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 Urban forests are often highly fragmented with many exotic species. Altered 

disturbance regimes and environmental pollutants influence urban forest vegetation. One 

of the best ways to understand the impacts of land-use on forest composition is through 

long-term research. In 1998, the Baltimore Ecosystem Study established eight forest plots 

to investigate the impacts of urbanization on natural ecosystems. Four plots were located 

in urban forest patches and four were located in rural forests. In 2015, I revisited these 

plots to measure abundances and quantify change in forest composition, diversity, and 

structure. Sapling, shrub, and seedling abundance were reduced in the rural plots. Alpha 

diversity and turnover was lower in the rural plots. Beta diversity was reduced in the rural 

plots. The structure of the urban plots was mostly unchanged, except for a highly reduced 

sapling layer. Beta diversity in the urban plots was consistent across surveys due to high 

species turnover.   

 

 



	
	
	
	

CHANGES IN THE COMMUNITY STRUCTURE OF URBAN 
AND RURAL FOREST PATCHES IN BALTIMORE FROM 

1998 TO 2015 
 
 
 
 
 
 
 
 
 
 
 

Laura Kristine Templeton 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Masters of Plant Sciences 

2016 
 
 
 
 
 
 
Advisor Committee: 
Dr. Joseph Sullivan, Chair 
Dr. Maile Neel 
Dr. Peter Groffman 



	
	
	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Laura Kristine Templeton 

2016 



	

	
	
	
	

ii	

Acknowledgments	
 
 
 I would like to first and foremost thank my advisor, Dr. Joseph Sullivan. I 

appreciate the support and guidance you have given me throughout my time as a graduate 

student. A special thank you to Dr. Maile Neel. This project could not have been 

completed without your advice, encouragement, and friendship. I would also like to thank 

Dr. Peter Groffman. Your perspective on urban ecology is inspiring. Thank you to Jenifer 

Mallinoff, your assistance throughout this project has been invaluable. Thank you 

Dominic Bello for all your help in the field. Thank you to the Baltimore Ecosystems 

Study and the U.S. Forest Service’s Baltimore Field station for all your support and for 

allowing me to use the long-term plots. Lastly, I would like to thank my family. My 

graduate school journey could not have been completed without the love and support of 

my husband, Gregory Bangs.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

	
	
 
 



	

	
	
	
	

iii	

Table of Contents 
 

Acknowledgments ......................................................................................................... ii 
Table of Contents .......................................................................................................... iii 
List of Tables ................................................................................................................... v 
List of Figures ................................................................................................................. vi 
 
Chapter One: Ecology of Urban and Rural Forests in Maryland........................1 
 

Ecology and Vegetation of Baltimore .......................................................................... 1 
Physical Geography of Maryland ................................................................................ 1 
Vegetation .................................................................................................................... 3 
Land-Use History.........................................................................................................4 

Urban Forest Ecology .................................................................................................... 6 
Drivers of Change in Maryland Forests ...................................................................... 8 

Urbanization and Climate Change .............................................................................. 8 
Fire Suppression ........................................................................................................ 10 
Deer Browsing ........................................................................................................... 12 
Insect Infestations and Disease ................................................................................. 15 
Invasive Plant Species ............................................................................................... 19 

Biotic Homogenization of Urban Forests...................................................................20 
Summary and Conclusion ........................................................................................... 22 

Re-visiting a Long-Term Study in Baltimore.............................................................23 
Hypothesis and Objectives ......................................................................................... 24 

Chapter Two: Methodology.......................................................................................25 
 

Site Description ............................................................................................................ 25 
General Sampling Overview ....................................................................................... 29 
Plot Establishment ....................................................................................................... 30 
Survey Methods ........................................................................................................... 32 
Data Analysis ................................................................................................................ 34 

Plot Descriptive Statstics and Analysis ..................................................................... 34 
Ordination ................................................................................................................. 35 
Diversity and Evenness .............................................................................................. 36 
Alpha and Beta Diversity ........................................................................................... 37 
Statistical Analysis ..................................................................................................... 38 

Chapter Three: Results................................................................................................40 
 
Tree Layer .................................................................................................................. ..40 

Composition ............................................................................................................... 40 
Structure .................................................................................................................... 43 



	

	
	
	
	

iv	

Diversity ..................................................................................................................... 45 
Sapling Layer ............................................................................................................... 45 

Composition ............................................................................................................... 45 
Structure .................................................................................................................... 49 
Diversity ..................................................................................................................... 50 

Shrub Layer ................................................................................................................. 51 
Composition ............................................................................................................... 51 
Structure .................................................................................................................... 53 

Vine Layer .................................................................................................................... 54 
Composition ............................................................................................................... 54 
Structure .................................................................................................................... 56 

Seedling Layer .............................................................................................................. 57 
Composition ............................................................................................................... 57 
Structure .................................................................................................................... 59 

Herb Layer ................................................................................................................... 60 
Structure .................................................................................................................... 60 

Changes in Forest Community Composition............................................................61 
Exotic Species ............................................................................................................ 61 
Forest Community Composition and Diversity..........................................................62 
Alpha Diversity and Beta Diversity ........................................................................... 65 

Chapter Four: Discussion............................................................................................67 
 

Summary of the Findings ............................................................................................ 67 
Species Composition .................................................................................................... 67 
Forest Structure ........................................................................................................... 71 
Diversity ........................................................................................................................ 73 
Review of the Experimental Design ........................................................................... 75 
Future Research ........................................................................................................... 77 
Conclusion .................................................................................................................... 78 

Appendix ......................................................................................................................... 80 
Appendix 1: Species List ............................................................................................. 80 

References ...................................................................................................................... 85 
 

 
 
 
 
 
 
 



	

	
	
	
	

v	

List of Tables 
 

Table 1. The site, identification, land-use classification, size, and soils associated with 
eight forest plots in Baltimore, Maryland established in previous BES-LTER studies and 
resampled in this study.......................................................................................................29 
 
Table 2. Tree basal area and abundance measurements for urban and rural plots in 
Baltimore in 1998 and 2015...............................................................................................43 
 
Table 3. Species diversity and evenness of the tree layer in urban and rural plots for 
Baltimore in 1998 and 2015...............................................................................................45 
 
Table 4. Sapling density and dominance measurements for urban and rural plots in 
Baltimore in 1998 and 2015...............................................................................................49 
 
Table 5. Species diversity and evenness of the sapling layer in urban and rural plots for 
Baltimore in 1998 and 2015...............................................................................................51 
 
Table 6. Diversity metrics for all species in urban and rural plots in Baltimore in 1998 
and 2015.............................................................................................................................66 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	

 
 
 
 



	

	
	
	
	

vi	

List of Figures 
	
Figure 1. Locations of three forest fragment sites established in Baltimore, Maryland, as 
part of the BES LTER network..........................................................................................25 
 
Figure 2. The locations of four designated “rural” forest plots located in Oregon Ridge 
Park as part of the BES-LTER...........................................................................................26   
 
Figure 3. The locations of four designated “urban” forest plots located in Hillsdale and 
Leakin Park as part of the BES-LTER...............................................................................27  
 
Figure 4. Images of a rural plot in Oregon Ridge Park (a) and a urban plot in Hillsdale 
Park (b)...............................................................................................................................30 
 
Figure 5. Layout of plots established in four urban and four rural plots in 
Baltimore............................................................................................................................31 
 
Figure 6. Mean (± SE) relative abundance of tree species in the rural (a) and urban (b) 
forest plots established in Baltimore presented in order of rank abundance within each 
plot-type.............................................................................................................................41 
 
Figure 7. Death, retention, and recruitment of trees within rural (a) and urban (b) plots 
established in 1998 in Baltimore and resampled in 2015..................................................42  
 
Figure 8. Average basal area (BA) of trees in rural and urban plots in Baltimore in 2015 
and 1998 presented in order of rank abundance within each plot-type.............................44 
 
Figure 9. Relative abundance of sapling species in rural (a) and urban (b) forest plots 
established in Baltimore presented in order of rank abundance within each plot-type.....46  
 
Figure 10. Diagram illustrating the distribution of death, graduation, retention and 
recruitment of saplings within rural (a) and urban (b) plots established in 1998 in 
Baltimore and resampled in 2015......................................................................................48 
 
Figure 11. Average basal area (BA) of saplings in rural and urban plots in Baltimore in 
2015 and 1998 presented in order of rank abundance within each plot-type....................50 
 
Figure 12. Relative proportion of shrub species in urban and rural plots in Baltimore in 
1998 and 2015....................................................................................................................52 
 
Figure 13. Box and whisker diagram of shrub cover in urban and rural plots in Baltimore 
in 1998 and 2015................................................................................................................53 
 
Figure 14. Relative proportion of vines species in urban and rural plots in Baltimore in 
1998 and 2015....................................................................................................................55 



	

	
	
	
	

vii	

 
Figure 15. Box and whisker diagram of vine abundance in urban and rural plots in 
Baltimore in 1998 and 2015...............................................................................................56 
 
Figure 16. Relative proportion of seedling species in urban and rural plots in Baltimore in 
1998 and 2015....................................................................................................................58 
 
Figure 17. Box and whisker diagram of percent seedling cover in urban and rural plots in 
Baltimore in 1998 and 2015...............................................................................................59 
 
Figure 18. Box and whisker diagram of percent herb cover in urban and rural plots in 
Baltimore in 1998 and 2015...............................................................................................60 
 
Figure 19. The proportion of exotic species within each forested Baltimore plot from 
1998 to 2015 categorized by forest layer...........................................................................61 
 
Figure 20. Non-metric multidimensional scaling (NMDS) of the sapling community 
composition in forested Baltimore plots in 1998 and 2015 plotted within ordination 
space...................................................................................................................................64 
 
Figure 21. Non-metric multidimensional scaling (NMDS) of the shrub and vine 
community composition in forested Baltimore plots in 1998 and 2015 plotted within 
ordination space.................................................................................................................65 



	

	
	
	
	

1	

Chapter One: Ecology of Urban and Rural Forests in Maryland 
 
 Forest vegetation is determined by the physical geography and climate of a 

region, but is mediated by the successional stage and land-use context of the landscape 

(Franklin 1995). In this study, I investigated the structure, community composition, and 

species diversity of forest vegetation within urban and rural forest patches in Baltimore 

using long-term research plots. The biogeochemical and climactic attributes important to 

the distribution of plants within Maryland are reviewed to establish the ecological 

background of this study. I then highlight the environmental variables relevant to urban 

forest ecology in this area. These variables include urbanization, climate change, deer 

browsing, fire suppression, disease and insect infestations, and exotic plant invasions. 

When available, information on land-use context, management practices, and 

environmental policy related to the topic within Maryland and Baltimore is included. I 

then discuss urban land-use context and its influence on community composition and 

diversity as examined in other studies. Chapter one concludes with the hypothesis and 

expectations for this study.    

Ecology and Vegetation of Baltimore 
 
Physical Geography of Maryland 
 
 Maryland is divided into five geographic provinces: Appalachian, Blue Ridge, 

Ridge and Valley, Piedmont, and Coastal Plain. Each region has distinct vegetation, 

topography, and substrate associations (Brush et al. 1980). The Baltimore metropolitan 

area resides on both the Piedmont and Coastal Plain provinces. The Fall Line, a 

geomorphological break between the Piedmont and the Coastal Plain provinces, 

intersects both Baltimore City and Baltimore County. The majority of land in Baltimore 
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county falls within the boundary of the Piedmont, save for a small area southeast of the 

Fall Line along the Chesapeake Bay (Plebuch 1960). Conversely, Baltimore City is 

primarily within the Coastal Plain province with the exception of land located within the 

northwest corner (Brush et al. 1980). 	

The Piedmont province ranges in elevation from 90m to 330m above sea level 

(Maryland Department of State Planning, 1973). Terrain in the Piedmont is hilly, a result 

of three different consolidated bedrock types (igneous, metamorphic, and sedimentary) 

eroding at different rates (Maryland Department of State Planning, 1973). This variation 

in topography results in soils that are usually well drained (Brush et al. 1980). The 

saprolite soils commonly found in the Piedmont, consists of thick and nutrient-rich silt-

clay underlain by igneous and metamorphic rocks (Curtin et al 2001). Conversely, the 

Coastal Plain is close to sea level, has less topographic variability, and includes extensive 

floodplains and tidal marshes (Curtin et al. 2001). Soils of the Coastal Plain are 

composed of fine silt, sand, clay, and gravel (Curtin et al. 2001). Beneath the 

unconsolidated sediments that characterize the surface layers of Coastal Plain soils is a 

thick layer of clay (U.S. Geological Survey 1982). This sub-surface clay layer has low-

permeability which creates a continuously saturated surface environment, common to 

Coastal Plain soils (U.S. Geological Survey 1982).    

The climate across Maryland is humid, with a mean annual temperature average 

of 7.2-12.8°C, warming as you near the Chesapeake Bay. In Baltimore, the mean annual 

winter temperature is 2.8°C and the average summer temperature is 25.6°C (NRCS 

1998). Winter in Maryland is characterized by a prolonged period of cold temperatures 

during which most dominant species drop their leaves. Precipitation throughout Maryland 



	

	
	
	
	

3	

falls relatively evenly throughout the year and has annual averages of 76.2-127 cm year-1 

(Maryland Department of State Planning 1973) and in Baltimore 109.2 cm year-1 

(Doheny 1999). Maryland’s ample and continuous rainfall enables leaching and 

proliferation of acidic soil profiles (Maryland Department of State Planning 1973). 

Periodic hurricanes and tornados are two of the major sources of climatic disturbances to 

forests in the Baltimore area (Peterson 2000). 

Vegetation 
	

Forests in Maryland can be broadly categorized by two regions: Central 

Hardwood Region (CHR) and Southern Pine-Hardwood Region (SPHR) (Fralish 2003). 

Species distribution within each region is guided by climate, soil, and physical 

geography. In 1980, Brush and colleagues described all the forest–types found in 

Maryland, with four major vegetation association groups found in the Baltimore 

metropolitan area: Chestnut Oak-Post Oak-Blackjack Oak association, River Birch-

Sycamore association, Tulip Poplar association, and Basket Oak association. Across all 

vegetation groups, including those found in Baltimore, oak (Quercus spp.) and hickory 

(Carya spp.) were the dominant trees. Unlike the other forest-types in Maryland, the four 

vegetation association groups found in Baltimore showed red maple (Acer rubrum), 

blackgum (Nyssa sylvatica) and flowering dogwood (Cornus florida) as important 

subdominant species within the groups (Brush et al. 1980). By 2006, dominance of some 

forested plots in Baltimore City and Baltimore County had shifted to tulip poplar 

(Liriodendron tulipifera) and several oak species (Groffman et al. 2006). The same 

associated species were present in the study plots, but the dominant species had shifted 

compared to Brush’s 1980 forest-type categorization. More recently, Forest Inventory 
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Analysis (FIA) data from 2014 showed that red maple, followed by blackgum, tulip 

poplar, hickory (Carya spp.), and beech (Fagus grandifolia) were the most abundant 

species in Baltimore City and Baltimore County. Comparing FIA data from 2011 to 2014 

shows a 24% decline in white oak (Quercus alba) abundance in Baltimore. These results 

are consistent with larger trends seen in the CHR. For example, a study in Virginia 

showed an increase in beech, red maple, tulip poplar, and a concomitant decline of oak 

species (Abrams 2003).    

Land-Use History 
 
 The Chesapeake Bay is the largest estuary in the United States. It is a vital habitat 

for marine life, but also a defining feature for terrestrial vegetation. During the 

Pleistocene, approximately 13,600 years ago, conifers dominated the forests surrounding 

the Chesapeake (Sprague et al. 2006). The coniferous tree species present at the end of 

the Pleistocene reflected a colder Mid-Atlantic climate. As the glaciers receded to the 

north, vegetation shifted from conifers to deciduous forests dominated by oak, hickory 

and in some areas, chestnut (Castanea dentata) (Brown et al. 1999; Curtin et al. 2001). 

From 5000 B.C. to the arrival of European settlers in 1600 A.D., closed-canopy oak and 

hickory forests dominated 95% of land in the Chesapeake Bay watershed (Braun, 1950; 

Foresman et al. 1997; Sprague et al. 2006). Pine (Pinus spp.), chestnut, and dogwood 

were also present, but white oak (Qercus alba) and black oak (Quercus velutina) were 

particularly abundant (Cowell 1995; Curtin et al. 2001). The dominance of oak-hickory 

forests were maintained prior to early seventeenth-century European settlement by the 

Native American practice of slash and burn agriculture (Abrams 1998). These frequent 
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understory burnings removed fire-intolerant species like maple and cherry (Prunus spp.) 

and stimulated oak regeneration (Nowacki & Abrams 2008).   

Changing land-use practices and continued development have influenced 

community composition and have reduced the total forested area within Maryland 

(Sprague et al. 2006). After the arrival of early European settlers in 1600, land around the 

Chesapeake was gradually deforested and intentional burnings were abandoned (Nowacki 

& Abrams 2008). Timber harvesting, iron and chromium mining, agriculture, and the 

creation of transportation routes left an expansive and diverse forested area patchy and 

altered (Curtin et al. 2001; Sprague et al. 2006). The thick, nutrient-rich soils in the 

Piedmont were particularly prized for agriculture, and as a result, 80% of forests were 

cleared between 1800-1900 (Curtin et al. 2001; Brush 2009). Agriculture and mining 

practices transitioned into industrialization and urban development around 1850, and by 

1950, many former farmlands had transitioned back to forests (Foresman et al. 1997).  

The forests in the Baltimore area are the result of nearly 14,000 years of 

continuous anthropogenic forces on the landscape (Custer 1989). The total forested area 

in the Baltimore Metropolitan area is currently around 40,500 hectares, with annual 

losses averaging 100 hectares (Sprague et al. 2006; Outen 2011). Overall tree cover has 

been reduced in Maryland by 0.23% from 2001 to 2011 (Global Forest Watch 2014). 

Most forests throughout Maryland are positioned on abandoned farmland and few 

remnants of undisturbed forests exist. In Baltimore County, 34% of the land is currently 

forested, and of that percentage, only 315 forest patches are larger than 40 hectares 

(Outen 2011). The remaining forested area is composed of more than 9,000 disparate 

forest fragments (Outen 2011).  
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Urban Forest Ecology 
 

The field of urban ecology is focused on how the distribution and abundance of 

organisms are influenced by the integration of social, political, and biogeochemical 

drivers within the physical boundaries of cities (Pickett et al. 2001). Urban forest 

ecology, a sub-discipline of both forest ecology and urban ecology, has become 

particularly important in the context of an expanding urban population, an expansion that 

increases the interface between urban and rural landscapes (Radeloff et al. 2005). Despite 

providing many ecological, social, and recreational services, urban ecosystems have 

historically been given little attention for their environmental merit (McDonnell et al. 

2008; Avins 2013). Studies of urban ecosystems processes generally highlight abiotic 

variables common in urban forests such as higher air and soil temperatures, increased 

nitrogen deposition, altered hydrology, and higher atmospheric carbon dioxide levels 

(Oke 1982; Brazel et al 2000; Savva et al. 2010; Yesilonis & Pouyat 2012). These 

conditions represent anthropogenic factors that may alter carbon and nitrogen turnover 

and ecosystem functioning within forested ecosystems by altering net primary production 

(NPP) and biogeochemical cycles (Yesilonies & Pouyat 2012).   

In spite of the trend towards studies that focus on ecosystem processes and 

services, it remains equally valuable to investigate how urbanization affects community 

composition, forest structure, and species diversity. Although the diversity of a forest is 

connected to ecosystem services (Vitousek 1990), floristic surveys conducted within 

urban forests provide another avenue to assess the impact of human–induced disturbance 

on fragmented forests (McPhearson et al. 2016). As an example, the diversity and 

abundance of species within a forest can determine the ability of that ecosystem to 
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provide food and habitat for fauna, or the ability to remove pollutants from the air, water, 

and soil ( Zipperer et al. 2012; Avins 2013; Johnson & Swan 2014). From an applied 

perspective, understanding the extent and impact of exotic plant species within an 

ecosystem is useful information that managers and policy makers can use to focus 

conservation efforts. 

It has been widely observed that urbanization reduces species diversity and 

homogenizes plant functional diversity (Groffman et al. 2014). These changes result in 

fewer, more widespread, and “urban adaptable” species (McKinney 2006). At the same 

time, urban development creates a heterogeneous landscape pattern (Pickett & Cadenasso 

1995). Therefore, an active area of research for urban ecologists is the relationship 

between cities and forest structure, community composition, and functional group 

representation (Pickett et al. 2008). Questions about species assemblage patterns in urban 

forest patches have led many to investigate the relevance of island biogeography theory 

(Davis & Glick 1978; Marzluff 2008; Niemelä 2014). Other important drivers currently 

being investigated in urban forest ecology are the urban heat island effect, increased deer 

browsing, canopy disturbance, forest management practices, and species invasions. To 

understand the dynamics of urban forests, sampling must first be taken of vegetation 

within both urban and neighboring rural forests. Such surveys provide a baseline against 

which future monitoring can be used to understand the impacts of urban disturbance on 

forest vegetation. With long-term data on species and environmental information, we 

may better understand the direction and magnitude of the impact of urbanization on the 

structure and functioning of regional ecosystems.  
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Drivers of Change in Maryland Forests 
 

In addition to clearing wide swathes of forests surrounding the Chesapeake Bay, 

European colonizers introduced pests and diseases. Most notably affected was American 

chestnut, which, prior to the 1920 introduction of chestnut blight, comprised as much as 

30% of Maryland forests (Curtin et al. 2001; Sprague et al. 2006). More recently, urban 

land-use factors, insect infestations, white tailed deer (Odocoileus virginianus) browsing, 

and exotic plant species invasions have affected forests in Baltimore (Baltimore County 

EPS 2007; Outen 2011). Certain species, like oak and elm (Ulmus spp.), have been more 

vulnerable than other species to these environmental stresses. Declines in the density and 

dominance of such species in Maryland have altered the forest community (Abrams 

2003; Sprague et al. 2006). It remains unclear if forests in urban and rural areas of 

Maryland may be disproportionately affected by these environmental factors.  

Urbanization and Climate Change 
	

The development of cities has produced a patchy distribution of forest ecosystems 

juxtaposed with larger urban ecosystems (Pickett et al. 2008). Fragmentation and 

isolation alters seed source availability, dispersal, and seedling establishment in urban 

forests (Williams et al. 2009; Trentanovi et al. 2013). Vegetation regeneration in urban 

areas may be further restricted by an accompanying reduction in pollinator communities 

(Pauw 2007) and reduced seed viability as a consequence of reduced genetic variation in 

fragmented habitats (Young et al. 1996). Forest patches embedded in the urban matrix 

are exposed to higher air temperatures, increased nitrogen deposition, altered hydrology, 

and higher atmospheric carbon dioxide levels (Oke 1982; Brazel et al. 2000; Savva et al. 

2010). Spatially derived restrictions on urban forest regeneration and anthropogenic 
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degradation of urban environments are likely to cause divergences in the community 

structure of urban and rural forests.   

The modified biogeochemical environments associated with urban areas are 

attributed to factors such as vehicle emissions, impervious surfaces, industrial pollutants, 

and built up surfaces. Much research has focused on quantifying the rate and extent of 

atmospheric and hydrogeologic change in urban areas (Zogg et al. 1997; George et al. 

2007; Savva et al. 2010). In a five-year study conducted along an urban to rural gradient 

in Baltimore, George et al. (2007) found that urban sites had atmospheric carbon dioxide 

levels averaging 66 ppm higher, with temperatures averaging 1.2-2.1°C higher, than 

suburban and rural sites. A more recent study reported soil temperatures in urban forests 

averaged annually 0.4°C higher than rural forests in the Baltimore Metropolitan area 

(Savva et al. 2010). This same study predicted that urbanization, concomitant with 

deforestation, could increase mean annual urban soils temperatures by as much as 2°C 

(Savva et al. 2010). Increased soil temperature influences microbial decomposition, 

nutrient cycling, fine-root respiration, and other factors that affect terrestrial vegetation 

(Zogg et al. 1997; Savva et al. 2010). The impact of urban-land use variables on forest 

ecosystems are critical determinates of the abundance and diversity of vegetation within 

an ecosystem. Still, the manner and degree to which urban forest vegetation responds to 

fragmentation and altered hydrologic, soil, and atmospheric conditions remains poorly 

understood. 

Urban environments can serve as surrogates for the future effects of climate 

change across landscapes and regions (Carreiro & Tripler 2005). A recent National 

Climate Change Assessment reported a 70% increase in the amount of rainfall during 



	

	
	
	
	

10	

heavy precipitation events from 1958 to 2012 in the Mid-Atlantic, the highest increase 

reported in the U.S. (McKibben 2014). In a report that included Maryland, National 

Oceanic and Atmospheric Administration (NOAA) scientists noted that precipitation has 

increased nearly 1.27 cm decade-1 and temperatures have risen over 1°C since 1985 in the 

Northeastern U.S. (Kunkel et al. 2013). The 2014 Intergovernmental Panel on Climate 

Change (IPCC) report noted greenhouse gas concentrations are at the highest recorded 

levels in 800,000 years, with concentrations 40% higher than pre-industrial times 

(Pachauri et al. 2014).  

Changes in air temperature, precipitation, and carbon dioxide concentrations as a 

result of climate change are likely to have a strong impact on forest ecosystems 

(Kirilenko & Sedjo 2007). Plants may respond to climate change factors with adaptation 

or alteration of community composition and geographic distribution of species ranges 

(Rogers & McCarty 2000). Some of these predictions are already being observed. For 

example, some tree species have migrated northward in the U.S., with temperature 

increases related to anthropogenic climate change as the reported cause (Woodall et al. 

2009; Cavanaugh et al. 2014). As urban areas often experience higher temperatures 

relative to surrounding areas (George et al. 2007), climate change may have a greater 

effect on species distributions in urban forests.   

Fire Suppression 
 
 Fire is an important source of disturbance for forested ecosystems. Fire directly 

affects nutrient cycling and soil hydrology, and indirectly influences forest succession, 

the evolution of plant traits, and plant assembly (Barnes et al. 1997). In the majority of 

Maryland, including Baltimore, the pre-settlement fire-return interval was between 7-12 
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years (Frost 1998). Changes in land-use and fire policies have altered the frequency, type, 

and severity of fire regimes throughout the Northeastern region of the U.S. (Nowacki & 

Abrams 2008). The displacement of Native Americans resulted in a decline of slash and 

burn agriculture, and large, property-destroying fires in the first half of the 20th century 

resulted in fire-reducing policies (Abrams 1998; Wade et al. 2000). This combination 

nearly eliminated periodic forest burnings, and as a result has changed the forest 

community in many areas (Nowacki & Abrams 2008).   

Pre-settlement fire intervals slowed the transition from fire-adapted pioneer 

species to late-successional, shade-tolerant species (Barnes et al. 1997). The exclusion of 

fire from forested ecosystems has promoted fire-sensitive species, which typically grow 

more slowly and are more tolerant to densely shaded understories, at the expense of 

shade-intolerant species of oak and hickory (Nowacki & Abrams 2008; Hanberry et al. 

2012). As forest canopies close, reduced evapotranspiration leads to increasing soil 

moisture. Nowacki and Abrams (2008) termed this component of forest succession 

mesophication. Mesophication produces feedback loops that facilitate the establishment 

of mesophytic species (Kreye et al. 2013). The increased moisture and reduced light 

levels create an environment that promotes shade-tolerant species to become more 

abundant (Abrams 2003). In addition to a changing microenvironment, the opportunity 

for fire is further reduced by the higher moisture content of the leaves mesophytic species 

(Kreye et al. 2013). These changes to the understory environment are drivers of 

succession from more shade-intolerant and xeric species to species more tolerant to 

mesophytic species (Nowacki & Abrams 2008; Burgess et al. 2015).  

 It has been repeatedly tested and argued that fire event reduction is a primary 
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driver of oak decline (Abrams 1990; Nowacki & Abrams 2008; Wade et al. 2000; 

Hanberry et al. al.; Hutchinson et al. 2012). One such study showed that oaks not only 

regenerate more abundantly in burned gaps, but repeated burnings reduce the frequency 

of red maple regeneration (Hutchinson et al. 2012). Furthermore, fire occurrence needs to 

coincide with a critical life-stage of oak development to successfully promote 

regeneration (Arthur et al. 2012). This finding suggests that repeated burnings, rather 

than isolated fire events, are necessary for oak forests to thrive. Reduced oak regeneration 

is problematic in Maryland, where oaks are considered keystone species due to their 

significant contribution to ecosystem processes, forest structure, and biodiversity 

(Baltimore County EPS 2007).   

 Over the last 60-70 years, the number of fire events in the Northeast has 

continued to decrease (Nowacki & Abrams 2008). In 2015, the Maryland Forest Service 

reported that only 105 hectares of forest experienced fires, and none were prescribed 

burns (Maryland Forest Service 2015). Although Sharper et al. (1986) suggested that fire 

frequency may increase in urban areas, fire is typically less frequent in these areas (U.S. 

Fire Administration 1999). Because fire frequency is low in Maryland, it seems likely 

that any impacts of fire suppression would be similar between urban and rural forests.  	

Deer Browsing 

 Temperate forests provide habitat for white-tailed deer (Odocoileus virginianus). 

Prior to European settlement, wolves, mountain lions, and year-round hunting by Native 

Americans restricted white-tailed deer populations around the Chesapeake Bay 

(Maryland Department of Natural Resources 2014). After colonization, overhunting and 

deforestation reduced deer populations to the brink of extirpation such that, in 1900, deer 
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populations in Maryland had dwindled to isolated individuals in a few small sections of 

forests in western Maryland (Côté et al. 2004; Maryland DNR 2014). The density of deer 

has since increased as a result of wildlife management policies, loss of natural predators, 

and a decline in hunting (Côté et al. 2004). In fact, white tailed deer populations are 

currently at densities exceeding pre-settlement levels (Rooney & Waller 2003). 

Overabundance of deer has led to over-browsing, which has directly modified forest 

structure and composition, and indirectly affected associated plants and animals (McShea 

et al. 1997; Rooney & Waller 2003; McGarvey et al. 2013).  

Deer have been shown to reduce regeneration of oak, hickory, hemlock (Tsuga 

canadensis), northern white cedar (Thuja occidentalis), birch (Betula spp.), and many 

understory species (Frelich & Lorimer 1985; Abrams 1998; Rooney & Waller 2003; 

Abrams 2003). Browsing reduces biomass, which limits the capacity for growth and 

reproduction, ultimately lowering the relative abundance of palatable species (Rooney 

2001). For example, deer preference for oak over other species may be increasing the 

abundances of red maple, black cherry (Prunus serotina), beech, mountain laurel (Kalmia 

latifolia), spicebush (Lindera benzoin), and multiflora rose (Rosa multiflora) in certain 

ecosystems (Abrams 1998; Tilghman 1989; Horsely et al. 2003; Rawinski 2008). 

Unpalatable and well-protected species such as Japanese barberry (Berberis thunbergii), 

multiflora rose, and garlic mustard (Alliaria petiolata) are often avoided by deer, thus 

contributing to the proliferation of these non-native species in forest communities 

(Rawinski 2008). Heavy deer browsing also skews the overall forest structure towards 

medium and large stems, as smaller stems are consumed (Tilghman 1989; McGarvey et 

al. 2013).  
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Given that high deer populations are pervasive, the structure and composition of 

forest vegetation will be influenced by their selective feeding preferences (Horsley et al. 

2003). These preferences could mean that oak and hickory species will continue to be 

over-browsed, giving an advantage to unpalatable non-native species. Côté and 

colleagues (2004) suggest that recovery of heavily browsed plant communities will 

require prolonged reduction of browsing and disturbance events such as those that 

occurred historically. Because Baltimore city and county both experience high deer 

populations, the impact of deer is expected to be severe. For example, one forest health 

assessment conducted in Maryland noted that without controls of the local deer 

population, oak regeneration will not be possible (Baltimore County EPS 2007).  

The impacts of deer on forest vegetation are not likely to decrease in the near 

future. A moderate deer population in Maryland is estimated to be below 175,000 

animals (Personal communication with DNR deer scientist Brian Eyeler). The reported 

deer population in Maryland in 2013 was 227,000, up 4,000 from 2012, despite a 10% 

increase in hunting (Maryland DNR 2014). This increase can be partially explained by 

regulations that historically limited taking female deer and the cultural preference for 

hunting male deer. Hunting males has little to no effect on population growth (Côté et al. 

2004). Controlling the deer population in urban areas is particularly challenging since 

hunting is not typically permitted. To help reduce deer populations, many states, 

including Maryland, have introduced deer culling into forest management practices 

(Baltimore County EPS 2007). Weapons discharge ordinances in Baltimore City have 

restricted the ability of municipalities to enact deer management measures, in spite of an 

increasing deer population within city limits (Personal communication with DNR deer 
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scientist Brian Eyeler). Little is known about the distribution of deer populations across 

the urban to rural gradient (McDonnell & Hahs 2008), so it remains relatively unknown 

whether deer are impacting urban forests to the same extent as rural forests. 

Insect Infestations and Disease 
	
	 As international hubs for trade and commerce, urban areas are more likely to 

experience introductions of non-native insects, often arriving in lumber or wooden 

shipping containers (Poland & McCullough 2006). The probability that these non-native 

pests become established is higher in urban areas, as there more commonly exists 

alternative host species closely related to the pests’ native host species (Niemela & 

Mattson 1996). For example, mimosa webworm (Homadaula anisocentra), an introduced 

pest from China, was first reported in Washington D.C. (Knupp & Hoover 2001). The 

native host species of mimosa webworm is silk tree (Albizia julibrissin), found 

throughout Asia. In the United States, mimosa webworm feeds on native honeylocust 

(Gleditsia triacanthos L. var. inermis), a species related to silk tree (Knupp & Hoover 

2001). Interestingly, mimosa webworm infestations on honeylocust trees have been 

positively correlated with urban land-use context indicating a role for urbanization-

related stress in susceptibility (Sperry et al. 2001). 

  Introduced phytophagous insects are often able to thrive because their new 

environments lack the ecological controls present in their native habitats. Additionally, 

the new host species are often not lack defenses or tolerance which may provide the 

invading insect a competitive advantage (Niemela & Mattson 1996). Intensive feeding 

occurring as the result of un-regulated insect feeding on a native host may severly 

damage the host and can lead to spread of disease if the invading insect is a vector for a 
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plant pathogen.  For example, Liebhold et al. (2013) found that the Northeastern region 

has the highest abundance of damaging invasive insects and host genera in the United 

States (Liebhold et al. 2013). These findings support the hypothesis that urban centers 

may be at a higher risk for insect and disease infestations because of the potential for 

higher plant biodiversity (deriving from non-native species) in these areas (McKinney 

2006). 

One particularly devastating forest pest is the gypsy moth (Lymanthia dispar). 

Gypsy moth is an introduced generalist feeder, but oak-hickory forests located in 

Northeastern U.S. are one of the most susceptible forest types to gypsy moth predation 

(Johnson et al. 2006; Haynes et al. 2013). In an outbreak event, the invasive moths 

defoliate oak trees and other species. Defoliation, resulting from an outbreak, puts 

physiological stress on oaks that may result in dieback, decreased acorn production in 

subsequent seasons, and even death (Gottshalk 1990). Oak decline due to a gypsy moth 

infestation may also create the opportunity for other species to gain dominance. For 

example, increased basal area of red maple trees and saplings was positively correlated to 

oak decline after a widespread defoliation in northern Pennsylvania (Fajvan & Wood 

1996). In 2013, gypsy moths defoliated 47.2 acres of forest in Maryland (United States 

Department of Agriculture 2015). Although stand defoliation was minimal in 2013, there 

is the potential for greater amounts of gypsy moth infestations in the future due to climate 

change. Outbreaks within the gypsy moth’s range span a large geographic area, yet 

Haynes et al. (2013) found a synchrony in outbreak events that was correlated with 

similar weather conditions in each region, specifically precipitation. As climate change 

has increased precipitation in the Mid-Atlantic (Kirilenko & Sedjo 2007; McKibben 
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2014), gypsy moth infestations may cause increased damage to oak-hickory forests in this 

region.  

 Another invasive insect that impacts forests in Maryland is the Emerald Ash 

Borer (Agrilus planipennis). Emerald ash borer (EAB) is a beetle that feeds specifically 

on the phloem of ash species (Fraxinus spp.) (Haack 2002). The beetle’s large range 

reflects the geographic distribution of ash species (MacFarlane & Meyer 2005). When 

attacked, most stands die within three years (Haack et al. 2002). Mortality of ash stands 

reduces forest productivity and, as a result, limits the ability of that forest to sequester 

carbon (Flower et al. 2013). A study by McFarlane and Meyer (2005) found that urban 

forests containing significant ash populations are at an increased risk for EAB infestation. 

The authors attribute this risk to the low genetic diversity of ash in urban forests, 

resulting in a lower level of resistance (McFarlane & Meyer 2005). Baltimore city has an 

approximate density of 16 ash trees per hectare of developed land (Kovacs et al. 2010). 

Although EAB is currently restricted  to isolated areas in the mid-Atlantic, including 

parts of Maryland and Virginia (Poland & McCullough 2006; Flower et al. 2013), a 

model developed by Kovacs et al. (2010) predicts that EAB infestations will be reported 

in every county of Maryland by 2017. If ash trees in urban areas have lower levels of 

EAB resistance as suggested by McFarlane and Meyer (2005), EAB infestations will 

have a disproportionately large impact on ash trees in Baltimore city.   

 Introduced pathogens have also damaged native tree populations. For example, 

Dutch elm disease (DED) is an exotic wilting disease affecting many elm species (Ulmus 

spp.) caused by the fungi Ophiostoma ulmi and Ophiostoma novo-ulmi. DED is vectored 

by three species of elm bark beetle (Hylurgopinus rufipes, Scolytus multistriatus, and 
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Scolytus schevyrewi). Introduction of these beetles to the United States has been traced to 

infested logs arriving from Europe in the 1920’s, reaching Baltimore around 1934 (Gibbs 

1978). The spread of DED was initially slow and restricted to localized areas due to a 

limited breeding population of the beetle, but has since widely expanded (Gibbs 1978). 

American elm (Ulmus americana) is highly susceptible to DED, whereas slippery elm 

(Ulmus rubra) has a greater resistance (Schlarbaum et al. 1997). American elm was once 

considered a major riparian species and was a common street tree (Lovett et al. 2006). 

Decimation of this species by DED has changed the urban street tree landscape and the 

riparian forest landscape throughout the United States. In many Midwestern and 

Northeastern cities, infected elm trees were replaced by maple or ash trees (Poland & 

McCullough 2006). The replacement of American elm trees with other species changes 

the local seed source pool in urban areas. As street trees are common seed source for 

neighboring urban forests (McKinney 2007), a change in the street tree species 

population has likely affected urban forest composition.   

 In terms of introduced pathogens in North America, perhaps none is as well 

documented as that of the dramatic alterations of eastern deciduous forests by chestnut 

blight (Cryphonectria parasitica) (Schlarbaum et al. 1997; Curtin et al. 2001; Sprague et 

al. 2006). This wind-borne pathogenic fungus, has all but eliminated the American 

chestnut from eastern North American forests (Schlarbaum et al. 1997). Prior to the 

introduction of chestnut blight in 1920, the American chestnut comprised as much as 

30% of Maryland forests (Curtin et al. 2001; Sprague et al. 2006). At that time, the 

demise of the American chestnut generated an opportunity for oak and elm expansion 

(Nowacki & Abrams 2008). American chestnut currently survives as an extremely rare 
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understory stump sprout in mesic habitats within the Eastern U.S. (Griffin 1992).  

 Exotic insect feeders and diseases are capable of extirpating plant species and 

causing disruptions to ecosystem processes at nearly every trophic level. Gypsy moth, 

emerald ash borer, Dutch elm disease, and chestnut blight are major pests and diseases of 

trees important to the Mid-Atlantic area. Other important pests and pathogens that 

threaten forest health in the Mid-Atlantic include dogwood anthracnose, beech bark 

disease, hemlock woolly adelgid, white pine blister rust, oak wilt, and butternut canker 

(United States Department of Agriculture 2015). Some of the affected tree species are so 

reduced by disease or defoliation that they are now considered rare in their native ranges. 

In urban areas, pests and pathogens may inflict greater damage on forests due to 

decreased host fitness (McFarlane & Meyer 2005), warmer temperatures that enhance 

climate suitability for exotic pests (Tubby & Webber 2010), or higher incidences of 

related host taxa that are palatable for exotic insects (Niemela & Mattson 1996). The 

health and diversity of forests within urban environments may therefore be at a higher 

risk than forests outside the urban matrix.   

Invasive Plant Species 
 
  Forest health is reduced by the rapid and aggressive establishment, growth, and 

seed dispersal of invasive plant species (Shifley et al. 2012). By overtaking forests and 

displacing native species, invasive species alter the community structure, diversity and 

ecosystem function (Vitousek 1990). For example, invasive species can affect ecosystem 

processes by accelerating decomposition, which can result in a loss of nitrogen (Ashton et 

al. 2005). Conversely, if the invader is a nitrogen fixer, nitrogen availability may increase 

(Vitousek & Walker 1989). Invaders may also reduce primary productivity by blocking 
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sunlight to native vegetation (Vitousek 1990). The mechanism underlying these invasions 

is the enemy release hypothesis which argues that when plant species experience a 

competitive release from their natural enemies in a new environment, they may become 

invasive (Keane & Crawley 2002) by outcompeting native plant species (Vila & Weiner 

2004). A competitive advantage could also be derived from a phenologic mismatch 

between a plant invader and its new environment. For example, plant invaders that leaf-

out in early spring will reduce the amount of usable light available to native species by 

shading them out. These reductions in light may alter growth, regeneration, budburst 

timing, and quantities of native species (Smith 2013).  

  The U.S. Fish and Wildlife and the National Park Service reported over sixty 

invasive species in the Mid-Atlantic, with another nineteen species on a “plants to watch” 

list (Swearingen et al. 2010). Many of these invasive species can rapidly change an 

ecosystem, and their presence represents a threat to Maryland forests. These threats may 

be particularly strong in urban areas, as some temperate climate cities have experienced 

extended spring growing seasons (Imhoff et al. 2010). In Washington, D.C., and 

Baltimore, urbanization, associated with the creation of forest fragments, influenced the 

timing of autumn more strongly than spring (Elmore et al. 2012). These results suggest 

that the urban heat island effect has a diverse effect on the growing season between cites. 

A long-term study is needed to assess the rate and extent of any invasions in Baltimore. 

Biotic Homogenization of Urban Forests  

 In addition to the natural factors described above, the assembly of plant 

communities in urban areas is facilitated by human manipulation of the landscape and 

choice in species planted in the landscape (Swan et al. 2011). For example, when exotic 
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species escape from planted areas and become established in urban forests, species 

richness may increase (Kowarik 2003; McDonnell & Hahs 2008). However, phylogenetic 

and functional diversity is typically lower than the increase in biodiversity (Knapp et al. 

2012). In other words, urban forest communities may have higher species richness, but a 

narrower range of lineages as compared to rural forests (McKinney 2006; Groffman et al. 

2014). The narrowing of trait diversity may be attributed the harsh ecological filtering 

effect of highly urban areas. The plant species that thrive in urban environments typically 

have similar traits and life-histories that are a result of increased tolerance to disturbed 

habitats (Johnson & Swan, 2014). Native species may become extirpated from urban 

areas by competitive suppression from non-native species or because they are poorly 

adapted to urban environmental conditions (Kühn & Klotz 2006; Knapp et al. 2012). 

Formerly distinct plant communities become similar through the loss of niche-specific 

and rare flora, resulting in lower beta diversity (Williams et al. 2009; Knapp et al. 2012). 

On a larger scale, beta diversity may actually be increasing. For example, vegetation in 

urban habitats may diverge from vegetation in neighboring rural habitats (McKinney 

2006). Alpha diversity may increase as a result of the uneven loss of rare species 

(Schwartz et al. 2006), or decrease due to exotic species gains (McDonnell & Hahs 

2008).  

 The degree of urbanization contributes to both the biodiversity of the community 

as well as the exploitation level of invasive colonizers (Marzluff 2008; Trentanovi et al. 

2013). Although low to moderate urbanization may actually increase richness, moderate 

to high urbanization decreases richness (Schwartz et al. 2006; McKinney 2008). 

Ecosystem homogenization can therefore be predicted to increase as urban development 
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continues to encroach on undisturbed areas. In Baltimore, the dynamics of species 

turnover are relatively unknown. 

Summary and Conclusion 

 Vegetation in urban areas is determined by a combination of natural and human 

mediated processes (Johnson & Swan 2014). Future research in this area should elucidate 

the complex relationship between urban forest vegetation and the urban environment 

(Grimm et al. 2000; Johnson & Swan 2014). Investigating this topic is important because 

of the ecosystem services urban forests provide such as habitat for wildlife (Marzluff 

2008), cultural significance for city residents (Grove et al. 2006), and purification of air 

and water (Kirilenko & Sedjo 2007). The need for these services is expected to increase 

as the urban expansion encroaches on rural landscapes (Radeloff et al. 2005). Long-term 

research has the potential to address some the questions surrounding the vulnerability and 

resilience of urban plant communities. Such research also provides unique opportunities 

to study the impact of human–induced disturbance on the diversity of species within a 

forest, habitat structure, and the spread of exotic species.  

 In spite of the clear need to understand the effects of urbanization on forested 

ecosystems, there is a limited amount of long-term data addressing this topic (Grimm et 

al. 2000). Within the small number of studies that do investigate long-term urban 

ecosystem processes, few have attempted to quantify how all layers of vegetation respond 

to urbanization. This gap in knowledge prevents us from fully understanding the 

dynamics, and perhaps the resilience, of urban forests.  
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Re-visiting a Long-Term Study in Baltimore 
	
 In 1998, the Baltimore Ecosystem Study (BES), a component of the U.S. National 

Science Foundation funded Long-Term Ecological Research (LTER) network, 

established eight permanent forest plots within the Baltimore metropolitan area. Four 

plots were in rural Baltimore County and four plots were in Baltimore City. The plots 

were established to investigate the long-term impacts of urbanization on natural 

ecosystems. Groffman and et al. (2006) conducted a thorough soil and vegetation 

assessment of these plots and described the forest structure as “well developed with 

canopy and subcanopy tree layers, shrub and vine layers, and herbaceous cover” in both 

urban and rural plots. They also found that the urban plots had greater species richness 

than the rural plots and both plot types had a relatively small number of invasive species. 

There was also greater shrub density and higher basal area in the rural plots, but greater 

sapling, seedling, and herb density in the urban plots. The authors attributed these 

differences to a greater amount of canopy cover in the rural plots. Lastly, the authors 

predicted that the structure and composition of the vegetation in the urban plots would 

diverge from the rural plots.  

 These LTER plots were resampled in this study to determine the extent of change 

since 1998. The foremost goal of this project was to determine whether in plant 

community composition, diversity, and structure differed between the urban and rural 

plot-types. I chose to focus on these particular factors because community composition 

within forests is an outcome of both site history and disturbance regime (Pickett 1989). 

Therefore, the analyses used in this study were aimed at understanding how the plant 

community composition within these plots relates to urbanization within Baltimore. The 
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goals of this study were achieved using floristic data, land-use history, and indicator 

species information to draw meaningful conclusions about the structure and diversity of 

Baltimore area forests. 

Hypothesis and Objectives 

 The central hypothesis was that changes in vegetation composition would be 

greater in the urban plots as compared to the rural plots with the presumption that abiotic 

and biotic stresses would differ in the urban plots. I expected this outcome to include an 

increase in the amount of exotic species and a decline in native species in the urban plots. 

Additionally, I anticipated community assemblages to change most markedly in the 

herbaceous and shrub layers since the generation times of these layers are generally 

shorter than that of the tree layer. Taking into consideration the mesophication of the 

forest as succession progresses, I expected to observe a decline in deciduous hardwood 

species and an increase in deciduous soft wood species in both plot-types. 
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Chapter Two: Methodology  
 
Site Description 
 

The eight BES LTER plots are located in the Baltimore metropolitan region of 

Maryland. Four of the study plots, designated as “urban” plots, are located within 

Baltimore City, and four of the study plots, designated as “rural” plots, are located in 

Baltimore County (Figure 1). All plots were located in the Gwynns Falls watershed in the 

Piedmont Plateau region of Baltimore (Groffman et al. 2006). 

 
Figure 1. Locations of three forest fragment sites established in Baltimore, Maryland, as 
part of the BES LTER network. The rural plots were located in Oregon Ridge Park in 
Baltimore, County. The urban plots are located in Hillsdale and Leakin Park in Baltimore 
City.   
 
 All plots were in forest stands determined by the BES to be roughly 80-100 years 

of age and to have at least 80% continuous forest canopy at the time of their 

establishment in 1998 (Groffman et al. 2006). All four rural plots were located within 
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Oregon Ridge Park, approximately 16 km outside the Baltimore City limit in 

Cockeysville, Maryland (Figure 1 & 2). Elevation within the park ranges from 104-192 

meters above sea level (Baltimore County EPS 2007). Land use in this area is primarily 

dedicated to agriculture, recreational forests, and residential housing (Doheny 1999). 

Oregon Ridge Park is positioned within 364 hectares of continuous forest (Baltimore 

County EPS 2007). This area was extensively logged in the 1800’s to provide fuel for 

iron production, but has since been allowed to regenerate starting in the early 1850’s 

(Brooks et al. 1979).  

 
Figure 2. The locations of four designated “rural” forest plots located in Oregon Ridge 
Park as part of the BES-LTER.   
 

Two urban plots were located in Leakin Park and two urban plots were located in 

Hillsdale Park (Figure 3). The National Land Cover Database classifies the area 

surrounding the urban parks as medium-density developed land (U.S. Geologic Survey 
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2011 edition, amended 2014). The forests in these city parks are relatively undisturbed 

(NRSC 1998).  

 

Figure 3. The locations of four designated “urban” forest plots located in Hillsdale and 
Leakin Park as part of the BES-LTER.   
 

Engineer Thomas Dekay Winans purchased the historic Crimea Estate (modern 

day Gwynns Falls Leakin Park area) in 1855 (O’Donnell et al. 2006). The Olmstead 

brothers consulted with the city of Baltimore to purchase the estate in 1904 and then 

again in 1933. The city eventually acquired the 28 hectare estate in 1948, and the estate 

has remained a public park since (O’Donnell et al. 2006). Much of the specific site 

history remains unknown, as relatively few records exist regarding property use 

(O’Donnell et al. 2006).  

The Howard Park Civic Association (HPCA) describes Hillsdale Park as a narrow 

14 hectare tract of forest that is situated between a golf course and residential housing 
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(HPCA n.d.). According to the HPCA website, this park has been relatively unused for 

recreation, but it is a common location for illegal dumping (HPCA n.d.). Prior land-use of 

Hillsdale Park is unknown. The area around Hillsdale and Leakin Park is approximately 

146 meters above sea level (NRSC 1998). 

Three of the urban forest plots have high-fertility soil underlain with igneous 

rock-types (Hillsdale 1, Hillsdale 2, and Leakin 1), whereas the remaining urban plot 

(Leakin 2) resides on low-fertility soil underlain with metamorphic rock-types (Groffman 

et al. 2006). Hillsdale 1 has soils classified as Jackland (fine, smectitic, mesic Aquic 

Hapludalfs). Hillsdale 2 and Leakin 1 have soils classified as Legore (Fine-loamy, mixed, 

active, mesic Ultic Hapludalfs). Leakin 2 has soils classified as Occaquon (fine-loamy, 

mixed, semiactive, mesic Inceptic Hapludults) (Table 1) (Groffman et al. 2006; Soil 

Survey Staff n.d.).  

The bedrock in Oregon Ridge is predominantly Loch Raven Schist, a hard 

crystalline igneous rock (Baltimore County EPS 2007). Three of the plots in Oregon 

Ridge (Upslope 1, Upslope 2, and Midslope 1) have soils classified as Glenelg (fine-

loamy, mixed, semiactive, mesic Typic Hapludults). Midslope 2 has soils classified as 

Manor (coarse-loamy, micaceous, mesic Typic Dystrudepts) (Table 1) (Groffman et al. 

2006; Soil Survey Staff n.d). Both Glenelg and Manor soils are considered well-drained 

and acidic with low fertility (NRCS 1976; Groffman et al. 2006).  
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Table 1. The site, identification, land-use classification, size, and soils associated with 
eight forest plots in Baltimore, Maryland established in previous BES-LTER studies and 
resampled in this study.   

Location Plot ID Abbreviation Plot-Type Size (m) Soil Series 

Oregon Ridge  Upslope 1 ORUP1 Rural 40 x 40 Glenelg 

Oregon Ridge Midslope 1 ORMID1 Rural 40 x 40 Glenelg 

Oregon Ridge Upslope 2 ORUP2 Rural 40 x 40 Glenelg 

Oregon Ridge Midslope 2 ORMID2 Rural 40 x 40 Manor 

Leakin Park Leakin 1 Leakin1 Urban 40 x 40 Legore 

Leakin Park Leakin 2 Leakin2 Urban 40 x 40 Occaquon 

Hillsdale Park Hillsdale 1 Hill1 Urban 30 x 30 Jackland 

Hillsdale Park Hillsdale 2 Hill2 Urban 30 x 30 Legore 

 
General Sampling Overview 
 
 All plots were initially established and sampled in June-August of 1998. The plots 

were then resampled in June-August of 2015. Vegetation layers were categorized as trees, 

saplings, shrubs and vines, herbs, and seedlings. All layers were sampled to characterize 

the structure and composition of the forest community represented by the plots. The 1998 

survey developed a sampling protocol that used different sampling methods for the 

different layers. The sampling protocol for floristic and structural data collected in 2015 

followed these methods. Great effort was expended to ensure that the data collection 

between the 1998 and 2015 surveys corresponded with a similar level of detail. This 

consistent sampling was critical to reduce variation due to sampling error and to allow 

legitimate comparison. Figures 4a and 4b show an example of the urban and rural forest 

plots.  
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a. b.     
Figure 4. Images of a rural plot in Oregon Ridge Park (a) and an urban plot in Hillsdale 
Park (b). 
 
Plot Establishment 

 In 1998, all eight plots were permanently outlined with metal markers buried at or 

below the soil line. Six of the plots were 40×40m (1600m2). The Hillsdale 1 and 2 plots 

were 30×30m (900m2). Between each of the plot corners, metal markers were placed at 

10m intervals. Metal markers inside the plot borders designated the quadrat locations. 

Metal plot markers were relocated in 2016 using a metal detector. Once located, each plot 

was flagged and divided, as in 1998, into sixteen 10×10m subplots (nine in the Hillsdale 

plots) and marked with flags (Figure 5). Each subplot was then further divided into four 

5×5m subplots (Figure 5). One of the four 5×5m subplots in each 10×10m subplot was 

used for all vegetation sampling below the tree layer. Within each of these particular 

5×5m subplots, two 2×0.5m (12m) quadrats were outlined. The quadrats were arranged 

perpendicular to each other (Figure 5). Thus, there were sixteen 5x5m subplots in each 
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40×40m plot, with a total of 32 quadrats. In the two 30×30m plots, there were nine 5×5m 

subplots, with a total of 18 quadrats. 

 

Figure 5. Layout of plots established in four urban and four rural plots in Baltimore. Each 
alphanumeric box represents the 10×10m subplot area used to sample trees and measure 
canopy cover. Within each 10x10m subplot, the dotted line designates the 5×5 m area 
used for all other vegetation sampling. The entire 5×5m subplot was used to sample 
saplings. The dotted line represents the line used for transect measurement of shrubs, 
vines, and woody debris. The two perpendicular rectangles within the 5×5m subplots 
represent two 2×0.5m quadrats used to sample herbs, seedlings, and ground cover. 
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Survey Methods 
 
 Vegetation was sampled according to the protocol used in the 1998 survey. The 

original methods and raw data files from the 1998 study are held by Dr. Steward Pickett 

and can be obtained upon request. The sampling methods are summarized below.  

Tree Layer: All individuals with a diameter at breast height (DBH) ≥8cm were 

identified as trees. DBH was measured using diameter tape. Canopy level (canopy, 

subcanopy, or understory) for each tree was visually determined based on crown height. 

The tag number from previous sampling was recorded or a tag was added in the event an 

individual was untagged. The height of the tallest tree in each 10×10m subplot was 

measured using an Opti-Logic Corporation Insight 100LH Rangefinder.  

Sapling Layer: All individuals classified as tree species that measured <8cm DBH were 

identified as saplings. DBH was measured to the nearest hundredth decimal place using 

General Ultratech digital calipers. As with the tree layer, canopy level (canopy, 

subcanopy, or understory) for each sapling was visually determined. The existing tag 

number from previous sampling was recorded or a tag was added in the event of a new, 

untagged individual. The height of the tallest sapling in each 5×5m subplot was measured 

using an Opti-Logic Corporation Insight 100LH Rangefinder.  

Vine and Shrub Layer: Species determined to be shrubs or vines were measured along 

transects. The lower and left perimeters of each 5×5m subplot were used as the two 

transect lines (Figure 5). Measurement of vines and shrubs began at the transect line that 

ran parallel to the numeric axis on the plot layout going in the direction towards the 

alphabetic axis (Figure 5). Sampling then progressed to the second transect line that ran 

parallel to the alphabetic axis on the plot layout (Figure 7). Measurements were recorded 
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in 1m segments starting with 0-1m as the first segment and ending with the tenth at 9-

10m. For each segment, all shrub and vine species that touched the transect line were 

measured in centimeters using a metric ruler. To be recorded, plants had to have a 

diameter ≥5cm. The height of the tallest shrub along each pair of transects for each 5×5m 

subplot was measured using an Opti-Logic Corporation Insight 100LH Rangefinder. If 

shrub and vines species had less than a 10cm gap while touching the line, the recording 

for that species was considered one continuous measurement. Vines were also measured 

when present on a tree or sapling. In these cases the vine was identified and the 

percentage of the vine that reached the canopy was visually estimated and recorded in 5% 

increments. 

Woody Debris: Woody debris was measured along the transect lines using the same 

protocol for shrubs and vines as described above. Dead trunks and large branches were 

described as coarse woody debris and small branches and chunks of bark were considered 

fine woody debris. If woody debris had less than a 10cm break while touching the line, it 

was considered one continuous measurement. 

Herb and Seedling Layer: All seedlings and herbaceous species were identified, tallied, 

and percent cover visually estimated within each 2×0.5m quadrat. 

Ground Cover: For each 2×0.5m quadrat, percent cover was visually estimated for leaf 

litter, woody debris, bare soil, vegetation cover, as well as any other item found (trash, 

fungi, tree trunk, etc.). 

Canopy Cover: Canopy gap percentage was visually estimated in increments of 5% 

within each 10×10m. At each subplot, all field technicians estimated canopy gap 
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independently and a final estimate of missing canopy was determined as a consensus 

value. A template from the Forest Service’s field manual used in the forest inventory 

analysis (FIA) program was used to orient the field crew to different organizations and 

aggregations of canopy cover (U.S. Forest Service 2005).   

Voucher Specimens: Voucher specimens and photos were obtained for each species. 

Specimens were collected from outside the plots so as not to disturb the long-term study. 

The vouchers were archived at the Norton-Brown Herbarium at the University of 

Maryland, College Park. The photographic record of the plant specimens can be found 

online at https://www.flickr.com/photos/133989661@N04/albums. 

Data Analysis 
 
 Vegetation in the Oregon Ridge Park and Leakin Park plots was sampled for the 

complete 40×40m plot size in 1998 as well as in 2015. However, only data from 30×30m 

of each plot were used in this analysis to allow comparison with the 30×30m Hillsdale 

plots. This reduction was achieved by eliminating row 4 and column D (Figure 4) from 

data analysis in both years. 

Plot Descriptive Statistics and Analysis 

 For each plot and at each layer, the number of species was used to calculate 

species richness. The relative abundance of species within each layer was determined by 

calculating the proportion of individuals of a particular species to the total number of 

individuals in that plot. These values were then averaged for each plot-type. Tree and 

sapling density were determined by calculating the number of stems per unit area 

(stems/hectare). Total basal area was calculated from DBH measurements for each 

species per unit area (m2/hectare) using the following equation: 
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𝐵𝐴 =
𝐷𝐵𝐻
2

!

 × 𝜋 

Basal area (BA) values were used to represent the size class of tree and saplings.  BA was 

summarized as the average value for each species in each plot type. Percent or amount of 

cover per unit area was used for structural analysis because shrub, vine, herb, and 

seedling individuals were not calculated. Percent ground cover was measured as the 

relative herb and seedling cover per quadrat (2×0.5m), averaged per plot and plot-type. 

Canopy structure was determined as the relative number of understory, sub-canopy, and 

canopy trees per plot. The USDA-NRCS PLANTS database was used to determine exotic 

and native status of all plant species (USDA-NRCS 2016). Exotic species abundance was 

determined as the ratio of non-native and invasive species per forest layer and per plot. 

Tree and sapling size-class were determined by calculating the distributions of DBH 

measurements across each plot and plot-type. Tree growth was determined by calculating 

the difference in total basal area of each species between 1998 and 2015 then averaging 

the difference across plot-types. Tree and sapling turnover was determined by summing 

individual mortality, retention, and recruitment per species per plot.   

Ordination 

	 To measure compositional similarity among the plots, I created an ordination 

based on pair-wise similarity or dissimilarity of the plots in low-dimensional space 

(Legendre & Legendre 2012). To create the ordination, abundance data from both 1998 

and 2015 were entered into separate site-by-species matrices for each forest layer. For 

each layer, a distance matrix was calculated using Bray-Curtis dissimilarity, a semi-

metric index of distance between site vectors (McCune & Grace 2002). Bray-Curtis 
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dissimilarity was chosen for this study because it does not interpret shared absence of 

species in different sites as a similarity between those sites (Legendre & Gallagher 2001). 

Each distance-matrix was then used in a non-metric multidimensional scaling (NDMS) 

ordination. NDMS is considered the most robust unconstrained ordination method, as it 

makes none of the distributional assumptions that are common in other ordination 

methods (Minchin 1987; Ludwig & Reynold 1988). Points that are close to one another 

on the NDMS graph represent plots that are more similar to each other, and points that 

are further apart represent plots that are less similar (Legendre & Legendre 2012). The 

points representing a given plot-type and year have lines connecting them into a convex 

hull, a geometrical polygon defined by the species used in the calculation of the site 

vector (Eddy 1977). The relative size and position of the polygons within the ordination 

space were used to assess compositional similarities or differences between plot-types 

and years. The NDMS ordination was created in R version 2.3-0 using the “vegan” 

(Oksanen et al. 2015) (Team 2013). 

Diversity and Evenness 

 To measure the diversity and evenness of tree and sapling species at each site, I 

used Hill numbers, also known as effective species numbers or true diversities (Jost 

2010). Hill numbers use a single family of equations to calculate effective species 

numbers based on the relative abundances of observed species. The effective species 

number is the number of species required to achieve a certain diversity value if all species 

were equally abundant (Hill 1973). Hill numbers are standardized versions of Gini-

Simpson and Shannon-Weiner indices that allow comparison across samples. Within the 

equation defined by Hill (1973), the variable q is the order of diversity: 
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 When q=0, the effective species number is the observed richness. As q approaches 

1, diversity is given in terms of the effective species number of the Shannon-Weiner 

index.  When q=2, diversity is given in terms of the effective species number of the Gini-

Simpson index. The larger the q value, the less sensitive the equation is to rare species. In 

fact, Hill described a q of 1 as the number of common species and a q of 2 as the number 

of abundant species (Hill 1973). Therefore, a q of 2 does not take into account rare 

species, making it essentially the proportion of dominant species in a community (Jost 

2010). Hill numbers can also be used to measures evenness, as it is inversely related to 

dominance (Magurran & McGill 2011). The closer the effective species number of a q of 

1 or 2 is to the effective species number of a q of 0, the more even the community (Jost 

2010). Hill numbers, therefore, are preferred to traditional expressions of diversity 

because of how intuitively communities can be compared (Chao et al. 2014).  Hill 

numbers were calculated in R version 2.3-0 using the “vegan” (Oksanen et al. 2015) 

(Team 2013). 

Alpha and Beta Diversity 

 Of the many ways to measure beta diversity between communities, I chose to use 

the definition put forth by R.H. Whittaker in 1960. In that paper he defines beta diversity 

as “the extent of change in community composition, or degree of community 

differentiation, in relation to a complex gradient of environment, or a pattern of 

environments.” Regional (gamma) diversity is dissected into two statistically independent 

8 entropart Package for R

The best correction for Tsallis entropy follows Chao and Jost (2015). It combines an unbiased
estimator previously derived by Zhang and Grabchak (2014) and an estimate of the remaining
bias.

All community functions such as Tsallis are actually generic methods that can handle several
types of data the appropriate way: if the first argument of the function is a ProbaVector

(or a numeric vector summing to 1), no bias correction is applied. If it is an AbdVector (or
an integer vector), the bias-corrected estimator is used (e.g. bcTsallis). Numeric vectors
summing to more than 2 are considered as abundances but some bias corrections do not allow
non-integer values, so they will round them with a warning.

The di↵erent ways to use the functions are a matter of personal preference. bcTsallis is
equivalent to Tsallis with an abundance vector:

R> Tsallis(PAbd, q = 1)

ChaoWangJost

4.892159

whilst Tsallis with a probability vector does not allow bias correction:

R> Tsallis(PProba, q = 1)

None

4.736023

Bias-corrected entropy is ready to be transformed into explicit diversity.

E↵ective numbers of species

Entropy should be converted into “true diversity” (Jost 2007), i.e. e↵ective number of species
equal to Hill (1973) numbers:

qD =

 
X

s

pqs

! 1
1�q

(5)

This can be done by the deformed exponential function, or using directly the Diversity

or bcDiversity functions (equal to the deformed exponential of order q of Tsallis or
bcTsallis)

R> expq(Tsallis(PAbd, q = 2), q = 2)

ChaoWangJost

73.13163

R> Diversity(PAbd, q = 2)

ChaoWangJost

73.13163



	

	
	
	
	

38	

components: alpha diversity (α), the average diversity in a single site; and beta diversity 

(β), the relative change in species composition between sites (Jost 2007). I therefore 

averaged the richness values within the urban and rural plots to determine their alpha 

diversities. To quantify beta diversity, I first used a monotonic transformation (Jaccard 

index) to standardize the data so that all site distances are on a scale of 0-1. This 

standardization allowed me to easily compare sites despite having used different methods 

of data collection at each forest layer. Beta diversity was then calculated separately for 

the urban and rural plots in 1998 and 2015 using the average pair-wise comparisons of 

distance for each group (Legendre & Cáceres 2013). I then compared the beta diversity 

values of the four groups to determine the relative compositional dissimilarity between 

plot-type and survey year.  

 The amount of species turnover in the plots was determined by calculating beta 

turnover. Beta turnover (βT) was determined using the following equation: 

 

Where g is the number of species gained, l is the number of species lost, and�α is the 

average species richness (McCune & Grace 2002). By examining alpha and beta 

diversities and turnover, I was able to assess differences in vegetation between the urban 

and rural plots and how beta diversity has changed through time.   

Statistical Analysis 

 Given that the plots in 1998 are spatially correlated to the 2015 plots, I would 

have ideally used a two-way repeated-measures analysis of variance (ANOVA) to 

compare multiple means with two dependent variables. However, ANOVAs hold the 

T  =  
|g +  l|

β
α2
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assumption that data are normally distributed and have homogeneity of variance. 

Abundance and cover data in this study were not normally distributed and had highly 

heterogeneous variance, as determined by a Levene’s test. These violations required me 

to log transform all abundance cover data. Data were not transformed for any other 

analyses.  

 Although an ANOVA can be robust to heteroscedasticity, samples with highly 

unequal variances may produce incorrect or misleading results (Wilcox 1995). Even with 

the log transformation, much of the abundance data had high levels of heteroscedasticity, 

requiring a test that does not have the assumptions of equal variance. To overcome the 

lack of heteroscedascity, I used a Welch’s variance-weighted analysis of variance 

(Welch-ANOVA), as it is more appropriate for use when groups have unequal variances 

(Wilcox 1995).	

 P-values were determined by the F-values computed from either a one-way 

analysis of variance (ANOVA) or a Welch-ANOVA. Regular ANOVAs were used in 

growth, canopy, and diversity analyses. Welch-ANOVAs were used in all abundance, 

and cover analyses. Tukey’s post hoc test was performed after a regular ANOVA and 

Games-Howell post hoc test was performed after a Welch-ANOVA when a significance 

value (p <0.05) was determined by the analysis of variance. All multivariate statistics 

were performed in R version 2.3-0 using the “stats” package (Team 2013). The Games-

Howell post hoc test was done using the R package “userfriendlyscience” (Peters 2016).  
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Chapter Three: Results 

 Analyses of community composition and structure of plot vegetation were 

conducted on each forest layer. Diversity analyses were done for trees, saplings, and for 

the total forest community only. The results chapter begins with the findings for each 

forest layer and follows with results of the analyses performed on data from the 

vegetation community.   

Tree Layer 
	
Composition 
 
 The three most abundant tree species within the rural plots were Liriodendron 

tulipifera, Acer rubrum, and Nyssa sylvatica with each constituting approximately 17-

23% of the total tree community (Figure 6a). Quercus alba, Quercus montana, and Carya 

glabra were the next most abundant species in the rural plots, each accounting for 

approximately 10% of total tree community (Figure 6a). Species composition was similar 

in the urban plots but relative abundance was more evenly distributed across several 

species in the urban compared to the rural plots (Figure 6b). Although 60% of all trees 

consisted of the three most common species in the rural plots, these same species 

accounted for less than 40% of the individuals found in the urban plots (Figure 6a and b). 

In 1998, the two most abundant trees in the rural and urban plots were Liriodendron 

tulipifera and Quercus spp. (Groffman et al. 2006). In 2015, these species remained 

abundant, but Acer rubrum had increased and was included in the most abundant tree 

category in both the urban and rural plots (Figure 6a and b). 
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Figure 6. Mean (± SE) relative abundance of tree species in rural (a) and urban (b) forest 
plots established in Baltimore presented in order of rank abundance within each plot-
type. Relative abundances were determined by taking the ratio of the number of 
individuals of a species to the total number of individuals in a plot. Each bar is the mean 
of the urban and rural plots (n = 4). Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
	
 The change in species individual abundance (turnover) in the tree layer was 

evaluated by summing the number of individuals that had died, been recruited from the 

sapling layer, or retained as trees in the plots since 1998. The overall turnover trend in 

both the urban and rural plots was that more trees were recruited to the tree layer from the 

sapling layer than were lost to mortality (Figure 7a and b). The species that experienced 

the highest overall gains in recruitment into the tree layer from the sapling layer in the 

rural plots were Acer rubrum, Liriodendron tulipifera, Nyssa sylvatica, and Carya glabra 

(Figure 7a). The species with the highest mortality in the rural plots were Quercus rubra, 
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Liriodendron tulipifera, and Cornus florida (Figure 7a). In the urban plots, the greatest 

gains were Acer rubrum, Nyssa sylvatica, and Liriodendron tulipifera individuals (Figure 

7b). The species with the highest mortality in the urban plots were Cornus florida, 

Fraxinus americana, and Liriodendron tulipifera (Figure 7b). Gains and losses were not 

mutually exclusive, so at the individual plot level, the appearance of Liriodendron 

tulipifera in both categories is not contradictory.  

 Four plots lost all individuals of three tree species due to mortality without 

recruitment. In the rural plots, Oregon Ridge Upslope 1 lost all individuals of Carya 

ovalis and Oregon Ridge Midslope 1 lost all individuals of Quercus rubra (Figure 7a). In 

the urban plots, Hillsdale 1 and Hillsdale 2 lost all individuals of Fraxinus americana 

(Figure 7b). Although recruitment of existing species occurred in all plots, there were no 

new species recruited to the tree layer in either the rural or urban plots (Figure 7). 

  
a.      b. 
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Figure 7. Death, retention, and recruitment of trees within rural (a) and urban (b) plots 
established in 1998 in Baltimore and resampled in 2015. Individuals that died between 
the 1998 and 2015 surveys were considered losses to the tree layer. Individuals that were 
recruited since 1998 were considered gains to the tree layer. Species that were counted as 
trees in both surveys were considered retained. Each bar represents the gain or loss of 
individuals of a species. The bars are organized vertically with loss below the horizontal 
axis and presence above. Panel a shows the rural plots and panel b shows the urban plots. 
The bars are color-coded to indicate status, as illustrated in the diagram legend. Species 
labels are the first three letters of the genus followed by the first three letters of the 
specific epithet. A species code key can be found in Appendix 1. 
 
Structure 

 Tree abundance was not significantly different between the urban and rural plots 

or between the 1998 and 2015 surveys (Table 2). There was also no significant difference 

in the basal area (BA) of trees between the urban and rural plots or between 

corresponding plots between survey years (Table 2).  

Table 2. Tree basal area and abundance measurements for urban and rural plots in 
Baltimore in 1998 and 2015. Values are mean (± SE) for each group (n=4). There were 
no significant differences between groups according to Welch-ANOVA. For basal area, 
p-value= 0.87 (F-value=0.24) and for abundance p-value= 0.06 (F-value=3.24).  

   Trees 
Group Basal Area 

 (m2/ha) 
Abundance   
(stems/ha) 

 

Urban 1998 0.28 ± 0.06 333.33 ± 37.95  

Rural 1998 0.32 ± 0.05 291.67 ± 15.3  

Urban 2015 0.35 ± 0.06 402.77 ± 13.89  

Rural 2015 0.31 ± 0.06 372.22 ± 28.87  
 
 Quercus spp. and Liriodendron tulipifera had the highest BA in all the plots in 

1998 and 2015 (Figure 8a-d). The average BA of Liriodendron tulipifera in the rural 

plots was nearly double the average of the urban plots in 2015 due to the loss of some 
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large urban trees between 1998 and 2015 (Figure 8a and b). As with species abundance, 

BA was more evenly distributed across species in the urban plots than in the rural plots. 

	 

			 	
	
Figure 8. Average basal area (BA) of trees in rural and urban plots in Baltimore in 2015 
and 1998 presented in order of rank abundance within each plot-type. BA was calculated 
for individuals within each plot using the equation 𝐵𝐴 = (!"#

!
)! × 𝜋. Bars are the 

average BA (± SE) per species within rural (a) and urban (b) plots in 2015 and rural (c) 
and urban (d) plots in 1998 (n = 4). Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
 
 Relative growth of the six most abundant tree species (Liriondendron tulipifera, 

Carya tomentosa, Quercus rubra, Quercus alba, Nyssa sylvatica, Acer rubrum) was 

compared between the urban and rural plots. Only two species had significantly different 

growth rates between the urban and rural plots. Liriondendron tulipifera (p-value=0.002, 

F-value=10.77) and Carya tomentosa (p-value=0.002, F-value=12.64) had higher growth 

rates in the urban plots, as compared to those species in the rural plots (data not shown).  
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 Canopy cover was approximately 85% in all plots and did not differ between the 

urban and rural plots or between years (p-value = 0.29, F-value=1.09).  

Diversity 
 
 In 2015, the average species richness of trees was 10.5 in the rural plots and 12.3 

in the urban plots, but richness was not significantly different between the urban and rural 

plots or between years (Table 3). Likewise, diversity and evenness of the tree layer did 

not differ between the urban and rural plots in 1998 or 2015 (Table 3). Although it 

appears that the 1998 plot groups were tending toward being more even than the 

corresponding 2015 plots, differences were not significant (p-value=0.086; Table 3).    

Table 3. Species diversity and evenness of the tree layer in urban and rural plots for 
Baltimore in 1998 and 2015. Values are the mean (± SE) of each group (n=4). No 
significant differences were found (p < 0.05) for richness p-value=0.089, (F-
value=2.737), effective Shannon, p-value=0.937, (F-value=0.135), effective Gini-
Simpson, p-value=0.993 (F-value=0.028), or evenness, p-value=0.857 (F-value=2.795).	

                                  Trees  
Group Richness Effective Shannon Effective Gini-Simpson Evenness 

Urban 1998 10 ± 1.08 7.37 ± 1.3 6.06 ± 1.46 3.94 ± 1.19 

Rural 1998 9.25 ± 0.48 7.38 ± 0.59 6.14 ± 0.67 3.11 ± 0.3 

Urban 2015 12.25 ± 0.85 8.08 ± 1.05 5.97 ± 1.06 6.28 ± 1 

Rural 2015 10.5 ± 0.05 7.78 ± 0.59 6.36 ± 0.5 4.14 ± 0.33 

 
Sapling Layer 
 
Composition 

 In 2015, Nyssa sylvatica was the most abundant sapling species in the rural plots, 

followed by Carya spp. (Figure 9a). As with tree species, the distribution of sapling 

species was fairly even in the urban plots resulting in no single most abundant species 

(Figure 9b). Additionally, many species were found in only one out of the four urban 



	

	
	
	
	

46	

plots. Abundance of any given species was highly variable across the urban plots (note 

large standard errors) (Figure 9b). This trend was similar to the urban plots in 1998 

(Groffman et al. 2006). Also similar to the findings in 1998, Lirodendron tulipifera and 

Quercus spp. were rarely found in the urban and rural sapling layer.   

 

 

 
Figure 9. Relative abundance of sapling species in rural (a) and urban (b) forest plots 
established in Baltimore presented in order of rank abundance within each plot-type. 
Relative abundances were determined by taking the ratio of the number of individuals of 
a species to the total number of individuals in a plot. Each bar is the mean (± SE) of the 
urban and rural plots (n = 4). Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
 
 In contrast to the tree layer, the overall turnover trend in the sapling layer were 

that losses exceeded gains (Figure 10a and b). More than 50% of all species present in 

each urban plot and 33% of all species present in each rural plot experienced a greater 
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than 50% loss of individuals from the sapling layer (Figure 10). Overall, the losses 

appeared to be much greater in the urban plots than the rural plots (Figure 10a and b).  

  Losses were more due to sapling mortality than to sapling recruitment into the 

tree layer (Figure 10a and b). In the rural plots, Oregon Ridge Upslope 1 lost all 

individuals of Amelanchier canandensis, Cornus florida, and Fraxinus americana. 

Oregon Ridge Upslope 2 lost all individuals of Acer rubrum, Amelanchier canandensis, 

Carpinus caroliniana, Carya tomentosa, Castenea dentata, Prunus serotina, Quercus 

montana, and Viburnumn prunifolium. Oregon Ridge Midslope 1 lost all individuals of 

Acer rubrum, Amelanchier canandensis, Carya cordiformis, and Prunus serotina. Oregon 

Ridge Midslope 2 lost all individuals of Amelanchier canandensis, Fraxinus americana, 

and Sassafras albidum.  

 In the urban plots, Leakin 1 lost all individuals of Carya cordiformis, Cornus 

florida, Liriodendron tulipifera, Tilia americana, and Magnolia macrophylla. Leakin 2 

lost all individuals of Carya cordata and Liriodendron tulipifera. Hillsdale 1 lost all 

individuals of Fraxinus americana, Liriodendron tulipifera, Quercus rubra, Carya 

glabra, Amelanchier canandensis, and Morus alba. Hillsdale 2 lost all individuals of 

Fraxinus americana, Cornus florida, Carpinus caroliniana, Ulmus rubra, and Morus 

alba.  

 The magnitudes of these losses are in contrast with the minimal gains in the 

sapling layer observed. Leakin 1 recruited a single Acer rubrum and a single Fagus 

grandifolia individual. Leakin 2 gained a single Carya tomentosa individual. Hillsdale 1 

likewise recruited a single Carya tomentosa individual, whereas Hillsdale 2 gained no 

individuals. The rural plots also had minimal gains. Oregon Ridge Upslope 1 recruited a 
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single Carya tomentosa individual, whereas the rest of the rural plots had no recruited 

sapling individuals.  

 All plots retained a portion of the sapling community from the 1998 survey. The 

species with the highest retention in the urban plots were Acer rubrum, Nyssa sylvatica, 

and Fagus grandifolia (figure 10). In the rural plots, Nyssa sylvatica, Carya glabra, and 

Carya tomentosa were the most retained species (Figure 10).  

 

  
a.      b. 

 
Figure 10. Diagram illustrating the distribution of death, graduation, retention and 
recruitment of saplings within rural (a) and urban (b) plots established in 1998 in 
Baltimore and resampled in 2015. Individuals that died between the 1998 and 2015 
survey were considered losses to the sapling layer. Individuals that were recruited since 
1998 were considered gains to the sapling layer. Species that were counted as saplings in 
both surveys were considered retained. Each bar represents the gain or loss of individuals 
of a species. The bars are organized vertically with loss below the horizontal axis and 
presence above. Panel a shows the rural plots and panel b shows the urban plots. The bars 
are color-coded to indicate status, as illustrated in the diagram legend. Species labels are 
the first three letters of the genus followed by the first three letters of the specific epithet. 
A species code key can be found in Appendix 1.  
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Structure 

 Between 1998 and 2015, mean abundance of saplings was significantly reduced 

from 1005.6 stems per hectare to 205.6 stems per hectare in the rural plots and from 

380.6 stems per hectare to 119.4 stems per hectare in the urban plots (Table 4). However, 

there was no significant difference in the mean sapling basal area between the urban and 

rural plots or between survey years (Table 4).  

Table 4. Sapling density and dominance measurements for urban and rural plots in 
Baltimore in 1998 and 2015. Values are the mean (± SE) for each group (n=4). Values in 
a column not followed by the same letter were significantly different (p < 0.05) according 
to Welch-ANOVA with the Games-Howell post hoc test (density, p-value= 0.004, (F-
value=13.368), dominance, p value= 0.211 (F-value=2.037)). 

Saplings 
Group Basal Area  

(m2/ha) 
Density 

(stems/ha) 
 

Urban 1998 0.0049 ± 0.0009 A 1005.55 ± 280.12 A  

Rural 1998 0.0039 ± 0.0006 A 380.56 ± 50.18 A  

Urban 2015 0.0032 ± 0.0013 A 205.56 ± 76.24 B  

Rural 2015 0.0026 ± 0.0003 A 119.44 ± 15.96 B  

 
 Although total BA was unaffected, the distribution of BA across species was 

highly variable between plots in the sapling layer, and no single species or group of 

species dominated BA across the plots (Figure 11).  
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Figure 11. Average basal area (BA) of saplings in rural and urban plots in Baltimore in 
2015 and 1998 presented in order of rank abundance within each plot-type. BA was 
calculated for individuals within each plot using the equation 𝐵𝐴 = (!"#

!
)! × 𝜋. Bars are 

the average BA (± SE) per species within the rural (a) and urban (b) plots in 2015 and the 
rural (c) and urban (d) plots in 1998 (n = 4). Species labels are the first three letters of the 
genus followed by the first three letters of the specific epithet. A species code key can be 
found in Appendix 1. 
 
Diversity 

 In 2015, species richness was 5.25 in the rural plots and 6.5 in the urban plots, but 

there was no significant difference richness, diversity, or evenness of sapling species 

between the urban and rural plots or between years (Table 5).  
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Table 5. Species diversity and evenness of the sapling layer in urban and rural plots for 
Baltimore in 1998 and 2015. Values are the mean (± SE) of each group (n=4).  According 
to ANOVA, no significant difference were found (p < 0.05) for richness, p-value=0.089 
(F-value=2.737), effective Shannon, p-value=0.993 (F-value=0.028), effective Gini-
Simpson p-value=0.993 (F-value=0.028), or evenness p-value=0.09 (F-value=2.73).	

                             Saplings  
Group Richness Effective Shannon Effective Gini-Simpson Evenness 

Urban 1998 11 ± 1.08 7.44 ± 0.63 5.77 ± 0.5 5.23 ± 0.93 

Rural 1998 9 ± 0.56 6.26 ± 0.64 5.06 ± 0.56 4.06 ± 1.62 

Urban 2015 6.5 ± 0.87 4.97 ± 0.5 4.15 ± 0.5 2.35 ± 0.06 

Rural 2015 5.25 ± 1.65 3.83 ± 1.35 3.83 ± 1.08 1.42 ± 0.63 

 
Shrub Layer 
 
Composition 
 
 Viburnum acerifolium and Vaccinium spp. were the most common shrubs in the 

rural plots in both 1998 and 2015. Rural shrub composition was similar in 1998, with the 

exception of an increase in Vaccinum spp. relative abundance from 6.5% in 1998 to 45% 

in 2015 (Figure 12a and b). This increase was accompanied by a concomitant decrease in 

Viburnum acerifolium relative abundance from 93% in 1998 to 45% in 2015 (Figure 12a 

and c). The rural plots lost Rhododendron periclymenoides, Ilex verticillata, and 

Viburnum dentatum, and gained only Rosa multiflora.  

 Lindera benzoin remained the most common shrub in the urban plots between the 

1998 and 2015 surveys (Figure 12b). In fact, Lindera benzoin increased in relative 

proportion from 63% in 1998 to 91% in 2015 (Figure 12b and d). The relative proportion 

of Viburnum acerifolium was reduced from 25% in 1998 to less than 1% in 2015 (Figure 

12b and d). The urban plots lost Viburnum dentatum and Vaccinium spp., but gained 

Euonymous americanus (Figure 12b and d). 
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Figure 12. Relative proportion of shrub species in urban and rural plots in Baltimore in 
1998 and 2015. The top panels show the relative shrub composition in 2015 (a and b) and 
the bottom show 1998 (c and d). The rural plots are on the left panels (a and c) and the 
urban plots are on the right (b and d). Percentages were calculated as the proportion of a 
species (measured in cm of cover) within the urban and rural plots in 1998 and 2015. 
Species with color designations indicate the most common species or highlight a loss or 
gain of a species to the group. Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
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Structure 
 
 The rural and urban plots did not differ in shrub cover in 2015 (p-value= 0.062) 

(Figure 13). Shrub cover significantly decreased in the rural plots between 1998 and 2015 

(p-value=0.004), but did not change between 1998 and 2015 in the urban plots (p-

value=0.867) (Figure 13). In 1998, the mean amount of shrub cover was 6406 cm per plot 

in the rural plots and 2928 cm per plot in the urban plots. In 2015, the mean amount of 

shrub cover was 116 cm per plot in the rural plots and 2078 cm per plot in the urban 

plots.  

 
Figure 13. Box and whisker diagram of shrub cover in urban and rural plots in Baltimore 
in 1998 and 2015. The upper and lower limits of each box indicate the 75th and 25th 
percentiles, respectively. The bar dissecting each box is the median value of that group (n 
= 4). The upper and lower limits of the whiskers indicate the maximum and minimum 
values for that group. The same letters above each box and whisker plot represent no 
difference whereas distinct letters represent a statistically significant difference as 
determined by Welch-ANOVA with the Games-Howell post hoc test (p < 0.05). F-value= 
11.855, p-value = 0.005.  
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Vine Layer 
 
Composition 
 
 Vitis spp. were the most common taxa in the rural plots in 2015. Vitis spp., 

Parthenocissus quinquefolia, and Smilax rotundifolia were fairly equally prevalent in the 

rural plots in 1998 (Figure 14c). Vitis spp. have since increased in relative abundance 

from 37% in 1998 to 86% in 2015 (Figure 14a and c). Parthenocissus quinquefolia and 

Smilax rotundifolia decreased in relative abundance by 75% and 92%, respectively 

(Figure 14a and c). Toxicodendron radicans, Celastrus orbiculatus and Lonicera 

japonica were new vine species to the rural plots in the 2015 survey (Figure 14a and c). 

 Celastrus orbiculatus was the most common species in the urban plots in 2015 

(Figure 14a and b). The urban plots were previously dominated by Hedera helix in 1998 

(Figure 14d). Celastrus orbiculatus has increased in relative abundance from 5% in 1998, 

to 51% in 2015 (Figure 14b and d). Hedera helix has decreased in relative abundance 

from 64% in 1998 to 27% in 2015. There were no new vine species in the urban plots, but 

Toxicodendron radicans was lost in 2015 (Figure 14b and d). 

 Vine cover in urban plots consisted of 89% exotic species while vine cover in the 

rural plots consisted of only 4% exotic species. The relative proportion of exotic vines in 

1998 was 80% in the urban plots. There were no exotic vines found in the rural plots in 

1998.  The most common exotic vine species in the 2015 survey was Celastrus 

orbiculatus in the urban plots (Figure 14a and b). Celastrus orbiculatus increased in 

relative abundance in the urban plots by 920% from 1998 to 2015. 
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Figure 14. Relative proportion of vines species in urban and rural plots in Baltimore in 
1998 and 2015. The top panels show the relative vine composition in 2015 (a and b) and 
the bottom show 1998 (c and d). The rural plots are on the left panels (a and c) and the 
urban plots are on the right (b and d). Percentages were calculated as the proportion of a 
species (measured in cm of cover) within the urban and rural plots in 1998 and 2015. 
Species with color designations indicate the most common species or highlight a loss or 
gain of a species to the group. Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
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Structure 

 Vine abundance was significantly greater in the urban plots as compared to the 

rural plots in 2015 (p-value=0.005) (Figure 15). There was no significant difference in 

the amount of vine cover between the urban and rural plots in 1998 (p-value=0.348). 

Vine abundance did not differ between survey years within the rural plots (p-

value=0.275) or urban plots (p-value=0.924) (Figure 15). In 1998, the mean amount of 

vine cover was 206.8 cm per plot in the rural plots and 1578 cm per plot in the urban 

plots. In 2015, the mean amount of vine cover was 48.8 cm per plot in the rural plots and 

1377 cm per plot in the urban plots. 

 
Figure 15. Box and whisker diagram of vine abundance in urban and rural plots in 
Baltimore in 1998 and 2015. The upper and lower limits of each box indicate the 75th and 
25th percentiles, respectively. The bar dissecting each box is the median value of that 
group (n = 4). The upper and lower limits of the whiskers indicate the maximum and 
minimum values for that group. The same letters above each box and whisker plot 
represent no difference whereas distinct letters represent a statistically significant 
difference as determined by Welch-ANOVA with the Games-Howell post hoc test (p < 
0.05). F-value = 7.596, p-value = 0.024. 
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Seedling Layer  
	
Composition 

 Prunus serotina, Amelanchier arborea, and Acer rubrum were the most common 

rural seedling species in 2015. Amelanchier canadensis, Carya glabra, and Acer rubrum 

were the most common rural seedlings in 1998 (Figure 16d). Between 1998 and 2015, 

Prunus serotina and Acer rubrum increased in relative proportion by 320% and 122%, 

respectively (Figure 16a and c). Carya glabra had a similar relative abundance in 1998 

and 2015 (Figure 16 and c). The increased relative abundance of Amelanchier arborea 

and the decrease relative abundance of Amelanchier canadensis may be a result of an 

identification discrepancy between these taxa.  As a genus, Amelanchier spp. increased 

by 33% from 1998 to 2015 in the rural plots (Figure 16a and c). 

 Fraxinus spp. (F. americana and F. pennsylvanica) were the most common 

species in the urban plots in 2015 (Figure 16b). In 1998, the relative abundance of 

seedling species was fairly evenly distributed in the urban plots with no single dominant 

seedling species (Figure 16d). Since 1998, the relative proportion of Fraxinus spp. has 

increased by 63% (Figure 16b and d). Prunus serotina and Acer rubrum decreased in 

relative abundance by 88% and 55%, respectively (Figure 16b and d).   
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Figure 16. Relative proportion of seedling species in urban and rural plots in Baltimore in 
1998 and 2015. The top panels show the relative seedling composition in 2015 (a and b) 
and the bottom show 1998 (c and d). The rural plots are on the left panels (a and c) and 
the urban plots are on the right (b and d). Percentages were calculated as the proportion 
of a species (measured in cm of cover) within the urban and rural plots in 1998 and 2015. 
Species with color designations indicate the most common species or highlight a loss or 
gain of a species to the group. Species labels are the first three letters of the genus 
followed by the first three letters of the specific epithet. A species code key can be found 
in Appendix 1. 
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Structure 

 The percentage of seedling cover significantly declined in the rural plots from 

1998 to 2015 (p-value=0.003) (Figure 17). No difference occurred in the percentage of 

seedling cover within the urban plots between 1998 and 2015 (p-value=0.217), nor 

between the urban and rural plots in 2015 (p-value=0.509) (Figure 17). In 1998, the mean 

percentage of seedling cover per plot was 5.4% for the rural plots and 11% for the urban 

plots. In 2015, the mean percentage of seedling cover per plot was 0.7% for the rural 

plots and 3.6% for the urban plots. 

 
Figure 17. Box and whisker diagram of percent seedling cover in urban and rural plots in 
Baltimore in 1998 and 2015. The upper and lower limits of each box indicate the 75th and 
25th percentiles, respectively. The bar dissecting each box is the median value of that 
group (n = 4). The upper and lower limits of the whiskers indicate the maximum and 
minimum values for that group. The same letters above each box and whisker plot 
represent no difference whereas distinct letters represent a statistically significant 
difference as determined by Welch-ANOVA with the Games-Howell post hoc test (p < 
0.05). F-value =22.287, p-value = 0.002.  
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Herb Layer  
 
Structure 

 There was no significant difference in the percentage of herbaceous plant cover 

between the urban and rural plots or between survey years (p-value = 0.140) (Figure 18). 

In 1998, the mean percentage of herb cover per plot was 4.8% for the rural plots and 11% 

for the urban plots. In 2015, the mean percentage of herb cover per plot was 4.5% for the 

rural plots and 2.2% for the urban plots. The lack of significant differences between 

groups was likely due to low power associated with the small number of plots (Figure 

17). 

 
Figure 18. Box and whisker diagram of percent herb cover in urban and rural plots in 
Baltimore in 1998 and 2015. The upper and lower limits of each box indicate the 75th and 
25th percentiles, respectively. The bar dissecting each box is the median value of that 
group (n = 4). The upper and lower limits of the whiskers indicate the maximum and 
minimum values for that group. The same letters above each box and whisker plot 
represent no difference whereas distinct letters represent a statistically significant 
difference as determined by Welch-ANOVA with the Games-Howell post hoc test (p < 
0.05). F-value= 2.632, p-value = 0.140. 
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Changes in Forest Community Composition 
	
Exotic Species 
 
	 The overall proportion of exotic species was higher in the urban plots (Figure 19). 

In fact, two of the rural plots, Oregon Ridge Upslope 1 and Oregon Ridge Midslope 1, 

had no exotic species in 2015 (Figure 19). In the urban plots, exotic vines were found in 

every plot (Figure 19). Exotic trees and saplings were only found in Hillsdale 2 (Figure 

19). Exotic species dominance was highest in the vine layer of both the urban and rural 

plots (Figure 19). The proportion of exotic seedlings has remained at zero in all plots 

(data not shown).	

	

Figure 19. The proportion of exotic species within each forested Baltimore plot from 
1998 to 2015 categorized by forest layer. Proportions were based on individuals for trees 
and saplings, and percent cover (cm) for shrubs, vines, and herbs. The first four plots 
listed on the x-axis are urban plots and the next four are rural plots. 
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Forest Community Composition and Diversity  

 Non-metric multidimensional scaling (NMDS) based on sapling species shows 

that the urban and rural plots’ sapling composition changed from 1998 to 2015 (Figure 

20). This change is apparent in the shift of the 2015 convex hull polygons towards the 

positive end of both Axis 1 and Axis 2 relative to 1998 polygons. The shift between the 

1998 and 2015 urban polygons is largely driven by species losses in Hillsdale 1, Leakin 

1, and Leakin 2. For example, many of the species at low values on Axis 2 and between  

-0.5 and 0.5 on Axis 1 were lost to the urban 2015 sapling community. Hillsdale 2 

experienced less compositional change than the other urban plots, resulting in a pivoting 

of the urban polygons in ordination space. Loss of sapling species in the rural plots 

shifted the rural 2015 polygon to positive values on Axis 2 relative to the rural 1998 

polygon. The upward shifts of both the urban and rural plots in 2015 illustrate that the 

second axis is the gradient of species loss over time. The first axis is largely driven by the 

dissimilarity of Hillsdale 2 to all other urban and rural plots. The larger convex hulls of 

the urban groups signify more variation in urban sapling community than in rural sapling 

community (Figure 20). The reduction volume of the rural convex hulls over time 

illustrates that beta diversity of saplings has decreased in the rural plots. The similar 

shapes of the urban convex hulls illustrate a similar amount of beta diversity in the urban 

plots.  

 In the shrub and vine layer, the processes driving the axes of the NMDS are less 

clear. The 2015 urban shrub and vine community is a subset of the urban 1998 shrub and 

vine community (Figure 21). For example, the species closest to Axis 2 and nearest to the 

urban 1998 convex hull polygon were not found or were less common in the urban plots 
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in 2015. However, species located between -1 and 0 of the first axis remained present in 

the urban plots between 1998 and 2015. The rural shrub and vine community changed 

dramatically from 1998 to 2015 (Figure 21). This shift is likely due to losses of the 

dominant shrubs found in the rural 1998 plots, with coinciding gains in exotic vine and 

shrub species. Rural and urban plots shared particular exotic species, explaining the shift 

downward in the rural 2015 polygon. However, the shift of the rural 2015 polygon away 

from the second axis was likely driven by the single isolated species furthest from the 

second axis. This species only occurred within the rural plots in 2015, thus making those 

plots more dissimilar than the rural 1998 plots. The large amount of space between the 

rural 1998 and 2015 polygons shows that the magnitude of shrub and vine compositional 

change over time was greater in the rural plots than the urban plots. 
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Figure 20. Non-metric multidimensional scaling (NMDS) of the sapling community 
composition in forested Baltimore plots in 1998 and 2015 plotted within ordination 
space. Shaded convex hulls envelop the urban and rural plots in 1998 and 2015. Plot 
points within the NMDS are based on Bray-Curtis distance, calculated using abundance 
data for 24 species. The distance between the points represents compositional similarity, 
with closer points being more similar than points further apart. Stress score = 0.133, 
procrustes: rmse=	0.0001075085, max residual= 0.001313793.  
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Figure 21. Non-metric multidimensional scaling (NMDS) of the shrub and vine 
community composition in forested Baltimore plots in 1998 and 2015 plotted within 
ordination space. Shaded convex hulls envelop the urban and rural plots in 1998 and 
2015. Plot points within the NMDS are based on Bray-Curtis distance, calculated using 
abundance data for 22 taxa. The distance between the points represents compositional 
similarity, with closer points being more similar than points further apart. Stress score = 
0.104, procrustes: rmse=3.203644e-06, max residual= 8.709903e-06.  
 
Alpha and Beta Diversity 
 
 The urban plots had more total species than the rural plots in 1998 and 2015 

(Table 6). The total number of species reduced by six in the rural plots and by four in the 

urban plots (Table 6). The total number in the rural plots was an outcome of a loss of 11 

species and a gain of 5 species since 1998 (Table 6). In the urban plots, 20 species were 

lost and 16 species were gained (Table 6). Greater loss and gain in species in the urban 

plots yielded a beta turnover nearly double that of the rural value (Table 6). 
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 Alpha diversity was significantly lower in the rural plots as compared to the urban 

plots in both 2015 (p-value=0.001) and in 1998 (p-value=0.044) (Table 6). From 1998 to 

2015, there was no significant change in alpha diversity within rural plots (p-

value=0.083) or urban plots (p-value=0.981) (Table 6). By contrast, beta diversity 

significantly declined from 1998 to 2015 in the rural plots (p-value=0.036) but not in the 

urban plots (p-value=0.999) (Table 6). Beta diversity in the urban plots did not differ 

between 1998 and 2015 (p-value=0.999) (Table 6). 

Table 6. Diversity metrics for all species in urban and rural plots in Baltimore in 1998 
and 2015. Total species (γ) is the sum total of all species within a group (n=4). Alpha 
diversity (α) is the mean species richness per group. Beta diversity (β) is the average pair-
wise comparison of the inverse of the Jaccard similarity index within each group. Species 
lost and species gained were summed per group. Turnover since 1998 (βτ) is the absolute 
value of species lost and gained divided by the product of alpha and two (Grace & 
McCune 2002). The same letters for values in the columns of alpha and beta diversity 
represent no difference whereas distinct letters represent a statistically significant 
difference as determined by ANOVA with Tukey’s post hoc test (p < 0.05). Alpha 
diversity, p-value = 0.0003 (F-value =15.15) and beta diversity, p-value= 0.013, (F-
Value=4.652). 
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Urban 2015 
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41 ± 3.08 A 
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Chapter Four: Discussion 
 
Summary of the Findings 
 
 In this study, I found significant differences both between the urban and rural 

plots and within plot-types over time. The major temporal changes were in the sapling, 

shrub, and seedling layers, whereas the tree and herb layers remained similar. The 

abundance of saplings greatly declined due to mortality in both the urban and the rural 

plots. Eight sapling species were lost altogether from the plots. The sapling species that 

were retained in the plots tended to have greater basal area and were more shade tolerant 

than those present in 1998. Total shrub and seedling cover declined in the rural plots, but 

not in the urban plots. In the urban plots, all species decreased in relative abundance from 

1998 to 2015 with the exception of Lindera benzoin, which increased from 63% to 91%. 

As in 1998, the amount of vine cover in 2015 was greater in the urban plots. Invasive 

vines, shrubs, and herbs were found in two of the rural plots in 2015, whereas none were 

reported in the rural plots in 1998. Tree abundance and the proportion of herb cover were 

similar between the urban and rural plots in both surveys. Alpha diversity was higher in 

the urban plots in both survey years. Beta diversity decreased in the rural plots, resulting 

in no difference in beta diversity between the urban and rural plots in 2015. The amount 

of species turnover within the urban plots was nearly 41% greater than the turn over of 

the rural plots.   

Species Composition 
 

The two species recruited into the tree layer in this study (Nyssa sylvatica and 

Acer rubrum) are noted in other research as the predominating species contributing to 

regeneration (Abrams 1990; Nowacki & Abrams, 2008; McGarvey et al. 2013; Desprez 
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et al. 2014). These reports argue that Acer rubrum and Nyssa sylvatica have particular 

success in expanding their ranges and abundances because they are adapted to understory 

environments and they are habitat generalists (Abrams 1998; Desprez et al. 2014). In the 

sapling layer, Nyssa sylvatica had the highest retention in both the urban and rural plots. 

It is suggested that the trend towards shade tolerant species is driven by reductions in 

canopy disturbance (Nowack & Abrams 2008; Hanberry et al. 2012; Hutchinson et al. 

2012).  

Canopy cover in this study remained relatively unchanged since 1998. Limited 

canopy openness coincided with no representation of Quercus spp. or Liriodendron 

tulipifera in the sapling layer. Quercus spp. and Liriodendron tulipifera, the two most 

common trees in 1998 and 2015, are shade-intolerant (Burns & Honkala 1990). The 

relatively closed canopy environment may have contributed to the decline in Quercus 

spp. and Liriodendron tulipifera regeneration. However, Cowell et al. (2010) reported 

that canopy gaps were only marginally associated with Quercus spp. survival, suggesting 

that light availability alone was not enough to maintain Quercus spp. dominance. The 

absence of Quercus spp. and Liriodendron tulipifera from the sapling layer indicates that 

the tree layer will look quite different in the next century. Forests in Baltimore will be 

dominated by Nyssa sylvatica and Acer rubrum unless there are large disturbances that 

open forest canopies. 

 Canopy cover was estimated at around 85% in both the rural and urban plots. This 

assessment is similar to the 90% canopy cover reported in the health assessment of 

Oregon Ridge in 2007 (Baltimore County EPS, 2007), suggesting that there have been 

few disturbances to the canopy in the rural or urban plots. Closed canopies can reduce 
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survivorship of gap-phase species and shade intolerant species (Augspurger 1984). 

Although these species can often persist as seedlings, they will not grow appreciably in 

shaded conditions (Augspurger 1984). Many of the sapling species in my study with the 

largest declines are considered shade intolerant (Fraxinus americana, Prunus serotina, 

Sassfras albidum, and Carya cordiformis) (Burns & Honkala 1990). Still, the most 

common seedlings in 2015 were Prunus serotina in the rural plots and Fraxinus 

americana in the urban plots. If a canopy disturbance occurs, Prunus serotina and 

Fraxinus americana may show a resurgence in the plots.   

 Stromayer & Warren (1997) proposed that deer browsing shifts understory 

vegetation to an alternative stable state that is resistant to the regeneration of previously 

reported dominant species. This shift is clearly demonstrated in the shrub layer. Shrub 

cover plummeted in the rural plots, whereas shrub cover in the urban plots remained 

stable. However, Lindera benzoin, the shrub species that represented 91% of the urban 

shrub layer, is a species avoided by deer due to the biochemical defenses of its leaves and 

twigs (Rawinski 2008). A study in Washington, D.C., reported that deer negatively 

impacted all major woody species with the exception of Lindera benzoin and Fagus 

grandifolia (Rawinski 2008). Similarly, in my study, Fagus grandifolia retention and 

recruitment was observed in the urban plots, but not in the rural plots.  

 Recruitment and retention of sapling species was low in all plots. Unpalatable 

understory species appeared more commonly than palatable species. Interestingly, Carya 

tomentosa recruitment was observed in both the urban and rural plots and it is both 

palatable to deer and intolerant of shade (McCarthy 1994). McGarvey et al. (2013) also 

found the successful regeneration of Carya tomentosa in a deer exclusion study in 
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Virginia. The apparent resilience of this species may be an interesting area of future 

research.  

 The vine layer had the highest percentage of exotic species of all forest layers. 

The Groffman et al. (2006) study reported similar findings, with exotic vines more 

common in urban areas. Interestingly, the invasive vine, Celastrus orbiculatus declined in 

relative abundance between survey years in the urban plots. Declines in Celastrus 

orbiculatus abundance have also been reported in another study (Rossell et al. 2007), 

which attributed the reduction to deer browsing. With the exception of vines, exotic 

species represented a relatively small proportion of the community composition in the 

urban and rural plots. There were, however, more exotic species in the urban plots than in 

the rural plots. This finding is consistent with other studies that report higher exotic 

species richness in urban forests (Kowarik 2003; McDonnell & Hahs 2008). Although 

uncommon, three new exotic species were found in the rural plots: Microstegium 

vimineum, a highly invasive grass, and Rosa multiflora and Berberis thunbergii, two 

particularly aggressive invasive shrubs. If left unmanaged, these invasive species are 

capable of inhibiting native species recruitment (Oswalt et al. 2007).  

	 Disease and infestations may have influenced tree and sapling regeneration in the 

plots. Major losses of Fraxinus americana and Cornus florida saplings in both the urban 

and rural plots suggest that infestations (e.g. emerald ash borer) and disease (e.g. 

dogwood anthracnose) have contributed to species loss (United States Department of 

Agriculture 2015). Gypsy moths were reported in eight stands at Oregon Ridge Park, 

with complete defoliation and subsequent death in one stand in 2006 (Baltimore County 

EPS, 2007). Although the rural plots were not located in the affected stands, it is possible 
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that gypsy moth infestation-related stress and death reduced acorn production and thus 

oak regeneration throughout the park.  

Forest Structure 

 Changes were apparent in several forest strata. Groffman et al. (2006) described 

all of the plots as well developed at every layer in 1998. In 2015, however, much of the 

vegetation below the canopy level had decreased in abundance and cover, and saplings 

were a minor structural component of the plots. Although there were fewer saplings in 

both the urban and the rural plots in 2015, the magnitude of reduction was far greater in 

the urban plots. With mean density of urban saplings nearly two thirds greater than rural 

saplings in 1998, the potential for loss was larger in the urban plots. 

 From my field observations, deer regularly visited the plots, browsing 

extensively. Deer browsing typically focuses on plant individuals within the ungulate’s 

reach, such as herbs, seedlings, shrubs, and saplings. Overbrowsing results in forest 

stands devoid of understory plants and overrepresented by mature trees (Tilghman 1989; 

Stromayer & Warren 1997; Côté et al 2004). Because of their immense impact on forest 

density and structure, deer are considered a keystone herbivore (Rooney 2001). It may be 

that deer had reduced saplings in the rural plots prior to 1998, and deer populations have 

since expanded into urban plots, decimating saplings in those areas as well. It is unknown 

whether the deer population occurs at similar densities in Baltimore City and Baltimore 

County. Personal correspondence with Maryland State deer scientist Brian Eyeler has 

revealed that overabundant deer are an increasing concern in Baltimore City. 

 In contrast to sapling abundance, seedling cover did not decline in the urban plots. 

Deer may not have a significant impact on seedling abundance. For instance, McGarvey 
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et al. (2013) found that deer in Virginia had no significant impact on seedling abundance 

or composition. Similarly, Rooney (2001) showed that deer browsing has a greater 

impact on sapling abundance than on seedling abundance. Although the relatively stable 

amount of seedling cover in the urban plots may support these findings, the decline in 

rural seedling cover does not. Deer may have browsed on the seedling layer in the rural 

plots because there were few other sources of reachable vegetation. Saplings, shrubs, and 

vines may not be as limited in the urban plots, leaving seedlings largely ignored by deer. 

If browsing affects seedlings, which are close to the ground, it is perplexing that herb 

cover did not decline in the rural plots as well. Intensive herb browsing has been reported 

in numerous other studies (Horsely et al. 2003; McGraw & Furedi 2005, Royo et al. 

2010). It may be that the herbaceous species in this study are less palatable than in other 

studies.   

 One of the more dramatic findings was the decline in rural shrub cover from 1998 

to 2015 (Figure 13) during which time the urban plots declined only slightly. The most 

common rural shrub, Viburnum acerifolium, was reported in other studies to be 

preferentially browsed by deer (Kribel et al. 2011). The reduction of Viburnum 

acerifolium in the rural and urban plots suggests that deer browsing on this species is 

likely. Despite Viburnum acerifolium being nearly extirpated from the urban plots, 

overall shrub cover remained relatively unchanged.  Importantly, only one shrub species 

dominated the urban plots, Lindera Benzoin. This shrub is known to be unpalatable and 

often avoided by deer (Rawinski 2008). Although guided in different manners, the 

structure of the shrub layer in the urban and rural plots seem influenced by the browsing 

preferences of deer.  
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 Few differences were found in the structure of the tree layers in the plots. In 

addition to presenting a structual barrier for deer browsing, mature trees are generally 

long-lived and more resilient to disturbance than understory species. After reaching 

maturity, above-ground tree growth declines (Gower et al. 1996). Therefore, it is not 

surprising that structural changes have not occurred in the tree layer. Canopy cover also 

did not change between 1998 and 2015, suggesting minimal disturbances to the canopy. 

When canopy disturbance is low, the opportunity for many understory species that rely 

on periodic breaks in the canopy to survive is reduced (Runkle 1982; Brokaw 1987). 

Canopy cover may therefore contribute to the decline in many shade-intolerant 

understory plants. If canopy cover were the primary driver of understory plant density, 

however, we would expect to see higher relative abundances of shade tolerant species. 

Instead, there are reductions of nearly every species except those that are large or 

unpalatable to deer.  

Diversity 
 
 The urban plots had higher alpha diversity in both survey years. Urban forests 

often experience naturalization of escaped exotic species (Kowarik 2003; McDonnell & 

Hahs 2008). Exotic species introduction commonly increases alpha diversity (Schwartz et 

al. 2006; McKinney 2008). Still, non-native species in this study were a minimal 

proportion of the plant community. The higher alpha diversities of the urban plots may be 

better explained by widespread loss of species from the rural plots, rather than a gain in 

exotic species in the urban plots. Further, if species introductions remain lower in the 

rural plots, diversity is likely to remain higher in the urban plots.   
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 Although many environmental factors likely contribute to species loss in the plots, 

indicator species suggest that deer browsing and canopy closure may be the primary 

drivers. A decline in biodiversity as a result of intense browsing on palatable species has 

been reported in other studies (Begley-Miller et al. 2014; Rooney & Waller 2003; Côté et 

al. 2004). Under closed canopy conditions, losses of shade intolerant species have been 

observed (Augspurger 1984) due to the inhibition of seed germination (Vázquez-Yanes et 

al. 1990) and reduced seedling survival (Wright 2002). It can be hypothesized that 

species loss due to deer browsing and canopy closure explain the lower alpha diversities 

in the rural plots. Whereas canopy in the urban plots had a similar amount of closure 

compared to the rural plots, a consistent alpha diversity in the urban plots suggests 

canopy cover alone is not driving species diversity in the plots. 

 Beta diversity decreased in the rural plots, but alpha diversity remained 

unchanged. These findings suggest that a species lost in the rural plots was unique to an 

individual plot, whereas species gained or retained was similar across all rural plots. 

Although many species were lost in the urban plots, species introduction was high. This 

turnover trend maintained alpha and beta diversities in the urban plots, suggesting 

specific species were unanimously lost or gained in the urban plots. 

 The high turnover found in the urban plots may suggest that urban forests are 

more dynamic and therefore more resilient than rural forests. It has been proposed that 

small isolated forest fragments may be hyper-dynamic due to high species turnover from 

species loss coupled with influxes of species migrating from forest edges (Laurance 

2002). I suggest a similar hyper-dynamic pattern occurred in the urban plots. Higher 

exposure to novel species, as is common in urban areas, may allow urban forests to 
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maintain diversity despite deer, disease, and fire suppression. Other studies have shown 

that moderate levels of urbanization can facilitate biodiversity loss as well as gain 

(Schwartz et al. 2006; McKinney 2008). The ability of an ecosystem to be structurally 

resilient due to high amounts of turnover suggests a functional role for diversity (Folke et 

al. 2004). With the exception of saplings, biomass was more stable and biodiversity was 

greater within the urban plots. These results suggest that urban forests may be better able 

to adapt to environmental stress.   

Review of the Experimental Design 

 In plant community ecology, there has been a shift towards studies that focus on 

trait-based functional and phylogenetic diversity and away from composition-based 

studies (McGill et al. 2006; Kraft & Ackerly 2010; Cadotte et al. 2011). Such functional 

and phylogenetic studies have had difficulty explaining community structure due to the 

differential effect of ecological and evolutionary processes on phylogenetic signals 

(Cavender-Bares et al. 2009) and the phenotypic variability of traits between assemblages 

(Violle et al. 2012). I argue that there remains great value in understanding the abundance 

and distribution of species. Urban vegetation provides many important ecosystem 

services (Grove et al. 2006; McDonnell et al. 2008; Niemelä 2014), and to preserve these 

services, more composition-based studies are needed. For example, the filtering effects of 

habitat fragmentation and urban environmental conditions on the composition of plants 

are poorly understood (Williams et al. 2009). 

 Species composition is an integrative response variable of community 

assemblages (Dray et al. 2012) that is sensitive to local environmental conditions 

(Argawal et al. 2007). For instance, floristic data have been extremely useful in assessing 
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the expansion of exotic plant species in urban systems (McKinney 2006; Williams et al. 

2009; Trentanovi et al. 2013). Without understanding prior species composition in a 

community, it is not possible to quantify the rate or direction of change. Further, it can be 

difficult to make distinctions between the effects of natural and anthropogenic change on 

species diversity and abundance, as communities naturally have different amounts of 

floristic variability (Margurran et al. 2010). To make a well-founded assessment of 

change within the biodiversity of a community, long-term research is needed. 

 Long-term plots are powerful tools for detecting change in ecological systems. 

Repeated sampling of an area provides unique insights that cannot be achieved through 

other sampling methods. For example, in this study, species turnover in the urban plots 

was nearly twice that of the rural plots. Turnover has important implications for the 

resilience of ecosystems (Allen et al. 2005). This insight into the dynamics of urban and 

rural forests would not have been found if only a single survey had been conducted. An 

obvious reason long-term research has not been adopted for all investigations of 

ecological change over time is that such research can be costly and time-consuming 

(Gardner et al. 2007). There are additional challenges for studies that have the means for 

long-term research. Over time, methodology changes and it can be difficult to decide 

whether to continue with the established long-term design or switch to a new design 

(Margurran et al. 2010).   

 In this study, I collected data as described in the initial 1998 survey to ensure 

comparability with the data previously gathered. Limitations of this design include low 

sample size that limits power to detect change, inconsistent methods across layers that 

preclude the use of robust methods for community analysis, and ambiguous methods that 
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increase the chance of sampling error. Going forward, I would suggest that future 

researchers consider adding plots to increase statistical power. By converting all 

measures to abundances of individuals per the appropriate unit area, consistent sampling 

of individual abundances can be achieved, allowing for the use of more robust methods to 

assess community composition (Chao et al. 2005). I also suggest the adoption and use of 

field tools that reduce the need for biased estimation and streamline data collection. For 

example, canopy cover could be measured using a specialized digital camera rather than 

visual gauge. Although future changes to the sampling design will in some ways limit the 

comparability of data between the new and previous studies, these changes would help 

ensure unambiguous collection protocols and improve data quality (Margurran et al. 

2010).  

Future Research 

	 There has been much speculation throughout this study about the effect of deer 

browsing on vegetation structure and composition within the plots. A further study is 

needed to quantify the relative effect of deer browsing in urban forests, in the manner of 

such studies conducted in wildland forests (Tilghman 1989; Hanberry et al. 2012; 

McGarvey et al. 2013). Deer browsing studies commonly use exclosure designs to 

determine the relative impact of deer on vegetation (Graham 1958; Horsely et al. 2003; 

McGarvey et al. 2013). I would suggest using a similar exclusion design, but in urban 

and rural sites. If deer are reducing sapling abundance and diversity in urban and rural 

forests, regeneration may increase if deer are excluded. Results of such a study would 

have the potential to provide local municipalities with valuable information on how and 

where to focus population control of deer and forest conservation efforts in urban areas.   
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 Another direction of future study could explore the link between taxonomic 

diversity and functional traits. In my study, I found much higher species turnover in the 

urban plots relative to the rural plots. It would be valuable to know if the species lost and 

gained had any shared traits. Similar studies have compared the homogenization of 

species to trait convergence in temperate and tropical forests (Swenson et al., 2012, 

Tobias & Monika 2012; Sonnier et al. 2014). None of these studies, however, had long-

term turnover data to evaluate the dynamics of change in forested ecosystems. Using data 

from my study, a future project could evaluate how species turnover compares to 

functional turnover in urban and rural forests. Results of such research could provide 

novel insights into the various ways diversity can change over time and how these 

changes relate to species vulnerability and resilience. 

Conclusion 
 

Human-induced disturbances have increasingly shaped forest communities 

surrounding the Chesapeake Bay since the arrival of European colonizers (Sprague et al. 

2006; Brush 2009). The resulting decrease in frequency, extent, and magnitude of forest 

fires, increase in deer populations, and introduction of invasive species, pests, and 

pathogens have continuously altered Maryland forests. However, there is a potential 

difference in the magnitudes of change in urban and rural areas. In this study, I used 

forest structure, composition, and diversity to evaluate the relative influence of urban and 

rural land-use context on forest vegetation. Using long-term data, I was able to compare 

the dynamics of change within urban and rural plots.  

Alpha diversity was lower in the rural plots as compared to the urban plots in both 

surveys. Since 1998, the rural plots have experienced a decline in beta diversity, 
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providing evidence that the community composition has homogenized within the rural 

plots. Structural analyses show that most of the rural understory layers have decreased in 

abundance since 1998. Despite a modified environment, alpha and beta diversities 

remained unchanged in the urban plots due to a high level of species turnover. Saplings 

were greatly reduced, whereas the remaining forest layers were structurally similar. In 

both the urban and rural plots, compositional comparisons show that shade tolerant and 

unpalatable species had higher retention and in some cases increased in abundance. These 

results suggest that deer browsing and canopy cover may be influencing species 

assemblages.  

Species loss in the sapling layer and species turnover supported my hypothesis 

that compositional change would be greater in the urban plots. Contrary to my 

expectations, the herb and shrub layers were neither structurally altered nor highly 

invaded in the urban plots. I also expected to observe a decline in deciduous hardwood 

species and an increase in deciduous soft wood species in both the urban and rural plots. 

My findings generally supported this hypothesis with the exception of one anomalous 

hardwood species. The overall findings of this study provide evidence that urban forests 

may be more resilient to disturbance than rural forests. My findings suggest that the 

major factors influencing species abundance and distribution within the plots were deer 

browsing and canopy cover. Therefore, I suggest that land managers evaluate the extent 

of deer browsing in Baltimore area forests and implement deer population control plans. 

Without such measures, the structure and diversity of rural forests may continue to 

decline. 
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Appendix 1 
Species List 
 
TREES 
Code 
ACEPLA 
ACERUB 
AILALT 
CARCAR 
CARGLA 
CAROVA 
CARTOM 
CERCAN 
CHIVIR 
CORFLO 
FAGGRA 
FRAPEN 
LIRTUL 
NYSSYL 
PRUAVI 
PRUSER 
PRUSRL 
QUEALB 
QUECOC 
QUEMAR 
QUEMON 
QUERUB 
QUEVEL 
SASALB 
ULMRUB 
 
SAPLINGS 
Code 
ACEPLA 
 
 

 
 
 
 
 
 
 
Scientific name 
Acer platanoides L.  
Acer rubrum L.  
Ailanthus altissima (Mill.) Swingle 
Carpinus caroliniana Walter 
Carya glabra (Mill.) Sweet 
Carya ovata (Mill.) K. Koch 
Carya tomentosa (Lam.) Nutt. 
Cercis canadensis L.  
Chionanthus virginicus L.  
Cornus florida L.  
Fagus grandifolia Ehrh. 
Fraxinus pennsylvanica Marshall 
Liriodendron tulipifera L.  
Nyssa sylvatica Marshall 
Prunus avium (L.) L.  
Prunus serotina Ehrh. 
Prunus serrulata Lindl. 
Quercus alba L.  
Quercus coccinea Münchh. 
Quercus marilandica Münchh. 
Quercus montana Willd. 
Quercus rubra L.  
Quercus velutina Lam.  
Sassafras albidum (Nutt.) Nees 
Ulmus rubra Muhl.  
 
 
Scientific name 
Acer platanoides L.  

 
 
 
 
 
 
Common name 
Norway maple 
Red maple 
Tree of heaven 
American hornbeam 
Pignut hickory 
Shagbark hickory 
Mockernut hickory 
Eastern redbud 
White fringetree 
Flowering dogwood 
American beech 
Green ash 
Tulip poplar 
Blackgum 
Sweet cherry 
Black cherry 
Japanese flowering cherry 
White oak 
Scarlet oak 
Blackjack oak 
Chestnut oak 
Northern red oak 
Black oak 
Sassafras 
Slippery elm 
 
 
Common name 
Norway maple

 
 
 
 
 
 
Plots 
H2 
L1, L2, O1, O2, O3, O4, H1, H2 
H2 
O2, O4 
L1, O1, O2, O3, O4, H1 
O1, O3 
L1, L2, O1, O4, H1 
H2 
L1 
L1, L2, O1, O2, O3, H1, H2 
L1, L2, O2, H1 
H1, H2 
L1, L2, O1, O2, O3, O4, H1, H2 
L2, O1, O2, O3, O4, H1, H2 
H2 
L1, H1, H2 
H2 
L1, L2, O1, O2, O3, O4, H1, H2 
H1 
O1 
O1, O3, O4 
L1, L2, O1, O2, O4, H1 
L1, L2, O1, O2, O3, O4, H2 
L1, L2, O3 
H1, H2 
 
 
Plots 
H2 
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ACERUB 
AMECAN 
CARCAR 
CARGLA 
CARTOM 
CHIVIR 
CORFLO 
FAGGRA 
FRAAME 
FRAPEN 
LIRTUL 
NYSSYL 
PRUSER 
SASALB 
ULMRUB 
VIBPRU 
 
 
SEEDLINGS 
Code 
ACERUB 
AILALT 
AMEARB 
AMECAN 
CARCAR 
CARCOR 
CARGLA 
CARSPP 
CARTOM 
CHIVIR 
FAGGRA 
FRAAME 
FRAPEN 
FRASPP 
LIRTUL 
NYSSYL 

Acer rubrum L.  
Amelanchier canadensis (L.) Medik. 
Carpinus caroliniana Walter 
Carya glabra (Mill.) Sweet 
Carya tomentosa (Lam.) Nutt. 
Chionanthus virginicus L.  
Cornus florida L.  
Fagus grandifolia Ehrh. 
Fraxinus americana L. 
Fraxinus pennsylvanica Marshall 
Liriodendron tulipifera L.  
Nyssa sylvatica Marshall 
Prunus serotina Ehrh. 
Sassafras albidum (Nutt.) Nees 
Ulmus rubra Muhl.  
Viburnum prunifolium L.  
 
 
 
Scientific name 
Acer rubrum L.  
Ailanthus altissima (Mill.) Swingle 
Amelanchier arborea (Michx. f.) Fernald 
Amelanchier canadensis (L.) Medik. 
Carpinus caroliniana Walter 
Carya cordiformis (Wangenh.) K. Koch 
Carya glabra (Mill.) Sweet 
Carya sp.  
Carya tomentosa (Lam.) Nutt. 
Chionanthus virginicus L.  
Fagus grandifolia Ehrh. 
Fraxinus americana L. 
Fraxinus pennsylvanica Marshall 
Fraxinus sp. 
Liriodendron tulipifera L.  
Nyssa sylvatica Marshall 

Red maple 
Canadian serviceberry 
American hornbeam 
Pignut hickory 
Mockernut hickory 
White fringetree 
Flowering dogwood 
American beech 
White ash 
Green ash 
Tulip poplar 
Blackgum 
Black cherry 
Sassafras 
Slippery elm 
Blackhaw 
 
 
 
Common name 
Red maple 
Tree of heaven 
Common serviceberry  
Canadian serviceberry 
American hornbeam 
Bitternut hickory 
Pignut hickory 
Hickory 
Mockernut hickory 
White fringetree 
American beech 
White ash 
Green ash 
Ash 
Tuliptree 
Blackgum 

L1, L2, O1, O3, H1 
O2, O4 
O1, O4 
L2, O1, O2, O3, H1 
L2, O1, O3, H1 
L1, H1 
L2, O2, O3, H1 
L1, L2 
L1 
L2, H1, H2 
O2 
L1, L2, O1, O2, O3, O4, H1 
L1, L2, H1 
L2, O2 
H1 
H1, H2 
 
 
 
Plots 
L1, L2, O1, O2, O3, O4, H1 
L1 
O2, O4, H1 
O1, O2, O4, H1 
O2, O4 
L1, H2 
L1, O1, O3 
L1, O2, O3, O4, H1 
L1, L2 
L2 
L1, L2, O4, H1 
L1, O4 
L1 
L2, H1, H2 
L1, L2, O1, O2, O3, O4, H1 
L2, O1, O3, O4, H1, H2 
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PRUSER 
QUEALB 
QUEMON 
QUERUB 
QUEVEL 
SASALB 
ULMRUB 
 
SHRUBS 
Code 
BERTHU 
EUOALT 
EUOAME 
EUOSPP 
GAYBAC 
ILEOPA 
LIGVUL 
LINBEN 
RHOPER 
 
ROSMUL 
ROSSPP 
RUBFLA 
RUBPEN 
RUBPHO 
VACANG 
VACCOR 
VACPAL 
VACSPP 
VIBACE 
VIBDEN  
 
VINES 
Code 
CELORB 
 

Prunus serotina Ehrh. 
Quercus alba L.  
Quercus montana Willd. 
Quercus rubra L.  
Quercus velutina Lam.  
Sassafras albidum (Nutt.) Nees 
Ulmus rubra Muhl.  
 
 
Scientific name 
Berberis thunbergii DC.  
Euonymus alatus (Thunb.) Siebold 
Euonymus americanus L.  
Euonymus sp.  
Gaylussacia baccata (Wangenh.) K. Koch 
Ilex opaca Aiton 
Ligustrum vulgare L.  
Lindera benzoin (L.) Blume 
Rhododendron periclymenoides (Michx.) 
Shinners 
Rosa multifora Thunb. 
Rosaceae sp. 
Rubus flagellaris Willd.  
Rubus pensilvanicus Poir.  
Rubus phoenicolasius Maxim. 
Vaccinium angustifolium Aiton 
Vaccinium corymbosum L.  
Vaccinium pallidum Aiton 
Vaccinium sp. 
Viburnum acerifolium L.  
Viburnum dentatum L.  
 
 
Scientific name 
Celastrus orbiculatus Thunb. 
 

Black cherry 
White oak 
Chestnut oak 
Northern red oak 
Black oak 
Sassafras 
Slippery elm 
 
 
Common name 
Japanese barberry 
Burningbush 
Bursting-heart 
 
Black huckleberry 
American holly 
European privet 
Northern spicebush 
Pink azalea 
 
Multiflora rose 
 
Northern dewberry 
Pennsylvania blackberry 
Wine raspberry 
Lowbush blueberry 
Highbush blueberry 
Blue Ridge blueberry 
 
Mapleleaf viburnum 
Southern arrowwood 
 
 
Common name 
Oriental bittersweet

L2, H1 
L1, L2, O3, H1, H2 
O3, O4 
L1, O4 
O3, O4 
L2, O2, O3 
H1 
 
 
Plots 
L2, O4 
O1, H1 
O1, H1 
O1 
O4 
H1 
H1, H2 
L1, L2, H1, H2 
H1 
 
L1, L2, O4, H1 
L1, O1, O4, H1, H2 
H1 
L2, H1 
L1, L2, O2, H2 
L2 
L2, O1, O2, O3, O4 
O1, O2, O3, O4 
O4 
L1, L2, O1, O2, O3, O4 
L2, O4, H1, H2 
 
 
Plots 
L1, L2, O1, O3, O4, H1, H2 
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DIOVIL 
HEDHEL 
LONJAP 
MITREP 
PARQUI 
SMIROT 
TOXRAD 
VITAES 
VITRIP 
VITSPP 
 
HERBS 
Code 
ALLPET 
ARITRI 
ATRSPP 
BOTVIR 
CARAMP 
CARBLA 
CIRLUT 
CONSPP 
CYNVIR 
DESNUD 
DUCIND 
EREHIE 
ERIANN 
EURDIV 
EUTPUR 
FABSPP 
GALCIR 
GERSPP 
GEUCAN 
HACVIR 
KUMSTR 
LYCVIR 

Dioscorea villosa L.  
Hedera helix L.  
Lonicera japonica Thunb.  
Mitchella repens L.  
Parthenocissus quinquefolia (L.) Planch. 
Smilax rotundifolia L.  
Toxicodendron radicans (L.) Kuntze 
Vitis aestivalis Michx.  
Vitis riparia Michx.  
Vitis sp.  
 
 
Scientific name 
Alliaria petiolata (M. Bieb.) Cav.&Grande 
Arisaema triphyllum (L.) Schott 
Atrichum sp.  
Botrychium virginianum (L.) Sw.  
Carex amphibola Steud.  
Carex blanda Dewey 
Circaea lutetiana L.  
Convolvulaceae sp.  
Cynoglossum virginianum L.  
Desmodium nudiflorum (L.) DC. 
Duchesnea indica (Andrews) Teschem.  
Erechtites hieraciifolius (L.) Raf. ex DC.  
Erigeron annuus (L.) Pers.  
Eurybia divaricate (L.) G.L. Nesom 
Eutrochium purpureum (L.) E.E. Lamont 
Fabaceae sp.  
Galium circaezans Michx.  
Geranium sp.  
Geum canadense Jacq.  
Hackelia virginiana (L.) I.M. Johnst.  
Kummerowia striata (Thunb.) Schindl. 
Lycopus virginicus L.  
 

Wild yam 
English ivy 
Japanese honeysuckle 
Patridgeberry 
Virginia creeper 
Roundleaf greenbrier  
Eastern poison ivy 
Summer grape 
Riverbank grape 
Grape 
 
 
Common name 
Garlic mustard 
Jack in the pulpit 
Moss 
Rattlesnake fern 
Eastern narrowleaf sedge  
Eastern woodland sedge 
Broadleaf enchanter’s nightshade 
 
Wild comfrey 
Nakedflower ticktrefoil 
Indian strawberry 
American burnweed 
Eastern daisy fleabane 
White wood aster 
Sweetscented joe pye weed 
 
Licorice bedstraw 
 
White avens 
Beggarslice 
Japanese clover 
Virginia water horehound 

L1, L2, H1, H2 
L1, L2, H1, H2 
L1, L2, O2, O4, H1, H2 
L1, O1, O2, O4, H1, H2 
L1, L2, O2, O3, O4, H1, H2 
O2, O4, H1, H2 
L1, L2, O2, O4, H1, H2 
L2, O1 
L1, L2, O3, H1, H2 
O1 
 
 
Plots 
H1, H2 
L1, L2, H1, H2 
O2 
L1 
O4 
L1, L2 
L1, L2, H2 
H2 
O4 
L1, L2, O1, O2, O3, H2 
H2 
O4, H1 
O2 
L1, H1 
L1, H1 
O4 
O1, O2, O4, H1 
H1 
H2 
L1, H2 
L1 
L2, O4 
MEDVIR 
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MEDVIR 
MICVIM 
MONUNI 
NABSPP 
PHEHEX 
POASPP 
PODPEL 
POLCES 
 
POLSPP 
RUBPEN 
SOLCAE 
THADIO 
UVUSES 
VIOHIR 
VIOSPP 
 

Medeola virginiana L.  
Microstegium vimineum (Trin.) A. Camus 
Monotropa uniflora L.  
Nabalus sp.  
Phegopteris hexagonoptera (Michx.) Fée 
Poaceae sp.  
Podophyllum peltatum L.  
Polygonum cespitosum Blume var. 
longisetum (Bruijn) A.N. Steward 
Polygonatum sp.  
Rubus pubescens Raf.  
Solidago caesia L.  
Thalictrum diocicum L.  
Uvularia sessilifolia L.  
Viola hirsutula Brainerd 
Viola sp.  
 

Indian cucumber 
Nepalese browntop 
Indianpipe 
 
Broad beechfern 
Mayapple 
Oriental lady’s thumb 
Solomon’s seal 
 
 
Dwarf red blackberry 
Wreath goldenrod 
Early meadow-rue 
Sessileleaf bellwort 
Southern woodland violet 

O2, O4 
L1, L2, O2 
O4 
L1 
L1, H2 
O4, H1 
L1, L2, O4 
L1, O4 
 
L1 
H2 
L1, H1 
H2 
L2, H1 
O2 
O1, O3, H1 
 
 
 

 
 
 
 
  
 

 

LEGEND 
L1- Leakin 1 
L2- Leakin 2 
O1- Oregon Ridge Upslope 1 
O2- Oregon Ridge Upslope 2 
O3- Oregon Ridge Midslope 1 
O4- Oregon Ridge Midslope 2 
H1- Hillsdale 1 
H2- Hillsdale 2 
 

Appendix 1.  Plant species list organized by forest layer. 
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