 1

kRL3

)

and then take the inverse.
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Chapter 5

The local map

5.1 Approaching close encounter

In this paper we choose to separate local and global map by section {x4 = −2}.

We could have use instead {x4 = −10}, or {x4 = −100}. Our first goal is to show

that the arbitrariness of this choice does not change the asymptotics of derivative

of the local map (we have already seen in Sections 4.3.2 and 4.4 that it does not in

change the asymptotics of the derivative of the global map).

We choose the section {|Q3 − Q4| = µκ}, 1/3 < κ < 1/2. Outside the

section the orbits are treated as perturbed Kepler motions and inside the section

the orbits are treated as two body scattering. We shall estimate the errors of this

approximation. We break the orbit into three pieces: from {x4 = −2, ẋ4 > 0}

to {|Q−3 − Q−4 | = µκ}, from {|Q−3 − Q−4 | = µκ} to {|Q+
3 − Q+

4 | = µκ} and from

{|Q+
3 −Q+

4 | = µκ} to {x4 = −2, ẋ4 > 0}.

In this section we consider the two pieces of orbit outside the section {|Q3 −

Q4| = µκ}. The Hamiltonian that we use is (4.1.1). Then we convert the Cartesian

coordinates to Delaunay coordinates. The resulting Hamiltonian is

HL = − 1

2L2
3

+
1

2L2
4

− 1

|Q4 + (χ, 0)|
− 1

|Q3 + (χ, 0)|
− µ

|Q3 −Q4|
.

The difference with the Hamiltonian (4.1.2) is that we do not do the Taylor expansion
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to the potential − 1

|Q3 −Q4|
.

The next lemma and the remark after it tell us that we can neglect those two

pieces.

Lemma 5.1.1. Consider the orbits satisfying the conditions of Lemma 3.3.1. For

the pieces of orbit from x4 = −2, ẋ4 > 0 to |Q−3 −Q−4 | = µκ and from |Q+
3 −Q+

4 | = µκ

to x4 = −2, ẋ4 > 0, 1/3 < κ < 1/2 the derivative matrices have the following form

in Delaunay coordinates

∂(X,Y )−

∂(X,Y )(−2)
,
∂(X,Y )(−2)
∂(X,Y )+

=



1 0 0 0 0 0

O(1) O(1) O(1) O(1) O(1) O(1)

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



+O(µ1−2κ+1/χ3).

Proof. The proof follows the plan in Section 4.2. We first consider the integration

of the variational equation. We treat the orbit as Kepler motions perturbed by Q1

and interaction between Q3 and Q4. Consider first the perturbation coming from

the interaction of Q3 and Q4. The contribution of this interaction to the variational

equation is of order
µ

|Q3 −Q4|3
. If we integrate the variational equation along an

orbit such that |Q3 −Q4| goes from −2 to µκ, then the contribution has the order

O

(∫ µκ

−2

µ

|t|3
dt

)
= O(µ1−2κ). (5.1.1)

Similar consideration shows that the perturbation from Q1 is O(1/χ3).

On the other hand absence of perturbation, all Delaunay variables except `3
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are constants of motion. In particular, the solutions to the variational equations

have the form

Id− 3∆`

L4
e2,1 +O(µ1−2κ + 1/χ3)

where ∆` is the time it takes to go from one section to the next and e2,1 means a

6× 6 matrix whose (2, 1) entry is 1 and others are 0.

Next we compute the boundary contributions. The analysis is the same as

Section 4.4. The derivative is given by formula (4.2.1). We need to work out

(U ,V)(`i4)⊗ ∂`i4
∂(X, Y )i

and (U ,V)(`f4)⊗ ∂`f4
∂(X, Y )f

. In both cases we have

(U ,V) = (0, 1, 0, 0, 0, 0) +O(µ1−2κ).

For the section {x4 = −2}, we use (4.4.2). For the section {|Q3 − Q4| = µκ}, we

have

∂`4

∂(X, Y )
= −

(
∂|Q3 −Q4|

∂`4

)−1
∂|Q3 −Q4|
∂(X, Y )

= −
(Q3 −Q4) · ∂(Q3−Q4)

∂(X,Y )

(Q3 −Q4) · ∂(Q3−Q4)
∂`4

(5.1.2)

We will prove in Lemma 5.2.2(c) below that the angle formed by Q3−Q4 and v3−v4

is O (µ1−κ) (the proof of Lemma 5.2.2 does not rely on section 5.1). Thus in (5.1.2)

we can replace Q3 −Q4 by v3 − v4 making O (µ1−κ) mistake. Hence

∂`4

∂(X, Y )
=

(v3 − v4) · ∂(Q3−Q4)
∂(X,Y )

(v3 − v4) · ∂Q4

∂`4

+O(µ1−κ),

Note that ∂Q4

∂`4
is parallel to v4. Using the information about v3 and v4 from Appendix

B.2.1 we see that 〈v3, v4〉 6= 〈v4, v4〉. Therefore the denominator in (5.1.2) is bounded

away from zero and so

∂`4

∂(X, Y )
= (O(1), O(1), O(1), O(1), O(1), O(1)).
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We also need to make sure the second component
∂`4

∂`3

is not close to 1, so that

Id − (U ,V)(`f4) ⊗ ∂`f4
∂(X, Y )f

is invertible when |Q3 − Q4| = µκ serves as the final

section. In fact, due to (4.1.7),
∂`4

∂`3

' −1. Using formula (4.2.1), we get the

asymptotics stated in the lemma.

Remark 7. Using the explicit value of the vectors l̄2, l̄3, w, w̃ in equations (3.3.3),

we find that in the limit µ→ 0, χ→∞

(
∂(X, Y )−

∂(X, Y )(−2)

)
span{w, w̃} = span{w, w̃}

and

l̄2

(
∂(X, Y )(−2)

∂(X, Y )+

)
= l̄2, l̄3

(
∂(X, Y )(−2)

∂(X, Y )+

)
= l̄3

This tells us that we can neglect the two matrices corresponding to the pieces of

orbit from x4 = −2, ẋ4 > 0 to |Q−3 − Q−4 | = µκ and from |Q+
3 − Q+

4 | = µκ to

x4 = −2, ẋ4 > 0. We thus have the identification

dL =
∂(L3, `3, G3, g3, G4, g4)+

∂(L3, `3, G3, g3, G4, g4)−
+O(µ1−2κ)

where (L3, `3, G3, g3, G4, g4)± denote the Delaunay variables measured on the section

{|Q±3 −Q±4 | = µκ}.

5.2 C0 estimate for the local map

In Sections 5.2 and 5.3 we consider the piece of orbit from |Q−3 − Q−4 | = µκ

to |Q+
3 − Q+

4 | = µκ. Because of Remark 7, we simply write dL to stand for the

derivative for this piece.
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It is convenient to use the coordinates of relative motion and the motion of

mass center. We define

v± = v3 ± v4, Q± =
Q3 ±Q4

2
. (5.2.1)

Here ”-” refers to the relative motion and ”+” refers to the center of mass motion.

To study the relative motion, we make the following rescaling:

q− := Q−/µ, τ := t/µ and v− remains unchanged. (5.2.2)

In this way, we zoom in the picture of Q3 and Q4 by a factor 1/µ.

Then we have the following lemma.

Lemma 5.2.1. (a) Inside the sphere |Q−| = µκ, 1/3 < κ < 1/2, the motion of the

center of mass is a Kepler motion focused at Q2 perturbed by O(µ2κ).

Q̇+ =
v+

2
, v̇+ = − 2Q+

|Q+|3
+O(µ2κ). (5.2.3)

(b) In the rescaled variables, the relative motion is a Kepler motion focused at the

origin perturbed by O(µ1+2κ).

q′− =
v−
2
, v′− =

q−
2|q−|3

+O(µ1+2κ), (5.2.4)

where we use “′” to stand for the derivative w.r.t. the new time τ .

Proof. Note that (5.2.1) preserves the symplectic form.

dv3 ∧ dQ3 + dv4 ∧ dQ4 = dv− ∧ dQ− + dv+ ∧ dQ+,

The Hamiltonian becomes

H =
|v−|2

4
− µ

2|Q−|
+
|v+|2

4
− 1

|Q+ +Q−|
− 1

|Q+ −Q−|
− 1

|Q+ +Q− + (χ, 0)|
− 1

|Q+ −Q− + (χ, 0)|

=
|v−|2

4
− µ

2|Q−|
+
|v+|2

4
− 2

|Q+|
+
|Q−|2

2|Q+|3
− 3|Q+ ·Q−|2

2|Q+|5
+O(µ3κ) +O(1/χ),

(5.2.5)
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where the O(µ3κ) includes the |Q−|3 and higher order terms. In the following, we

drop O(1/χ) terms since 1/χ� µ. So the Hamiltonian equations for the motion of

the mass center part are

Q̇+ =
v+

2
, v̇+ = − 2Q+

|Q+|3
+O(µ2κ)

proving part (a) of the lemma.

Next, we study the relative motion. From equation (5.2.5), we get the equa-

tions of motion for the mass center part is

Q̇− =
v−
2
, v̇− = − µQ−

2|Q−|3
− Q−
|Q+|3

+
3|Q+ ·Q−|Q+

|Q+|5
+O(µ2κ),

as µ → 0, where O(µ2κ) includes quadratic and higher order terms of |Q−|. After

making the rescaling according to (5.2.2) the equations for the relative motion part

become

q′− =
v−
2
, v′− =

q−
2|q−|3

+
µ2q−
|Q+|3

− 3µ2|Q+ · q−|Q+

|Q+|5
+O(µ1+2κ). (5.2.6)

Lemma 5.2.1 implies the following C0 estimate.

Let v−3,4, Q
−
3,4 be the velocities and positions measured at the time when the

orbit of the system enters |Q3−Q4| = µκ and v+
3,4, Q

+
3,4 be the velocities and positions

measured at the time when the orbit of the system exits |Q3−Q4| = µκ, 1/3 < κ <

1/2.
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Lemma 5.2.2. (a) We have the following equations

v+
3 =

1

2
R(α)(v−3 − v−4 ) +

1

2
(v−3 + v−4 ) +O(µ(1−2κ)/3 + µκ−1),

v+
4 = −1

2
R(α)(v−3 − v−4 ) +

1

2
(v−3 + v−4 ) +O(µ(1−2κ)/3 + µκ−1),

Q+
3 +Q+

4 = Q−3 +Q−4 +O(µk),

|Q−3 −Q−4 | = µκ, |Q+
3 −Q+

4 | = µκ,

(5.2.7)

where R(α) =

 cosα − sinα

sinα cosα

,

α = π + 2 arctan

(
Gin

µL′in

)
, and

1

4L
′2
in

=
v2
−

4
− µ

2|Q−|
, Gin = 2v− ×Q−.

(b) We have L′in = O(1). If α is bounded away from 0 and 2π by an angle independent

of µ then Gin = O(µ) and the closest distance between Q3 and Q4 is bounded away

from zero by δµ and from above by µ/δ for some δ > 0 independent of µ.

(c) If α is bounded away from π by an angle independent of µ, the angle formed by

Q− and v− is O(µ1−κ).

(d) The time interval during which the orbit stays in the sphere |Q−| = µκ is

∆t = µ∆τ = O(µκ).

Proof. In the proof, we omit the subscript in standing for the variables inside the

sphere |Q−| = µκ without leading to confusion.

The idea of the proof is to treat the relative motion as a perturbation of Kepler

motion and then approximate the relative velocities by their asymptotic values for

the Kepler motion.
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Part (d) is the easiest. The radius of the sphere |Q−| = µκ is µκ. The relative

velocity is O(1) and it gets larger when Q− gets closer to the origin. So the total

time for the relative motion to stay inside the sphere is O(µκ).

Fix a small number δ1. Below we derive several estimates valid for the first δ1

units of time the orbit spends in the set |Q−| ≤ µk. We then show that ∆t� δ1. It

will be convenient to measure time from the orbit enters the set |Q−| < µk.

Using the formula in the Appendix A.1.1, we decompose the Hamiltonian (5.2.5)

as H = Hrel + h(Q+, v+) where

Hrel =
µ2

4L2
+
|Q−|2

2|Q+|2
− |Q+ ·Q−|2

2|Q+|5
+O(µ3κ), as µ→ 0,

and h depends only on Q+ and v+.

Note that H is preserved and ḣ = O(1) which implies that
L

µ
is O(1) and

moreover that ratio does not change much for t ∈ [0, δ1]. Using the identity
µ2

4L2
=

v2
−

4
− µ

2|Q−|
we see that initially

L

µ
is uniformly bounded from below for the orbits

from Lemma 2.2.2. Thus there is a constant δ2 such that for t ∈ [0, δ1] we have

δ2µ ≤ L(t) ≤ µ

δ2

.

Expressing the Cartesian variables via Delaunay variables (c.f. equation (A.1.3)

in Section A.1.2) we have up to rotation by angle g

q1 =
1

µ
L2(coshu− e) = O(µκ), q2 =

1

µ
LG sinhu = O(µκ) (5.2.8)

where u− e sinhu = `. We have

Ġ =
∂H

∂Q−

∂Q−
∂g

= O(|Q−|2) = O(µ2κ). (5.2.9)

Since G = 2v− × Q− we conclude that G = O(µκ) and hence G(t) = O(µκ) for
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all t ∈ [0, δ1]. This shows that e = O(µκ−1). Now equation (5.2.8) shows that

coshu = O(µκ−1) and so ` = O(µκ−1). Next

˙̀ = −∂H
∂L

= − µ2

2L3
− ∂Hrel

∂Q−

∂Q−
∂L

= − µ2

2L3
+O(µκ)O(µκ−1) = − µ2

2L3
+O(µ2κ−1).

Since the leading term here is at least
δ3

2

2µ
while ` = O(µκ−1) we obtain part (d)

of the lemma. In particular the estimates derived above are valid for the time the

orbits spends in |Q−| ≤ µκ. Next

ġ = −∂H
∂G

= − ∂H

∂Q−

∂Q−
∂G

= O(µκ)O(µκ−1) = O(µ2κ−1). (5.2.10)

Integrating over time ∆t = O(µκ) we get |g+
− − g−−| = O(µ3κ−1). Therefore g and

arctan
G

L
change by O(µ3κ−1).

We are now ready to derive the first two equations of (5.2.7). Let us denote

till the end of the proof φ = arctan
G

L
, γ =

(1/2)− κ
3

. Recall (see (A.1.3)) that

p1 = p̃1 cos g + p̃2 sin g, p2 = −p̃1 sin g + p̃2 cos g where (5.2.11)

p̃1 =
µ

L

sinhu

1− e coshu
, p̃2 =

µG

L2

coshu

1− e coshu
.

Consider two cases.

(I) G ≤ µκ+γ. In this case on the boundary of the sphere |Q−| = µκ we have

` > δ3µ
−γ for some constant δ3. Thus

p2

p1

=

µG

L2
coshu cos g +

µ

L
sinhu sin g

−µG
L2

coshu sin g +
µ

L
sinhu cos g

=

G

L
± tan g

±1− G

L
tan g

+O(e−2|u|) = tan(g±φ)+O(µ−2γ).

where the plus sign is taken if u > 0 and the minus sign is taken if u < 0. Is arctan

is globally Lipshitz, this completes the proof in case (I).
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(II) G > µκ+γ. In this case
G

L
� 1 and so it suffices to show that

p2

p1

(or
p1

p2

)

changes little during the time the orbit is inside the sphere. Consider first the case

where |g−| > π

4
so sin g is bounded from below. Then

p2

p1

= cot g +O(µ1−(κ+γ))

proving the claim of part (a) in that case. The case |g−| ≤ π

4
is similar but we need

to consider
p1

p2

. This completes the proof in case (II).

Combining equation (5.2.3) and Lemma 5.2.1(c) we obtain

Q+
+ = Q−+ +O(µκ). (5.2.12)

We also have Q+
− = Q−− +O(µκ) according to the definition of the sections {|Q±−| =

µκ}. This proves the last two equation in (5.2.7). Plugging (5.2.12) into (5.2.3) we

see that

v+
+ = v−+ +O(µκ).

This completes the proof of part (a).

The first claim of part (b) has already been established. The estimate of G

follows from the formula for α. The estimate of the closest distance follows from the

fact that if α is bounded away from 0 and 2π then the Q− orbit of Q−(t) is a small

perturbation of Kepler motion and for Kepler motion the closest distance is of order

G. We integrate the Ġ equation (5.2.9) over time O(µκ) to get the total variation

∆G is at most µ3κ, which is much smaller than µ. So G is bounded away from 0 by

a quantity of order O(µ).

Finally part (c) follows since we know G = µκ|v−| sin](v−, Q−) = O(µ).
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Proof of Lemma 2.2.2. Letting µ = 0 in the first two equations of (5.2.7) we obtain

the equations of elastic collisions. Namely, both the kinetic energy conservation

|v+
3 |2 + |v+

4 |2 = |v−3 |2 + |v−4 |2

and momentum conservation

v+
3 + v+

4 = v−3 + v−4

laws hold. On the other hand, the Gerver’s map G in Lemma 2.2.2 is also defined

through elastic collisions. As a result, Lemma 5.2.2 says actually the same thing as

Lemma 2.2.2 up to a change of variables going from Cartesian to the set of variables

E3, `3, G3, g3, G4, g4.

5.3 Derivative of the local map

5.3.1 Justifying the asymptotics

Here we give the proof of Lemma 3.3.1. Our goal is to show that the main

contribution to the derivative comes from differentiating the main term in Lemma

5.2.2.

Proof of Lemma 3.3.1. Since the transformation from Delaunay to Cartesian vari-

ables is symplectic and the norms of the transformation matrices are independent of

µ, it is sufficient to prove the lemma in terms of Cartesian coordinates. To go to the

coordinates system used in Lemma 3.3.1, we only need to multiply the Cartesian

derivative matrix by O(1) matrices, namely, by
∂(L3, `3, G3, g3, G4, g4)+

∂(Q3, v3, Q4, v4)+
on the left
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and by
∂(Q3, v3, Q4, v4)−

∂(L3, `3, G3, g3, G4, g4)−
on the right. This does not change the form of the

dL stated in Lemma 3.3.1.

As before we use the formula (4.2.1). We need to consider the integration of

the variational equations and also the boundary contribution. The proof is organized

as follows. The main part of the proof is to study the relative motion part, while

controlling the motion of the mass center is easier.

Using ` as the time variable the equations for relative motion take the following

form (recall that the scale for ` is O(µκ−1)):

∂L

∂`
= −2µ−2L3∂H

∂`

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ2+κ),

∂G

∂`
= −2µ−2L3∂H

∂g

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ1+2κ),

∂g

∂`
= 2µ−2L3∂H

∂G

(
1− 2µ−2L3∂H

∂L
+ . . .

)
= O(µ2κ),

(5.3.1)

where . . . denote the lower order terms. The estimates of the last two equations

follow from (5.2.9) and (5.2.10) while the estimate of the first equation is similar to

the last two.

Then we analyze the variational equations.


dδL

d`
dδG

d`
dδg

d`

 = O




µ1+κ µ1+κ µ1+2κ

µ1+κ µ2κ µ1+2κ

µ2κ−1 µ2κ−1 µ2κ






δL

δG

δg

+O




µ2+κ 0

µ1+2κ 0

µ2κ 0




 δQ+

δv+

 .
(5.3.2)

In the following, we first set δQ+ = 0 and work with the fundamental solution

of the homogeneous equation. Then we will prove that δQ+ is negligible.
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Introducing δg′ =
δg

µ3κ−2
we need to find the asymptotics of the fundamental

solution of 
dδL

d`
dδG

d`
dδg′

d`

 = O




µ1+κ µ1+κ µ5κ−1

µ1+κ µ2κ µ5κ−1

µ1−κ µ1−κ µ2κ






δL

δG

δg′

 (5.3.3)

Integrating this equation over time µκ−1 we see that the fundamental solution

is O(1). Now arguing the same way as in section 4.3.2 we see that the fundamental

solution takes form

Id+O




µ2κ µ2κ µ6κ−2

µ2κ µ3κ−1 µ6κ−2

1 1 µ3κ−1



 . (5.3.4)

In the following it is convenient to use variables L′ = µL, G and g. In these variables

fundamental solution part of the variational equation is

Id+O




µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1



 . (5.3.5)

Next, we compute the boundary contribution. In terms of the Delaunay vari-

ables inside the sphere |Q−| = µκ, we have

∂`

∂(L′, G, g)
= −

(
∂|Q−|
∂`

)−1
∂|Q−|

∂(L′, G, g)
= (O(µκ−1), O(µκ−2), 0). (5.3.6)

Indeed, due to (5.2.8) we have
∂|Q−|
∂g

= 0,
∂|Q−|
∂`

= O(µ),
∂|Q−|
∂L′

= O(µκ) and
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∂|Q−|
∂G

= O(µκ−1). Combining this with (5.3.1) we get

(
∂L′

∂`
,
∂G

∂`
,
∂g

∂`

)
⊗ ∂`

∂(L′, G, g)
= O




µ2κ µ2κ−1 0

µ3κ µ3κ−1 0

µ3κ−1 µ3κ−2 0



 . (5.3.7)

Using (4.2.1) we obtain the derivative matrix

∂(L′, G, g)+

∂(L′, G, g)−
=

Id+O




µ2κ µ2κ−1 0

µ3κ µ3κ−1 0

µ3κ−1 µ3κ−2 0







−1

·

Id+O




µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1







Id−O



µ2κ µ2κ−1 0

µ3κ µ3κ−1 0

µ3κ−1 µ3κ−2 0







= Id+O




µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1



 := Id+ P.

(5.3.8)

We are now ready to compute the relative motion part of the derivative of

the Poincaré map. For the space variables, we are only interested in the angle

θ := arctan

(
q2

q1

)
since the length |(q1, q2)| is fixed when restricted on the sphere.

We split the derivative matrix as follows:

∂(θ−, v−)+

∂(θ−, v−)−
=

∂(θ−, v−)+

∂(L′, G, g)+

∂(L′, G, g)+

∂(L′, G, g)−
∂(L′, G, g)−

∂(θ−, v−)−
= (5.3.9)

∂(θ−, v−)+

∂(L′, G, g)+

∂(L′, G, g)−

∂(θ−, v−)−
+

∂(θ−, v−)+

∂(L′, G, g)+
P
∂(L′, G, g)−

∂(θ−, v−)−
= I + II.
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Using equations (5.2.8) and (5.2.11) we obtain

∂(θ−, v−)+

∂(L′, G, g)+
= O




1 µ−1 1

1 µ−1 1

1 µ−1 1



 . (5.3.10)

Next, we consider the first term in (5.3.9).

I =
∂(θ−, v−)+

∂L′+
⊗ ∂L

′−

∂(θ−, v−)−
+
∂(θ−, v−)+

∂G+
⊗ ∂G−

∂(θ−, v−)−
+
∂(θ−, v−)+

∂g+
⊗ ∂g−

∂(θ−, v−)−
.

(5.3.11)

Using the expressions

1

4L′2
=
v2
−

4
− µ

2|Q−|
, G = v− ×Q− = |v−| · |Q−| sin](v−, Q−)

we see that

∂L
′−

∂(θ−, v−)−
= O(1),

∂G−

∂(θ−, v−)−
= (O(µκ), O(µκ)). (5.3.12)

Next, we have
∂(θ−, v−)+

∂g+
= (O(1), O(1)) from equations (5.2.8) and (5.2.11). To

obtain the derivatives of g we use the fact that

p2

p1

=
sin g sinhu± G

µL′
cos g coshu

cos g sinhu∓ G
µL′

sin g coshu
=

tan g ± G
µL′

1∓ G
µL′

tan g
+ e−2|u|E(G/µL′, g, u),

where E is a smooth function satisfying
∂E

∂g
= O(1) as `→∞. Therefore we get

g = arctan

(
p2

p1

− e−2|u|E(G/µL′, g)

)
∓ arctan

G

µL′
as `→∞.

We choose the + when considering the incoming orbit parameters. Thus

∂g

∂(θ−, v−)

(
1 +O(e−2|u|)

)
=
∂ arctan p2

p1

∂(θ−, v−)
+
∂ arctan G

µL′

∂L′
∂L′

∂(θ−, v−)
+
∂ arctan G

µL′

∂G

∂G

∂(θ−, v−)
+O(e−2|u|).

92



Hence

∂g

∂(θ−, v−)
= O

(
1

µ

)
∂G

∂(θ−, v−)
+O(1), (5.3.13)

where the 1/µ comes from

∂ arctan
G

µL′

∂G
and all other terms are O(1) or even smaller.

Therefore

I =
1

µ

µ∂(θ−, v−)+

∂G+
+ µ

∂ arctan
G−

µL′−

∂G−
∂(θ−, v−)+

∂g+

⊗ ∂G−

∂(θ−, v−)−

+

∂(θ−, v−)+

∂L′+
⊗ ∂L

′−

∂(θ−, v−)−
+
∂(θ−, v−)+

∂g+
⊗

∂ arctan
p−2
p−1

∂(θ−, v−)
+
∂ arctan G−

µL′−

∂L′−
∂L

′−

∂(θ−, v−)

 .

(5.3.14)

Since the expression in parenthesis of the first term is O(1), I has the rate of growth

required in Lemma 3.3.1.
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Now we study the second term in (5.3.9)

II = O




1 µ−1 1

1 µ−1 1

1 µ−1 1




µ2κ µ2κ−1 µ2κ

µ3κ µ3κ−1 µ3κ

µ3κ−1 µ3κ−2 µ3κ−1




∂(L′, G, g)−

∂(θ−, v−)−

= O




µ3κ−1 µ3κ−2 µ3κ−1

µ3κ−1 µ3κ−2 µ3κ−1

µ3κ−1 µ3κ−2 µ3κ−1




∂(L′, G, g)−

∂(θ−, v−)−

= O




µ3κ−1

µ3κ−1

µ3κ−1



⊗
∂L

′−

∂(θ−, v−)−

+O




µ3κ−2

µ3κ−2

µ3κ−2



⊗
∂G−

∂(θ−, v−)−
+O




µ3κ−1

µ3κ−1

µ3κ−1



⊗
∂g−

∂(θ−, v−)−

(5.3.15)

where we use the assumption that κ < 1/2, which implies µ2κ < µ3κ−1 and µ2κ−1 <

µ3κ−2. The first summand in (5.3.15) is O(µ3κ−1).Therefore (5.3.13) implies that

II =
1

µ


µ3κ−1

µ3κ−1

µ3κ−1

⊗
∂G−

∂(θ−, v−)−
+O(µ3κ−1). (5.3.16)
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Now we combine (5.3.14) and (5.3.16) to get

∂(θ−, v−)
+

∂(θ−, v−)−
=

1

µ

µ∂(θ−, v−)+∂G+
+ µ

∂ arctan
G−

µL′−

∂G−
∂(θ−, v−)

+

∂g+
+O(µ3κ−1)

⊗ ∂G−

∂(θ−, v−)−

+

∂(θ−, v−)+
∂L′+

⊗ ∂L
′−

∂(θ−, v−)−
+
∂(θ−, v−)

+

∂g+
⊗

∂ arctan p−2
p−1

∂(θ−, v−)−
+
∂ arctan G−

µL′−

∂L′−
∂L
′−

∂(θ−, v−)−

+O(µ3κ−1)

 .

(5.3.17)

(5.3.17) has the structure stated in the lemma. In (5.3.17), we use the variable

θ− for the relative position Q− and we have
∂G−

∂(θ−, v−)−
= O(µκ). To get back to Q−,

i.e. to obtain
∂(Q−, v−)+

∂(Q−, v−)−
, we use Q− = µκ(cos θ−, sin θ−). So we have the estimate

∂Q+
−

∂(L−, G−, g−)+
= O(µκ)

∂θ+
−

∂(L−, G−, g−)+
= O(µκ). To get

∂−
∂Q−−

, we use the transfor-

mation from polar coordinates to Cartesian,
∂−
∂Q−−

=
∂−

∂(r−, θ−)−
∂(r−, θ−)−

∂Q−−
, where

r− = |Q−−| = µκ, therefore we have
∂r−−
∂Q−−

= 0 and
∂−
∂Q−−

=
1

µκ
∂−
∂θ−−

(− sin θ−−, cos θ−−).

So we have the estimate
∂G−

∂Q−−
= O(1), and

∂L′−

∂Q−−
=
∂L′−

∂θ−−
= 0 since in the expression

1

4L′2
=
v2
−

4
− µ

2|Q−|
, the angle θ− plays no role. Finally, we have

∂ arctan
p−2
p−1

∂Q−−
= 0.

So we get

∂(Q−, v−)+

∂(Q−, v−)−
=

1

µ
(O(µκ)1×2, O(1)1×2)⊗ (O(1)1×2, O(µκ)1×2) +O(1)4×4 +O(µ3κ−1).

It remains to show that other entries of the derivative matrix are O(1). Consider
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the following decomposition

∂(Q−, v−, Q+, v+)+

∂(Q−, v−, Q+, v+)−
=
∂(Q−, v−, Q+, v+)+

∂(L′, G, g,Q+, v+)+

∂(L′, G, g,Q+, v+)+

∂(L′, G, g,Q+, v+)(`f )

∂(L′, G, g,Q+, v+)(`f )

∂(L′, G, g,Q+, v+)(`i)

∂(L′, G, g,Q+, v+)(`i)

∂(L′, G, g,Q+, v+)−
∂(L′, G, g,Q+, v+)−

∂(Q−, v−, Q+, v+)−

:=

 M 0

0 Id


 A 0

B Id


 C D

E F


 A′ 0

B′ Id


 N 0

0 Id



=

 MACA′N +MADB′N MAD

(BC + E)A′N + (BD + F )B′N BD + F



(5.3.18)

We have already computed M, A, C, A′ and N (see (5.3.10), (5.3.7), (5.3.12),

(5.3.13)), where C is (5.3.5) and ACA′ = Id+P is (5.3.8). We still need to compute

B,B′, D,E, F .

From the Hamiltonian (5.2.5), we have ˙̀ = − 1

2µL′3
+ O(µ2κ). We need to

supplement (5.3.1) and (5.3.2) by the following equations.

dQ+

d`
= −v+

2
(2µL

′3)(1 +O(µ2κ+1)) = O(µ)

dv+

d`
=

(
2Q+

|Q+|3
+O(µ2κ)

)
(2µL

′3)(1 +O(µ2κ+1)) = O(µ).

(5.3.19)


dδQ+

d`
dδv+

d`

 =

 µ2κ+2 µ

µ 0


 δQ+

δv+

+

 µ µ2κ+1 µ2κ+2

µ µ2κ+1 µ2κ+2



δL′

δG

δg

 .
(5.3.20)

It follows from (5.3.6) and (5.3.19) that

B,B′ = O


 µ

µ


⊗O ([µκ−1, µ2κ−2, 0]

)
.
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Next, we obtain

D = O




µ2κ µ2κ

µ3κ µ3κ

µ3κ−1 µ3κ−1



 E = O


 µκ µ3κ−1 µ3κ

µκ µ3κ−1 µ3κ


 , F = Id+O


 µ3κ µκ

µκ µ3κ


 .

It is a straightforward computation that CA′ � DB′, so ADB′ is only a small

perturbation to the P part in ACA′ = Id+P in (5.3.8), and therefore MACA′N +

MADB′N in (5.3.18) has the same structure as MACA′N obtained in (5.3.14) and

(5.3.15). We also have the entry BD + F =

 1 + µ5κ−1 µκ

µκ 1 + µ5κ−1

 . The entry

(BC + E)A′N + (BD + F )B′N =
1

µ
[O(µ2µ)]1×3 ⊗

∂G−

∂(θ, v)−−
+O(µκ). (5.3.21)

Finally, we have that the entry MAD = [O(µ3κ−1)]3×2.

This estimate of the matrix in (5.3.18) is enough to conclude the Lemma.

The above proof actually gives us more information. Now we use the Delaunay

variables (L3, `3, G3, g3, G4, g4)± as the orbit parameters outside the sphere |Q−| =

µκ and add a subscript in to the Delaunay variables inside the sphere. We relate

Lemma 5.2.2 to the above proof.

Corollary 1. The derivative of the local map has the following form

dL =
1

µ
(û+O(µ3κ−1))⊗ l + B̂ +O(µ3κ−1),

where û, l and B̂ are computed by discarding the O(µ3κ−1) and O(µκ) errors in

(5.2.7). In particular,

û =
∂(L3, `3, G3, g3, G4, g4)+

∂(Q3, v3, Q4, v4)+

∂(Q3, v3, Q4, v4)+

∂α

(
µ
∂α

∂Gin

)
,
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l =
∂Gin

∂(Q3, v3, Q4, v4)−
∂(Q3, v3, Q4, v4)−

∂(L3, `3, G3, g3, G4, g4)−
.

Proof. We first discard the O(µ3κ−1) and O(µκ) errors in (5.2.7), and rewrite (5.2.7)

in terms of the coordinates of the relative motion and motion of mass center as

Q+
− = 0, v+

− = R(α)v−− = R(α/2 + g)(|v−−|, 0), Q+
+ = Q−+, v

+
+ = v−+.

The derivative matrix is block diagonalized. We get identity for the derivative of the

motion of the mass center part, which agrees with the entry BD + F in (5.3.18) in

the limit µ→ 0. Then we only need to focus on relative motion part. On the other

hand, our computation of (5.3.14) is based on formula (5.2.8), where the velocity

can be written as v+
− = R(α/2 + g)(1/L′, 0) + O(e−2|u|), |u| → ∞. We also have

1/L′ = |v−−| as µ → 0. Moreover, in (5.3.14), we have
∂θ+
−

∂(θ−, v−)−
is of the same

order as
∂v+
−

∂(θ−, v−)−
, which implies

∂Q+
−

∂(θ−, v−)−
= O(µκ)

∂v+
−

∂(θ−, v−)−
as µ → 0 since

Q+
− = µκ(cos θ+

−, cos θ+
−). So we only consider

∂v+
−

∂(θ−, v−)−
in the following.

Then compute the derivative

∂v+
−

∂(θ−, v−)−
=
∂v+
−

∂α

∂α

∂Gin

⊗ ∂Gin

∂(θ−, v−)−
+
∂v+
−

∂α

∂α

∂L′in
⊗ ∂L′in
∂(θ−, v−)−

+
∂̄v+
−

∂(θ−, v−)−
,

(5.3.22)

where in the last summand we use ∂̄/∂ to stand for the partial derivative w.r.t. the

explicit dependence on v−−. Notice
∂α

∂Gin

= O(1/µ) and
∂α

∂L′in
= O(1). This matrix

has the form of
1

µ
û⊗ l+ B̂ up to a change of variables to Delaunay variables outside

the sphere.
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We notice g = α/2 + arctan
p−2
p−1

and v−− = (p−1 , p
−
2 ). We express

∂̄v+
−

∂(θ−, v−)−
=

∂̄v+
−

∂ arctan
p−2
p−1

∂ arctan
p−2
p−1

∂(θ−, v−)−
+

∂̄v+
−

∂|v−−|
∂|v−−|

∂(θ−, v−)−
.

Then we identify
1

µ

µ∂(θ−, v−)+

∂G+
+ µ

∂ arctan
G−

µL′−

∂G−
∂(θ−, v−)+

∂g+

 in (5.3.14) with

∂v+
−

∂α

∂α

∂G
. Then we identify

∂(θ−, v−)+

∂L′+
in (5.3.14) with

∂v+
−

∂α

∂α

∂L′
+

∂̄v+
−

∂|v−−|
d|v−−|
dL′

and

finally, we identify
∂(θ−, v−)+

∂g+
⊗
∂ arctan

p−2
p−1

∂(θ−, v−)
in (5.3.14) with

∂̄v+
−

∂ arctan
p−2
p−1

∂ arctan
p−2
p−1

∂(θ−, v−)−

and
∂(θ−, v−)+

∂g+
⊗
∂ arctan G−

µL′−

∂L′−
∂L

′−

∂(θ−, v−)
with

∂̄v+
−

∂|v−−|
∂|v−−|

∂(θ−, v−)−
using 1/L′ = |v−−|.

Now we have shown that the formal derivative in (5.2.7) agrees with the derivative

we obtained in the proof of Lemma 3.3.1.

Corollary 2. If we take derivative along a direction Γ = γ′(0) = O(1), where

γ : (−ε, ε) → R6 is a curve parameterized by ψ, and
∂G−in
∂ψ

= O(µ) in the following

set of equations 

|v+
3 |2 + |v+

3 |2 = |v−3 |2 + |v−3 |2 + o(1),

v+
3 + v+

3 = v−3 + v−3 + o(1),

Q+
3 +Q+

4 = Q−3 +Q−4 + o(1),

obtained from equation (5.2.7), then the o(1) terms are also o(1) in the C1 sense.

Namely, we can drop the o(1) terms when we take the derivative
d

dψ
.

Proof. For the motion of the mass center, it follows from Corollary 1 that
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∂(Q+, v+)+

∂(Q−, v−, Q+, v+)−
=

1

µ

∂(Q+, v+)+

∂α
⊗ l + (04×4, Id4×4) + o(1). We already

obtained that
∂(Q+, v+)+

∂α
= O(µ2κ) in equation (5.3.21). Our assumption

∂G−in
∂ψ

=

l · Γ = O(µ) suppresses the 1/µ term. We are only left with Id with a small

perturbation. This proves the motion of mass center part of the Corollary.

For the energy conservation part, we use the Hamiltonian (5.2.5). It is enough

to show |v+
−|2 = |v−−|2 +o(1) with C1 small perturbation if we take ψ derivative, since

we already proved the lemma for the velocity of the mass center. In (5.2.5), the terms

involving only Q+, v+ are handled using the result of the previous paragraph. The

term − µ

|Q−|
vanishes after taking ψ derivative due to |Q−| = µκ. All the remaining

terms has Q− to the power 2 or higher. We have
∂Q−−
∂ψ

= O(1) since Γ = O(1). We

also have
∂Q+
−

∂ψ
= O(1) since we have dLΓ = O(1). As a result, after taking the ψ

derivative, any term involving Q− is of order O(µκ). This completes the proof of

the energy conservation part.

5.3.2 Proof of the Lemma 3.3.8

In the following, we first try to work out the O(1/µ) term in the local map.

We need that span{wi, w̃} does not lie in Kerl3−i in order to check the nondegen-

eracy condition. Any vector in span{wi, w̃} has the form of (0, ∗, 0, 0, ∗, ∗). We will

pick a vector in the span of the form (0, 0, 0, 0, ∗, ∗) to show it does not lie in the

Kerl3−i. For this purpose, we only need to work out
∂Gin

∂G4

,
∂Gin

∂g4

for the functional l.

Proof of Lemma 3.3.8. The proof is done numerically.
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Before collision, l =
∂Gin

∂−
.

To simplify the computation, we treat L−3 , `
−
3 , G

−
3 , g

−
3 as fixed. This will be enough

for us to check that span{w, w̃} does not lie in the Kerl since the first four entries

of w are zero according to equation (3.3.3). When we consider
∂Gin

∂G−4
,
∂Gin

∂g−4
, we see

from the expression of Gin in Lemma 5.2.2, up to a term of order µκ, we have

(
∂Gin

∂G−4
,
∂Gin

∂g−4

)
= (v−3 −v

−
4 )×

(
∂

∂G−4
,
∂

∂g−4

)
Q4+(v−3 −v

−
4 )×

(
∂Q4

∂`−4

)
·
(
∂`−4
∂G−4

,
∂`−4
∂g−4

)
+O(µκ).

We need to eliminate `4 using the relation |Q3 −Q4| = µκ.

(
∂`−4
∂G−4

,
∂`−4
∂g−4

)
= −

(
∂|Q3 −Q4|

∂`−4

)−1(
∂|Q3 −Q4|

∂G−4
,
∂|Q3 −Q4|

∂g−4

)

= −
(Q3 −Q4) ·

(
∂Q4

∂G−4
,
∂Q4

∂g−4

)
(Q3 −Q4) · ∂Q4

∂`−4

= −
(v−3 − v−4 ) ·

(
∂Q4

∂G−4
,
∂Q4

∂g−4

)
(v−3 − v−4 ) · ∂Q4

∂`−4

+O(µ1−κ).

Here we replace Q−3 − Q−4 by v−3 − v−4 using the fact that the two vectors form an

angle of order O(µ1−κ).

So (
∂Gin

∂G−4
,
∂Gin

∂g−4

)
= (v−3 − v−4 )×

(
∂

∂G−4
,
∂

∂g−4

)
Q4

−(v−3 − v−4 )× ∂Q4

∂`−4

(v−3 − v−4 ) · ( ∂Q4

∂G−4
,
∂Q4

∂g−4
)

(v−3 − v−4 ) · ∂Q4

∂`−4

+O(µκ).

We use mathematica and the formulas and data in the Appendix B.2.2 to work out

∂Gin

∂−
in the lemma.

After collision,û =
∂−
∂α

.

In equation (5.2.7), we let µ → 0. We need to eliminate `+
4 using the condition
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|Q+
3 − Q+

4 | = µκ. This is nothing but equation (5.1.2). We apply the implicit

function theorem to (5.2.7) when µ = 0 to obtain(
∂(Q+

3 , v
+
3 , Q

+
4 , v

+
4 )

∂(X+, Y +)
+
∂(Q+

3 , v
+
3 , Q

+
4 , v

+
4 )

∂`+
4

⊗ ∂`+
4

∂(X+, Y +)

)
· ∂(X+, Y +)

∂α

=
1

2

(
0, 0, R

(π
2

+ α
)

(v−3 − v−4 ), 0, 0,−R
(π

2
+ α

)
(v−3 − v−4 )

)T
=

1

2

(
0, 0, R

(π
2

)
(v+

3 − v+
4 ), 0, 0,−R

(π
2

)
(v+

3 − v+
4 )
)T

.

where R(π/2+α) =
dR(α)

dα
and the formula for

∂`+
4

∂(X+, Y +)
is given in (5.1.2). Again

use mathematica and these formulas to work out the
∂−
∂α

in the lemma. To obtain a

symbolic sequence with any order of symbols 3, 4 as claimed in the main Theorem,

we notice that the only difference is that the outgoing relative velocity changes sign

(v+
3 − v+

4 )→ −(v+
3 − v+

4 ). So we only need to send û→ −û. We point out that we

renormalize the vector û2 according to the discussion in Section 3.3.4.

5.3.3 Proof of the Lemma 3.3.9

Recall in Lemma 3.3.1 and 3.3.2 we have the form of local map and global

map

dL =
1

µ
u⊗ l +B +O(µκ), dG = χ2ū⊗ l̄ + χ¯̄u⊗ ¯̄l +O(µ2χ),

where we suppress the subscript i standing for the first or second collision. Moreover,

in the limit χ→∞, µ→ 0,

span{ū, ¯̄u} → span{wi, w̃}, l→ li, l̄→ l̄i,
¯̄l→ ¯̄li, i = 1, 2.

We first have the following abstract lemma that reduces the study of the local map

of the µ > 0 case to µ = 0 case.
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Lemma 5.3.1. Suppose the vector Γ̃ ∈ span{ū, ¯̄u} satisfies l̄ · dLΓ̃ = 0 when µ > 0.

We normalize Γ̃ such that its `∞ norm is 1. Then in the limit µ→ 0, the directional

derivative of the local map along the direction Γ̃ has a limit

dLΓ̃→ ∆i, for ∆ ∈ Rn,

and for the vector Γi = limµ Γ̃ ∈ span{w3−i, w̃} satisfying l̄i ·∆i = 0 and li · Γi = 0.

Proof. Now let us consider µ > 0, χ = ∞. After the action of the local map,

we obtain a plane spanned by u and BΓ′ up to an error of order O(µ3κ−1) where

Γ′ = l(ū)¯̄u− l(¯̄u)ū ∈ Kerl.

We want to find a vector Γ̃ ∈ span{ū, ¯̄u} such that the directional derivative

dLΓ̃ ∈ Kerl̄

Suppose dLΓ̃ = bu + b̃BΓ′ ∈ span{u,BΓ′}, then l̄ · dLΓ̃ = b̄l · u + b̃̄l · BΓ′ = 0

gives b = −l̄ · BΓ′ and b̃ = l̄ · u up to a multiple of a nonzero constant. Due to the

normalization of Γ̃, we know |b| and |b̃| are bounded.

dLΓ̃ =
1

µ
u⊗ l · Γ̃ +BΓ̃ +O(µκ) = bu+ b̃BΓ′ +O(µ3κ−1).

The limit lim bu+ b̃BΓ′ exists since each term is written down explicitly and has a

limit. Therefore we have the convergence dLΓ̃ → ∆i. Moreover, l̄i · ∆i = 0 since

l̄ · dLΓ̃ = 0 and l̄→ l̄i. We get the following by making comparison,

1

µ
u⊗ l · Γ̃ = bu+O(µκ), BΓ̃ = b̃BΓ′ +O(µκ).

This implies

1

µ
l · Γ̃ = b+O(µκ).
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Therefore l · Γ̃ = bµ → 0 as µ → 0. Finally, we see that limµ Γ̃ = Γi. The

reason is that Γi is determined by Kerli ∩ span{w3−i, w̃} and Γ̃ lies in the cone

span{ū, ¯̄u} ∩ {x : l · x = bµ}. Obviously, the former is the limit of the latter.

In the following, it is more convenient for us to change setting to polar coor-

dinates.

5.3.3.1 Equations to solve the elastic collision in polar coordinates

We need the following quantities.

ψ: polar angle, related to u by tan
ψ

2
=

√
1 + e

1− e
tan

u

2
for ellipse.

E: energy. e: eccentricity, e =
√

1 + 2EM2.

G: angular momentum, g: argument of periapsis. We have the formula r =

G2

1− e cosψ
for conic sections in which the perigee lies on the axis ψ = π. The su-

perscript ± means before or after collision, evaluated on the sphere |Q3−Q4| = µκ.

The subscript 3, 4 stand for Q3 or Q4.

Lemma 5.3.2. We choose the positive y axis as the axis ψ = 0. Then the equa-
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tions (5.2.7) can be rewritten as follows using polar coordinates,

E+
3 + E+

4 = E−3 + E−4 + o(1),

G+
3 +G+

4 = G−3 +G−4 + o(1),

e+
3

G+
3

cos(ψ+
3 + g+

3 ) +
e+

4

G+
4

cos(ψ−4 − g−4 ) =
e−3
G−3

cos(ψ−3 + g−3 ) +
e−4
G−4

cos(ψ−4 − g−4 ) + o(1),

~r+
3 + ~r+

4 = ~r−3 + ~r−4 + o(1),

|~r−3 − ~r−4 | = µκ, |~r+
3 − ~r+

4 | = µκ,

(5.3.23)

where we have


r±3 =

(G±3 )2

1− e±3 sin(ψ±3 + g±3 )
+ o(1),

r±4 =
(G±4 )2

1− e±4 sin(ψ±4 − g±4 )
+ o(1).

as µ→ 0.

Proof. The equations for r±3,4 in the equations (5.3.23) are obtained from the polar

coordinates representation of conic section after proper rotation, where g±3,4 in the

Gerver’s case can be found in the Appendix B.2.1 and B.2.2.

The first three equations here are energy conservation and momentum conser-

vation. The energy conservation is straightforward. Now we focus on the momentum

conservation. The position vector is ~r = rêr. Then the velocity is ~̇r = ṙêr + rψ̇êψ.

Momentum conservation means ~̇r−3 + ~̇r−4 = ~̇r+
3 + ~̇r+

4 .

Componentwisely, we have

ṙ−3 + ṙ−4 = ṙ+
3 + ṙ+

4 , r−3 ψ̇
−
3 + r−4 ψ̇

−
4 = r+

3 ψ̇
+
3 + r+

4 ψ̇
+
4 .

Using the fact that r−3 = r−4 = r+
3 = r+

4 and r2ψ̇ = G, we obtain from the second
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equation that

G−3 +G−4 = G+
3 +G+

4 .

This is the angular momentum conservation. For the other conserved quantity,

consider r =
G2

1− e cosψ
. So we get

ṙ = − G2

(1− e cosψ)2
e sinψψ̇ = − r

2

G2
e sinψ

G

r2
= − e

G
sinψ.

To obtain the last equation in the equations (5.3.23), we simply replace sinψ here

by cos(ψ + g±3,4).

Lemma 5.3.3. Under the same assumption as Corollary 2 and if in addition we

use the equations |~r±3 − ~r±4 | = µκ, then we have in the limit µ→ 0 that

dr+
3

dψ
=
dr+

4

dψ
,

dr−3
dψ

=
dr−4
dψ

,
dψ+

3

dψ
=
dψ+

4

dψ
,

dψ−3
dψ

=
dψ−4
dψ

.

Moreover, in the equations of r±3,4 of (5.3.23), the o(1) terms are also C1 small when

taking the ψ derivative.

Proof. To prove the statement about r±3,4 equations in (5.3.23), we use the Hamil-

tonian (4.1.1). The r±3,4 of (5.3.23) solve the Hamiltonian system (4.1.1) in terms of

polar coordinates. The estimate (5.1.1) shows the
−µ

|Q3 −Q4|
gives small perturba-

tion to the variational equations. The two O(1/χ) terms in (4.1.1) are also small.

This shows that the perturbations to Kepler motion is C1 small.

Then we consider the derivatives
∂r±3,4
∂ψ

. We consider first the case of “−”. We

use the condition for the Poincaré section |~r3 − ~r4| = µκ, to get

(~r3 − ~r4) · d
dψ

(~r3 − ~r4) = 0.
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This implies (~r3 − ~r4) ⊥ d

dψ
(~r3 − ~r4).

We also know the angular momentum for the relative motion is Gin = (~̇r3 − ~̇r4) ×

(~r3−~r4) = O(µ), which implies ~̇r3− ~̇r4 is almost parallel with ~r3−~r4. When taking

derivative along Γ, parameterized by ψ, we require
∂G−in
∂ψ

= O(µ). This implies

(
d

dψ
(~̇r3 − ~̇r4)

)
× (~r3 − ~r4) + (~̇r3 − ~̇r4)×

(
d

dψ
(~r3 − ~r4)

)
= O(µ).

Then we take limit µ→ 0, using |~r3−~r4| = µκ we get (~̇r3−~̇r4)×
(
d

dψ
(~r3 − ~r4)

)
= 0.

Since
d

dψ
(~r3−~r4) is almost perpendicular to (~̇r3− ~̇r4) using the above analysis, and

the perpendicular relation becomes exact in the limit µ→ 0, we get
d

dψ
(~r3−~r4) = 0.

We write ~ri = riêri , i = 3, 4, then
d

dψ
~ri =

dri
dψ

êri + ri
dψi
dψ

êψi . In the limit µ → 0,

we have r3êr3 = r4êr4 , ψ3êψ3 = ψ4êψ4 , So the two components of
d

dψ
(~r3 − ~r4) = 0

implies
dr3

dψ
=
dr4

dψ
,

dψ3

dψ
=
dψ4

dψ
.

The lemma is now proved for variables with “−”. To repeat the above argu-

ment for “+” variables, we first need to establish
∂G−in
∂ψ

= O(µ). Indeed, we use equa-

tion (5.3.8) and (5.3.18) to get
∂G+

in

∂ψ
=

∂G+
in

∂(L′, Gin, g, Q+, v+)−
∂(L′, Gin, g, Q+, v+)−

∂ψ
=

O(µ3κ, 1, µ3κ, µ3κ
1×2, µ

3κ
1×2) ·O(1, µ, 1, 11×2, 11×2) = O(µ).

It remains to show

(
d

dψ
(~̇r3 − ~̇r4)

)
= O(1) in the “ + ” case. We know it is

true in the “-” case. Then the “+” case follows, since the directional derivative of

the local map dLΓ is bounded due to our choice of Γ.

Using this lemma, we get the following set of equations from equation (5.3.23)

by taking limit µ → 0, which are valid not only in the C0 sense but also in the

C1 sense when taking ψ derivative. (The C1-ness of the first three equations are

107



established in Corollary 2.)

E+
3 + E+

4 = E−3 + E−4 ,

G+
3 +G+

4 = G−3 +G−4 ,

e+
3

G+
3

cos(ψ+
3 + g+

3 ) +
e+

4

G+
4

cos(ψ−4 − g−4 ) =
e−3
G−3

cos(ψ−3 + g−3 ) +
e−4
G−4

cos(ψ−4 − g−4 ),

(G+
3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
,

ψ+
3 = ψ−3 (:= ψ),

(G+
3 )2

1− e+
3 sin(ψ+

3 + g+
3 )

=
(G+

4 )2

1− e+
4 sin(ψ+

4 − g+
4 )
,

(G−3 )2

1− e−3 sin(ψ−3 + g−3 )
=

(G−4 )2

1− e−4 sin(ψ−4 − g−4 )
,

ψ−3 = ψ−4 (= ψ),

ψ+
3 = ψ+

4 (= ψ),

(5.3.24)

where the fourth and fifth equations are Q+
3 + Q+

4 = Q−3 + Q−4 , which implies

r+
3 = r−3 and ψ+

3 = ψ−3 using Lemma 5.3.3. The sixth and seventh equations are in

fact r−3 = r−4 and r+
3 = r+

4 .

We set the total energy to be zero. So we get E±4 = −E±3 . This eliminates

E±4 . Then we also eliminate ψ±3,4 by setting them to be ψ.

Proof of the Lemma 3.3.9. We take directional derivative along a direction Γ ∈

Kerl∩ span{w, w̃}. Since we have in Delaunay coordinates w = (0, 1, 0, 0, 0, 0) and

w̃ = (0, 0, 0, 0, 1, a), where a =
−L−4

(L−4 )2 + (G−4 )2
from equations (3.3.3). They have

the same form in our polar coordinates using the formula tan
ψ

2
=

√
1 + e

1− e
tan

u

2

relating ψ and ` through u. Our Γ has the form of (0, 1, 0, 0, c, ca). Moreover, the
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constant c will be fixed by the r−3 = r−4 condition, i.e. the seventh equation in

(5.3.24) since that is an equation involving only incoming orbit parameters and an

equation talking about exact collision.

Due to the special form of Γ, we consider γ lying in the intersection of the

hyperplances E−4 = −E−3 = const, G3 = const, g3 = const, where the constants are

fixed by Gerver’s values in the Appendix.

We write the remaining equations (the second, third, fifth and sixth) in (5.3.3)

formally as F(Z+, Z−) = 0, where in Z+ = (E+
3 , G

+
3 , g

+
3 , G

+
4 , g

+
4 ) and Z− = (E−3 , ψ,G

−
3 , g

−
3 , G

−
4 , g

−
4 ).

We have

∂F

∂Z+

∂Z+

∂ψ
+

∂F

∂Z−
Γ = 0.

However, we have only four equations of F while 5 variables (E+
3 , G

+
3 , g

+
3 , G

+
4 , g

+
4 )

in Z+. To decide
∂Z+

∂ψ
, we need one more condition l̄ · ∂Z

+

∂ψ
= 0, where l̄ =(

G+
4 L

+
4

(L+
4 )2+(G+

4 )2
, 0, 0, 0, −1

(L+
4 )2+(G+

4 )2
, 1
)

from equations (3.3.3). So we form a matrix of

5× 5 by

 l̄

∂F

∂Z+

. Then we get

 l̄

∂F

∂Z+

 ∂Z+

∂ψ
= −

 0

∂F

∂Z−
Γ

 , ∂Z+

∂ψ
= −

 l̄

∂F

∂Z+


−1  0

∂F

∂Z−
Γ

 .

We use numerics to complete the computation. We only need the entry
∂E+

3

∂ψ
to

prove the Lemma 3.3.9. It turns out this number is 1.07507 for the first collision and

−1.66364 for the second after numerical computation. Both are nonzero. Therefore

we complete the proof of Lemma 3.3.9.
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A.1 Delaunay coordinates

A.1.1 Elliptic motion

The material of this section could be found in [Al]. Consider the two-body

problem with Hamiltonian

H(P,Q) =
|P |2

2m
− k

|Q|
, (P,Q) ∈ R4.

This system is integrable in the Liouville-Arnold sense when H < 0. So we can

introduce the action-angle variables (L, `,G, g) in which the Hamiltonian can be

written as

H(L, `,G, g) = −mk
2

2L2
, (L, `,G, g) ∈ T ∗T2.

The Hamiltonian equations are

L̇ = Ġ = ġ = 0, ˙̀ =
mk2

L3
.

We introduce the following notation E-energy, M -angular momentum, e-eccentricity,

a-semimajor axis, b-semiminor axis. Then we have the following relations which ex-

plain the physical and geometrical meaning of the Delaunay coordinates.

a =
L2

mk
, b =

LG

mk
, E = − k

2a
, M = G, e =

√
1−

(
G

L

)2

.

Moreover, g is the argument of periapsis and ` is called the mean anomaly, and `

can be related to the polar angle ψ through the equations

tan
ψ

2
=

√
1 + e

1− e
· tan

u

2
, u− e sinu = `.

We also have the Kepler’s law
a3

T 2
=

1

(2π)2
which relates the semimajor a and the

period T of the ellipse.
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Denoting particle’s position by (q1, q2) and its momentum (p1, p2) we have the

following formulas in case g = 0.
q1 = a(cosu− e),

q2 = a
√

1− e2 sinu,


p1 = −

√
mka−1/2 sinu

1− e cosu
,

p2 =
√
mka−1/2

√
1− e2 cosu

1− e cosu
,

where u and l are related by u− e sinu = `.

Expressing e and a in terms of Delaunay coordinates we obtain the following

q1 =
L2

mk

(
cosu−

√
1− G2

L2

)
, q2 =

LG

mk
sinu.

p1 = −mk
L

sinu

1−
√

1− G2

L2 cosu
, p2 =

mk

L2

G cosu

1−
√

1− G2

L2 cosu
.

(A.1.1)

Here g does not enter because the argument of perihelion is chosen to be

zero. In general case, we need to rotate the (q1, q2) and (p1, p2) using the matrix cos g − sin g

sin g cos g

 .
Notice that the equation (A.1.1) describes an ellipse with one focus at the

origin and the other focus on the negative x-axis. We want to be consistent with

[G1], i.e. we want g = π/2 to correspond to the “vertical” ellipse with one focus at

the origin and the other focus on the positive y-axis (see Appendix B.2.2). Therefore

we rotate the picture clockwisely. So we use the Delaunay coordinates which are

related to the Cartesian ones through the equation

q1 =
1

mk

(
L2

(
cosu−

√
1− G2

L2

)
cos g + LG sinu sin g

)
,

q2 =
1

mk

(
−L2

(
cosu−

√
1− G2

L2

)
sin g + LG sinu cos g

)
.

(A.1.2)
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A.1.2 Hyperbolic motion

The above formulas can also be used to describe hyperbolic motion, where we

need to replace “sin→ sinh, cos→ cosh”(c.f.[Al, F]). Namely, we have

q1 =
L2

mk

(
coshu−

√
1 +

G2

L2

)
, q2 =

LG

mk
sinhu,

p1 = −mk
L

sinhu

1−
√

1 + G2

L2 coshu
, p2 = −mk

L2

G coshu

1−
√

1 + G2

L2 coshu
.

(A.1.3)

where u and l are related by

u− e sinhu = `, where e =

√
1 +

(
G

L

)2

. (A.1.4)

This hyperbola is symmetric w.r.t. the x-axis, opens to the right and the particle

moves clockwisely on it when u increases (` decreases). When the particle moves to

the right of x = −χ
2

line we have a hyperbola opening to the left and the particle

moves anti-clockwisely. To achieve this we first reflect (q1, q2) around the y-axis,

then rotate it by an angle g. If we restrict |g| < π/2, then the particle moves anti-

clockwisely on the hyperbola as u increases (` decreases) due to the reflection. Thus

we have

q1 =− 1

mk

(
cos gL2(coshu− e) + sin gLG sinhu

)
,

q2 =
1

mk

(
− sin gL2(coshu− e) + cos gLG sinhu

)
.

(A.1.5)

If the incoming asymptote is horizontal, then the particle comes from the left, and

as u tends to −∞, the y-coordinate is bounded and x-coordinate is negative. In

this case we have tan g = −G
L

, g ∈ (−π/2, 0).

If the outgoing asymptote is horizontal, then the particle escapes to the left,

and as u tends to +∞, the y-coordinate is bounded and x-coordinate is negative.

In this case we have tan g = +
G

L
, g ∈ (0, π/2).
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When the particle Q4 is moving to the left of the section {x = −χ/2}, we

treat the motion as hyperbolic motion focused at Q1. We move the origin to Q1.

The hyperbola opens to the right. The orbit has the following parametrization

q1 =
1

mk

(
cos gL2(coshu− e)− sin gLG sinhu

)
,

q2 =
1

mk
(sin gL2(coshu− e) + cos gLG sinhu).

(A.1.6)

A.1.3 Large ` asymptotics: auxiliary results

In the remaining part of Appendix A.1 we study the first and second order

derivatives of Q4 w.r.t. the Delaunay variables (L, `,G, g)4. These computations are

used in our proof. The next lemma allows us to simplify the computations. Since

the hyperbolic motion approaches a linear motion, this lemma shows that, we can

replace u by ln(∓`/e) when taking first and second order derivatives.

Lemma A.1.1. Let u be the function of `,G and L given by (A.1.4). Then we can

approximate u by ln(∓`/e) in the following sense.

u∓ ln
∓`
e

= O(ln |`|/`), ∂u

∂`
= ±1/`+O(1/`2),(

∂

∂L
,
∂

∂G

)
(u± ln e) = O(1/|`|),

(
∂

∂L
,
∂

∂G

)2

(u± ln e) = O(1/|`|),

Here the first sign is taken if u > 0 and the second sign is taken then u < 0.

The estimates above are uniform as long as |G| ≤ K, 1/K ≤ L ≤ K, ` > `0 and the

implied constants in O(·) depend on K and `0.

Proof. We see from formula (A.1.4) that sinhu ' coshu = −`
e

+ O(ln |`|) when

u > 0 and sinhu ' − coshu ' −`
e

+ O(ln |`|) when u < 0 and |u| large enough.
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This proves C0 estimate.

Now we consider the first order derivatives. We assume that u > 0 to fix the

notation. Differentiating (A.1.4) with respect to ` we get

∂u

∂`
− e coshu

∂u

∂`
= 1,

∂u

∂`
= 1/`+O(1/`2).

Next, we differentiate (A.1.4) with respect to L to obtain

∂u

∂L
− ∂e

∂L
sinhu− e coshu

∂u

∂L
= 0.

Therefore,

∂u

∂L
=

sinhu

1− e coshu

∂e

∂L
= −1

e

∂e

∂L
+O(e−|u|) = − ∂

∂L
ln(e) +O(1/|`|).

The same argument holds for
∂

∂G
. This proves C1 part of the Lemma.

Now we consider second order derivatives. We take
∂2

∂L2
as example. Combin-

ing

∂2u

∂L2
− ∂2e

∂L2
sinhu− 2 coshu

∂e

∂L

∂u

∂L
− e coshu

∂2u

∂L2
− e sinhu

(
∂u

∂L

)2

= 0.

with C1 estimate proven above we get

∂2u

∂L2
= −1

e

∂2e

∂L2
− 2∂e

e∂L

∂u

∂L
+

(
∂u

∂L

)2

+O

(
1

`

)
= −1

e

∂2e

∂L2
+

(
1

e

∂e

∂L

)2

+O

(
1

`

)
=

∂2

∂L2
ln e+O

(
1

`

)
.

This concludes the C2 part of the lemma.

In the estimate of the derivatives presented in the next two subsections we

shall often use the following facts. Let f = ln e. Then

fG =
G

L2 +G2
, fL = − G2

L(L2 +G2)
, (A.1.7)

(f)GG =
L2 −G2

(L2 +G2)2
, fLG = − 2GL

(L2 +G2)2
. (A.1.8)
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A.1.4 First order derivatives

In the following computations, we assume for simplicity that m = k = 1. To

get the general case we only need to divide positions by mk.

Lemma A.1.2. Under the same conditions as in Lemma A.1.1 we have the following

result for the first order derivatives

(a)

∣∣∣∣∂Q4

∂`4

∣∣∣∣ = O(1),

∣∣∣∣ ∂Q4

∂(L4, G4, g4)

∣∣∣∣ = O(`),
∂Q4

∂g4

·Q4 = 0, .

In addition

∂Q4

∂G4

·Q4 = OC2(L,G,g)(`).

(b) If in addition we have

∣∣∣∣g ∓ arctan
G

L

∣∣∣∣ ≤ C/` where − sign is taken for u > 0

and + sign is taken for u < 0 then we have the following bounds for (A.1.5)

∂Q4

∂G
= sinhu

(
0,

L2

√
L2 +G2

)
+O(1),

∂Q4

∂L
= − sinhu

(
2
√
L2 +G2,

GL√
L2 +G2

)
+O(1).

(c) If in addition to the conditions of Lemma A.1.1 we have G, g = O(1/χ) and

` = O(χ), then we have the following bounds for (A.1.6)

∂Q4

∂G
= sinhu(0, 1) +O(1),

∂Q4

∂L
= sinhu(2, 0) +O(1).

Remark 8. The assumptions of the lemma and the next lemma hold due to

Lemma 4.1.8.

Proof. We consider only the case u > 0. We have

Q4 = O(1)− sinhu(cos gL2 + sin gLG, sin gL2 − cos gLG), as `→∞. (A.1.9)
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Now the first three estimates of part (a) follow easily. Next

∂Q4

∂G
= −(coshu)u′G(cos gL2+sin gLG, sin gL2−cos gLG)−sinhu(sin gL,− cos gL)+O(1).

Using Lemma A.1.1 we obtain

Q4 ·
∂Q4

∂G
=

1

2
(sinh 2u)u′G|(cos gL2 + sin gLG, sin gL2 − cos gLG)|2

+ (sinhu)2(sin gL,− cos gL) · (cos gL2 + sin gLG, sin gL2 − cos gLG) +O(`)

=
1

2
(sinh 2u)(− ln e)′G(L4 + L2G2) + L2G(sinhu)2 +O(`) = O(`)

where the last equality relies on (A.1.7).

We prove (b) in the + case, the - case being similar. Assume first that g is

exactly equal to arctan
G

L
. Using (A.1.9) and (A.1.7) we obtain

∂Q4

∂G
= (coshu)fG(cos gL2 + sin gLG, sin gL2 − cos gLG)

− sinhu(sin gL,− cos gL) +O(1)

= sinhu

(
G

L2 +G2

(
L3 + LG2

√
L2 +G2

, 0

)
−
(

GL√
L2 +G2

,− L2

√
L2 +G2

))
+O(1)

= sinhu

(
0,

L2

√
L2 +G2

)
+O(1).

∂Q4

∂L
= (coshu)fL(cos gL2 + sin gLG, sin gL2 − cos gLG)

− sinhu(2 cos gL+ sin gG, 2 sin gL− cos gG) +O(1)

(A.1.10)

= − sinhu

(
G2/L

L2 +G2

(
L3 + LG2

√
L2 +G2

, 0

)
+

(
2L2 +G2

√
L2 +G2

,
GL√
L2 +G2

))
+O(1)

= − sinhu

(
2
√
L2 +G2,

GL√
L2 +G2

)
+O(1).

This proves (b) under the assumption g = arctan
G

L
. If

∣∣∣∣g − arctan
G

L

∣∣∣∣ < C
|`| then we

get an additional O(1) error in the above computation which does not change the

final result.
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Part (c) follows from part (b) since both g and arctan
G

L
are O(1/`).

A.1.5 Second order derivatives

The following estimates of the second order derivatives are used in integrating

the variational equation.

Lemma A.1.3. We have the following information for the second order derivatives

of Q4 w.r.t. the Delaunay variables.

(a) Under the conditions of Lemma A.1.2(a) we have

∂2Q4

∂g2
4

= −Q4,
∂2Q4

∂g4∂G4

⊥ ∂Q4

∂G4

,

(
∂

∂G4

,
∂

∂g4

)(
∂|Q4|2

∂g4

)
= (0, 0),

∂2Q4

∂G2
4

= O(`).

In addition
∂2Q4

∂L2
4

= O(`).

(b) Under the conditions of Lemma A.1.2(b) we have we have

∂2Q4

∂G2
4

=
L2

(L2 +G2)3/2
(L coshu,−2G sinhu) +O(1),

∂2Q4

∂g4∂G4

=

(
− L2 sinhu√

L2 +G2
, 0

)
+O(1),

∂2Q4

∂g4∂L4

=

(
GL sinhu√
L2 +G2

,−2
√
L2 +G2 coshu

)
+O(1),

∂2Q4

∂G∂L
=

L

(L2 +G2)3/2

(
−LG coshu, (L2 + 3G2) sinhu

)
+O(1).

(c) Under the conditions of Lemma A.1.2(c) we have

∂2Q4

∂G2
4

= − coshu(1, 0) +O(1),
∂2Q4

∂g∂G
= −L sinhu(1, 0) +O(1),

∂2Q4

∂g∂L
= L sinhu(0, 2) +O(1),

∂2Q4

∂G∂L
= coshu(0, 1) +O(1).

Proof. The estimate
∂2Q4

∂G2
4

= O(`) follows immediately from Lemma A.1.2. The

estimate
∂2Q4

∂L2
4

= O(`) follows immediately from (A.1.5) (or (A.1.6)).
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The estimates of the derivatives involving g4 are relatively easy since the de-

pendence of Q4 on g4 is through a rotation. We consider
∂2Q4

∂L4∂g4

, for example, the

other derivatives are similar. Differentiating (A.1.10) with respect to g and using

(A.1.7) we get

∂2Q4

∂L4∂g4
= coshufL(−L2 sin g + LG cos g, L2 cos g + LG sin g)

− sinhu(−2L sin g +G cos g, 2L cos g +G sinG) +O(1)

= − sinhu
G2

L(L2 +G2)

(
−L2G+ L2G√

L2 +G2
,
L3 + LG2

√
L2 +G2

)
− sinhu

(
−2LG+ LG√

L2 +G2
,
2L2 +G2

√
L2 +G2

)
+O(1)

= − sinhu

(
0,

G2

√
L2 +G2

)
− sinhu

(
− LG√

L2 +G2
,
2L2 +G2

√
L2 +G2

)
+O(1)

= sinhu

(
LG√
L2 +G2

,−2
√
L2 +G2

)
+O(1).

Next, we compute
∂2Q4

∂G4∂L4

and
∂2Q4

∂G2
4

. We consider only the case u > 0 and

take the + sign. The other cases are similar.

As in the proof of Lemma A.1.2 it suffices to consider the case g = arctan
G

L
.

Differentiating the expression for
∂Q4

∂G4

and using Lemma A.1.1, (A.1.7) and (A.1.8)

we obtain

∂2Q4

∂G2
4

= −L(sinhu((ln e)G)2 − coshu(ln e)GG)(cos gL+ sin gG, sin gL− cos gG)

+ 2L coshu(ln e)G(sin g,− cos g) +O(1)

= L sinhu

(
L2 − 2G2

(L2 +G2)2

)(
L2

(L2 +G2)1/2
+

G2

(L2 +G2)1/2
, 0

)
,

+ 2L sinhu
G

L2 +G2

(
G

(L2 +G2)1/2
,− L

(L2 +G2)1/2

)
+O(1)

=
L2

(L2 +G2)3/2
sinhu(L,−2G) +O(1)
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proving the estimate for ∂2Q4

∂G2
4
. Next,

∂2Q4

∂G4∂L4
= −(sinhu)LG(cos gL2 + sin gLG, sin gL2 − cos gLG)− (sinhu)L(sin gL,− cos gL)

− (sinhu)G(2 cos gL+ sin gG, 2 sin gL− cos gG)− sinhu(sin g,− cos g) +O(1)

= −(sinhu(ln e)L(ln e)G − coshu(ln e)GL)(L(L
2 +G2)1/2, 0)

+ coshu(ln e)L

(
GL

(L2 +G2)1/2
,− L2

(L2 +G2)1/2

)
+ coshu(ln e)G

(
2L2 +G2

(L2 +G2)1/2
,

GL

(L2 +G2)1/2

)
− sinhu

(
G

(L2 +G2)1/2
,− L

(L2 +G2)1/2

)
+O(1)

=
L

(L2 +G2)3/2
sinhu

(
−LG,L2 + 3G2

)
+O(1).

Part (c) follows from part (b) as in Lemma A.1.2.
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B.2 Gerver’s mechanism

B.2.1 Gerver’s result in [G1]

We summarize the result of [G1] in the following table. Recall that the Gerver

scenario deals with the limiting case χ→∞, µ→ 0. Accordingly Q1 disappears at

infinity and there is no interaction between Q3 and Q4. Hence both particles perform

Kepler motions. The shape of each Kepler orbit is characterized by energy, angular

momentum and the argument of periapsis. In Gerver’s scenario, the incoming and

outgoing asymptotes of the hyperbola are always horizontal and the semimajor of

the ellipse is always vertical. So we only need to describe on the energy and angular

momentum.

1st collision @(−ε0ε1, ε0 + ε1) 2nd collision @(ε2
0, 0)

Q3 Q4 Q3 Q4

energy −1/2 1/2 −1/2→ − ε21
2ε20

1/2→ ε21
2ε20

angular momentum ε1 → −ε0 p1 → −p2 −ε0

√
2ε0

eccentricity ε0 → ε1 ε1 → ε0

semimajor 1 −1 1→ ( ε0
ε1

)2 1→ − ε21
ε20

semiminor ε1 → ε0 p1 → p2 ε0 → ε20
ε1

√
2ε0 →

√
2ε1

Here

p1,2 =
−Y ±

√
Y 2 + 4(X +R)

2
, R =

√
X2 + Y 2.
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and (X, Y ) stands for the point where collision occurs (the parenthesis after @ in

the table). We will call the two points the Gerver’s collision points.

In the above table ε0 is a free parameter and ε1 =
√

1− ε2
0.

At the collision points, the velocities of the particles are the following.

For the first collision,

v−3 =

(
−ε2

1

ε0ε1 + 1
,
−ε0

ε0ε1 + 1

)
, v−4 =

(
1− Y

Rp1

,
1

Rp1

)
.

v+
3 =

(
ε2

0

ε0ε1 + 1
,

ε1

ε0ε1 + 1

)
, v+

4 =

(
−1 +

Y

Rp2

,− 1

Rp2

)
.

For the second collision,

v−3 =

(
−ε1

ε0

,
−1

ε0

)
, v−4 =

(
1,

√
2

ε0

)
, v+

3 =

(
1,
−1

ε0

)
, v+

4 =

(
−ε1

ε0

,

√
2

ε0

)
.

B.2.2 Numerical information for a particularly chosen ε0 = 1/2

For the first collision e3 :
1

2
→
√

3

2
.

We want to figure out the Delaunay coordinates (L, u,G, g) for both Q3 and Q4.

(Here we replace ` by u for convenience.) The first collision point is

(X, Y ) = (−ε0ε1, ε0 + ε1) =

(
−
√

3

4
,
1 +
√

3

2

)
.

Before collision

(L, u,G, g)−3 =

(
1,−5π

6
,

√
3

2
, π/2

)
, (L, u,G, g)−4 = (1, 1.40034, p1,− arctan p1),

where

p−1 =
−Y +

√
Y 2 + 4(X +R)

2
=
−(ε0 + ε1) +

√
5 + 2ε0ε1

2
= 0.52798125.
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After collision

(L, u,G, g)+
3 =

(
1,

2π

3
,−1

2
, π/2

)
, (L, u,G, g)+

4 = (1, 0.515747,−p2,− arctan p2),

where

p+
2 =

−Y −
√
Y 2 + 4(X +R)

2
=
−(ε0 + ε1)−

√
5 + 2ε0ε1

2
= −1.894006654.

For the second collision e3 :

√
3

2
→ 1

2
.

The collision point is (X, Y ) = (ε2
0, 0) =

(
1

4
, 0

)
.

Before collision

(L, u,G, g)−3 =

(
1,−π

6
,−1

2
, π/2

)
, (L, u,G, g)−4 =

(
1, 0.20273,

√
2/2,− arctan

√
2

2

)
.

After collision

(L, u,G, g)+
3 =

(
1√
3
,
π

3
,−1

2
,−π/2

)
, (L, u,G, g)+

4 =

(
1√
3
,−0.45815,

√
2/2, arctan

√
6

2

)
.

B.2.3 Control the shape of the ellipse

proof of Lemma 2.2.1. Using Lemma 2.2.2, we only need to control the shape of the

ellipse in the case studied by Gerver, i.e. µ = 1/χ = 0. We use the Lemma 5.3.3.1

again. The idea of the computation is similar to the proof of Lemma 3.3.9. The only

difference is, we replace the two conditions used in the proof of Lemma 3.3.9 by the

following: the incoming and outgoing asymptotes of the hyperbola are assumed to

be horizontal, i.e. we substitute g−4 = − arctan
G−4
L−4

and g+
4 = arctan

G+
4

L+
4

. We can

still compute the derivatives of E+
3 , G

+
3 , g

+
3 w.r.t. ψ for the second collision. Then

we use the formula e3 =
√

1− 2G2
3E3 to obtain de3 = −2G3E3dG3 +G2

3dE3√
1− 2G2

3E3

.

122



So we first obtain the two entries
∂ ¯̄e3

∂ψ2

= −0.158494 and
∂ ¯̄g3

∂ψ2

= 0.369599. The

meanings of the two entries are the changes of the eccentricity and argument of

periapsis after the second collision if we vary the phase of the second collision.

We need more work to figure out the two entries
∂ ¯̄e3

∂ψ1

and
∂ ¯̄g3

∂ψ1

, which are the changes

of the eccentricity and argument of periapsis after the second collision if we vary

the phase of the first collision. We use the relation

∂ ¯̄e3

∂ψ1

=
∂ ¯̄e3

∂Ē+
3

∂Ē+
3

∂ψ1

+
∂ ¯̄e3

∂Ḡ+
3

∂Ḡ+
3

∂ψ1

+
∂ ¯̄e3

∂ḡ+
3

∂ḡ+
3

∂ψ1

.

The reason is, if we vary ψ1 in the first collision, then this will vary the shape of the

ellipse after the collision, i.e. Ē+, Ḡ+
3 , ḡ

+
3 . We notice that the quantities E3, G3, g3

after the first collision is the same as those before the second collision. we replace

some of the Ē+
3 , Ḡ

+
3 , ḡ

+
3 by ¯̄E−3 ,

¯̄G−3 , ¯̄g
−
3 to obtain the following form

∂ ¯̄e3

∂ψ1

=
∂ ¯̄e3

∂ ¯̄E−3

∂Ē+
3

∂ψ1

+
∂ ¯̄e3

∂ ¯̄G−3

∂Ḡ+
3

∂ψ1

+
∂ ¯̄e3

∂ ¯̄g−3

∂ḡ+
3

∂ψ1

.

Similarly we have

∂ ¯̄g3

∂ψ1

=
∂ ¯̄g3

∂ ¯̄E−3

∂Ē+
3

∂ψ1

+
∂ ¯̄g3

∂ ¯̄G−3

∂Ḡ+
3

∂ψ1

+
∂ ¯̄g3

∂ ¯̄g−3

∂ḡ+
3

∂ψ1

.

As the proof of Lemma 3.3.9, we immediately obtain (
∂Ē+

3

∂ψ1

,
∂Ḡ+

3

∂ψ1

,
∂ḡ+

3

∂ψ1

). To obtain

the remaining

(
∂

∂ ¯̄E−3
,
∂

∂ ¯̄G−3
,
∂

∂ ¯̄g−3

)
(¯̄e3, ¯̄g3), we need more work when computing the

second collision. Now we consider the second collision only.

This time, we consider in equation (5.3.23) the variables E−3 , G
−
3 , g

−
3 as variables as

contrast to treating them as constants as we did in the proof of Lemma 3.3.9.

We still denote the implicit function as F = 0. We obtain the 7 × 7 matrix
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∂F

∂(E+
3 , G

+
3 , g

+
3 , E

+
4 , G

+
4 , G

−
4 , r)

. Therefore we can compute the derivatives

∂(E+
3 , G

+
3 , g

+
3 , E

+
4 , G

+
4 , G

−
4 , r)

∂(ψ,E−3 , G
−
3 , g

−
3 )

using the implicit function theorem in the following

way

∂F

∂(E+
3 , G

+
3 , g

+
3 , E

+
4 , G

+
4 , G

−
4 , r)

· ∂(E+
3 , G

+
3 , g

+
3 , E

+
4 , G

+
4 , G

−
4 , r)

∂(ψ,E−3 , G
−
3 , g

−
3 )

= − ∂F

∂(ψ,E−3 , G
−
3 , g

−
3 )
.

This is enough for us to work out
∂ ¯̄e3

∂ψ1

and
∂ ¯̄g3

∂ψ1

. It turns out that the resulting

matrix is 
∂ ¯̄e3

∂ψ1

∂ ¯̄g3

∂ψ1

∂ ¯̄e3

∂ψ2

∂ ¯̄g3

∂ψ2

 =

 0.620725 2.9253

−0.158494 0

 ,
which is obviously nondegenerate.
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