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Abstract

This note discusses sampling in a general context and shows that the (dual) frame reconstruc-
tion formula holds for stochastic processes, in quadratic mean. Specifically we show that if the
covariance can be reconstructed using frames then the sample path can also be reconstructed.
The application of the result for the generation of approximate sample paths for simulation is

discussed. Ergodic properties of the approximate estimators are also investigated.

1 Introduction

In this paper we shall discuss the construction and reconstruction of stochastic processes using
frames and wavelets. We are motivated by the need to generate paths in order to solve (sim-
ulate) equations involving stochastic processes. The fundamental principle is (re)construction
of the sample path from samples or some appropriate generalization of sampling such as linear
functionals of the sample path. The paper opens with some general remarks on sampling theory.
Section two is a discussion of some of the potential problems of using frames for sequential ap-
proximation. The third section of the paper discusses a generalization of the stochastic version of
the Shannon—Whittaker theorem to frames. Simulation of sample paths using this construction
is discussed, including some remarks on ergodic properties of the representation.

The reconstruction of a function from data about the function has a long and important
history in applied mathematics. Let f(.) denote the function to be reconstructed, s(-) be a
known function, and define the translation operator (T%,s)(-) — s(- — 1,). Let ¢(f) denote
a functional of the signal to be reconstructed and F(f) be some function(al) of the unknown

function which we desire to know, e.g. f is a stochastic process and I’ the covariance function.

*Currently at the Systems Research Center, University of Maryland, College Park, MD. on leave from the The
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Signals used as interpolation functions are denoted as s,,(¢) or (7},s)(t). There are at least five
types of reconstruction results that can be achieved with these ideas:
I f(t) = 2, f(ta) T2, 8(t)
L f(t) =32, f(tn)sn(?)
HT f(2) = 220 en(f)T2,5(2)
IV f(t) = 3, enl(f)snlt)
V F(f)(t) = 2, enl(f)sa(t)

Note that if ¢,(f) = [ (7 — t,)f(7)dr, then type I is a special case of type IIl. In fact,
the order is of increasing generality: type I C type II C type IIl C type IV C type V. As a
subjective matter they are numbered in decreasing order of importance, at least when special
cases are considered. Obviously, necessary and sufficient conditions on f, ¢, and s for theorems
of type IV would be quite a feat. Such conditions would have to include all of the known theory
of Fourier series!

In addition, the function being reconstructed can be either deterministic or stochastic. If
the function is stochastic then there are (at least) three types of reconstruction that can occur:
spectral (or second order mean and covariance), quadratic mean, and path-wise (for alinost all
paths). Further, the data can be generated in a deterministic or stochastic way (e.g. sampling
on a lattice or by sampling at the jumps of a Poisson process). Deterministic sampling can be
regular, e.g. based on a lattice, or irregular. Stochastic sampling of gathering stochastic data
can be dependent, although we are not aware of any such results, or independent, for which there
are several results!. If reconstruction is such that the function (sample path) can be uniquely
identified within a class, then the reconstruction is said to be alias-free. If the function is only
determined up to a subclass, then the members of the subclass are known as the aliases of
the function. A sampling scheme may be alias—free in one sense and not in another. The best
example of this is that there is a sampling scheme, based on a counting measure, which is shown
alias—free by Masry[2]. It is shown that the counting measure allows the power spectrum of
the process to be reconstructed. The same measure is not alias—{ree for reconstruction of the
spectrum by Shapiro and Silverman’s criteria [3]. Both theorems are correct; what is different
is the way in which data is collected and used to determine if the sampling scheme is alias—free.
Shapiro and Silverman use the correlation function of the samples and Masry uses the law of

the compound process. Shaipro and Silverman’s result includes the classical Nyquist theorem [4].

LOf course, there are reconstruction theorems other than the types mentioned for stochastic sampling. In partic-

ular, the Law of the samples may determine the Law of the sampled processes, etc]1]



Further, Masry [5] gives and example of a sampling scheme which is alias—free in the scnse of
Shapiro and Silverman which cannot lead to path based estimates with probability onec?.

The famous result of Whittaker and Shannon for the reconstruction of Paley~Wiener (ban-
dlimited) functions from samples taken on an appropriate lattice has a direct stochastic analog

(see Section 6).

The following table gives (an incomplete) summary of typical theorems.

Function Sampling Measure
Data Lattice Irregular Stochastic
f(t), Det. 11, III: Levinson[7] Shaipro-Silverman[3]
f(tr) I: Shannon[6] Benedetto—Heller[8] Beutler[9], Masry[2]
R(7), Cov. | V: Masry[2]
Xt Shapiro—Silverman/[3] ? V: Papoulis[10]
P(w), Law.
Probx, ? 7 Lewis[11], Karr[1]
Xt, Q. M. II: Benedetto [13]
Xty I: Balakrishnan [12] IV: This paper II: Gillis (Asym.) [4]
X, Path | I: Houdré[14] ? ?

The main theorem of this paper is roughly this: if one can reconstruct the covariance of
a processes using frames, then one can reconstruct the sample path in quadratic mean using
frames. The result is interesting because of its usefulness in simulations, which is discussed in
some detail in the paper. It is also interesting because the “meta theorem” that says if one
can reconstruct the covariance then one can reconstruct the sample path is false in general.
This paper provides a partial answer to when the theorem is true. The counterexample to the
meta theorem has the following brief summary[4]: Poisson sampling is the best sampling scheme
in a wide class of stochastic sampling measures (stationary point processes) uncorrelated with
the sampled processes. Poisson sampling is not alias—{ree for reconstruction of quadratic mean
continuous processes (using type IT estimators). The process is recovered as the rate increases
(asymptotically).

It had been previously shown that Poisson sampling is alias—free for the reconstruction of

the covariance of most any process (an informal discussion is found in Papoulis [10]); however

2The sampling scheme is based on ¢, = nr, where 7 is exponentially distributed.



the reconstruction is based on a nonlinear function of the data. Other methods of recovering
the covariance depend on the sense that aliasing is meant (Masry, Shapiro-Silverman, etc). Our
current view on this is that Poisson sampling gives the magnitude, but not the phase, of the
spectral process (the processes’ Fourier transform).

For the simulation of integral and differential equations with random components, two senses
of solution are important: solutions in law (or second order solutions) and path solutions. If
the simulation is of the Monte Carlo type, then the solution must have the correct distribution;
however, it need not have any path properties. For instance, in dispersion studies of launch
vehicle trajectories, it is only the second order properties (mean and variance) that are of interest.
Since the actual trajectory that will be flown depends on the winds at the time of launch, only
statistical properties of the winds—aloft and the responses to them are important for simulation.
The second use {or a simulation is to reconstruct events, such as the exact behavior of a system.
In this case the path behavior of the system is important. For example, if one is trying to
understand (and correct) anomalous behavior of a spacecraft, one of the uses of a simulation
is to verify that all of the pertinent phenomenology has been modeled. Verification of the
model is demonstrated by reproducing the anomaly (i.e. the path). When dealing with path
solutions, several types of convergence are possible; two distinguished types are almost sure and
quadratic mean. While one would prefer to have almost sure convergence, it is routine to settle

for quadratic mean convergence in engineering applications, as it is much easier to establish.

2 Frame Based Estimation

The use of frames to reconstruct functions dates to the paper of Duffin and Schaeffer [15]. Given

a Hilbert Space H, a set of vectors {¢;} C H, is called a frame if

3A,B with 0 <A< B<oo st AfIP <D <y, F>P<BIAP VYSiel
J

The constants A and B are called the frame bounds. If —ﬁ— is close to one, then the dual
frame representation (sec below) converges relatively fast. All of the facts we will use about
frames are contained in Ingrid Daubechies’ paper [16]. Given a frame, it can be shown that two

reconstruction formulas for a function f € H are valid:
1. Frame Representation: f(t) =3, <7 '¢;, f >¢;
2. Dual Frame Representation: f(t) =3, < ¢;, f>T'¢;
where operator 7! acts on the frame elements to produce a “dual frame.” The operator 7

is given explicitly as 7 = T*T', where T'f — {< f, ¢; >};, which is a bounded invertible linear
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operator. The set of vectors {7-1¢,}, are a frame in H also, with frame constants % and ;11—
The related operator G = T'T* is given by the matrix of values {< ¢;, ¢; >} and the spectrum
of G and 7 are the same.

This represents type IV signal reconstruction. Further, the lower bound is know in the
“pre-wavelets” literature as the minimum modulus and it is greater than zero if and only if the
dimension of the null space of the operator T is zero and the range of T is closed [17][18][19].
We note that the stability theory for the operator T, and hence 7! is well developed. This
is clear once one notes that T is a bounded semi-Fredholm operator[17] with ker(T) = {0}.
Every bounded injective semi—Fredholm operator from L into 5 is associated with a frame (use
coordinate projection and then the Riesz representation theorem). The lower frame bound is
the minimum modulus, denote as yp. The following theorem is far from the last word on the

subject, but it gives one confidence that the frame property is robust.

Theorem 1 (First Stability Theorem [17]) Let T : X — Y be a closed linear operator and
semi-Fredholm with minimum modulus yr. Let A be a T bounded operator (i.e. ||Au|| < al|u||+
b||Tul| w € D(T)), with a < (1 —10)y. Then S = A+ T is semi-Fredholm and dim(ker(S)) <
dim(ker(T)), codim(Ra(S)) < codim(Ra(T)), and index(S) = index(T).

Corollary 2 Let Ty, be the operator Tf — {< ¢;, f >} and lel {¢;}; be a frame. Let S be
the operator Sf — {<;, f>}. If|IS]]| < Ty, then {¢; + ;}; is a frame.

As previously mentioned bounded linear operators § : Ly — [y, are all of the form 5f
{<;, f>};. I T is associated with a frame and S a linear bounded operator, then 7"+ :Z—I%I—[S
is associated with a frame (via projection and the Riesz map). In addition, one could investigate
new wavelet bases by this method, e.g. if the action of a group G on a function, ¢ generates a
frame, when does the action of the group on ¢ + 1 generate a frame?

The theory of semi-Fredholin operators also allows one to examine “functions which are
frames for their span” type of questions, by using the concept of the reduced minimum modulus[17]

and by looking at Ly/ker(Ty,) and Ra(Ty,).

ki

One can give geometrical interpretations of the minimum modulus in terms of the graph of
the operator and in terms of the spectrum of the operator [18][20].

Since we can represent Lo( IR ) functions using frames, it is natural to try to represent stochas-
tic processes in this manner. In examining the properties of a stochastic process, with mean

and covariance in L3, we see that the sample paths are not necessarily L, functions [6], so the

?

representation is not automatic.



That is, we shall examine quadratic mean path reconstruction and give conditions under
which it can be achieved for stochastic processes using frames. In analogy with the cardinal
sampling case, it will turn out the reconstructability of the covariance is sufficient for quadratic
mean reconstruction of the path. First we shall examine several issues that arise when one uses

frames in any sequential approximation scheme.

3 Sequential Approximation and Frames

In this section, we give several observations on the use of frames for sequential approximation
in the solution of integral and differential equations as well as in nondynamic simulations.

The first observation is that any finite set of vectors is a frame for its span.

Theorem 3 Let X = {@}jv be a finite set of vectors in H, a Hilbert space. Lel I, =
Span{¢;}; then X is a frame for Hy.

Proof.

Let f(z) = ¥;|< @, ¢; >|?, which is a continuous function, with domain I = Span{e;}.
Also, ||x||2f(ﬂ—§ﬂ) = f(z). Clearly f(z)> 0. The function attains its maximum and minimum
on the compact set {z|||z|| = 1}; let this maximum be B, and the minimum be A. Let 2, be

the minimizing element, i.e. f(z.) = A and ||z.|| = 1. Hence

Allel* <Y 1< @, ¢; >[* < Blje|l;
J
However, it remains to show that A > 0. If A = 0, then z. L ¢; V j, therefore ||z,|| = 0. This
is a contradiction, as we assumed that ||z4|| = 1. Hence A > 0, and A and B are the upper and
lower frame bounds. n
However, not every collection of vectors is a frame for its span. Let ¢; be the usual basis for
ly, that is: ey = (1,0,---), e2 = (0, 1,0, cdots), etc. Consider {%e]-} C [y, which spans I5, and is
not a frame. Nor is every subset of a frame a frame. Consider the frame given by:
4 = 1 €4 j. even
jeur odd
The set is casily shown to be a frame for /3 with frame bounds A = 1, B = 2. The “even index”
subset is an orthonormal basis, and therefore a frame. The “odd index” subset is clearly not a

frame. We need a stronger concept , namely:



Definition 4 A uniformly approzimating sequence (UAS) is a sequence of nested subsets of a

Jrame which satisfy:
1. Fach subset is a frame for its span.

2. The frame constants are uniformly bounded. In particular the lower frame bounds are

bounded away from zero.

The upper frame bound holds for any subset of a frame, so the main concern is always with
the lower frame bound.

In the last example, let Hy, = Span{¢;}}_; and F,, = {¢;}7_; . All of the sets F,, are frames

for H,,, respectively. The sequence Fy,, is a UAS for [ it is sequence of orthonormal basis. In

contrast the sequence Fy,41 is not a UAS, since the lower frame bound for Fy, 4y in Ily,4q is

1
2n41"

The importance of this definition comes in the following way: say we are using a scheme,
such as a the Galerkin method, to solve an equation in a function space. If the solution is going
to zero in a UAS, then it is going to zero in the strong sense. If the set is not a UAS then it
could be going to zero in the weak sense.

The sum of two frames is not necessarily a frame, as the following counterexample shows

(developed with Y. Pati).

Example 5 Inly, let i; = e3;, and ¢; = (/1 — %e3j + %63]4_1. The sets X = {+;}; and Y =
{#;}; are frames; in fact they are orthonormal sets. The combined span is the set Span{v;, ¢;} =
Span{es;,esjr1}. The following calculation: % =3 1< esky1, 95 >P4 1< eapp1, 5 >12, shows

that this set is not a frame for the joint span.

When combining frames or using subsets of frames, one must be careful to choose the way
in which the approximation proceeds.

Clearly some frames are UAS’s; every appropriate subdivision of an orthonormal set is a
UAS. Thus, a multiresolution analysis (MRA) [21] is a UAS. Current work with Y. Pati and P.
S. Krishnaprasad gives a sufficient condition for some wavelet bases to be a UAS in the same way
that an orthonormal set is a UAS. Better understanding of this issue is quite important in the
interpretation of solutions based on refinement algorithms (e.g. finite element mesh refincment
algorithins, etc.).

The basic circle of ideas is taken from classical ideas about least squares approximation.
Recall that the frame opcrator 7 has the same spectrum as G, which is the Gram matrix,

{G}ij = {< ¢i, ¢; >}. For a finite set of vectors, we have the Gram matrix G, = {Gn }i j=1..0 =



{< i, ¢; >}ij=1..n- A quick calculation shows that the maximum and minimum eigenvalues
of G are the maximum and minimum singular values of 7. Hence the maximum and minimum
singular values of G are the frame bounds for T'. Further, the singular values allow interpretation
as cos(f;), where theta is the principal angle between the vector ¢; and {#;} =y ..;-1) [22]. 1t
is sufficient for a set to be a UAS that the smallest singular value of T" be bounded from below.
Hence, a frame will be a UAS if there is a minimum “angle” between the vectors. If the frame
elements are all of unit length, we are requiring that 1 > A= supiz;|< ¢i, ¢; >|. This condition
would seem sufficient for the set to be a UAS for its span, when arranged appropriately (unested
etc). Because wavelets are generated by a single function and a group action, one can check to
see that there is a minimum angle between the subspaces directly. This argument is sufficient
for the finite dimensional case. Strictly as stated, this argument does not allow passage through
the limit, because the spectrum of the operator could become more complicated than the point
spectrum, In functional analysis there are two simple cases that allow an operator to have a pure
point spectrum — the operator being compact or the operator having compact resolvent. Since
the Gram matrix for an orthonormal set is the identity on [, the Gram matrix does not have to
be compact; one can show using spectral considerations that it cannot be compact. If the Gram
matrix has compact resolvent then it has a sequence of eigenvalues that tend to infinity [23],
which is precluded by the upper frame bound. If one examines the frame given by { 7—11_?56”}
then the 1 is seen to be an accumulation point of the spectrum, of both 7 and G.

The sufficiency arguments developed by Y. Pati make these ideas precise; indeed his argu-

ments are more general than this argument . They will be reported elsewhere.

4 The Wiener-Hopf Equation

In this section, we examine the simulation of the sample path of a random processes. The
two basic problems are the simulation of a random process with the appropriate propertics
and the reconstruction of the sample path (in quadratic mean). We shall show that there is a
correspondence principle: if the covariance is reconstructable then the sample path is also.

If we attempt to formally write the frame and dual frame representations, we find integrals
of the form: [ X,f(t) dt. It can be shown that this integral exists as a quadratic mean integral

if and only if the Riemann integral

/ / FOF)R(E — ) dtds

exists [6]. The integral [ f(#)X; dt can be defined as a Lebesgue integral for almost all paths if



the process is measurable and

[ rolEIx di< oo

(op. cit.).
Let {X;} be a wide sense stationary stochastic process, zero mean and covariance function
R € L,. We define an estimator of X; (at the point ¢) given the data {< 77 1¢;, X >}, or
{< ¢j, X >}; as
Xo=) < 65, Xo >T71g4(1)
j

which is called the dual frame estimator and
Xe=Y < T7'¢;, Xi>0i(t)
J

which is known as the frame estimator. Since the formulae are symmetric with respect to the
frame and the dual frame, and the “double dual” frame is the original frame, henceforth we shall

write both estimators as:

X =3 <, Xe> (1)
J

The understanding is that {¢;} and {¢;} are associated as dual frames.

Since R € Ly, we have the frame and dual frame representation for R:
R(t) = Z < ¢j, R >¢j(t),
J

which will be used repeatedly in subsequent calculations.
Given the data {< ¢;, X; >};, in the Hilbert space HX generated by the random variables
X, anecessary condition[24] for minimum variance linear estimation is that the estimation error

be orthogonal to the data — i.e. Vs:
0=E{(X; - E)Xs}

Verily:

Il

E{(X; - X)X,) R(t—s)=3_ / ¢;(T) E{X,X,} dr ¢;(t)

R(t=5) =3 [ 6i(r)R(r = s) dr (0

R(t—s)—R(t—s)=0,

Il

as required.



The other quantity of interest is the estimation error:

E{(X;- X%}
= EB{(X;- X)X:} - E{(X.— X)X}

&t

= —B{(X,- X)X}
= BTG -3 / $;(7) EAX, X} dr ;(t)
= BXX}-T [ #(0) Bir -0 dr 4,0
= E{X:X:} - R(0)

= B { (Z [ 6itr) Xr dr wj(t)) (; | o) X, do wm)}

—R(0)
- ZZ// é;(r)or(0) R(r — o) drdo ¢;(t)r(t) — R(0)
ik

= Z/Z < R(- — ), ¢ > Yi(t) $;(0) do 9;(t) — R(0)
J k
= 3 [ 630~ 0) do i) - RO)
J
= R(O)-R(0)=0
so that the reconstruction is perfect (in quadratic mean). Hence we have the following theorem:

Theorem 6 (Correspondence Principle) Let X; be a wide sense stationary stochastic pro-

cess, with covariance R. Let {¢;}; and {;}; be dual frames such thai:
R(t) = < R, ¢; >¢;(t)
j
Then
Xy=) <X, &) >95(1)
in quadratic mean. J

Note that the estimator minimizes almost any functional of the error (e.g. E{f_TT(Xt -

X iy = B{J|x - %[ 1.

L2(_T7T)
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5 Stochastic Frames

Thus far we have apparently dealt with deterministic sampling; if we assume that we have a

“stochastic frame,” i.e. a set of vectors in H¥ such that the representation:
R(t) = Z< i, B >P;
J

holds in such a way that E {(f — f)Z} = 0, then once again a correspondence principle will
allow us to reconstruct the sample path of the process using the “stochastic frame.” Here 7 is
a random parameter (independent of Xy, when the function f is taken as a stochastic process),
involved in the development of the frame (e.g. the frame is generated by translations of a fixed
function and the translation are allowed to have “jitter” in the sampling time). Then the above
arguments can be modified by factoring F as F, Ex and applying first Fx and then using I,

we have the representation:
X = Z< ¢j7 X >¢j7
J

such that E{(X;— X,)?} = 0. As usual, ¢; and t; are dual frames and equality is in quadratic
mean.
Conditions under which a set of functions can be developed as a “stochastic frame” are under

investigation by Prof. John Benedetto and his students, at least for the case of wavelets °.

6 Example: Shannon—-Balakrishnan

In this section we shall show that the correspondence principle implies the Stochastic version of
the Whittaker—Shannon theorem directly from the classical Whittaker—Shannon theorem.
Consider the Paley-Wiener space PWq = {f € Ly s.t. supp(f) C (=, Q)}; recall that there
is a (bounded) reproducing functional (e.g. a dg s.t. (dg * f)(t) = f(¢)) on this space given by:
1oy = 22050
Note that do* f(t) = < Tidgq, f >, and that the frame operator is the identity for an orthonormal

basis, and so the frame is self dual.

The now classical theorem of Whittaker—Shannon is:

3The author would like to thank Prof. Benedetto for his scholarly exposition of frames and wavelets given in his

Wavelets Seminar at the University of Maryland, Fall 1990.
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Theorem 7 (Whittaker-Shannon [25]) If f € PWq, then

_ o sin 20w (- g)
/) ngvf(m) 207t — 25)

= Y <[, Tada> Tgda(t)
n

From this result one can conclude:

Theorem 8 (Balakrishnan[12]) If X; is Wide Sense Stationary with E{X; X} = R(t—s) €
PWq, then

Xy

Il

Z( X, T%dg > T%dg(t)

5 A(L)sin 2Q7(t — 75)
Nyt 2Qn(t — 55

The only statment that needs to be proved is .X; = < X, Tidq >, and this is clear from the

spectral representation of the processes [6] and Fubini’s Theorem.

7 FErgodic Properties

Here we are thinking of second order processes as actually being Gaussian, and working with
the second order properties of the process.
The spectral representation of a stochastic process indicates that
Xt — /6i27r tw X(dw)
so that one might be tempted to approximate the stochastic process by:
X: = Z ¢! i / X (dw)
7 Aj
R~ Z cos(2mtw;) Y; + sin(2ntw;) Z;
J
where Y; and Z; are uncorrelated random variables, and w; € A;. While one can show that such
approximations converge as N — oo and sup|A;| — 0 (at least in some cases), the approximation
is not ergodic. This is a consequence of Maruyama’s Theorem [26], which states that a Ganssian

process is ergodic if and only if the spectral-distribution function is continuous.

We take the approximation of X; as:

N
X=Xy = Z < Xva ¢j > ¢j(t)'
i=—N

12

<



Then

EX,= % / E{X,};(r) dr ;(t) = 0
j=-—N
and
o . N N
EXX, = S % / / E{X, X, ou(0)ds(r) drdo di(t)di(s)
k=—N j=—N
N N
= > > // R(t — 0)dr(0)d; () drdo p(t)4h;(t)
k==N j=—N
N
S / R(t - 0)¢i(0) do 4i(s)
k=-N
~ R(t-s)

One important aspect of the frame representation is that it can be used to develop approxi-
mations of the stochastic process in such a way that the approximate sample paths are ergodic.
Of foremost importance is the class of frames know as wavelets. It can be shown (again the
paper of I. Daubechies [16] is an excellent source for the ideas that are used here) that a wavelet
frame is a frame generated by a single function (analyzing-wavelet) via the interaction of two
group operations. If translations and dilations of the analyzing-wavelet generate the frame, then
it is referred to as an affine wavelet. If the frame is generated by translation in both the time
domain and in the frequency domain of the analyzing wavelet, then the frame is known as a
Weyl-Heisenberg wavelet.

For Gaussian random processes the requirement that the approximate sample function be
ergodic is easy to check; it is that the covariance Ry(¢,s) = E{X’t)zs} have a continuous spectral

distribution function[26].

N
M) = [ X3 [ [ tir-oniesm i wosn e
_N j=~N
N
= Z > Ck,y(R)/Wt)zﬁ i gy
~N j=-N
N N
= Z 37 ki (R) (P * i) (w)
—N j=-N

Hence the ergodicity of the approximate processes depends on the relationships of the frame
clements to each other. Both afline wavelets and Weyl-Heisenberg wavelets can satisfy this addi-

tional constraint. Further the use of wavelets allows control of the accuracy of the approximation

13



that has time and frequency localization. This allows for the adaptive generation of a sample
path of a stochastic process, including the possibility of “rollback” in a simulation. If at some
point the approximation of the sample path has been too coarse, then return to some time when
the simulation was correct and proceed forward (on the same sample path), from that point
with higher fidelity; perhaps even relaxing the precision of the approximation after a disruption
has occurred. Simulations of systems that contain significant noise contributions and which

have ¢ ‘switching elements*”

are currently fairly expensive to develop, as the only way to find
the switching time is to overshoot it and then backup (i.e. rollback). Simply calling a random
number generator to develop a sample path may generate an inconsistent sample path, addi-
tionally the sample variance is then dependent on the integration step size. The sample paths
of the noise must then be generated by a method such as Mercer’s expansion (also called the
Karhunen—Loéve expansion [6]), which has no particular time—frequency localization properties
and is peculiar to each process.

In order to generate an approximate sample path one must generate random variables (or

more correctly pseudo-random variables) with the correct properties:
E<X, ¢; > :/ EX.$i(t) dt = 0

and

E<X, ¢; >< X, ¢ >
- / / EXiX, ¢;(1)éi(s) dids
= // R(t - s) ¢j(t)dr(s) dtds
- / R(#) / $;(t' + $)du(s) dsdt’
= = [ B0 (¢ +0)(0) at (1)
While equation 1 may not be easy to solve, one can generate the functions ¢; * ¢y in advance
and use factorization techniques to generate the appropriate coefficients. Further, if the frame
is a wavelet, then the convolution can always be transformed by a change of variables to be of
the form ¢g * Gy, 4, P0, where Gy, ;, represents the group action. Then one generates random

variables according to:

Ry = E< X, ¢; >< X, ¢ >,

which is a (finite?) matrix; it is non-negative definite and therefore can be factored as: iy =

4That is elements with jump discontinuities

14



L*L. Let {xx} be iid., N(0,1) random variables. Then yx = 3°; Ly jz; are random variables

with the desired correlation structure.

8 Summary

In summary, the theory of frames and especially wavelets appears to meet the required criterion
for use in the simulation of systems with random components. Currently we are developing a
simulation capability to explore the possibilities for the generation and reconstruction of random
processes (and random fields) using wavelets. While the frame-wavelet concept does not offer a
panacea for the computation and reconstruction of random processes, it offers some substantial
benefits. If approximating sequences are chosen in a careful manner (i.e. to be UASs), then
accurate construction/reconstruction can be assured. We believe that wavelet constructions are
likely to become a routine tool used in the simulation and solution of systems involving random
components. Currently we are investigation implementation issues for the simulation of sample

paths in variable step size ODE solvers using UASs and the correspondence principle.
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