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A particularly successful line of research for numerical optimization is the well-

known computational paradigm particle swarm optimization (PSO). In the PSO frame-

work, candidate solutions are represented as particles that have a position and a velocity

in a multidimensional search space. The direct representation of a candidate solution as

a point that flies through hyperspace (i.e., R
n) seems to strongly predispose the PSO to-

ward continuous optimization. However, while some attempts have been made towards

developing PSO algorithms for combinatorial problems, these techniques usually encode

candidate solutions as permutations instead of points in search space and rely on addi-

tional local search algorithms.

In this dissertation, I present extensions to PSO that by, incorporating a cooperative

strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that

by allowing a set of particles, rather than one single particle, to represent a candidate

solution, combinatorial problems can be solved by collectively constructing solutions.

The cooperative strategy partitions the problem into components where each component is



optimized by an individual particle. Particles move in continuous space and communicate

through a feedback mechanism. This feedback mechanism guides them in the assessment

of their individual contribution to the overall solution.

Three new PSO-based algorithms are proposed. Shared-space CCPSO and multi-

space CCPSO provide two new cooperative strategies to split the combinatorial prob-

lem, and both models are tested on proven NP-hard problems. Multimodal CCPSO ex-

tends these combinatorial PSO algorithms to efficiently sample the search space in prob-

lems with multiple global optima. Shared-space CCPSO was evaluated on an abductive

problem-solving task: the construction of parsimonious set of independent hypothesis

in diagnostic problems with direct causal links between disorders and manifestations.

Multi-space CCPSO was used to solve a protein structure prediction subproblem, side-

chain packing. Both models are evaluated against the provable optimal solutions and

results show that both proposed PSO algorithms are able to find optimal or near-optimal

solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both

the quality and diversity of the solutions obtained in a protein sequence design problem,

a highly multimodal problem. These results provide evidence that extended PSO algo-

rithms are capable of dealing with combinatorial problems without having to hybridize

the PSO with other local search techniques or sacrifice the concept of particles moving

throughout a continuous search space.
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Chapter 1

Introduction

Swarm intelligence (SI) is a biologically-inspired artificial intelligence tech-

nique based upon the study of collective behavior in decentralized, self-organized sys-

tems [16][43]. Inspiration has come, for example, from collectively moving animals

(birds flocks, fish schools, herds of animals, etc.) and social insect swarms (ants, termites,

etc.). This field encompasses a great variety of systems, but all approaches share some

fundamental characteristics. The main idea in swarm intelligence systems consists of hav-

ing simple agents with no centralized control structure dictating how the individual agents

should behave, and local interactions between the agents often lead to the emergence of

global behavior. These systems can be classified in three broad classes according to the

structure of the space in which the agents interact: discrete cellular space where agents

move in lattices of cells following some neighborhood rule [160][161], network-based

space where agents move in discrete graph structures guided by a measure of “goodness”

of each edge [39], and continuous space where agents’ movements are based on direct

interactions with one another in real-valued space [73][133]. This classification is shown

in Figure 1.1.

The research described here is specifically concerned with swarm intelligence sys-

tems in continuous spaces, known as self-organizing particle systems. Self-organizing

particle systems typically consist of numerous autonomous simple agents whose move-
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Swarm Intelligence

Discrete cellular
Continuous 

 (Self-organizing particle systems)
Network

Figure 1.1: Classes of swarm intelligent systems. Each class is characterized by the space

through which particles move.

ments through a continuous space are governed by various local “forces” exerted on them

by other nearby agents or the environment. A majority of applications of this class of

swarm intelligence involves modeling group behaviors in a 2D or 3D physical space. For

example, these methods have been used in the simulation of group movements by animal

populations in computer animation [133][150][151], and in swarm robotics, where the

focus is on applying swarm intelligence techniques to control large groups of cooperating

autonomous robots or vehicles [3][68][82][94][108][146]. Inspired by successes in these

applications involving low dimensional physical space, there have been a much smaller

number of efforts to generalize these methods to higher-dimensional abstract spaces.

Past studies illustrate the power of swarm intelligence, and show that it is a po-

tentially valuable methodology for tackling complex problems [16][43]. In particular,

self-organizing particle systems have proven to be interesting approaches in areas such

as those mentioned above, but it remains to be established how general they are. Some

attempts have been made to extend the paradigm toward problem solving tasks, for ex-

ample using multi-robot teams for pushing objects [82], foraging [67], Robocup compe-

titions [152], and more recently, in simulations of search-and-collect tasks [134][135].

An example of a particularly successful research direction in high-dimensional
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swarm intelligence is particle swarm optimization, whose main focus is solving continu-

ous optimization problems [43][73]. Examples of successful applications include learning

weights for neural networks, tracking dynamic systems, and solving multiobjective opti-

mization and constraint optimization problems [43]. Particle Swarm Optimization (PSO)

was originally designed as a numerical optimization technique based on swarm intelli-

gence [43][73], and it has shown its robustness and efficacy for solving function-value

optimization problems in real-number spaces [43][122]. In the PSO framework, a set of

particles (simple agents) search for good solutions to a given optimization problem. Each

particle represents a candidate solution to the optimization problem and uses its own ex-

perience and the experience of neighbor particles to choose how to move in the search

space.

The direct representation of candidate solutions as points in a continuous virtual

search space makes the PSO algorithm inherently geared toward continuous optimization

problems. If we consider the heart of the field of competence of the traditional PSO, i.e.,

roughly continuous and mixed continuous-discrete (non-combinatorial problems), it is

remarkably effective [24]. While the exploratory capacity of PSO remains interesting for

combinatorial problems, in its basic form it cannot be used for more than the approximate

detection of promising regions of the search space, which can be then passed to another

algorithm to find an accurate solution [24]. Only a few previous attempts have been made

to extend the PSO to fully solve combinatorial optimization problems [122], although

some important exceptions do exist. One of the main reasons for this limitation is that

when a combinatorial problem is difficult to solve, it is usually because the evaluation

3



function is very discontinuous. The PSO algorithm makes an implicit assumption that

the closer two positions are, the closer their evaluations are too. For a problem such as

the Traveling Salesman Problem, that is easily false: a simple transposition of two cities

in the circuit, i.e., the shortest possible displacement in the search space, can change the

evaluation (the cost of the path) from its minimum to its maximum [24]. Moreover, in

combinatorial problems the relationship between the different elements of the solution is

non-linear, allowing the possibility that some elements in the vector move closer to the

optimal solution, while others actually move away from the solution. If the cumulative

effects of these changes improve over the previous stored solutions, the PSO will update

its memory values, guiding the solution to a part of the space that could be farther away

from the optimal solution.

The main issue when adapting PSO to any non-continuous problem is how to define

the relationship between a particle (and the operators used to transform it) and a candidate

solution of the new optimization problem. There have been several proposed extensions

of PSO to combinatorial spaces to try to deal with this representation issue with various

degrees of success [23][149][157], but these approaches encode the solution as a permu-

tation and design specialized velocity operators for this permutation representation, sac-

rificing the basic nature of the PSO of particles moving in a continuous high-dimensional

space.

In this dissertation, I present cooperative combinatorial PSO (CCPSO), an exten-

sion to the particle swarm optimization algorithm aimed at tackling combinatorial prob-

lems beyond the mere approximate detection of promising regions in the search space.

4



CCPSO’s goal is to obtain results that are close to the provably optimal solution. This is

achieved by introducing a cooperative strategy that splits the problem into components,

which are then optimized by individual particles. This extension redefines the relationship

between particles and candidate solutions, while preserving the notion of particles moving

in a continuous space. The central hypothesis is that by allowing a set of particles, rather

than a single particle as in most particle swarms, to represent solutions to problems, one

can generalize particle swarms to construct solutions to combinatorial problems. Cooper-

ative strategies that represent solutions with multiples particles have been devised before

to improve the performance of the PSO, particularly in high-dimensional problems; how-

ever, they have not been applied to combinatorial problems.

The goal of CCPSO is to provide a mechanism with which each particle optimizes

its own choices, while being guided implicitly toward parts of the space that are more

promising to the rest of the particles of the swarm. In CCPSO, unlike other PSO algo-

rithms, the movement of the particles is based on the influences exerted by other static

particles. These static particles, called attractors, represent choices for a value of a partic-

ular component of the problem instance. The task of attractors is twofold. First, attractors

pull moving particles towards areas of the space that are favorable for the specific com-

ponent they optimize. Second, attractors mediate the communication between particles

and guide individual particles to move toward areas which are promising to the whole

swarm. The candidate solution is then constructed cooperatively by decoding each par-

ticle’s position into a contribution for the solution. Two novel cooperative strategies are

presented. The first strategy, shared-space CCPSO, consists of simple particles that move

5



in a shared high-dimensional continuous space, and based only on local interactions with

their attractors, generate a solution as a result of their collective behavior. All particles

share the same attractors, and feedback to the attractors is provided by a strength value

which reflects the attractor’s success in pulling particles towards its position, i.e., attrac-

tors are rewarded by their popularity among particles. The second strategy, multi-space

CCPSO, consists of subwarms of particles, where each particle represents a component

of a solution and moves in its own high-dimensional continuous space. The candidate so-

lution is then constructed cooperatively by decoding each particle’s position into a choice

for that solution component. Each particle has its own set of attractors and feedback to

the attractors is provided by a strength value that takes into account the fitness of the

candidate solution with the current component replaced by the choice represented by the

attractor. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently

sample the search space in problems with multiple global optima. This new algorithm

extends the ability of multi-space CCPSO to discover sets of high-quality and diverse so-

lutions. Every time multimodal CCPSO detects a solution of high quality (i.e., a potential

optimum) it “marks” the region in the search space by storing this solution in an external

memory. The external memory is then used by diversity strategies to encourage particles

to search different regions of the search space.

The proposed methods are studied and validated through three combinatorial opti-

mization problems of increasing complexity. The first application is abductive diagnosis,

in which the goal is to obtain the best or most plausible explanation for the manifestations

(symptoms) known to be present in a given case. Such problems are often quite complex
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due to the number of possible elementary hypotheses for each observation and the many

different ways to combine these hypotheses into an explanation. Abductive diagnosis is

an especially attractive task to be tackled because the plausibility of solutions depends

on the interactions between explanation components in a highly non-linear fashion which

makes it a complex problem.

The second problem is a particularly important subproblem of the general protein

structure prediction problem: side-chain packing (SCP), in which the side chains of the

protein residues are positioned on a fixed and given protein backbone. Specifically, it

consists of selecting a side-chain conformation (from a discrete set of preferred confor-

mations, known as rotamers [42]) for each side chain in the protein such that the protein

energy conformation is minimized. The reasons for the selection of this particular com-

binatorial problem are twofold. First, like abductive diagnosis, SCP deals with a highly

non linear and complex evaluation function. Second, the specific values of each solution

component (i.e., the set of possible rotamers for each side-chain position) is distinct, and

the dimensionality from one component to the next can vary significantly. This is the

key difference with the type of combinatorial problems studied under the previous model.

Additionally, protein structure prediction methods are faced with imprecise knowledge

of many aspects of the physical forces that drive protein folding. Therefore, it has been

argued that instead of providing the exact optimum solution to an imprecise energy func-

tion, computational methods should instead produce robust, fast, and near-optimal so-

lutions [28]. This makes algorithms like PSO, which are known to efficiently produce

near-optimal solutions, especially attractive.
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The third and final problem we consider is computational protein design by flexible

side-chain packing [27][139]. In this bioinformatics task the goal is to find the sequence

of amino acids for a given protein backbone that will satisfy the desired structural features.

Side-chain prediction algorithms are used to screen all possible amino acid sequences and

find the amino acid sequence whose side chains best fit the desired backbone [121]. This

problem has a distinct goal from the previous problems explored. Here, the goal is not to

obtain the optimal solution to an optimization problem, but to find an ensemble of low-

energy solutions that maximizes the pairwise diversity of this ensemble. This provides

several candidates sequences that can then reranked by more physically realistic (and

computationally more expensive) energy functions. Several approaches for forcing the

PSO to return a diverse ensemble of solutions are analyzed and compared.

One advantage of PSO over many other optimization methods is its relative simplic-

ity. Another, perhaps more important, advantage over other global minimization strategies

such as simulated annealing is that the interactions between the large number of members

that make up the particle swarm make the technique more resilient to the problem of local

minima [43]. The research presented here aims to further this advantage by extending

these interactions from sharing solutions between the individuals of the swarm to collec-

tively constructing solutions.

In summary, the research described here builds on the methods used in traditional

PSO algorithms, extending this technology. A significant innovation from the existing

PSO methods is the concept of collective construction of a solution as a strategy for

tackling combinatorial problems; unlike traditional particle swarms algorithms, where
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each particle represents a solution, here a solution is represented by the collection of

particles. Thus, each particle does not have an associated concept of “goodness” with

respect to some objective function as has usually been done in the past. This raises the

question of how the individual particle, based solely on local information, influences the

problem-solving of the collective agent team as a whole; and how a particle, with no

global vision of the solution of the problem, can contribute to the solution and adapt its

contribution according to its limited interactions with neighboring particles.

1.1 Organization

The rest of this dissertation is organized as follows. In Chapter 2, a brief introduc-

tion to combinatorial problems is presented, including a brief description of metaheuris-

tics similar to PSO. This is followed by an overview of swarm intelligence, focusing

on the main concepts employed in particle-systems. The last part of the chapter intro-

duces the traditional PSO and surveys relevant combinatorial and cooperative extensions.

Chapter 3 presents the first extension of PSO to combinatorial problems, detailing the pro-

posed cooperative strategy that partitions the combinatorial problem into components that

are optimized independently. It then describes how this algorithm is applied to diagnosis

problem solving, along with experimental results of its performance and comparison to

the provable optimal solution. Chapter 4 introduces multi-space CCPSO, an extension of

PSO to combinatorial problems where each solution component has its own set of inde-

pendent values, and its application to the problem of side-chain packing in protein struc-

ture prediction. Chapter 5 presents the study of diversity strategies for the multi-space

9



CCPSO algorithm and shows its performance in a combinatorial problem with multiple

optima: computational protein design. Finally, Chapter 6 presents a summary of the find-

ings and contributions of this dissertation research, and considers possible future research

that may emanate from it.
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Chapter 2

Background

This chapter presents a brief introduction to combinatorial problems and swarm

intelligence methodology to better understand the framework in which the new combina-

torial PSO fits in. The chapter starts with an introduction to combinatorial optimization

problems, including a concise description of related metaheuristics. This is followed

by an overview of swarm intelligence, focusing on self-organizing particle systems and

pointing out some of its most illustrative applications. The last part of this chapter surveys

relevant past extensions of PSO algorithms proposed in the literature.

2.1 Combinatorial Optimization and Metaheuristics

Combinatorial problems are intriguing because they are easy to state but often very

difficult to solve [148]. Combinatorial problems involve finding values for discrete vari-

ables such that certain conditions are satisfied. They can be classified either as opti-

mization or satisfaction problems. Satisfaction problems aim at finding a valid solution,

regardless of any quality criterion. Optimization problems, on the other hand, have the

goal to find an optimal arrangement, grouping, ordering, or selection of discrete objects

that optimizes a quality criterion and fulfills the given constraints. Prominent examples

of combinatorial problems are tasks such as finding the shortest or cheapest round trips in

graphs, planning, scheduling, time-tabling, resource allocation, protein structure predic-
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tion and internet data packet routing, among others. Formally, an instance of a combina-

torial optimization problem is a pair (S, f), where S is the finite set of candidate solutions

and f : S → R
n is a function which assigns to every s ∈ S a real value f(s). A combina-

torial optimization problem is either a maximization problem or a minimization problem

with an associated set of instances. The goal is to find a globally optimal solution s∗. For

minimization problems, this consists in finding a solution s∗ with minimum cost, that is,

a solution such that f(s∗) ≤ f(s) ∀ s ∈ S. Similarly, a maximization problem consists

in finding a candidate solution s∗ such that f(s∗) ≥ f(s) ∀ s ∈ S. Combinations of so-

lution components form the potential solutions of a combinatorial problem. A scheduling

problem, for instance, can be seen as an assignment problem in which the solution com-

ponents are the events to be scheduled, and the values assigned to events correspond to the

time at which they occur. Typically, a huge number of candidate solutions can be obtained

this way. For most combinatorial optimization problems, the space of potential solutions

for a given problem instance is at least exponential in the size of the instance [64].

2.1.1 Algorithms for Combinatorial Optimization

Optimization techniques for combinatorial problems can be classified into exact,

approximate, and heuristic. Exact techniques guarantee finding the optimal solution in ev-

ery single instance of the problem within an instance-dependent bounded time [13][14].

For finite size problems, a straightforward exact algorithm is to simply enumerate the

full solution space. This approach is generally undesirable as well as intractable due to

the exponential growth of most solution spaces. To increase efficiency, all modern exact
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methods use pruning rules to discard parts of the search space in which the optimal solu-

tion cannot be found. These approaches are doing an implicit enumeration of the search

space. Among the exact methods are branch-and-bound (B&B) [86][99], dynamic pro-

gramming [9][60], and linear and integer programming based methods [58][105]. One

important drawback of exact algorithms is that they suffer from a strong increase in com-

putational time when the problem size grows, effectively rendering this type of algorithm

infeasible for large-sized problems.

When an optimal solution cannot be efficiently obtained in practice, one possibility

is to sacrifice the guarantee of finding optimal solutions for the sake of getting good solu-

tions using approximate methods. Approximate methods can be classified in approximate

algorithms and heuristics algorithms. While approximate algorithms do not guarantee

optimal solution, they guarantee a good solution within some factor of the optimum.

Specifically, an ǫ-approximation algorithm is a polynomial-time algorithm which always

produces a solution of value within ǫ times the value of an optimal solution [4]. Heuristics

methods, on the other hand, usually find reasonable good solutions in a reasonable time

but do not have an approximation guarantee on the obtained solutions.

A significant amount of research has been devoted to the design of general heuris-

tic methods which are applicable to a wide range of different combinatorial optimiza-

tion problems. For these general-purpose methods the term metaheuristics has been

coined [84]. The goal of metaheuristics is to guide the search algorithm towards promis-

ing regions of the search space containing high-quality solutions [14]. Generally, meta-

heuristics contain mechanisms to avoid getting trapped on local optima. Many of the
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methods use information gathered during the search process to promote finding high-

quality solutions quickly. This information can be based on changes of the values of the

objective function, on previously made decisions, or on prior performance. Additionally,

many of the metaheuristic approaches rely on probabilistic decisions made during the

search. Basically, the main difference with pure random search is that, in metaheuris-

tic algorithms, randomness is not used blindly but in an intelligent way in order to find

efficiently near-optimal solutions [14].

Metaheuristics can be classified into trajectory methods and population-based

methods. Trajectory methods are algorithms that work on single solutions. They

encompass local search-based metaheuristics, like simulated annealing [76][77][83],

tabu search [54][52][53], iterated local search [1][64] and variable neighborhood

search [59][100]. They all share the property of describing a single trajectory in the

search space during the search process. Population-based metaheuristics, on the other

hand, perform search processes that describe the evolution of a set of points in the search

space. The most studied population-based methods in combinatorial optimization are

evolutionary computation [57][80][98] and ant colony optimization [37][38][39].

The next subsections describe three relevant metaheuristics, local search, simulated

annealing and evolutionary computation. Local search encompasses a variety of specific

algorithms, from the most basic one, iterative improvement algorithm, to very complex

strategies. Simulated annealing is one of the most popular metaheuristics. Evolutionary

computation, like PSO, is a nature-inspired population-based algorithm.
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Algorithm 1 Pseudocode of the Simple Iterative Improvement Algorithm

Initialize candidate solution s

while s is not local optimum do

Randomly choose a neighbor s’ of s

if f(s′) > f(s) then
s← s′

end if

end while

return s

2.1.2 Local Search Algorithms

One of the most popular strategies for approximate algorithms are local search al-

gorithms. Local search algorithms start from some given solution and try to find a better

solution in an appropriately defined neighborhood of the current solution. In case a better

solution is found it replaces the current solution and the local search is continued from

there.

One of most basic local search metaheuristics is the iterative improvement algo-

rithm (IIA) [66][92]. The IIA algorithm only moves towards solution points that improve

the best-found solution quality. IIA stops whenever a local optimal point is reached. The

high-level algorithm is sketched in Algorithm 1. The search starts with an initial solution,

then moves iteratively into a nearby landscape region. Since the next candidate solution is

always selected within the current neighborhood set, the search is always based on local

information. This use of local information inevitably leads to one problem: the algorithm

is easily trapped in local optima. Therefore, the performance of iterative improvement

procedures on combinatorial optimization problems is usually quite unsatisfactory.

Several techniques have been developed to prevent algorithms from getting trapped

in local minima, by adding mechanisms that allow them to escape from these minima.
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One of these mechanisms is to increase the size of the neighborhood used in the local

search algorithm. This increases the chance of finding an improved solution, but it also

takes a longer time to evaluate the neighboring solutions, making this approach infeasible

for larger neighborhoods. Another simple approach is to restart the algorithm from a new,

randomly generated solution. This simple mechanism typically works in scenarios with a

small number of local optima, but since a typical search space contains a large number of

local optima, this approach becomes increasingly inefficient on large instances. Another

alternative is to use constructive algorithms to generate good initial solutions to seed

the local search algorithm. For many problems this has been shown to be a promising

approach to provide better solutions than when starting the local search from randomly

generated solutions.

2.1.3 Simulated Annealing

Simulated Annealing (SA) is an early metaheuristic algorithm that has been quite

successful in combinatorial optimization problems (see [83] for details). SA is one of

the first algorithms that had an explicit strategy to escape from local minima. Its name

and inspiration come from annealing process in metallurgy, a technique involving heating

and controlled cooling of a material to increase the size of its crystals and reduce their

defects [76][77].

SA uses a temperature parameter as an explicit strategy to guide the search. The

solution space is usually explored by taking random tries. An uphill move is always ac-

cepted since it is a better solution. Downhill moves are accepted conditionally with a
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probability that depends on both the current temperature level as well as the change in so-

lution quality. Usually, the change in solution quality is measured by the difference in the

objective function value. If we denote the temperature value as T , and the change in solu-

tions quality as δE, the probability of accepting a downhill move is generally computed

following the Boltzmann distribution p = e
− δE

kB∗T , where kB is the Boltzmann constant,

that is used for adjusting the effect of temperature T in computing the downhill probabil-

ity. Another important part of SA is the cooling scheme, which defines how T decreases

during the search. The basic idea is to allow more downhill moves at the early stage of

the search to keep the algorithm actively exploring the solution space (the higher T , the

higher the probability to accept a downhill move) and as the search continues, downhill

moves should become less likely so that the search would focus on a limited area that

is identified as good solution region. Basically, this means that the algorithm is the re-

sult of the combination of two strategies: random walk and iterative improvement, and

the cooling scheme defines how these strategies are combined. It has been claimed that

given a cooling scheme that decreases the temperature slowly enough, SA is guaranteed

to find the global optimal solution [83], although the scheme is usually too slow for prac-

tical use [61]. Therefore, problem-specific algorithm tuning is usually required in real

applications. The SA pseudocode is presented in Algorithm 2.

2.1.4 Evolutionary Computation

Evolutionary Computation (EC) is, in general, the field encompassing computa-

tional techniques based on, or inspired by Darwinian evolution. Any attempt to describe
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Algorithm 2 Pseudocode of the Simulated Annealing Algorithm

Initialize candidate solution s← s′, set sbest ← s

Initialize cooling scheme, set temperature T ← T0

while termination criterion not met do

Randomly choose a neighbor s′ of s

if f(s′) > f(s) then
s← s′

else

δE ← f(s)− f(s′)

s← s′ with probability p = e
− δE

kB∗T

end if

Update temperature T according to the cooling scheme

if f(s) > f(sbest) then
sbest ← s

end if

end while

return sbest

the components of an EC technique that are common to all varieties will not do justice

to all approaches. But, without being specific to a particular mechanism, any EC tech-

nique generally has the same abstract idea. First, it maintains a population of individuals

(usually randomly generated initially) and every individual is assigned a fitness value.

All individuals or candidate solutions are evaluated with respect to some performance

criteria. Candidate solutions that are of higher quality/fitness are used for generating new

solutions with higher probability than those that are of low quality, and some low quality

solutions may be discarded. New candidate solutions are created by random variations

and combinations of the existing candidate solutions, and those variations may propagate

to future candidate solutions. This process leads to the evolution of populations of in-

dividuals that are better suited to their environment (specified by the objective function)

than the individuals that they were created from, just as in natural adaptation. Although

simplistic from a biologist’s point of view, these algorithms are sufficiently complex to
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provide robust and powerful adaptive search mechanisms [144]. A notable strength of

evolutionary methods is that they frequently have an advantage over many traditional

local search heuristic methods when search spaces are highly modal, discontinuous, or

highly constrained [98].

Four well-known paradigms currently exist in evolutionary computation: genetic

algorithms [57], evolutionary programming [46], evolution strategies [129][138], and ge-

netic programming [80]. Most of these techniques are similar in spirit, but differ in the

details of their implementation and the nature of the particular problem to which they

have been applied [5][159]. In the case of combinatorial optimization problems, the best

suited technique seems to be genetic algorithms.

Genetic algorithms (GA) are the among most popular type of evolutionary meth-

ods. Most GA represent the genotype of an individual as a fixed-length binary string,

where usually the string length must be determined prior to optimization and reflects the

dimensionality of the problem. The binary nature of the representation that is classically

used in GA strikes a clear difference between genotype (the genetic makeup of an indi-

vidual) and phenotype (the expression of those genes), as well as the encoding/decoding

transformations needed to navigate between the two. The genetic operators crossover and

mutation are executed over the genotype of the individual. With the binary representa-

tion, the cross-over operator consists of extracting bit strings from each parent in order to

recreate two new bit strings. Cross-over occurs at a particular rate called the cross-over

probability. The mutation operator is applied by randomly alternating bit values. Muta-

tion occurs with a certain probability referred to as the mutation rate. A popular selection
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Algorithm 3 Pseudocode of a Genetic Algorithm

Choose initial population randomly

Evaluate the fitness of each individual in the population

repeat

Select best ranking individuals to reproduce

Breed new generation through crossover and mutation (genetic operations) and give

birth to offspring

Evaluate the individual fitness of the offspring

Select individuals for next generation

until termination condition is met

scheme in GA is a stochastic method that biases selection by preferring more fit individu-

als over less fit ones by a degree proportional to their respective fitness. The pseudocode

for a GA algorithm is sketched in Algorithm 3.

2.2 Swarm Intelligence

In the following, I use the term swarm in a general manner to refer to any restrained

collection of interacting agents or individuals [43]. The classical example of a swarm

is bees swarming around their hive; nevertheless the metaphor can easily be extended to

other systems with a similar architecture. An ant colony can be thought of as a swarm

whose individual agents are ants. The same idea can be applied to many organisms rang-

ing from colonies of simple bacteria, to flocks of birds, to herds of large animals. These

animal societies have the interesting property that they seem to conduct themselves in

a very organized way with seemingly purposeful behavior that enhances their collective

survival. Surprisingly, however, the individual organisms often utilize very simple rules

of interaction [16]. Such collective behavior has inspired algorithms and heuristics known

as swarm intelligence which have practical applications in many different areas.
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Unfortunately, the term “swarm intelligence” suffers from a vague definition, and

there is no widely agreed upon taxonomy of the systems or algorithms belonging to this

area. The term was first defined as a property of systems of unintelligent agents exhibiting

collectively intelligent behavior [10]. This definition was used in the context of cellular

robotics systems, where many simple agents occupy a one or two-dimensional environ-

ment to generate patterns and to self-organize through nearest-neighbor interactions [10].

The definition has been extended since then to include any attempt to design algorithms

or problem-solving devices inspired by the collective behavior of social insect colonies

and other animal societies [16].

Swarm Intelligence

Cellular space 

 (Celular automata) 

 (others)

Continuous space 

 (Self-organizing particle systems)

Network-based space  

 (Ant algorithms)

2D-3D physical space High-dimensional abstract space

Computer 

Animation
Robots Particle Swarm Optimization

Figure 2.1: A classification scheme for swarm intelligence based on the structure of the

underlying space.

A classification scheme for swarm intelligence according to the structure of the

underlying space is shown in Figure 2.1. This scheme groups swarm intelligence systems

into three broad classes: discrete cellular spaces, continuous spaces and network-based

spaces. Cellular spaces, such as cellular automata, are regular lattices of cells, arranged in

some geometric pattern and connected to other similar cells by some neighborhood rule.

Each cell has a finite number of states which are determined by the states of its immediate
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neighbors. This model, despite the simplicity of local rules, can show complex global

behaviors like self-replication [50][155][160][161].

In network-based spaces, such as the ones used in ant algorithms, agents move over

discrete graph structures guided by a measure of “goodness” of each edge [39]. Its most

representative algorithm, ant colony optimization (ACO), is an agent-based metaheuristic

motivated by the foraging strategies of real ants [39]. In ACO, each artificial ant is con-

sidered as a simple agent that communicates with other ants only indirectly by effecting

changes to a common environment. The set of agents (a colony of ants) moves through

states of the problem corresponding to partial solutions of the problem to solve. They

move by applying a stochastic local decision policy. By moving, each ant incrementally

constructs a solution to the problem (e.g., a route that solves a traveling salesperson prob-

lem). Ants evaluate the solution and modify the trail value on the components used in it

(i.e., ants release pheromone) while building the solution (step by step) or once the solu-

tion is built. This pheromone information will direct the search of the future ants. Many

difficult optimization problems have been solved by these algorithms such as the traveling

salesman problem, the quadratic assignment problem, packet scheduling, vehicle routing,

etc. [16][39].

Continuous spaces are generally handled by self-organizing particle systems, in

which particles (agents) move guided by local “forces” exerted on them by other

nearby agents or the environment [73][133]. Approaches where agents move in 2D

or 3D physical space are used for modeling group behaviors. For example it is

used in the simulation of group movements by animal populations in computer anima-
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tions [133][150][151] and in swarm robotics, where the focus is on applying swarm in-

telligence techniques to the control of large groups of cooperating autonomous robots or

vehicles [3][68][82][94][108][146]. Generalized methods in higher-dimensional abstract

spaces focus on solving continuous optimization problems. As mentioned earlier, particle

swarm optimization is an example of a particularly successful algorithm in this class.

Since self-organizing particle systems are within the area of swarm intelligence

in which this research focuses, they will be discussed in more detail in the following

sections.

2.2.1 Computer Animation and Swarm Robotics

Perhaps the simplest approach to swarm intelligence is the modeling of flocks, herds

and schools that give rise to quite appealing spatial configurations especially suited for

computer animation. Early work in this area includes particles systems developed by

Reeves [130]. This model was extended by Reynolds in his seminal model of flock-

ing of birds, where he studied in detail the problem of group trajectories without central

control [133]. More recently, Terzopoulos developed a similar model for behavioral ani-

mation of fish based on the repertoire of behaviors that are dependent on their perception

of the environment [150].

A particle system, as defined by Reeves, is a collection of a large number of sim-

ple individual particles, each having its own behavior, and originally used to model fire,

smoke, and other “fuzzy” objects that have irregular and complex shapes [130]. Over a

period of time, the system generates particles (setting their initial attributes such as posi-
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tion, velocity, size, color, shape, lifetime), and these particles move in discrete steps in a

3D world (by adding their velocity vector and position vector), while changing the values

of their attributes (like color or shape) until they eventually die.

Reynolds introduced a flocking model [133], that can be viewed as a generalization

of Reeves’ particle systems. With this approach, agents (called “boids”) now often have a

shape and a more complex geometrical state that includes orientation. Another important

contribution is that, unlike particles in particle systems that do not interact with each

other, boids interact strongly in order to flock or move together correctly. The behavior

of boids consists of four separate components, one for each “desire”: the boid wants to

fly in the same direction as its neighbors, be in the center of the local cluster of boids,

avoid collisions with close neighbors, and maintain a clear view ahead by skirting around

others boids that block its view. Figure 2.2 illustrates each of these components. Each

of the components is computed separately, then combined for movement. An important

contribution of Reynold’s work is the generation of successful overall group behavior

while individual agents only sense their local environment and close neighbors. Figure

2.3 shows how a collection of boids self-organize into a flock.

Figure 2.2: Four birds rules: (a) avoid flying too close to others, (b) match the velocity

of near neighbors, c) move toward the center of local neighbors, d) attempt to maintain

a clear view. Figure from The Computational Beauty of Nature: Computer Explorations of Fractals,

Chaos, Complex Systems, and Adaptation. Copyright c©1998-2000 by Gary William Flake.
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Figure 2.3: A collection of boids self-organize into a flock. Figure from The Computational

Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright

c©1998-2000 by Gary William Flake.

Improvements to this approach have recently been made by Terzopoulos, who de-

veloped artificial fish in a 3D virtual physical world [150]. This model not only emulates

the appearance, movement, and behavior of individual animals, but also the complex

group behaviors evident in many aquatic ecosystems. Emergent collective behaviors in-

clude collision avoidance, foraging, preying, schooling, and mating.

During recent years, the term swarm robotics emerged as the application of swarm

intelligence to multi-robot systems. This area is similar to computer animation but with

emphasis on physical embodiment of the entities and realistic interactions among the en-

tities and between the entities and the environment. For example, a robotic approach in

the same line of Reynolds’ model shows that simple behaviors like avoidance, aggrega-

tion and dispersion can be combined to create an emergent flocking behavior in groups of

wheeled robots [94, 95, 96]. Examples of tasks to which swarm robotics is currently

applied include collective navigation [25][72][94][95], foraging [55][145][146], agent
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chain formation [41][106][158], collective transportation[15][82][81][96][108], cluster-

ing [8][63][93] and self-assembly [48][68][102]. A particularly interesting application

of swarm robotics principles can be found in the Swarm-bots project [40], where dis-

tributed adaptive controllers were used to control a group of real, or simulated, robots

so that they perform a variety of tasks which require cooperation and coordination. The

robot controllers were developed by an extensive use of artificial neural networks shaped

by evolutionary algorithms. The robots have performed successfully in simulation and

experimental tasks of coordinate motion, hole/obstacle avoidance, adaptive division of

labor, cooperative transport and functional self-assembling [40].

2.2.2 Optimization

Another area of swarm intelligence that has been explored is how to transform

models of social collective behavior into useful optimization and control algorithms. This

line of research concerns the transformation of knowledge about how social organisms

(including people) collectively solve problems into artificial problem-solving techniques

in which the underlying model of intelligence is the collective intelligence of a social

colony. Unlike the methods presented in the previous section, in these algorithms the

swarm moves in a cognitive (and often high-dimensional) space where collision of agents

is no longer a concern and is even encouraged. An example of a biologically-inspired

model along these lines is bacterial chemotaxis [101], a model proposed by analogy to

the strategy employed by bacteria to follow chemoattractants in a spatial concentration

gradient to a food source. Bacteria, despite their relative simplicity, are able to acquire
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information about their environment, orient themselves in this environment, and use this

information efficiently to survive. Optimization algorithms based on this model gather

information about the environment and use this information to move to an optimum loca-

tion. They have been successfully applied to the training of artificial neural networks [33],

multimodal function optimization [101], the design of aerofoils [101], and the control of

robots for environmental monitoring [36]. The most well-known example of optimization

algorithm in swarm intelligence is undoubtedly particle swarm optimization [43][73] and

it will be described in detail in the next section.

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithms have been inspired by the flocking

behavior of birds and by social psychology [43]. This model operates as follows. A

number of simple entities, the particles, are placed in the parameter space of some prob-

lem or function, and each evaluates the fitness at its current location. Each particle then

determines its movement according to its own experience, and according to the experi-

ence of a neighboring particle, making use of the best position encountered by itself and

its neighbor. During the search, the particles exchange information about their positions

and fitness values. As a result of this communication, the swarm learns and refines its

knowledge about the search, and moves towards the better search space areas. This is

analogous to flocks of birds flying and searching for food, to social insects such as bees

and ants when foraging or nesting, and to humans that affect the minds of each other

by interacting socially. These algorithms have been used for numerical optimization,
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learning weights for neural networks, tracking dynamic systems, and for tackling multi-

objective optimization and constraint optimization problems [43]. This model presents a

concept of neighborhood unlike most of the models used in physical space. In this so-

cial neighborhood the idea is that each agent’s related neighbors are assigned initially

and viewed as forming a fixed network, regardless of agent’s spatial movements. Many

neighborhood topologies have been developed, but two basic topologies remain very pop-

ular in the literature [43], the ring topology (local neighborhood) and the star topology

(global neighborhood). These topologies are shown in Figure 2.4. In the star topology

(also known as gbest), all the particles are neighbors of each other; thus, the position of

the best overall particle in the swarm (i.e., the global best) is used in the social term of

the velocity update equation. It is assumed that gbest swarms converge fast, as all the

particles are attracted simultaneously to the best part of the search space. However, if

the global optimum is not close to the best particle, it may be impossible to the swarm to

explore other areas; this means that the swarm can be trapped in local optima. In the ring

topology (also known as lbest), only a specific number of particles (neighbor count) can

affect the velocity of a given particle. The swarm will converge slower but can locate the

global optimum with a greater chance.

PSO models a set of potential problem solutions as a swarm of particles moving

about in a virtual search space [43][73]. Every particle in the swarm begins with a ran-

domized position (~xi) and a velocity (~vi) in the n-dimensional search space, where xij

represents the location of particle index i in the jth dimension of the search space. The

current position ~xi can be considered as a set of coordinates describing a point in space.
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(a) (b)

Figure 2.4: Examples of PSO neighborhood topology. a) ring topology (lbest) b) star

topology (gbest).

Candidate solutions are optimized by flying the particles through the virtual space, with

attraction to positions in the space that yielded the best results. Each particle remembers

at which position it achieved its highest performance (~bi). Every particle is also a mem-

ber of some neighborhood of particles, and remembers which particle achieved the best

overall position in that neighborhood (~ni).

At each iteration of the algorithm, as shown in Algorithm 4, the position of each

particle i is updated with a velocity that is a weighted sum of three components: the old

velocity, a velocity component that drives the particle towards the location in the search

space where it previously found the best solution so far (~bi), and a velocity component

that drives the particle towards the location in the search space where the neighbor par-

ticles found the best solution so far (~ni). In algorithm 4 the terms U(0, c1) and U(0, c2)

weight the contributions of bi and ni respectively. They are influential in striking a balance

between the relative roles of the individual (cognitive) experience (governed by cognitive-

factor c1) and of the social communication (governed by social-factor c2). Uniform ran-
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Algorithm 4 Traditional PSO

for each particle i do

initialize position ~xi and velocity ~vi

end for

while stop criteria not met do

for each particle i do

evaluate fitness(~xi)
~bi ← best position found so far by the particle

~ni ← best position found so far by its neighborhood

end for

for each particle i do

~vi ← ω × ~vi + U(0, γ1)× (~ni − ~xi) + U(0, γ2)× (~bi − ~xi)
~xi ← ~xi + ~vi

end for

end while

dom selection U(i, j) of these two parameters avoids any a priori choice of the importance

of either of the two sources of information. The inertia weight w acts as a scaling factor

over the previous velocity. As a result, the new velocity includes a component of the pre-

vious velocity. Inertia values may be changed dynamically over time. By doing so, the

early stages of the algorithm are favored towards exploration, while exploitation of local

areas occurs at latter stages. A common strategy [142] is to linearly decrease w over time

within the range [0,1] . Depending of the nature of the problem being optimized, different

stopping criteria may be applied to stop the algorithm. Usually, a PSO algorithm executes

for a maximum number of iterations or fitness functions evaluations. Another termina-

tion criteria can be when the average velocity update over all particles approximates zero,

indicating the particles are no longer moving (i.e., the system is in equilibrium).

Extending PSO to more complex combinatorial search spaces is of great interest

but it requires a clear definition of the relationship between particle position and a solu-

tion [122]. The definition of a particle as an encoded solution is usually called a solution
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representation and the method to convert it to a problem specific solution is usually called

a decoding method. This relationship, as well as the notions of position and velocity of the

original PSO, have no natural extensions in combinatorial space. We now review briefly

some relevant attempts to deal with this representation.

2.3.1 Discrete and Combinatorial PSO

Since the original PSO algorithm can only optimize problems in which the ele-

ments of the solution are continuous real numbers, a modification of the PSO algorithm

for solving problems with binary-valued solution elements was presented in [74]. This

algorithm preserves the concept of social and cognitive learning but changes the updates

of the particles’ features. The velocity equation remains unchanged, except that now xij ,

bij and nij are integers in {0, 1}, the particle’s position equation is changed to:

xij =















1 if rand() ≤ 1

1+e
−vij

0 otherwise

The particle’s position xij now contains the solution component (i.e., the value 0 or 1), and

the velocity vij is a probability value constrained to the interval [0.0, 1.0] that indicates the

probability of the corresponding solution element assuming the value of 1. The notion of

velocity of the standard PSO representing the change of the particle’s position xij is lost.

In a more general case, when integer solutions (not necessarily 0 or 1) are needed,

the optimal solution can be determined by rounding off the optimum real values to the

nearest integer. This was implemented in integer PSO [111][136]. Integer PSO uses the
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same velocity and position equations of Algorithm 4. Once the new position is deter-

mined, its value in each dimension is rounded to the nearest integer value. Results of

integer PSO were encouraging in seven integer programming test problems, and in some

instances it outperformed the branch and bound method [86] with respect to the mean

number of required function evaluations [85]. This PSO approach makes the implicit

assumption that nearby discrete values are physically related, i.e., a position value of

xij = 1 would move to xij = 2 easier than it would to xij = 5. Another recent approach

to discrete PSO is multi-value PSO, MVPSO [126], which defines the particles’ positions

to contain the probabilities of solution elements assuming specific values. This strategy

maintains a notion of position and velocity similar to the traditional PSO, but the perfor-

mance of MVPSO decreased as the number of discrete values increased from binary to

ternary [126].

The most common approach to PSO extensions for explicit combinatorial prob-

lems, such as the traveling salesman problem, is based on the principle of permuta-

tions [23][140][157]. In these algorithms, a particle’s position is a specific permutation,

and the velocity becomes a swap operator that transforms one permutation into another.

Discrete PSO [23] redefines the basic arithmetic operators to work on discrete spaces and

particles that represent permutations. A velocity operator is interpreted as a list of permu-

tations of a particle, and a particle represents a candidate solution. For example, given the

following particle position ~xj = [1, 2, 3, 4, 5] and the velocity ~vj = [(1, 2), (2, 3)]. The

next position is found by applying the first transposition of vj to xj , then the second one

to the result, and so on. Thus, the new position in this example is ~xj = [3, 1, 2, 4, 5].
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Various other heuristic rules have been proposed to apply PSO to combinatorial

problems while attempting to keep the particles in continuous space. For example, the

smallest position value rule, maps the positions of the particles to a permutation so-

lution by placing the index of the lowest valued particle component as the first item,

the next lowest as the second, and so on [149]. For example, having a particle posi-

tion ~xj = [1.80,−0.99, 3.01,−0.72,−1.20, 2.15] would represent the potential solution

~sj = [5, 2, 4, 1, 6, 3]. A hybrid PSO with this representation plus a local search method is

found to be competitive for a sequencing problem [149].

2.3.2 Cooperative PSO

In cooperative PSO approaches, particles are explicitly or implicitly grouped into

subswarms. Implicit grouping is achieved on the basis of particle behavior and overall

state. Cooperation is mainly in terms of exchanging information about best positions

found by different groups. An example of this approach is concurrent PSO, CONPSO [7],

where two swarms search concurrently for a solution with frequent message passing of

information. Breeding PSO, developed in [91], has implicit cooperation based on the

exchange of genetic material between parents of different subswarms. Multi-Phase PSO,

MuPSO [71], divides the swarm into groups of particles that are allowed to exchange

particles. Each group can be in an attraction or repulsion phase, where it moves toward

or away from the best solutions found recently.

Cooperative Split PSO, CPSO-Sk, [154], divides the solution into components that

are then optimized using a separate PSO for each component. The best particle of each
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PSO is used to define a context-vector which is needed to evaluate the fitness of the

particles. The context vector represents the necessary mechanism that provides the glue

for the cooperative approach. This context is unique during the evaluation of particular

PSO, which means that all particles are evaluated using one template solution. CPSO-Sk

also raises a problem in terms of swarm credit assignment. Each PSO swarm needs to be

assigned credit for the quality of its participation in the overall solution. The danger is

that the algorithm could spend too much time optimizing variables that have little effect

on the overall solution. CPSO-Sk gets trapped in pseudo-minima, that is, a minimum that

was created as a side effect of the partitioning of the search space [154]. To help alleviate

this problem two strategies are proposed. The fist one consists of a second context vector

made up of random components (as suggested by [125]) and the second one is to combine

traditional PSO with CPSO-Sk, interleaving their execution and combining the results by

replacing half of the population of one with the best solutions of the other. CSPSO-

Sk was tested in several continuous optimization benchmark problems with promising

results [154].

34



Chapter 3

Cooperative PSO for Combinatorial Problems with Shared Values

A class of problems often dealt with in the field of optimization is the class of

the so-called combinatorial problems. Combinatorial problems are characterized by the

consideration of a selection or permutation of a discrete set of “items” or by an assign-

ment among these. The first cooperative strategy presented in this dissertation aims to

solve combinatorial problems where candidate solutions are represented by a vector,

solution = 〈c1, c2, ..., cn〉, and each component cj is selected from an ordered set of

k possible values Q = {q1, q2, ..., qk}.

To take a simple example, suppose we have have to deliver packages to different

locations L = {l1, l2, l3, l4}. We can hire up to three drivers to deliver these packages,

i.e., D = {d1, d2, d3}. Each driver has his own fee for each location, and not every driver

goes to all locations. Each driver has a fixed fee of 200 if he gets hired for the day, plus

a fee for each package delivered in each location. The fee schedule is indicated in the

following table:

l1 l2 l3 l4

d1 2 3 3

d2 5 2 5

d3 4 3 2

This means that if we select driver d1, then the cost of delivering packages in l1 is $2

per package, $3 per package in both locations l2 and l3, and no deliveries can be made to

locations l4. Given a set of locations that need deliveries Input = {l1, l2, ..., ln}, we want
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to determine the set of drivers Ds which are able to deliver all packages with minimum

cost, where

cost = 200|Ds|+
∑

lj∈Input

min
∀di∈Ds

npj × fee(di, lj)

where npj is the number of packages that need to be delivered to location lj . In this exam-

ple, each component is a location that needs a driver, therefore each solution component

has a set of possible values D = {d1, d2, d3}. A candidate solution is a collection of n

drivers, one for each location where deliveries have to be made. Two locations can have

the same driver, so the solution is reduced to the set represented by Ds. In this example,

let us assume that we need to deliver 100 packages to location l1 and 100 packages to

location l2 (i.e., Input = {l1, l2}). The global minimum is the solution Ds = 〈d1〉 with

cost = 200|{d1}|+np1× fee(d1, l1)+np2× fee(d1, l2), cost = 200(1)+100×2+100×3,

i.e., cost = 700.

This chapter presents a new PSO model to deal with this type of combinatorial prob-

lem. Shared-space CCPSO consists of particles that move in a shared high-dimensional

continuous space, and based only on local interactions generate a solution as a result of

their collective behavior. Abductive diagnosis is the combinatorial task selected for the

evaluation of shared-space CCPSO. The goal in abductive diagnosis is to obtain the best

or most plausible explanation for the manifestations (symptoms) known to be present in

a given case. Such problems are often quite complex due to the number of possible ele-

mentary hypotheses for each observation and the many different ways to combine these

hypotheses into an explanation. Moreover, the plausibility of solutions depends on the

interactions between explanation components in a highly non-linear fashion which makes
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it a complex problem. These characteristics of abductive diagnosis makes it an especially

attractive task to evaluate the performance of the proposed combinatorial PSO, CCPSO.

3.1 Shared-space CCPSO

In CCPSO, each solution component cj is represented by a particle pj . Each possi-

ble value in Q is represented by an attractor ri. Particles move in a k-dimensional space,

where k = |Q|. One attractor ri is created for each qi. Each attractor tries to pull particles

to its position, i.e., tries to assign its value qi to the solution component cj. The algo-

rithm ends when the system has reached equilibrium, i.e., all particles have arrived at an

attractor’s position. The solution represented by the swarm is decoded from the particle’s

positions. Each particle contributes the value represented by the attractor it picked. Note

that the attractors are shared by all particles, and several particles can pick the same at-

tractor. The candidate solution is the set of distinct values represented by this collection.

For the example presented above, one particle pj is created for each location that needs

a driver. Since Input = {l1, l2}, two particles are created: particles = {p1, p2}. An

attractor ri is created for each possible driver. Since attractors = {r1, r2, r3}, the space

where particles move is three-dimensional. This is depicted in Figure 3.1.

More detailed description of the swarm, attractors and particles are given below.

Swarm A swarm represents a candidate solution for the optimization problem, and is

defined by the tuple:

S = 〈particles, sol, fitness〉
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Figure 3.1: Components in shared-space CCPSO model with two particles and three at-

tractors, particles = 〈 p1, p2 〉, attractors = 〈 r1, r2, r3 〉 a) initial state with particles at

origin, b) intermediate state, c) equilibrium state, all particles are at an attractor position.

where particles is the set of particles that belong to the swarm, sol is the candidate solution

decoded from particles, fitness is the fitness value of the candidate solution evaluated

according to the optimization fitness function.

Attractors An attractor represents a value qi for components in the candidate solu-

tion. Attractors are represented by static particles ri located throughout the k-dimensional

space, where k is the number of possible values. Each attractor ri is defined by the tuple:

ri = 〈~ai, neighborsi, sti, fti〉

where ~ai is its location, neighborsi is the set of particles with which it interacts, sti is the

strength (heuristic parameter) that determines its attractive force, and fti is its fitness and

represents how successful the attractor is in pulling particles to its position. The position

~ai is initialized to a unit vector in a direction of the ithcoordinate axis perpendicular to

ah∀h<i.
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Particles A particle represents one component in the candidate solution. Its position is

used by the swarm to construct the candidate solution. Each particle pj is defined by the

tuple:

pj = 〈~xj , ~vj, neighborsj〉

where ~xi is its current position, ~vi is its current velocity vector, and neighborsi is the

set of attractors with which it interacts. The initial position ~xj is set to the origin of the

k-dimensional space, and its initial velocity vector ~vj is set to zero. A new velocity is

computed for each particle based on its previous velocity and the current force exerted on

it, ~Fj, where the equation for computing ~Fj is problem dependent. Then each particle’s

position is updated by simply adding the velocity vector. Parameter△t regulates the step

size. The step size may be changed dynamically over time but in the current implementa-

tion is set to 0.1. The updates of the particles are accomplished according to the following

equations:

~vj = ~vj +△t · ~Fj (3.1)

~xj = ~xj +△t · ~vj (3.2)

Algorithm Algorithm 5 presents the CCPSO pseudocode that combines the compo-

nents described above. The system is initialized at time t = 0 by creating one swarm.

One particle is defined per element of the combinatorial problem. An attractor is created

for each possible value of the variables. The iterative process starts after this initializa-

tion. For each time step, each particle updates its position vector by simply adding a new

velocity vector (Equation (3.2)). This new velocity vector is computed based on the influ-
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ence exerted by the attractors and then the attractors recompute their fitness values based

on their proximity to the particles. The closer particles are to an attractor, the higher its

fitness. A key component in the algorithm is this feedback mechanism. It rewards attrac-

tors which are successful in pulling particles towards them. This way, each possible value

for a solution component (i.e., each attractor) gets feedback that reflects its contribution

to the overall solution. The process iterates until all particles have arrived at a stationary

position (i.e., the system is in equilibrium) or until a maximum number of time steps is

reached.

Algorithm 5 Shared-space CCPSO algorithm

for each element ∈ Input do

create particle j

initialize position ~xj to
−→
0

initialize velocity ~vj to
−→
0

end for

for each qi ∈ Q do

create an attractor ri

initialize position ai

compute sti
end for

while stop criteria not met do

for each particle j do

compute ~Fj exerted by attractors in neighborsi
~vj = ~vj +△t × ~Fj

~xj = ~xj +△t × ~vj

end for

for each attractor i do

fti ∝
∑

pj∈neighborsi
proximityij

end for

end while

decode solution sols
evaluate fitness(sols)
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3.2 Application: Abductive Diagnosis

Abductive diagnosis is used as a first test of the benefits of shared-space CCPSO.

The complex and highly non-linear nature of this task makes it an especially interesting

combinatorial problem to evaluate the performance of the proposed combinatorial PSO.

Abduction, or inference to the best explanation, is a form of inference that goes from data

to a hypothesis that best explains this data [69]. The philosopher Pierce first introduced

the notion of abduction and distinguish it from deduction and induction [115]. A modern

interpretation of this distinction is as follows:

• Deduction, a process based on the application of general rules to a specific case,

with the inference of a specific result.

• Induction, reasoning in which from a specific case and a specific result, a general

rule can be hypothesized.

• Abduction, inference where from a general rule and a specific result, a general

explanation can be hypothesized.

Both induction and abduction involve making and testing hypotheses that cannot

be deduced. The difference between these two processes is that in induction learning

what is being hypothesized is the general rule (new knowledge) while in abduction it is

the specific case (i.e., an application of existing knowledge). Also, in induction there is

usually a large number of situations that collectively support the general rule, while in

abduction the inference is usually conducted with data about a single situation.
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In abduction, given a set of facts, the goal is to find one or more plausible hypotheses

that can explain or account for these given facts. This inference process is often viewed as

involving two steps: hypothesis generation to construct explanatory hypotheses, and hy-

pothesis disambiguation to pick the best ones among all possible hypothesis [119]. The

problem arises of how to choose the best among the entire set of possible hypothesis.

Peirce gives several criteria that a good explanation should fulfill [115]. First, and fore-

most, a hypothesis should account for all the facts. Second, it should be the “simplest” hy-

pothesis available. In general, simplicity is interpreted as logical simplicity, which means

that the hypotheses that contain fewer elements are preferred, but other views exist.

A prominent application of abduction has been diagnostic problem solving. For

example, in medicine the diagnosis task can be viewed as producing an explanation (set

of disorders) that best accounts for a patient’s manifestations (symptoms). Examples of

abductive models for diagnostic problem solving are [69][97][124][127][131][132].

Abductive inference has also been used in other fields. For example, it has been

used for high-level computer vision applications [26]. In this case, the hypotheses are

the objects to be recognized, and the observations are partial descriptions of objects. In

natural language understanding, abduction has been used to interpret ambiguous sen-

tences [62][147], the abductive explanations corresponding to the various possible inter-

pretations of such sentences. Another application in the case of natural language under-

standing is the problem of building a plausible model for a story so that questions about

events can be answered [29]. In planning problems, plans can be viewed as “explana-

tions” for the given goal state to be reached [45][141]. In plan recognition, given a theory
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describing how actions relate to goals and an observation of agent action, agent goals can

be conjectured to account for the actions.

3.2.1 Diagnostic Problem Solving

A diagnostic problem is a problem in which one is given a set of manifestations and

must explain why they are present by using one’s knowledge about the world. Diagnostic

problems can be found in various areas, e.g., diagnosis in clinical medicine, computer

program debugging, and fault localization in circuits. In this type of abductive problem,

for a set of manifestations (observations or symptoms), diagnostic inference consists of

finding the most plausible set of disorders that can explain why the manifestations are

present. In general, an individual disorder can explain only a portion of the observations

and therefore it is necessary to find a solution which consists of multiples disorders (i.e., a

multi-disorder solution) that explain all of the observations that are present. For example,

often a medical doctor will need to postulate the presence of multiple disorders to explain

a patient’s symptoms.

Two kinds of knowledge are usually employed in diagnostic systems: structural and

probabilistic knowledge. Structural knowledge (usually in symbolic form in knowledge-

based systems) specifies the entities of interest in an application domain and which entities

are associated by what kind of associations. Among these different kinds of associations,

cause-effect relations are probably the most important in diagnostic problem-solving. For

example, in medical diagnosis, the statements “disorder di may be a cause of manifesta-

tionmj”, or, “mj may be a manifestation of di” associate di andmj together. Probabilistic
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knowledge, on the other hand, reflects the uncertain aspects of such associations. Prob-

abilistic knowledge (usually in numeric form in knowledge-based systems) specifies the

strength of associations and prior probabilities of individual entities. Probabilities may be

represented as actual numbers (0.5, 0.01, etc.) or in non-numeric symbolic form (“very

common”, “moderately common”, “very rare”, etc.) [119].

An associative network of causal relationships allows the representation of both

structural and probabilistic knowledge. This network is a graph where edges repre-

sent direct causal effects, and the edges are labeled with a weight that represents the

strength of that relationship. This network thus supports and encompasses causal in-

ferences plus probabilistic reasoning. In these networks, the sets of possible disorders

D = {d1, d2, d3, ..., dn} and possible manifestations M = {m1, m2, m3, ...mp} are rep-

resented by the nodes of the graph. As illustrated in Figure 3.2, each disorder di ∈ D is

associated with a number pi ∈ (0, 1) that represents its prior probability, and each causal

link is associated with a number cij ∈ (0, 1] that represents how frequently di causes mj .

Figure 3.2 shows an example where D = {d1, d2, d3} and M = {m1, m2, m3, m4, m5}.

In this network the link between d1 and m1 establishes that disorder d1 causes manifes-

tation m1 with a probability of 0.2, and the prior probability that disorder d1 is present is

0.01.

This representation of the diagnosis problem makes three assumptions: i) disorders

di are independent of each other, ii) causal strengths are invariant, i.e., di causes mj with

the same probability whenever di is present, and iii) no manifestation is present with-

out being caused by some disorder. This later assumption can be dropped by including
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d1 d2 d3

m1 m2 m3 m4 m5

0.01 0.1 0.2

0.2 0.6 0.8

0.9 0.2 0.3

0.3 0.5 0.8 0.5

Figure 3.2: A very simple causal network (real-world diagnostic networks are much

larger). Disorders are pictured at the top, manifestations at the bottom. Values of prior

probabilities for disorders and causal strengths for causal links are indicated.

a “dummy” disorder with links to all manifestations, linking it all manifestations with

the probability that mi is present without any causal disease. An instance of a diagnos-

tic problem consists of a causal network plus a particular set of observed manifestations

M+. For example, M+ = {m1, m2} represents the case where m1 and m2 are the man-

ifestations observed for which an explanation is needed, while other manifestations are

absent.

One abductive theory of diagnosis based only in structural knowledge is the set cov-

ering model [131][132]. This model is based on the notion of parsimoniously covering a

set of observable manifestations, that is, finding the simplest explanation for the given set

of manifestations. Several parsimony criteria have been proposed for this model [103]. A

very simple one is to have a minimum cover, that is, the cardinality of hypothesis is the

smallest among all explanations. In other words, this minimal cardinality criteria adopts

the notion that smallest hypotheses (containing fewer disorders) are better or more plau-

sible than larger ones. Another often used parsimony criteria is irredundancy (sometimes

45



also called minimality) where a hypothesis is plausible if it does not contain any super-

fluous disorders. In other words, the removal of any disorder from this set will make

the hypothesis no longer capable of explaining all manifestations present. In many di-

agnostic problems, such as in medicine, it is preferable to take all the plausible diseases

into consideration rather than have only one candidate disease for the cause. Therefore

irredundant cover has been often used as the parsimony criterion for abductive inference.

A limitation of parsimonious set covering theory is that the solution for a diag-

nostic problem may include a large number of alternative hypotheses. In order to dis-

criminate further among these potential explanations, some criteria other than parsimony

are needed. The probabilistic causal model based on Bayesian classification integrates

symbolic cause-effect inference with numeric probabilistic information and provides a

formal probability theory capable of determining the relative likelihood of multi-disorder

hypotheses [116][117]. With this new measure it is possible to select the most-probable

hypothesis among all possible hypotheses.

Traditional approaches to abduction can be applied to the diagnosis problem. How-

ever, finding a multi-disorder solution that satisfies some criteria for being the best ex-

planation (such as plausibility, explanatory coverage and parsimony) is computationally

very expensive. The reason for this high computational complexity is the large size of

the space of possible combinations of individual hypothesis. This space is exponentially

large [119].

Two approaches have been considered to solve this difficulty. One approach is to

develop traditional AI algorithms that focus the diagnostic reasoning in a restricted diag-
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nosis space so that combinatorial explosion can be avoided [30][128]. These algorithms

can be viewed as a special case of Bayesian/causal network methods [78]. Another ap-

proach is to develop problem solving algorithms involving parallel processing, in this

respect several connectionist models have been explored, for example [118][164].

3.3 CCPSO for Diagnostic Problem Solving

A mapping from disorders and manifestations in the causal network to the shared-

space CCPSO model is needed to be able to apply it to diagnostic problem solving. This

mapping is explained below. A solution to a diagnosis problem is defined as set of disor-

ders with maximal explanatory coverage and maximal plausibility. The solution compo-

nents are the disorders and a candidate solution is a set of disorders, one for each observed

manifestation. Disorders and manifestations are represented by two classes of particles

that interact in an k-dimensional space, where k = |D|, the number of possible disorders.

Each attractor representing a disorder interacts only with the set of manifestation particles

that it is adjacent to (i.e., that it causes) in the causal network. This defines a fixed neigh-

borhood for each particle. For example, in the causal network in Figure 3.2, the attractor

that represents d1 would only interact with the particles that represent m1, m2 and m3.

The particles that represent manifestations will move throughout the space, based on the

influences exerted by the attractors (the particles that represent disorders), and at the end

of the simulation, the final position of the manifestation particles will be used to obtain

the solution to the diagnosis problem.

To keep within the notation used in diagnostic problem solving, attractors will be
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referred as d-particles, and particles as m-particles.

Subswarm → candidate hypothesis A subswarm represents a candidate hypothesis

Ds for the diagnostic problem. The hypothesis Ds for the diagnostic problem is the set

of disorders represented by the attractors selected by each of the particles at the current

iteration step.

Disorders→ d-particles As noted above, disorders are represented by attractors. For

each di ∈ D, a d-particle labeled di is created. The position~ai of d-particle di is initialized

to a unit vector in a direction of the ithcoordinate axis perpendicular to the positions of

all previous d-particles. For example, for the causal network of Figure 3.2, n = 3, a 3-

dimensional space, and the d-particles representing the disorders d1, d2 and d3 would be at

~a1 = 〈1, 0, 0〉,~a2 = 〈0, 1, 0〉 and ~a3 = 〈0, 0, 1〉. The strength value sti is determined using

a single non-local computation before processing starts based on the prior probability of

the disorder di and the set manifestations that are expected to be observed when this

disorder is present but are not. M− is the set of manifestations that are not present in the

instance. This value is computed by using:

sti = pi ×
∏

ml∈M−

(1− cil) (3.3)

where M− ≡M −M+.

The fitness value fti is updated at each iteration based upon the feedback that the

m-particles give to the d-particle di. All d-particles are initialized with the same fitness
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value of 1.0, and this value is recomputed at each time-step based on the success of its

interactions with m-particles (i.e., the closer that m-particles get to di’s position, the

higher the fitness of di). Specifically,

fti =
∑

mj∈M+

proximityij (3.4)

where proximityij = 1√
(~ai − ~xj )2

.

Manifestations → m-particles Manifestations are represented by particles that move

throughout the space. For each mj ∈M+ an m-particle labeled mj is created. The initial

position ~xj of particle mj is set to the origin of the k-dimensional space, and its initial

velocity vector ~vj is set to zero. The particles’ updates are accomplished according to

Equation (3.1) and Equation (3.2). The value of the new influence of other particles, ~Fi,

is the result of all forces exerted by attractors on particle mj as shown below in Equa-

tion (3.5). Equation (3.6) shows that this attraction force is dependent upon particular

d-particle’s attributes: its strength (sti) and its ability to attract d-particles, fitness (fti),

and upon interactive values such as the causal strength cij and the directed distance ~uij

between the m-particle and the d-particle. Specifically:

~Fi =
∑

di∈neighborsj

~Fij (3.5)
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~Fij =sti × fti × cij × proximityij × ~uij (3.6)

where ~uij =
~ai − ~xj

|~ai−~xj |
.

Algorithm As a simple pre-processing step to avoid useless computations,D is reduced

to D′, where D′ ⊂ D such that only disorders that have a causal relationship with some

m ∈ M+ are included in D′ and the rest of the possible disorders are discarded. The

system is initialized at time t = 0 by creating a particle for each observed manifestation,

i.e., for each m ∈ M+. Then, a d-particle is created for each disorder in D′, its position

is initialized and its strength value is computed using Equation (3.3).

The iterative process starts after this initialization. For each time step, each

m-particle updates its position vector by simply adding a new velocity vector (Equa-

tion (3.1)). This new velocity vector is computed based on the influence exerted by neigh-

boring d-particles. Equation (3.5) defines how to get the resultant force of all neighboring

d-particles, and Equation (3.6) shows how to compute the individual force of each one.

Then all d-particles recompute their fitness value based on the new m-particles’ position,

following Equation (3.4). The process iterates until all m-particles have arrived at the

position of a d-particle, (i.e., the system is in “equilibrium”), or until a maximum number

of time steps is reached.

Once the iterative process has terminated, a solution is extracted. If equilibrium has

been reached and each m-particle has “picked” a winner attractor, the solutionDs is the set

of disorders represented by these winner d-particles. Note that more than one m-particle

may move close to the location of the same d-particle, thus picking the same winner. If
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d1 d2 d3

m1 m2 m3 m4

0.054 0.003 0.098

0.620.72 0.73

0.960.95 0.67

Figure 3.3: Causal network of shared-space CCPSO in Figure 3.4.

one or more of the m-particles is unsettled (not close enough to a d-particle’s position)

then a solution is not obtained. To determine whether an m-particle is “close enough” to

a d-particle, a simple delta function is applied in each dimension of the position vector ~x.

For dimension k of the position vector ~x, this delta function is:

~xk =































1 if ~xk > 0.95

0 if ~xk < 0.05

unsettled otherwise

Example Figure 3.4 shows an example output of shared-space CCPSO for the randomly

generated causal network of Figure 3.3. For this particular instance there are four mani-

festations present M+ = {m1, m2, m3, m4}. For illustrative purposes, the space in which

the particles will interact actually has three dimensions, i.e., |D′| = 3; the 3D space is

defined by d1, d2, and d3.

The system is initialized at time 0 by deploying the four m-particles m1, m2, m3

and m4 with initial positions of {0, 0, 0} as shown in Figure 3.4a. After a few iterations,
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Figure 3.4: Simple example of shared-space CCPSO execution. The graphs show how

the m-particles move around the space until they settle. The system is shown at different

time steps. Note how particle m3 initially moves towards d1 but ends near d2.
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the m-particles are starting to move away from the origin of the coordinate system, as de-

picted by Figure 3.4b. It can be seen that m1, m2 and m3 seem to have chosen a direction

and are moving toward an specific d-particle; m1 is headed towards d2, m2 towards d3,

m3 towards d1. But m4 is moving in between d2 and d3, with a small preference for the

former. This behavior continues for a few more iterations, as shown by Figure 3.4c at

time 20. At time 40, as depicted by Figure 3.4d, there have been some changes. First,

m4 is now moving more clearly towards d3, the influence of d2 over this particle seems to

have weakened. Secondly, m3 has changed direction, from a trajectory almost completely

towards d1 and it is now moving towards the space between d1 and d2. This change of

direction of m3 can be attributed to the increased fitness value of d2, which in turn has

been getting stronger feedback from m1. This tendency continues (Figure 3.4e shows

the system at time 60), and finally, at time 100 the system reaches equilibrium, as de-

picted by Figure 3.4f. Solution Ds is obtained from the final “winner” position of the

m-particles: m1 and m3 have selected d2 while m2 and m4 chose d3; so the solution is

Ds = 〈d2, d3, d2, d3〉, which is simplified to Ds = {d2, d3}.

3.4 Computational Validation of Shared-space CCPSO

Shared-space CCPSO was systematically evaluated using computer simulations

with two randomly-generated causal networks and a substantially bigger network taken

from a medical domain. Bayesian methods were used to identify the correct answers, i.e.,

the actual most likely set of disorders D+ (second most likely, third, etc.) given the prior

and conditional probabilities of the network and the manifestations known to be present.
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Specifically, the solution to a problem, the most probable hypothesis D+, is the one with

the highest relative likelihood (as defined by [119]) among all possible hypotheses. An

exhaustive search algorithm was used to identify the most probable hypothesisD+. Since

the presence/absence of disorders is possible, the potential space for searching for a so-

lution is 2D, an extremely large search space for an exhaustive algorithm to be used in

practice. The relative likelihood measure for a hypothesis Ds given M+ is computed by

Equation (3.7):

L(Ds,M
+) =

∏

mj∈M+

[1−
∏

di∈Ds

(1− cij)]×
∏

ml∈M−

∏

di∈Ds

(1− cil)×
∏

di∈Ds

1− pi

pi

. (3.7)

A solution that is one of the best three is considered to be an acceptable approx-

imation (a near-optimal solution), and any other solution to represent a failure, so the

exhaustive Bayesian algorithm for D+ actually computes the three best solutions. The

purpose of these experiments is to determine whether shared-space CCPSO would pro-

duce a valid solution on a set of multiple winners, and if this proposed solution compares

favorably with the most probable hypothesis.

The first evaluation used two randomly generated networks taken from [118]. Each

network has 10 manifestations, 10 disorders and a maximum of 40 connections (causal as-

sociations) between individual disorders and their manifestations. These networks were

randomly generated: for each di, its prior probability pi, how many manifestations are

causally associated with it, which ones they are, and what their respective causal strengths

are, were all generated randomly and independently. The details of the two causal net-

works are given in Table 3.1 and Table 3.2. Causal strengths not listed are assumed to be
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Table 3.1: Details of random causal Network #1.

p1 = 0.026 p2 = 0.014 p3 = 0.054 p4 = 0.060
p5 = 0.003 p6 = 0.023 p7 = 0.048 p8 = 0.079
p9 = 0.098 p10 = 0.027

c12 = 0.31 c14 = 0.85 c17 = 0.30 c27 = 0.50
c32 = 0.29 c34 = 0.64 c35 = 0.15 c36 = 0.11
c38 = 0.72 c39 = 0.62 c43 = 0.88 c48 = 0.27
c51 = 0.72 c52 = 0.92 c54 = 0.07 c55 = 0.47
c59 = 0.73 c5,10 = 0.96 c66 = 0.32 c67 = 0.26
c71 = 0.05 c72 = 0.80 c75 = 0.73 c78 = 0.58
c82 = 0.04 c84 = 0.26 c86 = 0.23 c87 = 0.69
c8,10 = 0.51 c92 = 0.12 c97 = 0.95 c9,10 = 0.67
c10,4 = 0.43 c10,5 = 0.18 c10,6 = 0.11

zero. For example, in Network #1, d1 has three non-zero causal strengths, 0.31, 0.85, and

0.30, to manifestations m2, m4, and m7, respectively.

In these networks, disorders are assumed to have very small prior probabilities; in

Network #1, 0 < pi < 0.1. For example, p1 = 0.026, p2 = 0.014. For Network #2, the

prior probabilities are in the range 0 < pi < 0.2. The reason for restricting pi to small

numbers is that in most real-world diagnostic problems, such as those in medicine, prior

probabilities of disorders are very small [116][117].

For each network, each of the 210 non-empty sets of manifestations was used to

define a problem instance. Thus, 1023 problem instances were tested for each network.

3.4.1 Results in Random Networks

In these experiments all 2046 cases reached equilibrium, and each case produced a

set of winning disorders. Simulations converged in less than 200 iterations. The results
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Table 3.2: Details of random causal Network #2.

p1 = 0.17 p2 = 0.07 p3 = 0.03 p4 = 0.12
p5 = 0.135 p6 = 0.18 p7 = 0.075 p8 = 0.03
p9 = 0.14 p10 = 0.05

c12 = 0.06 c14 = 0.68 c16 = 0.10 c17 = 0.51
c21 = 0.53 c23 = 0.81 c24 = 0.09 c25 = 0.85
c28 = 0.13 c29 = 0.34 c2,10 = 0.85 c32 = 0.54
c35 = 0.45 c36 = 0.90 c37 = 0.59 c3,10 = 0.29
c42 = 0.74 c45 = 0.52 c47 = 0.65 c49 = 0.32
c53 = 0.72 c58 = 0.49 c63 = 0.09 c65 = 0.66
c6,10 = 0.44 c73 = 0.22 c74 = 0.46 c75 = 0.21
c76 = 0.76 c7,10 = 0.43 c81 = 0.29 c82 = 0.34
c88 = 0.25 c91 = 0.39 c94 = 0.20 c95 = 0.90
c96 = 0.48 c97 = 0.38 c10,2 = 0.74 c10,8 = 0.27

Table 3.3: Results of shared-space CCPSO algorithm in random networks.

Network # 1 Network # 2 Total

Optimal 609 59.5% 491 48.0% 1100 53.8%

Near-optimal 291 28.5% 270 26.4% 561 27.4%

Other 123 12.0% 262 25.6% 385 18.8%

for these experiments are given in Table 3.3. This table shows that the solution Ds from

shared-space CCPSO agreed with the most probable Bayesian hypothesisD+ (i.e., Ds =

D+) in about 59% of the cases with Network #1 and 48% with Network #2. For those

cases where shared-space CCPSO solution did not agree withD+, the winner hypothesis

fulfilled the explanatory coverage requirement, (i.e., all observed manifestations can be

accounted for by the disorders in Ds), so these are still all valid solutions. The model

finds a near-optimal solution (a solution within the first three most probable hypothesis)

in 81.2% of the cases.
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3.4.2 Improving Solutions

For the results where shared-space CCPSO did not obtain the optimal solution (i.e.,

Ds 6= D+), this inconsistency was usually due to some m-particle whose local optimiza-

tion (i.e., selecting a winner d-particle) did not lead to a globally optimal solution. That

is, either a d-particle is selected as a winner and is present in Ds when it does not belong

toD+ (it should not have been selected as a winner), or a d-particle was not selected as a

winner and is not present in Ds but it does belong to D
+ (it should have been selected).

For example, for the causal network in Figure 3.2 and M+ = {m1, m3}, the solution

is Ds = {d2, d3} with m1 picking d2 as a winner and m3 picking d3. This is actually

the second best solution, because the optimal solution is D+ = {d1}. In this case what

happened is that each m-particle got attracted to its individual most likely disorder (for

M+ = {m1}, the optimal solutionD+ = {d2} and forM+ = {m3} the optimal solution

D+ = {d3}), but they failed to generate the solution that was best for the whole set. Ini-

tially, d1 gets some feedback from bothm1 andm3 (by means of its fitness value ft1) but

this feedback gets quickly overridden by the attraction that d2 exerts overm1 and d3 over

m2. So shared-space CCPSO became trapped in a local optimum.

Post-processing methods can be used to further improve the solution accuracy with

a moderate increase in the computational cost. An example is iterative improvement as

suggested by [65] in which the current solution is compared with all its neighbor disorder

sets (differing by only one disorder instantiation) and moved to the best neighbor if it is

better. Another method is the resettling process used in connectionist models (e.g., [118])

where the computation is re-executed with the activation of a node clamped to the opposite
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Table 3.4: Results of shared-space CCPSO algorithm with partial resettling in random

networks.

Network # 1 Network # 2 Total

Optimal 964 94.2% 847 82.8% 1811 88.5%

Near-optimal 59 5.8% 153 14.9% 212 10.4%

Other 0 0.0% 23 2.2% 23 1.1%

value found previously, while allowing all others nodes to change as usual. This allows

the system to escape some local optima. The second approach is selected here; it is more

powerful since the new solutions are obtained by searching a restricted subspace instead

of direct assignment.

Taking the resettling process of [118] as inspiration, two local search methods are

implemented. The first approach to help shared-space CCPSO avoid being trapped in

local optima consists of running it once and obtaining Ds as usual, but then taking every

disorder inDs and re-executing shared-space CCPSO without creating the d-particle that

represents that disorder. For the example mentioned above, with Ds = {d1, d3}, shared-

space CCPSO is re-executed twice, the first time is executed with D′ = {d2, d3} (thus

omitting d1), and the second time withD
′ = {d1, d2}.

Adding this partial local resettling to the algorithm greatly improves the accuracy

of the solution. For Network #1 there is an increase of more than 30%, going from

60% to 94% for the optimal solution, and now all 100% of the cases are near-optimal

solutions. For Network #2 there is a similar effect, the percentage of optimal solutions

found increases from 48% to 83%, and 97.8% are at least near-optimal. The complete

results are given in Table 3.4.
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Table 3.5: Results of shared-space CCPSO algorithm with full resettling in random net-

works.

Network # 1 Network # 2 Total

Optimal 989 96.7% 946 92.5% 1935 94.6%

Near-optimal 34 3.3% 73 7.1% 107 5.2%

Other 0 0.0% 4 0.4% 4 0.2%

Expanding this idea, a full local resettling method is implemented by re-executing

shared-space CCPSO n times (where n = |D′|) by reducing D′ by one possible disorder

each time. Table 3.5 shows the results of this full exploration applied to the two random

networks. There is a small improvement in Network #1, where the optimal solution goes

from 94% to 96.7%. Network #2 gets a larger benefit: it increases almost 10% going

from 82.8% to 92.5%. However, this second post-processing method is significantly more

expensive than the previous one, since |Ds| ≪ |D′|+ for most cases.

3.4.3 Scaling up to a Larger Real-World Network

To examine if this model would scale up to larger and more realistic networks, a

substantially larger network with 56 manifestations, 26 disorders and 384 causal links in

a medical domain was taken from [156]. This knowledge base includes neurological and

psychiatric disorders, such as dominant hemisphere infarct, B12-deficiency, Parkinson’s

disease, delirium tremens, paranoid schizophrenia and other related disorders. Unlike the

random networks, the causal associations, prior probabilities and conditional probabilities

were all based on subjective estimates from physicians, and thus this network presumably

has a structure more like those that occur in real diagnostic domains.
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Table 3.6: Results of shared-space CCPSO algorithm in network #3 (Neuropsychiatric

Diagnosis).

Original Partial Full

algorithm exploration exploration

Optimal 561 47.4% 817 69.1% 1074 90.9%

Near-optimal 177 15.0% 195 16.5% 74 6.2%

Other 444 37.6% 170 14.4% 34 2.9%

To understand the size difference between the first two random examples and this

latter one, consider the space of potential solutions. A network with 10 disorders repre-

sents a search space having only 210 = 1024 potential solutions, whereas a network with

26 disorders represents a space of 226 = 67, 108, 864 potential solutions. Also, this is not

an abstract and randomly generated network, but a network that is based on a neuropsy-

chiatric diagnostic application in which the network structure and the causal relationship

between disorders and manifestations were designed by physicians. This network will be

referred to as Network #3.

For this network, since testing with all possible cases is unfeasible, over 1000 cases

were randomly generated. Each case consists of a random choice of either 1,3,5,7 or

9 manifestations. Note that even for this small set it is computationally expensive to

compute the Bayesian optimalD+ with the exhaustive search algorithm that was used for

the small random networks in Section 3.4.1.

The results for these experiments are given in Table 3.6. Even though this is a

considerably larger and more complex network than the previous examples, shared-space

CCPSO is able to reach equilibrium and provide a valid solution in all cases. All cases
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converged in less than 200 iterations. In this example, the impact of the post processing

process is again evident; the accuracy of solutions goes from 47% when no post process-

ing is done, to almost 91% with full post processing.

3.5 Discussion

This chapter introduced a novel cooperative strategy to extend PSO algorithms to

combinatorial problems. This new PSO algorithm preserves the concept of particles that

move throughout a continuous high-dimensional space. A new cooperative strategy parti-

tions the search space by splitting the combinatorial problem into components and using

one particle to optimize each component. The solution is then constructed cooperatively

by all particles in the subswarm. When a solution is split into its components, and each

component is optimized separately, a credit assignment problem arises. Each particle

needs to be assigned credit for the quality of its participation in the overall solution.

Shared-space CCPSO deals with this problem by using the attractors fitness as a mea-

sure of the contribution of each possible value of this component to the overall solution

encoded by the subswarm.

Basically, this cooperative strategy is based on the introduction of static particles,

(i.e., attractors) which mediate local/global choices of the particles. Two competing forces

guide particles through this decision process by only local interactions. On the one hand,

attractors exert a force based on their strength value (an heuristic parameter value) that

guides particles towards their local minimizers. On the other hand, the attractor’s fitness

value directs them towards regions of the space that, while might not be the best solu-
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tion for a particular component, are favorable for the overall swarm. Particles initially

move independently from each other, guided by the forces exerted by attractors. At the

beginning of a simulation all attractors have the same fitness value; therefore, its attrac-

tive force depends only on their strength value (an heuristic parameter). Particles move

in the direction of the attractor with the highest attractive force. This dynamic continues

until a particle changes direction, this change of direction is the result of an increase of

fitness value of an attractor. These changes propagate throughout the swarm via local

interactions, until equilibrium is reached and the swarm reaches a consensus.

The simulation results presented in this chapter provide substantial support for the

efficacy of this approach. Experiments show that the diagnosis problem can be solved

by the model with reasonable accuracy, above 90% of exactly correct answers when full

post-processing is used. This results are particularly noteworthy for a diagnosis problem,

considering only local computations are involved.

As shown by the results, it is feasible to extend particle swarm optimization algo-

rithms to solve combinatorial optimization problems. This communication mechanism

was found to be vulnerable to some local optima, causing the swarm to be stuck in a near-

optimal solution (typically one of the three best solutions). A resettling process, which

forces the swarm to explores a distinct area of the space, allows shared-space CCPSO

to escape this local optima. The next chapter of this dissertation extends shared-space

CCPSO and introduces a more powerful feedback mechanism between solution compo-

nents that does not need an explicit resettling process to escape local optima.
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Chapter 4

Cooperative PSO for Combinatorial Problems with Independent Values

The research in this chapter explores how to solve a combinatorial optimization

problem where each component has its own set of possible values, unlike the combinato-

rial problem presented in the previous chapter where all components had the same set of

possible values. In the type of combinatorial problems explored here, candidate solutions

are again represented by a vector, solution = 〈 c1, c2, ..., cn 〉, where each component cj

is selected from an ordered set of ki possible values Qj = {qj1, qj2, ..., qjk} for position

j. A typical combinatorial problem of this class is a scheduling problem. A scheduling

problem can be seen as an assignment problem in which the solution components are the

events to be scheduled, and the values assigned to events correspond to the time at which

they should occur. This is a generalization of the problem presented in Chapter 2 where

all components have the same set Q of possible values.

A core concept in shared-space CCPSO is the distance between particles and at-

tractors, it serves as a measure of the contribution of an attractor (i.e., a particular value

for a solution component) to the overall solution. The closer particles are to an attractor,

the higher its fitness value. While this strategy avoids the explicit computation of a fitness

value for solutions (which is usually a costly function) it is limited by the semantic value

implicitly assigned to this measure. The feedback mechanism in shared-space CCPSO

assumes that two particles move to the same attractor if this attractor has a value that is

63



favorable to both solution components represented by these particles. This is the case in

combinatorial problems where all components share the same value, and therefore can

reinforce each other, but for combinatorial problems where this distance does not have

this semantic value, a new measure needs to be defined.

With this in mind, a new cooperative strategy to handle multi-valued combinatorial

problems is presented in this chapter. The multi-space CCPSO model partitions the space

by placing each particle in its own high-dimensional continuous space. As in the shared-

space CCPSO each individual particle moves around the high dimensional space based

solely on the forces exerted by attractors while being guided implicitly toward regions

of the space that are more promising to the rest of the swarm. The difference lies in the

feedback mechanism. In multi-space CCPSO a candidate solution is constructed coop-

eratively by decoding each particle’s position into a choice for that solution component.

Each particle has its own set of attractors and feedback to the attractors is provided by a

strength value which considers the fitness of the candidate solution with the current com-

ponent replaced by the choice represented by the attractor. Particles communicate through

this candidate solution sols. This candidate solution sols of each subwarm is used (as in

traditional PSO) to keep a memory of the best solution seen so far by the subswarm (cog-

nitive memory bs), and the best solution seen so far by a neighboring subswarm (social

memory ns). This memories bs and ns reflect a snapshot of the choices of other particles

in the subswarm. They serve as a bellwether of the overall status of the subswarm. Each

particle can now assess the quality of the contribution of its local choices to these overalls

solutions.
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Side-chain packing (SCP) is the combinatorial task selected to evaluate the perfor-

mance of multi-space CCPSO. SCP is an important subproblem of the general protein

structure prediction problem, in which the side chains of the protein residues are posi-

tioned on a fixed and given protein backbone. Specifically, it consists of selecting a side-

chain conformation (from a discrete set of preferred conformations, known as rotamers

[42]) for each side chain in the protein such that the the protein energy conformation is

minimized. The reasons for the selection of this particular combinatorial problem are

twofold. First, like abductive diagnosis, SCP deals with a highly non linear and complex

evaluation function. Second, the specific values of each solution component (i.e., the set

of possible rotamers for each side-chain position) is distinct, and the dimensionality from

one component to the next can vary significantly. This is the key difference with the type

of combinatorial problems studied under the previous model.

4.1 Multi-space CCPSO

The cooperative strategy presented in the previous chapter is extended here by al-

lowing each particle to have its own set of attractors. Attractors will still mediate commu-

nication between particles, but instead of receiving direct feedback based on the position

of neighboring particles now they assess their fitness based on the quality of their con-

tribution to the fitness of the swarm solution. A subswarm is defined as a collection of

particles, where each one contributes one solution component. Once again, each com-

ponent cj is represented by a particle pj. Each possible value in Qj is represented by an

attractor rji. Particle pj moves in a kj-dimensional space where all its attractors rji are
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located. An attractor tries to pull pj to its position, i.e., tries to assign its value qji to cj.

A solution is represented by a collection of particles, a subswarm, and is decoded from

the particle’s positions. Each solution component is assigned the value qji represented

by the attractor rji that is selected as winner for that particle. This winner is selected

randomly using the particle’s position, ~xj , as probability distribution. Thus, an attractor

that is more successful in pulling particles towards its position will have a higher chance

of being selected as part of the decoded solution.

While previous approaches [153][154] attempted to partition the search space and

optimize each dimension separately, this was found to introduce pseudo-minima [154].

The strategy implemented in the multi-space CCPSO algorithm aims to solve the same

problem and avoid pseudo-minima by keeping the concept of particles being guided by

their own candidate solution templates that represent the social and cognitive memories.

These cognitive and social terms are a result of keeping a memory of the best candidate

solution seen so far and the best candidate solution seen by the neighbors.

Subswarm A subswarm represents a candidate solution for the optimization problem.

It is composed of a collection of particles, where each particle is optimizing one compo-

nent of the solution vector. Since a subswarm can be decoded into a candidate solution,

its fitness value can be evaluated according to the optimization fitness function. Each

subswarm s is defined by the tuple:

Ss = 〈particless, sols, fitnesss,~bs, ~ns, neighborss〉
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where particless is the set of particles that belong to the subswarm, sols is the candidate

solution decoded from particless, fitnesss is the fitness value of the solution, neighborss

is a set of subswarms with which this subswarm interacts, ~bs represents the cognitive

memory of the subswarm, i.e., the candidate solution at which it achieved the best fitness

value, and ~ns keeps a social memory.

Attractor An attractor represents a value qji for a particular component cj in the can-

didate solution. Attractors are represented by static particles rji located throughout the

kj-dimensional space, where kj is the number of possible values for solution component

cj . Extending this notation to indicate the subswarm, each attractor i of particle j in

subswarm s is defined by the tuple:

rsji = 〈 ~asji, st
b
sji, st

n
sji 〉 (4.1)

where ~asji = is the position of the attractor, stbsji represents the strength of this attractor

to pull particle psj towards the best solution seen by subswarm s (i.e., ~bs), and similarly

stnsji represents the strength of this attractor to pull particle psj towards ~ns.

The position ~asji is initialized to a unit vector in a direction of the i
th coordinate

axis orthogonal to all previous attractors. An example with three attractors in depicted in

Figure 4.1. At each iteration a new candidate solution ~b
′

s is constructed by using
~bs as a

template candidate solution, and replacing the value of the component cj with qji. The
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Figure 4.1: Example of a particle and its attractors. Particle p11 moves in a 3-dimensional

space. Attractors are located in an orthogonal position to one another and try to pull p11

towards their locations.

strength value stbsji is computed proportional to the fitness value of
~b
′

s. In particular,

stbsji ∝ fitness(~b
′

s), where
~b
′

s = ~bs with b
′

s[j] = i (4.2)

A similar calculation determines stnsji:

stnsji ∝ fitness(~n
′

s), where ~n
′

s = ~ns with n
′

s[j] = i. (4.3)

The attractor’s task is not to move around the space during the simulation, but instead to

pull particles towards its position with a strength that reflects how good that particular

value is for the solution. Equations 4.2–4.3 show how the choices of other particles affect

the attractiveness of a particular attractor. This strength value is used as a heuristic to

guide the particles towards better areas of the search space. A parameter τ determines the
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probability of updating this strength value. At each iteration a biased coin with probability

τ is flipped to determine if the strength values need to be updated.

Particles A particle represents one component in a candidate solution. Particles move

throughout a continuous space, their movements based on the influences exerted by at-

tractors. Their positions are used by the subswarm to construct the candidate solution.

Each particle j of subswarm s is defined by the tuple:

psj = 〈~xsj, ~vsj〉

where ~xsj is its current position and ~vsj is its current velocity vector. The particle’s po-

sition ~xsj represents the probability of component i taking each possible value. After

normalizing ~xsj to sum 1, ~xsj [i] represents the probability of selecting value qji for com-

ponent cj . The selection is made at random using ~xsj as the probability distribution. The

initial position ~xsj is set to a random position in the ki-dimensional space, and its initial

velocity vector ~vsj is set to zero. The updates of the particles are accomplished according

to Equations (4.4) – (4.5). As with the traditional PSO (refer to Algorithm 4), Equa-

tion (4.4) shows how a new velocity is computed based on three components: its previous

velocity, a velocity component that drives the particle towards the location in the search

space where it previously found the best solution (i.e., a cognitive-velocity ~vb
sj), and a

velocity component that drives the particle towards the location of the best neighborhood

solution (i.e., a social-velocity ~vn
sj). Then each particle’s position is updated by simply
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adding the velocity vector (Equation (4.5)). Formally:

~vsj ← ω × ~vsj + U(0, γ1)× ~vb
sj + U(0, γ2)× ~vn

sj (4.4)

~xsj ← ~xsj + ~vsj (4.5)

where again U(a, b) is a randomly chosen value in (a, b). The value of the cognitive-

velocity component ~vb
sj is the result of all forces exerted by nearby attractors on particle

pj as shown below in Equation (4.6). Equation (4.6) below shows that this attraction

force is dependent upon particular attributes of each attractor: its strength (stbsji), which

is proportional to the fitness value of the best memory of the subswarm, and its location

(which is used to compute the direction of the velocity). The strength of these attractors

are dependant on the best solution seen so far, i.e., its cognitive memory, therefore these

are called cognitive-attractors. The cognitive-velocity guides the particle towards a po-

sition in space which is considered good from the perspective of the best memory of the

swarm. The social component of the new velocity is computed in a similar manner in

Equation (4.7). Formally, the velocities are computed as:

~vb
sj ←

∑

j

stbsji × ~asji (4.6)

~vn
sj ←

∑

j

stnsji × ~asji. (4.7)

Unlike traditional PSO, these cognitive and social velocity components can be seen as

a local search step, since the attractor’s strength values (stbsji and st
n
sji) are estimated by

taking into account the fitness of a candidate solution if that particular value were selected.
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Algorithm 6Multi-space CCPSO algorithm

for each subswarm s do

for each element ∈ Input do

create particle j

initialize position ~xsj

initialize velocity ~vsj

for each qji in Qj do

create attractor i

initialize position ~asji

end for

end for

end for

while stop criteria not met do

for each subswarm s do

decode solution sols
evaluate fitness(sols)
~bs ← best solution found so far by subswarm s

~ns ← best solution found so far by neighbors of subswarm s

for each particle j do

for each attractor i do

if flip(τ)

stbsji ∝ fitness(~b
′

s), where~b
′

s = ~bs with b
′

s[j] = i

stnsji ∝ fitness(~n
′

s), where ~n
′

s = ~ns with n
′

s[j] = i

end if

end for

~vb
sj ←

∑

j st
b
sji × ~asji

~vn
sj ←

∑

j st
n
sji × ~asji

~vsj ← ω × ~vsj + U(0, γ1)× (~vb
sj) + U(0, γ2)× (~vn

sj)
~xsj ← ~xsj + ~vsj

end for

end for

end while

Algorithm Algorithm 6 presents the multi-space CCPSO pseudocode that combines

the components described above. The system is initialized at time t = 0 by creating all

subswarms. For each subswarm, one particle is defined per dimension of the combina-

torial problem. An attractor is created for each possible value of this variable. For each

time step, each particle updates its position vector by simply adding a new velocity vector
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Figure 4.2: General structure of an

amino acid. Each amino acid has its own

distinctive side chain (R group)

Figure 4.3: Example of two amino

acids: Glycine (left) and Tryptophan

(right)

(Equation (4.5)). This new velocity vector is computed based on the influence exerted by

the cognitive and social attractors. Equations (4.6) - (4.7) define how to get the resultant

force of all attractors, and Equations (4.2) - (4.3) show how the attractors recompute their

strength value based on the memory values of the subswarm. The process iterates until all

particles have arrived to a stationary position (i.e., the system is in equilibrium) or until a

maximum number of time steps is reached.

Multi-space CCPSO is validated in an important problem in the computational ana-

lysis of protein structure: side-chain packing. This problem is described below.

4.2 Application: Side-chain Packing

Proteins are a fundamental class of molecules that are involved in nearly every

process of life. Proteins are linear chains of amino acids that generally fold into compact

three-dimensional structures. Each amino acid within the chain is called a residue and it

has a distinct side chain. A depiction of the general structure of an amino acid is presented

in Figure 4.2. Two amino acids are depicted in Figure 4.3. Notice the difference in size

between Glycine (on the left) and Tryptophan (on the right). Just as the letters of the
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Figure 4.4: Protein side-chain packing task: Given backbone coordinates and the amino

acid sequence, model the tertiary structure of the protein

alphabet can be combined to form many different words, the 20 standard amino acids can

be linked in varying sequences to form a vast variety of proteins. A protein’s sequence

of amino acids, called its primary structure, determines the 3-D structure of a protein.

This structure, which includes both the protein backbone and the conformations of the

side chains of the amino acids, determines many of the characteristics of the protein,

including strongly influencing its three-dimensional, tertiary structure.

Discovering the tertiary structure of a protein can provide important clues about

how the protein performs its function, and is an essential problem in molecular biol-

ogy [87]. A particularly important subproblem of the general structure prediction problem

is the side-chain packing problem, in which the side chains of the residues are positioned

on a fixed and given backbone. This is depicted in Figure 4.4. The problem of predicting

side-chain conformations for each residue given a backbone structure is of central im-
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portance in homology modeling and the design of novel protein sequences. Homology

modeling is a technique for predicting protein structures from their amino acid sequences

that it is based on the assumption that two proteins with similar sequences will have

similar tertiary structures. Therefore, an initial backbone can be obtained by searching

for a similar amino acid sequence in a database of known protein structures. Side-chain

packing methods are then used to place the side chains of the target sequence onto the

backbone template.

In a protein design application, the goal is to find the sequence of amino acids for

a given template backbone that will satisfy the desired structural features. Side-chain

prediction algorithms are used to screen all possible amino acid sequences and find the

amino acid sequence whose side chains best fit the desired backbone [121]. The same

combinatorial problem underlies a natural formulation of both homology modeling and

protein design.

Typically, the choice of possible conformations for a side chain is restricted to a

library of discrete possibilities. This approximation is based on the observation that,

in high-resolution experimental protein structure models, most side chains tend to cluster

around a discrete set of preferred conformations, known as rotamers [123]. The restriction

to these discrete configurations implies an important problem reduction. Nevertheless,

even this discrete version is known to be NP-hard [120] and hard to approximate [21].

Therefore, the conception of efficient search procedures arises as an important research

problem. Here, it also serves as an example of a difficult combinatorial optimization

problem on which the proposed CCPSO algorithm can be tested.
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Protein structure prediction methods are faced with imprecise knowledge of many

aspects of the physical forces that drive protein folding. Therefore, it has been ar-

gued that instead of providing the exact optimum solution to an imprecise energy func-

tion, computational methods should instead produce robust, fast, and near-optimal so-

lutions [28]. This makes algorithms like PSO, which are known to efficiently produce

near-optimal solutions, especially attractive. Another swarm intelligence method, Ant

Colony Optimization, has already been applied to some protein structure prediction tasks,

e.g., [22][79][143].

With the rotamer model, the total energy of a choice of rotamers can be described in

terms of the pairwise interactions between the elements of the side-chain conformation:

E = Ebackbone +
∑

i

E(ir) +
∑

i<j

E(ir, js) (4.8)

This incorporates the contribution of three classes of energies: Ebackbone is the self-energy

of a backbone template, E(ir) is the interaction energy between the backbone and the

side chain of residue i in its rotamer conformation r, and E(ir, js) is the interaction

energy between residue i in the rotamer conformation r and residue j in the rotamer

conformation s. The problem of determining the side-chain conformation of minimum

energy is reduced to choosing a rotamer selection for each residue so that Equation (4.8)

is minimized. Search algorithms for side-chain packing fall into two broad categories:

stochastic and deterministic. Stochastic algorithms, including simulated annealing [27]

and genetic algorithms [34], semi-randomly sample sequence-structure space and move

toward lower energy solutions, while deterministic algorithms, such as dead-end elim-
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ination and its extensions [31][35][162], integer programming [2][75], and other graph

search approaches [19][163] perform semi-exhaustive searches [121]. An advantage of

stochastic methods, such as PSO, is that they can deal with problems of significant com-

binatorial complexity because they do not require an exhaustive search.

The side-chain packing problem, SCP, can be reformulated as a graph problem by

using an interaction graph to represent the residues and their relationships. Each residue is

represented by a subgraph that contains a node for each possible rotamer for this residue.

Physical interactions between each possible rotamer of different residues are represented

by weighted edges between the nodes, such that the edge between rotamer r of residue i

and rotamer s of residue j has weight E(ir, js). When the interaction energy of rotamer r

of residue i and rotamer s of residue j is below a predetermined threshold the rotamers are

consider to not interact and there is no edge between the nodes. Note that by assigning

a cost to each node equal to its interaction energy with the backbone E(ir), the global

minimum conformation can be found by picking one node from each residue subgraph,

such that it minimizes the cost of the entire induced subgraph. Figure 4.5 shows an

example of a SCP graph with three amino acid residues A1, A2, and A3.

4.3 Multi-Space CCPSO for Side-chain Packing

In SCP, an optimal solution is defined as a rotamer assignment with the mini-

mal energy conformation. A solution component is a rotamer for a particular residue,

and a candidate solution is an assignment of one rotamer for each residue. In multi-

space CCPSO each particle represents a residue and attractors represent the rotamers of
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A1

A2

A3

r1,1 r1,2 r1,3

r2,1 r2,2

r3,1 r3,2 r3,3

Figure 4.5: An example SCP problem with three amino acid residues A1, A2, and

A3. Each amino acid residue is represented by a subgraph that contains all the ro-

tamers that belong to that amino acid, A1 = {R1,1, R1,2, R1,3}, A2 = {R2,1, R2,2},
A3 = {R3,1, R3,2, R3,3}. A possible solution to this SCP is sol = 〈R1,1, R2,2, R3,2〉.

each residue. In the SCP of Figure 4.5, there are three residues A1, A2 and A3, where

A1={R1,1, R1,2, R1,3}, A2={R2,1, R2,2}, and A3={R3,1, R3,2, R3,3}. Therefore, for sub-

swarm s1, particles1={p11, p12, p13}. For residue A1, a p11 that would move in a contin-

uous k1-dimensional space is created, where k1 is the number of rotamer choices. Since

k1 = 3 for A1, particle p11 moves in a 3-dimensional space. Attractors r111, r112 and

r113 would be in locations 〈1, 0, 0〉, 〈0, 1, 0〉, and 〈0, 0, 1〉 respectively. This is depicted in

Figure 4.1.

In a candidate solution for a SCP problem, each component cj is the rotamer se-

lected for the side chain of residue i. The decoding method maps a subswarm s to a

rotamer conformation sols. Each particle psj of subswarm s contributes to the candidate

solution sols with its choice of rotamer for the side chain of residue i. This rotamer is se-
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With particles← {p1, p2, p3}

x1 ← R1,1 R1,2 R1,3 winner(x1) = R1,3
0.2 0.3 0.5

x2 ← R2,1 R2,2 winner(x2) = R2,1
0.7 0.3

x3 ← R3,1 R3,2 R3,3 winner(x3) = R3,2
0.3 0.6 0.1

obtains the candidate solution

sol← 〈R1,3 R2,1 R3,2〉

Figure 4.6: Solution representation for the SCP problem. A solution sol1 is obtained by

selecting a rotamer from each particle using xi values as probability distribution.

lected randomly by function winner which uses the particle’s position ~xj as distribution:

sols = 〈c1, c2, ..., cn〉, where cj = winner(xsj).

An example of a solution for the SCP defined in Figure 4.5 obtained from a subswarm s is

depicted in Figure 4.6. For clarity, the index s of the particles is omitted. Once a solution

sols for each subswarm s is obtained, computing its fitness value is straightforward. The

fitness value of a solution sols is computed using:

fitness(sols) =
1

energy(sols)
(4.9)
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4.4 Validating multi-space CCPSO on SCP problems

Multi-space CCPSO is evaluated on combinatorial problems resulting from three

protein side-chain packing applications: predicting the conformation of a protein’s side

chains on its native backbone, predicting the structure of the protein using the backbone

of a homologous sequence as a template, and the problem of designing novel sequences

that fold into a known backbone.

In general, it is not straightforward to compare the results of different protein

side-chain packing methods, as different accuracy measures, energy functions, rotamer

libraries and proteins have been used. In order to make a fair comparison of search meth-

ods, the same rotamer library and energy function that a previous study used [75] is em-

ployed. The rotamer library used is Dunbrack’s backbone-dependent rotamer library [42].

For each 10◦ range of φ, ψ backbone angles, this library has 320 rotamers, with the largest

number of rotamers, 81, belonging to the amino acids arginine and lysine.

The energy function of the rotamer conformation is computed using Equation (4.8),

except that theEbackbone term is dropped since the template backbone is fixed. To compute

the self-energy termsE(ir) and the pairwise rotamer energyE(ir, js) the energy functions

defined in [75] are used. These energy functions are derived from the AMBER force

field [20]. E(ir), the self-energy of rotamer i, is computed using both a statistical potential

and a van der Waals interaction term. The statistical term takes into account the prior

probabilities of rotamers in a training set so that the more common a rotamer, the lower

the energy assigned to it. E(ir, js), the pairwise rotamer energy between rotamers r and

s, is the sum of the van der Waals interactions between the side-chain atoms of r and s.
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Table 4.1: Multi-space CCPSO parameters for SCP.

Parameter Value

Number of subswarms 30

Maximum number of iterations 200

Cognitive factor c1 1.5

Social factor c2 1.5

Inertia weight w 1 to 0 (linearly decreasing)

Network-topology ring

Update probability value us 0.4

More details concerning the energy function can be found in [75].

Results are compared to the provably optimal solution obtained by a deterministic

method as reported in [75]. The accuracy of multi-space CCPSO results is determined by

computing the percentage error. Percentage error is defined as:

error = 100× |OPT− solution-energy|

|OPT|
(4.10)

where OPT is the energy value of the optimal rotamer conformation and solution-energy

is the energy value of the best solution found by the CCPSO.

Since the method is stochastic, each instance is executed twenty times and the aver-

age percentage error is reported, as well as the minimum percentage error (best solution

found). The experiments were run on a Intel Xeon 3.2Ghz processor with 1GB of RAM.

CCPSO parameters are listed in Table 4.1. These parameters were selected after

some preliminary trials.
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4.5 Results

The performance of multi-space CCPSO on the three datasets are presented in Ta-

bles 4.2 - 4.4. Columns 1-4 describe the protein while columns 5-7 show the CCPSO

results with respect to the optimal solution. The first column gives the protein PDB identi-

fier, the second column indicates how many of its side chains have more than one possible

rotamer, and the third gives the total number of rotamers. The fourth column points out

the energy of the optimal configuration. The fifth column shows the minimum percentage

error obtained by any run of the CCPSO, while the sixth column shows average percent-

age error over twenty runs. Finally the seventh column indicates the number of incorrect

rotamer positions in the best solution obtained by the CCPSO.

The native dataset contains 27 proteins that vary in size from 46 to 221 amino acid

residues. Each amino acid residue is allowed to assume all the rotamers listed in the

library. This produces search spaces with up to 10218 possibilities. From Table 4.2 it can

be seen that among the 27 proteins with their native backbones, CCPSO is able to find

the optimal conformation in 22 instances. The relative error in all four cases where the

solution is not the rotamer conformation with the optimal energy value was fairly small,

with an error < 1.16% in the worse case.

For the task of side-chain packing in homology modeling, 21 homologs to the pro-

teins of the native dataset are selected. For each pair, a template/target protein is defined,

where the template protein provides the backbone and the target protein is the protein

for which the structure is to be predicted. CCPSO obtains the provably optimal solu-

tion in all but four cases. As in the native dataset, the relative error is very small, with
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Table 4.2: Results of multi-space CCPSO in native dataset.

PDB number number opt Min Avg Incorrect

name res rot energy error error rot

1c9o 53 1130 -697.75 0.00 0.90 0

1aac 85 1523 -765.47 0.00 0.00 0

1czp 83 1170 -434.19 0.00 2.41 0

1qu9 100 1817 -1336.14 0.00 0.00 0

5pti 46 1088 118.00 0.00 42.03 0

1b9o 112 2056 -1325.75 0.00 0.00 0

1ctj 61 1021 -920.44 0.00 0.00 0

1cex 146 2556 -1952.04 0.00 0.00 0

1mfm 118 2134 -1508.57 0.00 0.00 0

1eca 108 1885 -1526.37 0.00 0.47 0

1rcf 142 2396 -1246.81 0.12 1.26 2

1qtn 134 2516 -1661.19 0.00 0.03 0

7rsa 109 1958 -658.75 0.00 0.04 0

1c5e 71 1108 -930.64 0.00 0.02 0

1cz9 111 2332 -1209.86 0.00 0.58 0

5p21 144 2874 -1243.04 1.16 1.80 10

1aho 54 981 -374.49 0.00 0.11 0

1plc 82 1156 132.73 0.00 0.00 0

1cku 60 1093 198.50 0.00 0.00 0

1vfy 63 939 -712.38 0.00 1.38 0

1igd 50 926 -501.61 0.00 0.59 0

1qj4 221 4080 -3023.47 0.56 1.50 7

2pth 151 3077 -2165.46 0.05 0.32 2

1cc7 66 1396 -621.82 0.00 0.70 0

1d4t 89 1636 -1344.47 0.00 0.09 0

1qq4 143 2045 -1346.16 0.17 12.42 3

3lzt 105 2074 -1301.11 0.00 0.23 0

error < 1.12%. Details are shown in Table 4.3. Again, this indicates that the CCPSO

approach can successfully find optimal or near-optimal solutions.

The design dataset contains 25 instances. The goal of side-chain packing in a pro-

tein design task varies significantly from the two previous tasks studied. In this case,

the amino acid as well as the residue needs to be chosen, which makes the search space
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Table 4.3: Results of multi-space CCPSO in homology dataset.

PDB number number opt Min Avg Inc.

name res rot energy error error rot

1cku-1eyt 61 1095 216.05 0.00 0.00 0

1ctj-1f1f 64 1219 -835.75 0.00 0.00 0

1aac-1id2 86 1608 819.88 0.00 0.02 0

1czp-4fxc 81 961 -389.23 0.00 2.79 0

1cc7-1fe4 62 1222 281.09 0.00 4.42 0

1plc-1byo 79 1131 279.10 0.00 4.75 0

1czp-1doy 81 990 -380.20 0.00 1.92 0

1aho-1dq7 53 719 -173.58 0.00 0.00 0

1cku-3hip 65 1079 248.45 0.00 0.06 0

1mfm-1b4l 117 1978 2966.20 0.00 0.72 0

1c9o-1mjc 52 862 -654.63 0.00 0.00 0

1mfm-1xso 114 1826 -1102.35 0.00 0.24 0

1aac-2b3i 87 1242 3956.09 1.12 5.08 5

1cz9-1c6v 113 1979 172.89 0.00 15.57 0

1mfm-1cob 119 1980 -1270.05 0.00 0.00 0

1qj4-1e89 220 4154 -2886.80 0.37 1.38 6

1c9o-1csp 53 1076 -676.87 1.14 1.82 2

1ctj-1cyj 66 1291 -972.90 0.00 0.00 0

1igd-1mi0 49 723 -529.03 0.00 0.37 0

1qq4-1hpg 139 1514 4041.36 0.76 2.43 4

1c9o-1g6p 54 1409 -682.24 0.00 0.01 0

significantly larger. As in [75], the amino acids are grouped into the following classes:

AVILMF / HKR / DE / TQNS / WY / P / C / G. For each of the 25 proteins in the native

test set, each amino acid position in the backbone can be replaced for any other amino acid

that belongs to the same class as the native residue. Therefore, the number of rotamers

that need to be consider for each residue grows substantially. The sizes of the resulting

problems are shown in column three of Table 4.4. Among the 25 design problems, the

CCPSO is able to find the optimal configuration for 10 instances. This indicates that,

not surprisingly, the design problem is more difficult to solve for the CCPSO than fitting
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Table 4.4: Results of multi-space CCPSO in design dataset.

PDB number number opt Min Avg Incorrect

name res rot energy error error rot

1igd 11 552 -298.07 0.00 0.00 0

1aac 38 2153 -860.61 0.00 0.77 0

1qu9 43 2057 -1093.26 0.00 1.14 0

7rsa 46 1993 -764.04 2.22 6.28 5

1c5e 25 1369 -587.20 0.00 1.17 0

1b9o 48 1842 -494.88 1.93 5.84 2

1ctj 24 1262 -670.87 0.00 0.00 0

1cz9 53 2664 -1274.13 0.49 2.51 4

1plc 33 1691 157.34 0.00 7.60 0

1vfy 15 665 -365.03 0.00 0.00 0

1mfm 46 3215 -1095.26 0.25 0.69 3

1c9o 14 757 -380.96 0.00 0.32 0

1czp 30 1475 -703.26 0.63 1.97 2

1cex 78 3926 -1815.78 1.24 2.26 11

1rcf 65 3189 -1508.24 1.60 3.72 8

1qtn 49 2181 -1176.97 1.90 2.85 6

5p21 70 3624 -1616.96 3.64 5.35 16

1aho 18 668 -138.88 0.00 0.00 0

1cku 22 897 -574.65 0.00 0.10 0

1qj4 124 6655 -2569.98 2.77 4.07 29

2pth 76 4395 -1856.56 4.36 5.70 19

1cc7 18 866 -410.44 0.27 0.79 2

1d4t 32 1691 -914.55 1.41 2.40 8

1qq4 72 3500 -1190.81 0.04 1.49 2

3lzt 48 1940 -953.50 0.72 1.44 4

side chains on native and homologous backbones. Nevertheless, the CCPSO manages to

obtain solutions that are close to the optimal, with the relative error < 4.36 even in the

worst case.

To analyze the effect of the number of residues and rotamers on the performance

of CCPSO, the running times of the native and design dataset are compared. The native

dataset proteins varies from 46 to 221 residues, with a maximum of 4080 rotamers. The
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running time for the full dataset was 128 minutes, with the longest time taken by 1qj4

which takes 74 minutes. Proteins in the design dataset have fewer residues but consider-

ably more rotamers. The number of residues ranges from 11 to 124 with a maximum of

6655 rotamers. The running time for the full design dataset is less than 40 minutes, where

over one third of the time was used by protein 1qj4. Running times vary from 8 seconds

for 1aho to 15 minutes for 1qj4. CCPSO seems to be susceptible to residue size, therefore

the native dataset takes more time. Unlike other traditional SCP methods, CCPSO does

not seem to be as susceptible to the increase number of rotamers per residue. This makes

CCPSO particularly appealing for the protein design task as well as side-chain packing

with detailed rotamer libraries.

4.6 Discussion

This chapter presents a novel cooperative combinatorial PSO scheme that partitions

the combinatorial search space into individual components that are optimized individ-

ually. The multi-space CCPSO algorithm preserves the concept of particles that move

throughout a continuous high-dimensional space while being guided by its own cognitive

and social memories of candidate solutions. The effectiveness of this new combinatorial

PSO is evaluated by three side-chain packing tasks, with varying degree of difficulty. Re-

sults show that multi-space CCPSO is able to obtain optimal or near-optimal solution in

all benchmarks tested. This is the first time that a PSO-based algorithm has been used to

solve the side-chain packing problem. Furthermore, multi-space CCPSO’s performance,

while affected by the number of residues, seems not as susceptible to an increase in ro-
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tamer size as other traditional side-chain packing methods, which makes it an attractive

method for protein design.

The majority of previous implementations of combinatorial PSO are used in com-

bination with a dedicated local search algorithm such as simulated annealing or fast local

search [24] whereas the method presented here does not need any local search algorithm

to be able to deal with combinatorial problems.

Equations 4.2–4.3 show how the choices of other particles in the subswarm affect

the attractiveness of a particular attractor. These choices are reflected in the cognitive and

social memory (~bs and ~ns) which are used as a template candidate solution to compute

the attractor’s fitness value. The attractor’s strength value is estimated based on this fit-

ness value. Note that this differs from simple local search algorithms such as the simple

iterative improvement algorithm (SIIA) presented in section 2.1.2. In SIAA, at each iter-

ation a new solution is created (independently of previous solutions) and its acceptance is

based on its relative fitness with respect to the fitness of the current solution. In CCPSO

the attractor’s strength value is just one part of the interaction dynamics that define the

particle’s new position. This new particle’s position is then employed to construct a new

solution.

The component-by-component optimization of multi-space CCPSO allows fine tun-

ing of each component by each particle when the candidate solution templates (i.e., cog-

nitive and social memories) do not change from one iteration to the next and explores a

different part of the space when the memories are modified. This strategy allows it to

implicitly balance exploration/explotaition and explore more effectively the search space.
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Chapter 5

Multimodal Combinatorial Search

In general, optimization problems are formalized by identifying the function to op-

timize. When the function to optimize has one global optimum the function is said to be

unimodal. On the other hand, when such a function presents multiple global optima, or

local optima whose values are very close to the global one, it is said to be multimodal.

Formally, unimodal problems have a single global optimum, f(x∗) ≤ f(X)∀x∈Rn, where

f(X) : R
n → R is the objective function and n is the dimension of the search space.

Multimodal problems have more than one optimum. These optima may all be global

optima, or a mixture of global and local optima. A local optimum, x∗L, is subject to:

f(x∗L) ≤ f(X)∀x∈L, where L ⊂ R
n. A near-optimal optimum, a x∗OPT, is a special type

of local optima where f(x∗OPT) is within ǫ times the value of an optimal solution f(x∗).

ǫ is a parameter that specifies the acceptable distance between the global optimum and

the near-optimal value. This parameter is problem-dependent.

Multimodal function optimization has been addressed extensively in the recent liter-

ature [18][109][110][112]. The traditional class of problems related to this topic focused

on developing algorithms to find either the global optimum or all the global optima of the

given multimodal function, while avoiding local optima. It is important to make a clear

distinction between distinct multimodal scenarios created by mixtures of global and local

optima, since very different problems arise in each of these cases. Three typical scenarios
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Figure 5.1: Multimodal problem with one global optimum and local optima
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Figure 5.2: Multimodal problem with multiple global optima
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Figure 5.3: Multimodal problem with multiple global optima, near-optima and local op-

tima

are depicted in Figure 5.1–Figure 5.3. Figure 5.1 depicts a multimodal problem when

there is only one global optima in the landscape surrounded by local optima. A variety

of dedicated algorithms have been developed to increase the probability of locating the

global optimum, or at least a very good local optimum. Many of these algorithms are

based on the premise that if an optimization algorithm is forced to search in more areas of

the search space, then it has higher probability to escape local optima and find the global

optimum. Several different PSO algorithms have been proposed with this idea in mind

[49][88]. These algorithms are mostly based on existing approaches used in evolutionary

algorithms for multimodal optimization [32][56].

Figure 5.2 and Figure 5.3 show multimodal optimization problems with multiple

optima having either equal or almost equal function values. These optimization problems
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are different from the problem of finding only the global optimum of a multimodal func-

tion. In problems with multiple global optima an optimization algorithm should ideally

find a set of all the optimal and near-optimal solutions. Figure 5.2 shows an idealized sce-

nario with only global optima and local optima. Figure 5.3, on the other hand, presents

a more realistic situation where the task is not only to find multiple global optima, but to

distinguish near-optimal from local optima.

Like other meta-heuristics, PSO is usually designed for the goal of finding a single

optimal solution for a given problem. However, many scientific and engineering opti-

mization problems have convoluted search spaces with large numbers of optima. Typical

PSO algorithms usually assume that there exists only a single best solution in the search

space, and they put efforts into isolating it from other spurious solutions. PSO does not

guarantee to find the global optimum, thus the solution found could just be a local min-

imum with no indication of its relative fitness with respect to the optimum. The goal in

this class of problems is to avoid deception by the local optima of the multimodal func-

tion, which would otherwise result in premature convergence to a suboptimal solution.

Multimodality in a search and optimization problem gives rise to several attractors and

thereby presents a challenge to any optimization algorithm in terms of finding global op-

timum solutions [56]. However, the problem is compounded when multiple (global and

near-optimal) optima are sought. The knowledge of multiple local and global optima has

several advantages such as obtaining an insight into the function landscape and selecting

an alternative solution when the dynamic nature of the constraints in the search space

makes a previous optimum solution infeasible to implement. These set of solutions can
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be used in many different ways, depending on the application field: a specific solution can

be selected from the set using a more accurate evaluation function, different solutions can

be preferred in different situations, or a combination of multiple solutions can be built. In

this case, the goal of the PSO algorithm may be to locate all of them, and standard tech-

niques will usually either favor a single solution, or get confused by the multiple possible

solutions and fail to converge to a single one.

An algorithm that looks for a single optimum would arbitrarily pick just one of the

optimal solutions, or could be misled by the presence of more than one single optimum

and fail to converge. The probability that the conventional PSO algorithm will converge

to a sub-optimal position is unacceptably high [104]. Thus, it is necessary either to de-

sign specific algorithms, or to modify the generic ones in order to optimize multimodal

functions [113].

The research in this chapter explores how to solve combinatorial optimization prob-

lem of many optima with the same, or very similar, quality value. In particular, this

chapter explores the ability of multi-space CCPSO used in tandem with explicit diver-

sity strategies to discover sets of high-quality and diverse solutions. This idea has been

pursued in numerical optimization in several PSO variants [12][17][89][137], but no ex-

plicit PSO has been developed to handle multimodal combinatorial problems. Note that

even the definition of local optima, i.e., points that are better than all their neighborhood

solutions requires both a set of solution points and a neighborhood structure. This is

obvious for real-valued problems, but for combinatorial problems the number of local

optima depends on the choice of neighborhood structure, i.e., on the velocity operators
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used. Therefore, it is of particular interest to analyze how a diversity strategy, aimed at

numerical optimization problems, performs in the multi-space CCPSO framework.

Protein design (briefly described in the previous chapter) is a particularly suitable

task to validate this model. Its combinatorial complexity along with the highly non-linear

energy interactions makes the fitness landscape impressively complex with an extremely

large number of possibilities [107]. Protein design is an extension of side-chain packing,

with the non-trivial difference that the number of rotamers to consider for each posi-

tion varies greatly, which makes the search space significantly larger and more complex.

Chapter 4 presented the application of multi-space CCPSO to side-chain packing, includ-

ing the partial redesign of 22 proteins. This chapter goes further into the protein design

problem, by focusing on sampling the conformational space and obtaining an ensemble

of distinct low-energy side chain conformations, instead of one optimal conformation.

The chapter starts by presenting the new multimodal CCPSO architecture. This in-

cludes a description of the diversity strategies implemented, the metric used to measure

distance between solutions and the multimodal CCPSO algorithm which integrates all

these elements. The next section describes protein design, highlighting its difference to

protein structure prediction, and why it motivates the interest in sets of high-diversity low-

energy solutions. Finally, all multimodal CCPSO variants are evaluated in the sequence

redesign of a small protein, a ββα motif of the zinc finger DNA binding module [114],

along with the results of similar redesign in two in silico proteins. All proteins are re-

designed using three different design schemes, which vary the number of amino acids

allowed per position. This assesses the ability of multimodal CCPSO to produce an en-
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semble of high-quality distinct conformations in three very different fitness landscapes.

5.1 Multimodal CCPSO

5.1.1 Architecture

A modular methodology for multimodal combinatorial optimization problems is

presented in multimodal CCPSO. This new PSO extension tries to find a set of optimal

and near-optimal solutions by forcing multi-space CCPSO to sample different regions of

the search space. Every time multi-space CCPSO detects a solution of high quality (i.e., a

potential optimum) it “marks” the region in the search space by storing this solution in an

external memory. The external memory is then used by diversity strategies to encourage

particles to search different regions of the search space. The algorithm stops after a given

number of iterations and at the end the archive contains the detected optima. This new

algorithm consists of four main components: 1) the multi-space CCPSO algorithm to

solve the combinatorial problem, 2) an external memory (archive) to store the ensemble

of solutions, 3) a diversity strategy to encourage sampling of the search space, and 4) a

strategy to decide which solutions should be stored. These main components and their

interactions are depicted in Figure 5.4. In the following, each one of these components is

presented in detail.

Ensemble Memory Depicted as Box (A) in Figure 5.4. CCPSO is augmented with an

external archive called Ensemble Memory that holds selected past solutions. Ensemble
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Figure 5.4: Multimodal CCPSO components

memory, EM, is defined by the tuple:

EM = 〈solutionss, solbest, fitnessbest, threshold〉

where solutionss is the archive where local optima are stored, solbest is the best solution

seen so far, fitnessbest is the best local minimum found so far, and thereshold is a parameter

used to define the acceptable energy range of solutions to be stored. Solutions are added

to EM by the submission of solutions strategy described below. If solution with a energy

value better than fitnessbest is added to the ensemble then EM is updated, and all solutions

that are not within threshold of the new fitnessbest are discarded from the ensemble.
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Submission of solutions strategy Depicted as Box (B) in Figure 5.4. Every time a

potential optimum is found, a decision needs to be made about keeping or discarding

this potential optimum. This strategy uses the threshold and fitnessbest value of EM to

decide if a solution is “good” enough to be recorded in the ensemble memory and the

fitness landscape should be modified to guide the rest of the subswarms away from this

solution. Multiple criteria can be used to determine if a potential optimum has been found.

This criteria can be fixed: the algorithm executes for a maximum number of iterations

or fitness functions evaluations, or adaptive by detecting when particles are no longer

moving (i.e., the system is in equilibrium). The average velocity update over all particles

or the number of iterations since the last fitness change can be used as measure to detect

when particles are no longer moving. In multimodal CCPSO a solution x is considered a

potential optimum x∗ when the following two criteria apply:

• f(x) has not changed in the last k iterations

• f(x) ≤ f(x′)∀x′∈swarm

It is reasonable to suppose that a potential optimum can be a local optimum or can be very

close to a local optimum. To avoid overloading the ensemble memory with local optima,

a solution x∗ found by multi-space CCPSO is added to the archive if and only if one of

the following situations arrive:

• x∗ has a quality value within threshold of fitnessbest and it is distinct from any pre-

viously found solution

• x∗ is better than any solution x in the archive
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Regardless if the solution was stored or discarded, the subswarm that submits this solution

to the ensemble is restarted to a random position to encourage it to explore a new part of

the space.

5.1.2 Diversity Strategies

Diversity strategies are incorporated in Box (C) in Figure 5.4. These strategies are

the mechanism to force multimodal CCPSO to move away from promising regions of the

search space that have been already explored. A diversity strategy uses the previously

located optima stored in the ensemble memory to penalize any subswarm that moves

closed to a previously explored region. This penalization takes into account the distance

between the subswarm solution and the memory of the best solution found so far and

adjusts solution fitness accordingly. The new fitness value fitness’s is computed with

Equation (5.1):

fitness’s = h(fitnesss, distance(solbest, sols)) (5.1)

where each diversity strategy defines its particular function h and distance(solbest, sols)

is a metric used to assess the distance between two solutions and it is problem-dependent.

If distance(solbest, sols) = 0, i.e., if the solution is identical to the best solution seen so

far, then it is discarded and no adjusted fitness value is computed.

Simple Sequential Niching (SSN) is the simplest way to locate multiple solutions. It

consists of repeatedly executing the particle swarm optimization algorithm, each time

with a different initial swarm, and to record the solution found [44]. The hope is that

96



different solutions will be located, but there is no such guarantee. Since this method does

not explicitly penalize solutions that are close to previously found solutions, the fitness of

solution is left unchanged, as seen in Equation (5.2):

hSSN(fitnesss, distance(solbest, sols)) = fitnesss (5.2)

Distance Penalty (DP) Awell-know diversity technique is to change the objective func-

tion each time a solution is found, to penalize particles that move towards already located

optima [70]. The penalty function is presented in Equation (5.3):

hDP(fitnesss, distance(solbest, sols)) =

fitnesss + λ× fitnesss × (1− distance(solbest, sols))

(5.3)

where distance(solbest − sols) is the distance between subswarm s and the best local

minimum found so far, solbest. The constant λ is a scaling factor for the distance penalty.

The success of this penalty method depends on the value of λ. If λ is too small, the penalty

may no have effect at all, and particles may still move towards previously found solutions.

If λ is too large, the penalty becomes too strong, and it might repel particles from any good

optima that is relatively close to a found minimum. The value of λ therefore should be

optimized depending of the balance between fitness value and distance between solutions

desired.

Deflation strategy (DS) An alternative approach to repel particles from already discov-

ered minima, referred to as deflation strategy (DS) is presented in [110][111]. In this case
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the derating function for the fitness function is as follows:

hDS(fitnesss, distance(solbest, sols)) = fitnesss +
fitnesss

distance(solbest, sols)
(5.4)

Note that both DP and DS change the landscape of the objective function and this is not

without problems, since they can introduce false local minima.

Fitness Sharing (FS) Fitness sharing algorithms are free from the undesirable side ef-

fect of introducing false local minima. The main idea of FS is to distribute particles along

different areas of the fitness landscape [32][56]. When a subswarm s is sharing resources

with other subswarms (i.e., when it is close to other subswarms), its fitness fitnesss is de-

graded in proportion to the number and closeness of the subswarms that surround it. The

equation for the adjusted fitness is defined in Equation (5.5) and (5.6)

hFS(fitnesss, distance(solbest, sols)) =
fitnesss

∑n

j=0 sharing
j
s

(5.5)

where n is the number of subswarms.

sharingj
s =















1− (
distance(solj ,sols)

σshare
) if distance(solj , sols) < σshare

0 otherwise

(5.6)

σshare is a parameter that needs to be adjusted and represents the desired distance between

particles.
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5.1.3 Algorithm

Diversity strategies can be partitioned into two main classes: iterative and subpop-

ulation methods. In iterative methods, the algorithms are applied several times consecu-

tively to locate each optimum. In the subpopulation methods, the population is divided

into parts to search optima simultaneously. Both of these type of diversity strategies are

implemented in multimodal CCPSO. Specifically, from the iterative class: simple sequen-

tial niching [44], distance penalty [44] and deflation penalty [110][111] are selected; and

from the subpopulation class: the popular fitness sharing technique [32][56].

For the iterative techniques, in order to allow as much parallelism as possible, in-

stead of sequentially executing multi-space CCPSO and recording only the best solution

found, multimodal CCPSO continually adds any local optima found to EM until a ter-

mination criteria is met (e.g., maximum number of iterations, or maximum number of

solutions in EM). Every time a local optima is found, the submission of solutions strategy

decides if the solution is good enough to be recorded and if the fitness landscape needs to

be updated to guide particles away from this new found local optimum.

In the subpopulation algorithms the population is divided into parts to search for op-

tima simultaneously. This means that the population needs to create and maintain niches

that repel other individuals from the location of the niche. This is a successful strategy

when the goal is to force the algorithm to explore different areas of the space as an strat-

egy to escape local optima, but it becomes highly inefficient when the goal is to explore

as many areas as possible in search of distinct local optima. Therefore, the fitness sharing

strategy is modified as follows: instead of creating niches and having to maintain them by
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using the PSO population, the solutions stored in the ensemble memory are used as mem-

bers of existing niches. Every element in the ensemble memory EM is treated as an actual

member of a current niche, and any subswarm that is near to it, is penalized accordingly.

The pseudocode of the multimodal CCPSO algorithm is presented in Algorithm 7. For

clarity, the details of multi-space CCPSO that were described in Chapter 4 are omitted.

The lines marked with ∗ in the algorithm, compute the adjusted fitness value by using a

specific diversity strategy.

Algorithm 7Multimodal CCPSO algorithm

Initialize EM

for each subswarm s do

Create particles and attractors

end for

while stop criteria not met do

for each subswarm s do

decode solution sols
evaluate fitness(sols)
fitness’(sols) = h(fitnesss, distance(solbest, sols))

∗

Update bs, ns

if bs is local optima then

submit bs to EM

end if

for each particle i do

For each attractor j compute fitness

For each attractor j update fitness’ = h(fitnesss, distance(solbest, sols))
∗

For each attractor j compute strength

Update particle’s velocity

Update particle’s position

end for

end for

end while
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5.2 Application: Ensembles of Conformations for Protein Design

Protein design aims at selecting the optimal protein sequence for a desired structure.

The ability to design proteins that have specific structures and functions will be very

valuable to future protein drug discovery. Even now, protein design technology has been

successfully applied to stabilize proteins, increase protein-protein binding affinity and

create new protein structures [90]. Compared to protein folding, which starts from the

sequence with the goal to predict the corresponding three dimensional structure, protein

design starts with a target structure (represented by a protein backbone) and searches for

sequences that minimize the energy conformation of that backbone. This distinction is

depicted in Figure 5.5.

K P F Q C R I C M R N F S R 

S D H L T T H I R T H T G E

DNA-Binding Transcription Factor

Protein

Structure

 Prediction

Q Q Y T A K I K G R T F R N 

E K E L R D F I E K F K G R 

DNA-Binding Transcription Factor

Protein

Design

a) b)

Figure 5.5: a) The protein-fold prediction task is to predicting a protein structure (and ul-

timately its function) from its sequence. Protein design, on the other hand, starts from the

desired protein function which defines the structural elements needed, and then chooses

a sequence that will fold into a structure consistent with those elements.

Computational methods play a central role in the rational design of novel proteins.
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Developments have been made both toward grand challenges and toward more immediate

practical applications. Examples of grand challenges are de novo design problems such

as the creation of a novel protein fold, or a new binding interface, whereas more imme-

diate practical applications involve the redesign of existing proteins to alter some specific

property. One remarkable example of an early attempt at computational protein design

was the complete redesign of a zinc finger protein [114] with a fixed backbone [27].

The fixed backbone assumption is incompatible with de novo design because there is

no design template available. When a template backbone is available, such as the case

of protein redesign, this greatly reduces computational time. Nevertheless, even with a

fixed backbone, the protein design problem remains NP-hard [75]. Small proteins can

potentially adopt an enormous number of conformations and can encode a large number

of sequences. For example, the protein analyzed in this chapter with only 28 residues

can have more than 1070 conformations. This combinatorial complexity along with the

highly non-linear energy interactions make the energy landscape impressively complex

with practically infinite possibilities [107]. In fact, the extensive amount of structural

diversity accessible in protein design has created a demand for computational resources

that can evaluate a multitude of candidate structures. Traditionally, the protein design

problem aimed to obtain the global minimum energy conformation (GMEC). However,

predicting a set of low-energy sequences is appealing for various reasons [47][51][139].

One of these reasons is that the energy landscape is not modeled with sufficient rigor.

There is imprecise knowledge of many aspects of the physical forces in energy func-

tions and rotamers are discretized to reduce combinatorial complexity. Moreover, even if
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the lowest-energy conformation could be predicted accurately, this does not guarantee its

biological feasibility. Therefore, its more attractive to provide a set of low-scoring con-

formations that can be reranked by more physically realistic (and computationally more

expensive) energy functions, or tested in the wet lab.

In order to avoid rejecting potentially good solutions and to maximize the con-

formational diversity of the search, multi-space CCPSO has been augmented with the

multimodal search techniques described above. The goal is not only to have an ensemble

of rotamer conformations with near-optimal energy values, but that these conformations

are as distinct from each other as possible. Conformations that are of special interest in

protein design are the ones with energy value very close to the energy value of the known

optima but with a very low similarity with this optimal conformation.

5.3 Comparing Diversity Strategies for Protein Redesign

The design methodology consists of starting with a protein backbone and attempt

to design an amino acid sequence that best fits the given backbone. The method consists

of applying multimodal CCPSO to efficiently sample all possible amino acid sequences

and within them, to sample the rotamer conformations for local optimal solutions with

energy value close to the global minimum. To evaluate the performance of multimodal

CCPSO in different fitness landscapes, the four different diversity strategies are evaluated

with three different proteins: one real protein and two in silico proteins. Each protein

is redesigned with three different design schemes that vary the number of rotamers per

position.
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Proteins

Real protein The first protein selected is the ββα motif of the second finger module of

the DNA binding protein Zif268 [114], the zinc finger DNA binding module. This protein

motif contains the most common secondary structures: sheet, helix and turn structures.

This protein has been used in previous protein design studies [27]. This protein will be

referred as zinc-finger. The protein information was downloaded from the Protein Data

Bank [11] and the self-energy terms E(ir) and the pairwise rotamer energy E(ir, js) are

computed with the energy functions defined in [75], which are derived from the AMBER

force field [20]. The rotamer library used is Dunbrack’s backbone-dependent rotamer

library [42]. For each 10◦ range of φ, ψ backbone angles, this library has 320 rotamers,

with the largest number of rotamers, 81, belonging to arginine and lysine.

In-silico proteins Zinc-finger presents a rich energy landscape with a high (albeit un-

known) number of near-optimal solutions. In order to assess the ability of multimodal

CCPSO to sample efficiently the energy landscape, two proteins with a controlled num-

ber of optimal solutions are randomly generated. These proteins were created with the

following methodology. First, a residue interaction graph with the same structure of zinc-

finger was generated for each protein. Then, new weights in this interaction graph were

generated randomly and independently creating an almost flat energy landscape. Finally,

a number of solutions with similar quality value were implanted in this energy landscape

to create a multiple global optima scenario like the one depicted in Figure 5.3. The fol-

lowing explains each one of these steps in more detail.
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Figure 5.6: Residue interaction graph of in silico proteins. Each amino acid residue is

represented by a subgraph that contains all the rotamers that belong to that amino acid.

An edge between rotamer i of residue r and rotamer j of residue s has weight f(k) if that

weight had a E(ir, js) <> 0 in original protein zinc-finger.

The interaction graph of zinc-finger is taken as a starting point to create the new

proteins. In this interaction graph, each residue is represented by a subgraph that contains

a node for each possible rotamer for this residue. Physical interactions between each

possible rotamer of different residues are represented by weighted edges between the

nodes, such that the edge between rotamer r of residue i and rotamer s of residue j

has weight E(ir, js). If an interaction does exist between two rotamers in this interaction

graph, then a new weight is created randomly and independently for it with Equation (5.7).

This equation assigns a β weight with a gaussian distribution of shape k. Figure 5.6 shows

an example of how new weights are generated.

f(k) = β +
1

1 + ek
(5.7)
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Finally, twenty-five global optima (or near-optimal) solutions solimp were implanted

in these synthetic proteins. The implanted solutions in one protein have an average ro-

tamer pairwise distance value of 0.30. This protein is called zinc-finger-30-25. Similarly,

the second synthetic protein, named zinc-finger-75-25, has an average rotamer pairwise

distance in its set of optima solutions of 0.75. This is depicted in Figure 5.7. All inter-

actions between any pair or rotamers that belong to any solution in solimp are assigned a

new weight with Equation (5.8).

g(k) = −β +
1

1 + ek
(5.8)

This strategy assigns a low energy to all solutions in solimp creating a multiple global

optima. Since it is of particular interest to test multimodal CCPSO in landscapes with

near-optimal solutions a gaussian distribution is used to create solutions of similar quality

value.

In summary, the interaction graph of each synthetic protein is generated as follows:

E(ir, js) =































f(k) if E(ir, js)! = 0 in zinc-finger

g(k) if ∃sol ∈ solimp such that ir and js ∈ sol

0 otherwise

(5.9)

Design model All three proteins are subject to three design schemes with increasing

order of difficulty. This is depicted in Figure 5.8. Design model I represents a sequence-

fixed redesign, where the task is reduced to choose rotamers for a fixed residue (i.e.,

this design problem is reduced to side-chain). Design model II represents a partial se-
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Figure 5.7: Implantation of solutions in synthetic proteins.

quence redesign following the classification of residues into core, surface and boundary

classes presented in [27]. The residue positions in the protein structure are partitioned

into core, surface and boundary classes. Core residue identities are selected from among

the amino acids Ala, Val, Leu, Ile, Phe, Tyr and Trp, while surface residue identities are

selected among Ala, Ser, Thr, His, Aps, Asn, Glu, Gln, Lys, and Arg. Boundary residue

identities are chosen from the union of these sets. This classification is as follows: one

residue position (position number 5) is classified as core, seven residue positions (posi-

tions 3,7,12,18,21,22 and 25) are classified as boundary and the remaining twenty residues

are assigned to surface. Design model III represents the full sequence design where every

position is allow to pick among the twenty amino acids. The three design models are

depicted in Figure 5.8. The search space of the three models is presented in Table 5.1.
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Table 5.1: Benchmark search complexity of protein design schemes

Model I Model II Model III

number of rotamers 587 6512 9016

number of residues 27 26 28

rotamer/residue ratio 21.74 250.46 322

search space size 4.13509e+ 26 8.47811e+ 51 1.65945e+ 70
log10 search space 26.61 61.92 70.22

Distancemetrics Two metrics are used to assess the distance between two proteins. The

first one computes the distance in rotamer space, which considers all possible rotamer

combinations for a fixed sequence length. The second metric computes the distance in

sequence space, which considers all possible residue combinations for a fixed sequence

length.

Equation (5.10) computes distancerot which measures the distance of two solutions

of size n in rotamer space and equation (5.10) estimates the distance of two solutions of

size n in residue space, distanceres.

distancerot(sols1, sols2) = 1.0−
∑n

i=1
same-rot(sols1[i],sols2[i])

n

same-rot(j, k) =















1 if j = k

0 otherwise

(5.10)

distanceres(sols1, sols2) = 1.0−
∑n

i=1
same-res(sols1[i],sols2[i])

n

same-res(j, k) =















1 if res(j) = res(k)

0 otherwise

(5.11)

and function res(x) returns the residue to which that rotamer belongs to.
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Table 5.2: Details of multimodal CCPSO variants evaluated in protein design task.

name diversity strategy parameters design model tested

MS multistart none I, II, III

DS rot deflation strategy distancerot I, II, III

DS res deflation strategy distanceres II, III

DP rot 1 deflation strategy distancerot, λ = 1 I, II, III

DP rot 4 deflation strategy distancerot, λ = 4 I, II, III

DP res 1 deflation strategy distanceres, λ = 1 II, III

DP res 4 deflation strategy distanceres, λ = 4 II, III

FS rot 75 fitness sharing distancerot, σshare=0.75 I, II, III

FS rot 90 fitness sharing distancerot, σshare=0.90 I, II, III

FS rot 95 fitness sharing distancerot, σshare=0.95 I, II, III

FS res 75 fitness sharing distanceres, σshare=0.75 II, III

FS res 90 fitness sharing distanceres, σshare=0.90 II, III

FS res 95 fitness sharing distanceres, σshare=0.95 II, III

Variants Thirteen variants of multimodal CCPSO are implemented based on the four

diversity strategies described in the previous section. Preliminary experiments were run

to tune specific parameters to each diversity strategy. The resultant methods are presented

in Table 5.2.

An instance is defined as one protein in one sequence design scheme. Therefore,

the benchmark consists of nine instances, each one solved by all multimodal CCPSO

variants. Since our method is stochastic, each instance-algorithm pair is executed ten

times and average values are reported. The experiments were run on a 2.2 Ghz AMD

Quad-Core AMD Opteron(tm) Processor 8356 with 132GB of shared RAM.
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5.4 Results

Real protein vs in-silico protein Low-energy ensembles obtained in the real protein,

zinc-finger, have a higher average pairwise diversity almost throughout all multimodal

CCPSO variants and all design schemes. This corroborates that energy landscapes of

real proteins such as zinc-finger have significant more optima than the in silico proteins

created. Moreover, we can see in Figures 5.9–5.11 that zinc-finger-30-25 has a higher

average pairwise diversity than zinc-finger-70-25 in all design models. This reflects the

actual energy landscape of the in silico proteins. Even though both proteins have the same

number of global optima (25 solutions each), the optima implanted in zinc-finger-30-25
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(a) Results with zinc-finger.
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(b) Results with zinc-finger-30-25.
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(c) Results with zinc-finger-70-25.

Figure 5.9: Average pairwise diversity in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case I. Axis X show each one of the methods,

and axis Y plots the average pairwise diversity among the top 100 solutions.
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has a lower pairwise similarity. These results provide evidence that multimodal CCPSO

is able to distinguish between these three multimodal scenarios. Additionally, while this

trend persists across all design models, its effect seems to be modulated by the design

model. In design model I (Figure 5.9) the difference between zinc-finger-30-25 and zinc-

finger-70-25 is subtle whereas in design model II and II (Figure 5.10 and Figure 5.11

respectively) the effect is more evident. It is also interesting that while zinc-finger has the

highest pairwise similarity, these diversity seems to reach its maximum in design model

II. In other words, even though design model III provides a considerably larger rotamer

space, multimodal CCPSO finds a similar average pairwise diversity in both design cases.
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(a) Results with zinc-finger.
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(b) Results with zinc-finger-30-25.
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(c) Results with zinc-finger-70-25.

Figure 5.10: Average pairwise diversity in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case II. Axis X show each one of the methods,

and axis Y plots the average pairwise diversity among the top 100 solutions.
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(a) Results with zinc-finger.
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(b) Results with zinc-finger-30-25.
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(c) Results with zinc-finger-70-25.

Figure 5.11: Average pairwise diversity in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case III. Axis X show each one of the methods,

and axis Y plots the average pairwise diversity among the top 100 solutions.

This can be observed in Figure 5.10 a) and 5.11 a). Presumably, this is a feature of the

energy landscape and not of the multimodal CCPSO. Finally, it is worth mentioning that

all variants are able to make the distinction between the fitness landscape of these three

proteins.

High-quality ensembles Figure 5.12–Figure 5.14 shows the quality of the 100 top solu-

tions and their distance to the optimal solution. In design case I, where the search space is

the most restricted, multistart and fitness sharing strategy have a similar behavior. Their

exploratory power is somewhat limited with a maximum distance to the best solution
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(a) Distance penalty strategy.
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(b) Fitness sharing strategy.
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(c) Multistart strategy.
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(d) Deflation strategy.

Figure 5.12: Fitness value vs distance in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case I. Axis X show each the distance to the

optimal solution in rotamer space, and axis Y shows the fitness of the solutions.

around 0.4. Both of these methods maintain all their solutions within 5% of the optimal

solution. Distance penalty and deflation strategy, on the other hand, are able to find an

ensemble of higher pairwise distance but lower quality. In design case II, all variants

obtain ensembles of solutions which are relatively far from the global optima, the closest

solution is at 0.4. The method that maintains the highest quality ensemble is deflation

strategy. This behavior pattern is repeated in design model III, although ensemble quality

is higher.
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(a) Distance penalty strategy.
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(b) Fitness sharing strategy.
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(c) Multistart strategy.
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(d) Deflation strategy.

Figure 5.13: Fitness value vs distance in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case II. Axis X show each the distance to the

optimal solution in rotamer space, and axis Y shows the fitness of the solutions.

High-diversity ensembles The deflation and distance penalty diversity strategies con-

sistently produce the highest average pairwise distance in rotamer space. This behavior is

consistent throughout the three design schemes in all proteins evaluated. Not surprisingly,

the multistart strategy has an inconsistent performance. This method relies too heavily in

the stochastic nature of the PSO to explore new regions of the search space. In design case

I, the multistart strategy produces a high-quality although low-diversity ensemble while

in design case II and III the quality of its ensemble is significantly lower. The fitness

sharing technique, on the other hand, has a consistent but not-as-good performance. It

produces ensembles of lower diversity than deflation and distance penalty strategies.
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(a) Distance penalty strategy.
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(b) Fitness sharing strategy.
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(c) Multistart strategy.
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(d) Deflation strategy.

Figure 5.14: Fitness value vs distance in rotamer space for top 100 solutions for each

variant of multimodal CCPSO in design case III. Axis X show each the distance to the

optimal solution in rotamer space, and axis Y shows the fitness of the solutions.

Number of solutions Figure 5.15 shows the average number of solutions found within

10% of optima by each multimodal CCPSO variant. The fitness sharing strategy is clearly

more effective than any other variant in finding “good” near-optima optimal solutions.

Distance penalty PSO and deflation strategy have a very similar behavior. Their perfor-

mance varies greatly based on the specific protein and design model. For protein zinc-

finger, there seems to be a trend where the ensemble size increases with the complexity

of the design model. Finally, the behavior of the multistart strategy is erratic at best; this

algorithm finds more solutions in the more restricted design case I of zinc-finger than in

design case III of the same protein.
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(a) Multistart PSO.
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(b) Deflation PSO.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Z
in

c
-fin

g
e

r/I

Z
in

c
-fin

g
e

r/II

Z
in

c
-fin

g
e

r/III

Z
in

c
-fin

g
e

r-3
0

-2
5

/I

Z
in

c
-fin

g
e

r-3
0

-2
5

/II

Z
in

c
-fin

g
e

r-3
0

-2
5

/III

Z
in

c
-fin

g
e

r-7
0

-2
5

/I

Z
in

c
-fin

g
e

r-7
0

-2
5

/II

Z
in

c
-fin

g
e

r-7
0

-2
5

/III

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
s
o

lu
ti
o

n
s
 w

it
h

in
 1

0
%

 o
p

ti
m

a

Protein/Design model

(c) Distance penalty PSO.
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(d) Fitness sharing PSO.

Figure 5.15: Average number of solutions found within 10% of optima for each pro-

tein/design model. Axis X show each one of protein/design model combination, and axis

Y plots the average number of solutions found.

5.5 Discussion

The previous chapter proved the feasibility of a cooperative combinatorial PSO

with a partial-fitness feedback strategy as a search method for the protein structure pre-

diction task. To further study the properties and capabilities of the proposed method, this

chapter presents a second set of experiments where multi-space CCPSO faces a different

combinatorial problem: to find an ensemble of top-scoring protein sequences. This com-

binatorial task accentuates the difficulty of the side-chain packing problem not only by

considerably increasing the problem size, but also by requiring that multiple local optima

of similar quality that the global optimum be detected.
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This chapter introduces multimodal CCPSO; in this algorithm multi-space CCPSO

is augmented with diversity strategies to extend it to multimodal combinatorial problems.

Four diversity strategies were selected based on their previous success in real-value op-

timization with the intention of characterizing their performance in combinatorial prob-

lems.

Multimodal CCPSO is applied to the sequence redesign of a small protein and re-

sults show that each diversity strategy has its own performance pattern. The multistart

strategy has the less consistent behavior, since it relies in the initial random positions of

the particles to find distinct optima in each execution. The fitness sharing strategy has

a conservative approach; it keeps a balance between the diversity of solutions and their

quality. The distance penalty and deflation strategy are the methods of choice if the in-

terest lies in having an ensemble of solutions with a high average pairwise distance at the

cost of having lower-quality solutions. Additionally, the fitness sharing technique seems

to be very effective in exploiting good areas of the space. It is capable of finding a large

number of multiple optima. Its behavior in the in silico protein is particularly striking.

It is the only variant capable of finding a large number of solutions in these proteins.

The ensemble found by the fitness sharing technique consists of slight variants of the 25

original solutions implanted in the synthetic protein.

These results corroborate that Multi-space CCPSO, augmented with an ensemble

memory and diversity strategies, is an effective particle swarm algorithm to sample mul-

timodal combinatorial problems. Several diversity approaches have previously been em-

ployed in particle swarm algorithms [18][110]. These approaches are typically used to
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escape local optima, and to try to locate multiple global solutions. There have been sev-

eral attempts to extend PSO to locate all the global optima. However, these algorithms

were tested only in much simpler numerical benchmark function. At present, multimodal

CCPSO seems to be the only variant of PSO which has been developed for multimodal

combinatorial problems.
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Chapter 6

Discussion

PSO algorithms have been very successful in almost all areas where they have been

applied, with perhaps the exception of combinatorial optimization problems where further

improvements to PSO techniques are still needed before the PSO can compete on par with

other techniques [6][122]. A recent study of publications in particle swarm optimization

[122] reveals that less than 3.5% of these papers deal with combinatorial optimization

problems. Moreover, the majority of current implementations of combinatorial PSO are

used to detect promising regions in the search space, which are then passed to a dedicated

local search algorithm such as simulated annealing or fast local search [24].

One of the main problems with combinatorial PSO is that it requires one to redefine

the interaction between a particle or candidate solution and continuous space. There is no

natural representation for combinatorial problems in continuous space (e.g., how to re-

define the velocity operator). This has been addressed by previous research by encoding

the candidate solution as a permutation and designing specialized velocity operators for

this permutation space [23][149][157]. One of the main goals of the research presented

here was to provide some insight about the feasibility of an alternative approach. Specif-

ically, it focused on the following questions: “Is particle swarm optimization a viable

approach to solve combinatorial problems?”, “Does the representation of a particle mov-

ing in a continuous space need to be sacrificed for a permutation representation?”, and
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“Can a cooperative strategy provide a mechanism to design an effective PSO to handle

combinatorial problems without sacrificing the concept of particles moving in a contin-

uous space?”. In an attempt to answer these questions, I have proposed two cooperative

strategies for combinatorial PSO. The central hypothesis is that by allowing a set of parti-

cles, rather than each single particle as in most combinatorial PSOs, to represent solutions

to problems, one can collectively construct solutions. These cooperative strategies allow

each particle to optimize its own choices, while being guided implicitly toward regions of

the space that are more promising to the rest of the swarm.

In cooperative algorithms a solution sols consists of n components and has a fit-

ness value f . However, there is no explicit fitness value associated with the individual

components. This raises the issue of how to reward (or penalize) a particular component

for its contribution towards sols, i.e., how to know if a particular component is helping or

hurting the fitness of the overall solution. This problem is known as the credit assignment

problem, and it has been pointed out in previous work in cooperative PSO algorithms for

numerical optimization [44][153][154]. Of particular interest is the approach presented in

[154], namely CPSO-Sk, where each individual solution component is assigned to a par-

ticular swarm and optimized individually. The major difficulty with CPSO-Sk is that the

solution is a plain combination of the swarm’s global best. Consequently, solutions are

the result of each swarm selecting its own best solution, i.e., each swarm selects its local

minimizer, instead of reaching a compromise with each other and selecting components

that will produce the global minimum. To help escape these pseudominima a traditional

PSO is combined with CPSO-Sk, interleaving their execution and merging their results
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by replacing half of the population of one with the best solutions of the other.

My research takes a different direction, and provides two alternatives to deal with

this credit assignment problem. The first one, implemented in shared-space CCPSO con-

sists in placing all particles in a n-dimensional space, where each possible value is repre-

sented by an attractor-particle. This representation of the space allows a particle’s position

to be used in a feedback mechanism to reward attractors which are successful in pulling

particles towards them. This way, each possible value for a solution component (i.e., each

attractor) gets feedback that reflects its contribution to the overall solution. This feedback

mechanism acts as stigmergic communication between particles.

Multi-space CCPSO, on the other hand, presents a qualitatively different approach.

This model partitions the space by placing each particle in its own high-dimensional con-

tinuous space. As in the shared-space CCPSO, each individual particle moves around

the high dimensional space based solely on the forces exerted by attractors. The differ-

ence lies in the feedback mechanism. In multi-space CCPSO, particles communicate by

collectively creating a candidate solution sols. This candidate solution sols of each sub-

warm is used (as in traditional PSO) to keep a memory of the best solution seen so far

by the subswarm (cognitive memory bs), and the best solution seen so far by a neigh-

boring subswarm (social memory ns). This memories bs and ns reflect a snapshot of the

choices of other particles in the subswarm. They serve as a bellwether of the overall

status of the subswarm. Each particle can now assess the quality of the contribution of

its local choices to these overalls solutions. This component-by-component optimization

encourages fine-tuning of the solution by each particle when the candidate solution mem-
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ory does not change from one iteration to the next, and exploration of a different part

of the space when the memories are modified. This cooperative strategy allows CCPSO

to preserve the concept of particles that move throughout a continuous high-dimensional

space while keeping their own cognitive and social memories of candidate solutions. In

this sense, multi-space CCPSO is closer to the original goal of preserving the key PSO

features while extending it to combinatorial optimization.

Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sam-

ple the search space in problems with multiple global optima. This new algorithm extends

the ability of multi-space CCPSO to discover sets of high-quality and diverse solutions.

Every time multimodal CCPSO detects a solution of high quality (i.e., a potential opti-

mum) it “marks” the region in the search space by storing this solution in an external

memory. The external memory is then used by diversity strategies to encourage particles

to search different regions of the search space.

Throughout this dissertation, an extension to particle swarm optimization has been

presented and demonstrated on varied combinatorial tasks. This extension has the main

purpose of facilitating the application of particle swarm optimization to combinatorial

problems. CCPSO is aimed at combinatorial problems where the task is the assignment

of values among a discrete set of values and it is not intended to permutation problems,

such as the traveling salesman problem. Nevertheless, permutation problems can be tack-

led by CCPSO by finding a suitable mapping between the permutation problem and the

“assignment” representation of CCPSO.

After the work on the three applications presented, it is clear that there is more work
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to be done. First, one limitation of multi-space CCPSO is the high cost of recomputing

the fitness value of each particle’s attractor at each iteration where the cognitive or social

memory has changed. Multi-space CCPSO deals with this problem by having a noisy

evaluation of this attractor’s fitness. When an attractor fitness needs to be updated, a

biased coin with probability τ is flipped to determine if the fitness value is updated. This

noisy calculation of the attractor’s fitness is successful in the combinatorial problems

presented in this dissertation, but it is not clear whether it would prove successful in other

types of combinatorial problems. An alternative solution could be to use the value of the

attractor’s fitness of nearby particles to avoid useless computations.

Another direction for future research is related to the performance of the diversity

strategies employed specifically for ensemble of near-optimal solutions. Each one of

the diversity strategies studied in Chapter 5 had a specific behavior pattern, a pattern

that was maintained throughout the execution of multimodal CCPSO. An alternative here

would be to add an adaptive mechanism to monitor both the quality and pairwise diversity

of the solutions stored so far, and based on this information, provide feedback to the

diversity strategy. The diversity strategy could then adjust its parameters accordingly to

produce either higher quality solutions or higher diversity solutions. Additionally, the

techniques explored were aimed to find an ensemble of dissimilar near-optimal solutions.

They do not maximize explicitly the distance between solutions. It would be interesting

to compare the performance in obtaining a high-quality and diverse ensemble of solutions

of the multimodal strategies implemented here with multi-objective techniques.
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6.1 Contributions

• A new strategy to solve combinatorial problems where all components extract their

solution from the same values. The proposed strategy consists in using the position

of the particles (which are trying to optimize other components) to give feedback to

each other, implicitly guiding everybody else to their preferred area. This feedback

mechanism is implemented by the attractors’ fitness. Each particle selects its best

solution component, but instead of passively communicating this choice, they mod-

ify their environment by increasing the fitness of the selected attractor, increasing

its chances of being selected by other particles. All attractors are in a sense com-

peting to win all particles, and each partial success (being selected by one particle)

increases its ability to attract others.

• A generalization of the previous PSO model, allowing the PSO to solve combinato-

rial problems where each component optimizes its own choices. This new scheme,

multi-space CCPSO, partitions the combinatorial problem into components and op-

timizes each one of them individually by a particle that moves on its own multidi-

mensional space. The feedback mechanism consists of computing a fitness value

for each possible choice of the particle; this fitness value is estimated using the cog-

nitive and social memory of the subswarm as template to assess its contribution to

the overall solution. Note that multi-space CCPSO, unlike shared-space CCPSO,

preserves the key feature of cognitive and social memories.

• A modular methodology for multimodal combinatorial optimization problems is
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presented in multimodal CCPSO. This new PSO extension finds a set of optimal

and near-optimal solutions by forcing multi-space CCPSO to sample different re-

gions of the search space. Every time multi-space CCPSO detects a solution of high

quality (i.e., a potential optimum) it “marks” the region in the search space by stor-

ing this solution in an external memory. The external memory is then used by diver-

sity strategies to encourage particles to search different regions of the search space.

The multi-space CCPSO algorithm is augmented with existing diversity strategies,

leading to four multimodal CCPSO variants. These new algorithms offer insight

about the behavior of multi-space CCPSO in multimodal problems. Additionally,

these variants are augmented with an external memory and a storing mechanism

to provide an ensemble of high-quality distinct solutions. The final ensemble of

solutions produced by each variant are examined by their optimality and pairwise

diversity.

• Three important combinatorial problems are tackled by these new models. Ex-

periments in Chapter 3 show the diagnosis problem can be solved by the model

with reasonable accuracy, up to 90% of exactly correct answers, which is quite re-

spectable given that only local computations are involved. Chapter 4 shows that

Multi-space CCPSO has encouraging performance in Side-Chain Packing, an NP-

hard problem, by obtaining optimal or near-optimal solutions in all datasets tested.

Finally, Chapter 5 demonstrates the ability of multimodal CCPSO to predicting a

set of low-energy sequences for the Protein Design problem.

In summary, throughout this dissertation, an extension to PSO for combinatorial
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problems has been presented and demonstrated in different NP combinatorial tasks. This

extension has the main purpose of enabling PSO to partition complex combinatorial prob-

lems in smaller subtasks, while maintaining active communication between these compo-

nents.
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