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ABSTRACT

The position, number and stability types of fixed points of a two—neuron recurrent
network with nonzero weights are investigated. Using simple geometrical arguments
in the space of derivatives of the sigmoid transfer function with respect to the weighted
sum of neuron inputs, we partition the network state space into several regions corre-
sponding to stability types of the fixed points. If the neurons have the same mutual
interaction pattern, i.e. they either mutually inhibit or mutually excite themselves,
a lower bound on the rate of convergence of the attractive fixed points towards the
saturation values, as the absolute values of weights on the self-loops grow, is given.
The role of weights in location of fixed points is explored through an intuitively
appealing characterization of neurons according to their inhibition/excitation perfor-
mance in the network. In particular, each neuron can be of one of the four types:
greedy, enthusiastic, altruistic or depressed. Both with and without the external in-
hibition/excitation sources, we investigate the position and number of fixed points
according to character of the neurons. When both neurons self-excite themselves
and have the same mutual interaction pattern, the mechanism of creation of a new

attractive fixed point is shown to be that of saddle node bifurcation.



1 Introduction

In this contribution we address the issues concerning fixed points of discrete—time recurrent neural
networks consisting of two neurons. Nonzero weights are assumed. As pointed out in [3], because
of the interest in associative memory applications, a great deal of previous work has focused on
the question of how to constrain the weights of the recurrent networks so that they exhibit only
fixed points (no oscillatory dynamics) [6]. In this context, it is desirable that all fixed points are
attractive. Recently, Jin, Nikifiruk and Gupta [16] reported new results on the absolute stability
for a rather general class of recurrent neural networks. Conditions under which all fixed points of
the network are attractive were determined by the weight matrix of the network.

However, there are many applications where oscillatory dynamics of recurrent networks is de-
sirable. For example, when trained to act as a finite state machine ([7], [9] [11], [12], [17], [19],
[21], [22]), the network has to induce a stable representation of state transitions associated with
each input symbol of the machine. A transition may have a character of a loop (do not move
from the current state when the symbol # is presented), or a cycle (when repeatedly presenting
the same input, we eventually return to the state where we have started). As reported in [5], [17],
and [18], loops and cycles associated with an input symbol & are usually represented as attractive
fixed points and periodic orbits respectively of the underlying dynamical system corresponding
to the input z. In this respect, one can look at the training process from the point of view of
bifurcation analysis. The network solves the task of finite state machine simulation by location of
point and periodic attractors and shaping their respective basins of attraction [8]. Before training,
the connection weights are set to small random values and as a consequence, the network has only
one attractor basin. This implies that the network must undergo several bifurcations [10].

In [18], a preliminary analysis of the two—neuron recurrent network is given. Under some some
specific conditions on weight values, the number, position and stability types of fixed points of
the underlying dynamical systems are analyzed and bifurcation mechanism 1s clarified. The most
typical bifurcation responsible for the creation of a new fixed point is the saddle node bifurcation.

Typically, studies of the asymptotic behaviour of recurrent neural networks usually assume
some form of a structure in the weight matrix describing connectivity pattern among recurrent
neurons. For example, symmetric connectivity and absence of self-interactions enabled Hopfield
[14] to interpret the network as a physical system having energy minima in attractive fixed points
of the network. These rather strict conditions were weakened in [6], where a more easily satisfied
conditions are formulated. Blum and Wang [4] globally analyze networks with nonsymmetrical
connectivity patterns of special types. In case of two recurrent neurons with sigmoidal activation
function g(¢) = 1/(1 + e™*), they give results for weight matrices with diagonal elements equal to
zerol .

This paper presents a generalization of the results presented in [18]. A similar approach to
determining the number and position of fixed points in continuous—time recurrent neural networks
can be found in [3].

In section 3, the network state space is partitioned into several regions corresponding to stability
types of the fixed points. This 1s done by first exploring the space of derivatives of the sigmoid
transfer function with respect to the weighted sum of neuron inputs. Then, the structure is
transformed into the space of neuron activations.

It was proved by Hirsh [13], that when all the weights in a recurrent network with exclusively

1In such a case the recurrent network is shown to have only one fixed point and no “genuine” periodic orbits (of

period greater than one)



self-exciting (or exclusively self-inhibiting) neurons are multiplied by larger and larger positive
number (neural gain), attractive fixed points tend to saturated activation values. Due to the
analysis in section 3, in case of two—neuron network, under the assumption that the neurons have
the same mutual interaction pattern?, we give a lower bound on the rate of convergence of the
attractive fixed points towards the saturation values as the absolute values of weights on the
self-loops grow.

In section 4 the position and the number of fixed points is discussed. The role of weights in
location of fixed points is investigated through an intuitively appealing characterization of neurons
according to their inhibition/excitation performance in the network. For example, we view a neuron
as a greedy one, if it self-excites itself, but inhibits the other neuron; an enthusiastic neuron excites
both itself and the other neuron; etc...

In the context of greedy and enthusiastic neurons, the saddle node bifurcation, as a mechanism
responsible for creation of a new attractive fixed point, is described in section 5.

Section 2 briefly introduces some necessary concepts from the theory of discrete time dynamical

systems.

2 Dynamical systems

A discrete-time dynamical system can be represented as the iteration of a (differentiable) function
f:A—=A (ACR"), ie
xt-l—l = f(xt)a t S Na (1)

where N denotes the set of all natural numbers. For each # € A, the iteration (1) generates a
sequence of distinct points defining the orbit, or trajectory of x under f. Hence, the orbit of z
under f is the set {f™(x)] m > 0}. For m > 1, f™ is the composition of f with itself m times.
F° is defined to be the identity map on A.

A point z, € A is called a fized point of f, if f™(x.) = @, for all m € N.

Fixed points can be classified according to the behaviour of the orbits of points in their vicinity.
A fixed point z, is said to be asymptotically stable (or an attractive point of f), if there exists
a neighborhood O(z,) of x., such that limy,_., f™(z)=x., for all # € O(x.). As m increases,
trajectories of points near to an asymptotically stable fixed point tend to 1it.

A fixed point z. of f is asymptotically stable only if for each eigenvalue A of Df(x.), the
Jacobian of f at x., |A] < 1 holds. The eigenvalues of Df(x.) govern whether or not the map f
in a vicinity of z, has contracting or expanding directions. Eigenvalues larger in absolute value
than one lead to expansion, whereas eigenvalues smaller than one lead to contraction. If all the
eigenvalues of Df(x.) are outside the unit circle, . is a repulsive point, or repellor. All points
from a neighborhood of a repellor move away from it as m increases. If some eigenvalues of Df(x.)

are inside and some are outside the unit circle, z, is said to be a saddle point.

3 Qualitative analysis

The iterative map under consideration can be written as follows:

(Znt1, Ynt1) = (glazn + byn + 1), g(cxy + dy, + 12)), (2)

2they either mutually inhibit or mutually excite themselves



where (z,,9,) € (0,1)? is the state of the network at the time step n, a,b,c,d € R\ {0} and
t1,t2 € R are weights and bias terms respectively. g¢ is a sigmoid function g(¢) = 1/(1 + e~¢).
Since the neuron activations z, and y, are positive, signs of the weights determine the type of
the corresponding connections: a connection is ezciting and nhibiting if its weight is positive and
negative respectively.

The aim of this section is to partition the state space (0,1)? of neurons’ activations into several
regions according to stability types of fixed points of (2).

Define the map ¢ : (0,1)? — (0,1/4]* as

¢(e,y) = (z(1—2),y(1 —y)). (3)
Let F'(u,v) be a function F' : R2 — R2. The sets
{(u, )| F(u,v) < 0}, {(u,v)|F(u,v) =0} and {(u,v)|F(u,v) >0}

are denoted by F~, F? and F'T respectively.

Theorem 1: If be > 0, then all attractive fired points (x,y) of (2) satisfy
1 1
¢($ay) S <0a_) X <0a_) .
|al |d|

Proof: Any fixed point (z,y) of (2) satisfies
(z,y) = (glazx + by + 1), g(cx + dy + t2)). (4)
Jacobian J(z,y) of (2) in (#,y) is given by

( aGi(z,y) bG1(z,y) )
cGa(z,y) dGo(z,y) |’

where Gy(z,y) = ¢'(ax + by + t1) and Ga(z,y) = ¢'(cx + dy + t2). Since ¢'(p) = g(p)(1 — g(p)),
considering (4) and (3) we have

(Gl(l’,y),Gz(l’,y)) = qf)(l‘,y). (5)

The eigenvalues of J are®

A\ aGy + dGs + \/D(Gl, Gz)
1,2 = )
’ 2

where

D(G1, Ga) = (aGy — dGa)* + 4G Gobe. (6)
Assume a,d > 0, i.e both neurons self-excite themselves. Then Dt at D (0,00)?, where
Oé(Gl, Gz) = aG1 + dGo. (7)

Since (1, G5 can only be positive, it follows that to identify possible values of (G; and G5 so that
[A1,2] < 1, it is sufficient to solve the inequality aG1 + dGs + /D(G1,G2) < 2, or equivalently

2—aG1 —dGy > \/D(Gl, Gz) (8)

3to simplify the notation, the identification (z,y) of a fixed point in which (2) is linearized is omitted
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Figure 1: An illustration for the proof of Theorem 1. a,d > 0, be > 0. All (Gy,G2) € (0,1/4)?
below the left branch (if ad > be ), or between the branches of k% (if ad < be ) correspond to the
attractive fixed points. Different line styles are associated with the cases ad > be, ad = be and

ad < be, namely, the solid, dotted and dashed lines respectively.
Consider only (G1, G2) such that?

p1(G1, Gz) =aG; +dGs—2 < 0. (9)

All (G1,G2) € pf (above p! ) lead to at least one eigenvalue of J greater than 1. Squaring both

sides of (8) we arrive at

Kjl(Gl, Gz) = (ad — bC)Gle —aG1 —dGs+1> 0. (10)
If ad # be, the “border” curve x{ is a hyperbola
1 B
G = = + s 11
Td e -1 (1)
where d—b b d—b b b
ad — be e~ ad—be ¢ ¢
a = —a——, d= =d— — d B=——.
“ d “T a a’ (ad — be)?

It is easy to check that (1/a,0),(0,1/d) € &Y.

If ad = be, &Y is a line passing through the points (0,1/d) and (1/a, 0) (see figure 1).

A fixed point (x,y) of (2) is attractive only if (Gy,G2) = ¢(x,y) € T N py, where the map ¢
is defined by (3). A necessary (not sufficient) condition for (z,y) to be attractive reads®

é(z,y) € (0,%) X (0,%).

4(G1, G2) lying under the line p(l) caG +dGs = 2.
5If ad > be, then 0 < @ < a and 0 < d < d. (Gh,G2) € /11" lie under the “left branch” and above the “right
branch” of x{. It is easy to see that since we are confined to py (below the line pY), only (G1,G2) under the “left

branch” of H(l) will be considered. Indeed, p(l) is a decreasing line going through (1/a,1/d) and so it never intersects
the right branch of H(l). If ad < be, then a, d < 0 and (Gh,G2) € /11" lie between the two branches of H(l).



Consider now the case of self-inhibiting neurons, i.e. a,d < 0. Since o~ D (0,00)?, in order
to identify possible values of (G, G2) such that |Aq 2| < 1, it is sufficient to solve the inequality

aGy + dGa — \/D(G1,Ga) > =2, or equivalently
2+ aGy+dGy > \/D(Gl,Gz). (12)

Analogically to the previous case, we shall consider only (G1,Gs) such that®
pz(Gl,Gz) =aG1 +dG2 +2 > 0. (13)

(G1,G2) € p5 (above pY ) lead to at least one eigenvalue of J greater than 1

Squaring both sides of (12) we arrive at
Kiz(Gl, Gz) = (Cld — bC)Gle +aGi +dGo+ 1 > 0, (14)

(15)

which is equivalent to

((—a)(—=d) — be)G1Gy — (—a)Gy — (=d)G2 + 1 > 0.

Further analysis equals the analysis from the previous case (a,d > 0) with «,a,d and d replaced

by |al|, |a| — be/|d|, |d| and |d| — be/|a| respectively.
If ad # be, the “border” curve k3 is a hyperbola

-1

— (16)

+
d

Gy =

with (=1/a,0),(0,—1/d) € 3.
If ad = be, &Y is a line passing through (0, —1/d) and (—1/a, 0).
A fixed point (z,y) of (2) is attractive only if (G1,G2) = ¢(=,y) € v NpT. (G1,Ga) corre-

sponding to attractive fixed points of (2) must lie in (0, 1/]a|) x (0, 1/|d]).
Finally, consider the case when one of the neurons has a self-excitation link, while the other

self-inhibits itself. Without a loss of generality assume that ¢ > 0 and d < 0. Assume further
that” (G1,G2) € at U, It is sufficient to solve the inequality (8). The relevant® (Gy, G) lie

in k7 Np7 N(at U (figure 2). From a > 0,d < 0 it follows that ad — bc is negative, and

0O<a<a d<d<0.
For (G1,G32) € a™ the relevant (G, G2) lie in K?;_ N p;
It can be easily seen that 0 and x§ intersect on the line o® in (1/a,1/a) x (1/|d],1/|d|) (see

figure 2).
Added together, a fixed point (z,y) of (2) is attractive only if

$(x,y) € [xf Npy N(aT U URE NpF Na].

In particular, if (z,y) is attractive, then ¢(z,y) must lie in (0,1/a) x (0,1/]d|). Examination of
the case a < 0,d >0 in the same way leads to a conclusion that all attractive fixed points of (2)

have their corresponding (G4, G2) in (0,1/a]) x (0,1/d). B

6(G1, G2) lying under the line pg c—aGh —dGs = 2.
7(G1,G2) such that aGy + dG2 is nonnegative lie under or on the line o® : Gy = aGy/|d|.
8(G1,G2) that correspond to fixed points in which both the eigenvalues of J have the absolute value less than

one



Figure 2: An illustration for the proof of Theorem 1. a > 0,d < 0, be > 0. All (G1,Gs) € (0,1/4]2

0 and between the two branches of x{ (solid line) correspond to the

below and on the line «
attractive fixed points. So do all (G1,G2) € (0,1/4]? above o, between the two branches of &}

(dashed line).

Theorem 2: Assume be < 0. Suppose ad > 0, or ad <0 with |ad| < |be|/2. Then each fized
point (x,y) of (2) such that®

wene (1) () 0

is attractive. In particular, all fived points (x,y) for which

o(x,y) € (0,%) X (0,%)

are attractive

Proof: D(G1,G3) is no longer exclusively positive. Tt follows from analytic geometry (see for
example [2]) that D(G1,G2) = 0 defines either a single point or two lines (that can collide into
one, or disappear). Since (aGy — dG2)? > 0, D(G1,G2) = 0 is satisfied only by those (G, () for
which G1G5 > 0. Furthermore, D(0,0) = 0. Hence, DP? is either a single point — the origin, or a
pair of increasing lines (that may be the same) passing through the origin.

Assume a,d > 0. Since D(1/a,1/d) = 4be/ad < 0 and D(1/a,0) = D(0,1/d) =1 > 0, the
point (1/a,1/d) is always in'® D= while (1/a,0),(0,1/d) € D+.

First, we shall examine the case when D(G, G2) is negative. From

(ClGl —|— dG2)2 —|— |D|

A1 o] = 1

= Gle(ad - bc)

9Recall that @ and d denote a — be/d and d — be/a respectively.

10D~ is a nonempty region
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Figure 3: An illustration for the proof of Theorem 2. a,d > 0, be < 0. All (G1,G2) € D™
and below the right branch of n" (dashed line) correspond to the attractive fixed points. So do
(G1,G2) € (0,1/4]* in DT between the two branches of Y.

it follows, that (G, G2) € D, for which A1 2| < 1, lie in D~ Ny~ (figure 3), where
U(Gl, Gz) = (Cld — bC)Gle —1. (17)

It is easy to show that

11 11601<1 1<1 d 11 1167)_
a’j 3 Ei’d 77’ El a’ C’Z’ d’ an a’j 3 Ei’d N

Turn now to the case D(G,G2) > 0. Using the technique from the previous proof we conclude
that the relevant (G, G2) lie in*! DT N py Nk
DY pY k9 and n° intersect in two points as suggested by figure 3. To see this, note that for the

points on n°, it holds
1

GiGs = ad — be’

and for all (G1,G2) € P’ N p® we have
(aGy + dG9)* = 4. (18)

For G1,G2 > 0, (18) defines the line p?.
Similarly, for (G, G=) lying on &% and 7°, it holds

ClGl + dG2 = 2,

which is the definition of the line pf. 9 and n° are monotonically increasing and decreasing
respectively, and there is exactly one intersection point of the right branch of ° with each of the

two branches of x!.

Tunder the line p(l) and between the two branches of hyperbola H(l). Note that 0 < a < d, 0 < d < d.



For (Gl, Gz) & DO,

and the relevant (G, G2) are from D N p7 .
In summary, if a,d > 0, each fixed point (z,y) of (2) such that ¢(z,y) = (G1, G2) is from

cane(ud)(02)u(0)- 03

Assume a,d < 0. This case is identical to the case a,d > 0 examined above, with «,a,d, c?, I

1s attractive.

and x7 replaced by |al, |a|, |d[,|d], p3 and &F respectively.
First, note that D° is the same as before, since

(ClGl — dG2)2 = (|Cl|G1 — |d|G2)2

Furthermore, ad — be = |a||d| — be and so (G1,G2) € P~ for which |A1 2] < 1, liein D™ Ny~
Again, it directly follows that

(1 1) (1 1)60 1< 1<1 d (1 1) (1 1)67)_
IR RN IR n, =1 IPAE N T an IR ERN IR .
Jal " |d] )~ \lal" |d| jal = fal’ jd) d] lal"1d]/  \Jal" [d]

For Dt the relevant (G4, Gs) lie in DT N p; N ﬁ;
All (Gy,G2) € PPN pf lead to |A1 2| < 1. Hence, if a,d < 0, every fixed point (z,y) of (2)

such that , 1 1 1
e (0.57) < (o) v (0.5) < (07)

Finally, consider the case a > 0,d < 0. The case a < 0,d > 0 would be treated in exactly the

1s attractive.

salme mamnner.

Assume D~ is a nonempty region. Then, ad > bc must hold and

11
- — D~
() e
This can be easily seen, since for ad < be we would have

D(G1Gy) = (aGy — dGa)* + 4G1Gabe = (aGy + dGa)? + 4G1Go(be — ad) > 0

and D~ would not be a nonempty region. The sign of

1 1 be
D= —)=4(1+—-——
<a’|d|) ( +a|d|)

is determined by the sign of a|d|+ be = be — ad < 0.
(G1,G2) € D7, for which |A1 2] < 1, liein D~ Nn~ and

(1 1) (L L)E 0
aaga |El|’|d| n.

Note that d > |d| and |a| > a only if 2a|d| < |be].
Only those (G1,G2) € DY are taken into account for which |aGy + dG5| < 2. This is true for
all'? (G1,G2) € PP N py N pd (figure 4).

12(G1, G2) between the lines p(l) and pg.

10
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Figure 4: An illustration for the proof of Theorem 2, when D > 0. a > 0,d < 0, be < 0. If
ad — be < 0, the branches of k) and &3 intersect on the line a”. As ad — be grows, the meeting
point moves up on the line o®. When ad = bc, the branches deform into the lines and as ad—bc > 0

grows further, the two branches move towards the axis G; = 0,G5 = 0.

If D(G1,G2) > 0, the inequalities to be solved depend on the sign of aGy + dGs. Following
the same reasoning as in the proof of Theorem 1, we conclude that the relevant (G, G2) lie in
kT Npr N(aTUa®) Uk NpF na™l.

When ad —be < 0, the branches of k{ and k3 intersect on the line a” in (1/a, 00) x (1/|d|, o0).
As ad — be grows, the meeting point moves up on the line o”. When ad = be, the branches
deform into the lines and as ad — bec > 0 grows further, the two branches move towards the axis

G1=0,G2 =0 (figure 4). [ |

In the proof of Theorem 1, we have seen that if a > 0,d < 0 and bc > 0, then all (G1,Gs) €
(0,1/a)x (0, 1/|ci|) potentially correspond to attractive fixed points of (2) (figure 2). In the proof of
the last Theorem it was shown that when a > 0,d < 0,bc < 0,if 2a|d| > |be|, then (1/a,1/|d])is
on or under the right branch of n° and each (G1,Gs) € (0,1/a) x (0, 1/|d|) potentially corresponds

to an attractive fixed point of (2). Hence, the following Theorem can be formulated:

Theorem 3: If ad <0 and

o be >0, then every fized point (x,y) of (2) such that
1 1
¢$ay € <0aT) X <0a_~)
() lal |d|

o be < 0 with |ad| > |bc|/2, then each fized point (x,y) of (2) satisfying

cene(05) o)

11

18 attractive.



18 attractive.

Now, we transform our results into the (z, y)-space of neuron activations. For u > 4, define
4

Au) = 1——.

() :

In Theorems 1, 2 and 3 a structure reflecting stability types of the fixed points of (2) was introduced
into the (G4, G2)-space. The region (0,1/4]% in (G1, G=2)-plane corresponds to four regions

O ) ) () )

in the (z,y)-space. In particular, for each (G1,G2) € (0,1/4]?, under the map ¢, there are four

e (o) @) e

Results formulated in Theorems 1, 2 and 3 can now be stated for the space of activations of

preimages

recurrent neurons.

For o > 4,8 > 4, the regions of the (z, y)-space

(0, % - A(a)) X (0, % - A(é)) :

(-0 4] o3 -20) 0 -200)- (320§

(13 l] o« (- a0 ]

are denoted by R4 (v, 8), R5,(,6) and RE («, §) respectively. Regions symmetrical to RZ(«a, 8), R5y(a, 6)
and RE(«, 8) with respect to the line @ = 1/2 are denoted by Ri\(a,6), R{y(a,d) and RE (a,é)
respectively. Similarly, let R% («,6), R5;(a,6) and RE(«,8) denote the regions symmetrical to
Riy(a, 8), Ray(a,6) and RE (v, 6) with respect to the line y = 1/2. Finally, R («,$), R (a, )

and RE (a, &) denote regions that are symmetrical to RZ (a, 8), R5,(, 6) and RE (v, §) with respect

to the line # = 1/2 (figure 5).

and

Corollary 1: If be >0, |a| > 4,[d| > 4, then all attractive fized points of (2) liein ;o1 RA(la|,|d]),
where T is the index set T = {00,10,01, 11}.

Corollary 2: If be< 0, ad <0, |a| >4, |d| >4 and |ad| > |bc|/2, then all fized points of (2)
lying in Ujes R2(la|,|d]), T ={00,10,01,11} are attractive.

Corollary 3: If |a|, |c?| >4 and one of the following conditions s satisfied
e bc>0 and ad <0

e be< 0 and ad >0

12
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Figure 5: Partitioning of the network state space according to stability types of the fixed points.

e be<0,ad <0 and |ad| < |be|/2

then all fized points of (2) lying in Uo7 RA(lal, |c?|), 7 =4{00,10,01,11} are altractive.

For an insight into a bifurcation mechanism (explored in section 5) by which attractive fixed points
of (2) are created (or dismissed), it is useful to have an idea where other types of fixed points can
lie. For the case when both neurons are either self-exciting, or self-inhibiting ( ad > 0), and their

mutual interaction is of the same character (be > 0), we have the following theorem:

Theorem 4: Suppose ad > 0,bc > 0, |a| > 4,|d| > 4. Then the following can be said aboul the
fized points of (2):

e attractive points can lie only in | J;cs RA(la|,|d]), T ={00,10,01,11}.

o if ad > be/2, then all fired points in | J;c1 R?(la|,|d]) are saddle points; repulsive points
can lie only in | J;c7 RE(|al, |d]).

o if Jad —bc| < dmin{|a|,|d|}, then there are no repellors.

Proof: Regions for attractive fixed points result from Corollary 1.

Consider first the case a,d > 0. A fixed point (z,y) of (2) is a saddle if |Az] < 1 and
[A1] = A > L

Assume ad > be. Then

0 < v/(aG1 + dG2)? — 4G1Ga(ad — be) = /D(G1, Go) < aGy + dGs.
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It follows that if aGy+dGa < 2,i.e. (G1,G2) € p7, 0 < aGy+dGs—+/D(G1,G2) < 2 holds
and 0 < Ay < 1.

For (G1,G2) € pY U p, we solve the inequality aGy + dG2 — \/D(G1,G2) < 2, that is satisfied
by (G1,G2) from k7 N (p] U pi")

It can be seen (figure 1) that in all fixed points (z,y) of (2) with

steane (0.1] « (omin{E Yo (omin {1 11] « (0]

the eigenvalue Az > 0 is less than 1. This is certainly true for all (#,y) such that ¢(x,y) €
(0,1/4] x (0,1/d) U (0,1/a) x (0,1/4]. In particular, the preimages of (G1,G2) € (1/a,1/4] x
(0,1/d) U (0,1/a) x (1/d,1/4] under ¢ define the region J;.; R?(a,d) where only saddle fixed
points of (2) can lie.

Fixed points (z,y) whose images under ¢ lie in xF N pi are repellors. No (G, G2) can lie
in that region, if @, d < 4, that is, if d(a —4) < be and a(d — 4) < be, which is equivalent to
max{a(d —4),d(a —4)} < be.

In the case ad = be, we have \/m = a1 + dG2 and so Ay = 0. Hence, there are no
repelling points if ad = be.

Assume ad < be. Then \/m > a(G1 4 dGo, which implies that As is negative. It follows
that the inequality to be solved is aG1 +dGo — \/m > —2. Tt is satisfied by (G, G2) from
k3. If 2ad > be, for the coefficients of £ we have |d| < a and |d| < d.

Fixed points (z,y) with

e (o] (omn o o 1) (03]

have [As| less than 1. If 2ad > be, this is true for all (z, y) such that ¢(z,y) € (0,1/4] x (0,1/d)U
(0,1/a)x(0,1/4] and the preimages of (G1,G3) € (1/a,1/4] x (0,1/d)U(0,1/a) x (1/d,1/4] under
¢ define the region | J;c7 R?(a,d) where only saddle fixed points of (2) can lie.

There are no repellors if |al, |c?| <4, that is, if min{a(d+4),d(a+4)} > be.

If we examined the case a,d < 0 in the same spirit as the case a,d > 0 we would conclude that

o if ad > be, in all fixed points (z,y) of (2) with

= (03] oo oo ] 01

[A1] < 1. Surely, this is true for all (z, y) such that ¢(x,y) € (0,1/4] x (0, 1/]d])U (0, 1/]a]) x
(0,1/4]. The preimages of (G1,G2) € (1/]al, 1/4] x (0,1/]d|) U (0,1/]a|) x (1/]d], 1/4] under
¢ define the region ;.7 R (|al,|d|) where only saddle fixed points of (2) can lie. There are
no repellors if |a], |d| < 4, that is, if |d|(Ja] —4) < be and |a|(|d| — 4) < be, which is equivalent
to maz{lal(|d) - 4), d|(Ja] - 4)} < be.

e in the case ad = be, we have \/D(G1,G2) = |aG1 + dG3| and so Ay = 0. Hence, there are

no repelling points.

o if ad < be, in all fixed points (z,y) with
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A113 s less than 1. If 2ad > be, this is true for all (z,y) such that ¢(x,y) € (0,1/4] x
(0,1/]d]) U (0,1/]a]) x (0,1/4] and the preimages of (Gy,Gs) € (1/]al,1/4] x (0,1/]d]) U
(0,1/]al) x (1/]d|,1/4] under ¢ define the region |J;c7 Rj (|al, |d]) where only saddle fixed
points of (2) can lie. There are no repellors if a,d <4, that is, if min{|a|(|d|+ 4), |d|(Ja]| +
)} > be.

In general, we have shown that if
e ad<bc and ad+4min{|al,|d|} > be, or
e ad=bc, or
e ad>bc and ad —4min{|al,|d|} < be,

then there are no repellors. |l

4 Quantitative analysis

In this section we are concerned with the actual position of fixed points of (2). We study, how
the coefficients «,b,t1,¢,d and t5 effect the position and the number of the fixed points. It is
illustrative first to concentrate on a single neuron from a pair of neurons.

Denote the values of the weights associated with the self-loop of the selected neuron and with
the interconnection link from the other neuron to the selected neuron by s and r respectively. The
constant input to the selected neuron is denoted by t. If the activations of the selected neuron and
the other neuron are u and v respectively, then the activation of the selected neuron at the next
time step is'* g(su+rv+1t). If the activation of the selected neuron is not to change, (u, v) should

lie on the curve f; ;4

1 U
v=Ffori(u)= - (—t—su—i—lnl_u) . (20)
In(u/(1 —u)):(0,1) — R, is a monotonically increasing function with
lim In = —oo and lim In = 00.
u—0+ —u u—1- —u

The linear function —su + ¢ cannot influence these assymptotical properties, it can, however,
locally influence the “shape” of f;, . In particular while the effect of the constant term —t is
just a vertical shift of the whole function, —su (if decreasing, i.e. if s > 0, and “sufficiently
large” ) has the power to overcome for a while the increasing tendencies of In(u/(1 — u)). More
precisely, if s > 4 then the term —su causes the function —su —t 4+ In(u/(1 —u)) to “bend”

so that on . .
52603+ 50)

it 1s decreasing, while it still increases on

(0, % - A(s)) U (% +A(s), 1) .

—su—t+In(u/(1—u)) is always concave and convex on (0,1/2) and (1/2, 1) respectively. Finally,
the coefficient r scales the whole function and flips it around the u—axis, if r < 0. A graph of

fs rt(u) is presented in figure 6.

13\ is positive
Mrecall, that g the sigmoid function g(£) = 1/(1 + e~%)
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Figure 6: Graph of f;,+(u). Solid and dotted lines represent the cases t,s = 0,7 > 0 and

t =0,s > 4,r > 0. Dashed line shows the graph when ¢ < 0,5 > 4 and r > 0. Negative external
input ¢ shifts the bended part into v > 0.

We characterize the neurons according to the sign of weights of the links stemming out of them.
A neuron is said to be greedy if it self-excites itself, but inhibits the other neuron (the weight of
the link to the other neuron is negative). A neuron is said to be altruistic if the opposite is true,
1.e. if it self-inhibits itself, but excites the other neuron. An enthusiastic neuron excites both itself
and the other neuron, while a depressed neuron inhibits everything including itself.

There are (3)+4 = 10 possible cases of the coexistence of the two neurons. A fixed point

represents a “compromise” achieved by both neurons in that the state of the system, once in
a fixed point, does not change. Of course, just as with fixed points, the compromise can be
characterized by various forms of stability. Based on the results from the previous section, in some
cases we are able to predict the stability type of the fixed points of (2) according to their position
in the neurons’ activation space.

Each fixed point of (2) lies on the intersection of two curves y = fap 4, (2),2 = fa.1,(y). We
present some illustrative examples of the analysis of the position and the number of fixed points of
(2) based on the characterization of neurons proposed above. Other cases would be analyzed in a
similar manner. The external inputs are treated as artificial means to externally control the state
of the system and the discussion of each case starts with an assumption that ¢;,¢ = 0. Signs of

the coefficients a,b,¢,d are marked by + (if positive) and — (if negative).

both neurons are enthusiastic: (a,b,¢,d) = (+,+,+,+) (figure 7)
o (t1,t2 = 0) Since a,d > 0, both functions f, 5, and fq.¢, can “bend”, but they bend before
running into positive values (they bend outside (0,1)? ). Since f4 ¢, and fq ., pass only through

(1/2,1) x (0,1) and (0,1) x (1/2, 1) respectively, a fixed point only occurs in (1/2,1)?, the region
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Figure 7: f, 31, and fg.:, when both neurons are enthusiastic.

of high activity of both neurons (fs5: shown as a dashed line). There is no way to create a
fixed point in a region, say, (0,1/2) x (1/2,1) corresponding to a state where the second neuron
dominates over the first neuron.

e (t1,t3 # 0) The only way to achieve the situation described above would be to use a large
negative external input ¢; to the first neuron that would move the graph of f, ;¢ up, so that it
intersects fg.:, in (0,1/2) x (1/2,1). If we artificially inhibited the first neuron by the external
input too much, there may no longer be a fixed point in (1/2,1)? (fa,s+, shown as a dotted line).
However, if the self-excitation loop of the first neuron is strong enough, the bended shape of f, 3+,
can retain a fixed point in (1/2,1)? in spite of the external inhibition of the first neuron (fu .,

shown as a solid line).

both neurons are depressed: (a,b,¢,d)=(—,—, —, —)

o (t1,t2 = 0) Since a,d < 0, neither of the functions f,+, and fg.:, can “bend”. fip+,
and fq .+, pass through (0,1/2) x (0,1) and (0,1) x (0,1/2) respectively. A fixed point occurs in
(0,1/2)2, the region of low activity of both neurons.

o (t1,12 # 0) Positive external input to a neuron can, however, shift the fixed point towards high

activity of that neuron.

an enthusiastic and a greedy neurons: (a,b,¢,d) = (+,—,+,+) (figure 8)

o (t1,t2 = 0) fa.cs, passes only through (0,1) x (1/2,1). The first (enthusiastic) neuron pays
for being generous (it excites the second, greedy neuron) and there is no possibility of creating
a fixed point in (1/2,1) x (0,1/2), the region of dominance of the enthusiastic neuron. Besides
the possibility that there is a fixed point in (0,1) x (1/2,1) which may be close to either of the
vertices!® (0,1) or (1, 1), there is a chance of having fixed points near both vertices (in fact there

will be another fixed point “between” them) at one time. This can be achieved by a “cooperation”

15depending on how strong is the self-loop of the first neuron; fa,b,t, is shown as a dashed and a dotted lines
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Figure 8: fy 31, and fq.:, in the case of an enthusiastic and a greedy neurons.

between the two neurons, in that the self-loop of the first neuron and the inhibition link from the
second neuron have to have the “right” weights (they are neither too weak, nor too strong), so
that the bended function f, 5, intersects fq.:, near both of the vertices (fq 5+ shown as a solid
line).

e (11,12 # 0) An interesting situation arises when the greedy neuron is externally inhibited, but
has a strong self-loop, so that the bended part of f4 .., gets into (0,1)?. Nine fixed points can
be created. In general, a necessary condition on weights so that nine fixed points can exist is that
the weights a,d on the self-loops are positive. This enables both functions fq ¢ and fq.:, to

“bend”, and by moving the bended parts into (0, 1)?, create a complex intersection pattern.

a greedy and an altruistic neurons: (a,b,¢,d)= (+,+,—,—)

o (t1,t2 = 0) Only a single fixed point in (1/2,1) x (0,1/2) can exist. Everything is in control
of the greedy neuron.

e (t1,t2 # 0) By externally inhibiting the greedy neuron (moving the bended part of f; 5+,
upwards into (0,1)? ) more fixed points can be created. A strong external excitation of the
altruistic neuron moves fixed points into (0,1) x (1/2,1). There is even a possibility of creating a
single fixed point in the region of dominance of the altruistic neuron ( (0,1/2) x (1/2,1) ), if the

greedy and altruistic neurons are strongly externally inhibited and excited respectively, but then
the system is totally controlled by the external forces.

both neurons are greedy: (a,b,¢,d)=(+,—,—,+)

o (t1,t2 = 0) Generally, if there are no external inputs, the case of two greedy neurons is the
only case when there can be fixed points in the regions (0,1/2) x (1/2,1), (1/2,1)x (0,1/2) and
(1/2,1) x (1/2,1) at one time. Even though the neurons inhibit each other, they can increase
their self-excitation and through bended functions f, 3 ;, and fj ., introduce fixed points near the

vertices (1,0) and (0, 1) representing “winning” states of the first and second neuron respectively.
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If they, moreover, “decide to cooperate” by not self-exciting themselves and inhibiting each other
too much, a third fixed point near the high-activation vertex (1,1) can be created. Hence, to
create the most complex intersection pattern of f, ; ¢, and fq.:, without external inputs, the two

neurons should be “reasonably” greedy.

5 Creation of a new attractive fixed point through saddle

node bifurcation

In this section we bring together the results from the last two sections. Normally, to detect stability
types of the fixed points of (2), we would compute the position of the fixed points (which cannot,
in general, be done analytically) and then linearize the system (2) in those fixed points, or directly
use results of the section 3, where we have structured the network state space (0,1)? into areas
where fixed points of particular stability types can lie. Fortunately, in some cases, these areas
correspond to monotonicity intervals of the functions fq 3¢, and fi.:, defining the fixed points.
The reasoning about the stability type of the fixed points can be based on the knowledge of where
the functions intersect.

In this respect, the results of the section 3 will be useful when the neurons are enthusiastic
or greedy, with a strong tendency to self excite themselves so that the functions f, 5, and fa,. .,

“bend”, thus creating a possibility of complex intersection pattern in (0, 1)%.

For a > 4, denote the set
1
{(l‘, fa,b,tl(x)” S (O, 5 — A(a)) }

of points lying on the “first outer branch” of fq 5 (2) by ff,?tl. Analogically, the set of points

(& Sasn()] 2 € (0,5 +A(a)
{ (03 +20)}

in the “second outer branch” of f, 5+, () is denoted by ffbltl. Finally, let f;,b,tl denote the set of

points {(l,’ fapu (@) x€ (% — A(a), % + A(a)) }

on the “middle branch” of f; 4, (x). Similarly, for d > 4, ffftQ, j&clw and fc?c,tQ are used to

{hec ve (0.5 -50)
(e ve (34 20.0) |

denote the sets

and {(fdw(y)’ o)l ve (% ~ Ad), % + A(d))}

respectively.

Using the Theorem 4 we state the following corollary:

Corollary 4: Assume that each of the neurons is either enthustastic, or greedy and ad > be/2.

Then, attractive fized points of (2) can lie only on the intersection of the outer branches of fa 51,
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Figure 9: Geometrical illustration of saddle-node bifurcation in a recurrent neural network with
two state neurons. Saddle and attractive points are marked with squares and circles respectively.

a,d>0, bc<0.

and fact,. Whenever the the middle branch of fo 5+, intersects with an outer branch of fq.4+, (or
vice-versa), it corresponds to a saddle point of (2). In particular, all atiractive fized poinis of (2)
are from
U &anitl.
i,j=0,1
Every point from
fape, 0 U ffi,ty

i=0,1
or
* #i
Fiewn U fH
i=0,1

is a saddle point of (2).

When both neurons self-excite themselves, Corollary 4 suggests that the usual scenario of creation
of a new attractive fixed point is that typical of the saddle-node bifurcation in which a pair
attractive 4 saddle fixed point is created. Attractive fixed points disappear in a reverse manner:
an attractive point coalesces with with a saddle and they are annihilated. This is illustrated in
figure 9. fa.+,(y) shown as dashed curve intersects f; 3+, () in three points. By increasing d,
fa,c, bends further (solid curve) and intersects with f, 5 ¢, in five points'®. Saddle and attractive
points are marked with squares and circles respectively. Note that as d increases attractive fixed

points move closer to vertices {0, 1}%.

16 At the same time, |c| has to be also appropriately increased so as to compensate for the increase in d so that

the “bended” part of f; . does not move radically to higher values of z.
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This tendency, in the context of networks with exclusively self-exciting (or exclusively self-
inhibiting) recurrent neurons, is discussed in [13]. Our result stated in Corollary 1, assumes
two—neuron recurrent network. It only requires that the neurons have the same mutual interaction
pattern (be > 0) and gives a lower bound on the rate of convergence of the attractive fixed points

of (2) towards some of the vertices {0, 1}?, as the absolute values of weights on the self-loops grow.

Corollary 1.1: Assume be > 0, |a| > 4,|d| > 4. Then all attractive fized points of (2) lie in the

e-neighborhood of vertices of unit square, where

-= ﬂ% - A<|a|>)2 +(3- A<|d|>)2.

6 Conclusion

The regions corresponding to stability types of fixed points of a two-neuron recurrent neural net-
work were described based on the weight matrix of the network. The position of fixed points was
investigated in the context of intersections of functions defining their - and y-coordinates. It was
shown that there i1s a correspondence between the stability regions for fixed points and monotonic-
ity intervals of functions defining their position. When both neurons self-excite themselves and
have the same mutual-interaction pattern, a new attractive fixed point is created through saddle
node bifurcation. Assuming the same mutual interaction pattern between neurons, we give a lower
bound on the rate of convergence of the attractive fixed points towards the saturated activation
values, as the absolute values of weights on the self-loops grow.

Our ultimate goal is to extend the issues studied in this paper to a general case of n-neuron
recurrent neural network. It is to be seen whether the reasoning in the space of derivatives of the
sigmoid transfer function with respect to the weighted sum of neuron inputs, can be simplified to a
more straightforward analysis of fixed point stability regions (as opposed to the case-analysis used
in the proofs of this paper).

As explained in the introduction, training process during which recurrent neural networks learn
to act as finite state machines can be interpreted from the point of view of bifurcation analysis [18].
Often, loops in state transition diagram of the finite state machine being learned are represented as
attractive fixed points of the network. Understaning the fixed point potential of recurrent neural
networks (number, stability, bifurcations of fixed points) can bring some light into the problem
of neural complexity of finite state machines which (to our knowledge) has not been satisfactorily
solved so far (see [1], [15] and [20]). Neural complexity of a finite state machine can be characterized

as the minimal number of neurons needed so that the network can mimic the finite state machine.
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