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ABSTRACTThe position, number and stability types of �xed points of a two{neuron recurrentnetwork with nonzero weights are investigated. Using simple geometrical argumentsin the space of derivatives of the sigmoid transfer functionwith respect to the weightedsum of neuron inputs, we partition the network state space into several regions corre-sponding to stability types of the �xed points. If the neurons have the same mutualinteraction pattern, i.e. they either mutually inhibit or mutually excite themselves,a lower bound on the rate of convergence of the attractive �xed points towards thesaturation values, as the absolute values of weights on the self{loops grow, is given.The role of weights in location of �xed points is explored through an intuitivelyappealing characterization of neurons according to their inhibition/excitation perfor-mance in the network. In particular, each neuron can be of one of the four types:greedy, enthusiastic, altruistic or depressed. Both with and without the external in-hibition/excitation sources, we investigate the position and number of �xed pointsaccording to character of the neurons. When both neurons self-excite themselvesand have the same mutual interaction pattern, the mechanism of creation of a newattractive �xed point is shown to be that of saddle node bifurcation.
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1 IntroductionIn this contribution we address the issues concerning �xed points of discrete{time recurrent neuralnetworks consisting of two neurons. Nonzero weights are assumed. As pointed out in [3], becauseof the interest in associative memory applications, a great deal of previous work has focused onthe question of how to constrain the weights of the recurrent networks so that they exhibit only�xed points (no oscillatory dynamics) [6]. In this context, it is desirable that all �xed points areattractive. Recently, Jin, Niki�ruk and Gupta [16] reported new results on the absolute stabilityfor a rather general class of recurrent neural networks. Conditions under which all �xed points ofthe network are attractive were determined by the weight matrix of the network.However, there are many applications where oscillatory dynamics of recurrent networks is de-sirable. For example, when trained to act as a �nite state machine ([7], [9] [11], [12], [17], [19],[21], [22]), the network has to induce a stable representation of state transitions associated witheach input symbol of the machine. A transition may have a character of a loop (do not movefrom the current state when the symbol x is presented), or a cycle (when repeatedly presentingthe same input, we eventually return to the state where we have started). As reported in [5], [17],and [18], loops and cycles associated with an input symbol x are usually represented as attractive�xed points and periodic orbits respectively of the underlying dynamical system correspondingto the input x. In this respect, one can look at the training process from the point of view ofbifurcation analysis. The network solves the task of �nite state machine simulation by location ofpoint and periodic attractors and shaping their respective basins of attraction [8]. Before training,the connection weights are set to small random values and as a consequence, the network has onlyone attractor basin. This implies that the network must undergo several bifurcations [10].In [18], a preliminary analysis of the two{neuron recurrent network is given. Under some somespeci�c conditions on weight values, the number, position and stability types of �xed points ofthe underlying dynamical systems are analyzed and bifurcation mechanism is clari�ed. The mosttypical bifurcation responsible for the creation of a new �xed point is the saddle node bifurcation.Typically, studies of the asymptotic behaviour of recurrent neural networks usually assumesome form of a structure in the weight matrix describing connectivity pattern among recurrentneurons. For example, symmetric connectivity and absence of self-interactions enabled Hop�eld[14] to interpret the network as a physical system having energy minima in attractive �xed pointsof the network. These rather strict conditions were weakened in [6], where a more easily satis�edconditions are formulated. Blum and Wang [4] globally analyze networks with nonsymmetricalconnectivity patterns of special types. In case of two recurrent neurons with sigmoidal activationfunction g(`) = 1=(1 + e�`), they give results for weight matrices with diagonal elements equal tozero1.This paper presents a generalization of the results presented in [18]. A similar approach todetermining the number and position of �xed points in continuous{time recurrent neural networkscan be found in [3].In section 3, the network state space is partitioned into several regions corresponding to stabilitytypes of the �xed points. This is done by �rst exploring the space of derivatives of the sigmoidtransfer function with respect to the weighted sum of neuron inputs. Then, the structure istransformed into the space of neuron activations.It was proved by Hirsh [13], that when all the weights in a recurrent network with exclusively1In such a case the recurrent network is shown to have only one �xed point and no \genuine" periodic orbits (ofperiod greater than one) 3



self-exciting (or exclusively self-inhibiting) neurons are multiplied by larger and larger positivenumber (neural gain), attractive �xed points tend to saturated activation values. Due to theanalysis in section 3, in case of two{neuron network, under the assumption that the neurons havethe same mutual interaction pattern2, we give a lower bound on the rate of convergence of theattractive �xed points towards the saturation values as the absolute values of weights on theself{loops grow.In section 4 the position and the number of �xed points is discussed. The role of weights inlocation of �xed points is investigated through an intuitively appealing characterization of neuronsaccording to their inhibition/excitation performance in the network. For example, we view a neuronas a greedy one, if it self{excites itself, but inhibits the other neuron; an enthusiastic neuron excitesboth itself and the other neuron; etc...In the context of greedy and enthusiastic neurons, the saddle node bifurcation, as a mechanismresponsible for creation of a new attractive �xed point, is described in section 5.Section 2 brie
y introduces some necessary concepts from the theory of discrete time dynamicalsystems.2 Dynamical systemsA discrete-time dynamical system can be represented as the iteration of a (di�erentiable) functionf : A! A (A � <n), i.e. xt+1 = f(xt); t 2N; (1)where N denotes the set of all natural numbers. For each x 2 A, the iteration (1) generates asequence of distinct points de�ning the orbit, or trajectory of x under f . Hence, the orbit of xunder f is the set ffm(x)j m � 0g. For m � 1, fm is the composition of f with itself m times.f0 is de�ned to be the identity map on A.A point x� 2 A is called a �xed point of f , if fm(x�) = x�, for all m 2N.Fixed points can be classi�ed according to the behaviour of the orbits of points in their vicinity.A �xed point x� is said to be asymptotically stable (or an attractive point of f), if there existsa neighborhood O(x�) of x�, such that limm!1 fm(x)=x�, for all x 2 O(x�). As m increases,trajectories of points near to an asymptotically stable �xed point tend to it.A �xed point x� of f is asymptotically stable only if for each eigenvalue � of Df(x�), theJacobian of f at x�, j�j < 1 holds. The eigenvalues of Df(x�) govern whether or not the map fin a vicinity of x� has contracting or expanding directions. Eigenvalues larger in absolute valuethan one lead to expansion, whereas eigenvalues smaller than one lead to contraction. If all theeigenvalues of Df(x�) are outside the unit circle, x� is a repulsive point, or repellor. All pointsfrom a neighborhood of a repellor move away from it as m increases. If some eigenvalues of Df(x�)are inside and some are outside the unit circle, x� is said to be a saddle point.3 Qualitative analysisThe iterative map under consideration can be written as follows:(xn+1; yn+1) = (g(axn + byn + t1); g(cxn + dyn + t2)); (2)2they either mutually inhibit or mutually excite themselves4



where (xn; yn) 2 (0; 1)2 is the state of the network at the time step n, a; b; c; d 2 < n f0g andt1; t2 2 < are weights and bias terms respectively. g is a sigmoid function g(`) = 1=(1 + e�`).Since the neuron activations xn and yn are positive, signs of the weights determine the type ofthe corresponding connections: a connection is exciting and inhibiting if its weight is positive andnegative respectively.The aim of this section is to partition the state space (0; 1)2 of neurons' activations into severalregions according to stability types of �xed points of (2).De�ne the map � : (0; 1)2 ! (0; 1=4]2 as�(x; y) = (x(1� x); y(1 � y)): (3)Let F (u; v) be a function F : <2 ! <2. The setsf(u; v)jF (u; v) < 0g; f(u; v)jF (u; v) = 0g and f(u; v)jF (u; v) > 0gare denoted by F�; F 0 and F+ respectively.Theorem 1: If bc > 0, then all attractive �xed points (x; y) of (2) satisfy�(x; y) 2 �0; 1jaj���0; 1jdj� :Proof: Any �xed point (x; y) of (2) satis�es(x; y) = (g(ax + by + t1); g(cx+ dy + t2)): (4)Jacobian J(x; y) of (2) in (x; y) is given by aG1(x; y) bG1(x; y)cG2(x; y) dG2(x; y) ! ;where G1(x; y) = g0(ax + by + t1) and G2(x; y) = g0(cx + dy + t2). Since g0(p) = g(p)(1 � g(p)),considering (4) and (3) we have (G1(x; y); G2(x; y)) = �(x; y): (5)The eigenvalues of J are3 �1;2 = aG1 + dG2 �pD(G1; G2)2 ;where D(G1; G2) = (aG1 � dG2)2 + 4G1G2bc: (6)Assume a; d > 0, i.e both neurons self-excite themselves. Then D+; �+ � (0;1)2, where�(G1; G2) = aG1 + dG2: (7)Since G1; G2 can only be positive, it follows that to identify possible values of G1 and G2 so thatj�1;2j < 1, it is su�cient to solve the inequality aG1 + dG2 +pD(G1; G2) < 2, or equivalently2� aG1 � dG2 >pD(G1; G2): (8)3to simplify the notation, the identi�cation (x; y) of a �xed point in which (2) is linearized is omitted5
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Figure 1: An illustration for the proof of Theorem 1. a; d > 0; bc > 0. All (G1; G2) 2 (0; 1=4]2below the left branch (if ad � bc ), or between the branches of �01 (if ad < bc ) correspond to theattractive �xed points. Di�erent line styles are associated with the cases ad > bc; ad = bc andad < bc, namely, the solid, dotted and dashed lines respectively.Consider only (G1; G2) such that4�1(G1; G2) = aG1 + dG2 � 2 < 0: (9)All (G1; G2) 2 �+1 (above �01 ) lead to at least one eigenvalue of J greater than 1. Squaring bothsides of (8) we arrive at�1(G1; G2) = (ad� bc)G1G2 � aG1 � dG2 + 1 > 0: (10)If ad 6= bc, the \border" curve �01 is a hyperbolaG2 = 1~d + BG1 � 1~a ; (11)where ~a = ad� bcd = a� bcd ; ~d = ad� bca = d� bca ; and B = bc(ad� bc)2 :It is easy to check that (1=a; 0); (0; 1=d) 2 �01.If ad = bc, �01 is a line passing through the points (0; 1=d) and (1=a; 0) (see �gure 1).A �xed point (x; y) of (2) is attractive only if (G1; G2) = �(x; y) 2 �+1 \ ��1 , where the map �is de�ned by (3). A necessary (not su�cient) condition for (x; y) to be attractive reads5�(x; y) 2 �0; 1a���0; 1d� :4(G1; G2) lying under the line �01 : aG1 + dG2 = 2.5If ad > bc, then 0 < ~a < a and 0 < ~d < d. (G1; G2) 2 �+1 lie under the \left branch" and above the \rightbranch" of �01. It is easy to see that since we are con�ned to ��1 (below the line �01), only (G1;G2) under the \leftbranch" of �01 will be considered. Indeed, �01 is a decreasing line going through (1=a;1=d) and so it never intersectsthe right branch of �01 . If ad < bc, then ~a; ~d < 0 and (G1; G2) 2 �+1 lie between the two branches of �01.6



Consider now the case of self-inhibiting neurons, i.e. a; d < 0. Since �� � (0;1)2, in orderto identify possible values of (G1; G2) such that j�1;2j < 1, it is su�cient to solve the inequalityaG1 + dG2 �pD(G1; G2) > �2, or equivalently2 + aG1 + dG2 >pD(G1; G2): (12)Analogically to the previous case, we shall consider only (G1; G2) such that6�2(G1; G2) = aG1 + dG2 + 2 > 0: (13)(G1; G2) 2 ��2 (above �02 ) lead to at least one eigenvalue of J greater than 1.Squaring both sides of (12) we arrive at�2(G1; G2) = (ad� bc)G1G2 + aG1 + dG2 + 1 > 0; (14)which is equivalent to ((�a)(�d) � bc)G1G2 � (�a)G1 � (�d)G2 + 1 > 0: (15)Further analysis equals the analysis from the previous case (a; d > 0) with a; ~a; d and ~d replacedby jaj; jaj � bc=jdj; jdj and jdj � bc=jaj respectively.If ad 6= bc, the \border" curve �02 is a hyperbolaG2 = �1~d + BG1 + 1~a (16)with (�1=a; 0); (0;�1=d) 2 �02.If ad = bc, �02 is a line passing through (0;�1=d) and (�1=a; 0).A �xed point (x; y) of (2) is attractive only if (G1; G2) = �(x; y) 2 �+2 \ �+2 . (G1; G2) corre-sponding to attractive �xed points of (2) must lie in (0; 1=jaj)� (0; 1=jdj).Finally, consider the case when one of the neurons has a self-excitation link, while the otherself-inhibits itself. Without a loss of generality assume that a > 0 and d < 0. Assume furtherthat7 (G1; G2) 2 �+ [ �0. It is su�cient to solve the inequality (8). The relevant8 (G1; G2) liein �+1 \ ��1 \ (�+ [ �0) (�gure 2). From a > 0; d < 0 it follows that ad � bc is negative, and0 < a < ~a, ~d < d < 0.For (G1; G2) 2 �� the relevant (G1; G2) lie in �+2 \ �+2 .It can be easily seen that �01 and �02 intersect on the line �0 in (1=~a; 1=a)� (1=j~dj; 1=jdj) (see�gure 2).Added together, a �xed point (x; y) of (2) is attractive only if�(x; y) 2 [�+1 \ ��1 \ (�+ [ �0)] [ [�+2 \ �+2 \ ��]:In particular, if (x; y) is attractive, then �(x; y) must lie in (0; 1=a) � (0; 1=jdj). Examination ofthe case a < 0; d > 0 in the same way leads to a conclusion that all attractive �xed points of (2)have their corresponding (G1; G2) in (0; 1=jaj)� (0; 1=d).6(G1; G2) lying under the line �02 : �aG1 � dG2 = 2.7(G1; G2) such that aG1 + dG2 is nonnegative lie under or on the line �0 : G2 = aG1=jdj.8(G1; G2) that correspond to �xed points in which both the eigenvalues of J have the absolute value less thanone 7
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Figure 2: An illustration for the proof of Theorem 1. a > 0; d < 0; bc > 0. All (G1; G2) 2 (0; 1=4]2below and on the line �0, and between the two branches of �01 (solid line) correspond to theattractive �xed points. So do all (G1; G2) 2 (0; 1=4]2 above �0, between the two branches of �02(dashed line).Theorem 2: Assume bc < 0. Suppose ad > 0, or ad < 0 with jadj � jbcj=2. Then each �xedpoint (x; y) of (2) such that9�(x; y) 2 �0; 1jaj���0; 1j ~dj�[�0; 1j~aj���0; 1jdj�is attractive. In particular, all �xed points (x; y) for which�(x; y) 2 �0; 1j~aj�� �0; 1j ~dj�are attractiveProof: D(G1; G2) is no longer exclusively positive. It follows from analytic geometry (see forexample [2]) that D(G1; G2) = 0 de�nes either a single point or two lines (that can collide intoone, or disappear). Since (aG1 � dG2)2 � 0, D(G1; G2) = 0 is satis�ed only by those (G1; G2) forwhich G1G2 � 0. Furthermore, D(0; 0) = 0. Hence, D0 is either a single point { the origin, or apair of increasing lines (that may be the same) passing through the origin.Assume a; d > 0. Since D(1=a; 1=d) = 4bc=ad < 0 and D(1=a; 0) = D(0; 1=d) = 1 > 0, thepoint (1=a; 1=d) is always in10 D�, while (1=a; 0); (0; 1=d) 2 D+.First, we shall examine the case when D(G1; G2) is negative. Fromj�1;2j2 = (aG1 + dG2)2 + jDj4 = G1G2(ad� bc)9Recall that ~a and ~d denote a� bc=d and d� bc=a respectively.10D� is a nonempty region 8
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Figure 3: An illustration for the proof of Theorem 2. a; d > 0; bc < 0. All (G1; G2) 2 D�and below the right branch of �0 (dashed line) correspond to the attractive �xed points. So do(G1; G2) 2 (0; 1=4]2 in D+ between the two branches of �01.it follows, that (G1; G2) 2 D�, for which j�1;2j < 1, lie in D� \ �� (�gure 3), where�(G1; G2) = (ad� bc)G1G2 � 1: (17)It is easy to show that�1a; 1~d� ;�1~a; 1d� 2 �0; 1~a < 1a; 1~d < 1d; and �1a; 1~d� ;�1~a; 1d� 2 D�:Turn now to the case D(G1; G2) > 0. Using the technique from the previous proof we concludethat the relevant (G1; G2) lie in11 D+ \ ��1 \ �+1 .D0; �01; �01 and �0 intersect in two points as suggested by �gure 3. To see this, note that for thepoints on �0, it holds G1G2 = 1ad� bc;and for all (G1; G2) 2 D0 \ �0 we have (aG1 + dG2)2 = 4: (18)For G1; G2 > 0, (18) de�nes the line �01.Similarly, for (G1; G2) lying on �01 and �0, it holdsaG1 + dG2 = 2;which is the de�nition of the line �01. �01 and �0 are monotonically increasing and decreasingrespectively, and there is exactly one intersection point of the right branch of �0 with each of thetwo branches of �01.11under the line �01 and between the two branches of hyperbola �01. Note that 0 < a < ~a; 0 < d < ~d.9



For (G1; G2) 2 D0, j�1;2j = aG1 + dG22 ;and the relevant (G1; G2) are from D0 \ ��1 .In summary, if a; d > 0, each �xed point (x; y) of (2) such that �(x; y) = (G1; G2) is from�(x; y) 2 �0; 1a���0; 1~d�[�0; 1~a���0; 1d�is attractive.Assume a; d < 0. This case is identical to the case a; d > 0 examined above, with a; ~a; d; ~d; ��1and �+1 replaced by jaj; j~aj; jdj; j~dj; �+2 and �+2 respectively.First, note that D0 is the same as before, since(aG1 � dG2)2 = (jajG1 � jdjG2)2:Furthermore, ad � bc = jajjdj � bc and so (G1; G2) 2 D�, for which j�1;2j < 1, lie in D� \ ��.Again, it directly follows that� 1jaj ; 1j~dj� ;� 1j~aj ; 1jdj� 2 �0; 1j~aj < 1jaj ; 1j ~dj < 1jdj ; and � 1jaj ; 1j ~dj� ;� 1j~aj ; 1jdj� 2 D�:For D+ the relevant (G1; G2) lie in D+ \ �+2 \ �+2 .All (G1; G2) 2 D0 \ �+2 lead to j�1;2j < 1. Hence, if a; d < 0, every �xed point (x; y) of (2)such that �(x; y) 2 �0; 1jaj���0; 1j ~dj�[�0; 1j~aj���0; 1jdj�is attractive.Finally, consider the case a > 0; d < 0. The case a < 0; d > 0 would be treated in exactly thesame manner.Assume D� is a nonempty region. Then, ad > bc must hold and�1a; 1jdj� 2 D�:This can be easily seen, since for ad < bc we would haveD(G1G2) = (aG1 � dG2)2 + 4G1G2bc = (aG1 + dG2)2 + 4G1G2(bc� ad) � 0and D� would not be a nonempty region. The sign ofD�1a; 1jdj� = 4�1 + bcajdj�is determined by the sign of ajdj+ bc = bc� ad < 0.(G1; G2) 2 D�, for which j�1;2j < 1, lie in D� \ �� and�1a; 1~d� ;� 1j~aj ; 1jdj� 2 �0:Note that ~d � jdj and j~aj � a only if 2ajdj � jbcj.Only those (G1; G2) 2 D0 are taken into account for which jaG1 + dG2j < 2. This is true forall12 (G1; G2) 2 D0 \ ��1 \ �+2 (�gure 4).12(G1; G2) between the lines �01 and �02. 10
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is attractive.Now, we transform our results into the (x; y){space of neuron activations. For u > 4, de�ne�(u) = 12r1� 4u:In Theorems 1, 2 and 3 a structure re
ecting stability types of the �xed points of (2) was introducedinto the (G1; G2){space. The region (0; 1=4]2 in (G1; G2){plane corresponds to four regions�0; 12�2 ; �0; 12�� �12 ; 1� ; �12 ; 1�� �0; 12� ; and �12 ; 1�2 :in the (x; y){space. In particular, for each (G1; G2) 2 (0; 1=4]2, under the map �, there are fourpreimages (x; y) = ��1(G1; G2) = ��12 ��� 1G1� ; 12 ��� 1G2��� : (19)Results formulated in Theorems 1, 2 and 3 can now be stated for the space of activations ofrecurrent neurons.For � > 4; � > 4, the regions of the (x; y){space�0; 12 ��(�)�� �0; 12 ��(�)� ;�12 ��(�); 12�� �0; 12 ��(�)�[�0; 12 ��(�)���12 ��(�); 12�and �12 ��(�); 12�� �12 ��(�); 12�are denoted byRA00(�; �); RS00(�; �) andRR00(�; �) respectively. Regions symmetrical toRA00(�; �); RS00(�; �)and RR00(�; �) with respect to the line x = 1=2 are denoted by RA10(�; �); RS10(�; �) and RR10(�; �)respectively. Similarly, let RA01(�; �); RS01(�; �) and RR01(�; �) denote the regions symmetrical toRA00(�; �); RS00(�; �) and RR00(�; �) with respect to the line y = 1=2. Finally, RA11(�; �); RS11(�; �)and RR11(�; �) denote regions that are symmetrical to RA01(�; �); RS01(�; �) andRR01(�; �) with respectto the line x = 1=2 (�gure 5).Corollary 1: If bc > 0; jaj > 4; jdj> 4, then all attractive �xed points of (2) lie in Si2I RAi (jaj; jdj),where I is the index set I = f00; 10; 01; 11g.Corollary 2: If bc < 0; ad < 0; jaj > 4; jdj > 4 and jadj � jbcj=2, then all �xed points of (2)lying in Si2I RAi (jaj; jdj); I = f00; 10; 01;11g are attractive.Corollary 3: If j~aj; j~dj > 4 and one of the following conditions is satis�ed� bc > 0 and ad < 0� bc < 0 and ad > 0 12
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It follows that if aG1+ dG2 < 2, i.e. (G1; G2) 2 ��1 , 0 < aG1+ dG2�pD(G1; G2) < 2 holdsand 0 < �2 < 1.For (G1; G2) 2 �01 [ �+1 , we solve the inequality aG1 + dG2�pD(G1; G2) < 2, that is satis�edby (G1; G2) from ��1 \ (�01 [ �+1 ).It can be seen (�gure 1) that in all �xed points (x; y) of (2) with�(x; y) 2 �0; 14���0;min�1~d; 14�� [�0;min�1~a; 14�� ��0; 14� ;the eigenvalue �2 > 0 is less than 1. This is certainly true for all (x; y) such that �(x; y) 2(0; 1=4] � (0; 1=d) [ (0; 1=a) � (0; 1=4]. In particular, the preimages of (G1; G2) 2 (1=a; 1=4] �(0; 1=d) [ (0; 1=a) � (1=d; 1=4] under � de�ne the region Si2I RSi (a; d) where only saddle �xedpoints of (2) can lie.Fixed points (x; y) whose images under � lie in �+1 \ �+1 are repellors. No (G1; G2) can liein that region, if ~a; ~d � 4, that is, if d(a � 4) � bc and a(d � 4) � bc, which is equivalent tomaxfa(d� 4); d(a� 4)g � bc.In the case ad = bc, we have pD(G1; G2) = aG1 + dG2 and so �2 = 0. Hence, there are norepelling points if ad = bc.Assume ad < bc. Then pD(G1; G2) > aG1+ dG2, which implies that �2 is negative. It followsthat the inequality to be solved is aG1+dG2�pD(G1; G2) > �2. It is satis�ed by (G1; G2) from�+2 . If 2ad � bc, for the coe�cients of �02 we have j~aj � a and j ~dj � d.Fixed points (x; y) with�(x; y) 2 �0; 14���0;min� 1j ~dj ; 14�� [�0;min� 1j~aj ; 14����0; 14� ;have j�2j less than 1. If 2ad � bc, this is true for all (x; y) such that �(x; y) 2 (0; 1=4]� (0; 1=d)[(0; 1=a)� (0; 1=4] and the preimages of (G1; G2) 2 (1=a; 1=4]� (0; 1=d)[ (0; 1=a)� (1=d; 1=4] under� de�ne the region Si2I RSi (a; d) where only saddle �xed points of (2) can lie.There are no repellors if j~aj; j~dj � 4, that is, if minfa(d+ 4); d(a+ 4)g � bc.If we examined the case a; d < 0 in the same spirit as the case a; d > 0 we would conclude that� if ad > bc, in all �xed points (x; y) of (2) with�(x; y) 2 �0; 14���0;min� 1j ~dj ; 14�� [�0;min� 1j~aj ; 14�� ��0; 14� ;j�1j < 1. Surely, this is true for all (x; y) such that �(x; y) 2 (0; 1=4]� (0; 1=jdj)[ (0; 1=jaj)�(0; 1=4]. The preimages of (G1; G2) 2 (1=jaj; 1=4]� (0; 1=jdj)[ (0; 1=jaj)� (1=jdj; 1=4] under� de�ne the region Si2I RSi (jaj; jdj) where only saddle �xed points of (2) can lie. There areno repellors if j~aj; j~dj � 4, that is, if jdj(jaj� 4) � bc and jaj(jdj� 4) � bc, which is equivalentto maxfjaj(jdj � 4); jdj(jaj � 4)g � bc.� in the case ad = bc, we have pD(G1; G2) = jaG1 + dG2j and so �1 = 0. Hence, there areno repelling points.� if ad < bc, in all �xed points (x; y) with�(x; y) 2 �0; 14���0;min�1~d; 14�� [�0;min�1~a; 14��� �0; 14� ;14



�113 is less than 1. If 2ad � bc, this is true for all (x; y) such that �(x; y) 2 (0; 1=4] �(0; 1=jdj) [ (0; 1=jaj) � (0; 1=4] and the preimages of (G1; G2) 2 (1=jaj; 1=4] � (0; 1=jdj) [(0; 1=jaj) � (1=jdj; 1=4] under � de�ne the region Si2I RSi (jaj; jdj) where only saddle �xedpoints of (2) can lie. There are no repellors if ~a; ~d � 4, that is, if minfjaj(jdj+ 4); jdj(jaj+4)g � bc.In general, we have shown that if� ad < bc and ad+ 4minfjaj; jdjg � bc, or� ad = bc, or� ad > bc and ad� 4minfjaj; jdjg � bc,then there are no repellors.4 Quantitative analysisIn this section we are concerned with the actual position of �xed points of (2). We study, howthe coe�cients a; b; t1; c; d and t2 e�ect the position and the number of the �xed points. It isillustrative �rst to concentrate on a single neuron from a pair of neurons.Denote the values of the weights associated with the self{loop of the selected neuron and withthe interconnection link from the other neuron to the selected neuron by s and r respectively. Theconstant input to the selected neuron is denoted by t. If the activations of the selected neuron andthe other neuron are u and v respectively, then the activation of the selected neuron at the nexttime step is14 g(su+rv+ t). If the activation of the selected neuron is not to change, (u; v) shouldlie on the curve fs;r;t: v = fs;r;t(u) = 1r ��t� su+ ln u1� u� : (20)ln(u=(1� u)) : (0; 1)! <, is a monotonically increasing function withlimu!0+ ln u1� u = �1 and limu!1� ln u1� u =1:The linear function �su + t cannot in
uence these assymptotical properties, it can, however,locally in
uence the \shape" of fs;r;t. In particular while the e�ect of the constant term �t isjust a vertical shift of the whole function, �su (if decreasing, i.e. if s > 0, and \su�cientlylarge" ) has the power to overcome for a while the increasing tendencies of ln(u=(1� u)). Moreprecisely, if s > 4 then the term �su causes the function �su � t + ln(u=(1� u)) to \bend"so that on �12 ��(s); 12 + �(s)�it is decreasing, while it still increases on�0; 12 ��(s)� [�12 +�(s); 1� :�su� t+ ln(u=(1�u)) is always concave and convex on (0; 1=2) and (1=2; 1) respectively. Finally,the coe�cient r scales the whole function and 
ips it around the u{axis, if r < 0. A graph offs;r;t(u) is presented in �gure 6.13�1 is positive14recall, that g the sigmoid function g(`) = 1=(1 + e�`)15
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u))u0.5−∆(Figure 6: Graph of fs;r;t(u). Solid and dotted lines represent the cases t; s = 0; r > 0 andt = 0; s > 4; r > 0. Dashed line shows the graph when t < 0; s > 4 and r > 0. Negative externalinput t shifts the bended part into v > 0.We characterize the neurons according to the sign of weights of the links stemming out of them.A neuron is said to be greedy if it self{excites itself, but inhibits the other neuron (the weight ofthe link to the other neuron is negative). A neuron is said to be altruistic if the opposite is true,i.e. if it self{inhibits itself, but excites the other neuron. An enthusiastic neuron excites both itselfand the other neuron, while a depressed neuron inhibits everything including itself.There are (42)+4 = 10 possible cases of the coexistence of the two neurons. A �xed pointrepresents a \compromise" achieved by both neurons in that the state of the system, once ina �xed point, does not change. Of course, just as with �xed points, the compromise can becharacterized by various forms of stability. Based on the results from the previous section, in somecases we are able to predict the stability type of the �xed points of (2) according to their positionin the neurons' activation space.Each �xed point of (2) lies on the intersection of two curves y = fa;b;t1(x); x = fd;c;t2(y). Wepresent some illustrative examples of the analysis of the position and the number of �xed points of(2) based on the characterization of neurons proposed above. Other cases would be analyzed in asimilar manner. The external inputs are treated as arti�cial means to externally control the stateof the system and the discussion of each case starts with an assumption that t1; t2 = 0. Signs ofthe coe�cients a; b; c; d are marked by + (if positive) and � (if negative).both neurons are enthusiastic: (a; b; c; d) = (+;+;+;+) (�gure 7)� (t1; t2 = 0) Since a; d > 0, both functions fa;b;t1 and fd;c;t2 can \bend", but they bend beforerunning into positive values (they bend outside (0; 1)2 ). Since fa;b;t1 and fd;c;t2 pass only through(1=2; 1)� (0; 1) and (0; 1)� (1=2; 1) respectively, a �xed point only occurs in (1=2; 1)2, the region16
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xFigure 7: fa;b;t1 and fd;c;t2 when both neurons are enthusiastic.of high activity of both neurons (fa;b;t1 shown as a dashed line). There is no way to create a�xed point in a region, say, (0; 1=2)� (1=2; 1) corresponding to a state where the second neurondominates over the �rst neuron.� (t1; t2 6= 0) The only way to achieve the situation described above would be to use a largenegative external input t1 to the �rst neuron that would move the graph of fa;b;t1 up, so that itintersects fd;c;t2 in (0; 1=2)� (1=2; 1). If we arti�cially inhibited the �rst neuron by the externalinput too much, there may no longer be a �xed point in (1=2; 1)2 (fa;b;t1 shown as a dotted line).However, if the self-excitation loop of the �rst neuron is strong enough, the bended shape of fa;b;t1can retain a �xed point in (1=2; 1)2 in spite of the external inhibition of the �rst neuron (fa;b;t1shown as a solid line).both neurons are depressed: (a; b; c; d) = (�;�;�;�)� (t1; t2 = 0) Since a; d < 0, neither of the functions fa;b;t1 and fd;c;t2 can \bend". fa;b;t1and fd;c;t2 pass through (0; 1=2)� (0; 1) and (0; 1)� (0; 1=2) respectively. A �xed point occurs in(0; 1=2)2, the region of low activity of both neurons.� (t1; t2 6= 0) Positive external input to a neuron can, however, shift the �xed point towards highactivity of that neuron.an enthusiastic and a greedy neurons: (a; b; c; d) = (+;�;+;+) (�gure 8)� (t1; t2 = 0) fd;c;t2 passes only through (0; 1) � (1=2; 1). The �rst (enthusiastic) neuron paysfor being generous (it excites the second, greedy neuron) and there is no possibility of creatinga �xed point in (1=2; 1)� (0; 1=2), the region of dominance of the enthusiastic neuron. Besidesthe possibility that there is a �xed point in (0; 1) � (1=2; 1) which may be close to either of thevertices15 (0; 1) or (1; 1), there is a chance of having �xed points near both vertices (in fact therewill be another �xed point \between" them) at one time. This can be achieved by a \cooperation"15depending on how strong is the self{loop of the �rst neuron; fa;b;t1 is shown as a dashed and a dotted lines17
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xFigure 8: fa;b;t1 and fd;c;t2 in the case of an enthusiastic and a greedy neurons.between the two neurons, in that the self{loop of the �rst neuron and the inhibition link from thesecond neuron have to have the \right" weights (they are neither too weak, nor too strong), sothat the bended function fa;b;t1 intersects fd;c;t2 near both of the vertices (fa;b;t1 shown as a solidline).� (t1; t2 6= 0) An interesting situation arises when the greedy neuron is externally inhibited, buthas a strong self{loop, so that the bended part of fd;c;t2 gets into (0; 1)2. Nine �xed points canbe created. In general, a necessary condition on weights so that nine �xed points can exist is thatthe weights a; d on the self{loops are positive. This enables both functions fa;b;t1 and fd;c;t2 to\bend", and by moving the bended parts into (0; 1)2, create a complex intersection pattern.a greedy and an altruistic neurons: (a; b; c; d) = (+;+;�;�)� (t1; t2 = 0) Only a single �xed point in (1=2; 1)� (0; 1=2) can exist. Everything is in controlof the greedy neuron.� (t1; t2 6= 0) By externally inhibiting the greedy neuron (moving the bended part of fa;b;t1upwards into (0; 1)2 ) more �xed points can be created. A strong external excitation of thealtruistic neuron moves �xed points into (0; 1)� (1=2; 1). There is even a possibility of creating asingle �xed point in the region of dominance of the altruistic neuron ( (0; 1=2)� (1=2; 1) ), if thegreedy and altruistic neurons are strongly externally inhibited and excited respectively, but thenthe system is totally controlled by the external forces.both neurons are greedy: (a; b; c; d) = (+;�;�;+)� (t1; t2 = 0) Generally, if there are no external inputs, the case of two greedy neurons is theonly case when there can be �xed points in the regions (0; 1=2)� (1=2; 1), (1=2; 1)� (0; 1=2) and(1=2; 1) � (1=2; 1) at one time. Even though the neurons inhibit each other, they can increasetheir self-excitation and through bended functions fa;b;t1 and fd;c;t2 introduce �xed points near thevertices (1; 0) and (0; 1) representing \winning" states of the �rst and second neuron respectively.18



If they, moreover, \decide to cooperate" by not self-exciting themselves and inhibiting each othertoo much, a third �xed point near the high-activation vertex (1; 1) can be created. Hence, tocreate the most complex intersection pattern of fa;b;t1 and fd;c;t2 without external inputs, the twoneurons should be \reasonably" greedy.5 Creation of a new attractive �xed point through saddlenode bifurcationIn this section we bring together the results from the last two sections. Normally, to detect stabilitytypes of the �xed points of (2), we would compute the position of the �xed points (which cannot,in general, be done analytically) and then linearize the system (2) in those �xed points, or directlyuse results of the section 3, where we have structured the network state space (0; 1)2 into areaswhere �xed points of particular stability types can lie. Fortunately, in some cases, these areascorrespond to monotonicity intervals of the functions fa;b;t1 and fd;c;t2 de�ning the �xed points.The reasoning about the stability type of the �xed points can be based on the knowledge of wherethe functions intersect.In this respect, the results of the section 3 will be useful when the neurons are enthusiasticor greedy, with a strong tendency to self excite themselves so that the functions fa;b;t1 and fd;c;t2\bend", thus creating a possibility of complex intersection pattern in (0; 1)2.For a > 4, denote the set �(x; fa;b;t1(x))j x2�0; 12 ��(a)��of points lying on the \�rst outer branch" of fa;b;t1(x) by f#0a;b;t1 . Analogically, the set of points�(x; fa;b;t1(x))j x2�0; 12 +�(a)��in the \second outer branch" of fa;b;t1(x) is denoted by f#1a;b;t1 . Finally, let f�a;b;t1 denote the set ofpoints �(x; fa;b;t1(x))j x2�12 ��(a); 12 + �(a)��on the \middle branch" of fa;b;t1(x). Similarly, for d > 4, f#0d;c;t2 ; f#1d;c;t2 and f�d;c;t2 are used todenote the sets �(fd;c;t2(y); y)j y2�0; 12 ��(d)�� ;�(fd;c;t2(y); y)j y2�12 + �(d); 1�� ;and �(fd;c;t2(y); y)j y2�12 ��(d); 12 + �(d)��respectively.Using the Theorem 4 we state the following corollary:Corollary 4: Assume that each of the neurons is either enthusiastic, or greedy and ad � bc=2.Then, attractive �xed points of (2) can lie only on the intersection of the outer branches of fa;b;t119
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Figure 9: Geometrical illustration of saddle-node bifurcation in a recurrent neural network withtwo state neurons. Saddle and attractive points are marked with squares and circles respectively.a; d > 0; b; c < 0.and fd;c;t2 . Whenever the the middle branch of fa;b;t1 intersects with an outer branch of fd;c;t2 (orvice-versa), it corresponds to a saddle point of (2). In particular, all attractive �xed points of (2)are from [i;j=0;1f#ia;b;t1 \ f#jd;c;t2 :Every point from f�a;b;t1 \ [i=0;1f#id;c;t2 ;or f�d;c;t2 \ [i=0;1f#ia;b;t1is a saddle point of (2).When both neurons self{excite themselves, Corollary 4 suggests that the usual scenario of creationof a new attractive �xed point is that typical of the saddle-node bifurcation in which a pairattractive + saddle �xed point is created. Attractive �xed points disappear in a reverse manner:an attractive point coalesces with with a saddle and they are annihilated. This is illustrated in�gure 9. fd;c;t2(y) shown as dashed curve intersects fa;b;t1(x) in three points. By increasing d,fd;c;t2 bends further (solid curve) and intersects with fa;b;t1 in �ve points16. Saddle and attractivepoints are marked with squares and circles respectively. Note that as d increases attractive �xedpoints move closer to vertices f0; 1g2.16At the same time, jcj has to be also appropriately increased so as to compensate for the increase in d so thatthe \bended" part of fd;c does not move radically to higher values of x.20



This tendency, in the context of networks with exclusively self-exciting (or exclusively self-inhibiting) recurrent neurons, is discussed in [13]. Our result stated in Corollary 1, assumestwo{neuron recurrent network. It only requires that the neurons have the same mutual interactionpattern (bc > 0) and gives a lower bound on the rate of convergence of the attractive �xed pointsof (2) towards some of the vertices f0; 1g2, as the absolute values of weights on the self{loops grow.Corollary 1.1: Assume bc > 0; jaj > 4; jdj > 4. Then all attractive �xed points of (2) lie in the"-neighborhood of vertices of unit square, where" =s�12 ��(jaj)�2 +�12 ��(jdj)�2:6 ConclusionThe regions corresponding to stability types of �xed points of a two-neuron recurrent neural net-work were described based on the weight matrix of the network. The position of �xed points wasinvestigated in the context of intersections of functions de�ning their x- and y-coordinates. It wasshown that there is a correspondence between the stability regions for �xed points and monotonic-ity intervals of functions de�ning their position. When both neurons self-excite themselves andhave the same mutual-interaction pattern, a new attractive �xed point is created through saddlenode bifurcation. Assuming the same mutual interaction pattern between neurons, we give a lowerbound on the rate of convergence of the attractive �xed points towards the saturated activationvalues, as the absolute values of weights on the self{loops grow.Our ultimate goal is to extend the issues studied in this paper to a general case of n-neuronrecurrent neural network. It is to be seen whether the reasoning in the space of derivatives of thesigmoid transfer function with respect to the weighted sum of neuron inputs, can be simpli�ed to amore straightforward analysis of �xed point stability regions (as opposed to the case-analysis usedin the proofs of this paper).As explained in the introduction, training process during which recurrent neural networks learnto act as �nite state machines can be interpreted from the point of view of bifurcation analysis [18].Often, loops in state transition diagram of the �nite state machine being learned are represented asattractive �xed points of the network. Understaning the �xed point potential of recurrent neuralnetworks (number, stability, bifurcations of �xed points) can bring some light into the problemof neural complexity of �nite state machines which (to our knowledge) has not been satisfactorilysolved so far (see [1], [15] and [20]). Neural complexity of a �nite state machine can be characterizedas the minimal number of neurons needed so that the network can mimic the �nite state machine.References[1] N. Alon, A.K. Dewdney, and T.J. Ott. E�cient simulation of �nite automata by neural nets.Journal of the Association of Computing Machinery, 38(2):495{514, 1991.[2] H. Anton. Calculus with analytic geometry. John Wiley and Sons, New York, NY, 1980.21
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