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Abstract

We consider the plant layout problem for a job shop environment. This problem is generally
treated as the quadratic assignment problem with the objective of minimizing material handling
costs. In this paper we investigate conditions under which the quadratic assignment solution
also minimizes average work-in-process. To get some initial insights, we model the plant as
an open queueing network and show that under a certain set of assumptions, the problem of
minimizing work-in-process reduces to the quadratic assignment problem. We then investigate
via simulation the robustness of this result. We found that the relationship between material
handling costs and average work-in-process holds under much more general conditions than are
assumed in the analytical model. For those cases where the result does not hold, we have refined
the model by developing a simple secondary measure which appears to work well in practice.

Keywords: plant layout, quadratic assignment problem, queueing network models for man-
ufacturing systems.

1 Introduction

The facilities layout problem has generally been tackled using one of two approaches. The first
approach seeks a solution that minimizes the total material handling costs between all pairs of
facilities and is known as the quadratic assignment problem (QAP) (see, e.g., Burkard [3]). The
second approach is known as the adjacency requirements formulation and the objective is to maximize
the sum of closeness ratings (Foulds [10]). These ratings may be subjective, and contribute to the
objective function only if the two facilities in question are adjacent in a solution. Both formulations
lead to an NP-hard problem ([3, 10}), and heuristic solution methods have to be applied to most
real-size problems. The QAP model is preferred for most manufacturing and other operations where
the total material handling cost is the appropriate criterion.

The most successful optimal solution procedures for the QAP are implicit enumeration algorithms

based on the lower bound proposed by Gilmore [11] and Lawler [15]. A good implementation of this




bound is given by Burkard and Derigs [5]. Linearizations of the QAP have been proposed, e.g.,
by Bazaraa and Sherali {2] and Kaufman and Broeckx [13], but have not been very successful
computationally.

Heuristic procedures for the QAP can be classified as constructive, improvement, limited enu-
meration, or heuristic solutions to linearized problems. Hybrid procedures combining improvement
with one of the other three approaches have been very successful, e.g, Burkard and Bonniger [4],
Bazaraa and Kirca (1}, and Kaku, Thompson, and Morton [12].

Attempts at solving the facilities layout problem in a multi-criteria context have been limited,
mainly to work with objective functions that combine the QAP and the adjacency requirements
objectives. Examples of such an approach can be found in Rosenblatt [16], Dutta and Sahu [8],
and Fortenberry and Cox [9]. More recently, Kouvelis and Kiran [14] have incorporated throughput
requirements into the layout design problem for automated manufacturing systems. They model
the system as a closed queueing network based on the assumption that the number of pallets and
hence the number of jobs in the system is fixed. Given some required throughput, they minimize
the sum of transportation costs and the costs of work-in-process (WIP) inventory as measured by
the number of jobs in the system necessary to maintain that throughput.

In this paper we consider queueing effects in a general job shop where the throughput is fixed,
but WIP is not. Thus an open queueing network is the more appropriate model (see, for example,
Buzacott and Shanthikumar [6]). We formulate an open queueing network model that includes
layout considerations in the material handling system, which is considered to have a fixed capacity
(e.g. a fixed number of forklifts). Under the analogous assumptions used by Kouvelis and Kiran [14]
for the closed queueing network model, we show that the QAP formulation is equivalent to the goal
of minimizing WIP. This implies that, as a rough approximation, the layout which minimizes WIP
also minimizes material handling.

However, some of the assumptions on the material handling system used in the analytical queue-
ing model may not be realistic. Even so, the approximate equivalence between the QAP and the
problem of minimizing WIP derived from the analytical model allows us to limit the search space

for a more refined simulation model. The simulation model handles the complexities in the material



handling system not captured in the analytical queueing network model. The simulation results in-
dicate that the result holds more generally, but there are exceptional situations where a refinement
of the model is necessary. We characterize situations where such an adjustment is necessary, and
develop a secondary measure to incorporate an appropriate adjustment.

The rest of the paper is organized as follows. In Section 2, we introduce the analytical open
queueing network model and the necessary assumptions to establish our result. The simulation

results and secondary measure are reported in Section 3. Conclusions are given in Section 4.

2 The Open Queueing Network Model

The problem can be stated as follows. There are a number of potential locations and a number
of departments, and the objective is to match the departments to locations in such a way as to
minimize the average work-in-process, given the set of part types and respective demand rates to
be handled by the system. The material handling system is assumed to consist of a fixed number of
transporting vehicles, which we will call forklifts for convenience.

We define some parameters of the system:

N = number of departments, number of locations

= set of part types produced by the system

P = number of part types
mg = number of forklifts
m; = number of machines in department 7, i=1,...,N
v = average velocity of a forklift
d;; = distance between location ¢ and j, ¢,5=1,...,N
Rr = process route for part type k, k=1,...,P
rr, = demand rate for part type k, k=1,...,P

For any two departments, say ¢ and j, we model the system as follows. We model the processing

at the departments ¢ and j as multi-server queues. It follows that both queueing time and actual
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Figure 1: Queueing Model of the Link Between Two Departments

processing time are included in the model. Movement between the two departments involves the use
of a shared resource, the material handling system, which in our model consists of a set of forklifts.

The time for a batch of parts to travel from one department to another will be the sum of two times:
1. the time waiting for a forklift to become available at the first department, and
2. the actual transportation time between the two departments.

The first time consists of the potential waiting time for a forklift to become available anywhere in
the plant (e.g., if all forklifts are in use when one is needed) plus a travel time for the forklift to
come to the department.

We model the first part as a shared multi-server queue to take into account the potential con-
tention for resources, and the second part as an infinite-server queue with mean service time equal to
the distance between the two departments divided by the average velocity over all the forklifts. The
modeling of the actual transportation time by means of an infinite server queue is an approximation,
because in theory it allows for a larger number of batches in transit than there are forklifts available.
However, the service times used in modeling the waiting for a forklift should compensate for this.

We use the index ¢ (i = 1, ..., N) for the departments and reserve the index 0 for the material han-
dling “waiting” station. We will use 4, j to denote the actual transportation route from department
i to j. This queueing model is shown in Figure 1.

In our model, for example, the process route R = (1,5,3) would be represented as a queueing

route in the networkas1 — 0 — (1,5) —- 5 - 0 — (5,3) — 3.



We define the following:

Ly = average work-in-process waiting for a forklift
L; = average work-in-process in department ¢, i=1,..., M
L;; = average work-in-process in transportation from i to 5, ¢,j=1,...,M

The work-in-process can be located either (i) at the machines in the departments (in buffer or
in process), (ii) waiting for transportation from the material handling system, or (iii) in transit
from one department to another department. Thus, our objective is to determine the assignment of

departments to locations so as to minimize

M M M
Lo+ Li+3 D> Lij M
i=1

i=1 j=1

A commonly accepted set of assumptions for manufacturing systems which leads to a product-

form solution is given by Buzacott and Shanthikumar [7]:

1. external part type arrival processes into the system are Poisson;

2. processing times at a department are i.i.d. exponential;

3. travel times of forklifts to a department are exponential and independent of the department;
4. buffer sizes are sufficiently large such that blocking is negligible;

5. service discipline is first-come, first-served (FCFS).

It is not necessary to assume exponential travel times between departments since we model these
travel times as infinite server queues. We also note that multiple visits to a department are allowed
in our formulation.

We will now show, under the usual product-form assumptions, that the first two terms in Equation

(1) are independent of the layout. To demonstrate this, we define the following:

Ao = rate of part flow into (out of) the material handling system



A; = flowinto (out of) department s, i=1,...,M

Ay = flow from department i to j, 4,j=1,...,M

Zo = Imean waiting time at the material handling system

z; = mean processing time in department i, i=1,..., M

Tij = mean transportation time from department i to j, 4,j=1,...,M

Note that zg, which is the mean waiting time at the material handling system, is the mean “service”
time for node 0 in the queueing network model.

We define the following visit-counting functions of the routes:

|R] = total # of visits to departments in route R,
|R|; = # of visits to department ¢ in route R, i=1,...,M
|R|ij = # of department i to department j routings in route R ¢,j=1,...,M

The flows A\; and A;; can be found from the demand rates given by r; and the routings Ry via

the usual flow balance equations for open queueing networks (see Wolff [17]:

P
Xo =D ri(|Ril - 1) @)
k=1
P
/\i=zrk|Rk|i, i=1,...,M 3)
k=1
P
’\ij:ZTk|Rk|ij, ,,j=1,...,.M (4)
k=1
We assume z;, i = 1,..., N, can be estimated, and we have 7;; = dyj» /v, where 4’ is the location

to which department ¢ is assigned and j' is the location to which department j is assigned. Thus, if
the system has enough production capacity to meet demand (\;z;/m; < 1 for all i = 0,1,...,N),

then standard queueing theory results (Wolff [17] yield the following:

L,',j = /\ijT,'j = )\ijdz-/j;/v i,j = 1,...,N (5)




and

Li:ann,i i=0,1,...,N (6)

n=1

where p, ; represents the steady-state probability of n parts at department ¢ given by
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where

is the traffic intensity.

The average WIP in a department (L;;¢ > 0) and the average WIP waiting for a forklift (L)
depend only on demand rates, process routes, process times, and the number of machines; both
are independent of the layout and thus of the distances between departments. This implies that to
minimize WIP in the system, we need to determine the assignment of departments to locations that
minimizes the third term in (1), i.e., the WIP in the material handling system. This term can be

rewritten as:

M M M
ZL ZZ/\ijTij == ZE)\z]dz'j ) )

i=1 3=1 i=1 j=1 z—l j=1

M

Given that v is a constant, namely the average velocity over all forklifts, the problem has been
reduced to the quadratic assignment problem. This model indicates that if the departments oper-
ate independently (except for the layout-dependent, material handling interaction), then the QAP
formulation also serves to minimize work-in-process. Of course, this requirement of independence
makes the model inappropriate for tightly coupled manufacturing systems such as those found in
cellular manufacturing,

Whereas the optimal solution is independent of the actual material handling system capacity,
the WIP level itself is not. By assigning costs to different levels of material handling capacity and
to different WIP levels, it would be possible to investigate the question of what capacity should be

provided in the material handling system to minimize the sum of these two costs.




3 The Simulation Experiment

In an attempt to build a simple model that can provide some insight into the facility layout decision,
we included assumptions that may not always be satisfied in practice. Of particular concern are the

following items:

1. The processing times in a department are distributed i.i.d. exponential over all part types.

2. The time it takes for a forklift to arrive to pick up a batch of material is independent of the

layout. This arises due to the shared multi-server queue used to account for waiting time.

3. The number of batches in transit may be greater than the number of forklifts, due to the use

of an infinite-server queue to model actual transportation time between two departments.

The first item is related more to analytic tractability of the system, and we believe that it is
not a critical factor in the result. The next two items involve modeling simplifications, in particular
the assumption that the time spent by parts in the material handling systems can be decomposed
into a waiting time independent of the layout plus a travel time. This is a plausible assumption if
the number of forklifts is not overutilized and the distribution of number of batches processed in
departments is “uniform” in some sense. To test the extendibility of the results from the model to

more general conditions, we conducted simulation experiments as described below.
3.1 Generating the test problems

We randomly generated 10 problems with 8 facilities each. Two of these facilities are in fixed
locations, one at each end of the manufacturing facility. One is considered to be the raw material
storage area and serves as an “entry” station; and the other is considered to be the finished goods
storage and shipping area and serves as an “exit” station. The number of locations is also 8, arranged
in a 2-by-4 rectangular grid, and distances are measured as rectilinear center-to-center.

To provide the flow pattern a structure similar to one that may be found in practice, we randomly

generated demands and process routes for 10 part types for each problem, and then translated this




information into the familiar flow matrix of QAPs. The step-by-step procedure for each part type

is as follows:

1. Part-type demand in units is 40 times some multiple between 1 and 100, randomly generated

from a uniform distribution.

2. Part-type batch size is 5, 10, 20 or 40, with the probability of larger batch sizes increasing as
the demand increases. For example, if part demand is less than 1/4 of the maximum possible
demand, then one of the four batch sizes is chosen with equal probability, whereas if part

demand is larger than 3/4 of the maximum possible demand, then the batch size is set at 40.

3. The number of departmehts visited by the part type is randomly generated from a uniform
distribution between 1 and 5, excluding the first and last visit which are fixed for all part
types as the entry and exit stations, respectively. This number of departments is then chosen
at random with limited backtracking allowed; a part type may return to one department that

it has already visited, but only after visiting one or more departments in-between.

4. Parts move through the system in batches, with the number of batches determined as the
demand divided by the batch size. Information on the process route and number of batches is

translated into flows between specific departments for the part type.

This is repeated for all part types with flows between departments being aggregated into the flow

matrix. Other data that need to be generated are:

1. The processing time per unit for the part type in a department is randomly chosen as an
integer number of minutes from the range (1, 10), providing an average processing time of 5.5

minutes.

2. The setup time for each batch of the part type in a department is chosen similarly as an integer
number of minutes from the range (R, 10R). Two values were used for R: 5 and 25, such that

the average setup time for the two cases is 27.5 and 137.5 minutes, respectively.

Finally, the following parameters are adjusted:




1. The speed of the forklifts is set at 40, 45, 50, or 55 feet per minute, based on the optimal cost
of the solution. This adjustment was made to provide sufficient forklift capacity as total flows

increased.

2. The number of machines in a department is adjusted so that utilization in the department

does not exceed some prespecified level.

The ten test problems lead to 12 cases each through different settings for three parameters. These
are the two values of R mentioned above; three values for the maximum utilization levels (90, 70
and 50%) in the departments; and two values for the number of forklifts (2 or 3).

To test the relationship between the QAP solution cost and the average WIP in the system we
compare the simulation results for three solutions to each problem. These are an optimal solution,
a “good” solution, and a poor solution. The optimal solution is found by the procedure published
by Burkard and Derigs [5]. The good solution is found by a procedure that is a simplified version
of the heuristic developed by Kaku, Thompson and Morton {12]. We construct 9 distinct solutions,
improve them through pairwise interchange, and choose the best solution with cost greater than the
optimal (in other words, alternate optima are not considered). The poor solution is obtained from
the optimal solution by making pairwise interchanges that worsen the solution, and choosing the
solution whose cost is closest to 30% above the cost of the optimal. Details on the 10 test problems

and the 3 solutions to each are given in Table 1.
3.2 The simulation model and results

Unlike the analytical queueing network model of the previous section, the simulation model we
employed explicitly takes into account the queueing effects of a limited number of forklifts and the
possible additional lags due to travel of the forklift when empty to the next place where it is needed
from its previous drop-off point. A forklift is assumed to remain at the station at which it unloads
until another request is made. When a request is made, if more than one forklift is available, then
the closest available one to the requesting station is used. These characteristics were modeled using

the constructs available in the SIMAN simulation language.
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Table 1: Solutions for the 10 test problems

{ Problem [ Solution | Cost [ % Deviation | Assignments® |

1 Optimal | 3958 0.00 1 3 6 7 2 5 4 8
Near-opt | 4062 2.63 1 6 3 7 2 4 5 8

Poor 4966 25.47 1 7 6 2 3 5 4 8

2 Optimal | 5094 0.00 1 7 3 2 6 4 5 8
Near-opt | 5264 3.34 1 6 7 3 2 4 5 8

Poor 6756 32.63 1 5 2 4 3 7 6 8

3 Optimal | 5578 0.00 1 4 3 6 7 5 2 8
Near-opt | 5672 1.69 1 4 5 3 7 2 6 8

Poor 6880 23.34 1 4 3 7 5 2 6 8

4 Optimal | 3186 0.00 1 2 3 5 4 7 6 8
Near-opt | 3192 0.19 16 3 5 7 4 2 8

Poor 4296 34.84 1 3 4 5 6 2 7 8

5 Optimal | 3620 0.00 1 6 7 4 2 3 5 8
Near-opt | 3712 2.54 1 3 7 4 5 6 2 8

Poor 4752 31.27 1 6 5 4 2 3 7 8

6 Optimal | 4144 0.00 1.7 6 2 3 5 4 8
Near-opt | 4252 2.61 1 7 3 2 6 4 5 8

Poor 5612 35.42 1 3 6 7 2 65 4 8

7 Optimal | 3354 0.00 1 5 6 4 2 3 7 8
Near-opt | 3474 3.58 1 4 3 5 2 6 7 8

Poor 4498 34.11 1 5 6 4 2 7 3 8

8 Optimal | 3932 0.00 1 3 4 7 6 2 5 8
Near-opt | 4288 9.05 1 5 4 7 3 6 2 8

Poor 5044 28.28 1 3 6 7 2 4 5 8

9 Optimal | 4790 0.00 1 3 2 4 5 7 6 8
Near-opt | 4796 0.13 1 5 3 4 2 7 6 8

Poor 6194 29.31 1 3 2 5 7 6 4 8

10 Optimal | 5396 0.00 1 56 4 6 7 3 2 8
Near-opt | 5754 6.63 1 4 7 3 6 5 2 8

Poor 7304 35.36 1 6 7 6 2 3 4 8

2The assignments are stated for departments to locations. For example, the optimal solution
to Problem 9 has department 1 in location 1, department 2 in location 3, department 3 in location
2, and so on.

11



The simulation model incorporates batches, meaning the decomposition of service time at a
department into a set-up time per batch and an actual per part processing time. In the SIMAN
implementation, we took the set-up times as exponential and the processing times as deterministic.
We also took each batch as the entity in the system in order to reduce storage requirements and
make the simulation more efficient. We ran each case for 6 weeks of production, with a warm-up
period of 1 week in which no statistics were taken, where a week comprised 5 days of 3 shifts, i.e., 120
hours. Flow times, department WIP and utilization, and forklift WIP and utilization, were recorded,
all in terms of batches, and statistics based on 40 independent replications were calculated. These
statistics included individual 95% confidence intervals around the estimated mean, and paired-t 95%
confidence intervals for each pair of differences in WIP and flow times.

In all 120 instances (12 cases, 10 problems), the poor solution does decidedly worse than the
other two solutions, i.e., in general, better solutions to the QAP problem lead to lower levels of
average WIP in the system. However, in the case of two solutions that are very close to each other
in terms of QAP costs, the WIP results are not clearly predictable in terms of these costs. These
results seem to be consistent across all 12 cases. Table 2 shows a snapshot summary of a comparison
between the optimal and good solutions based on a paired-t comparisons of the mean flow times,
which by Little’s Law serves as a surrogate for the total batch WIP. The notation used in this table
indicates the direction of the comparison and the statistical significance. For example “«” indicates
the optimal solution had a lower average flow time and the difference is statistically significant,
whereas “<” indicates the optimal solution had a lower average flow time, but the difference is not
statistically significant.

In the case of test problems 3, 4, and 9, the QAP costs of the good solutions are very close to the
optimal costs — with a difference of less than 2% — and the good solutions may be termed as near-
optimal solutions. For these three problems, the near-optimal solution sometimes has lower WIP
than the optimal solution. A breakdown of the total WIP into its two components, department WIP
and forklift WIP, shows further that the department WIP is practically identical; the difference lies in
the forklift WIP. To understand this result, a detailed comparison of the placement of departments in

the two solutions is required. For this purpose, we make a distinction between the 4 central locations
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Table 2: Comparison of Optimal and Near-Optimal Solutions at the 95% level

Case
Problem | 1 2 3 4 5 6 7 8 9 10 11 12
1 L < < < KX K < < < < K <
2 » < <€ € ¥ KX > x << < x <
3 > < > < >» < < < > > > <
4 > < > > D K < < < > < >
) > < > K <L < > > < > < >
6 € ¥ £ € X KX >» <« x¥x < x <
7 < < < < KX K > > < < KX <
8 ¥ £ ¥ ¥ KXx KX <« ¥ x x
9 > > L > » > < > > < >» >
10 < < ¥ K€ KX K < < € < KX <

and the 4 corner locations in the 2-by-4 grid since the former have shorter average distances to other
locations than the latter. The optimal and near-optimal solutions for test problem 9 are shown in
Figure 2 to facilitate this discussion. Comparing the optimal and near-optimal solutions, we see that
departments 3, 6, and 7 remain in central locations, while departments 1, 4, and 8 remain in corner
locations. The only difference is in the case of departments 5 and 2, which exchange positions with
respect to central and corner locations. Department 5, which is in a corner location in the optimal
solution, has a larger flow through it (856 batches) than department 2 (456 batches). Thus the
forklift is more likely to be at a corner location in the optimal solution at any given point in time
and, therefore, will take longer to respond to the next service call, contributing to higher forklift
WIP. However, this is not a critical factor when there is a fairly clear QAP cost difference between
the optimal and the good solution, because the in-transit forklift WIP dominates the WIP waiting
for a forklift. If the two solutions are very close to each other, then the in-transit WIP for both is
nearly the same, and the waiting WIP becomes a factor.

A similar effect can be observed in Problems 3 and 4; however, this type of visual analysis is
not reliable for all situations, e.g., changes in locations for more than two departments, or larger
problems with more classes of locations than the two in our example problems. To overcome this
limitation, we have devised an easily calculated measure to capture the effect of layout on the time

spent waiting for material handling service in the form of the expected travel time for an empty

13




Total flow through department 2 = 456
Total flow through department 5 = 856

1 3 2 4 1 ) 3 4
5 7 6 8 2 7 6 8
Optimal Near-optimal

Figure 2: Optimal and near-optimal solutions for test problem 9
forklift to arrive at the station demanding service. This time is given approximately by

M
Ji/u w.p. A;/A, where A = Z/\i,

1=1

and d; is the distance from department i to where the forklift is at present, which is d;; w.p. A;/A.

Thus, an estimate for the expected travel time for an empty forklift is

M-1 M M-1 M

di M1
XX AR e & R

i=1 j=2 i=1 j=2
so our secondary measure is given by

M-

[ay

Mx

dijAidj.

=1 j

||
[\

In essence, the refined model treats z¢ as layout-dependent, whereas in the original model, it

was considered to be layout independent. Our basic algorithm to minimize WIP is as follow:
1. Find the best QAP solutions. If one is significantly better than all the others, choose it.

2. If near-optimal solutions exist, check the secondary measure to discard solutions whose mea-

sures are considerably higher than others.
3. Pick one of the finalists, possibly based on other additional considerations.

We ran another set of simulations to test the usefulness of this secondary measure. Ten new

problems were generated, each having the characteristic that there is at least one near-optimal QAP

14



Table 3: Solutions for the second set of 10 test problems

[ Problem | Solution | Cost | % Deviation | Sec. Measure | Assignments |
1 Optimal | 5362 0.00 1.712845 1 3 6 7 2 5 4 8
Near-opt | 5386 0.45 1.731464 1 6 3 7 2 4 5 8
2 Optimal | 5224 0.00 1.919127 1 7 3 2 6 4 5 8
Near-opt | 5244 0.38 1.957579 1 6 7 3 2 4 5 8
3 Optimal | 4135 0.00 1.771174 1 4 3 6 7 5 2 8
Alt.-opt | 4135 0.00 1.769924 1 4 5 3 7 2 6 8
Near-opt | 4153 0.44 1.780842 1 4 3 7 5 2 6 8
4 Optimal | 2612 0.00 1.790738 1 2 3 5 4 7 6 8
Near-opt | 2622 0.38 1.823147 1 6 3 5 7 4 2 8
5 Optimal | 4078 0.00 1.923231 1 6 7 4 2 3 5 8
Near-opt | 4094 0.39 1.794920 1 3 7 4 5 6 2 8
6 Optimal | 3682 0.00 1.819641 1 7 6 2 3 5 4 8
Near-opt | 3684 0.05 1.827726 1 7 3 2 6 4 5 8
7 Optimal | 2450 0.00 1.838522 1 5 6 4 2 3 7 8
Alt.-opt | 2450 0.00 1.882022 1 4 3 5 2 6 7 8
Near-opt | 2458 0.33 1.842749 1 5 6 4 2 7 3 8
8 Optimal | 4811 0.00 1.720258 1 3 4 7 6 2 5 8
Near-opt | 4815 0.08 1.712955 1 5 4 7 3 6 2 8
9 Optimal | 4643 0.00 1.966118 1 3 2 4 5 7 6 8
Near-opt | 4647 0.09 1.967324 1 5 3 4 2 7 6 8
10 Optimal | 4770 0.00 2.046220 1 5 4 6 7 3 2 8
Near-opt | 4776 0.13 2.049782 1 4 7 3 6 5 2 8
Near-opt | 4778 0.17 2.119964 1 567 6 2 3 4 8

solution within 0.5% of the optimal. This time alternate optimal solutions were accepted, provided
that they were not simply mirror images of the optimal. (A mirror image is obtained by rotating
any solution around its horizontal or vertical axis.) For the ratio of setup to processing times we set
R = 10; maximum machine or assembly workstation utilization at 70%; and the number of forklifts
at 2. These problems and their solutions are presented in Table 3. We see that 2 of the problems
had alternate optima and 3 had two additional solutions within 0.5% of the optimal.

The results are shown in Table 4. The secondary measure consistently picks the solution with

the lower WIP, though the results are not always statistically significant.
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Table 4: Qutput Statistics for Case 13

Problem

Flow Time

Department

WIP

utilization

Forklift

WIP

utilization

600+ 4
601+£ 4

32.5+ 0.4
32.5+ 0.4

0.65+0.01
0.65+0.01

2.03+0.04
2.07+£0.04

0.67+0.01
0.68+0.01

499+ 4
501+ 4

2724+ 0.3
272+ 0.3

0.65+0.01
0.65+0.01

2.19+0.05
2.33+0.07

0.69+0.01
0.69+0.01

593+ 4
594+ 4
593+ 4

24.7+ 0.3
24.8+ 0.3
24.7£ 0.3

0.60+0.00
0.60+0.00
0.60+0.00

2.41+0.06
2.40+0.06
2.431+0.07

0.72+0.01
0.72+0.01
0.72+0.01

699+ 7
699+ 7

19.1+£ 0.3
19.0+ 0.3

0.62+0.01
0.62+0.01

1.03+0.01
1.0440.01

0.45+0.00
0.45+0.00

552+ 4
546+ 4

25.8+ 0.3
25.8+ 0.3

0.62+0.01
0.62+0.01

2.89+0.10
2.53%0.07

0.76+0.01
0.7330.01

510+ 3
512+ 3

21.7£ 0.3
21.7+ 0.3

0.60+0.01
0.60+0.01

1.99+0.04
2.04+0.05

0.67+0.01
0.67+0.01

544+ 5
545+ 5
545+ 4

17.3+ 0.2
17.3+ 0.2
17.3£ 0.2

0.64+0.01
0.6440.01
0.64+0.01

1.03+0.01
1.04+0.01
1.04+0.01

0.45+0.00
0.45+0.00
0.45%0.00

560+ 4
560+ 4

28.9+ 0.3
28.9+ 0.4

0.621+0.01
0.62+0.01

1.99::0.04
1.984+0.04

0.66+0.01
0.66+0.01

474+ 6
476+ 6

21.0+ 0.3
21.1+ 0.3

0.66+0.01
0.66+0.01

2.81+0.11
2.82%0.11

0.76+0.01
0.76+0.01

10

533+ 5
534+ 5
538+ 5

28.5+£ 0.3
28.6+ 0.3
28.5+ 0.3

0.63+0.01
0.63+0.01
0.63+0.01

3.1240.11
3.1440.12
3.41+0.14

0.78+0.01
0.78+0.01
0.80+0.01
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3.3 The effect of transfer batches

!

We next investigated the effect of transfer batches on our results?. In the usual sense, a transfer
batch is the quantity transported between departments. It has been shown that using transfer
batches smaller than the production batch size leads to reduced work in process. For this set of
experiments, we set the size of the transfer batch to be half the size of the production batch, in
effect doubling the number of batches that have to be transported. To keep forklift utilization at
approximately the same level as in the previous experiments, we doubled the number of forklifts
in the material handling system. Many policies on selecting the next waiting transfer batch to be
processed at a department are possible. In our study, we assumed a first-come, first-served queue
discipline. Of course, set ups would not be incurred if transfer batches of the same class follow
each other on the same machine. We ran Case 5 from the first set of problems (see Table 2) under
this new scenario. The results remained essentially the same, with the optimal QAP solution doing

better at minimizing WIP for the same problems as before.

4 Conclusions

We have used a simple analytical queueing network model as a starting point to investigate the
relationship between material handling cost and work-in-process. This model is used to show that
under certain conditions in a job shop environment, the QAP with an objective of minimizing a
weighted average of material flows also serves to minimize average work-in-process. A simulation
study allowed us to relax some of the assumptions of the analytical model as well as vary the levels of
some important parameters. The result was found to hold under more general conditions, within the
bounds of these parameters. In particular, department WIP seems to be fairly insensitive to layout
considerations, so the layout dependence enters primarily through the material handling system.
This result appears to hold even when transfer batches are smaller than the production batches.
As explained in the previous section, for situations where two or more QAP solutions are very
close, we need a means to discriminate between candidate solutions in terms of work-in-process.

We have developed a simple secondary measure for this purpose and simulation results indicate

2We thank one of the anonymous referees for suggesting this line of investigation.
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that this combination of two measures works well in selecting the layout which minimizes average

work-in-process levels.
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