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Abstract
A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the
effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is
performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant
spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set
of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of
Galerkin’s method is developed to discretize the original modeling equations, giving a low-order model which looses
little of the original, high-order model’s fidelity. We make use of the excellent predictive capabilities of the reduced
model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end

of a run with minimal deposition spatial nonuniformity.

! Author to whom correspondence should be addressed; Phone no. (301) 405-2969; E-mail adomaiti@isr.umd.edu.



1 Introduction

One of the main obstacles to commercialization of single wafer Rapid Thermal Chemical Vapor Deposition (RTCVD)
systems are the problems they have experienced with nonuniform deposition. Nonuniform radiant energy distri-
bution from the heating lamps, reactant depletion, and reactant gas flow instabilities are some of the main factors
which can contribute to nonuniform deposition of thin films in these systems [1]. Corrective efforts consisting
of designing the RTCVD system furnace to optimize heating lamp bank locations [2], [3], or modeling and then
controlling the factors which give rise to deposition nonuniformity [5], [6], have been reported in the literature.
Nevertheless, it is anticipated that these problems will only become more severe with larger wafer sizes and the
demands of more environmentally conscientious manufacturing techniques.

Model-based control of wafer temperature and polysilicon deposition thickness spatial nonuniformity requires
the development of appropriate models. Numerous models have been developed for RTP systems [4], [7], [8], [9]
with some featuring detailed, “first-principles” type descriptions of all significant physical and chemical processes.
However, advanced RTP system dynamic simulators based on first-principle models are not always suitable or
convenient for model-based control and optimization, mostly because of their demand for computational resources.
This necessitates model reduction techniques that will give reduced order models that retain predictive capabilities
consistent with the detailed simulations from which they are generated. These reduced order models would then
be suitable for RTCVD process optimization, control, and model based sensing.

In most systems, dynamical behavior appears to be low-dimensional when viewed from the proper perspec-
tive. Thus, one path to creating computationally-reasonable models of distributed parameter systems begins with
extracting the few important spatial modes responsible for most of the spatial distribution of the distributed param-
eter, i.e., the temperature or the deposition thickness. Determining the dynamic, nonlinear coupling between these
coherent structures [10] using Galerkin’s method [12], [13], [14] to project the modeling equations onto these modes
gives low-order, predictive models. Thus, one can think of the model reduction as a technique for shifting most of
the complexity to the empirically-determined trial functions, leaving ordinary differential equations to describe the
time-dependence of the mode amplitudes.

This study presents the numerical methods behind a model reduction methodology for generating low-order

models in the context of a specific RTCVD system - the techniques, however, are suitable for other applications.



The efficiency of the method is tested on a representative RTCVD process described in [3], for which a high-order
model of the wafer and tool states is first developed. The model reduction method consists of a two-step procedure:
the first consists of running the high-order simulator under a sufficiently-diverse set of operating conditions to
collect a range of wafer state “snapshots.” An optimal set of globally valid trial functions is determined directly
from the statistical information of the system by the Karhunen-Loeve expansion (also known as Proper Orthogonal
Decomposition, Principal Component Analysis, and other names); by representing the wafer state in terms of
a time-dependent linear combination of these trial functions, the original modeling partial differential equations
can then be discretized with a collocation technique to obtain the reduced-order model in the second step. The
collocation method is well-suited to deal with the nonlinearities of both the model and the wafer edge boundary
condition and gives much more intuitive feel to the connection between the reduced-order model and measurements
which can be made of the wafer state. The low-order model obtained is used in the optimization problem of
attaining a uniform desired temperature (chosen to produce a silicon deposition thickness of 0.5 ym) at the end of

the process cycle using the individual lamp bank powers as the optimization parameters.

2 Process Description

The system we consider is based on the three-zone RTCVD reactor located at the North Carolina State University
Center for Advanced Electronic Materials Processing [3]. In this paper, we will consider deposition a 0.5um film
of polycrystalline silicon on a 6-inch wafer over the course of a run lasting approximately one minute. A diagram
of the RTP system is shown in Fig. 1. The furnace is designed so that the central lamp bank A heats the total
area of the wafer, and bank B mainly heats the wafer edge to compensate for the extensive heat loss that occurs
from the edge. Lamp bank C heats the wafer in a nearly uniform manner (see Fig. 2) and so can be used as a
coarse adjustment to the average wafer temperature. The wafer is rotated while heated for azimuthal temperature
uniformity. The primary bell jar component of the chamber is made of quartz glass. A stainless steel ring directs

air from a blower vertically upward along the cylinder from the quartz base to reduce chamber heating.



3 Model Formulation

The model presented here assumes temperature uniformity in the azimuthal direction because of the rotation of the
wafer and the symmetric design of the reactor. Temperature variations in the axial direction are neglected because
the wafer thickness is very small [2]. The radiative energy exchange between the wafer and the chamber walls has
been modeled based on the assumption that this energy transfer occurs in an enclosure composed of diffuse-gray
surfaces [15].

An ordinary differential equation is used to account for the lumped quartz chamber wall thermal dynamics, and
a steady state energy balance on the cooling gas is included to evaluate the coolant temperature. Because this is a
low pressure process, heat transfer from the wafer to the reactant gas is assumed negligible, so the modeling from

this point on focuses on the radiant heat transfer processes.

3.1 Wafer Temperature

An enthalpy balance on a wedge-shaped, three-dimensional wafer differential element gives the following wafer

temperature partial differential equation (PDE):
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We note that the thin wafer assumption (6z << R,) means the radiative heat transfer boundary conditions at the
wafer top and bottom gr.4 can be incorporated directly into this PDE. The wafer thermal conductivity and specific
heat (x and Cp, ) are functions of wafer temperature 7".

Defining the dimensionless wafer temperature T, radial position r, and time ¢ (along with dimensionless chamber

T and coolant gas T, temperatures)

T 7! t T! T!
T = = — t = T, = ¢ T, g
Tams r R, 1 sec ¢ Tams g Tams



where Ty is the ambient temperature, (1) becomes:
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The radiative energy transfer term ¢,.q consists of two parts: the radiant energy absorbed from the heating lamps
and the radiant energy exchanged between the wafer and the reactor walls. For the heating lamp energy flux
at the wafer surface we use data presented in [3], which were calculated by a raytrace algorithm (see, e.g., [5]).
The algorithm calculates the radiant energy flux distributions directly from the lamps to the wafer as well as the
contribution of reflected rays. The radiant energy flux distribution for each lamp bank as a function of wafer radial
position is shown in Fig 2. The energy flux at the edge of the wafer g.q4. was calculated by the authors directly as
49 Joule/cm?; this value was calculated using the total power consumed by lamp bank B, the distance from the
lamp bank to the wafer edge, and taking into account the lamp bank reflector.

The radiation exchange between the wafer and the walls is computed using the net-radiation method [15]. We
consider two grey body enclosures: the one that is formed by the top surface of the wafer and the hemispherical
part of the quartz chamber, and the second formed by the bottom surface of the wafer, the cylindrical part of the
quartz chamber, the cylindrical steel loading chamber, and the bottom of the loading chamber (see Fig. 3). We
assume that the radiation exchange between the top and the bottom chamber sections is negligible. The loading
chamber walls and the bottom surface are assumed to be at ambient temperature since their distance from the
wafer and the lamps is large relative to the cooling fan. A complicated exchange of radiative energy occurs inside
each enclosure as radiation emitted from a surface travels to the other surfaces, is partially reflected, and is then
re-reflected many times within the enclosures with partial absorption at each contact with a surface. It would
have been very complicated to follow the beams of radiation as they undergo this process; the advantage of the

net-radiation method is that it does not require these types of calculations [15].



The total radiative energy term is

qrad = Qlamps,w ‘U + qdw,b + qdw,t (5)

where the input w = [u4, up, uc] is the percentage of the lamp power that is used. The net radiative energy
transfered to the wafer top and bottom surfaces from sources other than the lamps are ggu,: and gu. 5, respectively.

From the top enclosure net radiation energy balance we obtain

gn
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where
Gn = —€w0 gy (T*Faop — T*Fr_pec— T* — T*Fayen Foop + T4 Fay_p Foop e+

T*Faw—n — T*Faw—n€c + Faw_nec Tc*)
qga = —Fpp+Fpnée+1+Fay p Foop —Fyp Fhohew — Faun Fhon€c+ Fay_p Fropecey

—Fay_n+ Fay_p €y + Fauw_n€c — Fau_n €c €y

The bottom enclosure net radiation energy balance gives a similar but much more complicated formula for ggy, s.

The coefficients F' are the geometric configuration factors. They are shown schematically in Fig. 4. Fgy—cq,
Faw—c,s, and Fy,_p are viewfactors between an infinitesimal wafer area and a finite chamber area and have been
calculated by the definition of the configuration factors [16].

As a result of these calculations, we find for the geometry shown in Fig. 3,
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and for the upper hemispherical enclosure

1 1
Fappn=1, Frp p= 2 Fp_y = 3 (10)

A plot of Fyy—_c,4 and Fiw-—c,s versus r is shown in Fig. 5. The remaining configuration factors were either
found tabulated in [15],[16], or derived using configuration-factor reciprocity relations [15],[16].
3.2 Quartz Chamber and Coolant Gas Temperature

Assuming the quartz chamber is at uniform temperature T, an enthalpy balance in terms of dimensionless variables

can be written as

dT.
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and ¢ given by a similar but more complicated expression. In (11) Qiamps 18 a vector of the total energy emitted
from the three lamp banks and so the first term represents energy absorbed by the chamber directly from the
heating lamps. Moreover, in (12) T is the weighted mean value of the wafer temperature.

The net energy radiated from the cylindrical (g.) and the hemispherical (gn) portions of the quartz chamber are



also calculated using the net-radiation method in the same manner as in Section 3.1. The total area of the wafer
Ay, is used instead of dA,,, however. The configuration factors are configuration factors between finite areas found

in [15] (appendix C), [16]. Their numerical values are shown in Table 1.
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Table 1: The numerical values of the configuration factors.

The energy transferred from the quartz chamber to the cooling gas Qconvect by forced convective cooling of the
quartz chamber is computed from a cooling gas energy balance. If the cooling gas enters the system at ambient

temperature and leaves the system at 7,71y,

Qg ‘U Ach Ach
Tg =T, + m [1 — €Xp (—mgopg )] + exp (—mgcpg> (13)
Qg = (1 - €C)CQI(:mes - / Qlamps,w dAw (14)
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This means that Q,, which represents the radiative energy that is eventually removed by the coolant gas, is the

energy from the lamps that is not absorbed by the chamber reduced by the portion that is absorbed by the wafer



f Qiamps,w @Aw- Thus, the energy removed from the chamber wall by convective cooling is calculated by

w

Qconvect = _Qg U+ mgcpg (Tg - 1)Tamb- (15)

The last term in (11) expresses the energy that is radiated from the outer surface of the quartz chamber to the

ambient.

3.3 Deposition Kinetics

The rate of polysilicon deposition as a function of temperature and gas composition is computed using the kinetics

developed by [17], and so the rate of change of polysilicon deposition thickness S is simply

aS _ MWs;
dt - PS:

Rs(T, Xsim,, Xg,) x 10* (16)

where
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The gas phase reactant species concentrations are given in terms of mole fractions by

dXsin, 1
——(‘igtﬂ— = —a / Rs(T, Xsiny, Xn,) dAw + ;(XSiH;" - Xsin,) (17)
Ay
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Equations (17) and (18) are the mass balances for silane and hydrogen and are based on the standard CSTR
assumptions. The residence time 7 is calculated using only the volume of the top part of the reactor chamber and

a feed flow rate of 300 sccm. Numerical values and definitions of the parameters of the system are given in Table 2.

3.4 High-Order Simulations

The wafer thermal dynamics partial differential equation (2) was discretized with second-order accurate finite

differences in the spatial dimension with N = 76 points. The simulations were performed using Matlab’s toolbox



A, = 18241 em?
A, =1217.31 em?
Acyr = 794.83 em?
Anem = 422.48 cm?

L.=1543 cm
L;=10cm
R.=82cm
R, =7.62cm
6z =0.05 cm

M, = 1422.60 J/K
Jedge = 49 J/em?
b= 78.95 torr—1

¢ = 0.38 torrl/?

€y =07
€. =0.37
€s = 0.074

h=260x10"*W em 2 K1
k=50.5InT"> - 734.0InT" + 2.69 x 10
W/im K
pe = 2.6433 g cm ™3
Cp. =0.992 J g=* K~
V., = 638.25 cm?®
pw=23gcm™3
C,, =1.06 x 103 — 1.04 x 105/T" J Kg~' K~
my = 1000 g/s
Cy, = 1.0460 J g~! K~

Tyin =300 K

XSiH;"’ = 01

Piot = 5 torr

MWg,; = 28.086 g/gmole
ps. =23 gem™3
R=128314 J gmol™* K}
Toms = 300K

o =12.961 x 10° gmole™!

ko = 263.158 gmole/cm? s torr

v = 153.809 x 10% J/gmol
0c=5674x 10712 W1 em~2 K—*
7 = 0.380 sec

wafer area

chamber outside area

chamber cylindrical area

chamber hemispherical area

height of the cylindrical chamber part
height of the loading chamber
chamber radius

wafer radius

wafer thickness

chamber thermal mass

wafer edge incident radiation flux
silane adsorption rate constant
hydrogen desorption rate constant
emissivity of the wafer

emissivity of the quartz chamber
emissivity of steel

forced convection heat transfer coefficient
thermal conductivity of the wafer

quartz crystal density

quartz crystal specific heat

quartz chamber wall volume

wafer density

wafer specific heat

cooling gas flow rate

air specific heat

temperature of incoming air stream
feed gas silane mole fraction

total chamber pressure

molar weight of Si

density of Si

gas constant

ambient temperature

mole to mole fraction conversion factor
preexponential kinetic constant
activation energy for deposition
Boltzmann constant

reactor volume / gas flow rate

Table 2: Nomenclature and values for the model variables and constants.




Simulink. For time integration, the Adams-Gear method proved to be the fastest and gave better results compared
to the other methods included in Simulink. The nonlinear boundary condition {4) was solved simultaneously at
each time step using a Gauss-Newton method. Three simulated RTP runs of 60 seconds were performed, each
corresponding to having only one of the lamp banks fully activated. The time evolution of the temperature profiles
are shown in Fig. 6, with initial conditions consisting of the wafer (T") and the chamber (77) both at Tgms, S =0,
Xgir, = 0.1, and Xpg, = 0. “Snapshots” of these temperature profiles will now be used as data for determining

the dominant spatial temperature modes.

4 Model Reduction

Simulations performed with the detailed RTP system model reveal definite patterns in the response of the wafer
temperature profiles to the lamp power inputs. We should expect that if designed properly, the three-zone RTP
furnace, having one control input to each of the three lamp banks, should respond with at least three “important”
independent spatial temperature modes, with additional modes attributable to the thermal transport through the

wafer and its boundaries. By identifying these spatial modes 1;(r) from the original simulations, we can write the

wafer temperature as a time-varying linear combination of these modes
N
T =3 a(t)i(r)- (19)
=0

If done in an optimal manner, this procedure has the effect of removing the correlation from the original, spatially
localized basis functions (resulting from the finite-difference discretization), combining them to produce globally
valid trial functions.

One method of generating trial functions valid over the entire spatial domain is to perform a Gram-Schmidt
orthogonalization of the snapshot data. However, projecting the temperature profiles collected during the high-
order simulations onto trial functions produced in this manner will reveal mode amplitude coefficients which will,
in general, have some degree of correlation. This redundant information can be eliminated if the eigenvectors of the
mode amplitude covariance array form the linear combinations of the original trial functions which minimize the

error of approximating the solutions using fewer modes of the new set of trial functions. This is the discrete version

10



of the Karhunen-Loéve expansion [11], also known as the proper orthogonal decomposition, method of principal
components, and the method of empirical eigenfunctions. An equivalent formulation which is computationally
more efficient is the method of snapshots developed by Sirovich [10]. In this procedure, “snapshots” in time of the
temperature field are taken and used to construct the covariance array — the eigenvectors of this array are then
used to construct the optimal trial fuctions directly from the snapshots.

The temperature modes computed by this procedure are then used as trial functions for discretizing the original
modeling equations, giving a set of ordinary differential equations in time which describe the nonlinear interaction
of the spatial modes. Discretization with trial functions empirically derived from statistical data of the specific
system will require fewer modes than discretization with other series of orthogonal functions, such as Legendre,
Tschebysheff, or Jacobi [22] polynomials which have a more generalized nature. The numerical and computation

procedure for computing the empirically-determined trial functions is discussed in the following section.

4.1 Empirically-Determined Trial Functions

Construction of the empirically-determined trial functions proceeds by the computationally-efficient method of
snapshots or strobes developed by Sirovich [10]. This numerical technique requires spatial profiles of T'(r) collected
at discrete moments in time t = #; to give a set of M snapshots T%(r), ¢ = 1,..., M. We begin by defining the

inner product
1

(u,v) = /u'udr

0

which does not include a weight w(r) = r which would account for the cylindrical geometry of the wafer. We
chose this inner product so that measurements of temperature deviations across the wafer would be consistent with
requirements set by the 1994 STA National Technology Roadmap for Semiconductors [23], which specify absolute
temperature nonuniformity limits, not weighted limits. We now define the covariance array C whose row elements

C, consist, of the projection of the set of M snapshots onto the ith snapshot

(61,61) (62,61) --- (Om,01)

1
C-pi= 7\4_— P = AP (20)

(01,00) (02,00) -+ (Ons,0m)
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with

(21)

Solutions p; to the eigenvalue problem (20) are used to construct the trial functions ¢, from the set of snapshots

by

M
$i(r) =) pib;  i=1,...,M. (22)
j=1

As derived, the eigenvalues A, represent the contribution of each optimal trial function ,, to the squared norm
of the deviation of the temperature profile from its expected value. This is very useful for the model reduction
scheme we intend to implement because the eigenvalues can be considered as a measure of the importance of their
corresponding eigenmodes. This way we can keep only the eigenmodes with significant mean energy and truncate

the remainder. The eigenvalues indicating the contribution of each spatial eigenmode to the set of temperature

profile snapshots are shown in Table 3.

Mode i | Eigenvalue A,
1 9.9758e-01
2 2.3198e-03
3 7.6708e-05
4 2.2308e-05
5 1.0194e-06

Table 3: The eigenvalues of matrix C indicating the relative importance of the spatially varying eigenmodes.

We see in (21) that the optimal set of trial functions ¥; is computed from the correlation of wafer temperature
profile deviations. This means we must define one “flat” mode 1y to account for the mean wafer temperature in
addition to the set of trial functions v;, i = 1,..., M which represent the spatial temperature variations across the
wafer.

After truncating the eigenfunctions with relatively small eigenvalues (smaller than 10~°) we were left with five

eigenmodes including the “flat” one. These are shown in Fig. 7, normalized so that (¢, 9! =1for4=0,...,4

12



4.2 Collocation Formulation of Galerkin’s Method

If we rewrite the wafer partial differential equation (2) in the form

oT :
% = F(@) with T:E?MWM)
we can define the residual as
4 4
dai
R = gﬂ = Wi = F (;0 aﬂpi) . (23)

In Galerkin’s method, the residual (23) is projected onto each of the n + 1 trial functions to give n + 1 ordinary
differential equations (ODEs) in time. These ODEs describe the dynamic, nonlinear coupling between the spatial
modes 1,, provided that the solutions T' = 3"}, a;(t)1,(r) satisfy the initial and boundary conditions.

In RTCVD, the nonlinear temperature boundary conditions at the wafer edge (4) and Arrhenius-type nonlin-
earities in the polysilicon deposition rate expression make direct implementation of Galerkin’s method difficult.
Furthermore, since temperatures are normally measured at discrete locations on the wafer, it is desirable to formu-
late the reduced-order models in terms of the transient behavior of the temperature at a small number of points,
rather than in terms of the amplitudes of the spatial modes. Both of these difficulties are eliminated when a col-
location approach is used to determine the conditions — which will now consist of a set of n + 2 ODEs, 2 algebraic
equations, and computing the optimal location of the collocation points — which force the residual (23) to vanish

at the interior collocation points.

4.2.1 Collocation Point Selection

If we assume the residual can be written in terms of a linear combination of the trial functions ;

4
R = Z b (t)pi(r) (24)

=0

and compute the value of the residual (24) at the n + 2 collocation points (n is the number of interior collocation

points), we can write, in matrix form,

R=%¥-b. (25)

13



Interior collocation points are normally chosen as the zeros of the highest order trial function, forcing the residual to
be orthogonal to all lower-order trial functions ([12], [22], [24] ). Following this method, the four interior collocation
points are taken as the roots of the fifth trial function 1, (see Table 4 and Fig. 7). We also place one collocation
point at the boundary r,4+2 = 1 to satisfy the wafer edge boundary condition, and place an additional collocation
point at r; = 0. This additional collocation point forces the residual to be orthogonal to all five trial functions ;.

We can see this by writing out (25) evaluated at the collocation points:

r q (n+2)x1 r 1 (n+2)x(n+1)
R1 1 ti(r1) s ahpoa(rr) Pn(r1)
R2 1 4i(ra) o thpo1(re) 0
= : R b(n+1) x1
R+t L Pi(rng1) -+ Yn-1(Tny1) O
Rn-l—? 1 1/)1 (rn+2) T "pn—l ("'n+2) Un (Tn—l—-?)
pT n(r) .
. b
bn+1
qT d’n ("'n+2)
The residual evaluated at interior collocation points 7, ...,7,41 is equal to zero, since the discretized differential

equation is satisfied exactly at those points. This means

o
o
I
[=]

and since we find Q to be invertible, b = 0. This leaves the problem

"pn (7'1) R
n+l1 =

wn (rn+1) Rn+2

Since the trial functions already satisfy the symmetry condition (3) at » = 0, R; is made to be zero by adding an

ODE at that point, and since we find #,, # 0, b,+1 = 0 is the only possible solution. This forces the projection of

14



the residual onto the first n + 1 trial functions to be zero over the entire wafer.

Point r
1 0
0.17783
0.56813
0.83141
0.96998
1

Y UL W N

Table 4: Collocation points.

4.2.2 Discretization Arrays

Athough collocation methods have been extensively studied in the literature, [12], [22], [24], [25], their formulas
cannot be applied directly for computing discretization arrays in our problem. One difference that occurs in our
formulation is that the matrix ¥, which contains the value of the trial functions at the collocation points, is not
square. As a consequence of this, the following computational procedure is developed.

Using (19) we can write

Ty = aotho(ry) + arh1(r) + ... + astha(ry)
T = aotho(re) +a1tpi(re) + ... + asthsa(r2)
(26)
Ts = aotho(re) +a1hi(rs) + ... + asths(rs)
or in matrix form
T = §o70 . 51, (27)

Assuming the derivatives of the wafer temperature with respect to » can be expressed as linear functions of T, we

can write

d1;6><1 — A6><6 -T6X1 (28)
T

15



where dT;/dr means dT'/dr evaluated at collocation point position r;. Differentiating (27) with respect to r gives

(Z—f = %T— -a (29)
From (27) we obtain
T .T=0" -T.q
and so solving for the mode amplitude coefficients gives
a=(T" - ¥).¢T.T (30)
Subétituting (30) into (29) we obtain
%:%-(WT-@)—I-\PT-T, (31)
and so comparing (28) and (31), we can express A in terms of ¥:
A= %-(@T-q’)—l T (32)

An analogous procedure is used to compute the discretization arrays for higher order derivatives, or for computing

the Laplacian of the temperature field

ViT=B-T (33)

with

B=V2¥.(¢".w)" 1. @T, (34)

The discretization matrices generated from the five basis functions shown in Fig. 7 at the collocation points listed

in Table 4 are given in the Appendix.
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4.2.3 Quadrature Arrays

Just as differential operators can be defined in terms of the temperature measured at discrete points, integrals of
temperature functions over the wafer domain can also be defined in terms of the functions evaluated at the six

collocation points. Thus, we wish to write

6
[ 1@ aa=3 wsy.
Ay, j=1

Assuming we can write f(T") in terms of the trial functions 1,

4

F(T) =) etulr), (35)

=0
the function f can be evaluated at the collocation points to find
4
fi = £(T) = epu(ry).
=0

Written in matrix form

FEl = w85 . 5 thus c= (T W)L @7 . f,

Integrating (35) over the wafer gives

4 1
/ fMdA = D / 2mip; (r) rdr
Ay =0
1
= /27r'z/)rdr-c
0
1
= /27r¢rdr-(\I'T-\Il)"1-\I'T - f
0-
1
thus, w!'*® = 27r/1/1rdr~(‘I’T-‘Il)‘1-\IlT. (36)
0

Numerical values for the quadrature weights w; are also given in the Appendix.

As a numerical note, we mention that derivatives and integrals over the wafer of the trial functions (eqns 32,
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34, and 36) are computed in the same manner as in the original, high-order simulations. This means all of the
discretization information (number and location of discretization points, and discretization and quadrature arrays)

is computed entirely from the snapshots.

5 Reduced Order Model

The computed matrices A and B are used to discretize the spatial derivative of (2) to give a reduced order
model consisting of 5 ODEs in time and one algebraic equation corresponding to wafer edge temperature boundary

condition (4). To illustrate the application of this method, we write the reduced-order wafer temperature model

below:
Fori=1,...,5
dC, dT; 1 e .
0 TP Ti 1 _ = — | = A.Ti BTl
p [ dT _— + Cyp,, (T ):I dt R2 [dT T:T.-( Y + k( )
1
+Tamb6z [Quamps,w(Ti) - U+ Qaw,s (i) + daw,: (ri)] (37)
with boundary condition:
n(TgTamb (AT = —0€wTppy(Ts — T2) + Geageun (38)

where (A -T'); and (B-T); are the i-th elements of the vectors (A-T') and (B-T), respectively. Integral equations,

such as (17) and (18), are discretized using the quadrature weights, e.g.,

6
dXsim 1
dtt 4 _ _aj:ZIwJRS(T]’XSiH‘“XHz) + ;(XS,L'H;H — Xs.H,)- (39)

The equations used in reduced order simulations of the wafer thermal dynamics are (37), (38), and (11). A
comparison of the wafer temperature spatial variation predicted by the reduced order model versus the high-order
simulation results is shown in Fig. 8. The curve segments between the collocation points are computed by first
determining the spatial mode amplitudes (30} and then reconstructing the temperature profiles using the trial

function expansion for T' (19). We see that the reduced-order model successfully reconstructs a temperature profile
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originally used as a snapshot for extracting eigenmodes. Comparisons in the next section will show similarly
accurate predictions for conditions not used as part of the input data. It is worth mentioning that the reduced
order model requires 9 times less computing time for a run than the full order model. Although this may not
sound very significant for single simulation runs, it proves to be very substantial when the models are used for

optimization or control.

6 Optimization

To test the dynamic behavior of the reduced order model when it is used in an optimization scheme, we consider
the problem of finding an optimal non time-varying set of power inputs for the lamp banks, such that at final
time ¢' = 60 sec the wafer temperature is uniform with a mean temperature of 1100K. The choice of the final
temperature value was made using the polysilicon deposition rate expression (16), (17), (18) in order to estimate
the temperature “recipe” that would result in the desired deposition thickness of 0.5um after 60sec of processing
time. Since the deposition thickness is directly related to temperature in our model, temperature uniformity should
lead to deposition uniformity.

By construction, the trial function 1 will represent the mean wafer temperature, and all others are components

of the spatial nonuniformity; thus, to accomplish our goal of temperature uniformity we need

a;=0 for i=1,---,n (40)

and ap to track a setpoint ages corresponding to the desired temperature value. Thus, a very efficient objective

function J can be formed in the following way:

J = (ap = ages)> +a} + -+ +aj. (41)

Since the trial functions are normalized, there is no need to weight the individual amplitude coefficients in (41).
Using Matlab’s Sequential Quadratic Programming algorithm we obtain the optimal power set shown in Fig. 9.

We should mention that a large number of iterations was necessary for convergence. The convergence did not seem
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to depend, however, on the initial guess. Nevertheless, this does not guarantee that the solution obtained by the
algorithm is a global minimum. In Fig. 9, we can see the results of applying the optimal set of powers to both the
full and the reduced order models. The results shown are temperature profile snapshots taken at the final time
t = 60sec. The objective function for the optimal set of lamp bank power inputs has the value J = 8.9166 - 10~7
while the J = 1.4512 at the initial guess. More information illustrating the dynamics of the RTCVD system for
optimal power input recipe is shown in Fig. 10. These plots were generated using the optimal power input in the
high-order simulator.

In Fig. 11, we see the polycrystalline silicon deposition thickness profile when the optimal set of lamp powers is
used throughout the run. Two curves are shown: the solid curve represents the deposition thickness profile created
by the high-order simulator, the dashed one corresponds to the reduced order model. The circles denote position
of the collocation points, and once again the dashed curve was reconstructed from the trial functions and was not
generated by curve fitting. We can notice that the deposition thickness is 0.4um instead of 0.5um. We can also
see that although the matching of the two curves is not exact, both reflect that we achieved our goal of uniform
deposition thickness (within the specified tolerance). The maximum nonuniformity observed is 3.1%, which is
acceptable since the 1994 SIA National Technology Roadmap for Semiconductors [23] calls for thin film deposition
control of +5%. The 0.5um deposition thickness goal can be achieved either by increasing the length of the process
cycle or by modifying the objective function {(and optimization procedure) so that the optimal dynamic temperature
profile would deposit a uniform polysilicon layer of 0.5um. The later defines a different optimal control problem

and is outside the scope of this paper, though further research is currently being done to address this problem.

7 Concluding Remarks

A numerical technique for generating low-order, nonlinear, dynamic models from spatially-resolved data taken from
detailed RTP dynamic simulations was described in this paper. The reduced order model obtained as part of this
study shows very good predictive characteristics and can be used for efficient process optimization.

By structuring the model reduction technique in terms of a collocation discretization method, we find that all
of the numerical descretization techniques can be packaged in a “toolbox” format, where the output depends only

on the data taken from the detailed, perhaps commercially-developed, simulators. Furthermore, the collocation
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formulation developed in this paper seems to reveal a connection between collocation point selection and sensor
placement. We envision using high-fidelity simulators to determine the number and location of sensors and to use
the empirically determined trial functions 9; as a “smarter” way of interpolating the state of the process, that is, to
recover the spatial temperature or reactant concentration profiles from the minimum number of measurements, or
computing accurate values for mean quantities. This way, predictions of the reduced-order model can be compared
directly with the process results.

In addition to efficient optimization, the model reduction technique presented facilitates the application of
several control algorithms, such as run-to-run control [18], since applications of these methods are limited to
systems described by relatively small sets of ordinary differential equations. Using spatially-resolved, low order
models in run-to-run control can allow us to address deposition uniformity issues, without much computational
cost over lumped-parameter models. In the same manner, any control technique used for ODE models can be

applied in the reduced order model that represents the distributed parameter system.
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0 0 0 0 0 0
—5.43029 4.25922 1.90666 —1.41784 160122 —0.918957
5.28153 —7.68260 0.155609  3.57790  —2.92903  1.59659
A=

—4.92808 6.82694 —5.43912 -0.345012 7.25802 -3.37275

4.59220 —7.34376 6.62013 —10.8699 —9.47648  16.4778

8.13803 —15.8404 17.7261 —18.2874 —21.4236 29.6873
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—198.107 188.748  37.1893 —61.9758 83.2199 —49.0750

—4.50731 -10.0670 14.4358  3.38630 —8.46453 5.21669

22.8461 —-20.1783 -—-17.9271 155323  2.21173 —2.48482

B =
5.76760  11.6056 —21.3762 -21.5177 10.8047  14.7161
188.635 —331.592 305.836 —186.715 —382.294 406.130
] 71.9170 —259.665 434.165 —316.530 —429.760 499.772
- 1.0 136681 —0.807549 0.949399 —2.10790-
1.0 1.30994 —0.683945 0.745961 0
1.0 0.615426  0.516656 —1.22438 0
¥ =
1.0 -0.508823 1.06256 1.17310 0
1.0 -1.44140 -2.53203 0.0710101 0
I 1.0 -1.69066 —4.95123 —3.08839 —1.23573 ]
w=1 -0.0405698 0.488088 1.15188 1.08060 0.434285 0.0273156
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Figure 1: NC State University RTP system geometry.
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Figure 7: The dominant wafer thermal modes.
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Figure 11: Optimal deposition thickness as a function of r.
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