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Abstract

In this paper we evaluate the classification accuracy of four statistical and three neural
network classifiers for two image based pattern classification problems. These are fingerprint
classification and optical character recognition (OCR) for isolated handprinted digits. The
evaluation results reported here should be useful for designers of practical systems for these
two important commercial applications. For the OCR problem, the Karhunen-Loeve (K-L)
transform of the images is used to generate the input feature set. Similarly for the fingerprint
problem, the K-L transform of the ridge directions is used to generate the input feature
set. The statistical classifiers used were Euclidean minimum distance, quadratic minimum
distance, normal, and k-nearest neighbor. The neural network classifiers used were multi-
layer perceptron, radial basis function, and probabilistic. The OCR data consisted of 7,480
digit images for training and 23,140 digit images for testing. The fingerprint data consisted
of 2,000 training and 2,000 testing images. In addition to evaluation for accuracy, the multi-
layer perceptron and radial basis function networks were evaluated for size and generalization
capability. For the evaluated datasets the best accuracy obtained for either problem was
provided by the probabilistic neural network, where the minimum classification error was

2.5% for OCR and 7.2% for fingerprints.



1 Introduction

Over the last thirty years, significant progress has been made in the theory and design
of pattern classifiers for a number of practical problems drawn from character recognition,
fingerprint classification, biomedical applications, and automatic target recognition. Prior
to the re-emergence of Neural Network (NN) techniques, the dominant paradigms were
statistical, structural, and syntactic. Since the mid-eighties, NN techniques have raised the
possibility of realizing fast, adaptive systems for pattern classification. In spite of all these
advances, very little has been done on evaluating the different classifiers for one or more
applications. Only recently, a probabilistic model has been proposed [1] for the evaluation
of NN classifiers, with results on synthetic data. Known theoretical results on error bounds
and probabilities are often based on ideal distributions of class conditional densities and/or
on infinite samples. Thus a purely theoretical evaluation of a wide variety of classifiers for
finite samples is very difficult. However, one can make such an evaluation by empirically
observing the performance of a number of classifiers on a very large dataset. As of now, such
studies have not been widely published. The reasons may be one or more of the following:
a) inadequate computational resources, b) non-availability of large datasets, and c) a general
dislike for doing evaluations or comparative studies. Given that pattern classification is a
mature area and that several NN approaches have emerged, the time is ripe for an evaluation
of the different classifiers for a specific application domain. Such a study should involve a

large dataset and also should be unbiased.

Over the last year, the Image Recognition Group at the National Institute of Standards
and Technology (NIST) has undertaken such evaluation tasks for two important problems:
OCR and fingerprint classification. This paper is a report on this evaluation study. We
evaluate four statistical classifiers and three NN classifiers. The statistical classifiers are Eu-
clidean Minimum Distance (EMD), Quadratic Minimum Distance (QMD), Normal (NRML),
and k-Nearest Neighbor (k-NN). The three neural classifiers included in the evaluation are
the Multi-Layer Perceptron (MLP), Radial Basis Functions (RBF), and a Probabilistic Neu-
ral Network (PNN). For a given application, all the classifiers were given the same feature

sets. Misclassification errors are tabulated as a function of feature dimension and classifier



parameters such as the number of hidden units, etc. These tables should be very useful for
designers of OCR and fingerprint classification systems. Although we have used moderately
large datasets, we refrain from drawing conclusions on the performance of classifiers since
the classifiers have not been optimized in terms of best features, code efficiency, etc. We
hope that with the availability of enormous computational resources, more such evaluation
studies on large datasets can be undertaken. A limited performance evaluation study using
a statistical classifier and a backpropagation algorithm for the recognition of handwritten

numerals can be found in [2].

The organization of the paper is as follows. After a brief introduction to the OCR and
fingerprint classification problems in Section 1, we discuss, in Section 2, the datasets used
in the experiments. The system components are described in Section 3. The structures
of the various classifiers used are described in Section 4. Section 5 provides the results of
classification experiments. In addition, variation of classification accuracy with respect to

the size and generalization capability of NN is studied for RBF and PNN in Section 6.

1.1 The OCR problem

OCR has been a popular focus of pattern recognition research since at least the 1960’s.
The ready availability of image samples and the continuing challenge of commercially viable
recognition has kept OCR research ongoing. Classification of loosely constrained handwritten

digits, at least, is largely a solved problem [3].

A good review of OCR can be found in [4]. A huge quantity of research from academia
and industry has yielded a multitude of algorithms for normalization [5, 6], feature extrac-
tion [7], and classification [8, 9, 10, 11], that are capable of OCR of digits. The popularity
of OCR research has increased with the advent of NN paradigms applicable to feature ex-
traction and classification. The advantage of many NN classifiers, once trained, is their
efficiency. In future commercial segmentation and recognition efforts [12, 13], lack of effi-
ciency will preclude using numerous techniques from the literature because of their compu-
tational requirements. The trade-off between classification performance and computational

requirements has prompted this study of digit classifier efficacy.



1.2 The fingerprint problem

At least three major approaches have been taken to automatic fingerprint classification.
These are the structural, syntactic, and artificial neural network (ANN) approaches. In
the structural approach [14, 15, 16], one extracts features based on minutiae and represents
the features using a graph data structure. Structural matching is done by exploiting the
topology of the features. In the syntactic approach [17], one typically approximates ridge
patterns [18] as strings of primitives and models the plausible strings from a class such as
Tented Arch using production rules as in grammar. Depending on the type of grammar used
one can see a significant drop in the number of production rules required. For example, a
context-free grammar would require fewer production rules than a regular grammar. When
a new fingerprint arrives whose identification is sought, one extracts the string of primitives
and passes it through a parser. A successful parser output indicates the class to which the
fingerprint belongs. Whether the parsing is successful or not, a description of the input string
is always generated. The more general the grammar is, the more complex the parser tends to
be. Applications of the syntactic approach using more complex grammars such as stochastic
grammars [19] (where probabilities are associated with the production rules), tree grammars
[20], and programmed grammars [21] have been considered for the fingerprint classification
problem. The main stumbling block of the syntactic approach is that mechanisms for the
inference of grammars from training samples have not been well understood [22, 23]. Recent
advances in learning the structure of a grammar from training samples using neural nets [24]
look promising.

The Image Recognition Group at NIST has recently implemented a massively parallel
NN fingerprint classification system using a parallel computer of the SIMD variety (single-
instruction-stream, multiple-data-stream) [25]. This system uses image-based ridge-valley
features. Using K-L transforms, a significant reduction in feature vector dimensions is
achieved. A MLP network trained using a conjugate gradient method is used for classi-
fication. It takes about 2.7 seconds to preprocess and classify a fingerprint using a massively
parallel computer. The system is capable of 93% classification accuracy with 10% rejects.

More recently [26], a fingerprint matching and classification system that uses a hierarchical



pyramid structure has been reported. The matching module takes two images as inputs
and outputs a number between 0 and 1. This number, which reflects the degree of belief
that the two images are from the same finger, is estimated using a probabilistic Bayesian
approach. The network parameters (about 104 in number) are trained using a steepest de-
scent procedure that minimizes a cross entropy measure. Impressive matching results are
reported. It is interesting to note that the receptive fields of the learning filter at the bottom
of the pyramid appear to be edge or ridge orientation detectors, but sometimes correspond
to minutiae detectors. This finding supports the choice of ridge direction components used

as features in the NIST system.

1.3 Generalization

The focus of most NN applications has been on error minimization. A standard method of
error minimization for real world problems is backpropagation [27] although more powerful
methods of optimization have also been used [28, 29]. In addition to the problem of error
reduction, effective generalization also requires that the information content of the network
be reduced to some minimum value [30, 31, 32]. The resulting reduced network has the
advantage of increased speed achieved by using fewer connections and is more effective in

terms of the use of information capacity to achieve a specified pattern recognition accuracy.

The optimization strategy used in this research focuses on information content and the
efficiency of information transferred to the network from the training set. This results in a
smaller network with a very high information content that allows the use of a reasonably small
training set. We have used the Boltzmann method as a secondary method of optimization
to prune the networks used here [30, 31]. The method can be used in conjunction with
a primary method of optimization such as a scaled conjugate gradient scheme [29]. The

resulting optimized MLP network has been used for both fingerprint pattern classification

and OCR.

In the case of RBF networks, the explicit network pruning used on MLP’s is unnecessary.
RBF networks are self-pruning to some degree. Unimportant connections are effectively
pruned away by the training process learning a large width; each large width effectively

deletes one connection from an input to one RBF and reduces the number of active param-
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eters by two. More pruning is done with small training sets than with large ones, and more

with large networks than with small ones.

2 Databases

2.1 OCR

The classifiers described in this report were trained and tested using feature vectors derived
from the digit images of NIST Special Database 3 [33]. This database consists of binary 128
by 128 pixel raster images segmented from the sample forms of 2100 writers published on CD

s [34]. Other results on segmentation and recognition of this database have been reported
[35]. The relative difficulties of the NIST OCR databases have been discussed in [36]. For
this study samples were drawn randomly from the first 250 writers to yield a training set of
7480 digits with a priori class probabilities all equal to 0.1. Even for digits, depending on
the application, certain classes may be more prevalent; in banking tasks, for example, “0”
is more common. The test set is similarly constructed from the second 250 writers yielding
23140 samples. The images are size normalized by pixel deletion, stroke width bounded by
binary erosion and dilation, and consistent orientation is effected by shearing rows by an
amount determined by the leftmost and rightmost pixels in the first and last rows defining

a vertical line.

2.2 Fingerprints

The classifiers described in this report were trained and tested using feature vectors derived
from the fingerprint images of NIST Special Database 4 [37]. This database consists of 8
bit per pixel gray level raster images of two inked impressions (“rollings”) of each of 2000
different fingers. The feature vectors used to train the classifiers were made from the 2000
first-rollings, and those used to test the classifiers were made from the 2000 second-rollings.
Every fingerprint in the database has an associated class label, assigned by experts. The
two rollings of any finger have the same class, since the class of a fingerprint is not affected

by variations that occur between different rollings of the finger.



Fingerprints as they naturally occur are not distributed equally into the five classes. We
have taken a summary of the NCIC classes' of fingerprints from more than 22.2 million
cards and reduced the numbers contained therein to estimates of the true frequencies or «a
priori probabilities of the five fingerprint classes. The estimated probabilities are .037, .029,
338, .317, and .279, for the classes Arch, Tented Arch, Left Loop, Right Loop, and Whorl,

respectively.

The 2000 fingers represented in Special Database 4 are equally divided among the five
classes. The database was produced this way, rather than by using a natural distribution,
so as to increase the representation of the relatively rare, and also difficult, Arch and Tented
Arch classes. This provides trainable classifiers with more examples with which to learn

these difficult classes. The training and testing sets have equally many prints of each class.

3 System Components

Each of our experimental classifiers consists of a set of components as shown in Figure 1.
The ovals represent input and output data, the rectangles represent processing components,
and the arrows represent the flow of data. The components do not necessarily correspond
to separate devices or programs; they merely represent a separation of the processing into
conceptual units, so that the overall structure may be discerned. The inputs for OCR and
fingerprints are extracted from the appropriate NIST databases. OCR images are a 32
pixel square binary raster containing a hand printed digit image extracted from a document.
The feature extraction performs a K-L transform on the normalized character image. The
fingerprint image is a raster of 512 by 512 8-bit grayscale pixels, produced by scanning the
fingerprint card with a CCD camera. The fingerprint classifiers described in this report
take as their input a small vector of numerical features derived from a fingerprint raster
image. The fingerprint is reduced to 112 features (not all of which need be used) as follows.
First, it is subjected to an FFT-based filter that increases the relative power of dominant

frequencies, increasing the ratio of signal (fingerprint ridges) to noise. The local orientations

!The NCIC classification system separates fingerprints into numerous classes, which are basically the
same as the classes used in the Henry system. The NCIC method for producing a card’s class from the
classes of its individual fingerprints is different than the summarizing method used in the Henry system.
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of the ridges at 840 equally-spaced locations (a 28 by 30 grid) are then measured, using
an orientation finder described in [25]. The orientation finder is based on a “ridge-valley”
fingerprint binarizer described in [38]. It computes an orientation at the location of each
pixel, then averages these basic orientations in nonoverlapping 16 x 16-pixel squares to
produce the grid of 840 orientations. These are used as input to a translational registration
module that attempts to standardize core location. The K-L transform of these modified

ridge directions is taken as a compact classifiable representation of the fingerprint.

Maximum

Finder

hypothesized

, o class
mput Feature Discriminant

Y

image Extractor Functions

accept or

Rejector

reject

Figure 1: Components of Classification System

For both OCR and fingerprint classification the next component of the system is the
bank of discriminant functions. There is one discriminant function for each class. Each one
produces a single floating-point number, which tends to have a large value if the input image
is of the corresponding class. The n-tuple of values produced by the bank of discriminant
functions is sent to two final components, the maximum finder and the rejector. The maxi-
mum finder finds which one of the discriminant values is highest, and assigns its class as the

hypothesized class of the image, that is, the classification system’s best guess as to the class.

In the experiments reported here, the reject option was not exercised. Experiments
including rejectors of the following form are reported in [39]. The outputs of the discriminant
functions are fed to a “confidence function”, which produces a number that is treated as if it
were a measure of reliability of the classification decision made by the maximum finder. In
other words, images that produce high values of the confidence function are considered to be
more likely to have been assigned correct classes than those that produce lower confidence

values. The following confidence function often produces good results: define its value to be
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the highest discriminant function value minus the second highest value. This is intuitively
reasonable, since it will assign low confidence to examples that are near a hypothetical class
boundary. Rejection of an image means that the classification system refuses to assign a class,
because it cannot be sufficiently certain as to the correct class. As different classifiers can
be optimized using different rejectors, we decided not to include rejectors in our evaluation

tests. This could be a topic for future study.

4 Classifiers

Each classifier consists of a bank of discriminant functions. The classifiers are separated into
three categories. It is, however, notable that the category names are somewhat arbitrary and
that some classifiers have attributes of more than one category. In the statistical pattern
recognition literature [40] parametric classifiers use variables such as the estimated means
and covariances to express the class density functions. The decision surfaces implicit in
the EMD classifier are linear. Those of the QMD and NRML classifiers are quadratic. We
categorize the EMD, QMD, and NRML methods as parametric classifiers. Non-parametric
classifiers do not adopt a structured expression of the density functions; two nearest neighbor
classifiers, the popular £-NN and an improvement termed WSNN, were considered. Finally,
the neural net category contains MLP, RBF classifiers of two types (RBF1 and RBF2), and
PNN.

For each type of discriminant function, one or more diagrams are provided showing the
resulting hypothetical class regions in two-dimensional feature space. These diagrams show
the hypothesized classifications of regularly spaced feature vectors sampled over the square
region centered on (0,0) and with extent large enough to contain the training vectors. The
figures refer only to the OCR problem but it is notable that the corresponding figures for
fingerprint are similar in form. Restriction of this graphical representation to two dimensions

is undeniably, but necessarily, not ideal.



4.1 Notation

The notation below will be used in the descriptions of the discriminant functions.

L
N

r*(x,y,2)

number of classes. For digits, L = 10, for fingerprints, L =5
number of clusters, N > L

a priori probability of cluster 2

an estimate of p(¢)

dimensionality of features

the set of all n-tuples of real numbers = “feature space”
extracted “feature vector” of a image (x € R")

feature vector from ;™ image of cluster 7 (1 <¢ < N, 1 <j < M;) (X;i) €R")
number of training images of cluster ¢ (1 < ¢ < N)

mean feature vector for cluster ¢ (1 <7 < N) (u; € R")

an estimate of

covariance matrix for cluster 7 (1 <i¢ < N) (3; € R™")

an estimate of X;

(x —y)'(x —y) = squared Euclidean distance between x and y (x,y € R")

n

> (2 —yi)/=)*

=1
distance between x and y normalized by z (x,y,z € R")

*® discriminant function (1 <7 < N,x € R")

4.2 Parametric Classifiers

4.2.1 Euclidean Minimum Distance Classifier

This is perhaps one of the simplest classifiers that one can design. The discriminant functions

are of the form

D;(x) = —d*(x, m;).
9



An unknown is assigned the class associated with the cluster of the highest-valued discrimi-
nant function. This is equivalent to using the class label of the estimated cluster mean that
is closest, in the Fuclidean distance sense, to the unknown. Each cluster region is bounded
by a convex polygon. In the one cluster per class case these regions are the hypothetical
class decision regions. This classifier suffers from the same linear separability limitations as
the Perceptron critiqued by Minsky and Papert [41]. In the many clusters per class case
the union of the cluster regions defines the class decision region whose boundary is then
piecewise linear. Figure 2 shows the class for regions when only two features and one cluster

per class are used. The estimated cluster mean vectors m; are marked with plus signs.

EMD QMD NRML

Figure 2: Parametric classifiers. For EMD note the perpendicular bisectors. For QMD note
the quadratic forms of the decision boundaries. The + signs indicate the locations of the
estimated class means.

4.2.2 Quadratic Minimum Distance Classifier

The training examples of each cluster ¢ are used to produce sample covariance matrices, S;,

and estimated mean vectors m;. The following discriminants are used:

Di(x) = —(x—m;)'S7"(x — my)

That is, the cluster mean, m;, is first subtracted from the unknown, and the result projected
onto the eigenvectors W; of the cluster ¢ covariance matrix, and finally whitened by dividing
each component by the root of the corresponding eigenvalues A;. This can be thought of
as a form intermediate between EMD and the NRML classifier, described below. Figure 2
shows the resulting class regions. The form of these figures is similar for the fingerprint

10



classification problem. As in the EMD classifier, one can use several prototypes to represent
each class. When the number of clusters per class increases, the inverse covariance matrices
for a given cluster are formed from a decreasing number of training examples. Computational
difficulties occur when the number of cluster examples forming the covariance is small. The

rank of S;j may then be less than n, preventing its conventional inverse from being evaluated.

4.2.3 Normal Classifier

This classifier is based on parametric density estimation that presupposes a multivariate
normal distribution for each class of images. First, it will be useful to mention a few facts

that pertain to any parametric classifier, using the following terminology:

= loss incurred by classifying as ¢ an image that is of class 7 (1 < 4,5 < N)
= mixture density: for S CR", [¢p(x)dx = P(x € 5)
= conditional density: for S C R", [¢ p(x|i)dx = P(x € S|x is from a class-i image)

= a posteriori probability: for a particular x, p(i|x) = P(x is from a class-¢ image)

Given a particular loss function A(¢]j), the optimal or “Bayesian” classifier is the one that
minimizes the expected loss. Define the “symmetric” loss function in terms of the Kronecker
delta:
L L=
A(ilj) =1 =6 =

1 otherwise
This means that correct classifications produce no losses and that incorrect classifications
produce equal loss values of 1. In this case, the Bayesian classifier is the one that classi-
fies each unknown x to the class ¢ for which the a posteriori probability p(¢|x) is highest.

According to Bayes’ rule [42],
p(i)p(x|t)
p(x)

Since the value of the mixture density p(x) has no effect on which possible ¢ value maximizes

plilx) =

p(i]x), p(x) can always be omitted. Further, for a pattern recognition problem in which the
a priori probabilities are the same, p(z) can be ignored. The result is to classify x to the

cluster ¢ for which p(¢)p(x|¢) is highest.
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For the normal classifier each cluster, ¢, is assumed to have conditional density function
. _niy oL 1 Ty—1
p(xli) = (2) E IS~ exp (=5 — ) B = ) )

where p; and 3; are the mean vector and covariance matrix for cluster 7. For classification
the (27)7% term is constant and may be discarded. Finally by replacing the mean vectors
p; and covariance matrices 3; with their sample estimates, m; and S;, squaring, and taking

logarithms we are able to define the discriminant function for the Normal classifier as
Di(x) = 2log p(i) — log [Si| = (x —my) 'S (x — my)

since the squaring and taking of logarithms has no effect on which ¢ maximizes the discrim-

inant. The hypothetical class regions are given in Figure 2.

4.3 Nearest Neighbor Classifiers

Nearest-neighbor classifiers have been the subject of decades of research (see, for example,
Dasarathy’s collection of papers [43]). The following are simple and ubiquitous yet effective

examples of such methods.

4.3.1 k-Nearest Neighbor

It £ = 1, this is an elaboration of EMD; instead of using just m;, as a single prototype
for the class, the 1-NN classifier uses all of the class-¢ training examples as prototypes for
the class. The 1-NN classification of an unknown vector is simply the class of the nearest
prototype. This rule is intuitively appealing, and Cover and Hart [8] have shown it to have
good asymptotic behavior: under mild assumptions, its large-sample probability of error is
bounded above by twice the Bayes (i.e. minimum possible) probability of error. The 1-NN
discriminant functions have the form:

D;(x) = — min d* (X,X(i)) .

1<5<M; 1

Figure 3 shows the class regions. Each region is the union of many convex polygons each

containing a single prototype of the class; hence, a class region is a very complicated polygon,
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not necessarily convex or even connected. In the more general case voting between the k
nearest neighbors is used. The majority class is used as the hypothesis. The method is useful
near class boundaries when the single nearest neighbor maybe of the wrong class but the
majority are not. If Sx is the set of the & closest prototypes voting on the class of x then it
is the union of the sets of voting prototypes, S>(<i), containing only prototypes of class ¢. The

k-NN discriminant function is then simply the set size:

Di(x) = |8

1-NN

Figure 3: Single nearest neighbor classifier. Note the very intricate non-contiguous decision
boundaries local to each training prototype.

4.3.2 Weighted Several Nearest Neighbors

A more elaborate form of the nearest neighbor method is to allow k to be a random variable
such that the number of voting neighbors is different for each unknown. This classifier
finds the closest prototype to the unknown, then defines the “neighboring” prototypes to be
those whose squared Euclidean distance from the unknown is less than a times the squared-
distance of the nearest prototype, where « is a constant. Further the number of “votes”
received by class 7 is divided by the square root of the sum of squared-distances of class-z
near neighbors from the unknown, so as to diminish the importance of neighbors that are

relatively far away compared to other neighbors. Formally,

a = neighborhood-size factor
S = the set of indices of class-i training vectors that are
in the a-neighborhood of unknown vector x
= {i<i<M,d(x,x¥ i 2 <k>}
{j ‘1 <j < M,d (X,X] ) < algkg%fgngkd (X,Xp )
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V)gi) — |S)(j)| = number of “votes” for class ¢

The discriminant functions are then

(%) 72 (%) . (%)
D= ) W (e ® (ex?)) T i >0

0 otherwise

Figure 4 shows the WSNN class regions resulting from « values of 50, 500 and 1000.

o = 50 a =500 a = 1000

Figure 4: Weighted several nearest neighbors. In the limit of small « this classifier defaults
to 1-NN. Note the fine grained structure throughout that is typical of nearest neighbor
methods.

4.4 Neural Net Classifiers
4.4.1 Multi-Layer Perceptron

This classifier is also known as a feedforward neural net. We have used an MLP with three

layers (counting the inputs as a layer). It will be convenient to define the following notation:

N® = number of nodes in ™" layer (1=0,1,2), NO =n N® = [
flz) = 1/(1 + e ") =sigmoid function
= bias of :'" node of k" layer (k = 1,2)
w;:’ = weight connecting ** node of k" layer to j*® node of
(k— D)™ layer (k=1,2;1 <i < N®. 1 <j < NKE-D)

The discriminant functions are then of the form

N N(©)

Di(x)=f (bgz) +> wz(?)f (bg‘l) +> wﬁ)l’k)) .
7=1 k=1

14



For the training of the weights of this network, a reasonable procedure is the use of an
optimization algorithm to minimize the mean-squared-error over the training set between
the discriminant values actually produced and “target discriminant values” consisting of the
appropriate strings of 1’s and 0’s as defined by the actual classes of the training examples.
For example, if a training feature vector is of class 2, then its target vector of discriminant
values is set to (0, 1, 0, 0, 0). It is more feasible to minimize this kind of an “error function”
than to attempt to directly minimize the number of incorrectly classified training examples,
since the latter number will take on only relatively few values and is a discontinuous “step
function”. The error function is modified by the addition of a scalar “regularization” term
[44]. This equals a tunable constant, A, multiplied by the mean square weight, w—fj This
term prevents large weights which are associated with overtraining, i.e. the overfitting of the

weights to the training data. This has been shown to increase the generalization ability of

the network [29].

Networks of the MLP type are the most commonly used “neural nets” in use today, and
they are usually trained using a “backpropagation” algorithm [45]. A “scaled conjugate
gradient” training method [46, 47, 28, 29] was used in our research instead of the ubiqui-
tous backpropagation method, training speed gains of an order of magnitude being typical.
Figure 5 shows MLP class regions resulting from varying the first two inputs to a trained 8

input, 48 hidden unit network.

| S—

A

Figure 5: MLP classification and confidence maps. From left: class boundaries, highest
discriminant value, difference in highest two discriminant values.
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4.4.2 Radial Basis Functions

Neural nets of the RBF type get their name from the fact that they are built from radially
symmetric Gaussian functions of the inputs. Actually, the RBF nets discussed here use
Gaussian functions that are more general than radially symmetric functions: their constant
potential surfaces are ellipsoids whose axes are parallel to the coordinate axes, whereas
radially symmetric Gaussian functions have spherical constant potential surtfaces. However,
the name RBF has become customary for any neural net that uses Gaussian functions in its

first layer.

We have experimented with RBF networks of two types, which will be referred to as
RBF1 and RBF2. The following notation will be convenient:

N® = number of nodes in i® layer (i =0, 1,2)
¢ = center vector of 5™ hidden node (1<j<ND)(cWecR") = (cgj), .o.,C j))T
o) = width vector of 7 hidden node (1 < j < NW) (e R") = (09), N j))T
bgk) = bias to the j®" node of the k' layer
flz) = 1/(1 + e %) =sigmoid function

w;; = weight connecting ¢*® output node to ;'™ hidden node (1 < < N® 1 << N(l))

Each hidden node computes a radial basis function. For RBF1, these functions are

unbiased exponentials
6;(x) = exp (—r*(x,c), g))

and for RBF2, they are of the biased sigmoidal form

For either type of RBF, the ¢*" discriminant function is the following function of the radial

basis functions:

N
Di(x) = [ (bgz) +2 wu‘%(x)) :
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The centers ¢V, widths o), hidden-node bias weights bgl) (RBF2 only), output-node
bias weights 652), and output-node weights w;; may be collectively thought of as the trainable
“weights” of the RBF network. They are trained initially using the cluster means (from a “k-
means” algorithm applied to the prototype set) as the center vectors ¢l). The width vectors
o) are set to a single tunable positive value. More sophisticated methods of determining
RBF parameters can be found in [48, 49]. The output layer weights are set such that each
output node is connected with a positive weight to hidden nodes of its class (that is, hidden
nodes whose initial center vectors are means of clusters from its class), and connected with a
negative weight to hidden nodes of other classes. Training proceeds by optimization identical
to that described for the MLP. Figure 6 shows RBF1 class regions resulting from the use of
1, 2, 4, and 6 hidden nodes per class, and Figure 7 shows RBF2 class regions for the same

numbers of hidden nodes per class.

[1 1 m 2 m 3
m 4 l 5 m 6
Figure 6: RBF1 classification regions for increasing numbers of centers per class.

4.4.3 Probabilistic Neural Net

This classifier was proposed in a recent paper by Specht [50]. Each training example becomes
the center of a kernel function which takes its maximum at the example and recedes gradually

as one moves away from the example in feature space. An unknown x is classified by
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Figure 7: RBF2 classification regions for increasing numbers of centers per class.

computing, for each class 2z, the sum of the values of the class-: kernels at x, multiplying
these numbers by compensatory factors involving the estimated a priori probabilities, and
picking the class whose resulting discriminant value is highest. Many forms are possible for
the kernel functions; we obtained our best results using radially symmetric Gaussian kernels.

The resulting discriminant functions are of the form

(5 ().

where o is a scalar “smoothing parameter that can be optimized by trial and error. Figure 8

shows the PNN class regions resulting from the use of o values of 0.25, 1.00, and 5.00. Notice
that a small o value produces very complex class regions similar to those of 1-NN, and that
as o is increased, the regions become simpler and are similar to those produced by parametric

statistical and RBF classifiers.

5 Results of Classification

51 OCR

Table 1 shows for each classifier the estimated probabilities of error, expressed as percentages,

for increasing dimensionality of the K-L feature set. Note that the optimal number of features
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o =5.00

Figure 8: PNN classification and confidence maps in two dimensions for increasing o values.
From left: class boundaries, highest discriminant value, difference in highest two discriminant
values.
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yielding lowest classification error (shown in bold) is not the same for all classifiers, the
parametric classifiers, QMD and NRML, being noticeably more parsimonious in the number
of features required. It is also apparent that most of the classifiers essentially attain a plateau
as the number of features reaches approximately 32, thereafter gaining only a few tenths of
a percent. The best classifiers are the computationally expensive nearest neighbor classifier
and the related PNN. They achieve one third fewer errors than the neural networks and
parametric classifiers. The optimum value o« = 1.1 for WSNN corresponds to a 1-NN scheme

for most test patterns. Accordingly, £-NN is seen to have a higher error rate for increasing

k.

Two caveats may be stated about the table. First, the MLP and RBF results depend
on the initial guesses for the parameters. Often a number of different random guesses are
tried to assess the effect of the initial guess; for this table, because of the magnitude of the
calculation necessary, only one initial guess was used. Second, the RBF calculations were
done with a sigmoidal output layer; the later work summarized in Section 6.2 suggests that

better results can be obtained with a linear output layer.

5.2 Fingerprints

The test set used in these experiments—the second rollings of Special Database 4—consists
of an equal number (400) of each of the five classes of fingerprints. Because naturally occur-
ring prints have a very unequal distribution into classes, it would be a mistake to use the
percentage of this test set incorrectly classified as an estimate of the probability that a clas-
sifier will incorrectly classify a naturally occurring print. Instead, the following calculations
are used to produce the test “score” (estimated probability of incorrect classification). For
each class ¢, the number of the 400 class-i test prints (i.e. test prints whose actual class is
i) that were incorrectly classified was counted; this count is denoted by w;. Clearly, w;/400
can be used as an estimate of the conditional probability of incorrect classification of a print
given that the actual class of the print is ¢. Therefore,
N

S (i), /400

=1
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Table 1: Dependence of classification error on KL transform dimensionality for digit recognition. Given with the classifier acronym are: For k-NN,
the value of k; for WSNN, the value of «; for PNN, the value of ¢; for MLP networks, the number of hidden units; for RBF networks, the number of
centers per class; and for EMD and QMD), the number of clusters per class. Boldface indicates optimum dimensionality for each classifier.

| System | 4] 8] 12] 16| 20] 24| 28] 32] 36| 40| 44| 48] 52| 56| 60| 64]
k-NN:1 210 79[ 46] 35[ 31| 29[ 27 27] 27] 2.6 26 26] 27 27[ 27 27
k-NN:3 237 70| 42| 34| 31| 28| 27| 27| 27| 2.6 | 27| 27| 27| 27| 28| 27
k-NN:5 221 68| 41| 33| 31| 29| 28| 28| 27| 28| 28| 28| 28| 28| 28| 2.8
WSNN:1.1 | 26.8 | 7.8 | 45| 34| 30| 28| 27| 26| 26| 25| 26| 26| 26| 26| 25| 26
PNN:3.0 [21.9| 72| 43| 33| 29| 27| 27| 26| 26| 25| 26| 26| 26| 26| 25| 25
MLP:32 [236] 97| 69| 64| 62| 58] 56| 57| 55| 56| 55| 53] 54| 54| 53] 54
MLP:48 | 228| 9.0| 65| 59| 54| 52| 52| 50| 47| 49| 50| 47| 46| 49| 50| 49
MLP:64 [ 222 | 87| 62| 53| 49| 46| 45| 46| 45| 45| 45| 45| 43| 45| 44| 45
RBF1:1 298 | 143 [ 132 [ 13.0 [ 134 [ 13.2[13.1 | 139 [ 13.0 [ 12.6 | 134 | 12.6 | 132 | 13.3 | 13.2 | 13.2
RBF1:2 244 | 115] 98| 93| 89| 85| 85| 84| 82| 84| 82| 81| 83| 81| 7.9| 7.9
RBF1:3 227100 | 80|614| 71| 67| 66| 65| 65| 65| 64| 64| 62| 64| 62| 6.3
RBF1:4 222 93| 69| 61| 58| 57| 55| 55| 55| 54| 55| 54| 54| 53| 53| 54
RBF1:5 214 89| 64| 55| 50| 50| 47| 49| 50| 49| 48| 47| 49| 49| 47| 4.6
RBF1:6 210 | 85| 59| 51| 49| 46| 44| 43| 45| 43| 43| 42| 42| 44| 43| 44
RBF2:1 285 (713 | 117 99| 97| 87| 95| 91| 91| 92| 86| 88| 88| 89| 89| 89
RBF2:2 243113 89| 79| 73| 67| 64| 61| 61| 63| 63| 62| 63| 62| 62| 6.5
RBF2:3 23.0 | 99| 72| 70| 61| 56| 55| 50| 60| 54| 49| 57| 49| 50| 56| 5.0
RBF2:4 224 | 96| 64| 53| H4| 44| 56| 50| 43| 45| 46| 46| 45| 44| 48| 47
RBF2:5 217 82| 60| 51| 53| 45| 46| 44| 46| 44| 44| 44| 42| 41| 41| 4.0
RBF2:6 214 | 86| 56| 47| 47| 43| 45| 40| 40| 42| 3.9| 42| 40| 39| 40| 4.0

EMD:1 373 1 19.1 | 173 | 16.1 | 156 | 15.2 | 15.1 | 156.0 | 15.0 | 149 | 149 | 14.8 | 14.8 | 148 | 148 | 14.8
EMD:2 296 | 144 | 131 | 11.7 | 11.2 | 11.0 | 10.8 | 10.7 | 10.7 | 10.7 | 10.7 | 10.7 | 10.6 | 10.6 | 10.6 | 10.6
EMD:3 268|127 | 108 ] 93| 90| 88| 88| 87| 8.6 8.6 | 8.7 8.7 871 8T | 87| 87
EMD:4 254 | 119 95| 81| 76| 73| 73| 74| 7.3 7.1 7.2 7.1 71 71| 71| 71
EMD:5 255|111 | 89| 75| 67| 67| 66| 66| 65 6.3 ] 6.7 6.6 6.2 | 62| 62| 6.3
EMD:6 264|107 82| 73| 61| 61| 59| 6.1| 6.0 5.7 | 6.0 5.8 591 6.0 59| 6.1

EMD:7 263|103 | 76| 61| 59| 56| 53| 55| 53 52| 54 5.1 52| 54| 54| 56
QMD:1 262|100 63| 51| 50| 48| 49| 51| 5.1 9.2 1 53 5.6 5.6 | 58| 58| 59
QMD:2 236 | 92| 58| 49| 47| 47| 49| 49| 5.0 9.2 1 53 5.5 5.6 | 57| 58] 59
QMD:3 258 91| 54| 45| 41| 40| 45| 47| 49 5.1 ] 53 5.4 56 | 59| 6.0] 6.3
QMD:4 255 89| 57| 50| 50| 45| 49| 50| 53 5.5 | 6.1 6.3 65| 69| 72| 76
NRML 261 99| 63| 51| 50| 4.8 49| 50| 50 9.2 1 53 5.5 56 | 55| BH| b6




can be used as an estimate of the probability of incorrect classification. The accuracy “scores”

mentioned below are these estimated probabilities, expressed as percentages.

Table 2 shows the lowest error rate that was obtained for each type of classifier. Also
listed, for each classifier type, are the optimal settings that were found for other parameters:
number of K-L features used; type of training set—the full “balanced” set of 400 prints of
each class, or a “natural” set produced by discarding some of the training prints so as to
cause the frequencies to be approximately equal to the estimated a priori probabilities; and,
for some of the classifier types, another adjustable parameter or a number of hidden nodes.
Table 3 shows, for each classifier type, the lowest error rates that were obtained for each of
several numbers of features; it is clear that the optimal number of features is not the same

for all of these classifier types, as was the case for characters.

Table 2: Lowest error percentages for the various classifier types, and the parameters that
produced them for the fingerprint problem.

‘ Classifier ‘ Error % ‘ No. of features ‘ Training set ‘ Other parameter values ‘

EMD 26.2 80 balanced -
QMD 12.8 16 balanced -

NRML 11.3 28 balanced -
1-NN 9.0 96 natural -

WSNN 3.9 96 natural a=1.09
MLP 8.2 64 natural 64 hidden nodes
RBF1 8.3 112 natural 70 hidden nodes
RBF?2 8.1 64 natural 110 hidden nodes
PNN 7.2 112 balanced o= 2.26

6 Generalization Experiments

6.1 Information Based Methods

In the MLP generalization experiments, K-L features were used to train MLP’s using different
methods of statistical size reduction. Only the training and recognition parts of the system
were involved in the test. For the OCR problem two sets of 10,000 K-L features derived from

characters taken from NIST Special Database 3 [33] were used. For the fingerprint problem

22



Table 3: Fingerprint classification error percentages as a function of feature dimensionality.
NRML produced a smaller error percentage for a number of features not in the table: 11.3,

for 28 features.

Number of features

Classifier | 16 | 32 | 48 | 64 | 80 | 96 [ 112
EMD 26.9 | 26.6 | 26.4 | 26.3 | 26.2 | 26.3 | 26.3
QMD 12.8 | 15.6 | 18.0 | 20.1 | 20.7 | 21.6 | 23.0
NRML | 13.5 | 12.8 | 16.8 | 18.1 | 19.7 | 20.7 | 23.0
1-NN 1071 96 | 9.7 93] 9.1 9.0 9.3
WSNN 103 1] 93| 9.1 ] 9.1 | 89| 89| 9.0
MLP 9.1 ] 88 | 86| 82| 82| 84| 85
RBF1 98] 86| 9.1 | 88 | 88| 85| 83
RBF2 10.7] 95 [ 10.7| 81| 88| 84| 8.2
PNN 90| 79 | 75| T6 | T4 T3 | 1.2

two sets of 2,000 K-L features derived from fingerprints from NIST Special Database 4 [37]
were used.

The scaled conjugate gradient (SCG) method of [29] is used to obtain a starting network
for the Boltzmann weight pruning algorithm. For the OCR problem the network has an
input layer with 48 nodes, a hidden layer with 64 nodes, and an output layer with 10 nodes.
For the fingerprint problem, the network has an input layer with 128 input nodes, a hidden
layer with 128 nodes, and an output layer with five nodes. In both cases the initial network
is a fully connected network. The pruning using the Boltzmann method was carried out
by selecting a normalized temperature, T', and removing weights based on a probability of
removal

P = exp(—w?/T).
The values of P; are compared to a set of uniformly distributed random numbers, R;, on the
interval [0, 1]. If the probability P; is greater than R; then the weight is set to zero. The
process is carried out for each iteration of the SCG optimization process and is dynamic.
It a weight is removed it may subsequently be restored by the SCG algorithm; the restored

weight may survive if it has sufficient magnitude in subsequent iterations.

This method can be modified to include information about the strength of the input
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features so that

Py = exp(—=jwi/T),

where A; is the eigenvalue associated with the jth K-L feature for weights connected to these
features in the input layer and A; = 1 for weights connecting the hidden and output layers.

This method of pruning is referred to as eigenvalue-weighted pruning.

During this optimization process two important measures of information content are

calculated [51]. The information capacity of the network, C', is given by
€' = Nuts (1083 [wmax| — 1085 |wmin| + 1),

where N, 1s the number of non-zero weights, wy,,x 1s the weight with the largest magnitude,

and wpy, 1s the weight with the smallest magnitude. The entropy is given by

Nwts
H = C - Z 10g2 |w2| —I_ Nwts(l - 10g2 |wmin|)-
=1
The effect on the information content of the network can be evaluated by examining the

distribution of weights in the network as a function of temperature or by evaluation of the

information capacity of the network.

The results of using Boltzmann and eigenvalue-weighted pruning during the training of
a network for the solution of the OCR problem are shown in Table 4. The results of using
Boltzmann and eigenvalue-weighted pruning during the training of a network for the solution
of the fingerprint problem are shown in Table 5. The statistical evaluation of each network
was carried out using the equations provided in the previous section. Examination of these
results shows two distinct results. The OCR problem is easier to solve than the fingerprint
problem and the efficiency of information transfer in both cases is improved by the eigenvalue
weighting of the pruning.

In every statistical measure of network capacity and accuracy, the OCR network pruned
with the eigenvalue-weighted pruning function is superior to the Boltzmann pruned network.
Recognition accuracy is higher at all temperatures for both testing and training. At the two
critical temperatures accuracy is 93.5% for the Boltzmann case and 93.6% for the eigen-
value case. The critical temperature, T, is the temperature where the loss of information

from pruning is equal to the information gained by the CG optimization. The number of
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weights used is 1186 in the Boltzmann case and 1065 in the eigenvalue-weighted case. The
capacity-error product is lower in the eigenvalue case and the bits per weight are higher.
This indicates that the information transfer during training is more efficient for eigenvalue-

weighted training.

Table 4: Parameters of the pruned network for the OCR problem using Boltzmann pruning
and eigenvalue-weighted Boltzmann pruning.

H Parameter ‘ Boltzmann ‘ Eigen H
T. 0.07 0.77
Weights 1186 1065
Maximum weights 3786 3786
Capacity (bits) 11146 10281
Maximum capacity (bits) | 41646 41646
Accuracy (%) 93.5 93.6
Maximum accuracy (%) 94.8 94.8
Minimum error X capacity | 658 560
Bits per weight 8.00 9.79

Table 5: Parameters of the pruned network for the fingerprint problem using Boltzmann
pruning and eigenvalue-weighted Boltzmann pruning.

H Parameter ‘ Boltzmann ‘ Eigen H
T. 0.404 0.737
Weights 667 1046
Maximum weights 17157 17157
Capacity (bits) 4120 6632
Maximum capacity (bits) | 171570 171570
Accuracy (%) 71.8 78.1
Maximum accuracy (%) 84.3 84.3
Minimum error x capacity | 1177 1447
Bits per weight 6.34 7.14

The result for the fingerprint problem are more complex. Some statistical measures
of network capacity and accuracy for the fingerprint network pruned with the eigenvalue-
weighted pruning function are superior to the Boltzmann pruned network and some are not.

Recognition accuracy is higher for the eigenvalue-weighted case at all temperatures for both

testing and training. At the two critical temperatures accuracy is 71.8% for the Boltzmann
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case and 78.1% for the eigenvalue case. The number of weights used is 667 in the Boltzmann
case and 1046 for the eigenvalue-weighted case. The Boltzmann pruned network is smaller
but less accurate. The capacity-error product is high in the eigenvalue case both because
there are more weights and because the number of bits per weight is higher. This indicates
that the information transfer during training is more efficient for eigenvalue-weighted training

and that more information is retained.

6.2 Sample Size Based Methods

The RBF generalization experiments used training and test sets, each containing 10,000
character images from NIST Special Database 3 [33]. Each feature set was a truncated
K-L expansion of a 32 by 32 pixel binary image of a hand-printed digit. The RBF networks
considered have 24 to 48 inputs, a hidden layer consisting of from one to four RBF's per digit,
and an output layer of 10 linear or sigmoidal nodes. Also considered are some standard MLP
networks, with sigmoidal hidden and output layers.

The supervised learning minimized the standard objective function, the sum of squares
of the output errors. For networks with a sigmoidal output layer, a small constant times
the sum of squares of the output layer weights was added to the objective function as a
regularization, i.e. to minimize over-training. In order to simplify the gradient calculation,
the inverses of the widths, s;; = 1/0;;, were used as variables.

The optimization (training) was done using a combination of scaled conjugate gradients
[28, 29] and a limited-memory quasi-Newton algorithm [52]. The program was written to
allow any combination of the centers, widths, and weights to be learned, and the remainder
to stay fixed. Training was done with varying training set sizes, from 156 patterns to the
entire 10,000 patterns; testing was done on the entire 10,000 pattern testing set.

The initial values for the RBF centers were obtained from a k-means algorithm [53]. The
widths produced by the k-means algorithm were not directly useful. Instead, uniform widths,
several times the typical widths from the k-means algorithm, were used. It proved better to
make the Gaussians much too broad than too narrow; the exact value used is unimportant
as long as it is large enough. The importance of large widths may be understood by the

following argument.
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Suppose a pattern x has all its r? values so large that their activations are essentially
zero. Then the contribution of x to the gradient of the objective function will be essentially
zero for all centers, and the pattern will not influence the training at all. An extreme case of
this behavior can be seen by taking all widths much too small. Then all RBFs produce zero
for all patterns, and all the optimization can do is to adjust the bias terms in the output

layer; the process converges rapidly to a poor local minimum.

For the same reason, random output layer weights do not work well for RBF networks.
In the work reported here, the initial weights used were “sensible”: positive for the weights
from the centers to their corresponding output nodes, zero for the remaining weights and for

the biases.

The number of free parameters in the experiments reported here ranged from 570 to
4250. The objective function has multiple local minima and is sensitive to details of the
initial values; a relatively small change in the initial values for the parameters generally
results in finding a different local minimum. For each network, ten different sets of initial
conditions were used; for RBFs, it proved adequate to use a random =£5% variation on
the widths. For MLPs, initial weights were chosen from a uniform random distribution in
(—0.5,40.5).

Two strategies were used in training. The first is to train on successively larger subsets of
the 10,000 pattern training set: 156, 312, 625, 1250, 2500, 5000, and finally 10,000 patterns.
Training on the smallest sets goes quickly, and each set of parameters is a good initial guess
for training on the next larger training set, but there is a possibility of wasting some work.

The second strategy is to train only on the full training set.

The first strategy was, on average, faster, but not drastically faster. It has the added
advantage of providing extra information, as seen in Figures 9 and 10. Especially for larger

networks, the first strategy, on average, provides better training and testing.

Keeping the centers and widths fixed and learning appropriate weights resulted in poor
training and poor testing in networks with only one or a few RBFs per class. Accordingly,
centers and widths were also learned. Using initial widths from the k-means algorithm also
resulted in poor training and testing; the optimization got stuck in a poor local minimum.

Accordingly, all initial widths were then set to the same reasonably large value, with a small
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Figure 9: Testing error (top curves) and training error (bottom curves) versus training set
size for MLP networks. The results are shown for the random start with the best testing
error when trained with the full training set. 48-18-10 () 48-36-10 (A).
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Figure 10: Testing error (top curves) and training error (bottom curves) versus training set
size for RBF type 1 networks with a linear output layer. The results are shown for the

random start with the best testing error when trained with the full training set. 48-20-10
() 48-40-10 (A).

29



random variation.

In general, RBF networks with sigmoidal output layers trained significantly more slowly
than RBF networks with linear output layers, and gave somewhat worse training and testing

CeIrTors.

In general, RBF2 networks trained more slowly than RBF1 networks and gave slightly
poorer training and testing errors. However, RBF2 networks with sigmoidal output layers
have the useful property that the output weights can be fixed at reasonable values, rather

than learned, with little or no worsening of the training and testing error.

RBF networks are self-pruning to some degree. Unimportant connections are effectively
pruned away by the training process learning a large width, o;;; each large width effectively
deletes one connection from an input to one RBF and reduces the number of active param-
eters by two. More pruning is done with small training sets than with large ones, and more

with large networks than with small ones. Some results are shown in Table 6.

Table 6: Networks used and free parameters for each; for RBF networks, active number used
in best solution found training on the full training set.

RBF/MLP Structure Parameters Active

R 24-10-10 590 566
R 24-20-10 1170 1014
R 24-30-10 1750 1448
R 36-10-10 830 766
R 36-20-10 1650 1364
R 48-10-10 1070 982
R 48-20-10 2130 1650
R 48-30-10 3190 2122
R 48-40-10 4250 2870
M 24-16-10 570
M 24-24-10 850
M 24-36-10 1270
M 13-18-10 1072
M 48-36-10 2134

The remainder of this section refers only to RBF1 networks with linear output layers.
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Compared to MLP networks of a similar size (i.e., similar numbers of free parameters
to optimize), RBF networks in general train at about the same rate. Their behavior versus
training set size is different, though. Figure 1 gives results for a small (24-16-10, 570 param-
eters) and a large (48-36-10, 2130 parameters) MLP network. The large network gives quite
accurate training results, much better than the small one, but the testing error is not much

different for large training set sizes.

For comparison, Figure 10 gives results for a small (24-10-10, 590 parameters) and a
medium (24-30-10, 1750 parameters) RBF network. The large network does not train as
accurately, but there is much less difference in training and testing accuracy than for the

MLP networks. In other words, the RBF networks are less likely to overfit the training data.

Figure 11 summarizes many hours of computation for MLLP and RBF networks. Training

and testing results from ten random starts are shown for each network.

The RBF results are closer to the diagonal, the diagonal being as good as one could ever
expect. The smaller networks are closer to the diagonal than the larger ones; 10,000 training
patterns are sufficient to train the small networks as well as they can be trained, but more

patterns are needed for the larger networks.

The MLP results are farther from the diagonal. Increasing the network size gives better

training error, but no better testing error. Many more training patterns are needed.

Figure 12 shows testing error versus number of free parameters. For a small number of

free parameters, MLP networks do better.

7 Conclusions

Examination of Table 1 and Table 2 shows that even on problems as diverse as OCR and
fingerprint classification the ranking of the methods is similar. The neighbor-based methods
are the most accurate with PNN being the best of them. The comparison of MLP and RBF
methods show that RBF is usually the better method. Generalization experiments on MLP
and RBF networks (see Tables 4, 5, 6) demonstrate that fully connected MLP networks
contain far too many free parameters for efficient information use. RBF networks can be

constructed which are self-pruning and which achieve better accuracy for a given training
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Figure 11: Training error versus testing error for different networks. All training is on the
full training set. The symbols near the upper left of the figure are MLP networks: 24-16-10
(o), 24-24-10 (4), 24-36-10 (x), 48-18-10 (O), and 48-36-10 (). The symbols nearer the
diagonal line are RBF type 1 networks with a linear output layer: 24-10-10 (4), 24-20-10
(x), 24-30-10 (lower group of +), 24-40-10 (lower group of x), 36-10-10 (A), 36-20-10 (v7),
48-10-10 (O), 48-20-10 (<), 48-30-10 (lower group of O), and 48-40-10 (lower group of <).
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set size. When MLP and RBF methods are compared to multicluster EMD and QMD

methods the NN methods are more straightforward to implement but do not show a clear

accuracy advantage. All of the experiments presented here also suggest that the training set

sizes used, although large, are not sufficient to fully saturate most of the machine learning

methods studied here.
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