
Intelligent Distributed Fault Management for

Communication Networks

Hongjun Li, John S. Baras

Center for Satellite and Hybrid Communication Networks

Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742

f hjli, barasg@isr.umd.edu

Abstract

In this paper, we present an intelligent, distributed fault management system for communication networks using belief

networks as fault model and inference engine. The managed network is divided into domains and for each domain,

there is an intelligent agent called Domain Diagnostic Agent attached to it, which is responsible for this domain's fault

management. Belief network models are embedded in such an agent and under symptoms observation, the posterior

probabilities of each candidate fault node being faulty is computed. We de�ne the notion of right diagnosis, describe the

diagnosis process based on this concept, and present a strategy for generation of test sequence.

KeywordsFault Diagnosis, Belief networks, Network Management, Fault Management, Sequential Decision

Problem, Dynamic Programming

1 Introduction

In a network management system, the role of fault management is to detect, diagnose and correct the possible

faults during network operations. Due to the growing number of networks that have served as the critical

components in the infrastructure of many organizations, interest in fault management has increased during the

past decade, both in academia and in industry [13]. Fault Management is based on three main assumptions

[7]: The objective is to deal with malfunctions, not the design faults, of the system, so it is basically a fault
diagnosis problem, not fault tolerant system design; Tests are more expensive than computations, so it is more

favorable to compute and infer the faults rather than brute-force tests; Mis-diagnosis is more expensive than

tests, so it is desirable to cover and diagnose as many fault scenarios as possible in a cost e�cient manner.

In legacy communication networks, fault diagnosis is often not too di�cult since the knowledge of the

network manager combined with the alarms reported is usually enough to rapidly locate most failures. But as

communication networks evolve, which are expected to be broadband, giant, heterogeneous and complex, things

will not be that easy. For example, a single fault can generate a lot of alarms in a variety of domains, with many

of them not helpful. Multiple faults will make things even worse. In such cases, it is almost impossible for the

network manager, inundated in the ocean of alarms, to correlate the alarms and localize the faults rapidly and

correctly just by his/her experience. Therefore, fault management has to be automated.

Knowledge-based expert systems, as examples of automated systems, have been very appealing for complex

system fault diagnosis [14] and the e�ort in this �eld is still growing. Nevertheless, most of the developed expert

systems were built in an ad-hoc and unstructured manner by simply transferring the human expert knowledge

to an automated system. Usually, such systems are based on deterministic network models. A serious problem

of using deterministic models is their inability to isolate primary sources of failures from uncoordinated network

alarms, which makes automated fault diagnosis a di�cult task. Observing that the cause-and-e�ect relationship

between symptoms and possible causes is inherently nondeterministic, probabilistic models can be considered to

gain a more accurate representation.

A conventional network management system assumes a centralized architecture where all of the monitoring

information has to be sent to the central manager for processing. One example is the simple manager-agent

paradigm adopted by SNMP [24]. Such a paradigm works well for small networks. But as the networks become

larger, the centralized paradigm will incur vast amounts of information communication and thus occupy too

much bandwidth unwisely. Since not all the data are relevant and necessary for the manager to process, and there

are many cases where the processing can be done on-the-spot, there is no need to centralize all the intelligence at

the manager site. In this regard, we propose to distribute some intelligence around the network, by dividing the

managed network into domains, and by embedding the network element with some codes for more responsibility.

1

The embedded code within the network element is called a delegated agent. In telecommunications arena, the

capability of placing new or added functionality into network element is extremely important, especially as it

potentially provides network operators with a mechanism for dynamically updating network elements processing

logic. In conventional network monitoring systems, however, the set of services o�ered by the element agents

is �xed and is accessible through interfaces that are statically de�ned and implemented. This service set can

not be modi�ed or extended on-the-
y without recompilation, reinstallation and reinstantiation of the server

process on the element agent. To this end, not only would we distribute intelligence via the delegated agents,

we would also provide a dynamically extensible interface between such agents and the manager site, such that

the manager could change the parameter values, and extend the functionality/processing logic of the delegated

agents dynamically. To ful�ll all this, we need a more
exible network management framework, by adopting the

idea of managing by delegation [10] and the concepts of intelligent mobile agent [6][9][18][27].

In previous research on fault management [1][5][22], the term \fault" was usually taken the same as \failure",

which means component malfunctions, e.g. sensor failures, broken links or software malfunctions. Such faults

are called hard faults and can be solved by replacing hardware elements or software debugging and/or re-

initialization. The diagnosis of the hard faults is called re-active diagnosis in the sense that it consists of

basically the reactions to the actual failures. In communication networks, however, there are still some other

important kinds of faults that need to be considered. For example, the performance of a switch is degrading

or there exists congestion on one of the links. Another example is to model faults as deviations from normal

behavior [19]. Since there might not be a failure in any of the components, we call such faults soft faults. Soft
faults are in many cases indications of some serious problems and for this reason, the diagnosis of such faults

is called pro-active diagnosis. By early attention and diagnosis, such pro-active management will sense and

prevent disastrous failures and thus can increase the survivability and e�ciency of the networks.

In summary, our goal is to come up with an automated, distributed and intelligent fault management system

for communication networks, which assumes a probabilistic model and integrates the management of both hard
and soft faults. This paper focuses on the fault management aspects; The systems designs of the adaptive,

distributed network management framework are discussed in a sister paper [17].

The rest of the paper is organized as follows. In section 2 we brie
y describe the main ideas of our proposed

system followed by an introduction of belief networks in section 3. In section 4 we describe our belief networks

for fault diagnosis, de�ne the notion of right diagnosis and present the general fault diagnosis process. Fault

diagnosis strategies, or particularly, node selection schemes are discussed in section 5. Finally, we conclude the

paper in section 6.

2 The Proposed System

The managed network is divided into several domains and for each domain, there is an intelligent agent attached

to it, which is responsible for this domain's fault management. A domain is an abstract notion, for example it

might be a subnet, a cluster, a host or a member of a functional partition. For those problems that none of

the individual agent can solve, there is a mechanism by which the agents can report to a central coordinator

and share the information in order to get a global view and solve it cooperatively. So the whole system is,

from the agent point of view, a distributed, cooperative multi-agent system. Each agent is called a Domain

Diagnostic Agent (DDA) with the goals of monitoring the health of the domain, and diagnosing the faults

in a cost-e�cient manner. A DDA consists of the following three types of components: Intelligent Monitor-

ing and Detection Assistant (IMDA), Intelligent Domain Trouble-shooting Assistant (IDTA), and Intelligent

Communication Assistant (ICA).

The Intelligent Monitoring and Detection Assistants are located at the lowest level and serve to interface

with the managed network elements. The inputs are data from network element agents and the output is the

activation status on the output nodes, each of which is called a Problem De�nition Node (PDN) that represents a

certain type of fault. The functions are basically monitoring and fault detection. It will poll the network element

for operation information and execute some processing like threshold checking, etc. Alarms are also accepted.

In order to decide whether or not there exist fault(s), there must be some form of internal representations of

the concerned variables' expected behavior with which the comparison can be made. Such representations are

usually referred to as system models, and they can be set up in various ways, such as AR modeling or neural

networks, etc. There are many such IMDAs within a network management system and it is those that are called

delegated agents and are to be distributed to the network elements to achieve our goal of intelligent, distributed

2

management.

The Intelligent Domain Trouble-shooting Assistant resides in the manager station and it includes a proba-

bilistic expert system, which consists of basically a belief network database and decision making modules. The

input is the activation status of the problem de�nition nodes, and the outputs are primary causes and the

suggested test sequence. Based on the activation status of the PDNs, a sub-belief network is extracted from the

database and then the inference and trouble-shooting begin, as shown in Figure 1. Given the extracted belief

network, the beliefs of any non-PDN nodes to be faulty can be calculated, based on which static or dynamic

trouble-shooting strategies can be adopted to generate the test sequence. Re-actions are embodied in the han-

dling of the alarms. For pro-actions, however, we have two implications. First, since the \abnormal" PDNs

with status other than \alarm" can also be dealt with, the diagnosis afterwards is actually pro-diagnosis in the

sense that it is dealing with something before it really goes wrong. Second, the belief network nodes are not

restricted to be physical entities, they can also be \logical" or performance nodes, such as \link congestion", so

that \soft" faults can also be included.

Scheduling of the input PDNs

Database

Probabilistic

PDN PDN

. . .

extracted
belief
network inference

making
decision

working memory

IDTA

Figure 1. Illustration of an Intelligent Domain Trouble-shooting Assistant

When the problems cannot be solved by an individual DDA, the Intelligent Communication Assistant reports

the problems to an upper layer, where, by correlation and coordination, a conclusion can be drawn from a

global view. The inputs are results of belief computations and results from test sequences, and the outputs are

compressed versions of symptom statistics and of the results given as inputs. The output is then transmitted to

a coordinator in the upper layer via some communication links. For details of the proposed system, see [2][16].

3 Belief Network as the Probabilistic Fault Model

Definition 3.1. A belief network is a Directed Acyclic Graph (DAG) in which: The nodes represent variables of

interest (propositions); The set of directed links or arrows represent the causal in
uence among the variables and

the parents of a node are all those nodes with arrows pointing to it; The strength of an in
uence is represented

by conditional probabilities attached to each cluster of parent-child nodes in the network.

A belief network can be represented as B = (V ;L;P), where V represents the set of vertices, L represents

the set of directed links, and P is the joint probability distribution stored as local conditional probability tables

(CPT). As a whole, a belief network represents a joint probability distribution over the interested variables

in a compact way due to the embedded conditional independence structures. Belief networks can also serve

as the inference engine, and can compute essentially any queries over the variables modeled within the belief

network. For example, as new observation (evidence) accumulates, it can provide the updated beliefs (posterior

probabilities) of the candidate faults and thus provide us the clue to do further diagnosis. In our research, we

use HUGIN expert system API [11]. An example belief network with each node assuming binary value, is shown

in �gure 2, where the table associated with each node represents the conditional probability distribution, given

its parent nodes' instantiations.

3

Serve Failure

Net Congest

Call Failure
Linkk Alarm

Link Failure

Switch Alarm

Switch Failure

.01

P(SF)

.02
Heavy Traffic

P(HT)

.2

P(SWF)

P(LF)

.05

SWF P(SA)

F
.98
.02

T

HT P(NC)

T
F

.91

.09

P(LA)LF

T
F .

.98

.05
T
T
...

T
T

T
T

T
F

F F FF

SF NC SWF LF P(CF)

1

1

0.02

Figure 2. An example Belief Network

Such a representation incorporates our knowledge of the problem domain, and without any observations, the

initial marginal probabilities of each node are shown in �gure 3.

Link Alarm
yes
no

10
90

Link Failure
yes
no

5
95

Switch Alarm
yes
no

3
97

Switch Failure
yes
no

1
99

Call Failure
yes
no

29
71

Net Congestion
yes
no

25
75

Server Failure
yes
no

2
98

Heavy Traffic
yes
no

20
80

Figure 3. Initial marginal probabilities

Now suppose we observe that there are call failures. We wish to infer the most probable cause for this

symptom from the belief network model. To do this, we input this evidence and execute the belief propagation.

Figure 4 illustrates the updated beliefs of each non-evidential node after such propagation. Note that for each

candidate fault node, namely Link Failure, Server Failure, Heavy Tra�c and Switch Failure, the probability of

being fault is increased.

If we also observe link alarms, then we hope that this extra information would help locate the most probable

fault. After input this evidence, we obtain the updated beliefs again, as shown in �gure 5. As we would expect,

the evidence of link alarms legitimates the node Link Failure as the most probable fault, and this evidence

also "explains away" the other possible candidates, in the sense that the updated beliefs of other candidates is

decreased, as compared with those in �gure 4.

The above example shows the sketch of doing diagnosis: obtain evidence, update beliefs, obtain evidence

again, and so on. One of the aims of this research is to decide which should be the next node to observe.

This is rather activediagnosis than passive diagnosis in that we are trying to �nd the most relevant and helpful

information on the
y during the diagnosis process. Note that as evidence accumulates, we may input them

one by one followed by a propagation right after each evidence-input, as we have shown in this case, or we may

input them once altogether and do only one propagation. This provides us the
exibility to do either on-line

diagnosis or o�-line diagnosis/analysis. For more information on belief networks, we refer to [20] [23].

4

Link Alarm
yes
no

21
79

Link Failure
yes
no

17
83

Switch Alarm
yes
no

5
95

Switch Failure
yes
no

3
97

Call Failure
yes
no

100
-

Net Congestion
yes
no

75
25

Server Failure
yes
no

7
93

Heavy Traffic
yes
no

55
45

Figure 4. Updated beliefs after observing Call Failure

Link Alarm
yes
no

100
-

Link Failure
yes
no

80
20

Switch Alarm
yes
no

4
96

Switch Failure
yes
no

2
98

Call Failure
yes
no

100
-

Net Congestion
yes
no

37
63

Server Failure
yes
no

3
97

Heavy Traffic
yes
no

28
72

Figure 5. Updated beliefs after observing Call Failure and Link Alarm

4 Fault Diagnosis Problems using Belief Networks

Belief networks models can be built to help fault management for communication networks. Faults can be

categorized as either hard , if they re
ect the failures of some hardware or software components in the network,

or soft , if what they represent is not failures but some performance degradation or deviation from some \normal"

behavior. Faults are usually not directly observable and fault diagnosis is the process of locating the faults based

on current observations (symptoms) and possibly further observations.

4.1 Belief Network Nodes Classi�cation

In a communication network environment, probes are attached to some hardware/software components to get

operation status. The data returned from the probes are called raw data. Typically the raw data will be grouped

into vector form d 2 Rn and then processed to get an aggregate value that indicates some properties of interest

(e.g. average, peak value, etc.).

Definition 4.1. A statistics is a function from Rn to R that maps the raw data vector d to a real number.

Such statistics would usually be computed locally, namely near the network elements or even embedded in

them, and further quanti�ed and represented using discrete values. We use value 0 to represent \normal", and

all other values other than 0 represent di�erent level of severity of the statistics.

Definition 4.2. A vertex or node v in a belief network model B = (V ;L;P) is called observable if and only

if it represents the health status of a statistics, or corresponds to user report. The set of observable nodes is

denoted by O, and obviously O � V . Also de�ne the non-observable set ~
O as ~

O = V nO.

These observable nodes correspond to the Problem De�nition Nodes (PDN) mentioned in section 2, and we

5

restrict them to be leaf nodes only, and vice versa. We also restrict that all root nodes are binary valued.

Definition 4.3. The regular evidence set or symptom set R contains those nodes which we observe during

normal network monitoring operations. Each r 2 R is called a symptom node.

Definition 4.4. The test set ST contains all other observable nodes that are not currently in the regular

evidence set, namely ST = O nR.

Definition 4.5. The fault set F is the set of root nodes. Obviously F � ~
O. For any f 2 F , f = 0 means not

faulty and f = 1 means faulty.

Definition 4.6. The hidden node set H contains all nodes in ~
O but not in fault set F , H = ~

O n F , or
H = V n (O

S
F).

Hidden nodes may be intermediate nodes between faults and symptoms and we don't usually have the

interest to put queries on them during diagnosis.

Definition 4.7. The problem domain is said to be working in normal status with respect to regular evidence

set R if and only if every node in R takes value 0, or vector r = 0, where r = (r1; r2; : : : ; rjRj).

Definition 4.8. The problem domain is said to be working in abnormal status with respect to regular evidence

set R if and only if there is at least one r 2 R whose value is other than "0".

Definition 4.9. The syndrome with respect to regular evidence set R is simply the nonzero vector of values

for all elements in R, r = (r1; r2; : : : ; rjRj), and r 6= 0.

There might be cases when multiple symptom nodes in R take nonzero values. We assume here that any

syndrome may trigger the diagnosis process.

4.2 Fault Diagnosis Process

After the fault diagnosis is triggered, the evidence is propagated and the posterior probability of any f 2 F

being faulty can be calculated through standard belief network inference algorithms. It would be ideal if we can

locate the fault with e�orts up to this; but most of the time, similar to what happens in medical diagnosis, we

need more information to help pinpoint the fault. In our work we postulate the limited observation assumption,

meaning that all the observation and tests are constrained within the belief network model.

Perhaps the most fundamental question to ask is: When can I say that I get the right diagnosis? In particular,

when can I say that a node in F explains the symptoms? What do we mean by explanation? Further, if one

single fault can not explain the symptoms, we are facing the multiple faults problem. Again, when can we say

that the nodes we are suspicious of are really the reasons?

Consider what a human would think during diagnosis. After obtaining one possible reason, one would

naturally ask, for example, \Would the problematic circuit work normally if I replace this suspicious component

with a good one?" He/she then goes ahead and see what happens after the replacement. If the syndrome

disappears, one can claim that he/she actually found and trouble-shooted the fault. If the problem domain is tiny,

not very complex, and the replacement burden is light, this paradigm would work well. But for communication

network environment, the story is totally di�erent. As we mentioned in section 1, we would like to do intelligent

diagnosis via computation rather than brutal replacement before we are very con�dent what the fault is.

To do this, we need to distinguish between two kinds of semantics of the instantiation for a node in a belief

network: passive observation and active setting. All the instantiations of nodes we've been talking about so far

are passive observations, based on which we would infer how our beliefs of other variables would change using

belief propagation algorithms. For example we would like to know the consequences of, and the possible causes

for such observations, and so on. The alternative semantics is that we can also set the value of a node via

active experiment. One example would be the above question \Would the problematic circuit work normally if

I replace this suspicious component with a good one?" Note that in this situation, external reasons (the human

diagnoser in this case) explain why the suspicious component becomes good (because the human diagnoser

replace that) and thus all the parent nodes for this node should not count as causes during belief propagation.

To see this e�ect, we could delete all links that point to this node and thus make this node a root node, with

its value speci�ed to \normal". Other belief updating like evaluating consequences, however, are not in
uenced

by this active setting since as long as a node takes its value, its non-predecessors can not tell how this value is

obtained. This external force is called intervention by Judea pearl in his recent book [21].

With this set semantics, we could do virtual replacement in our belief network model. For simplicity, we

6

assume here that the single symptom node is S1. For each node in F of belief network B, we could get the

posterior probability of being faulty given S1 = 1. Let node f be the most probable faulty node in set F , namely

f = argmaxg2FP (g = 1jS1 = 1). We would like to see the e�ects on node S1 by setting node f to normal,

in other words, we would evaluate P (S1 = 0jsetting(f = 0)). In our belief network model, all the possible

fault nodes are root nodes and we do not need to delete any links that point to these root nodes. Obviously,

P (S1 = 0jsetting(f = 0)) = P (S1 = 0jobserve(f = 0)), so in implementation this setting is treated the same as

usual evidence input. Other nodes in F are treated as background variables and they keep at the same status

as what has been just updated. Note that in belief network B, the node S1 has already been instantiated; while

our purpose here is to obtain P (S1 = 0jsetting(f = 0)). It would be messy to carry out intervention on belief

network B itself, since we would have to retract the evidence of S1 = 1 before intervention and then restore

this evidence after it for further diagnosis. In this paper, we introduce the so-called intervention belief networkeB = (V; L; P; S; Fs) to help this virtual replacement.

Definition 4.10. An intervention belief network eB = (V ;L;P ;S ;Fs) is obtained from the original belief

network B = (V ;L;P) with the same V , L, P . S is the symptom set and Fs 2 F is the set of suspicious nodes.

We would compute for each s 2 S the probability P (s = 0jsetting(Fsi = 0);8i 2 [1; jFsj]) using eB.
Here is the virtual replacement procedure for our particular example above:

� Step1: In belief network B = (V ;L;P), for each node fi in F , update the probability pi
4
= P (fi = 1jS1 = 1)

� Step2: Suppose that f1 = argmaxg2FP (g = 1jS1 = 1)

� Step3: In intervention belief network eB = (V; L; P; S1; f), set node f1 = 0, and with P (fi = 1) = pi; i =

2; � � � ; jF j, compute P (S1 = 0jsetting(f = 0)).

To determine whether or not this virtual replacement has led S1 to an acceptable status, we need a reference

value for the computed P (S1 = 0jsetting(f = 0)) to compare with for such decision. Without any evidence

input, the belief network model B itself gives the probability of each leaf node to be normal. We could use these

values as the reference.

Definition 4.11. Given a small number �, we say that node S1 becomes � -normal via intervention if and only

if P (S1 = 0) � P (S1 = 0jsetting(f = 0)) < �,

In the above example, we assume one symptom node and one suspicious node. More generally, we have,

Definition 4.12. A nonempty faulty set Fs is called the explanation or right diagnosis of the initial syndrome

r if and only if every node in set R becomes �-normal if we set every node in Fs to normal in the intervention

belief network eB = (V; L; P;R; Fs).

It is when set Fs explains the symptom set R that we terminate the diagnosis process. In diagnosis, however,

it is always an issue how many suspicious nodes we should choose from the fault set F . In our belief network

model and the parallel intervention model, we should be discrete in choosing multiple nodes, since, if we simply

choose all nodes in F and do the intervention, the symptom nodes would all of course become �-normal. But

clearly, calling every node in F as faulty is not acceptable; One of the most important goals of fault diagnosis

in general is to bias among the all possible faults and locate the real one(s)! In our work, we sort all the nodes

in F according to their probabilities of being faulty in a descending order, and only choose the �rst a couple of

nodes as suspicious nodes to be input to the intervention belief network. In particular, if we let pi; i = 1; � � � ; jF j
denotes the sorted probabilities of the nodes in F being faulty, with p1 � p2 � � � � � pjF j, we only choose the

�rst j nodes such that P
j

k=1 pkPjF j
k=1 pk

� PERCENTAGE GURAD; (1)

where PERCENTAGE GURAD is a real number between 0 and 1. It should not be close to 1, since in that

case, we would have to choose almost all nodes in F . In our work, we choose 0:4 initially and we are testing on

one single suspicious node on all symptom scenarios. If no single fault would explain the current symptoms, we

increase PERCENTAGE GURAD by a small amount and do the diagnosis again.

As discussed above, we would do intervention on those suspicious nodes. If they explain the symptoms, the

diagnosis stops; otherwise, we would have to determine a new node to test in order to get more information.

Since we can have at most jST j tests, and if we choose to test them one by one, the time step set is de�ned as

T = f1; 2; : : : ; jST jg.

7

Definition 4.13. The active evidence set AE contains the nodes that are instantiated during the process of

diagnosis.

Set AE keeps a record of currently instantiated nodes. Initially, AE = R. As diagnosis proceeds, more and

more test nodes in ST are selected, tested, and then added into AE. Such already chosen test nodes are not to

be chosen again for future use.

Definition 4.14. The candidate test set Cst contains the nodes in ST that are available and yet to be chosen

and tested.

Initially, Cst = ST . As diagnosis proceeds, Cst shrinks as instantiated nodes are removed from it.

Definition 4.15. The action set A is de�ned as A = Cst [fSTOPg, which states that during diagnosis, the

action a(t) we can take at time step t is either to choose a node to test, or just stop there.

Definition 4.16. There is an immediate cost incurred by selecting an action a 2 A during diagnosis. If

a = STOP , the cost is zero. For any si 2 ST , cost function is C(si; t), where t is the time step.

Cost function re
ects expense of a test, which is cumulative from many factors, like the di�culty, time to

be consumed, severity, etc. The determination of such a cost function entails careful deliberation about what

factors to consider, to what extent, and how they should be combined. We assume in our framework that the

cost function is homogeneous, namely, cost function is of form C(si). This is usually the case in that the cost

is normally associated with the test itself only, and the test itself does not usually change with time. Our goal

of fault diagnosis is to locate the right diagnosis with minimum diagnosing steps and optimum costs:

min
a1;���;ajST j

J =

STX
k=1

c(ak) + f(ak; k) (2)

c(ak) is the immediate cost associated with action ak at time step k, c(STOP) = 0, and if aK = STOP at some

certain step K, all aj = STOP for j > K. f(ak; k) is the measure for diagnosing steps, and we de�ne it as

f(ak; k) =

�
0 if ak = STOP

g(k) otherwise
(3)

where g(k) is a function of current step k. We simply take g(k) = 1 for all k in our simulation.

Using the same ideas of choosing suspicious nodes set Fs and executing intervention, various diagnosis

strategies di�er only in how the action, or the next test node, would be chosen. We would discuss di�erent

strategies in section 5. Other than that, our fault diagnosis process could be summarized as follows.

� Step 1. Initialization

{ For belief network model B = (V ;L;P), make a copy and call it ~Bt.

{ Set time step tp = 0.

{ Initialize active evidence set AE = R, candidate test set Cst = ST .

{ Input evidence by setting the nodes in set AE according to current active evidence values ae .

� Step 2. Belief Propagation in belief network B

{ Execute standard propagation.

{ For each node fi in set F , obtain the posterior probability P(fi = 1jAE = ae).

{ Sort the set F in decreasing order according to the probability of being faulty.

� Step 3. Intervention

{ Get the set Fs of suspicious nodes that satisfy (1)

{ Set the root nodes in intervention belief network eB = (V ;L;P ;R;Fs) accordingly, and execute the

intervention

� If by intervention, Fs explains R, update total cost and TERMINATE.

� Else, goto Step 4

8

� Step 4. Get next testing node

{ If Cst = �, empty set

� Update total cost

� Give out the set Fs and say "Didn't �nd the right diagnosis, but here is the list of possible faults

in decreasing order".

{ Else Get node st according to some node selection scheme.

� Step 5. Observing test node st and get observation Zst

{ Input this evidence st = Zst to original belief network B.

{ Update time step, tp = tp+ 1.

{ Update the candidate test set Cst = Cst � st

{ Update the active evidence set AE=AE + a(tp)

{ Goto Step 2.

5 Fault Diagnosis Strategies

As shown in (2), our problem here is to minimize J over the possible test sequence (a1; a2; : : : ; ajST j). Let at
denotes the action chosen from set A at time step t; t � jST j, and Zat denotes the value obtained by observing

at, for example Zat = 0; for at 6= STOP .

Definition 5.1. We de�ne the history process up to time step k as

Ik = (Z0; (a1; Za1); : : : ; (ak; Zak)) ;

where Z0 =
�
(r1; Zr1); (r2; Zr2); : : : ; (rjRj; ZrjRj

)
�
the evidence set and corresponding instantiations.

Z0 summarizes the history up to the time diagnosis is triggered. Ik grows along with diagnosis and obviously

we have Ik = (Ik�1; (ak; Zak)) and we call this history processMarkov . Since at time step k, the history process
Ik contains all the necessary information about the current status of the belief network model, we can simply

take the history process Ik as the state at time step k. So equivalently, our problem here is to create the optimal

state trajectory such that J is minimized. Before describing our diagnosis algorithm, let us �rst see a similar

but di�erent situation for intuition.

5.1 c=P Algorithm for Trouble-shooting Single Fault

Suppose we are given a similar yet di�erent problem where the concern is to locate the single faulty component.

There are symptoms indicating the malfunction (e.g. car doesn't start) and for each possible faulty component

there is a direct test associated with it (e.g. testing whether or not the fan belt is OK), which tells whether

or not this component is working well. The cost for testing component i is ci. Based on the symptoms, we

obtain Pi, the probability that component i is in failure, for every component. We are supposed to test those

components one at a time. As soon as one component fails its associated test, we claim that we �nd the single

fault and stop. There are many ways to choose the order of testing, so the question is: In what order should

we choose tests to minimize the expected accumulated cost?

For a test sequence f1; 2; : : : ; j; k; : : : ; ng with k = j + 1, and n as the number of components to be tested,

the probability that the jth candidate have to be tested is the probability that none of its predecessors have

failed the tests, namely 1�
P

j�1
i=1 Pi, or

P
n

i=j Pi, the probability that the faulty node is either the jth candidate

or its successors. So the expected cost is:

EC1 = c1 + c2

nX
i=2

Pi + : : :+ cj

nX
i=j

Pi + ck

nX
i=k

Pi + : : :+ cnPn

9

If we exchange k and j, then we get another test sequence f1; 2; : : : ; k; j; : : : ; ng, for which the expected cost

is:

EC1 = c1 + c2

nX
i=2

Pi + : : :+ ck[

nX
i=k

Pi + Pj] + cj [

nX
i=j

Pi � Pk] + : : :+ cnPn

The di�erence between the above costs is: EC1 �EC2 = cjPk � ckPj , and it is straightforward that

EC1 � EC2 , cjPk � ckPj , cj=Pj � ck=Pk;8Pi > 0

We see that EC1 is cheaper than EC2 if and only if the c=P value for candidate j is less than that for

candidate k. Thus, any strategy with an element that has higher c=P value than its successor can be improved

upon by simply exchanging the two elements. So for an optimal strategy, all elements must be in non-decreasing

sequence of c=P values [12].

5.2 Heuristic Diagnosis Strategy for Our Formulation

The problem used to derive the c=P algorithm is di�erent from our formulation in the following aspects: 1. It

tackles hard faults or failures while our problem integrates both hard and soft faults. 2. It assumes that for each

candidate fault there is a direct test that tells the status of that component while we don't have that luxury.
For a communication network environment which is distributed, complex and heterogeneous, it is impossible to

prede�ne and store a corresponding test for each possible cause. Actually one of the goals of our problem is

to generate dynamically the test sequence on the
y, based on our belief network model and current syndrome.

This entails cycles of test node selection, observation of the selected test and belief updating, until we �nd the

right diagnosis or reach the time step limit. 3. In this problem, we go ahead and test the candidate directly to

see whether or not it's the fault. But in our formulation, right diagnosis is de�ned via the introduction of the

concept of external intervention and determined through computation. 4. Finally, our algorithm should be able

to tackle multiple faults diagnosis.

But the c=P algorithm does provide insight in that it re
ects the following observation: in order to minimize

the total cost, people are more likely to try those more fault-prone, cheaper components before the less-probable,

expensive ones. In other words, people prefer more relevant and cheaper tests.

In our diagnosis algorithm, we look at the suspicious node set Fs and wish to �nd an appropriate test node

st if Fs could not explain the evidence set R. Similar to the c=P algorithm ideas, we would like to choose the

test node from candidate test set Cst that is most relevant to Fs and cheapest at the same time. To achieve

this, we need a measure for relevancy between a test node in Cst and a fault node in F . The de�nition of

relevancy requires the concepts of entropy and mutual information, which we copy from [8] as follows.

Definition 5.2. The entropy H(X) of a discrete random variable X is de�ned by

H(X) = �
X
x2X

p(x) log p(x)

The entropy of a random variable is a measure of the uncertainty of the random variable; it is a measure of

the amount of information required on the average to describe the random variable.

Definition 5.3. Consider two random variables X and Y with a joint probability mass distribution p(x; y)

and marginal probability mass distributions p(x) and p(y). The mutual information I(X ;Y) is de�ned as

I(X ;Y) =
X
x2X

X
y2Y

p(x; y) log
p(x; y)

p(x)p(y)

Mutual information is a measure of the amount of information that one random variable contains about

another random variable. It is the reduction in the uncertainty of one random variable due to the knowledge

of the other. If X and Y are independent, I(X ;Y) = 0 meaning that knowing one random variable provides

no information of the other. If X and Y are actually equivalent (e.g. isomorphic), we denote X � Y , and

I(X ;Y) = H(X) = H(Y).

10

Definition 5.4. The relevancy of random variable Y relative to random variable X is de�ned as

R(X ;Y) =
I(X ;Y)

H(X)

R(X ;Y) 2 [0; 1] indicates to what extent Y can provide information about X . R(X ;Y) = 1 means that Y

can uniquely determine X , while R(X ;Y) = 0 indicates that Y and X are independent. Note that R(X ;Y) 6=
R(Y ;X). More generally,

Definition 5.5. The relevancy of random variable Y relative to a set of random variables X is de�ned as

R(X; Y) =
I(X; Y)

H(X)

where I(X; Y) and H(X) are de�ned similarly as above.

With the relevancy de�nition, our next test node is simply

st = argmaxg2CstR(Fs; g)=c(g)

5.3 Proof of Correctness Simulation

The belief network example in section 3 is over simplistic without many test nodes for us to choose from. To

illustrate the e�ectiveness of our fault diagnosis algorithm, consider the example network shown in �gure 6.

probe a

L2 C

D

SW2SW1
L1

A

B

Figure 6. Example Network

Two switches SW1 and SW2 are connected to each other via link L1. Machines A and B are connected to

SW1 and they would communicate with machines C and D, which are connected to switch SW2. We have a

probe a hooked at the end of SW2 to measure the tra�c throughput going out of SW2. Suppose the information

we could obtain during network operation include whether or not: SW1 alarm is normal, A could connect SW2,

B could connect SW2, A could connect C, C could connect SW1, throughput at probe a is normal, and D

could connect SW1. The possible faults are identi�ed as: SW1 works normal or not, L1 normal or congested,

SW2 normal or not, and source pumped from C to L2 is normal or not. We set up a belief network model for

such situations, and �gure 7 shows the structure and initial probability distributions.

As a comparison to our node selection scheme, we use the random node selection scheme meaning that each

time we need a test node, we simply choose uniformly one node from all current available nodes in Cst. In our

simulation, the outcome of chosen test node st is uniformly generated as either 0 or 1. The costs for testing

each leaf node is shown in Table 1, with 40 as the penalty for not being able to �nd the right diagnosis. To

save space, we only list the diagnosis for the following symptoms: A Conn SW1 problem, A Conn C problem,

and A Conn SW1 and A Conn C problems happen at the same time. Table 2 shows the comparison of the

two test generation schemes with 2000 runs. We can see that node selection via relevancy is much better than

that via random selection.

Table 1. Cost for All Leaf Nodes

SW1 Indicator A Conn SW2 B Conn SW2 A Conn C Thru Prob A C Conn SW1 D Conn SW1

2 1 7 1 3 1 3

The above algorithm is heuristic and lack of rigorous analysis. We could model such diagnosis as a Markov

Decision Problem and dynamic programming techniques could be exploited, which comes next.

11

L1
yes
no

95
5

D_Conn_SW1
yes
no

83
17

L2_Cong
yes
no

92
8L1_SW2

yes
no

84
16

Src_C_L2
yes
no

99
1

SW2
yes
no

87
13

B_Conn_SW2
yes
no

77
23

SW1_L1
yes
no

87
13

SW1
yes
no

90
10

Thru_Prob_A
yes
no

79
21

C_Conn_SW1
yes
no

85
15

A_Conn_SW2
yes
no

83
17

A_Conn_C
yes
no

84
16

SW1_Indicator
yes
no

87
13

Figure 7. Example Network

Table 2. Comparison of Node Selection Schemes

Symptom Nodes
Random Selection Relevancy Selection

Avg. Cost Success Rate Avg. Cost Success Rate

A Conn SW2 15.38 84.5% 9.13 94%

A Conn C 26.21 70.1% 14.22 88%

A Conn SW1 and A Conn C 24.68 67.8% 3 100%

5.4 Dynamic Programming Formulation

For the sequential decision problem with state process as de�ned above, we have a discrete-time dynamic system

and the cost function is additive over time. let N = jST j be the total time step. At time step k, the immediate
cost g(i; u; j), incurred by leaving state i for state j when control u = ak is chosen, is simply ~c(ak; k), with

~c(ak; k) =

�
0 if ak = STOP

c(ak) + g(k) otherwise
(4)

As discussed in section 4.2, the diagnosis process would terminate if the suspicious node set Fs could explain

the symptom set R. When terminated at time step L, namely uL = STOP , the resulting cost is T+
P

L

l=0 ~c(al; l),

where T is a termination cost. If the process has not terminated up to the �nal time N , the resulting cost is

gN(IN) +
P

N�1
l=0 ~c(al; l), where gN (IN) is the terminal cost incurred at the end of the process. Here, gN(IN) is

a penalty for not being able to �nd the right diagnosis.

Suppose up to time step k, there is no STOP action yet, and Ik = ik. Notice that the state ik is equivalent to

(AE k ; aek), where AE k and aek are the active evidence set and the corresponding values at time step k. And,

the admissible control set Uk(ik) = Ak, with Ak as the action set at time k. Assume also that all nodes in our

belief network model is binary-valued. The state transition from Ik to Ik+1 depends on a control u 2 Uk(ik). If
u = STOP , Ik+1 = (ik; STOP), and the process terminates. Equivalently, we could set Ul(Il) = � for all l > k

and thus the state process could go nowhere else but stay at (ik; STOP). If the current Fs could not explain

the symptom set R, we could get P k

u

4
= P (u = 1jIk) for a particular control u 2 Cst at time k. Let i = Ik and

j = Ik+1 for simplicity. The next state j = (i; (u; Zu)) and the corresponding state transition probability Pij(u)

may be either:

� j = j1, if node u is faulty, Zu = 1, and Pij1
(u) = P

k

u
; Or,

� j = j0, if node u is not faulty, Zu = 0, and Pij0 (u) = 1� P
k

u
.

To model the diagnosis process in terms of a �nite horizon problem, we need to augment the state space with

a special termination state. De�ne tk as the termination state at the beginning of time k, with tk = 0 meaning

terminated and tk = 1 meaning to continue. Initially, t0 = 1. The evolution follows: tk+1 = hk(tk; uk); 8k =

12

0; � � � ; N � 2, with

hk(tk; uk) =

�
0 if uk = STOP; or tk = 0

1 otherwise
(5)

So by de�ning new state process Xk = [Ik; tk], we have the new state transitions Xk+1 = fk(Xk; uk), where

fk(Xk; uk) =

8>><>>:
Xk if tk = 0

[Ik; 0] if tk 6= 0; uk = STOP

[(Ik ; (u; 1)); 1] with prob. P k

u
if tk 6= 0; uk = u 2 Cst

[(Ik ; (u; 0)); 1] with prob. 1� P
k

u
if tk 6= 0; uk = u 2 Cst

(6)

At time N , set tN = 0. It is easy to show that fk(Xk; uk) is equivalent to a transition probability distribution

PXkXk+1
(uk).

The cost function is then de�ned by

~c(Xk; uk; k) = tk ~c(uk; k);

and the terminal cost is ~gN (XN) = tN�1gN(IN) + (1� tN�1)T . So we formulate the problem as

min
uk;k=0;���;N�1

E

(
~gN(XN) +

N�1X
l=0

~c(Xk; uk; k)

)
(7)

which is the basic form of �nite horizon problem [3]. We de�ne J�
k
(i) as the minimum cost when starting from

state i and k steps remain, or the best k-step cost-to-go, 8k � N . Obviously, J�0 (i) = ~gN(XN), and by principle

of optimality,

J
�
k
(i) = min

u2U(i)

X
j

Pij(u)[~c(i; u; k) + �J
�
k�1(j)];8k = 1; � � � ; N;

where i represents xk, j represents xk+1, and Pij(u) is just the PXkXk+1
(uk) obtained from (6). After we get

J
�
N
(i), we could get the control sequences that achieve the minimum, and the solution for problem (7) is an

optimal policy �
� = f��1; : : : ; �

�
N
g, where ��

k
is a mapping from state to action for each k 2 T , that minimizes

the expected total costs. Ideally, we wish to obtain closed form solutions by dynamic programming techniques,

but this rarely happens in practice. So people turn to �nd approximate values of the J-functions [3] [3]. We

would use Q-learning technique [25] [26] to obtain the approximations.

At each state i, instead of using J-function which is averaged over all actions, we de�ne a Q-function for

state-action pair i and a as Q(i; a). Q(i; a) represents the cost incurred by action a when at state i. If we

know for all states and all actions the Q-values, we could easily obtain an optimal policy by choosing the best

action at each state. Q-learning is a technique to obtain approximations for Q-values, and the update formula

of Q-learning is

Q(xt; at) (1�
)Q(xt; at) +

�
~c(xk ; ak; k) + �min

a

Q(xt+1; a)
�

where
 is the learning rate and alpha is the discount factor. It has been proved that if each action is executed

in each state an in�nite number of times, and
 is decayed, the Q-values will converge to Q
�, by which an

optimal policy can be acquired.

6 Conclusions

In this paper, we present an intelligent, distributed fault management system for communication networks using

belief networks as fault model and inference engine. The managed network is divided into domains and for each

domain, there is an intelligent agent called Domain Diagnostic Agent attached to it, which is responsible for

this domain's fault management. Belief network models are embedded in such an agent and under symptoms

observation, the posterior probabilities of each candidate fault node being faulty is computed. We choose

suspicious nodes in a discrete way and call them right diagnosis if they could explain the symptoms. The

diagnosis process is described based on this concept, and we illustrate our test generation scheme by using

the notion of relevancy. Simulation shows that this scheme is much superior than a random selection scheme.

Finally we formulate the diagnosis process as a �nite horizon sequential decision problem and our future work

includes �nding solutions with more rigor using Q-learning.

13

References

[1] J. S. Baras, M. Ball, S. Gupta, P. Viswanathan and P. Shah, \Automated Network Fault Management",

MILCOM'97 , Monterey, CA, November 2-5, 1997

[2] J. S. Baras, H. Li and G. Mykoniatis, \Integrated, Distributed Fault Management for Communication

Networks", Technical Report, CSHCN TR 98-10, University of Maryland, 1998

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I and II , Athena Scienti�c, Belmont,

MA, 1995

[4] D. P. Bertsekas, and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scienti�c, 1996

[5] A. Bouloutas, G. Hart, and M. Schwartz, \On the Design of Observers for Fault Detection in Communica-

tion Networks", Network Management and Control, Plenum Press, New York, 1990

[6] M. Cheikhrouhou, P. Conti, J. labetoulle, K. Marcus, \Intelligent Agents for Network Management: a Fault

Detection Experiment", in Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated
Network Management, Boston, MA, May 1999

[7] J. Chow and J. Rushby, \Model-Based Recon�guration: Diagnosis and Recovery", Tech. Rep. 4596, NASA

Contractor Report, 1994

[8] T. M. Cover, and J. A. Thomas, Elements of Information Theory , Wiley Interscience, 1991

[9] M. El-Darieby, A. Bieszczad, \Intelligent Mobile Agents: Towards Network Fault Management Automa-

tion", in Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated Network Management,
Boston, MA, May 1999

[10] J. Goldszmidt, Y. Yemini, \Distributed Management by Delegation", in Proceedings of 15th International
Conference on Distributed Computing Systems, 1995

[11] http://www.hugin.dk

[12] J. Kalagnanam and M. Henrion, \A Comparison of Decision Analysis and Expert Rules for Sequential

Diagnosis", in Uncertainty in Arti�cial Intelligence 4, (Amsterdam, The Netherlands), pp. 271-281, Elsevier
Science Publishers B. V., 1990

[13] I. Katzela, Fault Diagnosis in Telecommunication Networks, Ph.D. Thesis, Columbia University, 1996

[14] L. Kerschberg, R. Baum, A. Waisanen, I. Huang and J. Yoon, \Managing Faults in Telecommunications

Networks: A Taxonomy to Knowledge-Based Approaches", IEEE, pp. 779-784, 1991

[15] H. Li, \Statistical parameter learning for Belief networks with �xed structure", Technical Report, CHSCN,

University of Maryland, 1998

[16] H. Li, J. S. Baras and G. Mykoniatis, \An Automated, Distributed, Intelligent Fault Management System

for Communication Networks", ATIRP'99, 2-4 February, 1999

[17] H. Li, S. Yang, H. Xi, and J. S. Baras, "Systems Designs for Adaptive, Distributed Network Monitoring

and Control", submitted to IM01, Seattle, 2001

[18] T. Magedanz, \Intelligent Mobile Agents in Telecommunication Environments - Basics, Standards, Prod-

ucts, Applications", Tutorial for International Symposium on Integrated Network Management VI, Boston,

MA, May 1999

[19] R. Maxion, \A case study of ethernet anomalies in a distributed computing environment", IEEE Trans.
on Reliability, 39(4), Oct 1990

[20] J. Pearl, Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference, Morgan Kauf-

mann, 1988

[21] J. Pearl, Causality, Cambridge Press, 2000

[22] I. Rouvellou, and G. W. Hart, \Automatic alarm correlation for fault identi�cation", In Proc. IEEE IN-
FOCOM, page 553-561, 1995

[23] S. Russell and P. Norvig, Arti�cial Intelligence - A Modern Approach, Prentice-Hall, 1995

[24] W. Stallings, SNMP, SNMPv2 and CMIP: the practical guide to network management standards, Addison-
Wesley, Reading, Mass., 1993

[25] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998

[26] C.J.C,H. Watkins, P. Dayan, \Q-learning", Machine Learning, 8, pp. 279-292, 1992

[27] M. Wooldridge, N. R. Jennings, \Intelligent Agents: Theory and Practice", submitted to Knowledge Engi-
neering Review , 1995

14

