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Abstract. The controllability of & general linear time-invariant multiparameter singu-
larly perturbed system is studied with no @ priori assumptions on the relative magni-
tudes of the small parameters. It is shown how Kokotovic and Haddad’s result on per-
sistence of controllability under singular perturbations in the single parameter case
extends to this more general setting. The separation of the system eigenvalues into ‘slow’
and ‘fast’ groups is proved here for the first time and employed ip the analysis. It is
found that one does not expect controllability for all sufficiently small values of the
parameters, but conditions are given for this property to hold for almost all sufficiently
small values of the small parameters. Moreover, one can describe the set in parameter
space for which the system is not controllable.
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INTRODUCTION

The characterization of controllability of linear time-invariant
singularly perturbed systems involving one singular perturba-
tion parameter has been studied by Kokotovic and Haddad
(1975) and extended by Chow (1977). These systems often
take the form

(1a)
(1b)

Here z € R*, y € R™, v € R™ is the control, the Aiz, B are
matrices of conformable dimensions, and the dot denotes
difflerentiation with respect to time ¢. The basic result (Koko-
tovic and Haddad, 1975) asserts that Eq. (1) is controllsble for
all sufficiently small positive ¢ if {i) the associsted reduced
system obtained by formally setting ¢ = 0 in (1) is controlk
able, and (ii') the boundary-layer system of (1), obtained by
making a change in time-scale r = /¢ in (1) and then setting
¢=0, 5 =0, is controllable. This can be summarized as fol
Jows.

;—Anz + Ax',y + Bys

(; = Apyx + Agy + Bgw.

Lemmas 1. Assume Ay, is nonsingular and let the pairs
(Az, Bz}, (An-ApAzAg, By-AAgB,) be controllable,
then there is an ¢ > 0 such that for 0 < ¢ < ¢, the system (1)
is controllable.

Recently there has been considerable interest in the analysia
of singularly perturbed systems involving several independent
small parameters ¢;, ..., ¢. These so-called multiparameter
singular perturbation problems facilitate s more realistic
approach to the modeling of unknown parssitics. Denoting by
¢ the vector (e, ..., ¢y ) of small parameters, these systems
may be displayed compactly as follows (Khalil and Kokotovic,
1979; Khalil, 1979; Abed, 1985; Abed, 1086a)

SewmAns + Ayy + Bye (2s)
E(!); - Aye + A.' + B.I (2b)
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where E(e) :== block diag (¢, ], peo-iat I, ) With each parameter
¢; positive. Here, I, denotes the & X identity matrix.
Results on the asymptotic stability of Eq. (2) (with « me 0)
have been obtained by Khalil and Kokotovic (1979) for the
(two time-scale) case in which the mutual ratios ¢ [e; wre
assumed bounded away from zero and infinity by fixed con-
stants. Abed (1086a, 1986b) has recently obtained stability

"results for Eq. (2) whick apply regardless of the mutual ratios

€ /ey

The purpose of this paper is to obtain results analogous to
Lemma 1 for the controllability of the multiparameter singu-
larly perturbed system (2). As a complementary result,
interesting in its own right, a formal proof of the separation
of fast and slow modes of (2) is given for the first time. The
development of the paper is as follows. The next section con-
tains relevant background material. In the third section a
transformation of varisbles is employed to separate fast and
slow dynamics, and s matrix eigenvalue inequality is used to
prove that the modes of (2) separate into distinct fast and
slow groups for small k. In the fourth section, the controlla-
bility of (2) is investigated, with special attention to the
dependence of the controllability of (2) on the small
parsmeters ¢;. The final section contains a simple example
illustrating some of the ideas.

BACKGROUND AND PRELIMINARIES

As this study is motivated by the considerations of various
suthors, especially Kokotovic and Haddad (1975) and Chow
(1977), on the preservation of ocontrollability of single-
parameter singularly perturbed systems, it seems appropriate
to recall the basic concepts and results for the single-
parameter case. Lemma 1 above first appeared in (Kokotovic
and Haddad, 1975) and provides a useful sufficient condition
for the controllability of (1) for all sufficiently small values of
the singular perturbation parsmeter ¢. The results of Chow



(1977) nicely complement Lemma 1. For instance, it is natural
to ask whether or not the converse of Lemma 1 holds. Chow
(1977) showed by example that the converse does not hold.
That is, it is possible that (1) is controllable for all sufficiently
small values of the parameter ¢ and yet the associated fast
and slow subsystems are not (both) controllable. This obser-
vation led Chow (1877) to introduce the following definitions.

Definition 1. System (1) is said to be weakly contrellable if it
is controllable for all sufficiently small and positive values of
the parameter ¢, but loses its controllability in the limit ¢ — 0.

Definition 2. System (1) is said to be strongly controllable if
it is controllable for all sufficiently small values of the param-
eter ¢, as well as in the limit ¢ — 0.

In studying the implications of weak and strong controllabil-
ity, Chow (1977) noted that the feedback gain needed to place
the weakly controllable eigenvalues of a singularly perturbed
system (1) approaches infinity as ¢ — 0 with order 1/¢ or
higher. Hence weak controllability is not desirable in practice.
As s necessary and sufficient condition for strong controllabil-
ity, Chow (1977) gave the following result.

Lemma 2. Assume Ay is nonsingular. Then (1) is strongly

controllable near ¢ =0 if and only if the pairs (Ag, Bj),
(Au-ApAZAy, B, - A Az By) are controllable.

The next assumption will hold throughout the remainder of
the paper. '
Assumption 1. The matrix A is nonsingular.

DECOUPLING OF FAST AND SLOW
DYNAMICS

The system equations (2) can be rewritten as
;-Anl’ + A"’ + B]. ‘3.)

y=EN)Ays + ENeJAny + EYe)Bav. (3b)

The eigenvalues of this system can be grouped into two dis-
tinct sets, one set corresponding to the ‘slow subsystem’ and
the other to the ‘fast subsystem.’ Separation of these modes
enables one to obtain two decoupled subsystems. In order to
sccomplish this decomposition it is useful to block-diagonalize
the Jacobian matrix

I = [E"?‘l)’Am E':z‘l)'j‘n]‘ “

Consider the similarity transformation (Chang, 1972)
(B-6 ") (-Lw D6

w-: T'(c) (;) (5)

where M apd L are continuous matrix functions of ¢ specified
next. The matrix L is calculated so that

1 I

el g

- [Au"'AnL A ] (6)
Elg(l,e) -LAy+E'Ag .

is block upper triangular, where the notation E == E(¢) has
been introduced, and g(L, ¢) is defined as

o(L €)== Ag + Al -ELA,, -~ ELA L. (7
That is, one requires L to satisfy
t{L,e)=0. {8)
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Note that g( - Az A4 .0) = 0 and that the Fréchet derivative

8 4.
oL — A=

is nonsingular by Assumption 1. The Implicit Function
Theorem therefore implies the existence of a continuous
matrix function L =L{e) with L{0)= -Azid, and
¢ (L {e)e) = 0 in a neighborhood of this solution and of ¢ = 0.

Likewise, M is chosen such that

G Mo e

An+Aul  A(M,O)E Ay
- [ 0 -LA ,:+E"Ag] )
s block diagonal, where 4 (A7, ¢) is defined as
A(M )= A MASE + A LMAZE
+ ApAZRE + MLARAZRE AL (10)
Therefore Af should satisly
A(M &) =0. (1)

Now A ({0,0) == 0 and the Fréchet derivative

EIN
aM
s nonsingular. Hence there exists a continuous matrix fune-
tion M{¢) such that A (0) = 0 and A{M{),¢) 0 in xome
neighborhood of ¢ = 0.

-1

From these considerations it follows that T'(¢) of q. (5)
satisfies

T () ()T <)

Ay +Apl 0 ]
- [ 0 LAyt B ‘A._._.] (12)
with P
! 0
T(0) = [Aé,/121 ,], (13)
The change of coordinates (5) therefore yields the system
Ex(Ay + ApL)E 1 Bl (14a)
E(en=(Am - ELA + B3()x ) (1ih)
where B/ (¢}, B3 (¢) are delined as
Bi()=B, + MLB, - A \MAZ I, (15a)
Bilc)~ ELB, + B, (15b)

This follows from (11) and (13). Note that H{{0) =
B, - ApAZB, and B;(0) = B,

In (14), the first equation corresponds to the slow subsystem
and the second to the fast subsystem. Note that the eigen-
values of the slow subsystem remain bounded as ¢; — 0,
¢ =1,.,M, indeed approach thosc of A, - ApAZA,. The
remainder of this section is devoted to proving that the eigen-
values of the fast subsystem approach oo in magnitude as
kel — 0. This, then, justifies the terminology “fast subsystem”
and “slow subsystem.” Note that the result holds as the
small parameters ¢, approach 0 without regard to their relo-
tive magnitudes. The exact result proved next is summarized
in the following theorem.

Theorem 1. The magnitude of each of the eigenvalues of
E)Ag - E{e)L(€)A5) approaches oo as fe] —~ 0, while the
eigenvalues of A, + Al (¢) remain bounded as kf — o.
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Proof: From elementary linear algebrs, it follows that the
magnitude of each eigenvalue of a matrix X is bounded below
by §X-Y-*. This holds for any induced matrix norm. Applying
this to the matrix E-'(Ag - ELA,,) gives, using the Schwarz
inequality:

Ap(EN Ay ~ ELAY) 2 KAm - ELALY'El?  (16)
2 WAy - ELAG P BN, (17)

where A, (X) denotes the eigenvalue of a square matrix X of
least magnitude. Choosing a sufficiently small neighborhood
of ¢ = 0, say k;| < ¢, ¢ = 1,..,M, such that

Mz - EQ@L@AGT > ZUET
for all ;| < ¢. It follows that in that neighborhood of ¢ == 0,
Ma(EHHAm - E@L(AR) > FMUETI (8)

for some K which can be chosen independent of ¢ The
theorem statement follows.

CONTROLLABILITY

Controllability of the overall system (14) follows from the

controllability of the slow and fast subsystems (14a) and
(14b), respectively, as long as the eigenvalues of these subsys-
tems never coincide. This follows by an application of the
Popov-Belevitch-Hautus (PBH) rank test (see (Kailath, 1080))
for controllability of linear time-invariant systems to (14).
(Recall that this test simply says that the pair (4 ,B) is con-
trollable iff the matrix (\] - A ,B) is full rank for all eigen-
values X of A.) The next result guarantees that the eigen-
values of the slow and fast subsystem do not coincide, for all
sufficiently small e} It follows directly from Theorem 1.

Corollary 1. None of the eigenvalues of (A, + A,L) and
EAg - ELA,) coincide, for all sufficiently small e}

It is now possible to conclude controllability of the ovenll:'

system from that of the (decoupled) slow and fast subsystems
(14a), (14b), respectively. The slow subsystem (14a) is con-
trollable for € in some neighborbood of 0 if
(A - ApAglAg, B,) is & controllable pair. This follows
easily from continuity of Eq. (142) in ¢ and the fact that con-
trollability is a robust property of linear time-invariant sys-
tems. The fast subsystem {14b) is controllable if the psir

(E7()An - L{e)Ar, E{)B: () (19)

is controllable. To guaranice that this will be the case for all
sufliciently small k}, one seeks conditions such that the pair

(E"(e)An, E*Y(¢)B3). {20)
is controllable for all sufficiently small kl, and moreover that
this remains true under slight perturbations of the matrices
Ap and B;. This is because the pair (19) arises from (20} by
an O (kD perturbation of the matrices Ag, By

(ENAz - ELAy), E'B, + ELB))). (21)

At this stage it is useful to introduce a definition characteriz-

ing the type of controllability required for the pair in Eq. (20)
a8 it relates to Ay and B, The definitions below are
motivated by the notion of “‘strong D-stability” introduced by
Abed (1986a).

Definition 8. The pair (A, B) of matrices is said to be D-
eontrollable if for any diagonal matrix D with strictly positive
diagonal elements, (DA, DB) is s controllable pair. Moreover,
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if the disgonal matrix D is restricted to be of the form
D = block ding (43, dalmy, . - ., dulu,)

with &; > 0, ¢ == 1,..., M, then (A, B} is said to be block D-
controliable (with respect to the multsindex (my, ..., my)).

Definition 4. The pair (4, B) of matrices is strongly D-
controllable if it is D-controllable and if it remains so under
arbitrary small perturbations of the matrices A, B. The
analogous notion of strong block D-controllability is similarly
defined.

Note the difference in the meanings of Chow’s (1977) “strong
controllability” (ef. Definition 2 sbove) and the foregoing
notion of “strong D-controllability.” The former concerns the
influence on controllability of changes in the singular pertur.
bation parameters, while the latter deals exclusively with per-
turbations in the plant model.

The following result follows from the preceding discussion.

Theorem 2. Assume Az is nonsingular. If the pair
(An-ApAz'Ag, By~ ApAgB,) is controllable and the pair
{Ag. B} is strongly block D-controllable (with respect to the
multiindex (my,mg, ..., my) ), then there is an ¢ > 0 such
that for 0 < kl < ¢ the system (2) is controliable.

It will become apparent toward the end of this section that
typically the hypothesis of strong block D-controllability of
(A g, Bs) will not be satisfied. (Assuming, of course, that there
are fewer inputs than state variables.) Indeed, even the lesser
requirement of block D-controllability is rarely satisfied.
Hence, Theorem 2 above is mainly of academic interest. Pro-
position 1 below gives a partial resolution of this issue.

To link Theorem 2 with Chow's (1977) result on strong con-
trollability in the single parameter case, the following Conjec-
ture is offered.

Conjecture 1. The assumptions of Theorem 2 sre necessary
and sufficient for the strong controllability of Eq. (2), where
“strong controllability” is in the sense of Definition 2 (Chow,
1977) with ¢ replaced by kl.

A similarity transformation can be used to show that the type
of controllability for the pair in Eq. (20) referred to sbove
(i.e., strong block D-controllability) is equivalent to controlls-
bility of the pair

{AnE™¢), By) (22)

for all small k{ and robustness of this property to small per-
turbations in A4, and B,.

The controllability matrix for this last pair {i.e., Eq. (22)) is
{(Ba AnE™, ..., (AgE™)""'B,). (23)

Recall that Ay is m Xm and B, is m Xn;. Choose all poesi-
ble combinations of m columns from the matrix in Eq. (23),
and comstruct the corresponding finite set of m Xm matrices.
The determinants of these matrices are polynomials in the
reciprocals of the parameters ¢,. Whether or not these polyno-
mials are all zero at a point ¢ determines whether or not the
pair (23) is controllable. Replace these polynomials in the
reciprocals of the ¢; by polynomials in ¢, by multiplying each
by the necemssry powers of the ¢;. In this way, wrrive at a
finite set of polynomials

$i(e), 5§ =1,..J



such that (23) is not of full rank for some ¢ == ¢” precisely
when

Vil )=0, j=1..J

‘The study of the zeros of a set of polynomials in several vari-
ables i a topic of algebraic geometry (Hartshorne, 1977).
Without entering into this difficult topic it is none the less
pertinent to note here that if any of the polynomials #;(c")
generated from the controllability matrix (23) is nontrivial
then the pair (AE7Y¢), Bs) is controllable for almost all
values of ¢. Typically, if at some point ¢ == (¢,", ..., ) one
has ¢;(e") = 0, j = 1,..,7 but

iAdl o%;
—a(—l‘ . p?T;I,n)*o

o9;

.- (-8-!-l— leor oo
then ¢;'(0), the preimage of 0, is Jocally near ¢ == e® a sub-
manifold of dimension m - 1 (Guillemin and Pollack, 1974).
One says that ¢,(¢) is a submersion from R¥ to R near ¢’.
It will become apparent below that typically ¥;(¢) is not a
submersion at ¢ = 0. The following claim can, however, be
made.

Proposition 1. If not all the ¢¥;(¢) are trivial then locally
near ¢ == 0, the pair {AnE"Y(¢), B;) is controliable except possi-
bly on the union of finitely many submanifolds of dimension
M - 1. Moreover, this conclusion will also hold for the pair
(E-'Ag - LAy, E-BS).

Proof: First note that the last statement in the Proposition
follows from the first, since the assumption on the polynomi-
als ¢; is robust to small perturbations in Ay and B,. Now
suppose ¥;{¢) is nontrivial. Note that ¢, is & homogeneous
polynomisl, i.e. ¥;(e) = 0 implies y;(Ae) =0 for all AER.
Denote by ¢ the degree of ¥;. That is, ¥, (¢) is & linear combi-
nation of terms of the form

C:'l:""l:r
where i, + 63 + **- + Gy =mgq. It is easy to see that
i
$@=0 T 4@lmo=0 for rSe-1 mad

8% $; = constant (i.e. all partial derivatives of order ¢ are con-
stants). Because ¥; i nontrivial one of these, say
&y,
8"!,8"4, s BMey
s nongero. This implies that any one of its primitives
)
:.'—.,('W is & submersion at ¢ = 0. That is, locally near ¢ = 0,
(g%-w,r'(o) s a submanifold of dimension M - 1 which

will be denoted M,. Consider now one of the primitives of
the primitive above, which for simplicity is denoted a2y,
Locally near ¢ =0 the set (8%, )'(0) - M, is itsell a sub-
manifold of dimension M - 1. This follows from the fact that
for sny 7€ ('3, ) (0) - M,, 8'"y; s s submemion at ¢
since its derivative 8'¢, is nonzero. Therefore locally near
e=7 (83 )'0) - M, is a submanifold of dimension
M -1. As this is true for all ¢ near szero,
My = (802, 7(0) - M, is itsell & submanifold of dimension
M-1 5o that for ¢ nesr sero, ¢fM, implies (872, y'(c) ¢ 0.
Repeating this argument, the set 89-%%;'(0) - (M ,UM;) =: M,
is & submanifold of dimension A/ - 1 and 8o on. Finally, one
obtains a set ¢;'(0) ~ (M UM, ' UM,.;) which is iteelf »
submanifold M, of dimension M - 1. Thus ¢,{c) 96 0 for ¢
not in the union M,UM, - - - UM, , proving the claim.
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AN EXAMPLE

The following example of a system whose fast subsystem is
two-dimensional may illuminate some of the foregoing
remarks.

Consider & system with m == 2, n, = 1. Denote the elements
of Ay by #;, i,j = 1,2, and those of B, by b,, b,. Then the
controllability matrix (23) is 2x2, and one can check that it is
singular precisely when

—efendd + epbiby) + efagdd - ay b by =0

This is a homogeneous polynomial in two variables of degree
one. Note that its zeros are the points of a line (a submanifold
of dimension m-1) passing through the origin in the (€1, €2)
plane. The pair (A, B.) is strongly D-controllable if the line
hes negative slope. Otherwise controllability will be assured if
this line is avoided, as in Proposition 1.
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