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ABSTRACT
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Peerapol Tinnakornsrisuphap, Doctor of Philosophy, 2004

Dissertation directed by: Professor Armand M. Makowski

Department of Electrical and Computer Engineering

While active queue management (AQM) mechanisms such as Random Early

Detection (RED) are widely deployed in the Internet, they are rarely utilized or

otherwise poorly configured. The problem stems from a lack of a tractable

analytical framework which captures the interaction between the TCP

congestion-control and AQM mechanisms. Traditional TCP traffic modeling has

focused on “micro-scale” modeling of TCP, i.e., detailed modeling of a single

TCP flow. While micro-scale models of TCP are suitable for understanding the

precise behavior of an individual flow, they are not well suited to the situation

where a large number of TCP flows interact with each other as is the case in

realistic networks.



In this dissertation, an innovative approach to TCP traffic modeling is

proposed by considering the regime where the number of TCP flows competing

for the bandwidth in the bottleneck RED gateway is large. In the limit, the

queue size and the aggregate TCP traffic can be approximated by simple

recursions which are independent of the number of flows. The limiting model is

therefore scalable as it does not suffer from the state space explosion. The

steady-state queue length and window distribution can be evaluated from

well-known TCP models.

We also extend the analysis to a more realistic model which incorporates

session-level dynamics and heterogeneous round-trip delays. Typically, ad-hoc

assumptions are required to make the analysis for models with session-level

dynamics tractable under a certain regime. In contrast, our limiting model

derived here is compatible with other previously proposed models in their

respective regime without having to rely on ad-hoc assumptions. The

contributions from these additional layers of dynamics to the asymptotic queue

are now crisply revealed through the limit theorems. Under mild assumptions, we

show that the steady-state queue size depends on the file size and round-trip

delay only through their mean values.

We obtain more accurate description of the queue dynamics by means of a

Central Limit analysis which identifies an interesting relationship between the

queue fluctuations and the random packet marking mechanism in AQM. The

analysis also reveals the dependency of the magnitude of the queue fluctuations

on the variability of the file size and round-trip delay. Simulation results

supporting conclusions drawn from the limit theorems are also presented.
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Chapter 1

Introduction

1.1 Motivation and Goals

One of the key mechanisms for the operation of the best-effort service Internet is

the congestion-control mechanism in the transmission control protocol (TCP)

[26]. While there are several variations to the basic TCP congestion-control

mechanism, they all have in common the additive increase/multiplicative decrease

(AIMD) algorithm. This AIMD algorithm enables TCP congestion-control to be

robust under diverse conditions. Unfortunately, the self-clocking feedback

mechanism of the AIMD algorithm does introduce some additional complexities

into the behavior of network traffic. There has been a number of studies trying to

gain insights into this complex behavior. At the present, the relationship between

the throughput of a single TCP flow and its round-trip and loss probability is

fairly well understood [2, 40, 43, 48].

There are, however, certain aspects of TCP that are not well understood and

which cannot be analyzed with the techniques in the aforementioned studies.

This includes issues such as buffer behavior at a bottleneck router and the

aggregate throughput when many TCP flows compete for the bandwidth of a
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link. While one could in principle extend the aforementioned single flow models

to attempt to answering these questions, the resulting models (which will be

referred to later as micro-scale models) are not scalable. More specifically, since

each flow is modeled in great details, the size of the state space for such models

explodes when the number of flows becomes large. Consequently, not only is the

analysis becoming intractable, even numerical calculations or simulations of such

models are very complicated, computationally prohibitive, and would not provide

additional advantages over full-scale simulation with existing simulation packages

(e.g., NS [45]). While one could make certain assumptions to simplify the

analysis, it is not clear what are the irrelevant details that can be omitted while

still providing a reasonably accurate analysis.

To make matters worse, recent developments in Active Queue Management

(AQM) techniques have introduced additional complexity in transport protocols.

The development of AQM originated from a well-known fact that with simple

Tail-Drop gateways, the AIMD mechanism in TCP congestion-control leads to

undesirable behavior, i.e., global synchronization. When several TCP flows

compete for bandwidth in a Tail-Drop gateway, it has been observed

experimentally that packets from many flows are usually discarded

simultaneously [63], resulting in a poor utilization of the network. AQM

algorithms such as Random Early Detection (RED) [18] and Explicit Congestion

Notification (ECN) [15] have been proposed to help alleviate this problem by

randomly dropping/marking packets depending on queue size, thereby avoiding

heavy congestion and preventing global synchronization. As can easily be

imagined, the introduction of AQM further exacerbates the difficulty of

understanding issues associated with buffer behavior and aggregate TCP traffic.
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There have been attempts to model the interactions between TCP and AQM,

but so far the analytically tractable models are either too crude or too simplistic

(as to be discussed in the literature survey in Chapter 2).

Furthermore, Internet TCP traffic is composed of connections with diverse

session dynamics and round-trip delays. The session dynamic of a flow depends

on the type of applications. For example, applications such as FTP and Telnet,

are relatively long-lived, while other types of applications are typically

short-lived, e.g., web browsing. Additional modeling difficulties also arise from

the fact that the information (i.e., marks on packets) from AQM to TCP flows is

exchanged at different feedback rates depending on the round-trip delay of the

flows. All of these features create major obstacles in deriving a scalable model

which can cope with a large number of flows and still yields analytical insights

into how to control such traffic. As a result, little work has been done on the

problem of modeling the interaction between AQM and a large number of TCP

flows with session dynamics and variable round-trip delays.

The problem of modeling network traffic and of understanding its impact on

various performance metrics is not unique to TCP networks. Early traffic

modeling efforts in telephony revealed the suitability of Poisson processes to

model the time patterns in the stream of call requests to a telephone exchange.

This culminated with the pioneering work of A.K. Erlang who proposed the

M |M |c|c model for dimensioning call systems [11]. Similarly, it is well-known

that the multiplexed packet traffic generated by a large number of bursty data

sources is well described by a Poisson process. It turns out in retrospect that this

so-called “Poisson modeling” is easily justified by a celebrated limit theorem due

to Palm [50] and Khintchine [33]. According to these results, under very weak
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technical conditions, the superposition of point processes is a point process which

converges to a Poisson (point) process when the number of superposed point

processes grows large.

These success stories point to the possibility of systematically applying limit

theorems in order to derive traffic models (which will be referred later as

macro-scale models). The advantages of doing so are three-fold. First, model

simplification typically occurs when applying limit theorems, thereby filtering out

irrelevant details without relying on ad-hoc assumptions. Second, since limit

theorems are central to the Theory of Probability, it is reasonable to expect the

existence of suitable limit theorems (with very weak assumptions) which can be

applied to the traffic model of interest. Finally, the resource allocation problem is

interesting only in networks operating at high utilization such as when the

number of users is large. In such a scenario, the limit behavior becomes more

accurate as the number of users increases.

We would like to again stress that the development of a tractable analytical

framework for the interaction between RED (and more generally AQM) and TCP

is important in practice as well. While AQM mechanisms such as ECN and RED

are widely implemented and supported in the new generation of routers, they are

either rarely utilized or otherwise poorly configured due to the lack of an

understanding of how to configure their parameters. In fact, May et al. [41]

advise against the deployment of RED in spite of its benefits because a

misconfigured RED can have detrimental effects on the network traffic. It is the

objective of this thesis to show that simple and robust models can be derived in a

systematic manner through limit theorems, and that such models can help

improve the understanding of the dynamics and encourage the deployment of

4



well-engineered AQM mechanisms.

1.2 The Approach

As part of this program, we consider several discrete-time models of a bottleneck

RED gateway with a large number of TCP flows competing for bandwidth

resources. In this thesis, we mainly consider RED for the AQM mechanism

because it is the simplest and most widely-deployed AQM mechanism. However,

many of the conclusions drawn from the analytical results are applicable to

models combining generic window-based congestion-control mechanisms and

AQM schemes. Furthermore, the approach can be generalized to apply to a large

class of models.

All the models considered here take into account detailed packet-level

operations unlike other existing models in the literature (to be surveyed in

Section 2.3), where the packet-level operations of TCP are ignored and only the

evolution of the transmission rate is considered. It is important to make this

distinction because mechanisms in TCP and AQM rely on packet-level

operations. The omission of this level of details simplifies the analysis but at the

expense of additional distortion in the results.

The models under investigation in this dissertation are organized around the

behavior of the RED buffer contents observed at discrete epochs (which are

indexed by t = 0, 1, . . .). They differ through the specific mechanism used for

generating incoming packets in response to the congestion that develops in the

RED buffer shared by the TCP flows. Specifically, in the initial model (to be

referred to as the rate-based model in Chapter 3) the packet transmission rate of

5



a source increases/decreases in response to random packet dropping at the RED

gateway. This simple ersatz model is easy to understand and provides a complete

conceptual picture of the system and the type of the results to be expected.

Later, we embellish this model by incorporating a more accurate additive

increase/multiplicative decrease (AIMD) window mechanism of TCP. The AIMD

algorithm controls the window size in response to the random marks from the

bottleneck ECN/RED gateway. This model is introduced in Chapter 4, and we

later refer to it as the window-based model.

While the models in Chapter 3 and 4 shed some insights on the interaction

between the AIMD algorithm and RED, they do not represent a realistic

depiction of the actual Internet because they ignore the session-level dynamics,

i.e., arrivals and terminations of flows, and the variability of round-trip delays.

These additional layers of dynamics will be incorporated into the model in

Chapter 5.

These models have common characteristics when taking the limit as the

number of flows grows to infinity. First, properly normalized aggregated

quantities (e.g., queue size and throughput) converge, and simplified recursive

dynamics emerge for the limiting quantities. Second, it is reasonable to expect

the throughput of a flow to be asymptotically independent of other flows since

the effect of any single flow on other flows becomes less pronounced as the

number of flows grows large.

Here we identify the necessary ingredients for applying a limiting process to

TCP model as done in this thesis: First of all, only the congestion in a bottleneck

link is considered with capacity of the bottleneck link and the feedback

information rate (from AQM) scaling with the number of users. For example, if

6



C denotes the capacity per user of at the bottleneck router, then its overall

capacity should scale up to NC when N TCP flows share the bottleneck link.

Also, let f (N)(x) : R+ → [0, 1] denote the feedback dropping/marking probability

function in RED when the buffer level is x and there are N users in the system,

i.e., any incoming packets when the buffer level is x is randomly marked/dropped

with probability f (N)(x). Then f (N)(x) should scale with N in the sense that

there exists a continuous function f : R+ → [0, 1] such that for each N = 1, 2, . . .,

f (N)(x) = f(N−1x), x ≥ 0. (1.1)

We are interested in the “snapshot” of the dynamics when there exists N flows in

the system. Therefore, f is just a surrogate function representing the average

contribution that each flow has on the dropping/marking probability.

Next, in order to describe the interaction between the bottleneck router and

TCP flows, all models use a recursion similar to Lindley’s recursion for the

quantity of interest. In our study, this quantity is the queue size at the RED

buffer. Let Q(N)(t) denote the queue size at the discrete time epoch t when the

system has N flows. During the timeslot [t, t + 1), it is possible for queue size to

increase (due to new incoming packets) or decrease (because the packets in the

queue are serviced/transmitted). We denote the amount of increase and decrease

in epoch t as A(N)(t) and C(N)(t), respectively. As the queue is always

non-negative, we can write the following recursion

Q(N)(t + 1) =
[
Q(N)(t) + A(N)(t) − C(N)(t)

]+
. (1.2)

Both A(N)(t) and C(N)(t) follow some stochastic recursions which depend on the

current queue size and thereby forming a stochastic feedback system. For

example, when Q(N)(t) is large, A(N)(t′) − C(N)(t′) should be negative with high

7



probability for some t′ ≥ t in order to drive the queue size down.

If we normalize (1.2) by N , the resulting recursion becomes

Q(N)(t + 1)

N
=

[
Q(N)(t)

N
+

A(N)(t)

N
− C(N)(t)

N

]+

. (1.3)

If Q(N)(t)
N

, A(N)(t)
N

and C(N)(t)
N

all converge in the same sense, e.g., in probability,

as N grows large to random variables (rvs) q(t), a(t) and c(t), respectively, then

Q(N)(t+1)
N

also converges, say to a rv q(t + 1), i.e.,

Q(N)(t + 1)

N
P→N q(t + 1) (1.4)

with

q(t + 1) = [q(t) + a(t) − c(t)]+ , (1.5)

where
P→N denotes convergence in probability when N tends to infinity. This

produces a recursion for the rvs {q(t), t = 0, 1, . . .} with initial condition q(0)

and driving sequence {a(t), c(t), t = 0, 1, . . .}. The model simplification typically

results from the fact that the limiting rvs a(t) and c(t) are either deterministic

quantities or rvs which are easy to evaluate, while in the model with arbitrary

number of flows N , we typically need N or more state variables to evaluate either

A(N)(t) or C(N)(t). The original quantity Q(N)(t) can be estimated by N · q(t).
Since q(t) can be evaluated independently of N , the estimation can be done

efficiently, and the limiting model is scalable.

To provide a sharper approximation of Q(N)(t), we can seek to establish the

following convergence

√
N

(
Q(N)(t)

N
− q(t)

)
=⇒N L0(t) (1.6)
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for some rv L0(t) where convergence in distribution is denoted by =⇒N when N

tends to infinity. If there exists such a rv L0(t), then (1.6) yields the

(distributional) approximation

Q(N)(t) ≈ N · q(t) +
√

NL0(t) (1.7)

in some distributional sense. Again, the rv L0(t) can be evaluated independently

of N . We can then investigate the process {q(t), L0(t), t = 0, 1, . . .} to derive

both qualitative and quantitative properties concerning of the interaction between

TCP flows and AQM mechanisms. The main theme of this thesis therefore

revolves around establishing convergence results similar to (1.4) and (1.6), and

investigating the properties of the limiting recursions.

1.3 Contributions

In this section, we highlight the main contributions of this thesis. The results are

derived from various models with common characteristics described in the

previous section. Indeed, the recursion of the RED buffer follows (1.2) with

A(N)(t) and C(N)(t) left to be specified by the models. In all of the models,

C(N)(t) represents the service capacity (in packets) of the bottleneck RED

gateway which satisfies the scaling assumption outlined earlier,

i.e., C(N)(t) = NC, t = 0, 1, . . ., for some positive constant C where C denote

the average capacity per flow. Therefore, the main differences between each

model are in specifying the packet arrivals of the TCP sources in each timeslot.

In a distributed congestion-control scheme such as TCP, each source has to

adjust its transmission rate by relying only on the local information at the

source. This local information can be the state variables of the TCP

9



congestion-control mechanism and the past events (such as packet losses) that

the TCP source has experienced. If A
(N)
i (t) denotes the number of packets TCP

source i = 1, . . . , N injects into the bottleneck gateway in timeslot [t, t + 1), then

the aggregate number of packets coming into the RED buffer in timeslot [t, t + 1),

A(N)(t) is given by

A(N)(t) =
N∑

i=1

A
(N)
i (t). (1.8)

Therefore, Q(N)(t) + A(N)(t) packets are available for transmission during that

timeslot. Since the outgoing link operates at the rate of NC packets/timeslot,[
Q(N)(t) + A(N)(t) − NC

]+
packets remains during timeslot [t, t + 1] in the

buffer, their transmission being deferred to subsequent timeslots. The number

Q(N)(t + 1) of packets in the buffer at the beginning of timeslot [t + 1, t + 2) is

therefore given by

Q(N)(t + 1) =
[
Q(N)(t) − NC + A(N)(t)

]+
. (1.9)

The evolution of A
(N)
i (t) depends on Q(N)(t) through some signaling

mechanisms, e.g., random marking/dropping of packets with probability being a

function of Q(N)(t). In all the models, we assume the structural condition (1.1)

on how the marking/dropping probability function scales with N .

Under the aforementioned framework, the main theoretical contributions to

be reported here are:

The Weak Laws of Large Numbers (WLLN)

Under different models, Theorems 1, 2, and 4 show that the dynamics of the

RED buffer at time t, denoted as Q(N)(t), can be approximated by Nq(t) with

10



q(t) determined via a simple deterministic recursion, which is independent of the

number of users. The limiting model is therefore “scalable” as it does not suffer

from the state space explosion, nor does it require any ad-hoc assumptions.

Indeed, we have the convergence (1.4), so that the approximation becomes more

accurate as the number of flows becomes large. We also note that (1.4) is a

byproduct of the convergence

∑N
i=1 A

(N)
i (t)

N

P→N a(t) = E [A(t)] , (1.10)

for some constant a(t) and rv A(t) determined by the model. The convergence

(1.10) can be interpreted as a Weak Law of Large Numbers for the array

{A(N)
i (t), N = 1, 2, . . . ; i = 1, . . . , N}.
Moreover, the dependency between each TCP flow with RED becomes

negligible under a large number of flows. This finding is compatible with the

belief that RED breaks the global synchronization between TCP flows [18].

These Weak Laws of Large Numbers also provide some justification for

evaluating the dynamics of TCP/RED (and more generally TCP/AQM) through

deterministic models as surveyed in Chapter 2. The Weak Laws of Large

Numbers suggest that the recursion of the average queue q(t) depends only on

the average workload input to the network a(t) = E [A(t)] and the distributional

recursion of A(t) is closely related to the recursion of a single flow.

Steady-state analyses

For N persistent TCP flows when the bottleneck capacity is NC, in non-trivial

situations, the average (steady-state) throughput of each flow is seen to be

approximately C for large N , so that TCP traffic does not realize the benefits
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commonly associated with statistical multiplexing. Indeed, for N open-loop

independent traffic sources, each operating at average rate C, the bandwidth

required to serve the aggregate flow is typically less than NC under statistical

multiplexing. TCP flows, on the other hand, are correlated due to their coupling

via the bottleneck router, and multiplexing TCP flows is not as effective.

To make use of the limiting model in network dimensioning, the queue length

at the steady-state can be easily calculated, and the steady-state distribution of

the window size can be evaluated from well-known TCP models [47, 48]. For

TCP flows with session dynamics and variable round-trip delays, we propose

estimating the steady-state limiting queue size by a simple approximation under

mild assumptions. It is noteworthy that the average buffer utilization and

average window size at the steady-state depend on the RTT and on the file size

distributions only through their mean values.

The Central Limit Theorems (CLT)

For a more accurate description of the queue dynamics, Theorems 3 and 5

present a Central Limit analysis validating the convergence (1.6) for some rv

L0(t), provided the marking/dropping probability function is continuously

differentiable. The rvs {L0(t), t = 0, 1, . . .} are Gaussian except in a special

technical case and a distributional recursion is also provided for generating them.

The Central Limit analysis leading to (1.6) reveals that the magnitude of the

queue fluctuation is proportional to the derivative of f around the limiting

(normalized) queue size q(t). This advocates the use of a smooth marking

probability function as suggested in the RED “gentle” option as opposed to the

original recommendation in [16] and [18]. This finding coincides with the
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observed oscillatory behavior of RED when the average packet drop rate exceeds

max p, in the absence of RED’s “gentle” modification [14].

A closer inspection at the CLT results reveals the sources of queue

fluctuations can be decomposed into

(a) The fluctuation in the feedback information, i.e., the difference between the

limiting feedback probability f(q(t)) and the actual feedback probability

f (N)(Q(N)(t)).

(b) The binary nature of the feedback information, i.e., the sources have to ap-

proximate the feedback probability f (N)(Q(N)(t)) from whether the transmit-

ted packets received any marks.

(c) The variation in the RTTs and file size variations.

The limiting rvs representing (b)-(c) are Gaussian and their combined effects on

the queue fluctuations are determined through the protocol structure.

1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2, we begin with a literature

review that relates to our work. In Chapter 3, we describe a simple ersatz model

of homogeneous, persistent rate-controlled flows which react to the events in the

network, i.e., congestion/no congestion. This ersatz model illustrates the type of

results than can be expected in more complex situations. Chapter 4 presents a

more realistic model of persistent TCP flows which incorporates the explicit

AIMD window mechanism of TCP reacting to the marking mechanism in the

RED bottleneck gateway. The Weak Law of Large Numbers of the model is
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presented in Chapter 4 along with its Central Limit analysis. In Chapter 5, the

model is then extended to incorporate session-layer dynamics and variable

round-trip delays — the Weak Law of Large Numbers and a Central Limit

analysis are established for this model. The proofs of the Weak Laws of Large

Numbers are given in Chapter 6 while the proof of the Central Limit theorem are

given in Chapter 7. Finally in Chapter 8, we summarize the work that has been

done in the dissertation and discuss future research directions.

1.5 Notation

Some words on the notation in use: Equivalence in law or in distribution between

random variables (rvs) is denoted by =st. The indicator function of an event A is

given by 1 [A], and we use
P→n (resp. =⇒n) to denote convergence in probability

(resp. weak convergence or convergence in distribution) with n going to infinity.

For scalars a and b we write a ∨ b = max(a, b) and a ∧ b = min(a, b). For a fixed

positive integer N , let N = {1, · · · , N} denote the set of sessions and let X(N)

indicate the explicit dependence of the quantity X on the number N . The

expectation of a rv X with a distribution function F is given by either E [X] or

E [F ]. For simplicity, we introduce the notation 1X [x] and PX [x] for 1 [X = x]

and P [X = x], respectively.
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Chapter 2

Literature Survey

This chapter discusses both previous research and the current state-of-the-art

relating to our work. The chapter is organized as follows. First we present an

overview on several congestion-control mechanisms and active queue management

(AQM) algorithms in Section 2.1. Next, we survey the work on the modeling of

these congestion-control mechanisms and their interaction with AQM

mechanisms. We categorize different modeling approaches into two classes. The

first class consists of models derived without the assistance of limit theorems.

Models in this class will be referred later as micro-scale models and are presented

in Section 2.2. The second class consists of models derived via limit theorems.

We later refer to models in this class as macro-scale models and present them in

Section 2.3. Models which will be developed in this thesis also belong in this

class.

2.1 Overview of Congestion-Control and AQM Mechanisms

Two major classes of congestion-control mechanisms are surveyed: (i) TCP

congestion-control mechanism and its variants, and (ii) Optimization-based
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congestion-control mechanisms. For AQM mechanisms, we first present the

earliest and most widely-implemented algorithm, Random Early Detection

(RED). Other popular AQM mechanisms are briefly described later.

The Internet and TCP congestion-control

The Internet was developed by the United States Department of Defense prior to

and concurrent with ISO standard activities. The resulting internetwork, known

as ARPANET, has now been extended to incorporate internetworks developed by

other government agencies, academic institutions and commercial networks . The

combined internetworks are now known simply as the Internet [20].

The protocol suite used within the Internet is known as the Transmission

Control Protocol/Internet Protocol (TCP/IP) suite. Since all the protocol

specifications associated with TCP/IP are available in the public domain, they

have been used extensively by commercial and public organizations for creating

open system networking environments.

The Internet Protocol (IP) main functions are equivalent to those of the OSI

networking layer. These functions include fragmentation and reassembly, routing,

and error reporting. All are necessary for internetworking across dissimilar

networks [20].

The Transmission Control Protocol (TCP) is a connection-oriented transport

protocol. Its service offered to the users is known as “reliable stream transport

service”. Its functions cover (but are not equivalent to) those of the OSI

Transport layer and Session layer. Besides establishing and terminating

connections, TCP is also needed for end-to-end control over the “best-effort”

service of IP. The role of TCP, which is hidden from users, is to adapt the
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sending rate of the source to the capacity of the network. Without such a

congestion-control mechanism in TCP, traffic sources could saturate one or

several routers, thereby causing many losses and retransmissions and resulting in

congestion collapse [26].

At the core of TCP is a dynamic window-based congestion-control scheme

introduced by Jacobson [26]. The window mechanism limits the number of

packets sent by the source and not yet acknowledged by the destination. This

limit on the number of unacknowledged packets is referred as the congestion

window size. The efficiency of the congestion-control mechanism depends greatly

on the choice of the window size. If the window size is too large, the source could

saturate the routers. If the window size is too small, the link may not be fully

utilized. Due to the complex nature of the Internet, the optimal value of the

congestion window size is not known a priori because it depends on dynamic

parameters of the network such as the number of connections sharing the same

links. Moreover, the optimal window size can also change during the duration of

a connection because of the time-varying nature of the Internet. As a result, the

window size of TCP adapts according to the network conditions.

There are two working phases in the TCP congestion-control mechanism. The

first phase is called the slow start phase where the window size is increased by

one packet for every acknowledgment received. Therefore, the congestion window

size doubles approximately every round-trip time1, resulting in an exponential

increase of the window size as a function of time. The second phase is called the

congestion avoidance phase, during which the window size increases linearly as a

1Round-trip time (RTT) is the duration of time since the beginning of the transmission of a

packet to the destination until an acknowledgment from the recipient is correctly received.
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function of time. TCP initially operates in the slow start phase trying to quickly

gauge the available bandwidth. When a packet loss is detected, TCP cuts back

its window size trying to resolve the congestion in network, and then switches to

the congestion avoidance mode. The actual implementation of these mechanisms

varies with each version of TCP.

The most popular version of TCP, called Reno, employs an additive increase,

multiplicative decrease (AIMD) algorithm [26]. In this algorithm, the TCP

congestion window size will increase by approximately one packet per round-trip

in the congestion avoidance phase. When congestion is detected by packet loss,

the window size is reduced by half. As a result, the TCP Reno congestion

window oscillates between periods of under-utilization and over-utilization of

network resources. Under certain conditions, it can be shown that TCP Reno

flows with the same round-trip delay competing for the bandwidth in a single

bottleneck have equal long-term average throughput [7].

In order to avoid such an oscillatory behavior, a new version of TCP, called

Vegas, was proposed in [9]. The main idea is to use the delay information of the

packets instead of packet losses in order to adjust the congestion window size.

TCP Vegas can stabilize the window size close to the optimal value without

introducing periodic oscillations. However, the incompatibility between TCP

Reno and Vegas is well-documented [44] and presents a major obstacle in the

deployment of TCP Vegas. Therefore, it is reasonable to expect that TCP Reno

will remain the dominant congestion-control algorithm in the Internet for the

foreseeable future.
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Optimization-based congestion-control

One approach which has received much attention recently is to model TCP

throughput as the solution to a utility maximization problem. The interest in

this model originates from the work of Kelly [31]. It shows that the utility

maximization problem of the system composed of a network and of users can be

decomposed into two separate problems, namely the network problem and the

users problem, assuming the utility function of each user is a concave function of

the user’s received throughput. If the network maximizes its revenue and then

users subsequently maximize their utilities, the recursive maximization sequences

will converge to the solution of the system utility maximization problem.

Subsequent work by Kelly et al. [30] shows that the user problem can be solved

by a rate control algorithm which can be implemented as a congestion-control

algorithm. The rate control algorithm depends on the form of the utility function

of the user. Recent work by Low [36] shows that the throughput of the AIMD

TCP congestion-control algorithm solves the user problem with a specific utility

function. Furthermore, AQM mechanisms such as RED can be modeled as the

feedback functions from the network to the users. This enables efficient modeling

of a large network with multiple users and makes it possible to predict the

interactions between the network and traffic flows through the choices of utility

functions and network parameters.

Random Early Detection (RED) gateway

Random Early Detection (RED) is one of the earliest AQM mechanisms, and is

currently the most widely-implemented. It was proposed by Floyd and Jacobson

[18] to keep the queue size small, reduce burstiness and solve the problem of
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global synchronization in the Internet, i.e., when several TCP flows compete for

bandwidth in a tail-drop gateway, packets from many flows are usually discarded

(near) simultaneously [63], resulting in a poor utilization of the network.

To accomplish these goals, RED signals incoming flows of incipient congestion

by randomly dropping incoming packets with a probability depending on the

exponentially averaged queue length. As a result, flows are notified and have

enough time to react to growing congestion before the actual queue is full. RED

is designed to work in conjunction with congestion-controlled TCP flows. RED

also incorporates a marking mechanism to signal flows of congestion through the

Explicit Congestion Notification [15] option in the IP packet header.

The introduction of RED initiated a whole new research area in active queue

management. There are now many proposed variations of RED and other similar

AQM schemes, some of which will be surveyed in the next subsection. However,

the interaction between AQM schemes and Internet traffic even for a simple

AQM scheme such as RED is still not well understood as there exist several

conflicting reports. For example, while it is claimed that RED can avoid global

synchronization in [18], it is reported in [8] that the number of consecutive packet

drops in RED is higher than in tail-drop gateway, and therefore that RED does

not help alleviate the global synchronization problem.

Other active queue management mechanisms

This section provides a brief overview on some other interesting AQM

mechanisms. Although all of these schemes mark or drop packets to signal flows

of incipient congestion similarly to RED, they have more complex mechanisms to

determine the feedback probability.
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The PI controller [24] is proposed as a follow-up to the work in [22] that

models the TCP/AQM interaction in the framework of a linearized feedback

control system. The proposed PI controller improves the transient behavior and

forces the queue to achieve the target buffer utilization in the steady-state.

BLUE [13] is an active queue management mechanism which uses packet

losses and link idle events to adjust the packet dropping probability instead of

the average queue size in RED. By decoupling the queue length from congestion

management, the authors claim that BLUE can reduce the packet loss rate in the

queue and requires smaller queue in order to achieve the stable operating regime.

Stabilized RED [46] uses a packet sampling technique to estimate the number

of flows utilizing the bottleneck link. The appropriate dropping probability in the

bottleneck link is then computed on the basis of this estimate, since the number

of flows is an indicator of the fraction of the queue which would be reduced by

triggering the multiplicative decrease mechanism in TCP congestion-control.

A modification to RED called Adaptive RED is proposed in [17]. In this

scheme a target queue utilization is selected and the marking/dropping

probability is adjusted by an additive increase/multiplicative decrease mechanism

on every predefined interval. If the queue is smaller than the target queue, the

marking probability is decreased multiplicatively, otherwise it is increased by

some small constant. It is shown in [35] that Adaptive RED is insensitive to the

network load and induces smaller fluctuation than RED.

Kelly et al. introduces a virtual queue mechanism as an alternative to

congestion management [31]. The virtual queue mechanism maintains a fictitious

queue with a smaller capacity and buffer size than the actual queue. For every

packet arrival or departure in the actual queue, the virtual queue is updated.
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Whenever the virtual queue overflows, any packet arrival in the actual queue is

marked/dropped to signal the sources of incipient congestion. The virtual queue

mechanism requires smaller queue to operate than RED but cannot remedy the

flow synchronization problem.

A problem with the virtual queue mechanism is that the appropriate capacity

of the virtual queue depends on both the load and the round-trip delay of the

flows. Kunniyur and Srikant suggest an improved virtual queue mechanism called

Adaptive Virtual Queue [34], in which the capacity of the virtual queue is

adjusted through a slower control loop. It is claimed that the Adaptive Virtual

Queue mechanism yields very high utilization, very small packet loss and

queueing delay for a wide-range of traffic load.

A very desirable property for AQM mechanisms is to penalize or regulate

aggressive/unresponsive flows. CHOKe [51] is a very simple mechanism operating

on top of the original RED algorithm. It can be shown that the simple, stateless

CHOKe algorithm can guarantee a bound on the throughput of unresponsive

flows.

It is easy to imagine that the additional complexities in these AQM

mechanisms further complicate the analysis of the TCP/AQM interaction. A

systematic evaluation of different AQM mechanisms is needed to verify and

compare the claims in each study. It is our hope that the framework proposed in

this thesis can be generalized to encompass these AQM mechanisms.
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2.2 Micro-scale Modeling of Congestion-Controlled Flows

In this section, we review some of the existing work on micro-scale traffic

modeling of a congestion-controlled traffic flow as well as the efforts made to

extend these micro-scale models to the situation with many interacting flows.

TCP modeling by Markov processes

One of the earliest and most popular efforts to model TCP made use of Markov

chain modeling. The size of the TCP congestion window acts as the state of the

chain and the loss probability (either independent or dependent on the state)

determines the transition probabilities. Padhye et al. have derived an

approximation for the steady-state distribution of a Markov chain modeling a

single TCP connection with a fixed loss probability [48]. Altman et al. [2]

extended the model to cover more general loss processes, e.g., continuous-time

Markov chain with different loss probability in each state.

Extension of micro-scale TCP model to many TCP flows

In this section, we point to various efforts for extending the micro-scale TCP

model to many TCP flows. In the models to be described, there is no attempt to

consider a limiting model.

The resulting models suffer from either one of the following difficulties: (i)

These models are typically too complex and therefore not tractable analytically.

Sometimes this can also translate in numerical calculations being

computationally prohibitive; (ii) Reduction in complexity can be achieved by

making simplifying assumptions which are often ad-hoc, difficult to justify, and
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sometimes downright unrealistic. We argue that these assumptions should emerge

in a natural way from the traffic modeling process, rather than being enforced for

the main reason that they enable the analysis to go through. It will soon become

apparent that a modeling methodology based on limit theorems provides a direct

remedy to this issue – Indeed, model simplifications occur in the limit, without

the need for any ad-hoc assumptions.

Hasegawa et al. [21] consider a Markov chain for N TCP connections using

either Tail-Drop or RED gateway. The state space in this system is the vector of

window size of all of N connections and the queue size, which is a function of the

sum of the size of congestion windows. For each connection, the transition

probability depends on the current window size and queue size, hence on the

window size of all connections. The authors then derive a fixed-point solution of

the average window size in steady-state. However, this fixed-point solution is

very complicated and requires solving a large system of non-linear equations. It

is not clear how this could be accomplished effectively and whether it would offer

any analytical understanding to the problem.

Another example is the work by Garetto et al. [19] where a closed-queueing

network model is proposed to investigate the interaction between many TCP

flows. A closed network of M |M |∞ queues is introduced where each queue

represents a state of the TCP algorithm. The number of users in each queue

represents the number of TCP connections in that state. The service rate of the

user in each queue depends on the TCP state. After completing service in a

queue, each user’s transition to the next queue depends on the loss probability.

This closed-queueing network is used in a two-tier model which can be described

as follows: Given a loss probability, a numerical calculation of the steady-state
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distribution of the closed-queueing network yields an approximated traffic load.

This load will be input into a pseudo-network model (e.g., M |M |1|B) to

determine the new loss probability for the closed-queueing network. If the result

from the successive iterations converges, it is claimed that the convergence will

be to the same working point as given by the model where each TCP flow is

modeled in details.

Several questions arise concerning such a model. First, the model implicitly

assumes that the dynamics of the TCP congestion-control mechanism converge to

steady state faster than the network dynamics; this is the opposite of the real

Internet where TCP reacts to events in the network. Next, while the numerical

calculations are not as complex as would be the case in a detailed model of TCP

flows, they are far from simple. The example considered in [19] consists of 11

different queue types and the number of queues (Mq) is 357. Calculations for the

steady-state distribution of the queue are typically of the order O(M2
q ) for each

iteration. Finally, the “interaction” between TCP flows is developed in an

abstract model where its deviation from the actual interaction process cannot be

quantified. It also impossible to draw any analytical conclusion concerning these

interactions.

Baccelli et al. [4] propose fixed-point methods for the simulation of the

sharing of a local loop by a large number of interacting homogeneous TCP

connections. The analysis uses a detailed description of one TCP connection and

a simplified description of the interaction with other connections. It is again

difficult to quantify the effect of such simplifications and the accuracy of the

results can only be verified by extensive simulation.
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Fluid approximation of TCP congestion-control mechanism

Mathis et al. [40] use a continuous-time fluid flow approximation to the discrete

time process describing window behavior. Assuming the congestion signals TCP

to back off according to a Poisson process, where the kth signal occurs at time

epoch τk (k = 1, 2, . . .), then the approximate evolution of the congestion window

evolution of a single TCP flow is governed by

dW (t)

dt
=

1

W (t)
, (2.1)

except at the points τk (k = 1, 2, . . .) where

W (τ+
k ) = W (τ−

k )/2. (2.2)

These equations can be used to derive the fact that that the average window size

is of the order of 1/
√

p. This model is suitable only for a single flow because the

congestion notification is assumed to be Poisson and each notification is

independent of each other (an assumption similar to [43] which uses stochastic

differential equation to model TCP). When more than one flow utilizes the same

bottleneck link, this assumption is not helpful for capturing the interaction

between flows. Bonald [7] considers a similar model for several TCP flows with

the major difference that congestion occurs when the sum of congestion windows

exceeds the bandwidth-delay product plus the bottleneck buffer. Under the

assumption that at every congestion epoch all TCP flows simultaneously back

off, TCP can be shown to be fair and an explicit closed-form formula for the

utilization can be derived. However, the assumption of total synchronization

between flows is unrealistic.

While there are many advantages of viewing the system as a utility

maximization problem and of modeling TCP traffic as rate-controlled fluid flows,
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there are definite drawbacks as well. Most important of all is the absence of

“packets” from the system model, although the congestion-control mechanism of

TCP relies on packet-level operations. For example, it is not possible under this

model to derive the queue length distribution at routers which is an important

quantity for any successful network dimensioning. Additionally, while the

solution to the maximization problem might accurately describe the steady-state

solution of TCP, the distributed solution does not necessarily capture the

short-term dynamics of TCP well. Finally, the numerical calculation of the

solution is still very complex as it suffers from state space explosion when the

number of TCP flows becomes large. This type of models appears more suitable

for understanding the “big picture” and the qualitative behavior of

congestion-control algorithms, rather than for effective and accurate network

dimensioning.

Stability of the congestion-control and AQM mechanisms

As previously mentioned, the interaction between the congestion-control and

AQM mechanisms can be analyzed as feedback control systems. Using the

optimization-based framework, Kelly et al. have shown the stability of the

system in the absence of delay through a Lyapunov function argument [30].

Subsequently, a lot of results have been published on both the local and global

stability of the system with arbitrary delay either in the context of the classical

TCP congestion-control algorithm or of utility-based congestion controllers

(e.g., [28, 38, 49, 54]).

While the aforementioned work yields great insights into the dynamics of the

control system that governs the congestion-control/AQM interaction, questions
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remain. First of all, these results are based on deterministic models of

feedback-delay systems. However, the relationship between the actual systems

(which are stochastic) and the deterministic models are not apparent. For

example, what is the relationship of the probabilistic marking mechanism in

AQM implementation to the shadow price in the utility-based model?

Furthermore, the stability conditions often assume a small number of

homogeneous flows in order to obtain analytically tractable results due to the

complex dynamics and large state-space involved. Sometimes, the stability

conditions are stated in the “worst-case” conditions, e.g., the largest delay, which

could be extremely conservative.

This thesis remedies to these shortcomings as follows. First, it provides a

justification on using the deterministic models to analyze the stability of the

systems. More specifically, in the large number of flows regime, the dynamics of

the average queue depends only on the dynamics of the average traffic flows

in/out of the queue. The dynamics of the average traffic are also closely related

to the dynamics of a single flow in the case of homogeneous flows, lending

support to the practice of considering the simple deterministic models. For

systems with heterogeneous round-trip delays, we also derive a simple recursion

for the average queue and traffic flow. By analogy with the homogeneous

round-trip case, we expect that a simple deterministic model should also exist for

the analysis of the stability of the system. This would relax the stability

conditions as we do not have to rely on the worst case conditions.
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Modeling of TCP traffic with session-layer dynamics

Existing literature on short-lived TCP traffic modeling usually relies on ad-hoc

assumptions, which ensure the model accuracy only in certain regimes. Hollot et

al. model short-lived TCP flows as exponential pulses, i.e., time-shifted,

increasing exponential functions of limited durations, whose interarrival times are

exponentially distributed, i.e., Poisson process [23]. The statistics of these

exponential pulses can be characterized through a time-reversal of a well-known

class of processes called shot noise processes. This model assumes that the

short-lived flows last only a few round-trip times and do not experience packet

drops or marks, thereby implicitly assuming that congestion level is relatively

low. Furthermore, flows are always in either congestion avoidance (long-lived

connections) or slow start (short-lived connections), and do not transition from

one to the other. In other words, the session dynamics, where connections arrive

and leave the network after transfers are completed, are not explicitly modeled.

A similar approach to modeling short-lived flows is also taken in [42].

On the other end of the spectrum, Kherani and Kumar suggest that as the

bottleneck capacity becomes very small, the queueing model for the bottleneck

queue can be accurately described as a processor sharing queue [32]. When the

capacity is large, however, the processor sharing model becomes less accurate

because newly arrived TCP flows cannot fully utilize their allocated bandwidth.

In fact, in the large capacity regime these short-lived flows may terminate even

before they can increase their transmission rates to fully utilize their allocated

bandwidth due to slow start.

In Chapter 5, we analyze a model which explicitly incorporates the

session-layer dynamics and show that the limiting model agrees with these
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models in their respective regime, i.e., when the capacity is either very large or

very small.

Modeling of TCP traffic with heterogeneous round-trip delays

Little work has been done on modeling the interaction between an AQM

mechanism and a large number of TCP flows with diverse delays. Some initial

investigation of the role of heterogeneous RTTs into such an interaction is

presented in [38]. However, the study is limited to a small number of TCP flows,

e.g., less than a hundred flows. Additional modeling difficulties arise from the

fact that the feedback information (i.e., marks on packets) from the AQM

mechanism to TCP flows arrives at different rate depending on the RTTs of the

connections. These obstacles create a considerable difficulty in deriving a scalable

model that can capture the important aspect of Internet traffic dynamics and

yield insights into how to control it.

The role of the variable round-trip delays to the interaction between TCP and

AQM interaction in the large number of flows regime is investigated in details in

Chapter 5.

2.3 Macro-scale Modeling of Congestion-Controlled Flows

In this section, we outline the type of results that can be expected from modeling

TCP with a large number of homogeneous TCP flows via limit theorems.

All of the existing models surveyed in this section ignore the packet-level

operations of TCP, and consider only the evolution of the transmission rate,

while models in this dissertation take into account detailed packet-level
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operations. It is important to make this distinction because the actual operations

of TCP, of RED and of the network rely on the packet-level operations. The

omission of this level of details simplifies the analysis but at the expense of

additional distortion in the results. For example, it will be demonstrated in

Theorem 5 that the ECN marking in packets introduce additional fluctuation in

the limiting queue. This fluctuation cannot be captured through the models

without packet-level operations.

Throughout this section, we use a common notation x
(N)
i (t) to denote the

transmission rate of flow i (i = 1, . . . , N) at time t.

Shakkottai and Srikant [55] consider a discrete-time model of N homogeneous

proportional-fair, congestion-controlled flows (such as the primal algorithm in

[30]). These flows utilize a bottleneck router with either rate-based marking

(such as Virtual Queue marking) or queue-based marking (such as RED), i.e.,

x
(N)
i (t + 1) =

(
x

(N)
i (t) + ∆ − βx

(N)
i (t − d)f (N)(x

(N)
i (t − d) + e

(N)
i (t − d))

)+

,

where ∆ and β are positive constants which determine the rate at which a flow

increases and decreases its transmission rate, f is the marking function, d is the

round-trip delay between the flow and the bottleneck router, and e
(N)
i is a

“noise” process, representing short-lived and uncontrolled flows. A natural way

to obtain a simplified limiting model resorts to rescaling the length of timeslots

to be inversely proportional to the number of flows N . Then, as N gets large, the

average transmission rate is expected to converge almost surely to a deterministic

quantity (under appropriate assumptions on the “noise” process and the function

f) . This quantity can be described by a functional differential equation, thereby

justifying deterministic fluid approximations of the algorithms described in

Section 2.2. However, the aforementioned approach does not apply well to the
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Internet with TCP congestion-control because (i) the model ignores the

complexity of the window-based implementation and considers only the

transmission rate of the flow, and (ii) the congestion-control algorithms

considered are also derived from the solution to utility maximization problems

(as described in Section 2.1), whence continuous in their fluid limit and thus

“nicer” than TCP congestion-control algorithm which may experience abrupt

transmission rate changes. It is still an open technical problem on whether there

exists a fluid limit for AIMD TCP congestion-control.

Hong and Lebedev [25] consider a model where the throughput of each

connection evolves at time epochs when congestion occurs. At every epoch, each

connection draws a {0.5, 1} random number representing the fraction of

throughput that the connection retains after congestion. This fraction depends

on the throughput of the flow just before congestion occurred. If Tn is the nth

congestion epoch and γi,n(x) is a {0.5, 1}-valued rv depending on the rate x, then

x
(N)
i (T+

n ) = γi,n

(
x

(N)
i (T−

n )
)
· x(N)

i (T−
n )

with an obvious notation. Let NC be the capacity of the bottleneck router, and

assume that the residual capacity at time T+
n , namely NC −∑N

i=1 x
(N)
i (T+

n ), is

divided evenly among all users. Then, 2

x
(N)
i (T−

n+1) = x
(N)
i (T+

n ) + C − 1
N

∑N
i=1x

(N)
i (T+

n ).

Denote x
(N)
i,n the transmission rate of connection i right after the nth-epoch.

2The authors’ model is flawed since the transmission rate in the model can be negative.

However, the extension of the model to incorporate a restriction on the rate to be only positive

should not change the nature of the result.
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Under certain conditions on the rv γi,n, the following limits exist:

lim
N→∞

1
N

∑N
i=1x

(N)
i,n = sn in L1 and a.s.,

where sn = E
[
x

(∞)
n

]
= limN→∞ E

[
x

(N)
i,n

]
. Moreover, the sequence

{x(∞)
n , n = 0, 1, . . .} is stationary and ergodic, and can be characterized by the

relation

x
(∞)
n+1 =st γn+1

(
x(∞)

n + C − E
[
x(∞)

n

]) · (x(∞)
n + C −E

[
x(∞)

n

])
,

where γn+1(x) is a rv which has the same distribution as γi,n+1(x).

This result suggests the existence of a simpler process for describing the

asymptotic behavior of the average rate. Although the model unrealistically

assumes that the multiplicative decrease in a TCP flow depends only on its own

transmission rate and not on that of other flows, we will show in the next section

that similar results also exist in more elaborate models with many TCP flows

sharing a RED gateway.

Adjih et al. [1] consider a continuous-time model where partial differential

equations of the free buffer space in a Tail-Drop gateway and the density of the

window size distribution are specified. Under the assumption that the buffer in

the bottleneck router scales with the number of users, some asymptotic results on

both the free buffer space and the window distribution are established by the use

of mean-field approximations.

Baccelli et al. [5] consider a continuous-time model where the window

evolution for each user is described by a stochastic differential equation. For each

of the window, the rate grows linearly and inversely proportional to the

round-trip delay. However, the window size will be cut in half at a random time

determined by a modulated Poisson process. The modulated Poisson processes
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for all flows are coupled through a common rate function which depends on the

queue size. As the number of flows grow large, the average queue size and the

window size can be determined through a deterministic mean-field system.
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Chapter 3

A Rate-based Model for TCP/RED

In this chapter, we present a stochastic model that captures the essential features

of TCP congestion-control, i.e., the gradual increase and the sudden decrease of

transmission rate, combining with a random drop algorithm similar to RED. We

analyze this ersatz model as the number of competing flows becomes large, and

show under very mild assumptions that the stochastic model simplifies to a

two-dimensional deterministic recursion when the number of flows grows large.

This result suggests that with a large number of flows, network operators might

be able to easily estimate the aggregate behavior of TCP flows and to dimension

network resources accordingly.

First, the ersatz model is presented in Section 3.1. The model is organized

around the behavior of the RED buffer contents observed at discrete epochs.

While the model presented in this chapter is very simple, it provides a complete

conceptual picture of the problem, i.e., the growing size of the state space as the

number of flows increases. In Section 3.2, we present the limit theorem of this

simple model which demonstrates the type of results to be expected in a more

complicated and realistic model, i.e., the simplification and the limiting recursion

through the law of large numbers. Results from Monte-Carlo simulations of the
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model demonstrating the asymptotic behavior are shown in Section 3.3.

3.1 The Model

Fix N = 1, 2, . . ., and consider the situation where N flows are active. For

simplicity time is assumed slotted. Let Q(N)(t) denote the number of packets in

the buffer at the beginning of timeslot [t, t + 1). In that timeslot, source i

generates A
(N)
i (t) packets according to a mechanism to be specified shortly.

Following the approach outlined in Section 1.3, we have the recursion of the

queue Q(N)(t) as (1.9) with A(N)(t) given by (1.8).

In order to fully specify the model, we need to specify the joint statistics of

the rvs {A(N)
i (t), i = 1, . . . , N ; t = 0, 1, . . .}. This will be done in details later.

Throughout, let f (N) : R+ → [0, 1] denote the dropping probability function of the

RED gateway. Moreover, we find it convenient to use the collection of i.i.d.

[0, 1]-uniform rvs {Ui(t + 1), Vi(t + 1), i = 1, . . . ; t = 0, 1, . . .} which are assumed

independent of the rvs Q(N)(0) and other initial conditions.

In this model, a source either transmits or is idle in a given timeslot. So, let

B
(N)
i (t + 1) be a {0, 1}-valued rv that encodes packet generation by source i.

Moreover, let R
(N)
i (t + 1) represent the possibility that the packet generated by

source i at the beginning of timeslot [t, t + 1) is rejected, i.e., R
(N)
i (t + 1) = 1

(resp. R
(N)
i (t + 1) = 0) if the packet is rejected by (resp. accepted into) the RED

buffer. Set

B
(N)
i (t + 1) = 1

[
Ui(t + 1) ≤ α

(N)
i (t)

]
(3.1)

where α
(N)
i (t) is an [0, 1]-valued rv which denotes the (conditional) transmission
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rate of traffic source i at the beginning of timeslot [t, t + 1), and let

R
(N)
i (t + 1) = 1

[
Vi(t + 1) ≤ f (N)(Q(N)(t))

]
(3.2)

denote the indicator function of the event that the incoming packet from source i

will be rejected. Thus,

A
(N)
i (t) = (1 − R

(N)
i (t + 1))B

(N)
i (t + 1). (3.3)

To select the transmission rates we argue as follows: Suppose that source i

generates no packet during timeslot [t, t + 1) (B
(N)
i (t + 1) = 0), then the

transmission rate of source i in the next timeslot remains unchanged. If on the

other hand, a packet is produced by source i at the beginning of timeslot

[t, t + 1), then either the packet is successfully transmitted (R
(N)
i (t + 1) = 0), or it

is dropped (R
(N)
i (t + 1) = 1). In the former case, the transmission rate of source i

in the next timeslot is increased to α
(N)
i (t)1−ε (0 < ε < 1), while this transmission

rate is decreased by a factor γ (0 < γ < 1) to γα
(N)
i (t) in the latter case.

Under the constraint that transmission rates are bounded to the unit interval,

these rules attempt to emulate the additive increase and multiplicative decrease,

respectively, of the TCP congestion-control by conservatively increasing the

transmission rate if the transmission is successful and reducing the transmission

rate by the factor γ in the event of a packet loss. This can be summarized into

the single equation

α
(N)
i (t + 1)

= α
(N)
i (t)1−ε(1 − R

(N)
i (t + 1))B

(N)
i (t + 1) + γα

(N)
i (t)R

(N)
i (t + 1)B

(N)
i (t + 1)

+ α
(N)
i (t)(1 − B

(N)
i (t + 1)). (3.4)
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3.2 The Weak Law of Large Numbers

We are interested in determining the limiting behavior of the rate-based model as

the number of sources N becomes large. The discussion is carried out under the

following assumptions (AR1)-(AR2):

(AR1) There exists a continuous function f : R+ → [0, 1] such that (1.1) holds for

each N = 1, 2, . . ., i.e.,

f (N)(x) = f(N−1x), x ≥ 0.

(AR2) For each N = 1, 2, . . ., the queue dynamics start with the conditions

Q(N)(0) = 0 and α
(N)
i (0) = α, i = 1, . . . , N

for some non-random α in (0, 1].

Assumption (AR1) is the structural condition discussed in Section 1.3, while

(AR2) is made essentially for technical convenience as it implies that for each

N = 1, 2, . . . and all t = 0, 1, . . ., the rvs α
(N)
1 (t), . . . , α

(N)
N (t) are exchangeable.

Assumptions (AR2) can be omitted but at the expense of a more cumbersome

discussion.

Theorem 1. Assume (AR1)-(AR2) in the rate-based model of Section 3.1. Then,

for each t = 0, 1, . . ., there exist a (non-random) constant q(t) and a [0, 1]-valued

rv α(t) such that the following holds:

(i) The convergence

Q(N)(t)

N

P→N q(t) and α
(N)
1 (t)

P→N α(t)

takes place;
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(ii) For any integer I = 1, 2, . . ., the rvs {α(N)
i (t), i = 1, . . . , I} become asymp-

totically independent as N becomes large, with

lim
N→∞

P
[
α

(N)
i (t) ≤ xi, i = 1, . . . , I

]
=

I∏
i=1

P [α(t) ≤ xi]

for any x1, . . . , xI in [0, 1].

(iii) For any p > 0,

1
N

∑N
i=1(α

(N)
i (t))p P→N E [α(t)p] . (3.5)

Moreover, with initial conditions q(0) = 0 and α(0) = α, it holds that

q(t + 1) = [q(t) − C + (1 − f(q(t)))E [α(t)]]+ (3.6)

and

α(t + 1) =st α(t)1−ε(1 − R(t + 1))B(t + 1)

+ γα(t)R(t + 1)B(t + 1)

+ α(t)(1 − B(t + 1)), (3.7)

where

B(t + 1) = 1 [U(t + 1) ≤ α(t)] (3.8)

and

R(t + 1) = 1 [V (t + 1) ≤ f(q(t))] (3.9)

for i.i.d. [0, 1]-uniform rvs {U(t + 1), V (t + 1), t = 0, 1, . . .}.

A proof of Theorem 1 is available in [59].

Theorem 1 suggests that during timeslot [t, t + 1) a bottleneck queue driven

by a random dropping algorithm under a large number of TCP sources can be
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characterized by a two-dimensional recursion for the limiting normalized queue

length q(t) and the limiting transmission rate α(t). The convergence result

Q(N)(t)
N

P→N q(t) is a byproduct of the convergence

A(N)(t)

N
=

∑N
i=1 A

(N)
i (t)

N

P→N a(t) (3.10)

with

a(t) = (1 − f(q(t)))E [α(t)] .

This result, while similar to the classical Weak Law of Large Numbers, cannot

be obtained by a straightforward application of the classical Law of Large

Numbers. Indeed, the summands in (1.8) (under (AR2)) are identically

distributed but correlated rvs whose common distribution varies with N .

However, as the number of sources increases, the dependency between any pair of

sources becomes weaker so that the aggregate behavior eventually becomes

deterministic. Since the transmission rates are random and asymptotically

independent, Theorem 1 provides some indications that the transmission rates

among all flows are no longer synchronized when the number of flows is large. It

also helps justify the use of micro-scale TCP flow models because any single flow

has no impact to the global behavior of the system – The behavior of a flow can

be decoupled from the system and the model only needs to take into account the

reaction of a flow to the system but not vice versa.

One advantage of modeling a RED gateway over a Tail-Drop gateway is that

in RED gateway, there is a fixed orderly structure on how the packets are being

marked/dropped depending on the probability function. In a Tail-Drop gateway,

it is more difficult to accurately model how incoming packets are dropped, for

such events usually depend on the precise timing of packets arrivals and
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departures. This absence of randomness in the Tail-Drop gateway can also give

rise to a complex phenomenon such as chaotic behavior as suggested in [61].

3.3 Simulations of the Rate-based Model

In this section, we present the results from Monte-Carlo simulations of the ersatz

model presented in Section 3.1 to demonstrate the asymptotic behavior derived

in Theorem 1. We simulate the system for N = 10, 100, 1000 with ε = 0.1,

γ = 0.5 and C = 0.5; the initial conditions are Q(N)(0) = 0 and α
(N)
i = 0.5 for all

i = 1, .., N . The drop probability is calculated through the piecewise linear

function f : R+ → [0, 1] given by

f(x) =




0 x < 1

x−1
4

1 ≤ x < 5

1 5 ≤ x.

(3.11)

The simulation results are shown in Figure 3.1 and 3.2. It is clear that the

fluctuation of Q(N)(t)/N decreases as the number of sources increases, and the

same is true for the average transmission rate. With a hundred or more flows,

our analytical result seems to hold reasonably well. Moreover, this simulation

result also suggests the existence of the steady-state, which happens quickly after

only around a hundred iterations. Similar results obtained from a full-scale

simulation of the protocol stacks in NS [45] are presented in the next chapter.

These preliminary findings comfort our belief that the ersatz model captures

some of the essential features of TCP and RED.

We are keenly aware that the ersatz proposed here fails to incorporate some

key features of TCP and RED, most notably round trip delays and queue
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Figure 3.1: The normalized queue length of Simulation 1.
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Figure 3.2: The average transmission rate per user of Simulation 1.

averaging. It is however noteworthy that despite such omissions, the asymptotics

derived from this simplified model are qualitatively in line with the results

obtained via the NS simulator (which emulates in great details the TCP stack).

Thus, this qualitative convergence points to the possibility of creating simple and

yet accurate models that capture key interactions between the TCP and RED

mechanisms in the presence of a large number of TCP connections. Indeed, a

more accurate model with a similar asymptotic behavior is presented in Chapter

4.
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Chapter 4

A Window-based Model of Persistent TCP Population with

Homogeneous Round-trip Delays

In this chapter, we embellish the rate-based model presented in Chapter 3 to

fully incorporate the window mechanism of TCP congestion-control. As a result,

each TCP flow can transmit more than one packet per timeslot unlike the ersatz

model in Chapter 3. Another major difference is that TCP flows presented here

use marked packets (e.g., by Explicit Congestion Notification [15]) instead of

dropped packets as a signaling mechanism for congestion-control. We take this

approach for two reasons: (i) Since marking reduces the amount of unnecessary

retransmissions and produces more desirable properties in network traffic, it is a

signaling mechanism of choice for AQM traffic management; (ii) The actual

window mechanism for TCP regarding dropped packets is complicated as the

TCP source needs to receive triple-duplicated acknowledgments before triggering

the congestion-control mechanism, hence the size of the congestion window and

the order of the dropped packets in the timeslot can cause different behavior.

For this model, we establish a Weak Law of Large Numbers in Theorem 2, a

Central Limit Theorem (CLT) in Theorem 3 and the steady-state analysis, all of
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which reveal several interesting points:

(i) Theorem 2 shows that the dynamics of the queue at time t, still denoted

Q(N)(t), can be approximated by Nq(t) with q(t) determined via a simple

deterministic recursion, which is independent of the number of users. This

approximation becomes more accurate as the number of users becomes large.

The limiting model is therefore “scalable” as it does not suffer from state

space explosion, nor does it require any ad-hoc assumptions.

(ii) Theorem 2 also shows that the dependency between each TCP flow becomes

negligible under a large number of flows, i.e., “RED breaks the global syn-

chronization when the number of flows is large.” More specifically, the win-

dow sizes of all users are asymptotically independent and random, hence the

aggregate traffic becomes smooth unlike in Tail-Drop gateways where syn-

chronization between flows causes the aggregate traffic to exhibit the saw-

tooth pattern.

(iii) The bottleneck capacity being NC, the average throughput of each flow is

approximately C for large N , so that TCP traffic does not follow a commonly

held belief associated with statistical multiplexing. Indeed, for N open-loop

independent traffic sources operating at average rate C, statistical multiplex-

ing suggests that the bandwidth required to serve the aggregate flow is less

than NC. TCP flows, on the other hand, are correlated due to their coupling

via the bottleneck router, and multiplexing TCP flows is not as effective.

(iv) The queue length in steady-state can be easily calculated, while the steady-

state distribution of the window size and the average window size can be

evaluated from well-known TCP models.
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(v) For a more accurate description of the queue dynamics, a Central Limit

Theorem-type analysis (summarized in Theorem 3) yields the existence of a

rv L0(t) such that the approximation (1.7) holds.

(vi) This CLT analysis also reveals that the magnitude of queue fluctuations is

proportional to the derivative of the marking probability function. This ad-

vocates the use of a smooth marking probability function in line with the

RED “gentle” option recently suggested as opposed to the original recom-

mendation in [16, 18]. This finding coincides with the observed oscillatory

behavior of RED when the average packet drop rate exceeds max p, in the

absence of RED’s “gentle” modification [14].

The chapter is organized as follows. In Section 4.1, the model is described in

details, and a first set of asymptotic results are presented in Section 4.2. Section

4.3 focuses on the calculations of the limiting normalized queue size and the

average window size in steady state. Section 4.4 contains a Central Limit

Theorem complement to the asymptotic results of Section 4.2. Simulation results

confirming the theoretical results are shown in Section 4.5. Applications to

network dimensioning and to marking probability function design are

demonstrated in Section 4.6.

4.1 Model Description

Overview of the dynamics

The TCP congestion-control algorithm dynamically adjusts the size of the

congestion window (the amount of unacknowledged packets in the network per
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round-trip) by the following mechanism (assuming ECN/RED is utilized at the

bottleneck node): If all the packets transmitted in a round-trip are not marked,

then the size of the congestion window is increased by one packet for the next

round-trip. On the other hand, if at least one packet is marked in the round-trip,

the congestion window is halved. The probability that the router will mark an

incoming packet in the buffer depends on the average queue length at the time of

its arrival. The average queue length is calculated by an exponential weighted

average filter with large time-constant to prevent RED from reacting too fast. As

a result, consecutive incoming packets into RED are marked with almost

identical probability. With this in mind, we now construct a model whose

dynamics are similar in spirit to the dynamics of TCP + ECN/RED.

The discrete-time model

Similarly to the model in Chapter 3, time is assumed discrete and slotted in

contiguous timeslots of duration equal to the round-trip delay of TCP

connections. We consider N traffic sources, all transmitting through a bottleneck

RED gateway with ECN enabled in both TCP and RED. The capacity of this

bottleneck link is NC packets/slot for some positive constant C. The RED buffer

is modeled as an infinite queue, so that no packet losses occur due to buffer

overflow, and congestion-control is achieved solely through the random marking

algorithm in the RED gateway.

Dynamics

Fix N = 1, 2, . . ., and suppose that each of the N sources (i.e., TCP connections)

has an infinite amount of data to transmit and that in each timeslot it transmits
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as much as allowed by its congestion window in that timeslot. So, for

i = 1, . . . , N , let W
(N)
i (t) be an integer-valued rv that encodes the number of

packets generated by source i (and hence its congestion window) at the beginning

of the timeslot [t, t + 1). We assume the integer W
(N)
i (t) to be in the range

{1, . . . , Wmax} for some finite integer Wmax. Throughout we assume Wmax ≥ 2 to

avoid boundary cases of limited interest.

Upon arrival at the RED gateway, each packet from source i may be marked

according to a random marking algorithm (to be specified shortly). We represent

this possibility by the {0, 1}-valued rv M
(N)
i,j (t + 1) (j = 1, ..., W

(N)
i (t)) with the

interpretation that M
(N)
i,j (t + 1) = 0 (resp. M

(N)
i,j (t + 1) = 1) if the jth packet

from source i is marked (resp. not marked) in the RED buffer. Given that N

sources are active, the total number of packets which are accepted into the RED

buffer at the beginning of timeslot [t, t + 1) is given by (1.8), where in this model

A
(N)
i (t) := W

(N)
i (t). (4.1)

Again, the dynamics of the queue size is given as (1.9), which can be

rewritten as

Q(N)(t + 1) =

[
Q(N)(t) − NC +

N∑
i=1

W
(N)
i (t)

]+

. (4.2)

Statistical assumptions

In order to fully specify the model, we need to specify the joint statistics of the

rvs {M (N)
i,j (t + 1), A

(N)
i (t), i = 1, . . . , N ; j = 1, 2, . . . ; t = 0, 1, . . .}. To do so we

introduce the collection of i.i.d. [0, 1]-uniform rvs

{Vi(t + 1), Vi,j(t + 1), i, j = 1, . . . ; t = 0, 1, . . .} which are assumed independent
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of the rvs A
(N)
1 (0), . . . , A

(N)
N (0) and Q(N)(0). We also introduce a mapping

f (N) : R+ → [0, 1] which acts as the marking probability function of the RED

gateway.

The process by which packets are marked is described first: For each

i = 1, . . . , N , we define the marking rvs

M
(N)
i,j (t + 1) = 1

[
Vi,j(t + 1) > f (N)(Q(N)(t))

]
, j = 1, 2, . . . (4.3)

so that the rv M
(N)
i,j (t + 1) is the indicator function of the event that the jth

packet from source i is not marked in the timeslot [t, t + 1). Thus, in a

round-trip, each packet coming into the router is marked with identical

(conditional) probability which depends only on the queue length at the

beginning of the timeslot. This model approximates the case where the memory

of the queue averaging mechanism is long, which is the case for the recommended

parameter settings of RED [16].

Next we introduce the rvs

M
(N)
i (t + 1) =

A
(N)
i (t)∏
j=1

M
(N)
i,j (t + 1) (4.4)

so that M
(N)
i (t + 1) = 1 (resp. M

(N)
i (t + 1) = 0) corresponds to the event that no

packet (resp. at least one packet) from source i has been marked in timeslot

[t, t + 1). Recall that in this model, A
(N)
i (t) = W

(N)
i (t), i.e., each connection

injects as many packets into the network as its congestion window will allow.

The evolution of the window mechanism for source i can now be described

through the recursion

W
(N)
i (t + 1) = min

(
W

(N)
i (t) + 1, Wmax

)
M

(N)
i (t + 1) (4.5)

+ min

(

W

(N)
i (t)

2
�, Wmax

)
(1 − M

(N)
i (t + 1)).

49



This equation emulates the interaction between TCP and RED as follows: If no

packet from source i is marked in the timeslot [t, t + 1), then the congestion

window size in the next timeslot is increased by one packet. On the other hand,

if one or more packets are marked in the timeslot [t, t + 1), then the congestion

window in the next timeslot is reduced by half. The size of the congestion

window is limited by the maximum window size Wmax
1.

4.2 The Asymptotics

The first result of this model consists in the asymptotics for the normalized

buffer content as the number of TCP flows becomes large. This result, contained

in Theorem 2, is discussed under the following assumptions (AW1)-(AW2):

(AW1) There exists a continuous function f : R+ → [0, 1] such that for each N =

1, 2, . . ., Equation (1.1) holds.

(AW2) For each N = 1, 2, . . ., the dynamics (4.2) and (4.5) start with the conditions

Q(N)(0) = 0 and W
(N)
i (0) = W, i = 1, . . . , N

for some integer W in the range {1, . . . , Wmax}.

Note that these assumptions are similar in nature to Assumption

(AR1)-(AR2) in Chapter 3.

1Note also that if W
(N)
i (0) lies in the range {1, . . . , Wmax} for each i = 1, . . . , N , then so does

W
(N)
i (t) for each t = 0, 1, . . . and the minimum with Wmax in the second term of (4.5) can be

omitted.
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Theorem 2. Assume (AW1)-(AW2) to hold. Then, for each t = 0, 1, . . ., there

exist a (non-random) constant q(t) and an {1, . . . , Wmax}-valued rv W (t) such that

the following holds:

(i) The convergence results

Q(N)(t)

N

P→N q(t) and W
(N)
1 (t) =⇒N W (t) (4.6)

take place;

(ii) For any function g : IN → R,

1
N

∑N
i=1g(W

(N)
i (t))

P→N E [g(W (t))] . (4.7)

(iii) For any integer I = 1, 2, . . ., the rvs {W (N)
i (t), i = 1, . . . , I} become asymp-

totically independent as N becomes large, with

lim
N→∞

P
[
W

(N)
i (t) = ki, i = 1, . . . , I

]
=

I∏
i=1

P [W (t) = ki] (4.8)

for any k1, . . . , kI in IN

Moreover, with initial conditions q(0) = 0 and W (0) = W , it holds that

q(t + 1) = (q(t) − C + E [W (t)])+ (4.9)

and

W (t + 1) =st min (W (t) + 1, Wmax) M(t + 1) (4.10)

+ min

(

W (t)

2
�, Wmax

)
(1 − M(t + 1)),

where

M(t + 1) = 1
[
V (t + 1) ≤ (1 − f(q(t)))W (t)

]
(4.11)

for i.i.d. [0, 1]-uniform rvs {V (t + 1), t = 0, 1, . . .}.
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A proof of Theorem 2 is available in Chapter 6. As should be clear from the

discussion given there, Theorem 2 readily flows from a Weak Law of Large

Numbers (4.7) for the triangular array

{W (N)
i (t), i = 1, . . . , N ; N = 1, 2, . . .}. (4.12)

The numerical calculations for the limiting model are very simple. The

number of states required for the calculation for each time step is only Wmax + 1

regardless of N . For each t = 0, 1, . . . , we can determine q(t) through the

following steps:

(i) For t = 0, start with some given values q(0) = 0 and W (0) = W , i.e.,

P [W (0) = j] = δ(j, W ), j = 1, . . . , Wmax, and use E [W (0)] = W to calculate

q(1) via (4.9);

(ii) Given q(t) and P [W (t) = j], j = 1, . . . , Wmax, for some t = 0, 1, . . ., use

(4.10) and (4.11) with q(t) to calculate the transition probabilities and

P [W (t + 1) = j] , j = 1, . . . , Wmax. Then calculate E [W (t + 1)];

(iii) Use E [W (t + 1)] in (ii) to update q(t + 2) from (4.9);

(iv) Increase t by one and repeat Step (ii)-(iv).

Examples of the numerical calculation of the limiting model will be presented

in Section 4.5.

4.3 Steady-state Regime

We now turn our attention to the steady state regime of the limiting

two-dimensional recursion (4.9)-(4.11), more specifically to the calculation of the
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limiting queue and average window size in statistical equilibrium, i.e., large t

asymptotics. We show that there is a close relationship between this limiting

behavior in steady state and the now standard TCP throughput model with

stationary loss developed in [47, 48]:

Throughout, we assume the following assumptions (AW3)-(AW4), where

(AW3) The marking function f : R → [0, 1] is increasing with

f(0) = 0 and lim
x→∞

f(x) = 1;

(AW4) The sequence {(q(t), W (t)), t = 0, 1, . . .} admits a steady state in the sense

that

(q(t), W (t)) =⇒t (q�, W �)

for some rvs (q�, W �) where q� is non-random and W � is an {1, . . . , Wmax}-
valued rv.

Although the two-dimensional sequence {(q(t), W (t)), t = 0, 1, . . .} is a

time-homogeneous Markov chain with values in R+ × {1, . . . , Wmax}, we shall not

address here the existence of the limit posted in (AW4) as complications arise

due the fact that the first component is degenerate (i.e., deterministic).

Control-theoretic analyses (as surveyed in Section 2.2) suggest that the existence

of the limit in the sense of (AW4) depends on the parameter settings of RED. If

the parameters are set appropriately, then the queue will stabilize to its

fixed-point solution. Otherwise, the steady-state queue can fluctuate around its

fixed-point solution (due to border collisions) or can even exhibit chaotic

behavior. In any case, only the steady-state in the sense of (AW4) is desirable.

Discussions on the parameter settings in RED to ensure (AW4), i.e., stability,

can be found in Section 2.2.
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However, that under the condition Wmax ≤ C, it is a simple matter to check

that (AW4) holds with q� = 0 and W � = Wmax as would be expected; related

details are given in Section 4.3.2 (Case 1). Thus, only the case C < Wmax needs

to be considered.

4.3.1 TCP throughput with fixed loss probability

In order to discuss the limit (q�, W �) postulated in (AW4), we first need to

review the results from the TCP throughput model with stationary loss [47, 48]:

Fix γ in [0, 1], where γ = 1 − p with p interpreted as the stationary

dropping/marking probability. Consider the recursion

W γ
0 = W0;

W γ
n+1 = min (W γ

n + 1, Wmax) Mγ
n+1 + min

(

W γ

n

2
�, Wmax

)
(1 − Mγ

n+1)

for all n = 0, 1, . . . and some {1, . . . , Wmax}-valued rv W0, with

Mγ
n+1 = 1

[
Vn+1 ≤ γW γ

n

]
, n = 0, 1, . . . (4.13)

where the rvs {Vn+1, n = 0, 1, . . .} are i.i.d. [0, 1]-uniform rvs which are

independent of W0.

The rvs {W γ
n , n = 0, 1, . . .} form a time-homogeneous Markov chain on the

finite set {1, . . . , Wmax}. For γ in the open interval (0, 1), this chain is irreducible,

positive recurrent and aperiodic, thus ergodic. Consequently,

W γ
n =⇒n W γ (4.14)

for some {1, . . . , Wmax}-valued rv W γ. This rv W γ satisfies the distributional

equation

W γ =st min (W γ + 1, , Wmax)Mγ + min

(

W γ

2
�, Wmax

)
(1 − Mγ) (4.15)

54



where

Mγ = 1
[
V ≤ γW γ]

(4.16)

for some [0, 1]-uniform rv V which is independent of the rv W γ. In fact, the

ergodicity of the Markov chain guarantees that the equation (4.15)-(4.16) has a

solution and that this solution is unique.

For the sake of completeness, we also consider the boundary cases: For γ = 0

(resp. γ = 1), it is easy to see that (4.14) also takes place with W γ = 1 (resp.

W γ = Wmax). The converse is also true as we now demonstrate: If W γ = 1 under

(4.14), then (4.15)-(4.16) read

1 =st min (1 + Mγ , Wmax)

with Mγ = 1 [V ≤ γ], so that necessarily Mγ = 0 under (AW4), whence γ = 0.

On the other hand, if W γ = Wmax under (4.14), then (4.15)-(4.16) now reduce

to

Wmax =st WmaxM
γ + 
Wmax

2
�(1 − Mγ)

with

Mγ = 1
[
V ≤ γWmax

]
.

Consequently,

�Wmax

2

 =st �Wmax

2

Mγ .

so that Mγ = 1, whence γ = 1.

Although we can numerically compute the steady-state distribution

determined by (4.15)-(4.16) (which is a special case of [47]), we take notice that

this model is actually that of a single TCP connection with a constant loss

probability 1 − γ. This is a well-studied problem (e.g., [40, 48]) with known
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results. If we replace �W γ
n

2

 in (4.15) with W γ

n

2
, then we can invoke Eqn. (33) in

[48] to get the approximation

E [W γ] � min

(
Wmax,

√
3

2(1 − γ)

)
. (4.17)

4.3.2 Steady-state regime for the model in Section 4.1

Under Assumption (AW4), it is a simple matter to see that

(q(t), W (t), M(t + 1)) =⇒t (q�, W �, M�)

with

M� = 1
[
V ≤ (1 − f(q�))W �]

(4.18)

where the [0, 1]-uniform rv V is independent of the pair (q�, W �).

Upon letting t go to infinity in (4.9) and (4.10), we obtain the relations

q� = (q� − C + E [W �])+ (4.19)

and

W � =st min (W � + 1, Wmax)M� + min

(

W �

2
�, Wmax

)
(1 − M�). (4.20)

With q� given, the solution to (4.20) with (4.18) exists and is unique; it is in fact

given by

W � = W γ with γ = 1 − f(q�)

where the rv W γ is defined through (4.14). Several cases are possible when

considering (4.19) and (4.20).

Case 1 – f(q�) = 0: Then, q� is finite under (AW3), M� = 1 and (4.20)

reduces to

W � =st min (W � + 1, Wmax)

56



with unique solution W � = Wmax (in agreement with the discussion in Section

4.3.1). In that case, (4.19) gives

q� = (q� − C + Wmax)
+ . (4.21)

Therefore, either q� = 0 in which case Wmax ≤ C as should be expected, or q� > 0

(still with f(q�) = 0), in which case C = Wmax. However, under the condition

Wmax ≤ C, it is clear that if Q(N)(0) = Q > 0 for all N = 1, 2, . . ., then

Q(N)(t) ≤ Q and the conclusion q(t) = 0 holds for all t = 0, 1, . . ., so that q� = 0.

In other words, if q� in (AW4) is such that f(q�) = 0, then necessarily q� = 0. �

Case 2 – f(q�) = 1: Then q� > 0, M� = 0 and (4.20) now reduces to

W � =st min

(

W �

2
�, Wmax

)

with only solution W � = 1 (also in agreement with the discussion in Section

4.3.1). �

Case 3 – 0 < f(q�) < 1: Then, 0 < q� < ∞ and from (4.19) it is necessarily

the case that E [W �] = C. Thus, the existence of a steady state requires at the

very least that the equation

E [W γ ] = C, γ ∈ [0, 1] (4.22)

has a unique solution, say γ�, in which case we must have

γ� = 1 − f(q�).

By known results on finite state Markov chains, the mapping γ → E [W γ] is

continuous on [0, 1] [39] with

E [W γ]γ=0 = 1 and E [W γ ]γ=1 = Wmax.
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By continuity, {E [W γ] , γ ∈ [0, 1]} must contain the interval [1, Wmax]. On the

other hand, it is always the case that

1 ≤ E [W γ] ≤ Wmax, γ ∈ [0, 1],

and we conclude that {E [W γ] , γ ∈ [0, 1]} = [1, Wmax]. Therefore, there exists at

least one solution to (4.22) provided 1 ≤ C ≤ Wmax. The uniqueness of the

solution would be ensured by the strict monotonicity of the mapping

γ → E [W γ]. Although we have not been able to establish the monotonicity, it is

suggested by the approximation (4.17) and also from the simulation result

illustrated in Figure 4.1. �
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Figure 4.1: The mapping γ → E [W γ] when Wmax = 5 vs. the approximation

(4.17).

4.3.3 Discussion

The preceding analysis demonstrates that the resulting steady-state queue and

congestion window can be determined by the steady-state marking probability
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f(q�). We now discuss different cases that arise depending on the value f(q�).

The trivial case f(q�) = 0 is possible if and only if the maximum window size

Wmax ≤ C, or equivalently, no congestion exists and congestion-control is not

necessary. On the other hand, when f(q�) = 1 the window size will be reduced to

its minimum value (which is one packet in this model). Even then, the congestion

is so severe that the limiting queue will grow unboundedly large. This case is

possible if and only if C < 1, and this is clearly not a desirable operating regime

for the system.

In the non-trivial case where 0 < f(q�) < 1, the average throughput will be

equal to the capacity per flow C. Furthermore, E
[
W 1−f(q�)

]
= C where W 1−f(q�)

is the steady-state rv of the Markov chain in (4.15) when γ = 1 − f(q�). In other

words, the throughput of a flow in steady state can be evaluated as a TCP flow

with fixed-loss probability f(q�). Conversely, assuming C is known, the

(assumed) monotonicity of the mapping γ → E [W γ] along with (4.22) can be

used to evaluate the steady-state marking probability f(q�) and the steady-state

queue length q� (assuming f is invertible). This application to network

dimensioning is discussed in more details in Section 4.6.

Finally, we note that the steady-state analysis implies that the behavior of

any single TCP flow is decoupled from the dynamics of the system when the

number of flows is large, i.e., the behavior of a single flow no longer affects the

dynamics of the system. This enables the performance analysis of the system to

be done at two levels: (i) From a user’s perspective, the network only generates a

fixed marking/signaling rate to a TCP flow and the performance of a TCP flow

can be evaluated from the TCP throughput formula such as in [48]; and (ii) From

the network operator’s perspective, the aggregate traffic and its interaction with
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AQM can be easily predicted without having to consider any particular flows.

4.4 A Central Limit Theorem

In this section, we present a Central Limit Theorem (CLT) which complements

the limiting results obtained earlier. The discussion is carried out in the setup of

Section 4.2, but with Assumption (AW1) strengthened to read as Assumption

(AW1b), where

(AW1b) Assumption (AW1) holds with continuously differentiable mapping f : R+ →
[0, 1], i.e., the derivative f ′ : R+ → R exists and is continuous.

For each t = 0, 1, . . ., let q(t) and W (t) be as in Theorem 2, and set

L
(N)
0 (t) :=

Q(N)(t)

N
− q(t) (4.23)

and

L̄(N)(t) =
1

N

(
N∑

i=1

W
(N)
i (t) − E [W (t)]

)
. (4.24)

Theorem 3. Assume (AW1b)-(AW2) to hold. Then, for each t = 0, 1, . . ., there

exists an R
2-valued rv L(t) = (L0(t), L̄(t)) such that the convergence

√
N
(
L

(N)
0 (t), L̄(N)(t)

)
=⇒N L(t) (4.25)

holds. Moreover, the distributional recurrence

L0(t + 1) =st




0 K(t) > 0

L0(t) + L̄(t) K(t) < 0(
L0(t) + L̄(t)

)+
K(t) = 0

(4.26)
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holds where we have set

K(t) = C − q(t) − E [W (t)] . (4.27)

The convergence (4.25) suggests the approximation (1.7) and

N∑
i=1

W
(N)
i (t) � NE [W (t)] +

√
NL̄(t) (4.28)

for large N .

We can interpret K(t) as the residual capacity per user in the limit in the

timeslot [t, t + 1). If there exists extra capacity for the average user rate to

increase (K(t) > 0), then there is no fluctuation in the limiting queue. On the

other hand, when there is congestion (K(t) < 0), the (non-trivial) limiting

distribution can be found recursively. Some technical difficulties arise in the

special case K(t) = 0.

The proof of Theorem 3 is given in Chapter 7, and relies on showing that

some key convergence statements propagate over time. If we specialize (7.6), one

of the by-product of this analysis, to the mapping g : IN → R given by g(w) = w,

we find that L̄(t + 1) is of the form

L̄(t + 1) =st Λ(t) + f ′(q(t))R(t)L0(t) + H(t + 1) (4.29)

where R(t) is a constant, H(t + 1) is a zero-mean Gaussian rv independent of the

pair of rvs (L0(t), Λ(t)) and the statistics of rv Λ(t) are determined by

q(0), q(1), . . . , q(t − 1).

From (4.29), we observe that the magnitude of the queue fluctuation is

proportional to the derivative of f around the limiting (normalized) queue size
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q(t). Since the original drop probability function of RED is discontinuous around

max thresh, our analysis is very much in line with the reported oscillatory queue

behavior when the average queue exceeds max thresh and with the finding that

the addition of the “gentle” option can improve the queue behavior [14].

To get an intuition on why the derivative of the marking function plays such

an important role, note that f(Q(N)(t)
N

) is the only feedback information from the

RED gateway to the TCP sources. However, this feedback information also

fluctuates around its limiting mean f(q(t)). It is easy to imagine that the

uncertainty in the feedback information will also lead to fluctuations in the

limiting queue as is suggested by the following result which is a well-known result

called the Delta method [60, Thm. 3.1, p.26]).

Proposition 1. Let f : R+ → [0, 1] be a differentiable mapping with derivative

f ′ : R+ → R continuous at x = q(t). If for some t = 0, 1, . . ., the convergence

√
N

(
Q(N)(t)

N
− q(t)

)
=⇒N L0(t) (4.30)

takes place with some rv L0(t), then

√
N

(
f

(
Q(N)(t)

N

)
− f(q(t))

)
=⇒N f ′(q(t))L0(t). (4.31)

4.5 Simulations

In this section, we present results from (Monte-Carlo) simulations of the model

presented in Section 4.1 and from NS simulations [45] to illustrate the behaviors

suggested by both Theorems 2 and 3. For the NS simulations, we use the system

shown in Figure 4.2. Each server establishes a TCP Reno connection to a
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corresponding client, thereby competing for the capacity in the ECN/RED

gateway. Each TCP has a fixed packet size of 1500 bytes and a maximum

window size of 200 packets. The marking probability function in the ECN/RED

gateway is specified as in (AW1) with f : R+ → [0, 1] taken to be

f(x) = min
(
0.01(x − 1)+, 1

)
, x ≥ 0.

We choose this simple marking probability function with only one major slope in

order to later demonstrate the relationship between the magnitude of the queue

fluctuations and the slope of f as mentioned in Section 4.4.

The “time constant” parameter wq for the Exponential Weighted Moving

Average is set to 0.002, similar to the recommended value in [16]. Every round

equals the round-trip propagation delay of 200 milliseconds. At the beginning of

each round, we collect the instantaneous queue length in the ECN/RED buffer

for a total duration of 200 seconds. Figure 4.3 shows the queue length normalized

by the number of connection (N) as a function of time. We note a behavior

similar to that discussed in Theorem 2 as fluctuations in the normalized queue

length decrease with an increasing number of connections. Moreover, Figure 4.3

also suggests the existence of a steady-state for the limiting model, with a

steady-state normalized queue length being constant at approximately 4.85

packets/user, corresponding to the steady-state marking probability of

0.0385 = f(4.85).

To simulate the model described in Section 4.1, we use the same parameter

setup as in the NS simulation, i.e., Wmax = 200, simulation time of 1000 timeslots

and the same marking function. The capacity per user (C) of the bottleneck

router can be calculated from (4.17) and (4.22) when the marking probability p is

0.0385 (obtained from the NS simulation, so that γ = 1 − p = .9615). A simple
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Figure 4.2: The topology setup in NS simulation.
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lation.
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calculation yields C = 6.24 packets/timeslot. The simulation results are shown in

Figure 4.4. A quick comparison to Figure 4.3 indicates a qualitative similarity in

that the fluctuations decrease as the number of users increases. Further

inspection reveals that the average normalized queue length is around 4.93

packets/user, very close to 4.85 packets/user produced by the NS simulation.

Therefore, the limiting stochastic model appears to capture the essential behavior

of queue dynamics in ECN/RED gateways, although the model exhibits

somewhat greater fluctuations than in the NS simulation. This is due to the fact

that all flows in the model are synchronized at the beginning of each timeslot,

i.e., they adapt at the same time while in the NS simulator, the flows react

asynchronously to the marks from the RED gateway.

To gauge the rate of convergence, we assume that the queue is in steady state

after the first 100 samples and that the magnitude of the queue fluctuation

around its steady state mean is Gaussian and ergodic. Therefore, the

steady-state standard deviation of the queue can be reasonably approximated

from the sample standard deviation of the queue at timeslot 101 and beyond.

The comparison between the sample standard deviation from the model and NS

simulations is displayed in Figure 4.5. They clearly follow a similar trend. We

also expect from Theorem 3 that the standard deviation will decrease as 1/
√

N

for large N . Let SN denote the sample standard deviation of the normalized

queue when the number of users is N . We can see from Figure 4.5 that S1/
√

N

provides a good approximation of the standard deviation SN for large N .

To demonstrate the relationship between the slope of the marking probability

function and the magnitude of the queue fluctuation (as mentioned in Section

4.4), we use the same network setup as before but with a slope increased ten-fold,
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i.e.,

f(x) = min
(
0.1(x − 1)+, 1

)
, x ≥ 0. (4.32)

Figure 4.6 and 4.7 show the simulation results in the case of the steeper function

(4.32). In both the Monte-Carlo and NS simulations it is clear that the

magnitude of queue fluctuation is much larger than in the original simulation. As

the number of flows increases, the convergence becomes much slower than in the

original setup. In the control-theoretic view of [22], this phenomenon can be

interpreted as the control system becoming oscillatory with too large a feedback

gain.
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4.6 Simple Network Dimensioning

We briefly discuss how to apply the convergence results of Theorems 2 and 3 to

the network dimensioning problem. In Section 4.3, it is shown that the steady

state throughput of the limiting behavior can be calculated from a well-known

TCP throughput model with fixed loss probability, e.g., [40, 48].

We now consider a simple application of this limiting result; An ISP currently

services up to N1 TCP flows at peak hour through an ECN/RED access gateway

connecting to the core network with the link speed of N1C packets/second. The

network manager can roughly determine the buffer utilization in the ECN/RED
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Figure 4.6: The normalized queue length of the ECN/RED gateway in NS simu-

lation with the marking probability function (4.32).
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gateway as follows:

(i) Determine the marking probability per flow (p = f(q) = 1 − γ) from the

relation C = E [W γ] by using a TCP throughput formula such as (4.17);

(ii) Calculate the limiting queue length q in steady state by solving p = f(q);

(iii) Approximate the queue length distribution in steady state via the CLT

complement. If the steady state exists, the CLT complement determines the

distribution of the queue size fluctuations around q. The delay and overflow

distributions can also be approximated via the CLT complement.

While these limiting results apply only to TCP flows with identical

round-trip, there are situations where they could be useful. For example, the

buffer dimensioning problem in an intercontinental Internet link where it is

typically a bottleneck, its large propagation delay dominates the round-trip and

the number of flows is extremely large.
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Chapter 5

A Window-based Model with Session-level Dynamics and

Heterogeneous Round-trip Delays

The main goal of this thesis is in modeling TCP traffic in a realistic situation

where there are many flows competing for bandwidth. This is a very challenging

problem due to the following factors: (i) the state space explosion, (ii) AQM

schemes, (iii) session-layer dynamics, and (iv) variable RTTs of TCP flows. The

model presented in Chapter 4 takes into account the factor (i)–(ii). In this

chapter, we extend this model to incorporate the session-level dynamics and

variable round-trip delays of TCP connections.

Accurate traffic modeling of a large number of TCP flows with session

dynamics and heterogeneous RTTs is extremely difficult due to the interactions

between session, transport, and network layers, notwithstanding the state space

explosion mentioned earlier and the variable feedback information rate. As

presented in the literature survey in Section 2.2, ad-hoc assumptions are typically

required to make the analysis tractable under a certain regime.

In this chapter, we present a novel model which incorporates not only the

interaction of the congestion-control mechanism of TCP with ECN/RED
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mechanism, but also session dynamics and variable RTTs of the flows. It builds

upon the approach used in Chapter 3 and 4, where “macro-scale” modeling of

aggregate TCP flows can be developed by systematically applying limit theorems

to describe the regime when the number of TCP flows is large.

The chapter is organized as follows. We first present our extended model in

Section 5.1. Based on this model, we establish a Weak Law of Large Numbers in

Section 5.2. The result shows that the queue size per session and the workload

per session brought in during a RTT converge to a deterministic process as the

number of flows increases. We also demonstrate that the flows become

asymptotically independent, which supports the belief that the RED mechanism

indeed helps break the synchronization among the flows suffered by drop-tail

gateways. In Section 5.3, we show that the limiting model is also consistent with

other previously proposed models in their respective regimes. When the capacity

is very small the queue behavior approaches that of a processor sharing queue and

when the capacity is very large, its behavior is similar to that of a time-reversed

shot-noise model. In addition, we present a simple analysis on the buffer

utilization and window size of the limiting model at the steady-state in Section

5.4. Under mild assumptions, the steady-state analysis suggests that only the

mean RTT affects the mean queue size at the steady-state. However, the variance

of the round-trip delay plays a role in the magnitude of the queue fluctuations.

This will be shown with the help of a Central Limit analysis in Section 5.5.
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5.1 The Model

Our model captures three layers of dynamics, namely the network, transport, and

session layers, which interact with each other through mechanisms to be specified

shortly. At the lowest level, the network is simplified to be a single bottleneck

router, namely, a RED gateway with ECN capability. The traffic injected into

the network is shaped by the TCP congestion-control mechanism in the transport

layer, which reacts to the marks from the network. Each TCP connection is

initiated by a session, such session being either active or idle. If a session is

active, a file or an object is transferred through a TCP connection. An activity

period for a session lasts until it no longer has any data to transfer, at which

time it goes idle. The duration of an idle period is random and represents the

idle time between consecutive file transmissions. When a new file/object to be

transferred arrives, the session becomes active again and sets up a new TCP

connection. We now give a detailed description of each of the three layers of the

model and of their interactions.

Time is slotted in contiguous timeslots. Here the RTTs of TCP connections

are approximated as integer multiples of timeslots, i.e., a timeslot is the greatest

common divisor of the RTTs of TCP flows. Similar to the model in Chapter 4,

we fix t = 0, 1, . . . to indicate the start of timeslot [t, t + 1).

Heterogeneous round-trip times

Fix i ∈ N . We assume that any congestion-control actions by TCP flows,

i.e., additive increase and multiplicative decrease, occur at the end of the

round-trip. The RTT of flow i at timeslot [t, t + 1) is denoted by the D-valued rv
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D
(N)
i (t) with D = {2, 3, . . . , Dmax}.1 The bound on the maximum RTT does not

constrain the model because actual TCP flows also cannot have larger RTTs

than the timeout value. We use β
(N)
i (t + 1) to denote the number of timeslots

since the last action by an active flow i. Then, β
(N)
i (t) evolves according to

β
(N)
i (t + 1) =

(
1 + β

(N)
i (t)1

[
β

(N)
i (t) < D

(N)
i (t)

])
1
[
X

(N)
i (t) > 0

]
(5.1)

where X
(N)
i (t) is the remaining workload (in packets) of connection i at the

beginning of timeslot [t, t + 1). The rv X
(N)
i (t) is greater than zero only if

connection i is active in timeslot [t, t + 1), so that the last indicator function is

one only if the connection is active. This will be explained further in the next

subsection.

Given i in N and t = 0, 1, . . ., we write

Gi,t(a, b) = a · 1
[
β

(N)
i (t) < D

(N)
i (t)

]
+ b · 1

[
β

(N)
i (t) ≥ D

(N)
i (t)

]
, a, b ∈ R (5.2)

in order to simplify our notation later.

Given collections of R-valued rvs {Yi(t), t = 0, 1, . . .}, and

{Yi,new(t), t = 0, 1, . . .}, we see that

Yi(t + 1) = Gi,t+1 (Yi(t), Yi,new(t + 1))

=




Yi,new(t + 1), β
(N)
i (t + 1) ≥ D

(N)
i (t + 1)

Yi(t), otherwise.

In other words, the value of Yi(t + 1) is updated to Yi,new(t + 1) only at the end of

round-trip. Otherwise, the value of Yi(t + 1) remains to be Yi(t) since no action

will be taken before the end of round-trip.

1Although D does not include one in our model, it can be included at the price of more

cumbersome proofs. Moreover, this does not cause any loss of generality of the model.
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Session dynamics

Each session i in N is either active or idle. A session idle at the beginning of

timeslot [t, t + 1) has no packet to transmit in that timeslot. An idle session in

timeslot [t, t + 1) becomes active at the beginning of timeslot [t + 1, t + 2) with

probability Par, 0 < Par < 1, independently of past events. In other words, the

duration of an idle period is geometrically distributed with parameter Par (hence

with mean 1/Par). This attempts to capture the dynamics of connection arrivals,

where the interarrival times are reported to be exponentially distributed [53].2

Let {Ui(t), i ∈ N ; t = 0, 1, · · · } be a collection of i.i.d. rvs uniformly distributed

on [0, 1], and let 1 [Ui(t + 1) ≤ Par] be the indicator function of the event that a

new file/object arrives in the timeslot [t + 1, t + 2) for an idle session i.

Let {Fi(t), i ∈ N ; t = 0, 1, · · · } be a collection of i.i.d. non-negative

integer-valued rvs distributed according to a general probability mass function

(pmf) F on {1, 2, . . .}. The workload of a connection for session i that becomes

active at the beginning of timeslot [t, t + 1) is given by Fi(t). This workload

represents the total number of TCP segments3 the connection will have to

transmit during this activity period. Thus, if a given TCP connection is used to

transfer more than one object, this workload variable Fi(t) represents the total

number of TCP segments brought in by all these objects. We denote by Xi(t) the

remaining workload (expressed in packets) of connection i at the beginning of

timeslot [t, t + 1). Clearly, we have Xi(t) = 0 if session i is idle during [t, t + 1).

2Recall that an exponential rv X with parameter α can be approximated by 
X�, which is a

geometric rv with parameter p = 1 − e−α.

3In this model each TCP segment is transmitted as a separate packet.
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The evolution of Xi(t) is then given by the recursion

X
(N)
i (t + 1) = 1

[
X

(N)
i (t) > 0

](
X

(N)
i (t) − A

(N)
i (t)

)
+1

[
X

(N)
i (t) = 0

]
1 [Ui(t + 1) ≤ Par] Fi(t + 1) , (5.3)

where A
(N)
i (t) denotes the number of packets injected into the network by

connection i at the beginning of timeslot [t, t + 1). This will be explained in the

next subsection.

When a new connection arrives, its RTT is randomly selected, and the RTT

of session i at timeslot [t + 1, t + 2) is given by

D
(N)
i (t + 1) = D

(N)
i (t)1

[
X

(N)
i (t) > 0

]
(5.4)

+1
[
X

(N)
i (t) = 0

]
1 [Ui(t + 1) < Par]Di,new(t + 1),

where the D-valued rvs {Di,new(t + 1), t = 1, 2, . . .} are i.i.d. rvs which determine

the RTT of newly arrived connections.

TCP dynamics

For each i in N , let W
(N)
i (t) be an integer-valued rv that encodes the congestion

window size (in packets) at the beginning of timeslot [t, t + 1). We assume that

the rv W
(N)
i (t) has range {0, 1, · · · , Wmax} where Wmax is a finite integer

representing the receiver advertised window size of the TCP connection and the

congestion window size of an idle session is taken to be zero. When an idle

session becomes active at the beginning of timeslot [t, t + 1), the congestion

window size of the TCP connection is set to one at the beginning of timeslot

[t + 1, t + Di,new(t + 1) + 1), where Di,new(t + 1) is the RTT (determined from

(5.4)) for the new active session. This models one round-trip delay for the
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three-way handshake. We now describe how the congestion window sizes of active

connections evolve.

Each TCP source transmits as many of the remaining data packets as allowed

by its congestion window only at the end of the round-trip. We simplify the

packet transmission in the round-trip so that all packets from a connection arrive

only in a single timeslot, rather than being spread out throughout a round-trip.

Such simplification can be justified by the following reasons:

(i) In the Internet, most of the packet arrivals at a bottleneck are usually com-

pressed together due to the “ACK compression” phenomenon [64], which

leads to bursty arrivals at the bottlenecks. Hence, modeling the packet ar-

rivals over a RTT as a batch arrival in a single timeslot tends to be more

accurate than modeling them as smooth arrivals throughout a RTT.

(ii) Aggregating a round-trip worth of packet arrivals into a single timeslot will

result in burstier traffic from each flow. This will cause queue dynamics to

fluctuate more than having a smooth arrival pattern. Therefore, the queue

fluctuation in this model will provide an upperbound to the actual queue

with smoother packet arrival patterns.

(iii) The information used for control action at the RED gateways is the average

queue size. Therefore, the difference in the control action due to our bursty

packet arrivals will be smoothed out by the averaging mechanism with long

memory in RED.

Suppose that connection i has X
(N)
i (t) remaining packets (or workload)

waiting to be transmitted at the beginning of timeslot [t, t + 1),4 the number of

4We refer to a TCP connection of an active session i by connection i when there is no confusion.
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packets transmitted by connection i at the beginning of timeslot [t, t + 1),

denoted by A
(N)
i (t), is given by

A
(N)
i (t) = min

(
W

(N)
i (t), X

(N)
i (t)

)
1
[
β

(N)
i (t) ≥ D

(N)
i (t)

]
. (5.5)

Note from (5.5) that a connection transmits only once per RTT.

The congestion-control mechanism of TCP operates either in the slow start

(SS) or the congestion avoidance (CA) phase. A new TCP connection starts in

SS in order to quickly gauge the available bandwidth of the network. While in

SS, the congestion window size is doubled every round-trip time until one or

more packets are marked. If a mark is received, then the congestion window size

is halved and TCP switches to CA. The congestion window size is limited by the

receiver advertised window size Wmax. Hence, if the connection is in SS, then the

congestion window of connection i evolves according to

W
(N)
i,SS(t + 1) = min

(
2W

(N)
i (t) ∨ 1, Wmax

)
M

(N)
i (t + 1)

+
W
(N)
i (t)

2
�
(
1 − M

(N)
i (t + 1)

)
, (5.6)

where M
(N)
i (t + 1) is an indicator function of the event that no packet of

connection i has been marked in the round-trip preceding timeslot [t, t + 1), i.e.,

M
(N)
i (t + 1) = 1 when no packet from session i is marked and M

(N)
i (t + 1) = 0

when at least one packet is marked. The marking mechanism is explained in the

next subsection.

In CA, the congestion window size in the next timeslot [t + 1, t + 2) is

increased by one if no mark is received in timeslot [t, t + 1), while if one or more

packets are marked in timeslot [t, t + 1), the congestion window in the next
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timeslot is reduced by half. The congestion window size in CA is then given by

W
(N)
i,CA(t + 1) = min

(
W

(N)
i (t) + 1, Wmax

)
M

(N)
i (t + 1)

+
W
(N)
i (t)

2
�
(
1 − M

(N)
i (t + 1)

)
. (5.7)

Both W
(N)
i,SS(t + 1) and W

(N)
i,CA(t + 1) are candidates for the congestion window

size in timeslot [t + 1, t + 2) depending on the state that the connection i is in.

Since we only update the congestion window at the end of the round-trip, we

use the mapping (5.2) to retain the value of the congestion window until the end

of the round-trip where it is updated. If connection i is in SS in timeslot

[t, t + 1), its potential window Ŵ
(N)
i,SS(t + 1) in timeslot [t + 1, t + 2) is given by

Ŵ
(N)
i,SS(t + 1) = Gi,t+1

[
W

(N)
i (t), W

(N)
i,SS(t + 1)

]
, (5.8)

where W
(N)
i,SS(t + 1) is given in (5.6). Similarly, if connection i is in CA in timeslot

[t, t + 1), its potential window Ŵ
(N)
i,CA(t + 1) in timeslot [t + 1, t + 2) is given by

Ŵ
(N)
i,CA(t + 1) = Gi,t+1

[
W

(N)
i (t), W

(N)
i,CA(t + 1)

]
, (5.9)

where W
(N)
i,CA(t + 1) is given in (5.7).

Let the {0, 1}-valued rvs {S(N)
i (t), i ∈ N} encode the state of TCP

connections, with the interpretation that S
(N)
i (t) = 0 (resp. S

(N)
i (t) = 1) if

connection i is in CA (resp. in SS) at the beginning of timeslot [t, t + 1).

Therefore, combining (5.8) and (5.9), we see that the complete recursion of the

congestion window size can be written as

W
(N)
i (t + 1) = 1

[
X

(N)
i (t) − A

(N)
i (t) > 0

]
×
(
S

(N)
i (t)Ŵ

(N)
i,SS(t + 1) + (1 − S

(N)
i (t))Ŵ

(N)
i,CA(t + 1)

)
.(5.10)
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The first indicator function in (5.10) is used to reset the congestion window size

to zero when session i runs out of data to transmit and returns to its idle state.

Finally, the evolution of {S(N)
i (t), t = 0, 1, . . .} is given by

S
(N)
i (t + 1) = 1

[
X

(N)
i (t) ≤ W

(N)
i (t)

]
+1

[
X

(N)
i (t) > W

(N)
i (t)

]
S

(N)
i (t)M

(N)
i (t + 1). (5.11)

This equation can be interpreted as follows. Connection i is in SS in timeslot

[t + 1, t + 2) if either (1) there is no packet left to transmit (so the connection

resets) at the beginning of the timeslot or (2) the connection was active and in

SS in timeslot [t, t + 1) and received no mark in the timeslot. Equation (5.11)

assumes that a new TCP connection in SS is ready to be set up one timeslot

after the previous connection is torn down upon finishing its workload, and the

new TCP connection becomes active when a new file/object arrives initiating

three-way handshake. We also assume that the slow start/congestion avoidance

state is updated in the next timeslot following transmission. However, the

window size is updated one RTT after transmission using the appropriate SS/CA

state as in the correct operation of TCP.

Network dynamics

The model of the network dynamics is identical to the model presented earlier in

Chapter 4 with two exceptions. First, we also introduce a queue averaging

mechanism to further generalize the model. The marking probability will be a

function of the average queue size as is implemented in RED instead of the

instantaneous queue size. Second, the indicator function M
(N)
i (t + 1) needs to be

modified in order to represent the event that no marks have been received in the
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previous round-trip (as opposed to the previous timeslot as in Chapter 4). The

remaining dynamics are the same as will be briefly summarized here.

The recursion of the queue is written in the a similar to Lindley’s recursion

introduced in (1.9). More specifically, it can be rewritten as

Q(N)(t + 1)

=

[
Q(N)(t) − NC +

N∑
i=1

min
(
W

(N)
i (t), X

(N)
i (t)

)
1
[
β

(N)
i (t) ≥ D

(N)
i (t)

]]+

,

where A(N)(t) =
∑N

i=1 A
(N)
i (t) and A

(N)
i (t) is given as (5.5) in this model.

The queue averaging mechanism utilizes an exponentially weighted moving

average (EWMA) filter to average the instantaneous queue size with the time

constant depending on the parameter 0 < α ≤ 1. Let Q̂(N)(t + 1) represent the

EWMA queue in the beginning of timeslot [t + 1, t + 2), then

Q̂(N)(t + 1) = (1 − α)Q̂(N)(t) + αQ(N)(t + 1). (5.12)

A special case when α = 1 is equivalent to using the instantaneous queue size for

marking mechanism as in Chapter 4.

We represent the marking through the {0, 1}-valued rvs M
(N)
i,j (t + 1)

(j = 1, ..., A
(N)
i (t)) with M

(N)
i,j (t + 1) = 0 (resp. M

(N)
i,j (t + 1) = 1) if the jth packet

from source i is marked (resp. not marked) in the RED buffer. More concretely,

for each i in N and j = 1, 2, . . ., we write

M
(N)
i,j (t + 1) = 1

[
Vi,j(t + 1) > f (N)(Q̂(N)(t))

]
, (5.13)

where again the collection of i.i.d. [0, 1]-uniform rvs

{Vi,j(t + 1), Vi(t + 1), i, j = 1, · · · ; t = 0, 1, · · · } are assumed independent of all

other rvs introduced so far.
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The indicator function of the event that no packets from connection i in

timeslot [t, t + 1) are marked can then be written as

M
(N)
i,new(t + 1) =



∏A

(N)
i (t)

j=1 M
(N)
i,j (t + 1), A

(N)
i (t) ≥ 1

1, A
(N)
i (t) = 0.

(5.14)

This information will be available to the TCP sender in the next timeslot.

However, this information is used only one RTT later to update the congestion

window size, and M
(N)
i (t + 1) evolves according to

M
(N)
i (t + 1) = Gi,t(M

(N)
i (t), M

(N)
i,new(t + 1)). (5.15)

Notice that we replace t + 1 in the mapping G in (5.2) by t to delay the update

in the value of M
(N)
i (t + 1) in order for (5.8) and (5.9) to evolve based on the

markings in the previous round-trip. For example, if W
(N)
i (t) is updated in

timeslot [t, t + 1) then M
(N)
i (t + 1) is updated in timeslot [t + 1, t + 2) and its

value will be used in the timeslot [t + D
(N)
i (t), t + D

(N)
i (t) + 1) to determine the

new congestion window size.

5.2 The Asymptotics

The first main result of the chapter consists of the asymptotics for the normalized

buffer content as the number of sessions becomes large similar to Theorem 2.

This result is again discussed under the following Assumptions (AW1),(AW2b)

where the structural condition (AW1) is identical to that in Chapter 4 while

(AW2b) is modified from (AW2) to incorporate additional initial conditions, i.e.,

(AW2b) For each N = 1, 2, . . . and i = 1, . . . , N , the initial conditions of rvs in the

model are given by

Q(N)(0) = Q̂(N)(0) = W
(N)
i (0) = β

(N)
i (0) = D

(N)
i (0) = 0,
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and

S
(N)
i (0) = M

(N)
i (0) = 1.

We denote the vector of state variables for session i in timeslot [t, t + 1) by

Y
(N)
i (t) := (W

(N)
i (t), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), β

(N)
i (t), M

(N)
i (t)). (5.16)

The rv Y
(N)
i (t) takes a value in the discrete set

Y := {0, 1, . . . , Wmax} × {0, 1, . . . , Xmax} × {0, 1} × {0, 2, 3, . . . , Dmax}

×{0, 1, . . . , Dmax} × {0, 1}. (5.17)

Theorem 4. Assume that (AW1) and (AW2b) hold. Then, for each N = 1, 2, . . .

and t = 0, 1, . . ., there exists a (non-random) constant q(t) and a Y-valued random

vector

Y(t) = (W (t), X(t), S(t), D(t), β(t), M(t))

such that the following holds:

(i) The following convergences take places:

Q(N)(t)

N

P→N q(t),
Q̂(N)(t)

N

P→N q̂(t) (5.18)

and

Y
(N)
1 (t) =⇒N Y(t). (5.19)

(ii) For any bounded function g : Z
6
+ → R, we have

1
N

∑N
i=1g (Y(t))

P→NE [g (Y(t))] . (5.20)
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(iii) For any integer I = 1, 2, . . . , the random vector {Y(N)
i (t), i = 1, . . . , I} be-

comes asymptotically independent as N becomes large, with

lim
N→∞

P[Y
(N)
i (t) = yi, i = 1, · · · , I] =

I∏
i=1

P [Y(t) = yi] (5.21)

for any yi ∈ Y , i = 1, . . . , I.

In addition, with initial conditions q(0) = W (0) = X(0) = D(0) = β(0) = 0,

and S(0) = M(0) = 1, it holds that

q(t + 1) = (q(t) − C + E [A(t)])+ (5.22)

and

q̂(t + 1) = (1 − α)q̂(t) + αq(t + 1) (5.23)

where

A(t) = min (W (t), X(t))1 [β(t) ≥ D(t)] .

Further, the recurrence

Y(t + 1) = (W (t + 1), X(t + 1), S(t + 1), D(t + 1), β(t + 1), M(t + 1))

=st P (Y(t))

:= (P1(Y(t)), P2(Y(t)), . . . , P6(Y(t))) (5.24)
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holds in law, where P1(Y(t)), . . . , P6(Y(t)) are given by

P1(Y(t)) = 1 [X(t) − A(t) > 0] (S(t)WSS(t + 1) + (1 − S(t))WCA(t + 1)) ,

P2(Y(t)) = 1 [X(t) > 0] (X(t) − A(t)) + 1 [X(t) = 0]1 [U(t + 1) < Par] F (t + 1),

P3(Y(t)) = 1 [X(t) − A(t) ≤ 0] + 1 [X(t) − A(t) > 0]S(t)M(t + 1),

P4(Y(t)) = D(t)1 [X(t) > 0] + 1 [X(t) = 0]1 [U(t + 1) < Par]D(t + 1),

P5(Y(t)) = (1 + β(t)1 [β(t) < D(t)])1 [X(t) > 0] ,

and

P6(Y(t)) = Gt(M(t), 1
[
V (t + 1) ≤ (1 − f(q̂(t)))A(t)

]
),

where

M(t + 1) := P6(Y(t)),

Gt(a, b) = a1 [β(t) < D(t)] + b1 [β(t) ≥ D(t)] , a, b ∈ R,

WSS(t + 1) = Gt+1

(
W (t), min (2W (t) ∨ 1, Wmax) M(t + 1) + 
W (t)

2
�(1 − M(t + 1))

)
,

and

WCA(t + 1) = Gt+1

(
W (t), min (W (t) + 1, Wmax) M(t + 1) + 
W (t)

2
�(1 − M(t + 1))

)
,

for i.i.d. [0, 1]-uniform rvs {U(t + 1), V (t + 1); t = 0, 1, . . .}.

The proof of Theorem 4 is presented in Chapter 6.

5.3 Limiting Cases

Next, we briefly consider the resulting model from Theorem 4 in the regime when

C is either very large or very small under the following assumption:

(AW3) The marking function f : R → [0, 1] is monotonically increasing with f(0) =

0 and limx→∞ f(x) = 1;
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It is easy to see that limC→∞ q(t) = 0 for all t = 0, 1, . . ., so that the marking

probability per flow also converges to zero from (AW3) for all t. Therefore, each

incoming flow will always operate in the slow start (exponential growth) mode

and the resulting input traffic into the network is the superposition of

(discrete-time) Poisson arrival streams of random number of packets, each of

which doubles its window size every round-trip. The aggregate input traffic is

therefore similar to the time-reversed shot-noise processes, which is compatible

with the model studied in [23].

On the other hand, with C � 0, the queue will start building up, whence

limt→∞ q(t) = ∞. Thus, for large t, all TCP flows (including incoming TCP

flows) will experience marking probability close to one under Assumption (AW3).

All active connections will be able to inject only one packet per round-trip into

the network because every packet transmitted will be marked with a probability

going to one. As a result, each TCP congestion window size approaches one with

high probability. Since the bottleneck router will transmit packets

non-selectively, any active flow will receive roughly equal throughput and hence

the queue behavior approaches that of processor-sharing, assuming identical

RTTs among all flows, which is in agreement with [32].

5.4 Steady-State Regime

Using the results from the previous sections, we now carry out a simple

steady-state analysis with a few additional reasonable assumptions. Although we

have not formally proved that the system converges to steady state as

complications arise due the deterministic (i.e., degenerate) character of the first
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two components in the time-homogeneous Markov chain

{(q(t), q̂(t),Y(t)), t = 0, 1, . . .}, simulation results indicate that the system does

converge to steady state for a large range of initial conditions and parameters.

This is illustrated in Section 5.6. In order to facilitate our further analysis we

assume the following:

(AW4b) The sequence {(q(t),Y(t)), t = 0, 1, . . .} admits a steady state in the sense

that (q(t),Y(t)) =⇒t (q�,Y�) for some rvs (q�,Y�) where q� is a constant

and Y� = (W �, X�, S�, D�, β�, M�) is a Y-valued rv.

(AW5) Let Far be a rv with the distribution F , representing the initial workload size

of a new connection. we assume E [W �] � E [Far].

(AW6) We assume that when an active connection finishes its last transmission, it

waits an additional RTT before resetting its window size to zero. 5

We first introduce a simple result which will help in the analysis. Its proof is

given in Section 5.7.

Lemma 1. Assuming (AW1),(AW2b),(AW3), (AW4b),(AW5)-(AW6), the rvs

min(W �, X�) and 1 [β� ≥ D�] are conditionally independent given that the con-

nection is active.

It is easily seen that Assumption (AW4b) immediately implies q̂(t) →t q̂� = q�

for some constant q̂�. And so the steady-state marking probability is

f(q̂�) = f(q�). We wish to find the steady-state queue level q� as a fixed-point

5This will have only a marginal effect under Assumption (AW5).
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solution to

q� = (q� − C + E [A�])+

= (q� − C + E [min(W �, X�)1 [β� ≥ D�]])+. (5.25)

Since the window size and the workload are both zero when a session is idle,

we have

E [A�] = P [active]E [A�|active]

= P [active]E [min(W �, X�)|active]P [β� ≥ D�|active] (5.26)

where the last equality follows from Lemma 1. The probability P [active] that a

session is active in steady state is given by

P [active] =
E [connection duration]

E [connection duration] + E [idle period]

by elementary arguments from renewal theory.

First, we can rewrite

P [β� ≥ D�|active] =
∑

di
P [β� ≥ di|active, D� = di]P [D� = di|active].

Conditioning on the event that D� = d, it is easy to see that

P [D� = di|active] ≈ diP [D = di]∑
dj∈D djP [D = dj]

.

The expression is not exact because according to our model, the connection

resets its window to zero one timeslot after transmitting its last packet. However,

this will have only a marginal effect under (AW5).

From Assumption (AW5) since a connection typically lasts many RTTs, we

have

P [β� ≥ di|active, D� = di] ≈ 1

di
. (5.27)
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Therefore,

P [β� ≥ D�|active] ≈
∑
di∈D

P [D = di]∑
dj∈D djP [D = dj]

=
1

E [D]
. (5.28)

Let Far be the initial workload and D be the RTT of a connection. The

conditional expected value of the connection duration given the workload size

and round-trip delay is

E [connection duration | Far = x, D = d] =
x

T (d, f(q�))
,

where T (d, f(q�)) is the mean throughput of a TCP connection with RTT of d

and packet marking probability of f(q�). Here we approximate the average

throughput of a TCP connection by the well-known throughput formula

T (d, f(q�)) ≈ K

d
√

f(q�)
,

where K is some constant in the interval [1, 8
3
], according to [48, 40].

This implies that

E [connection duration|Far = x, D = d] ≈ xd
√

f(q�)

K
.

Since the initial workload and the RTT are assumed independent, we have

E [connection duration] ≈ E[Far]E[D]
√

f(q�)

K
. Therefore,

P [active] ≈ E [Far]E [D]
√

f(q�)

E [Far]E [D]
√

f(q�) + K/Par

(5.29)

Finally, in order to compute (5.26), we need to calculate

E [min(W �, X�)|active], which can be approximated by E [W �|active] under
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(AW5), i.e., E [F ] >> E [W �].

E [W �|active] =
∑
di∈D

E [W �|D� = di, active]P [D� = di|active]

=
∑
di∈D

K√
f(q�)

diP [D = di]∑
dj∈D djP [D = dj]

=
K√
f(q�)

. (5.30)

Combining (5.26)-(5.30), we get

E [A�] ≈ KE [Far]

E [Far]E [D]
√

f(q�) + K/Par

.

If 0 < f(q�) < 1, it is necessary that C = E [A�]. After some simple algebras,

we can show

f(q�) ≈ K2

E [D]2

(
1

C
− 1

ParE [Far]

)2

. (5.31)

If f is invertible, then

q� ≈ f−1

(
K2

E [D]2

(
1

C
− 1

ParE [Far]

)2
)

. (5.32)

Note that the steady-state marking probability and the average queue size

depend on the round-trip delay and incoming workload distributions only

through their mean values. Numerical examples validating the analysis are given

in Section 5.6. This simple formulation can be used as a guideline on how to

design the feedback probability function to control the queue size at the

steady-state, given the system parameters. However, the variance of the

round-trip delay will play a role in the magnitude of the queue fluctuations even

though the mean queue size is determined only through the average delay. This

will be shown in the Central Limit analysis in the next section.
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5.5 A Central Limit Theorem

In this section we present a CLT complement similar to Theorem 3 to the LLN

results in Theorem 4. The description of the model and the notations are given

in Section 5.1. The analysis is carried out under the same model and we again

need to strengthen Assumption (AW1) to (AW1b) as given in Section 4.4.

However, we also introduce Assumption (A7):

(AW7) The workload of a new TCP connection is bounded, i.e., there exists an

integer Xmax such that F
(N)
i (t) is a {1, · · · , Xmax}-valued rv for all i in N and all

t = 0, 1, . . .. 6

Fix t = 0, 1, . . .. Again, the asymptotic residual capacity given in (4.27) plays

a crucial role in the analysis. In this model, it is given by

K(t) = C − q(t) −E [min(W (t), X(t))1 [β(t) ≥ D(t)]] .

Now define a collection of rvs that is integral to the analysis. For each

N = 1, 2, 3, . . . and y = (w, x, s, d, b, m) ∈ Y , let L
(N)
0 (t) be as given in (4.23). We

also introduce the following notations:

L̂
(N)
0 (t) :=

Q̂(N)(t)

N
− q̂(t), (5.33)

and

L(N)
y (t) := 1

N

∑N
i=11Y

(N)
i (t)

[y] − PY(t) [y] . (5.34)

Theorem 5. Assume (AW1b),(AW2b) and (AW7) hold. Then, for each t =

0, 1, . . ., there exists an R
|Y|+2-valued rv L(t) = (L0(t), L̂0(t), Ly(t),y ∈ Y) such

6The limit Xmax can be lifted. This, however, results in a more complicated analysis. Never-

theless, such a restriction is necessary for the numerical calculation of the CLT on a computer.
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that the convergence

√
N
(
L

(N)
0 (t), L̂

(N)
0 (t), L(N)

y (t), y ∈ Y
)

=⇒N L(t) (5.35)

holds. Moreover, the distributional recurrences

L0(t + 1) =st




0 K(t) > 0

L0(t) + L̄(t) K(t) < 0(
L0(t) + L̄(t)

)+
K(t) = 0

(5.36)

and

L̂0(t + 1) =st (1 − α)L̂0(t) + αL0(t + 1) (5.37)

hold, where

L̄(t) =
∑
y∈Y

min(w, x)1 [b ≥ d]Ly(t).

The distribution of the rv Ly(t), y ∈ Y , t = 0, 1, . . ., can be calculated recur-

sively starting with t = 0.

Finally, for any t = 1, 2, . . ., the rv L0(t + 1) is Gaussian7 if K(s) �= 0 for all

s < t.

A proof of Theorem 5 and the complete distributional recursions are provided

in [57].

From the last statement of Theorem 5, a necessary condition for L0(t) not to

be Gaussian is K(s) = 0 for some s < t. This is, however, a technical artifact of

the limiting regime as in practice it is unlikely that the real-valued residual

capacity would attain the value zero exactly. Therefore, in practice the

distribution of the RED buffer at any fixed time t can be well approximated by a

Gaussian rv.

7Here we interpret a constant as a Gaussian rv with standard deviation equals to zero.
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Discussion

The CLT analysis reveals the sources of fluctuation in the queue size. It is shown

in the proof of Theorem 5 that the queue fluctuation L0(t + 1) consists of four

components :

(i) Fluctuation caused by the discrepancy between the feedback information

from RED to TCP sources f (N)(Q̂(N)(t)) and the limiting feedback infor-

mation f(q̂(t)): This uncertainty in feedback information can be explained

by the Delta Method (Proposition 1) and is already discussed in details in

Section 4.4.

(ii) Binary nature of feedback information: The RED gateway either marks a

packet or does not in a RTT. This binary nature of feedback information

imposes a limited feedback information granularity, and causes a fluctuation

in queue size. This fluctuation can be well approximated by a Gaussian rv.

(iii) Fluctuation caused by the arrival of new TCP connections and the random

idle periods: The larger the file size, i.e., workload of a new TCP connection,

and waiting time variances, the larger the magnitude of this fluctuation is.

This part of the fluctuation can also be described by a Gaussian rv.

(iv) Fluctuation caused by the structure of protocols: The structure of the pro-

tocols determines the mappings which combined the rvs discussed in (i)-(iii).

The resulting rv represents the overall fluctuation observed at the queue.

Components (ii) and (iv) are due to the protocols and cannot be mitigated

without modifying the protocols. Component (iii) depends on users behavior, and

hence is beyond the control of the network. Thus, network designers can only
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manipulate the shape (or slope) of the feedback function to reduce oscillation of

queue size. Although reducing the slope of the queue can decrease the magnitude

of fluctuation, it also increases the average queue size as suggested by (5.32).

The aforementioned trade-off can be explored in the context of an

optimization problem. Suppose that we have the convergences q(t) →t q� and

L0(t) ⇒t L�
0.

8 Then, the steady-state queue distribution can be approximated by

Nq∗ +
√

NL�
0. For best-effort traffic, the marking function f should, for example,

maximize P
[
0 < Nq∗ +

√
NL�

0 < NB
]
, assuming that the buffer size is NB.

Clearly, a more sophisticated performance metric can be adopted, which depends

on the probabilities of an empty queue and of buffer overflow. The availability of

the queue distribution allows us to formulate the corresponding optimization

problem and to propose a systematic solution.

Furthermore, if the protocol suite (i.e., TCP and ECN/RED) can be

modified, then we can further reduce the magnitude of queue fluctuation caused

by limited feedback granularity, i.e., component (ii). One simple scheme to

improve the feedback information granularity is to increase the number of

feedback information bits in the ECN mechanism. Given that the improved

feedback information is properly utilized, the magnitude of queue fluctuation

would be reduced. Multi-level ECN (MECN) [10] is an example of such a scheme.

8Note that both q� and L�
0 depend on f .
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5.6 Simulations of the Model with Session-level Dynamics

and Variable Round-trip Delays

In the previous chapter, we have presented simulation results which point to the

convergence of the normalized queue when the number of persistent TCP flows is

large. In this section, we extend the simulations to incorporate both session-level

dynamics and the variable round-trip delays of connections in order to

demonstrate that a similar convergence still exists and also reveals the roles that

file size and round-trip have on the convergence of the queue along with

validation of the steady-state asymptotic queue formula in (5.32).

Numerical examples

This section presents numerical examples to study the behavior of the queue size

per flow. The numerical examples are evaluated through Monte-Carlo

simulations of the model in Section 5.1.

Example (i)

The system and control parameters are set as follows: C = 1 packet/timeslot and

f (N)(x) =




0, x < 2N

0.2x−2N
18N

, 2N ≤ x ≤ 20N

1, otherwise.

The initial values are set to according to Assumption (AW2b). The variables

evolve from their initial values according to the dynamics outlined in Section 5.1.

The workload Fi(t) ∼ geometric(p), i = 1, 2, . . . , N and t = 0, 1, . . . where
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p = 0.001, i.e., E [Fi(t)] = 1, 000 packets. The idle periods of sessions are

geometrically distributed with a mean of 20 timeslots. The receiver advertised

window size Wmax is set to 64. The exponential averaging parameter α is set to

0.01.

First, we simulate the dynamics when the random round-trip delay Di,new(t)

is uniformly distributed on the set D = {2, . . . , 6}. Figure 5.1 plots the evolution

of the queue size per flow with the number of sessions N = 100, 500, 1000, 5000,

and 10000. As expected, the oscillation in the queue size per flow decreases with

increasing N . Given the parameters used in this example with K =
√

3/2 (which

is shown in Section 4.3.2 to be a reasonable approximation), we have from (5.32)

q� = f−1
(

3/2
42

(
1
1
− 1

0.05·1000
)2)

= 10.1. Hence, as can be seen from Figure 5.1, the

steady-state queue size is close to the value predicted by (5.32).

In the next example, we demonstrate the role of the variance of the

round-trip delay. In this case, the round-trip delay of each connection is either 2

or 6 with equal probability, i.e., Bernoulli rv with

P [Di,new(t) = 2] = P [Di,new(t) = 6] = 0.5, t = 0, 1, . . ., which has the largest

variance of any distribution on D with the mean of 4. The rest of setup is

identical to the previous case. Figure 5.2 plots the evolution of the queue size per

flow. While the queue size converges to the same value as in the previous

example, notice that (i) the magnitude of the fluctuation for the same number of

users is greater when the round-trip distribution is Bernoulli, and (ii) the

convergence to steady-state is slower (in time) for Bernoulli distribution. This

clearly demonstrates that while the steady-state mean queue size depends only

on the mean of the round-trip delay, the transient behavior and the magnitude of

fluctuation are affected by the variance of round-trip delay.
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Figure 5.1: Evolution of queue size per flow when the round-trip is uniform.

Example (ii)

In the second example, we change the capacity per flow, workload and the idle

period distribution to be as follows: C = 0.6 packet/timeslot, and workload

Fi(t) ∼ geometric(p), i = 1, . . . , N and t = 0, 1, · · · , where p = 0.005,

i.e., E [Fi(t)] = 200 packets. The idle periods of sessions are geometrically

distributed with a mean of 5 timeslots. The rest of the parameters are identical

to Example (i).

Again, we simulate the dynamics when the random round-trip delay Di,new(t)

is uniformly distributed on the set D = {2, . . . , 10} so the average round-trip

delay equals 6 timeslots. Figure 5.3 plots the evolution of the queue size per flow
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Figure 5.2: Evolution of queue size per flow when the round-trip is Bernoulli.

with the number of sessions N = 100, 500, 1000, 5000, and 10000. Figure 5.4 plots

the evolution when Di,new(t) has the distribution

P [Di,new(t) = 2] = P [Di,new(t) = 10] = 0.5, i = 1, 2, . . . , N and t = 0, 1, . . ., so

that E [Di,new(t)] = 6.

Given the parameters used in this example again with K =
√

3/2, we have

q� ≈ f−1

(
K2

(
1

CE [D]
− 1

ParE [Far]

)2
)

= f−1

(
3

2

(
1

(0.6)(6)
− 1

0.2 · 200

)2
)

= 10.63,

which is close to the steady-state queue level in both simulations. Therefore, this
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Figure 5.3: Example (ii) : Evolution of queue size per flow when the round-trip is

uniform.

verifies that the steady-state average queue size depends only on the mean

round-trip delay.

The numerical examples presented here support the conclusions that (i) the

oscillation in the queue size per flow decreases with increasing N , (ii) the average

queue size at steady-state depends only on the mean RTT, and (iii) the

magnitude of the queue fluctuation depends on the distribution of the RTT.
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Figure 5.4: Example (ii) : Evolution of queue size per flow when the round-trip is

Bernoulli.

NS-2 simulation results

In this section we verify our analysis by a more realistic event-driven NS

simulations. In the simulation we gradually vary the number of sessions from 25

to 1,000, and study the queue dynamics. The system parameters used in the

simulation are scaled with the number of sessions N as follows: the bottleneck

link capacity C(N) = 0.24 · N Mbps, the bottleneck buffer B(N) = 25 · N packets.

The bottleneck RED gateway with ECN option is configured as follows:

f (N)(x) = f(N−1x) (i.e., a scaling similar to Assumption (AW1)) with

q
(N)
min = 2 · N, q

(N)
max = 10 · N , and pmax = 0.1 with the gentle mode enabled. The
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receiver advertised window Wmax is set to 64 packets and the packet size is fixed

to 1,000 bytes. The exponential averaging weight of the RED gateway is set to

0.02/N in order to have a similar time constant in all cases. A session generates a

geometrically distributed workload that with a mean of 100 packets, and the

interarrival times of the new workloads for each session are exponentially

distributed with a mean of 3.3 seconds. When a session runs out of data to

transfer, it terminates the TCP connection. A new TCP connection is initiated

by the session when the next workload arrives for the session. We also enable the

drop front option, i.e., the RED gateway marks the packet at the front of the

queue rather than the packet that has just arrived, in order to reduce the

feedback delay of the marks to the TCP senders.

The simulation results are obtained with two types of round-trip delay

distributions. First, the round-trip propagation delays of the sessions are

randomly selected uniformly from [52, 121.5] ms, with a mean of 87 ms. The

simulation result is shown in Figure 5.5. Next, the round-trip propagation delays

of the sessions are randomly selected to be either 52 ms or 121.5 ms with equal

probability (i.e., i.i.d. Bernoulli rv). This delay distribution also has the mean of

87 ms but with much higher variance. Figure 5.6 shows the simulation result

from this setting.

Notice that the fluctuations in the normalized queue level decrease as the

number of sessions N increases. Furthermore, observations on steady-state queue

level and fluctuations are all in agreement with the conclusion from Section 5.6.
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Figure 5.5: Queue dynamics of the NS-2 simulation where the round-trip distribu-

tion is uniform

5.7 A Proof of Lemma 1

First, the marking probability is fixed by (AW4b) and each of the session at the

steady-state is independent from each other. Recall that the size of the workload

as the connection is initiated and the round-trip delay are independent. We

notice that conditioning on the event that the connection is active,

P [min(W �, X�) = w|D� = d, active] = P [min(W �, X�) = w|active]. This is

because the distribution of rv min(W �, X�) during the transmission time is

independent of D� (this can be proven by induction as a consequence of the fixed

marking probability (AW4b)) and rv min(W �, X�) in between the transmission
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Figure 5.6: Queue dynamics of the NS-2 simulation where the round-trip distribu-

tion is Bernoulli

time has the same value as min(W �, X�) at the latest transmission time.

This also implies

P [D� = d|min(W �, X�) = w, active] = P [D� = d|active] .9

Furthermore,

P [β� ≥ D�|min(W �, X�) = w, active, D� = d] = P [β� ≥ D�|active, D� = d]

because once the connection is active and the round-trip time is d, the

probability of the counter β� greater or equal than d does not depend on

9This can be viewed as a consequence of the fact that the initial workload rv and the RTT rv

are independent.
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min(W �, X�). Finally,

P [β� ≥ D�|min(W �, X�) = w, active]

=
∑
d∈D

P [β� ≥ D�|min(W �, X�) = w, active, D� = d]

·P [D� = d|min(W �, X�) = w, active]

=
∑
d∈D

P [β� ≥ D�|active, D� = d]P [D� = d|min(W �, X�) = w, active]

=
∑
d∈D

P [β� ≥ D�|active, D� = d]P [D� = d|active]

= P [β� ≥ D�|active] ,

and the desired result follows directly from the last equality.
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Chapter 6

Weak Laws of Large Numbers

In this chapter, we present the proofs of the Weak Laws of Large Numbers for the

window-based models in Chapters 4 and 5, i.e., Theorems 2 and 4. The proofs of

these theorems utilize similar ideas revolving around induction of convergence

statements at each time t = 1, 2, . . .. The recursion of the asymptotic queue size

q(t) is established as a byproduct of the proofs of the convergence statements.

Before presenting the proofs of Theorems 2 and 4, we first present in Section

6.1 a generic model of congestion-controlled flows and RED and then state a

Weak Law of Large Numbers for this model (Theorem 6). Next, we show that

the convergence statements in Theorems 2 and 4 are mere corollaries of Theorem

6 in Section 6.2 and 6.3, respectively. The proof of Theorem 6 is presented in

Section 6.4. Finally, Section 6.5 establishes the distributional recursions in

Theorems 2 and 4 as a byproduct of the proof of Theorem 6.

6.1 A Weak Law of Large Numbers of a Generic Model

In this section, we develop a generic model of congestion-controlled flows and a

RED gateway. A Weak Law of Large Numbers for the model is then presented.
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This result not only helps facilitate the presentation of the proofs of Theorems 2

and 4, but also yields insights on the crucial elements in the development of these

limit theorems.

We denote the vector of state variables for session i in timeslot [t, t + 1) by

Y
(N)
i (t). The rv Y

(N)
i (t) takes values in a discrete space Y . Recall the recursion

of the queue is given by (1.9), where A
(N)
i (t) represents the amount of packets

injected into the network in timeslot [t, t + 1) by session i and depends on the

particular model. More specifically, the rv A
(N)
i (t) is determined as a function of

Y
(N)
i (t), i.e., A

(N)
i (t) = Φ(Y

(N)
i (t)), for some bounded continuous function

Φ : Y → R. Further, the recursion of the queue average used in the marking

mechanism is given by (5.12). A special case when α = 1 is equivalent to using

the instantaneous queue size for marking mechanism, e.g., the model in Theorem

2.

The marking mechanisms in Chapter 4 and 5 are similar and will be briefly

summarized here. Each incoming packet into the router in timeslot [t, t + 1) is

marked with a probability f (N)
(
Q̂(N)(t)

)
, depending on the average queue

length Q̂(N)(t) at the beginning of the timeslot [t, t + 1). We represent this

possibility by the {0, 1}-valued rvs M
(N)
i,j (t + 1) (j = 1, ..., A

(N)
i (t)) with the

interpretation that M
(N)
i,j (t + 1) = 0 (resp. M

(N)
i,j (t + 1) = 1) if the jth packet

from source i is marked (resp. not marked) in the RED buffer.

To do so we introduce a collection of i.i.d. [0, 1]-uniform rvs

{Vi,j(t + 1), i, j = 1, · · · ; t = 0, 1, · · · }. Given t = 0, 1, . . ., the rvs

{Vi,j(t + 1), i, j = 1, · · · } are assumed to be independent of all the events

happening prior to the beginning of timeslot [t + 1, t + 2). For each i = 1, . . . , N

and j = 1, 2, . . ., we define the marking rvs M
(N)
i,j (t + 1) as in (5.13), so that the
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rv M
(N)
i,j (t + 1) is the indicator function of the event that the jth packet from

source i is not marked in timeslot [t, t + 1). The indicator function of the event

that no packets from connection i in timeslot [t, t + 1) are marked can now be

written as M
(N)
i,new(t + 1) given in (5.14).

With Ft = σ
{

Q(N)(0),Y
(N)
i (0), Vi,j(s), 1 ≤ s ≤ t; i, j = 1, 2, . . .

}
, define

Z
(N)
i (t) := E

[
M

(N)
i,new(t + 1)|Ft

]
=

(
1 − f (N)(Q̂(N)(t))

)A
(N)
i (t)

. (6.1)

In other words, Z
(N)
i (t) is the conditional probability that, given Ft, connection i

will receive no marks during timeslot [t, t + 1).

Theorem 6 is discussed under the following assumptions.

(G1) There exists a continuous function f : R+ → [0, 1] such that for each N =

1, 2, . . ., Equation (1.1) holds.

(G2) For each N = 1, 2, . . ., the dynamics (1.9) and (5.12) start with the conditions

Q(N)(0) = Q̂(N)(t) = 0,

and

Y
(N)
i (0) = y, i = 1, . . . , N

for some y in Y .

(G3) For any bounded mapping g : Y → R, there exists a bounded and continuous

mapping Fg : [0, 1] × Y → R such that

E
[
g
(
Y

(N)
i (t + 1)

)
|Ft

]
= Fg

(
Z

(N)
i (t),Y

(N)
i (t)

)
. (6.2)
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Assumption (G1) is identical to Assumption (AW1) in Theorems 2 and 4, while

Assumption (G2) generalizes Assumption (AW2) and (A2Wb) in Theorems 2

and 4, respectively. It implies that for any t = 0, 1, . . . the collection of rvs

Y
(N)
1 (t), . . . ,Y

(N)
N (t) are exchangeable. We will show in the discussion of

Theorems 2 and 4 that Assumption (G3) indeed holds. Assumption (G3) states

that given the events leading up to the beginning of timeslot [t, t + 1), the

expected behavior of session i leading to the beginning of timeslot [t + 1, t + 2)

can also be determined using knowledge of the conditional marking probability

Z
(N)
i (t) and of Y

(N)
i (t). Note that (G3) immediately implies

E
[
g
(
Y

(N)
i (t + 1)

)]
= E

[
Fg

(
Z

(N)
i (t),Y

(N)
i (t)

)]
. (6.3)

Theorem 6. Assume that (G1)-(G3) hold. Then, for each N = 1, 2, . . . and

t = 0, 1, . . ., there exists (non-random) constants q(t), q̂(t) and a Y-valued rv such

that the following holds:

(i) The following convergences take place:

Q(N)(t)

N
P→N q(t) (6.4)

Q̂(N)(t)

N

P→N q̂(t) (6.5)

and

Y
(N)
1 (t) =⇒N Y(t). (6.6)

(ii) For any bounded function g : Y → R,

1
N

∑N
i=1g

(
Y

(N)
i (t)

)
P→N E [g (Y(t))] . (6.7)
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(iii) For any integer I = 1, 2, . . . , the rvs {Y(N)
i (t), i = 1, . . . , I} become asymp-

totically independent as N becomes large, with

lim
N→∞

P[Y
(N)
i (t) = yi, i = 1, · · · , I] =

I∏
i=1

P [Y(t) = yi] (6.8)

for any yi ∈ Y , i = 1, . . . , I.

In particular, if we take g = Φ in (6.7), we find

1
N

∑N
i=1A

(N)
i (t)

P→N E [A(t)] . (6.9)

From Theorem 6, we only need to show that the models in Theorems 2 and 4

both satisfy Assumption (G3), i.e., identify the mapping Fg in (6.2), and

subsequently establish the distributional recursions to finish the proofs of these

theorems. The proofs of Theorems 2 and 4 will be presented following this

approach in Section 6.2 and 6.3, respectively.

6.2 Proof of Theorem 2

According to the model in Chapter 4, the state variable Y
(N)
i (t) is W

(N)
i (t) and

the state space Y is the set {1, . . . , Wmax}. The exponential weighted average

parameter is α = 1 and the average queue length Q̂(N)(t) used for the marking

mechanism coincides with the instantaneous queue length Q(N)(t) for all

t = 0, 1, . . .. The number of packets injected into the network A
(N)
i (t) is given by

W
(N)
i (t). It still remains to show that Assumption (G3) in Theorem 6 and the

distributional recursion (4.10)-(4.11) hold.

For some positive integer p ≥ 1, consider an arbitrary mapping g : IN → R
p:

With g we associate the mappings g�, g� : IN → R
p given by

g�(w) := g(min (w + 1, Wmax)), w ∈ IN (6.10)
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and

g�(w) := g(min
(

w

2
�, Wmax

)
), w ∈ IN. (6.11)

Now fix i = 1, . . . , N and t = 0, 1, . . .. It follows from (4.5) that

g(W
(N)
i (t + 1)) (6.12)

= M
(N)
i (t + 1)g�(W

(N)
i (t)) + (1 − M

(N)
i (t + 1))g�(W

(N)
i (t))

Let Ft denote the σ-field generated by the rvs

{Q(N)(0), W
(N)
i (0), Vi(s), Vi,j(s), i, j = 1, 2, . . . ; s = 1, . . . , t}.

The rvs Q(N)(t) and W
(N)
i (t), i = 1, . . . , N , being all Ft-measurable, it holds

under the enforced independence assumptions that

E
[
M

(N)
i,j (t + 1)|Ft

]
= 1 − f (N)(Q(N)(t)), j = 1, 2, . . .

so that

E
[
M

(N)
i (t + 1)|Ft

]
= Z

(N)
i (t) (6.13)

by conditional independence, where we have set

Z
(N)
i (t) =

(
1 − f (N)(Q(N)(t))

)W
(N)
i (t)

. (6.14)

It is now plain that

M
(N)
i (t + 1) =st 1

[
Vi(t + 1) ≤ Z

(N)
i (t)

]
. (6.15)

It readily follows from (6.12) that

E
[
g(W

(N)
i (t + 1))|Ft

]
= Fg(Z

(N)
i (t), W

(N)
i (t)) (6.16)

where the mapping Fg : [0, 1] × IN → R
p is associated with g through

Fg(z, w) = zg�(w) + (1 − z)g�(w), z ∈ [0, 1], w ∈ IN. (6.17)
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Thus, we can take the mapping specified by (6.17) to be the mapping Fg

which ensures (6.2) and Assumption (G3) thus holds. The convergence

statements in Theorem 2 is now a direct corollary of Theorem 6. It remains only

to establish the distributional recursions (4.9)-(4.11). This will be accomplished

in Section 6.5 as it is a byproduct of the proof of Theorem 6.

6.3 Proof of Theorem 4

The state variable Y
(N)
i (t) in the model of Chapter 5 is given in (5.16) with the

state space Y given by (5.17). In the model, the exponential weighted average

parameter lies in the range (0, 1] and the average queue length Q̂(N)(t) is used for

the marking mechanism instead of the instantaneous queue length Q(N)(t) for all

t = 0, 1, . . .. Finally, we have A
(N)
i (t) given by (5.5).

Fix i = 1, . . . , N and consider an arbitrary bounded mapping g : Z
6
+ → R:
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Through a careful case analysis, it follows that

g(Y
(N)
i (t + 1)) (6.18)

= 1
[
X

(N)
i (t) = 0

]
×g (0, 1 [Ui(t + 1) < Par] Fi(t + 1), 1, 1 [Ui(t + 1) < Par] Di,new(t + 1), 0, 1)

+ 1
[
X

(N)
i (t) > A

(N)
i (t) > 0

]
×g(W

(N)
i (t), X

(N)
i (t) − A

(N)
i (t), M

(N)
i,new(t + 1)S

(N)
i (t), D

(N)
i (t), 1, M

(N)
i,new(t + 1))

+ 1
[
0 < X

(N)
i (t) ≤ A

(N)
i (t)

]
g(0, 0, 1, D

(N)
i (t), 1, M

(N)
i,new(t + 1))

+ 1
[
X

(N)
i (t) > 0, β

(N)
i (t) = D

(N)
i (t) − 1

]
×g(W

(N)
i,new(t + 1), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), D

(N)
i (t), M

(N)
i (t))

+ 1
[
X

(N)
i (t) > 0, β

(N)
i (t) < D

(N)
i (t) − 1

]
×g(W

(N)
i (t), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), β

(N)
i (t) + 1, Mi(t))

where

g(W
(N)
i,new(t + 1), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), D

(N)
i (t), M

(N)
i (t))

= M
(N)
i (t)S

(N)
i (t)F 1

g

(
W

(N)
i (t), X

(N)
i (t), D

(N)
i (t)

)
+ M

(N)
i (t)(1 − S

(N)
i (t))F 2

g

(
W

(N)
i (t), X

(N)
i (t), D

(N)
i (t)

)
+ (1 − M

(N)
i (t))F 3

g (W
(N)
i (t), X

(N)
i (t), D

(N)
i (t)). (6.19)

The mappings F 1
g , F 2

g and F 3
g : Z

3
+ → R are associated with g and defined by:

F 1
g (w, x, d) = g (min (2w ∨ 1, Wmax) , x, 1, d, d, 1) ,

F 2
g (w, x, d) = g (min (w + 1, Wmax) , x, 0, d, d, 1) ,

F 3
g (w, x, d) = g

(

w

2
�, x, 0, d, d, 0

)
. (6.20)

Let Ft denote the σ-field generated by the rvs {Q(N)(0), Y
(N)
i (0), Ui(s), Fi(s),

Di,new(s), Vi(s), Vi,j(s) , i, j = 1, 2, . . . ; s = 1, . . . , t }. So the rvs Q(N)(t) and
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Y
(N)
i (t) (i = 1, . . . , N) are Ft-measurable. Under the enforced independence

assumptions, it holds that

E
[
M

(N)
i,j (t + 1)|Ft

]
= 1 − f (N)(Q̂(N)(t)), i, j = 1, 2, . . . .

Therefore,

E


A(t)∏

i=1

M
(N)
i,j (t + 1)|Ft


 = Z

(N)
i (t) (6.21)

by conditional independence, where we have set

Z
(N)
i (t) =

(
1 − f (N)(Q̂(N)(t))

)A
(N)
i (t)

. (6.22)

It is now clear that
A(t)∏
i=1

M
(N)
i,j (t + 1) =st 1

[
Vi(t + 1) ≤ Z

(N)
i (t)

]
. (6.23)

Finally, it readily follows from (6.18) that

E
[
g(Y

(N)
i (t + 1))|Ft

]
= 1

[
X

(N)
i (t) = 0

]
×E [g (0, 1 [Ui(t + 1) < Par]Fi(t + 1), 1, 1 [Ui(t + 1) < Par]Di,new(t + 1), 0, 1)]

+ 1
[
X

(N)
i (t) > A

(N)
i (t) > 0

]
×[Z

(N)
i (t)g(W

(N)
i (t), X

(N)
i (t) − A

(N)
i (t), S

(N)
i (t), D

(N)
i (t), 1, 1)

+(1 − Z
(N)
i (t))g(W

(N)
i (t), X

(N)
i (t) − A

(N)
i (t), 0, D

(N)
i (t), 1, 0)]

+ 1
[
0 < X

(N)
i (t) ≤ A

(N)
i (t)

]
×[Z

(N)
i (t)g(0, 0, 1, D

(N)
i (t), 1, 1) + (1 − Z

(N)
i (t))g(0, 0, 1, D

(N)
i (t), 1, 0)]

+ 1
[
X

(N)
i (t) > 0, β

(N)
i (t) = D

(N)
i (t) − 1

]
g(W

(N)
i,new(t + 1), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), D

(N)
i (t), M

(N)
i (t))

+ 1
[
X

(N)
i (t) > 0, β

(N)
i (t) < D

(N)
i (t) − 1

]
g(W

(N)
i (t), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), β

(N)
i (t) + 1, Mi(t))
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= Fg(Z
(N)
i (t), W

(N)
i (t), X

(N)
i (t), S

(N)
i (t), D

(N)
i (t), β

(N)
i (t), M

(N)
i (t)) (6.24)

where the mapping Fg : [0, 1] × Z+ × Z+ × {0, 1} × Z+ × Z+ × {0, 1} → R is

associated with g through

Fg(z, w, x, s, d, b, m) (6.25)

= 1 [x = 0]

×E [g (0, 1 [Ui(t + 1) < Par]Fi(t + 1), 1, 1 [Ui(t + 1) < Par]Di,new(t + 1), 0, 1)]

+ 1 [x > min (w, x) 1 [b ≥ d > 0]]

×[zg(w, x − min (w, x)1 [b ≥ d > 0] , s, d, 1, 1)

+(1 − z)g(w, x − min (w, x)1 [b ≥ d > 0] , 0, d, 1, 0)]

+ 1 [0 < x ≤ min (w, x)1 [b ≥ d > 0]] [zg(0, 0, 1, d, 1, 1) + (1 − z)g(0, 0, 1, d, 1, 0)]

+ 1 [x > 0, b = d − 1] gnew(w, x, s, d, m)

+ 1 [x > 0, b < d − 1] g(w, x, s, d, b + 1, m),

with

gnew(w, x, s, d) = msF 1
g (w, x, d) + m(1 − s)F 2

g (w, x, d) + (1 − m)F 3
g (w, x, d).

We note that

E [g (0, 1 [Ui(t + 1) < Par] Fi(t + 1), 1, 1 [Ui(t + 1) < Par] Di,new(t + 1), 0, 1)]

always exists and is finite by the boundedness of the mapping g. Furthermore,

the mapping Fg is continuous with respect to the product topology on the set Y .

Thus, the mapping Fg specified by (6.25) ensures (6.2) and Assumption (G3)

thus holds. The convergence statements in Theorem 4 is again a direct corollary

of Theorem 6. The distributional recursions for Theorem 4 will be established in

Section 6.5.
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6.4 A Proof of Theorem 6

We introduce the following terminology to facilitate the discussion: For each

t = 0, 1, . . ., the statements [A:t], [B:t], [C:t] and [D:t] below refer to the

following convergence statements:

[A:t] Equations (6.4) and (6.5) hold for some non-random constants q(t) and q̂(t).

[B:t] Equation (6.6) holds for a Y-valued rv Y(t).

[C:t] For any integer I = 1, 2, . . ., the rv {Y(N)
i (t), i = 1, . . . , I} become asymp-

totically independent with large N as described by (6.8), where Y(t) are the

rvs occurring in [B:t].

[D:t] For any bounded mapping g : Y → R, the convergence (6.7) holds with Y(t)

being the rv occurring in [B:t].

With the help of a series of lemmas, we shall prove the validity of the

statements [A:t]–[D:t] for all t = 0, 1, . . .. We do so by induction on t and in the

process establish Theorem 6.

Lemma 2. Under (G1) and (G3), if [A:t] and [B:t] hold for some t = 0, 1, . . .,

then [B:t+1] holds.

Proof. Together the convergence [A:t] and [B:t] imply [29, Thm. 5.28, p. 150]

the joint convergence

(N−1Q̂(N)(t),Y
(N)
1 (t)) =⇒N (q̂(t),Y(t)). (6.26)

Next the continuity of the mappings f implies that of (x,y) → (1 − f(x))Φ(y) on

R+ × Y , so that

(Z
(N)
1 (t),Y

(N)
1 (t)) =⇒N (Z(t),Y(t)) (6.27)
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by the Continuous Mapping Theorem [29, Thm. 5.29, p. 150] with

Z(t) = (1 − f(q̂(t)))Φ(Y(t)) .

Consider (6.3) for any bounded arbitrary mapping g : Y → R, and recall that

the mapping Fg defined by (6.2) is continuous on [0, 1] × Y . Consequently, the

Continuous Mapping Theorem can again be invoked to yield

Fg(Z
(N)
1 (t),Y

(N)
1 (t)) =⇒N Fg(Z(t),Y(t)), (6.28)

whence

lim
N→∞

E
[
Fg(Z

(N)
1 (t),Y

(N)
1 (t))

]
= E [Fg(Z(t),Y(t))] (6.29)

by the Bounded Convergence Theorem [29, Thm. 4.16, p. 108]. Combining (6.3)

and (6.29) we get

lim
N→∞

E
[
g(Y

(N)
1 (t))

]
= E [Fg(Z(t),Y(t))] (6.30)

and the bounded mapping g being arbitrary, it follows immediately that

Y
(N)
1 (t + 1) =⇒N Y(t + 1)

for some Y-valued rv Y(t + 1) characterized by

E [g (Y(t + 1))] = E [Fg (Z(t),Y(t))] . (6.31)

Lemma 3. Under (G1), (G3), if [A:t] and [D:t] hold for some t = 0, 1, . . ., then

[A:t+1] also holds.
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Proof. From [A:t] and [D:t] (in particular (6.9)), we conclude that

Q(N)(t)

N
− C + 1

N

∑N
i=1A

(N)
i (t)

P→N q(t) − C + E [A(t)] (6.32)

and the desired result is a simple consequence of the continuity of the function

x → x+ since

Q(N)(t + 1)

N
=

[
Q(N)(t)

N
− C + 1

N

∑N
i=1A

(N)
i (t)

]+

for all N = 1, 2, . . .. Therefore,

q(t + 1) = [q(t) − C + E [A(t)]]+. (6.33)

Also Q̂(N)(t)
N

P→N q̂(t) from [A:t], then it is simple to see that

Q̂(N)(t + 1)

N
= (1 − α)

Q̂(N)(t)

N
+ α

Q(N)(t + 1)

N
P→N (1 − α)q̂(t) + αq(t + 1)

= q̂(t + 1). (6.34)

Lemma 4. Under (G1)–(G3), if [A:t], [B:t] and [C:t] hold for some t = 0, 1, . . .,

then [C:t+1] also holds.

Proof. We first observe from (6.2) that for a fixed N , the rvs Y
(N)
i (t + 1), i =

1, . . . , N are coupled only through the marking probability which depends only

on Q̂(N)(t). Fix a positive integer I. The rvs Y
(N)
1 (t + 1), . . . ,Y

(N)
I (t + 1) are

mutually independent given Ft. Consequently, for arbitrary bounded mappings

g1, . . . , gI : Y → R, we get

E

[
I∏

i=1

gi(Y
(N)
i (t + 1))|Ft

]
=

I∏
i=1

E
[
gi(Y

(N)
i (t + 1))|Ft

]

=

I∏
i=1

Fgi
(Z

(N)
i (t),Y

(N)
i (t))
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with the help of (G3).

Now it follows from (6.8) in [C:t] that the joint convergence

(
Y

(N)
1 (t), . . . ,Y

(N)
I (t)

)
=⇒N (Y1(t), . . . ,YI(t))

holds where limiting rvs Y1(t) . . . ,YI(t) are i.i.d. random vectors each distributed

according to Y(t). As in the proof of Lemma 2, the arguments leading to the

convergence (6.28) also lead to

(Fg1(Z
(N)
1 (t),Y

(N)
1 (t)), . . . , FgI

(Z
(N)
I (t),Y

(N)
I (t)))

=⇒N (Fg1(Z1(t),Y1(t)), . . . , FgI
(ZI(t),YI(t))

where the limiting rvs (Z1(t),Y1(t)), . . . , (ZI(t),YI(t)) are i.i.d. rvs each dis-

tributed according to the pair (Z(t),Y(t)). Therefore, by the Bounded Conver-

gence Theorem,

lim
N→∞

E

[
I∏

i=1

gi(Y
(N)
i (t + 1))

]
= lim

N→∞
E

[
I∏

i=1

Fgi
(Z

(N)
i (t),Y

(N)
i (t))

]

= E

[
I∏

i=1

Fgi
(Zi(t),Yi(t))

]

=

I∏
i=1

E [Fgi
(Zi(t),Yi(t))]

=
I∏

i=1

E [gi(Yi(t))] (6.35)

where the last equality made use of the relation (6.31). The desired result [C:t+1]

now follows from (6.35) given that the mappings g1, . . . , gI are arbitrary.

Lemma 5. Under (G1)–(G3), if [A:t], [B:t] and [C:t] hold for some t = 0, 1, . . .,

then [D:t] holds.
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Proof. Pick a bounded mapping g : Y → R. Under (G2) the rvs Y
(N)
i (t), i =

1, . . . , N , are exchangeable, so that

var
[

1
N

∑N
i=1g(Y

(N)
i (t))

]

= N−2
N∑

i=1

var[g(Y
(N)
i (t))]

+ N−2

N∑
i,j=1,i�=j

cov[g(Y
(N)
i (t)), g(Y

(N)
j (t))]

= N−1var[g(Y
(N)
1 (t))] +

N − 1

N
cov[g(Y

(N)
1 (t)), g(Y

(N)
2 (t))]. (6.36)

Now let N go to infinity in (6.36): The validity of [C:t] and the Bounded

Convergence Theorem already imply

lim
N→∞

cov[g(Y
(N)
1 (t)), g(Y

(N)
2 (t))] = cov[g(Y1(t)), g(Y2(t))] = 0 (6.37)

by asymptotic independence. On the other hand,

lim sup
N→∞

var[g(Y
(N)
1 (t))] < ∞

since g is bounded.

Combining these observations we readily see that

lim
N→∞

var
[

1
N

∑N
i=1g(Y

(N)
i (t))

]
= 0,

whence, by Chebyshev’s inequality,

1
N

∑N
i=1g(Y

(N)
i (t)) − E

[
1
N

∑N
i=1g(Y

(N)
i (t))

]
P→N 0. (6.38)

This last convergence is equivalent to

1
N

∑N
i=1g(Y

(N)
i (t)) − E

[
g(Y

(N)
1 (t))

]
P→N 0

by exchangeability, and the desired convergence result (6.7) is now immediate once

we remark under [B:t] that limN→∞ E
[
g(Y

(N)
1 (t))

]
= E [g(Y(t))].
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We now conclude with a proof of Theorem 6: We first note that under

(G1)-(G3) the statements [A:t]–[D:t] trivially hold for t = 0. Moreover, if

[A:t]–[C:t] hold for some t = 0, 1, . . ., then so do the statements [D:t], [B:t+1],

[A:t+1] and [C:t+1] by Lemma 5, Lemma 2, Lemma 3 and Lemma 4,

respectively. Consequently, the statements [A:t]–[D:t] do hold for all t = 0, 1, . . .

by induction and the validity of Claims (i)-(iii) of Theorem 6 is now established.

6.5 A Note on the Distributional Recursions

The proof of Lemma 3 also shows that

Q(N)(t + 1)

N

P→N q(t + 1)

and

Q̂(N)(t + 1)

N

P→N q̂(t + 1)

with non-random q(t + 1) and q̂(t + 1) determined by (6.33) and (6.34),

respectively. Therefore, the asymptotic queue recursions (4.9) in Chapter 4 and

(5.22)-(5.23) in Chapter 5 hold.

A moment of reflection and a comparison to the decomposition in

(6.16)-(6.17) and the analysis leading up to (6.31) in Lemma 2 will convince the

reader that the distributional recursions (4.10)-(4.11) in Theorem 2 hold.

Similarly, by using the decomposition (6.24)-(6.25), we establish the

distributional recursion (5.24) in Theorem 4.
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Chapter 7

A Proof of Central Limit Theorem

In this chapter, we present the proof of the Central Limit Theorem for the

window-based model in Chapter 4, i.e., Theorem 3. As in the proof of Theorem

6, we shall proceed by induction on t with the help of a series of technical facts.

Again the discussion is facilitated by introducing for each t = 0, 1, . . ., a number

of auxiliary convergence statements.

Throughout the discussion, for each t = 0, 1, . . ., we shall find it useful to write

Z(t) = (1 − f(q(t)))W (t) = γ(t)W (t) (7.1)

with

γ(t) = 1 − f(q(t)). (7.2)

Also we note a simple but useful consequence of Claim (i) of Theorem 2,

namely that

f(
Q(N)(t)

N
)

P→N f(q(t)) (7.3)

by the continuity of f .

With the aim to simplify the presentation, for arbitrary integer p and
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arbitrary mapping g : IN → R
p, we define

L(N)
g (t) :=

1

N

(
N∑

i=1

g(W
(N)
i (t)) − E [g(W (t))]

)
, N = 1, 2, . . .

for each t = 0, 1, . . .. Note that L̄(N)(t) corresponds to the choice g(w) = w.

The discussion is facilitated by introducing for each t = 0, 1, . . ., a number of

auxiliary convergence statements, namely [E:t] and [F:t] where

[E:t] For arbitrary integer p and arbitrary mapping g : IN → R
p, there exists an

R
p+1-valued rv (L0(t), Lg(t)) such that the joint convergence

√
N(L

(N)
0 (t), L(N)

g (t)) =⇒N (L0(t), Lg(t)) (7.4)

takes place;

[F:t] For arbitrary integer p and arbitrary mapping g : IN → R
p, there exists an

R
p+1-valued rv (L0(t + 1), Lg(t)) such that the joint convergence

√
N(L

(N)
0 (t + 1), L(N)

g (t)) =⇒N (L0(t + 1), Lg(t)) (7.5)

takes place with the rv L0(t + 1) related to L0(t) through the distributional

recurrence (4.26).

The convergence statements propagate in time as the discussion now shows:

Proposition 2. Under (AW1b)–(AW2), if [E:t] holds for some t = 0, 1, . . ., then

[F:t] holds with R-valued rv L0(t+1) satisfying the distributional recurrence (4.26).

Proposition 3. Under (AW1b)–(AW2), if [E:t] holds for some t = 0, 1, . . ., then

[E:t+1] also holds.

122



In the process of establishing Proposition 3, we will obtain the following fact:

For arbitrary mapping g : IN → R
p, the limiting rv Lg(t + 1) has the following

form

Lg(t + 1) =st Lĝt(t) + f ′(q(t))Rg(t)L0(t) + Hĝ(t + 1) (7.6)

where Rg(t) is introduced at (7.26) and the R
p-valued rv Hĝ(t + 1) is a zero-mean

Gaussian rv with covariance matrix

Σĝ(t + 1) := E [ĝ(W (t))ĝ(W (t))′Z(t)(1 − Z(t))] (7.7)

and this Gaussian rv is independent of the rvs Lĝt(t) and L0(t). The mappings ĝ

and ĝt are defined at (7.15) and (7.17), respectively.

We complete the proof of Theorem 3 by an easy induction argument: For

t = 0, [E:t] trivially holds since for each N = 1, 2, . . ., we have W
(N)
i (0) = W for

all i = 1, . . . , N and W (0) = W . It is now plain from Proposition 2 and

Proposition 3 that [E:t] and [F:t] both hold for all t = 0, 1, . . ., and Theorem 3 is

established.

7.1 A Proof of Proposition 2

Fix t = 0, 1, . . . and N = 1, 2, . . .. We begin by noting that under [E:t], the

mapping g being arbitrary, it is the case that there exists an R
p+2-valued rv

(L0(t), L̄(t), Lg(t)) such that the joint convergence

√
N(L

(N)
0 (t), L̄(N)(t), L(N)

g (t)) =⇒N (L0(t), L̄(t), Lg(t)) (7.8)

takes place. Indeed it suffices to use [E:t] with the mapping w → (w, g(w)).

As we seek to identify L0(t + 1), we rewrite the limiting recursion (4.9) in the

123



form

q(t + 1) = (q(t) − C + E [W (t)])+ = (−K(t))+ (7.9)

with K(t) given by (4.27). Combining this observation with the queue dynamics

(4.2), we get

L
(N)
0 (t + 1) =

(
Q(N)(t)

N
− C +

1

N

N∑
i=1

W
(N)
i (t)

)+

− (−K(t))+

= max

(
L

(N)
0 (t) +

1

N

N∑
i=1

W
(N)
i (t) − E [W (t)] , K(t)

)
− K(t)+

= max
(
L

(N)
0 (t) + L̄(N)(t), K(t)

)
− K(t)+ (7.10)

so that

√
NL

(N)
0 (t + 1) (7.11)

= max
(√

N
(
L

(N)
0 (t) + L̄(N)(t)

)
,
√

NK(t)
)
−

√
NK(t)+.

Invoking the Continuous Mapping Theorem, we conclude from (7.8) that

√
N
(
L

(N)
0 (t) + L̄(N)(t)

)
=⇒N L0(t) + L̄(t). (7.12)

Three cases emerge depending on the sign of K(t). If K(t) = 0, then (7.11)

reduces to

√
NL

(N)
0 (t + 1) =

(√
N
(
L

(N)
0 (t) + L̄(N)(t)

))+

(7.13)

again by the Continuous Mapping Theorem and the convergence (7.12) yields

√
NL

(N)
0 (t + 1) =⇒N

(
L0(t) + L̄(t)

)+
.

If K(t) < 0, then (7.11) reduces to

√
NL

(N)
0 (t + 1) = max

(√
N
(
L

(N)
0 (t) + L̄(N)(t)

)
,−

√
N |K(t)|

)
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and the convergence (7.12) yields

√
NL

(N)
0 (t + 1) =⇒N L0(t) + L̄(t)

since |K(t)| > 0 guarantees limN→∞
√

N |K(t)| = ∞.

Finally, if K(t) > 0, then (7.11) reduces to

√
NL

(N)
0 (t + 1) = max

(√
N
(
L

(N)
0 (t) + L̄(N)(t)

)
−
√

NK(t), 0
)

and the convergence (7.12) yields
√

NL
(N)
0 (t + 1) =⇒N 0 since

limN→∞
√

NK(t) = ∞. This completes the proof of Proposition 2. �

7.2 A Key Decomposition

To establish Proposition 3, we start with an arbitrary mapping g : IN → R
p for

some positive integer p, and define the mappings g�, g� : IN → R
p by (6.10) and

(6.11), respectively.

Fix N = 1, 2, . . ., i = 1, . . . , N and t = 0, 1, . . .. Making use of (4.5) and

(4.10), we get

g(W
(N)
i (t + 1)) − E [g(W (t + 1))]

= M
(N)
i (t + 1)g�(W

(N)
i (t)) + (1 − M

(N)
i (t + 1))g�(W

(N)
i (t))

−E [M(t + 1)g�(W (t)) + (1 − M(t + 1))g�(W (t))]

= g�(W
(N)
i (t)) − E [g�(W (t))]

+
(
g�(W

(N)
i (t)) − g�(W

(N)
i (t))

)
M

(N)
i (t + 1)

−E [(g�(W (t)) − g�(W (t)))M(t + 1)] . (7.14)
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Therefore, introducing the mapping ĝ : IN → R
p defined by

ĝ(w) = g�(w) − g�(w), w ∈ IN (7.15)

we obtain the decomposition

g(W
(N)
i (t + 1)) −E [g(W (t + 1))]

= g�(W
(N)
i (t)) −E [g�(W (t))]

+ ĝ(W
(N)
i (t))

(
M

(N)
i (t + 1) − Z

(N)
i (t)

)
+ ĝ(W

(N)
i (t))

(
Z

(N)
i (t) − γ(t)W

(N)
i (t)

)
+ ĝ(W

(N)
i (t))γ(t)W

(N)
i (t) −E [ĝ(W (t))Z(t)] . (7.16)

Finally, defining the mapping ĝt : IN → R
p by

ĝt(w) := g�(w) + ĝ(w) · γ(t)w, w ∈ IN (7.17)

we find

g(W
(N)
i (t + 1)) − E [g(W (t + 1))]

= ĝt(W
(N)
i (t)) − E [ĝt(W (t))]

+ ĝ(W
(N)
i (t))

(
M

(N)
i (t + 1) − Z

(N)
i (t)

)
+ ĝ(W

(N)
i (t))

(
Z

(N)
i (t) − γ(t)W

(N)
i (t)

)
. (7.18)

This decomposition forms the basis for the subsequent analysis. The subsequent

sections discuss the needed asymptotics for each of the three terms of (7.18).
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7.3 The First Piece of the Puzzle

To study the contribution of the second term of (7.18), we proceed as follows; For

any mapping g : IN → R
p, set

H(N)
g (t + 1) :=

1

N

N∑
i=1

g(W
(N)
i (t))

(
M

(N)
i (t + 1) − Z

(N)
i (t)

)
, N = 1, 2, . . .

for each t = 0, 1, . . .. We begin with the case p = 1.

Proposition 4. Assume (AW1b)-(AW2) to hold and consider an arbitrary map-

ping g : IN → R. Then, for each t = 0, 1, . . ., it holds that

E
[
exp

(
jθ
√

NH(N)
g (t + 1)

)
|Ft

]
P→N e−

θ2

2
σg(t+1), θ ∈ R (7.19)

with

σg(t + 1) := E
[
g(W (t))2Z(t)(1 − Z(t))

]
. (7.20)

The proof of Proposition 4 is given in Section 7.8. By using the standard

Cramer-Wold device [6, Thm. 7.7, p. 49] we obtain the following analog in higher

dimensions:

Corollary 1. Assume (AW1b)-(AW2) to hold and consider an arbitrary mapping

g : IN → R
p. Then, for each t = 0, 1, . . ., it holds that

E
[
exp

(
jθ′

√
NH(N)

g (t + 1)
)
|Ft

]
P→N e−

1
2
θ′Σg(t+1)θ, θ ∈ R

p (7.21)

with

Σg(t + 1) := E [g(W (t))g(W (t))′Z(t)(1 − Z(t))] . (7.22)

127



We conclude with the following crucial by-products: For some t = 0, 1, . . . ,

consider the situation where a sequence of R
q-valued rvs {Λ(N)(t), N = 1, 2, . . .}

weakly converges, say

Λ(N)(t) =⇒N Λ(t) (7.23)

for some limiting R
q-valued rv Λ(t). If for each N = 1, 2, . . ., the rv Λ(N)(t) is

Ft-measurable, then Corollary 1 readily implies [6, Thm. 3.2, p. 21] that

(
√

NH(N)
g (t + 1), Λ(N)(t)) =⇒N (Hg(t + 1), Λ(t)) (7.24)

for some zero-mean Gaussian rv Hg(t + 1) with covariance matrix Σg(t + 1). The

rv Hg(t + 1) is taken to be independent of the rv Λ(t).

7.4 The Delta Method

We begin by recalling a well-known byproduct of the Central Limit Theorem,

known as the Delta Method [29, p. 214]. Its statement is given as Proposition 1

in Chapter 4. The proof is provided in Section 7.6 as it is crucial for establishing

the joint convergence statement at the end of this section.

We are now in a position to handle the contributions of the last term of the

decomposition (7.18). For any mapping g : IN → R
p, set

Z(N)
g (t) :=

1

N

N∑
i=1

g(W
(N)
i (t))

(
γ(N)(t)W

(N)
i (t) − γ(t)W

(N)
i (t)

)
, N = 1, 2, . . .

for each t = 0, 1, . . .. The next result makes use of the Delta Method and its

proof is available in Section 7.9.

Proposition 5. Assume (AW1b)-(AW2) to hold and consider an arbitrary map-

ping g : IN → R
p. If for some t = 0, 1, . . ., the convergence (4.30) holds with some
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rv L0(t), then it holds that

√
NZ(N)

g (t) =⇒N f ′(q(t))Rg(t)L0(t) (7.25)

with

Rg(t) := E
[
W (t) (1 − f(q(t)))W (t)−1 g(W (t))

]
. (7.26)

A careful inspection of the proof of Proposition 5 in Section 7.9 reveals that a

somewhat stronger statement is true: For some t = 0, 1, . . . , consider the

situation where a sequence of R
q-valued rvs {Λ(N)(t), N = 1, 2, . . .} is weakly

convergent as in (7.23) together with (4.30), i.e., we have the joint convergence

(√
NL

(N)
0 (t), Λ(N)(t)

)
=⇒N (L0(t), Λ(t)). (7.27)

Then, it holds that

(√
NZ(N)

g (t), Λ(N)(t)
)

=⇒N (f ′(q(t))Rg(t)L0(t), Λ(t)) . (7.28)

7.5 A Proof of Proposition 3

Fix t = 0, 1, . . .. Going back to the basic decomposition (7.18), we note that

L(N)
g (t + 1) = L

(N)
ĝt

(t) + H
(N)
ĝ (t + 1) + Z

(N)
ĝ (t) (7.29)

for each N = 1, 2, . . ., where ĝ and ĝt are the mappings IN → R
p defined earlier at

(7.15) and (7.17), respectively.

By Corollary 1, we already have

√
NH

(N)
ĝ (t + 1) =⇒N Hĝ(t + 1) (7.30)

129



where the rv Hĝ(t + 1) is a zero-mean Gaussian rv with covariance matrix

Σĝ(t + 1). However, note that the rvs L
(N)
ĝt

(t) and Z
(N)
ĝ (t) are both Ft-measurable

for each N = 1, 2, . . .. Therefore, by the comments following Corollary 1,

Proposition 3 will be established if we can show the joint convergence

√
N(L

(N)
ĝt

(t), Z
(N)
ĝ (t)) =⇒N (Lĝt(t), Zĝ(t)) (7.31)

for some R
2p-valued rv (Lĝt(t), Zĝ(t)) with

Zĝ(t) = f ′(q(t))Rg(t)L0(t). (7.32)

Indeed, as indicated at the end of Section 7.3, Equations (7.30) and (7.31) imply

√
N(L

(N)
ĝt

(t), Z
(N)
ĝ (t), H

(N)
ĝ (t + 1)) =⇒N (Lĝt(t), Zĝ(t), Hĝ(t + 1)) (7.33)

with the Gaussian rv Hĝ(t + 1) independent of (Lĝt(t), Zĝ(t)). Consequently, we

have the convergence

√
NL(N)

g (t + 1) =⇒N Lĝt(t) + Zĝ(t) + Hĝ(t + 1). (7.34)

Combining (7.34) with (7.32) yields the desired result.

To establish the validity of (7.31) and (7.32), we proceed as follows: Under

[E:t], it is already the case that

√
N(L

(N)
0 (t), L

(N)
ĝt

(t)) =⇒N (L0(t), Lĝt(t)) (7.35)

while the strengthening (7.27)-(7.28) (with Λ(N)(t) =
√

NL
(N)
ĝt

(t)) of Proposition

5 leads to (7.28) in the form

√
N
(
L

(N)
ĝt

(t), Z(N)
g (t)

)
=⇒N (Lĝt(t), f

′(q(t))Rg(t)L0(t)) . (7.36)

In other words, joint convergence (7.31) takes place with the identification (7.32)

for the limiting rv.
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7.6 A Proof of Proposition 1

Fix t = 0, 1, . . . and N = 1, 2, . . .. We start with the observation that

√
N

(
f(

Q(N)(t)

N
) − f(q(t))

)

=
√

N

∫ Q(N)(t)
N

q(t)

(f ′(x) − f ′(q(t))) dx +
√

N

(
Q(N)(t)

N
− q(t)

)
f ′(q(t))

=
√

NU (N)(t) +
√

NL
(N)
0 (t)f ′(q(t)) (7.37)

where we have set

U (N)(t) :=

∫ Q(N)(t)
N

q(t)

(f ′(x) − f ′(q(t))) dx.

The desired conclusion (4.31) will readily follow if we show the convergence

√
NU (N)(t)

P→N 0. (7.38)

To that end, fix ε > 0 arbitrary. For any δ > 0, we have

P
[√

N
∣∣U (N)(t)

∣∣ > ε
]

≤ P

[√
N
∣∣U (N)(t)

∣∣ > ε,

∣∣∣∣Q(N)(t)

N
− q(t)

∣∣∣∣ ≤ δ

]

+ P

[∣∣∣∣Q(N)(t)

N
− q(t)

∣∣∣∣ > δ

]
. (7.39)

By the continuity of f ′ at x = q(t), we know that for each η > 0, there exists

δ(η) > 0 such that whenever |x − q(t)| < δ(η) in R+, we get

|f ′(x) − f ′(q(t))| ≤ η.

Now fix η > 0 and pick δ > 0 in the range (0, δ(η)). Thus, on the event

[
∣∣∣Q(N)(t)

N
− q(t)

∣∣∣ ≤ δ], we find that

√
N
∣∣U (N)(t)

∣∣ ≤ √
Nη

∣∣∣∣Q(N)(t)

N
− q(t)

∣∣∣∣ .
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Reporting this fact into the inequality (7.39) we obtain

P
[√

N
∣∣U (N)(t)

∣∣ > ε
]

≤ P

[√
N

∣∣∣∣Q(N)(t)

N
− q(t)

∣∣∣∣ >
ε

η

]
+ P

[∣∣∣∣Q(N)(t)

N
− q(t)

∣∣∣∣ > δ

]
(7.40)

Letting N go to infinity in (7.40) and using the convergence (4.6) and (4.30), we

get

lim sup
N→∞

P
[√

N
∣∣U (N)(t)

∣∣ > ε
]
≤ P

[
L0(t) >

ε

η

]
. (7.41)

The desired conclusion (7.38) is now immediate upon letting η > 0 go to zero in

this last inequality since its left-hand side is independent of η.

7.7 Strengthening Claim (ii) of Theorem 2

Before turning to the proof of Proposition 4 in the next section, we pause to

present a result that builds on Claim (ii) of Theorem 2. This result will prove

useful in establishing Proposition 4 later on.

Proposition 6. Assume (AW1)-(AW2) to hold. Then, for each t = 0, 1, . . ., and

any function g : IN → R, it holds that

1

N

N∑
i=1

g(W
(N)
i (t))Z

(N)
i (t)� P→N E

[
g(W (t))Z(t)�

]
(7.42)

for each integer 
 = 1, 2, . . ..

Proof. Fix t = 0, 1, . . . and 
 = 1, 2, . . .. Also fix N = 1, 2, . . . and i = 1, . . . , N .

We have

g(W
(N)
i (t))Z

(N)
i (t)�

= g(W
(N)
i (t))


(1 − f

(
Q(N)(t)

N

))�W
(N)
i (t)

− (1 − f(q(t)))�W
(N)
i (t)




+gt,�(W
(N)
i (t)) (7.43)
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with mapping gt,� : R → R given by

gt,�(w) := g(w) (1 − f(q(t)))�w , w ∈ IN.

On the other hand, for any pair a, b in [0, 1], we have

|ap − bp| = p|
∫ b

a

tp−1dt| ≤ p|b − a| (7.44)

for each p = 1, 2, . . ., so that∣∣∣∣∣∣
(

1 − f

(
Q(N)(t)
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))�W
(N)
i (t)
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i (t)
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≤ 
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)
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∣∣∣∣ . (7.45)

Therefore,

| 1
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(N)
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)
|

≤ 


∣∣∣∣f
(
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(

1

N
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W
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(N)
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)
(7.46)

and using the convergence (7.3), we get

1

N

N∑
i=1

g(W
(N)
i (t))

(
Z

(N)
i (t)� − (1 − f(q(t)))�W

(N)
i (t)

)
P→N 0 (7.47)

since

1

N

N∑
i=1

W
(N)
i (t)|g(W

(N)
i (t))| P→N E [W (t)|g(W (t))|] (7.48)

by Claim (ii) of Theorem 2.

The conclusion is now immediate from the decomposition (7.43), the conver-

gence (7.48) and the convergence

1

N

N∑
i=1

gt,�(W
(N)
i (t))

P→N E [gt,�(W (t))] (7.49)

obtained from Claim (ii) of Theorem 2.
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7.8 A Proof of Proposition 4

The proof of Proposition 4 relies on the following two technical lemmas; their

proofs are omitted in the interest of brevity.

Lemma 6. For any x in R, the Taylor series expansion

ejx = 1 + jx − x2

2
+ R(x) (7.50)

holds, with complex-valued remainder term R(x) satisfying

|R(x)| ≤ |x|3
6

. (7.51)

Lemma 7. Consider the array of complex-valued rvs {CN,i, i = 1, . . . , N ; N =

1, 2, . . .} with |CN,i| < 1 for i = 1, . . . , N . If maxi=1,...,N |CN,i| →N 0 a.s. and∑N
i=1 CN,i

P→N λ, then
N∏

i=1

(1 − CN,i)
P→N e−λ. (7.52)

The proof of Proposition 4 can now proceed: Fix N = 1, 2, . . . and θ arbitrary

in R. By conditional independence, we find that

E
[
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]
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)
(7.53)

with

C
(N)
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[
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[
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g(W
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for each i = 1, . . . , N .

In view of these remarks, the desired result (7.19) is now a simple consequence

of Lemma 7 provided the required conditions can be shown hold, namely

lim
N

max
i=1,...,N

|C(N)
i (t)| = 0 a.s. (7.55)

and
N∑

i=1

C
(N)
i (t)

P→N σg(t + 1) (7.56)

with σg(t + 1) given by (7.20).

Condition (7.55) trivially holds. To establish (7.56) we invoke Lemma 6 to

write

C
(N)
i (t) = Z

(N)
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(N)
i,1 (t) + (1 − Z

(N)
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(N)
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with
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and
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where remainder terms β
(N)
i,1 (t; θ) and β

(N)
i,2 (t; θ) in these expressions satisfy

|β(N)
i,1 (t; θ)|, |β(N)

i,2 (t; θ)| ≤ C
|θ|3

6
√

N3

for some positive constant C, say C := max{|g(w)|3, w = 1, . . . , Wmax}.
Reporting (7.58) and (7.59) into (7.57) and simplifying the resulting

expression, we find
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with remainder term

γ
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i (t; θ) := Z
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i (t)β
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i,1 (t; θ) + (1 − Z

(N)
i (t))β
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It is now plain that
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i=1
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where we have set

Γ(N)(t) =
1
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N∑
i=1

γ
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By Proposition 6 (with 
 = 1 and 
 = 2) we get
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P→N σg(t + 1) (7.63)

with σg(t + 1) given by (7.20), while limN→∞Γ(N)(t) = 0 a.s. by virtue of (7.61).

The desired conclusion (7.56) is obtained and the proof of Proposition 4 is

complete.

7.9 A Proof of Proposition 5

Fix N = 1, 2, . . . and i = 1, . . . , N . Observe that
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where we have set

∆
(N)
i (t) :=

∫ f(
Q(N)(t)

N
)

f(q(t))

[
(1 − y)W

(N)
i (t)−1 − (1 − f(q(t)))W

(N)
i (t)−1

]
dy.

Consequently,

√
NZ(N)

g (t) =
√

N

(
1

N

N∑
i=1

g(W
(N)
i (t))W

(N)
i (t)∆

(N)
i (t)

)

+

(
1

N

N∑
i=1

g�
t (W

(N)
i (t))

)
·
√

N

(
f(

Q(N)(t)

N
) − f(q(t))

)
(7.65)

where the mapping g�
t : IN → R

p is defined by

g�
t (w) := wg(w) (1 − f(q(t)))w−1 , w ∈ IN.

Using the inequality (7.44), we find that
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Thus,
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Let N go to infinity. Coupling the convergence (7.3) with Proposition 1 we find

that
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It now follows by Claim (ii) of Theorem 2 (applied to the mapping w → w|g(w)|)
that
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Thus, in view of the decomposition (7.64) (with (7.65)) and of the

convergence (7.67), it is now plain that the convergence (7.25) will hold provided

we can show that

√
N

(
f(

Q(N)(t)

N
) − f(q(t))

)(
1

N

N∑
i=1

g�
t (W

(N)
i (t))

)
=⇒N f ′(q(t))Rg(t)L0(t).

(7.68)

However,
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and (7.68) follows by applying Proposition 1.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

The main focus of this dissertation is on characterizing the dynamics of the TCP

congestion-control mechanism and AQM (in particular RED) in the regime where

the number of competing flows is large. The systems we considered can be

thought of as stochastic feedback systems. The first system we considered is the

rate-based model in Chapter 3 and the Weak Law of Large Numbers (Theorem

1) is established for the model. It reveals the natural simplification of the system

dynamics. In fact, Theorem 1 indicates that the asymptotic queue follows a

simple deterministic recursion which involves only the expectation of the limiting

number of packets injected into the network in a timeslot. The recursion for the

limiting number of packets injected into the network is also closely related to the

recursion of a single traffic flow, i.e., at any time they both have the same

conditional expectation given the same state in the previous timeslot and

marking/dropping probability.

While the model is subsequently refined to be more realistic in Chapter 4 – 5,

similar results can also be established. These Weak Laws of Large Numbers
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therefore provide justification for the analysis of the TCP/AQM interaction

through a deterministic feedback system when there exists a large number of

flows. More specifically, the recursion of the asymptotic (or average) queue,

i.e., q(t), depends only on the capacity of the queue and the expected amount of

traffic injected into the network in each timeslot, i.e., E [A(t)]. This is similar to

many of the existing models which analyze the dynamics of TCP and AQM

mechanisms as deterministic feedback-delay systems.

Following the aforementioned observation, this research complements the

control-theoretic studies of TCP/AQM dynamics. Much of the research effort

along this direction has been focused on either the locally or globally stability of

the controlled queue (as surveyed in Section 2.2). These work reveal sufficient

conditions for the queue to either be local or global asymptotically stable,

i.e., the queue eventually settles to an equilibrium value. Under these sufficient

conditions, Assumption (AW4), i.e., (q(t),Y(t)) =⇒N (q�,Y�), is reasonable. In

other words, the average behavior of such complex stochastic feedback system at

the equilibrium becomes easy to specify through steady-state analysis given that

there is a large number of flows and the system parameters are set appropriately

using the sufficient conditions from the control-theoretic analysis.

The system in the large number of flows asymptotic regime at the

steady-state is simple to analyze because of the behavior of any single flow no

longer influences the network behavior. Also, the finding that the flows become

asymptotically independent also supports the belief that RED breaks global

synchronization with a large number of flows.

As expected, the natural simplification of the models and these asymptotic

properties can be found in the regime where the number of interacting flows is
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large without having to rely on ad-hoc assumptions during the analysis.

Furthermore, the limiting models are also compatible with other previously

proposed models in their respective regime, thereby revealing the versatility of

the limiting models.

While the Weak Laws of Large Numbers capture the average behavior of the

systems, the Central Limit analysis capture the errors/uncertainties due to the

randomness in the system. These uncertainties appear as fluctuations in the

queue and are not represented in the deterministic models.

It is noteworthy from the Central Limit analysis that the random marking

mechanism in AQM always introduces random fluctuations in the queue. This is

an intrinsic behavior for the random marking mechanism due to the limited

granularity in the feedback information. As noted in Chapter 5, such a

fluctuation can be reduced by improving the quality of the feedback information

either through an increase in the number of ECN bits or through an in-band

signaling mechanism as suggested in [56]. There are, however, other means to

avoid such fluctuations. For example, TCP Vegas [9] and its variants such as

TCP FAST [27] use delay information instead of marks to adjust their congestion

windows. Given an accurate timestamp in the packets, each flow can accurately

calculate the appropriate adjustment to its congestion window size, thus greatly

reducing uncertainty from the randomness in the marks.

Although the fluctuations due to randomness can be well-approximated

through the CLT, the feedback system in the deterministic (or limiting) models

also introduces fluctuations (or oscillations) as classical control-theoretic analysis

indicates. The random fluctuations derived in the Central Limit analysis

complement these oscillations. Moreover, some parameters in the system can also
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induce fluctuations in both components, e.g., the steep slope of the marking

probability function not only causes fluctuation in the random components as

suggested by the Delta Method but also induces oscillations as the feedback gain

being large in the deterministic model.

Overall, this Ph.D. dissertation provides a novel framework for characterizing

the asymptotic dynamics of the network containing many flows where flows

interacts with each other through the random feedback signaling from the

network. The results obtained are both compatible with and complementary to

the existing literature. The approach used here can also be generalized to other

weakly interacting stochastic feedback systems.

8.2 Future Directions

While this thesis studies in depth the problem of characterizing the dynamics of

the TCP congestion-control mechanism and AQM schemes, there remain several

open problems for research as outlined below.

Uncontrolled cross traffic

First, consider the situation where the bottleneck gateway has uncontrolled cross

traffic, i.e., the amount of traffic injected into the network is unresponsive to the

network congestion, then the overall number of packets arriving at the bottleneck

gateway will be a combination from both TCP flows and uncontrolled flows. If

the queue is small and the amount of uncontrolled cross traffic is small

comparing to the capacity (as it should in any stable network), then a reasonable

approximation is to reduce the capacity of the bottleneck gateway equal to the
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number of packets from the uncontrolled flows in each timeslot in the model. The

only difference in the modified model from the models considered in this thesis is

that the available capacity in the bottleneck gateway varies as a function of time.

In [52], a discrete-time traffic model such as M/G/∞ traffic arrival process has

been found suitable for modeling the uncontrolled cross traffic comprising of

many uncontrolled flows.

Multiple bottleneck

While recent work has shown that a single bottleneck model is a reasonable

approximation for an analysis of open-loop or uncontrolled flows in a multi-stage

network of queues [12], it is not clear that this would be the case for

feedback-based flows such as TCP. Studies have shown that a large number of

TCP flows over multiple bottleneck queue utilizing Tail Drop gateway exhibits

very complex behavior [3]. It remains an open problem on how a collection of

TCP flows will behave in a general network setting. Deterministic models of

congestion-control utilizing an optimization framework are proposed in [30, 37]. It

merits an investigation as to whether these deterministic models can be justified

under a large number of flows asymptotic similar to the single bottleneck case.

Wireless physical layer

In all of the models considered in this thesis, the only point of interaction

between flows are at the bottleneck gateway. However, if flows also share a

common wireless physical layer (such as the third generation wireless data

networks or ad-hoc networks), then flows can also interact in the physical/MAC

layer as well. For example, the flows utilizing the downlink of the cdma2000
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1xEV-DO (IS-856) wireless cellular network will interact through the proportional

fair scheduler and their uplink packets (e.g., ACK packets) will interact through

interference in the physical layer and its MAC layer mechanism [62]. The effect of

this added layer of interaction to the system is difficult to analyze and quantify

using traditional modeling techniques. Nevertheless, we can expect that model

simplification will occur in the large number of flows asymptotic regime. This

might shed some insights on the complex behavior of the system.

Selection of the feedback function

As previously mentioned in the discussion on the CLT in Chapter 5, the selection

of the appropriate feedback mechanism can now be evaluated systematically

through the limiting models.

Extension to other congestion controllers and AQM mechanisms

Although the modeling efforts in this thesis are concentrated on TCP/RED

which are the dominant combination of the existing congestion-control and AQM

mechanism, it is easy to generalize the approach to other congestion controllers

and AQM mechanisms (see [58] for an example). We will briefly describe such

generalizations in this section.

AQM gateways control their level of congestion by randomly marking

incoming packets to signal the traffic sources of the congestion level. In order to

do so, each AQM mechanism calculates a quantity which can be referred to as a

congestion measure. The congestion measure in a timeslot can be a function of

the queue sizes (current size and past values), of the volume of the incoming

traffic, and of the previous values of the congestion measure. We can then use a
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continuous mapping to map this congestion measure to the marking probability

in the AQM mechanism. Under appropriate scaling rules, this marking

probability will converge under a large number of flows.

The congestion controllers can be generalized through the deterministic

mappings which map the current and past history of the state variables

(e.g., congestion window) and marks from the AQM mechanisms to the state

variables in the next timeslot. Under appropriate assumptions, the limiting

model of the generalized system can be derived along the lines of the analysis

given in this dissertation.
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