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Abstract

Coherent trellis coded modulation (TCM) systems employing diversity combining
are analyzed. Three different kinds of combining are considered: maximal ratio, equal
gain, and selection combining. For each combining scheme, the cutoff rate parame-
ter is derived assuming transmission over a fully-interleaved channel with flat, slow,
Rayleigh fading; in addition, tight upper bounds on the pairwise error probabilities
are derived. These upper bounds are expressed in product form to permit bounding
of the BER via the transfer function approach. In each case it is assumed that the
diversity branches are independent and that the channel state information (CSI) can
be recovered perfectly.

Also included is an analysis of maximal ratio combining when the diversity branches
are correlated; the cutoff rate and a tight upper bound on the pairwise error probability
are derived. It is shown that, with double diversity, a branch correlation coefficient as
high as 0.5 results in only slight performance degradation.
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1 Introduction

Diversity combining is a well-known and effective method for improving the performance
of digital communication systems over fading channels [1]- [3]. The basic principle of M-
fold diversity is to use M independent channels so that the probability of a “deep fade”
on all channels is low. These independent channels can be created in a number of ways,
including frequency, time, and/or polarization diversity; if multiple antennas are used to
receive multiple versions of the received signal, the approach is called spatial diversity. A
combining circuit is used to form a single resultant signal from the M different “branch”

signals. There are (at least) three different methods for combining.

e The optimal combining scheme is called mazimal ratio combining (MRC) [2, 3]. In
such a scheme, the matched filter output of each diversity path is weighted by the
fading attenuation of that path. The resultant SNR at the output of the combiner is
the sum of the SNR’s of the M branches.

e In equal gain combining (EGC) the resultant signal is simply the unweighted sum of

the signals from the M branches.

e In selection combining (SC) the resultant signal is the one with highest SNR among
the M received signals; in practice, the signal with the strongest received signal — i.e.,

signal plus noise — is selected.

Error probability expressions for uncoded systems with different combining schemes in
Rayleigh fading are presented in [4, 5)

Bandwidth efficient coding such as trellis-coded modulation (TCM) [6] also provides a
form of diversity — time diversity. The performance of TCM schemes may be evaluated
by computing the pairwise error probability and using the transfer function approach to

upper-bound the bit error rate [7]-[9].



Recently, the combined use of bandwidth efficient codes with diversity reception has been
investigated [10]-[14]. In [10], trellis coded 16-QAM with maximal ratio combining was pro-
posed for use in a TDMA digital cellular system. Upper bounds on the bit error probability
for TCM with different combining schemes were presented in [11, 12]. These expressions use
the Chernoff bound to establish an upper limit on the pairwise error probability and are
loose. A tighter upper bound on the bit error probability for maximal ratio combining has
recently been developed by Ventura-Traveset, Caire, Biglieri, and Taricco [14]; the upper
bound in [14] requires numerical evaluation of the pairwise error probability and the use of
a truncated transfer function.

In this paper, the use of trellis-coded modulation with diversity reception is investigated.
Cutoff rate expressions for the Rayleigh distributed channel with diversity reception and the
three different combining schemes are presented, as are tight upper bounds on the pairwise
error probability. The same system ‘conﬁgurations in {11, 12] are used; the new bounds are
shown to be tighter than those presented in [11, 12].

The next section describes the system model and the combining metrics. In Section 3,
expressions for the cutoff rates for the three combining schemes are derived and compared.
Tight upper bounds on the bit error probability for trellis coded systems with the three
combining schemes are derived and analyzed in Section 4. Section 5 analyzes the effect of

branch correlation on maximal ratio combining. Finally, Section 6 gives conclusions.

2 System Model

The underlying system can be described as follows. Suppose the complex signal z; is trans-

mitted at time ¢ and M corresponding signals y, = {¥i1, Yi2, - - -+ Yim} are received; i.e.,
Yil = @1T;+ Ny
Yiz = 02T+ N2
(1)
YiM = QMT;+ Nypm



where g; = {ai1, a2, . . ., a; m} are the fading amplitudes, assumed to be Rayleigh-distributed
and normalized so E(af,j) = 1; we assume ideal interleaving and independent diversity
branches, so {a;;} are i.i.d. Rayleigh. Here also, {n;;} are complex-valued noise samples
with independent real and imaginary components, each Gaussian distributed with mean zero
and variance Ny/2.

The transmitter produces a sequence of signals xy = {z1,%9,...,Zn}. At the receiver,
the sequence of received M-tuples yy = {Qv Ygr -+ ,gN} and the channel fade amplitudes
ay = {a1,a,...,ay} are the inputs to a TCM decoder which performs maximum likelihood
(ML) decoding assuming ideal channel state information - i.e., the assumption that ay is
available to the decoder means that the receiver can ascertain the severity of the fading
during each signaling interval. Techniques such as pilot symbol insertion [17] or decision
feedback coupled with adaptive linear prediction [18] can be employed to recover ay.

The decoder selects as its estimate of the transmitted sequence the one minimizing the

decoding metric
N
m(xN,yN;aN Zm muyz’ (2)
=1

Here the symbol metric m(z;, ;s ;) depends on which form of signal combining is used.

e For maximal ratio combining, the assumption of CSI means that the signal metric is
given by
m(a:,,y a Z Iyzl a; 1 T; 2,

e For equal gain combining,

M 2

(yi,l - ai,l-’Ei)

m(x;,Y;8;) = —

e For selection combining,

m(xiagi§ﬁi) = _|yi,j* — 0; T 2

where

j* = argmax{a;;,j =1,...,M}.

4



It should be noted that, in [11], Rasmussen and Wicker refered to the metric in (2) as
the “interleaved code combining” (ICC) metric. ICC is a diversity combining technique in
which each of the M received K-dimensional diversity signals is regarded as a component of a
single M K-dimensional signal. Without CSI at the receiver, this technique may be regarded
(as Rasmussen and Wicker did in [11]) to be a form of equal-gain combining; however, with
the assumption of CSI at the receiver, this approach becomes equivalent to maximal ratio

combining.
3 Cutoff Rate for Diversity Reception

The pairwise error probability P(xy — Xy) is the conditional probability that the metric
associated with the coded sequence Xy exceeds that of xy, given xy was in fact transmitted.

It can be upper bounded using the Chernoff bound as follows

P(xy = %Xy) = P(m(Xn,yn;an) — m(xXn,yn;an) 2 0)
< Elexp(Mm(%n,yn;an) — m(Xn,yn; an)})] (3)
= C(XN, )ACN, )\) = Hzlil C(.’L‘“ ji, >‘)
where
C(zi, %, A) = Elexp(Mm(&:,y,5 8;) — m(zi, ;5 )})], (4)

and the expectation is taken with respect to the noise n; and the fading a;.

The cutoff rate R, in bits/transmitted signal can be expressed as [19)

r;€EAT;EA

R, = 2log,(|A]|) — log, (Z > Cxi, & ) (5)

where A is the signal set and C(x;, ;) = miny, C(z;, &;, A).

For maximal ratio combining, the cutoff rate is given by [14]

R, = 2log,(]A|) — log, (E Z ! ) (6)

2
l‘zEAIJEA (1+ 1"—11 )

Figure 1 shows the cutoff rate values of the 16-QAM signal constellation and maximal

ratio combining with diversity orders of M = 1,2, 3,4. It is clear that the largest incremental
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gain is obtained in going from single to double diversity. The coding gains diminish as the
order of diversity increases. For example, the curves show that reliable communication at a
rate of 2 bits/symbol can be achieved at E;/N, = 11 dB (or E;/N, = 8 dB) for single channel
reception. However, the required SNR can be reduced to E,/N, = 6.1 dB (or Ey/N, = 3.1
dB) if double diversity with maximal ratio combining is used.

In equal gain combining the tightest conditional Chernoff bound is C(z;, Z;, A|g;)

oY — i A _ i — &l
Claidifas) = min{C (i 3, \a)} = exp(—p i) (7
where
M
p=T"= (3 ay) (8)
=1

However, no closed form expression for the sum of Rayleigh distributed random variables is
available for the case of M > 2, so an approximate expression is used. This expression is
based on the small argument approximation [2, 3]; Beaulieu [20] showed that this expression

is very accurate for M < 8. The approximation to the pdf of T is given by

£@M-1) exp(—12/2b,
fT(t) = 2(M_1):)§)((]w _/1)|) (9)

for £ > 0, where
bo = [(2M — )YM = [(2M — 1) - (2M = 3)---3-1]'/M, (10)

Recognizing that f, (1) = fr(,/i)/2,/i, we obtain the approximation

(M=1) exp(—p/b,
e a

fulp) =

for 4 > 0. So p has an M-Erlang distribution with parameter 1/b,. The last step is to
perform the intergration

A 7 |zs — &)
Cms, ;) = (2M_1 TGS / pM ™ exp(— )exp( ~H AN, Jap.  (12)

Therefore, the cutoff rate for equal gain combining receivers is expressed as

1
R, = 2log,(|A]) — lo . 13
g2(| I 82 (ng zJZe:A (1 + [(2M— 1)!v]1/M !x41\;1:,|2) ) ( )
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Comparing equation (13) with (6), we see that maximal ratio combining always has a greater
cutoff rate than equal gain combining because M/[(2M — 1)!!]'/M is greater than one and
monotonically increases with M. Figure 2 shows the cutoff rate values of the 16-QAM signal
constellation and equal gain combining with a diversity order of M = 1,2,3,4. Similar to
the maximal ratio combining case, the largest incremental gain is obtained in going from
single to double diversity and coding gains diminish as the order of diversity increases.

In the selection combining case, the Chernoff bound can be written as

= En, . [exp(Myi g+ — a1+ 2l — |Yige — aijedi|*})].
Again, it can be simplified to

C(wi,ﬁi, Aa) = En,-,j* [exp()‘{_a?,j*|wi - §7i|2 - —2(ai,j*)§R(ni,j* (@i — :i'z)*)})]
= exp(—Aaf |z — Zi|*) By, . [exp{—2Xa; »R(nij - (x: — 2:)%)}]  (15)
= exp(—Xafv|z;i — Zi|?) exp{A%a ;. No|z; — &’}

Therefore,

C(l‘i,fii, )\Igz) = exp(—)\(a,-,j*)z(l — N,,/\)|x, — izlz) (16)
C(z;, %i, A|lg;) is minimized by choosing A = 1/2N,. Therefore, the tightest conditional
Chernoff bound can be written as

|z; — 24|

) (17)

C(ziZilai ) = m,\in{C’(mi,a?,-, Ala; j*)} = exp(—v
where
V=0 = max{a’z?,l’ a?’2, T a?,M}' (18)

Since {@i1,aiz2- - -ainm} are independent, v is just the maximum of M independent exponen-

tial random variables, each with mean one, so its pdf is given by
fulv) = M[1 — exp(=v)| ¥~V exp(-v), (19)
for v > 0, which can be rewritten using the binomial expansion as

L) = (-1 ( ]‘If -} ) exp(—kv). (20)

k=1
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Performing the integration, the Chernoff factor simplifies to

C(z:, 3:) = f(-nkﬂM ( M-1 ) 1 (21)
1y Ve P k _ 1 k + -[%4;1\21& .

Therefore, the cutoff rate for selection combining receivers is given by

R, = 2logy(|4]) — log, (Z )3 [Z(—l)k“M( i ) ,H;D @)

T;€Az;EA | k=1
Figure 3 shows the cutoff rate values of the 16-QAM signal constellation and selection
combining with diversity orders of M = 1,2,3,4. The “diminishing returns” effect is more

obvious in this case.

4 Pairwise Error Probability

In this section, tight upper bounds on the pairwise error probability are derived for the three
combining schemes. Moreover, the pairwise error probability expressions are expressed in
product form — i.e.,

N
P(XN — JACNlaN) = KC X H W(CIJ[,Z%Z), (23)

=1
where K, is a constant that does not depend on the length of the error sequence, and W (zy, Z;)

is the error weight profile between z; and ;. Expressing the pairwise error probability in this
form allows the use of the transfer function technique of trellis codes to be used in bounding

the bit error rate.

4.1 Maximal Ratio Combiner

The conditional pairwise error probability for maximal ratio combining can be expressed as

P(xy — %nlay) = P(m(kn,yn;an) — m(xy,yn;an) > 0lay) (24)
= P(TX, S¥ (yin — aigzil® — lyig — aiy@sl?) > Olaw)
which can be simplified to
P(xy = %ylan) = P(ZiL SH[-ad |z — 2:]* — 20, R{n;(z; — £)*}] < 0an) (25)

= Ply>3N, M, azz,z|-'”i — Zi|*|lan),
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where zy is zero-mean Gaussian with variance 2N, ¥¥; ¥/, a2)|z; — £;|>. This probability

1 N
P(xy — kXylay) = §erfc (, Z'y,-di) (26)
=1

where erfc(z) = (2/y/7) [P e t'dt, d; = |z; — £3]?/AN, and v = ¥, a?,. Since the a;;’s

can be expressed as

are iid. Rayleigh distributed random variables with E(a?;) = 1, their squares are i.i.d.
exponentially distributed random variables with a mean equal to one. Hence, +; will have

an M-Erlang distribution with parameter one - i.e., its pdf is

1 1) —m,
fy(m) = m%‘w Ve, 4> 0. (27)

The unconditional pairwise error probability is thus

P(xy — Xn) = %/ooo " '/Ooo erfc (\);’Yidi) fn) - fy(yw)dm - - -dyw. (28)

Define
d:
(51; = 1 +Zdi and w; = ’)’,(1 + d,) (29)
Then the unconditional pairwise error probability can be represented as
P(XN - }A{N) = % Hien '(1+—¢111)M fooo e f()oo erfc (V Efil 5‘iwi> (30)

x exp [LN, Siwi] f(w1) -+ flwn)dws « - - dwy
where n = {i : z; # &;} and L, = |n|. Note that
S iwi > 6 Y wi (31)
i€n ien
where 6,, = min{d;,i € n}. Since erfc(z)e®’ is monotonically decreasing for z > 0, the

pairwise error probability can be upper bounded by

1 1 [o ]
5 LR s (6m)
P(xy — %Xy) < 5 i|€n| (FYAL /0 erfc( 6mﬂ> X e fa()dQ, (32)

where Q = ¥, w;. Since the w;’s are independent M-Erlang distributed random variables

each with parameter one, Q will have an (M L,)-Erlang distribution with parameter one:

fQ(Q) — (ML},-—l)!Q(MLn_l)e_Q, 0 2 0. (33)



To evaluate the integral, we use the following equality [8]

ﬁ/ﬂw erfc(\/zy)e” —y(1-a)y (KD gy, — 22K Z ( ZKK—_j 1— 1 ) (1 +2\/E)j (34)

which is valid for z < 1. Integration yields

. 1 & oML, -1 2\ 1
”"””N’f{é‘zmg( ) () B ©

i€n
Consider the special case of uncoded BPSK modulation; in this case, the error event
length is L, = 1, so the pairwise error probability is equal to the bit error probability F.
Also, since 6,, = d;, the upper bound is satisfied with equality. Therefore,

E, /N,

bn = b= TG

and

1+d 1— 6= (1= /6)(1+1/8). (37)

Thus bit error probability of uncoded BPSK can be expressed as

A= et (T ) () ()

g ) 38
_ (1—3@-)MZM ( 2M—-j—-1 ) (1+1§;)M" (38)

- 2 j=1 M-—j 2 )

If we define k = M — j, then P, can be written as
M k
1-V&\ & Myk-1)\(1+V5
Py, = Vo, > Vi : (39)
2 — k 2

This is exactly the same expression that appears in Proakis’ text [24].
Let L be the minimum time diversity of the code — i.e., the minimum Hamming distance,
in signal symbols, between any two valid sequences. Then, L < L, and we can further upper

bound the pairwise error probability by

P(xy = %n) < lzziu > ( 2M]VIIIL——J 1 1 ) (ﬁ)ﬂ} * g,(l—:dTﬁ (40)

Note that the upper bound in [8] is a special case of this bound (M = 1). The upper bound
in (40) is in a product form, allowing us to use the transfer function approach to yield the

following bound on the bit error probability:
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1[ 1 ME/omL—j—1 2 \|aor®d,1
PbSELzMLZ( ML -1 )(1+\/<E) a7 =up=emaie - (41)

1
(14 Ze)M

Comparing this with the Chernoff bound, we note that the extra term on the left of the

(42)

D ID:e_ES/4N0 ==

transfer function is at most one, so this bound is at least as tight as the Chernoff bound.
To see the tightness of the bound, an 8-state I-Q TCM code employing 16-QAM is used
as an example. Its bandwidth efficiency is 2 bits/sec/Hz. I-Q TCM codes are trellis codes
in which the in-phase and quadrature components of the transmitted signal are encoded
independently; Al-Semari and Fuja [21, 22] have shown that this approach yields better
performance over Rayleigh fading channels than codes designed using the “traditional” ap-
proach. This particular code has a minimum time diversity of L = 4, and its performance is
superior to that of the comparable 8-state conventional TCM code using 8-PSK in Rayleigh

fading. (See [22] for details.) For this specific coding/modulation

_ 08E,/N,
™~ 1+ 0.8E,/N,

(43)
Figure 4 compares the newly derived bound for dual diversity (M=2) and maximal ratio
combining with the Chernoff bound for the same code; the new bound is slightly more than
1 dB tighter than the Chernoff bound at a bit error rate of 107°.
The performance of the 16-QAM 8-state code with MRC and different orders of diversity
is shown in Figure 5. It is clear that the largest gain is obtained in going from single to

double diversity; i.e., the coding gains diminish as the order of diversity increases. This

confirms the conclusions obtained from the cutoff rate curves.

11



4.2 Equal Gain Combining

In the case of equal gain combining the conditional pairwise error probability is given by

P(xy = Xylay) = P(m(Xwn,yn;an) —m(xn,yn;an) > Olay)
= P(ZL (1M (yig — aigm:)|? (44)
—| M, (yig — @igd)|?) > Olan).

It can be simplified to

P(xy = %nlay) = P(ZL{~(Ti%; aig)?|zi — &if?
2T, ai)RITE, nig(zi — £:)*]} < Olaw) (45)
= Plzy 2> T (T, aig)?|zi — £:/%|an),

where zy is a Gaussian random variable variance 2N,M YN . (Y™, a;,)|z; — £:|> and zero

mean This probability can be expressed as

P(xy — Xnlay) = lerfc (4 zuzd /b, ) (46)

where d; = b,|z; — £;|2/AMN, and p; = (M, a;;)%. Here, y; has pdf

(M 1)

uli) = s w2 0. (47)
Define I'; = p;/b,. Then
M=1) orn(—v
fri(w) = L;Wlp)(!_%), 7 2> 0. (48)

Then the unconditional pairwise error probability can be expressed as

P(XN — )A(N) = %f(;” . fé’o erfc( E'fil ’)’ZLL)

(49)
xfr(m) - fr(yw)dm - - - dyw.
Similarly, define

. d; .
0= ——= and @ =v(1+d,). 50
e =1+ d) (50

Therefore, the unconditional pairwise error probability can be represented as

P(xy = %n) = §Iliengrgym Jo - Jo" erfc (\/ T &@) (51)

N gz .
xeLiz1 569 £(51) - - fl@on)ddy - - ddoy
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where n = {i : z; # 2;} and L, = |n|. Note that

> 8ii; > > bei; (52)

i€n 1€N

where &, = min{&-,i € n}. Hence, the pairwise error probability can be upper bounded as

1 1 % . o
Plxy — &n) < =TT — 1 f (\/569) (5 £(()dO)
(xy = %y) < 2L +d,~)M/o erfc x el%? £((2) (53)

where ) = Yien Wi and Q is distributed as

F(Q) = Gty ®En—De ", -0 Q>0 (54)
Finally performing the integration yields
1 & oML, -1 2 Y 1
pP Xn) < | = " —_—. 55
For the uncoded BPSK system, d; = b,F s/MN,, and so 6. = §; = czi/(l +d;) and

L1 s=0-Va)a+ V). (56)

1+Czi

Hence, the bit error probability of uncoded BPSK can be expressed as

Py = zmz(?M ]1_1)(1+25,,,m>j(<1i&->)M’ o7)

which can be written as

P,,:(l_T\/‘ST")MAf(M“ka_l)(l%—\/S_")k. (58)

k=0

Again, since L < L, we can further upper bound P(xy — %Xn) by

P(XN - XN

1 ML —j- 2 Y\ 1
2MLZ(2MA§L31 1)( ) e 69
2 - 1+ \/_ €N ( + di)
Therefore, the bit error probability can be tightly upper bounded by

1 2ML —j—1 2\
b < ELzMLZ( ML —1 )(1_*_\/5—;)

13

oT(D, I
(61' ) |I=1,D=e—E8/4NO . (60)




where

1

(L + g5)™

For the same 8-state 16-QAM IQ-TCM scheme previously considered, &, is given by

(61)

D 'D:e_E3/4N0 ==

_ 0.8b,B,/MN,
©~ 1+ (0.85,E,/MN,)’

The performance of the previous code with equal gain combining and different orders of

diversity is shown in Figure 6.

4.3 Selection Combining

With selection combining, the conditional pairwise error probability can be expressed as

P(xy — %nylay) = P(m(Xwn,yn;an) —~ m(xny,yn;an) > Olay)

N 62
= P(CELi(lyig — aigemil® — lyig — aij+3if?) 2 Olan). (62
This expression can be simplified to

P(xy — #ylay) = P(EX,(—df;lz: — 2* — 20,5 R{niy(z; — £:)*}) < Olay) (63)

_ N A 12
= P(zn 2 0, vilzi — £l*|an).
where v; = a?,j* and zy is a Gaussian random variable with zero mean and a variance of

2N, Zf;l v;|z; — £;|2. This probability can be expressed as

N
P(XN — ﬁN|aN) = %erfc (4 Z Vzdl) (64)
=1

where d; = |z; — #;|2/4N,. The pdf of v; is

() = M(l—e"’*’)(M‘l)e_""

= TM, M(-1)kH ( el )e—km. (65)
_

The unconditional pairwise error probability can be expressed as

P(XN — )A(N) = %Zlef:l e 'Z%Nzl Hzlil {M(_l)ki-}-l ( ]]:;{—_il )}

(66)
X Jo© e Jo erfe ( i Vidi) eTRVL . eTRVN gy - duy.
Define
d; B
Oik; = o d and  wig, = vi(ki + d;). (67)

14



Hence, the pairwise error probability can be expressed as

P(xy — Xy) = %Zﬁfﬂ .- -Z%Nq H£1{M(‘1)ki+1 ( ]/:;,:11 ) (EJIE)}

N
X fo e fpPerfe (\/ P 5i,k,-wz',k,) el 2im Bi )

Xe WLkl . e TWNky dwl,kl e dwN,kN.

Defining " = 2ien Wik;, we obtain Therefore,

() = gmrVe, >0,

Also, observe that
> bipwig > Y Sawig,
€N 1€
where
min{d;}
M + mln{d,} ’

Using the above expressions, the pairwise error probability can be expressed as

0y = min{éi,ki,z' €nk; € {1, . M}} =

A M-1
P(xy — xy) < 3 Hicy [2124:1 M(~1)F+ k—1 ) (T-%mJ X
Jo* erfe (\/537) e fr(v)dy.

The final step is to evaluate the integral and replace Ly by L. Doing so yields
) 2L —j—1 y
P(XN — XN) S [2% EJL=], ( L _ 1 ) (1+3/E ]J

M-1
M St w0 () ]

For the uncoded BPSK systems:

d; = ES/NO and 6i,ki = bt d and 3 ﬁjd = (1 - \/di,k)(l + \/5i,k>
(- (] (2 (2

Therefore,
1 1

P= 1S~ hroryie ( e )
2.2 ki—1 ) (ki+d) (1 + NO

which can be finally written as

_ 1 o k1 M d;
Py = 5102::1(—1) g (- m)-

15
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For trellis coded systems, the bit error probability can now be expressed as

11 &fap-j—1 2 \|or(D, 1)
Pbﬁﬁ[ﬁz( L-1 ><1+¢$) or rmvomeee (T

j=1
where
> u k1 [ M -1 1
D |D=e—E,/4N0= ;M(—l) ( k-1 ) m_l%— (78)

For the same previous coding/modulation scheme, §, is expressed as

_ 0.8E,/N,
* M +08E,/N,’

(79)

The performance of the previous code with selection combining and different orders of di-
versity is shown in Figure 7.

Comparing the three combining schemes shows that MRC achieves the best performance.
EGC error performance is within 1 dB from MRC. As M increases, the difference between
the three schemes increases. Also, it is obvious that the upper bound is very tight and gives

very accurate BER values, especially at bit error rates less than 1073.

5 The Effect of Branch Correlation

In the previous analysis we have assumed that the fading in the different diversity branches
are independent. In some cases, this is difficult to achieve due to improper antennae po-
sitioning or receiver space limitations. Therefore, it is important to examine the possible
performance degradation due to correlated branch signals. The effect of branch correlation
on the distribution of the received signal was studied by Schwartz et. al. in 1966 [2]. Re-
cently, the effect of correlation on non-coherent orthogonal digital modulation was studied
[23]. They derived upper bounds for binary convolutional codes and non-coherent orthogonal
digital modulation.

In this section the pairwise error probability for maximal ratio combining with correlated

branch signals is derived. Recall from Eqn. 26 that the conditional pairwise error probability
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may be expressed as

1 M
P(xy — Xylay) = ierfc ( Zafldi) (80)

1=11=1

where d; = |z; — £;|2/4N,. Also, a? = |h;|* where h; is a complex Gaussian random variable

with zero mean and variance of 1/2 for both the real and imaginary parts. Observe that
a = hih} (81)

where h; = {h;1, ..., hip} and (-)* denotes the Hermitian transpose. The probability density

function of h; is expressed as

_ 1 —1p%*
f(hz) - ™ det, KE,- exp( hiKhi b.z), (82)

where K} is an M x M covariance matrix with entries (Kp,)ix = E(hahj;). It is assumed
that the real parts of h;’s are independent of the imaginary parts — i.e., the cross-covariances
are zero.

The first step is to uncorrelate the random variables using a linear transformation. We
are interested in generating a new vector g. = {9i1,--.,9im} with a diagonal covariance

matrix. Let U be the transformation - i.e.,
g9, = Uh. (83)
Using this transformation, the covariance matrix of g, denoted by K, g, 18 expressed as
K, =UK,U", (84)

where U? is the transpose of U. Since Kp, is a symmetric matrix, it can be represented as

KQ,- = QAQt) (85)

where A is a diagonal matrix that consists of the eigenvalues of Kj; and @ is a matrix

whose columns are the orthonormal eigenvectors of Kj . The last equation can be rewritten
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= QtKﬁiQ. Therefore, if we let U = @' then the Gaussian random variables g, are
independent and K, = A - i.e

N ifi=g
Kg = { 0 otherwise (86)
The second step is to make another transformation so that the covariance matrix becomes

the identity matrix. This is achieved via the transformation

g; = /Ky p; (87)

This makes the Gaussian random variables p, independent with same variance. Using this
transformation, the unconditional pairwise error probability can be expressed as

P(XN — XN) 35 fO f(fo erfc (\/izNzl E?il )\lqildi) X (88)
fol@u) -~ folqunm) - - - folawar)dan - - - dgups - - - daw,

where g;; = |py|?. Define

A
A W)

and W = q,-l(l + /\ldi)- (89)

Hence, the unconditional pairwise error probability can be expressed as

p@N%ﬁm=%nmnﬁdﬁhﬂﬁ“~ﬁ%ﬁ%¢322&&ﬁﬂX (90)

fu(@11) <+ ful@inm) -+ - fu(On)dDn -+ - drpg - - - N

where n = {i: z; # £;} and L, is its cardinality. However,
M M
SN bada > 3> bewa, (91)
i€n l=1 ien l=1
where 6, = min{&;,7 € n,l = 1,--- M} Hence, the pairwise error probability can be upper

bounded as

]_ M oo
et (6:9) 2
P(xy — %xy) < 5 |€| |=| T /\ld / erfc (\/(56@) x e'%?) fo(P)d®, (92)

where & = 3, Zl]‘;’l @;. Since the @;’s are independent exponentially distributed random
variables each with parameter one, ® will have an (M L,)-Erlang distribution with parameter
one — i.e.,

fq;((b) = W_L__l_)'q)(MLn—l)e—<P o Z 0. (93)
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Finally performing the integration yields
1 ML”(zML —j—1)( 2 )" u
Pxy = %n5) < | 9 1 — ESWAR 94
(xy — &n) [22ML,, 2\ ML,-1 1++/0, I;IH 1+)\z i) (54

Therefore, the bit error probability can be expressed as

1| 1 ¥ /oML -j-1 2 \|oar®d, 1
By < k [22ML Z ( ML -1 ) (1 + \/5_6) oI |I=1,D=e'Es/4N07 (95)
where
M
2 1
D lp-e-suno= Il G5 2y (96)
4N,

Similarly, the cutoff rate can be expressed as

1

R, = 2log,(|A|) — log, (Z > H (1+)\ "’)
!

;€A ;€A |I=1

) : (97)

As an example, dual diversity is used in many practical systems. The covariance matrix

K}, is represented as
Kh_=[1”]. (98)

So p is the correlation coefficient between the two antenna elements; the eigenvalues of Kj
are (1 — p) and (1 + p). A 4-state [-Q TCM 16-QAM scheme (2 bits/s/Hz) is used as an

example. For this configuration, é, will be

(1 - p) (O'SEs/No)

% = T - p)(0BE/N,)’

(99)

A comparison between the bound and simulations are shown in Figure 8 for the case of
p = 0.5. Clearly, the bound is very tight. Figure 9 shows the bit error probability upper
bound curves for this code with different values of p. It is noted that values as large as
p = 0.5 degrade the performance slightly. The effect of space correlation is not as severe as
time correlation (which can be minimized via interleaving).

Finally, a comparison between three schemes is shown in Figure 10. The first scheme

uses a 4-state code and maximal ratio combining of two branches. The branch correlation p
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is assumed to be 50%. The second scheme uses a 64-state code but no diversity combining.
Both schemes are 16-QAM. The third scheme employs diversity only. It uses uncoded QPSK
with Gray mapping; the diversity order is M = 3 and independent branches are assumed.
All systems have a bandwidth efficiency of 2 b/s/Hz. Simulation results are plotted for
the first two systems and analytical values are shown for the third system. Clearly, the
first scheme outperforms the other schemes at BER < 4 x 1073 even though moderate
branch correlation (50%) exists. This suggests that a combination of simple channel coding
and double diversity might yield in general better performance than using complex channel
coding schemes or several diversity receivers. Moreover, increased delay and interleaving for
complicated channel codes is avoided. This results in less system delay, which is favorable

in mobile and personal communications.

i

6 Conclusions

In this paper, cutoff rate expressions of coherent systems with maximal ratio, equal gain, and
selection combining schemes have been evaluated using Chernoff bounds. Moreover, tight
upper bounds on the pairwise error probability have been derived. These upper bounds were
used to evaluate a variety of system configurations, including uncoded and coded systems.
The upper bounds were expressed in product form to allow the use of the transfer function
approach for evaluating the performance of trellis coded systems. Simulations of different
systems show that the derived bounds are very tight.

For the case of branch correlation, the cutoff rate and a tight upper bound on the pair-
wise error probability were derived for maximal ratio combining. Again, the pairwise error
probability was expressed in product form so that the transfer function approach could be
used. Branch correlation with correlation coefficients less than 0.5 result in a slight perfor-
mance loss. The results indicate that the joint use of simple coding and diversity results in
a substantial improvement in Rayleigh fading over the use of a separate more complex codes

(without diversity) or a higher degree of diversity (without coding).
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Figure 1: The cutoff rate of 16-QAM with maximal ratio combining and different diversity

orders
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Figure 6: BER of the 16-QAM I-Q TCM 8-state code with equal gain combining and different
diversity orders. solid(bound), dashed(simulation)

29



BER

Eb/No (per branch)

Figure 7: BER of the 16-QAM I-Q TCM 8-state codes with selection combining and different
diversity orders. solid(bound), dashed(simulation)

30



107" ———

I B S N AR T T T S S S

......................................................................
..........................................................................................

.................................................

45 : : simulatién : : : : 5
G103k . simulation N N i
m10 L T TONG N T s s e o]

10

0 1 2 3 4 5 6 7 8 9 10
Eb/No (per branch)

Figure 8: A comparison between the upper bound and simulated BER of 16-QAM I-Q TCM
4-state code with MRC dual diversity and p = 0.5 .

31



E-z-z-=d-------F

1
e SN et Tl (RN E SN SRR

11

10

—_————— e d

=40

i

4

107
107

H3d

Eb/No (per branch)

Figure 9: Analytical BER of 16-QAM I-Q TCM 4-state code with MRC dual diversity and

different correlation values.

32



-1

10—/

...............................................................................

'4—state

...............................................................................................

...................................................................................................

10

0 2 4 6 8 10 12 14
Eb/No (per branch)

Figure 10: Copmarison between the 16-QAM I-Q TCM 4-state code (with double diversity,
MRC and 50% branch correlation) and the 64-state code (with no diversity).

33



