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Green walls are technologies that provide benefits to the human, natural, and built 

environments including building shading and cooling, aesthetics, and habitat. Using 

natural ecosystems as templates, it should be possible to design green walls to provide 

enhanced ecological functions and play a role in urban reconciliation ecology. This 

thesis describes the design and performance of two types of green wall drawing 

inspiration from Mid-Atlantic ecosystems. The first, a wall modeled on Chesapeake 

Bay brackish marshes, was operated in the Baltimore Harbor for five months and 

successfully replicated some conditions of wetlands including supporting the growth 

of native macrophytes throughout the growing season. Notably, this model is the first 

functional green wall designed for an urban waterfront. The second design tested 

native grass survival in a dry grasslands-inspired green wall model. In this model, 

which was moisture-limited with a very shallow substrate, both planted grass species 

gave way to an invasion of volunteer species. 
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Chapter 1: Overview  

 

Green walls are a rapidly growing technology that depending on design 

specifics can cool and insulate the building envelope, provide habitat for plant, 

arthropod, and bird species, support food production, recycle graywater, and provide 

social and psychological benefits to their users. However, many gaps exist in the use 

of green walls in ecological design. For instance, an untapped area that presents great 

potential for green wall development exists in many cities in the form of urban 

waterfront walls. Additionally, little green wall research has been done to date to 

establish locally appropriate native plant species for use in the Mid-Atlantic region, or 

to test the ability of drought-tolerant species to the challenging conditions of green 

walls.  

This thesis describes the design and assesses the performance of two green 

wall models, focusing on plant success, soil parameters and/or system water 

dynamics to characterize them. Elements common to these two designs included a 

vertical zigzag pattern of irrigation drainage through the walls, designed to increase 

retention time, and the unconventional use of natural sediment. This latter design 

choice was made in part to provide a natural seed bank. Both wall designs were also 

characterized by notably shallow substrate. 

Chapter 1 describes the design and performance evaluation of a new green 

bulkhead prototype: a green wall model informed by the function and zonation of 

native Chesapeake brackish marshes. Green bulkhead plant performance, water flows 
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and retention, and soil parameters were assessed and compared to reference marsh 

plants and literature values. This proof of concept demonstrated that some species of 

native wetland plants could be supported in a green wall model in the Baltimore 

Harbor, although plant success was highly variable between species in the single 

model described here, and that green walls mounted on waterfront walls (bulkheads) 

could slow and store water flowing through them.  

Chapter 2 describes a grassland-inspired green wall designed to test the 

survival of native grasses, and emergence of volunteer vegetation species, in water-

stressed wall habitat with limited substrate. Two grasses commonly found in 

serpentine barrens ecosystems were chosen, on the rationale that species capable of 

thriving in barrens would be suited to the harsh conditions of this green wall design. 

Over the 2014 summer growing season, however, these species generally failed to 

thrive and yielded to a profusion of volunteer weed species.  
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Chapter 2: Design and Performance of a Wetland-Inspired 

Green Bulkhead 
 

 

Introduction 

In 2010, global urban areas occupied some 3% of the world’s land (Liu et al. 

2014); by 2030, the world is projected to add at minimum another 430,000 km2 of 

urban land - an area larger than the state of California (Seto et al. 2011). This process 

of urbanization alters and destroys local ecosystems through a host of effects ranging 

from surface paving, shifts in hydrology, and subsequent soil microbial alterations, to 

habitat loss and fragmentation, driving changes in species composition, richness, and 

behavior; concentrated pollutant loading in faster-flowing, channelized stormwater; 

the development of an urban heat island effect; sound and light pollution; and a 

psychological toll exacted from city dwellers (Pickett et al. 2001, Groffman et al. 

2003, Carter and Butler 2008, Lundholm and Richardson 2010, Roe et al. 2010, 

Kowarik 2011). Along urban waterfronts, natural shorelines are drastically altered 

through the addition of seawalls or bulkheads (Chapman 2006), with consequences 

for ecological function.  

Developing approaches to reducing these problems and rendering cities less 

ecologically harmful as well as better places to live is essential, considering the extent 

of the globe undergoing urbanization. The concept of ecological reconciliation 

proposed by Rosenzweig (2003) offers a template for such improvement. In this 

paradigm, anthropogenic landscapes may be altered to support more species while  



 4

not compromising their use to humans. As cities grow, productive natural landscapes 

are replaced with biologically inert, impermeable structures. These, however, have an 

enormous vertical surface area compared to their footprint. High-rise building wall 

areas can total twenty times or more that of their roofs (Dunnett and Kingsbury 

2008). More conservatively, Köhler (2008) estimates overall urban wall area 

available and appropriate for modification to be double that of its footprint. Drawing 

information and inspiration from analogous natural systems (e.g. Lundholm and 

Richardson 2010, Francis and Lorimer 2011), this space presents great potential for 

ecological engineering: modifying or designing outright walls and other vertical areas 

to support life and provide ecological services that benefit both their environment and 

human users. The practice of designing green façades and living walls is one example 

of this approach.  

Green façades and living walls rely on the cultivation of plants along a 

vertical built surface to achieve societal and ecological benefits. Like green roofs, 

these technologies (here collectively termed green walls) are methods of reversing 

some of the effects of urbanization by rendering permeable some of the built 

environment’s impermeable skin (Ottelé 2011). Compared to green roofs, the benefits 

provided by green walls are less well studied (Köhler 2008) but appear to be 

considerable, albeit highly variable, depending on local climate, plant choice, and 

wall design. They may be categorized generally into benefits to the building envelope 

itself and to local ecosystems and human populations. 

Building envelope benefits of green walls include thermal regulation, notably 

cooling (Perini et al. 2011), and shielding of the building envelope from ultraviolet 
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light (Dunnett and Kingsbury 2008). The cooling and insulating effects of wall 

greenery via evapotranspiration, direct shading, and landscape albedo alteration have 

been extensively investigated (Cameron et al. 2014) and are often used to justify 

green wall development (though see Hunter et al. 2014). 

Ecosystem and social benefits of green walls form a diverse group. Green wall 

plants reduce air pollution by trapping dust and particulate matter (Joshi and Ghosh 

2014). Selecting food plants for green walls contributes to local food security (Köhler 

2008). Although the ability of green walls to promote biodiversity is widely touted, 

few studies have actually investigated this; however, Matt (2012) and Chiquet et al. 

(2013) found higher numbers and diversity of invertebrates and birds, respectively, 

using green walls than using bare walls. Green wall plantings can be used for water 

recycling; Loh (2008) notes that in Australia many interior green walls are irrigated 

with recycled gray or blackwater, The muffling properties of soil or substrate and 

plant tissues can produce measurable reductions in noise pollution (Azkorra et al. 

2015). Finally, the driving reason behind most green wall installations is the visual 

and aesthetic enhancement they provide (Hopkins and Goodwin 2011).  

Green wall research has grown rapidly in recent years (Köhler 2008) but is 

still in its relative infancy compared to green roof design. An untapped resource for 

green wall creation exists in the form of retaining walls, seawalls, and bulkheads 

around urban waterways (Francis and Lorimer 2011, Dyson and Yocom 2015). These 

areas exist in every coastal and harbor city and in every city with a significant river. 

They can represent significant real estate in the midst of densely developed areas. 

Francis and Hoggart (2008) found 28 ha of contiguous retaining wall along the River 
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Thames in London. Similarly, a University of Maryland study (P. Kangas, pers. 

comm.) found 0.6 ha of bulkhead area in the Baltimore Inner Harbor that was 

available for green wall modification.  

Despite this abundance of space, no published studies to date report successful 

development of green wall type infrastructure for waterfront walls. Dyson and 

Yocom’s (2015) review of ecological design for urban waterfronts discusses two 

attempts, in Seattle and on the Cuyahoga River, to foster plant growth on retaining 

walls using planter baskets. Both attempts failed, due to wave action sweeping 

sediment and/or plants from baskets. Approaches to modifying the built structures of 

retaining walls to provide habitat for local marine biodiversity have been tested in 

England, Australia, and Italy, with some success (reviewed in Chapman and 

Underwood 2011, Francis and Hoggart 2008, Perkol-Finkel et al. 2012). However, 

these approaches focused on physically modifying seawalls, making them less useful 

for retrofitting existing retaining walls, and were limited to mimicking the conditions 

of rocky intertidal habitats. 

The evident lack of recognition of waterfront walls as viable locations for 

ecological design and restoration is especially curious considering the functions and 

value of the original ecosystems that occupied those spaces. Pre-urbanization, areas 

now occupied by ports and heavily developed harbors were extremely productive 

riparian systems and wetlands whose loss exacerbates the negative effects of 

urbanization (see e.g. Everard and Moggridge 2012). As a class, wetlands provide 

enormous ecosystem services. They are high primary producers that sequester carbon, 

support fisheries and waterfowl populations, and provide other wildlife habitat, as 
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well as recreational and tourism opportunities (Millennium Ecosystem Assessment 

2005). Wetlands trap and remove sediment and contaminants, including nutrients and 

heavy metals, from the water column (Mitsch and Gosselink 1993). In coastal areas, 

salt marshes and mangrove forests provide protection from storms by absorbing tidal 

energy and slowing storm surge.  

The city of Baltimore, MD, which falls on the dividing line between the 

Coastal Plain and Piedmont ecoregions, is drained by the tidal Patapsco River into the 

Chesapeake Bay (Fig. 1). The Bay, one of the world’s largest tidal estuaries, lost tidal 

wetlands at rates estimated between 52–300 ha/year prior to the establishment of the 

Clean Water Act in 1972 (Perry et al. 2001). In Baltimore, portions of the extant 

waterfront were bulkheaded as early as the mid-1800s (Wicks et al 2011). The loss of 

the city’s wetlands compounds a decades-long struggle with water quality indicated 

by the Harbor’s inclusion in the Clean Water Act’s Impaired Waters list (Wicks et al. 

2011). A 2013 Harbor Health report issued by the city’s Waterfront Partnership, Blue 

Water Baltimore, and Ecocheck gave the Inner Harbor’s waters an overall failing 

grade on measures of levels of multiple contaminants including dissolved oxygen, 

water clarity, total nitrogen, total phosphorus, and bacteria, and trash (Waterfront 

Partnership 2014).  

Spurred by these indicators, Baltimore’s Inner Harbor is now the subject of an 

extensive, long-term clean-up effort spearheaded by the Waterfront Partnership 

through its Healthy Harbor initiative. The Partnership’s goals include a swimmable 

and fishable Inner Harbor by 2020, and green infrastructure is explicitly recognized 

as one path to this goal (Waterfront Partnership 2013). Among other projects, the 
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initiative has supported the development of artificial “floating wetland” islands (Streb 

2013).  

 
 
Figure 1. Map of Baltimore, MD, and Inner Harbor (indicated). The Chesapeake Bay 
extends to the image’s right. Photograph courtesy Google Maps.  

 
A green wall designed for urban waterfronts such as Baltimore’s has the 

unique potential to promote ecological restoration in heavily degraded habitat, as well 

as generating some of the benefits documented by other green wall designs. This 

waterfront infrastructure is increasing globally along with urbanization and sea level 

rise (Browne and Chapman 2011), presenting ever-growing area for modification. As 

the removal of seawalls, river retaining walls, and bulkheads is not usually feasible 

(Francis and Hoggart 2008), an ecological engineering informed approach that does 

not compromise the structural integrity of the walls and that draws on local water 

sources and local ecology, while drawing inspiration from locally appropriate 

ecosystems, should have the best chance of success.  

At the same time, green wall design for urban waterfronts presents a number 

of unique challenges. Because of the vertical face of retaining walls and bulkheads, 

the intertidal zone can be measured in centimeters instead of meters (Fig. 2; Chapman 
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2006). Tidal marshes display distinct zonation patterns driven by factors including 

flooding and salinity tolerance and competition (Flowers 1973, Pennings et al. 2005). 

This urban compression of the area directly exposed to tidal flux means that in a 

waterfront green wall, a very narrow zone will experience tidal flux, while lower and 

higher areas of the wall will be consistently submerged and exposed, respectively.  

 

 
 
Figure 2. Natural shorelines like this Baltimore marsh (A) present a more gradual 
slope (B) than heavily engineered, often vertically oriented urban waterfronts such as 
these bulkheads in Baltimore (C), dramatically compressing urban intertidal habitat 
(D). Concept adapted from Dyson and Yocom (2015). Photographs: Lela Stanley.  
 
 

In Baltimore, significant quantities of trash clog the Harbor (Wicks et al. 

2011) and are cleaned by trash skimmers that join other municipal and private boat 

traffic throughout the waterway. Both the presence of trash and the passage of boats 

need to be considered in designing green walls that will maintain a shallow profile to 

not impede traffic and, ideally, will not accumulate trash. Some challenges are 

general to green wall design. These include the difficulties of efficiently conveying 
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water to plants; the tendency of taller plants to topple over, as well as patchiness 

created by uneven plant growth; the difficulty of holding plants and growing medium 

in position. Wind velocity and turbulence, irrigation, and securing plants and medium 

in position are also factors to consider (Dunnett and Kingsbury 2008). Francis (2010) 

notes that walls can have unstable and more extreme (relative to their surroundings) 

microclimates, dynamics that depend highly on wall orientation and may vary even 

along a vertical gradient within a given wall. Finally, river walls, and waterfront walls 

in general, are naturally exposed to a flow of water, which can pose a structural threat 

while also depositing nutrient-rich detritus (Francis and Hoggart 2009).  

The objective of this thesis project was to design, build, and operate a green 

wall for Baltimore Inner Harbor bulkheads that was informed by native tidal marshes 

in its structure (zonation), and to evaluate the degree to which such a green wall 

model performed like local marshes in terms of supporting native tidal marsh 

vegetation and exhibiting hydrologic and soil conditions typical of wetlands.  

Design, Methods, and Materials 

Green bulkhead panels were installed in the Baltimore Inner Harbor on 4 July 

2014 and operated until 15 December 2014. 

Study area 

 

Baltimore Harbor lies at the confluence of the Jones Falls and Gwynns Falls 

Creeks and the Patapsco River, a tidal tributary of the Chesapeake Bay. The Harbor is 

mesohaline (>5–18 ppt) and experiences a daily tidal flux of approximately 30 cm 

(Wicks et al. 2006).  
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Bulkhead space was provided by the Living Classrooms Foundation’s Fells Point 

Campus. The Living Classrooms site is located at 801 S. Caroline St, Baltimore, MD 

(39.281666, -76.598762), at the southeastern corner of the Inner Harbor and adjacent 

to a heavily used public marina. A lot directly to the south was under construction for 

the duration of the panels’ installation period (Fig. 3). 

 
 

Figure 3. Location of bulkhead space (indicated by arrow) provided by the Living 
Classrooms Foundation. Photograph courtesy Google Maps. 

 
Climate and weather conditions 

 

Monthly precipitation and temperature records were obtained from the 

National Oceanic and Atmospheric Administration’s National Climatic Data Center 

(Maryland Science Center station: ~1.3 km west of the Living Classrooms site).  The 

installation period was characterized by typical Mid-Atlantic summer temperatures, 

with high temperatures peaking at 36º C in July and lows reaching -6º C in November 

(Table 1). 
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Table 1. National Oceanic and Atmospheric Administration National Climatic Data 
Center temperature and precipitation totals for July–December 2014. Data gathered at 
the Maryland Science Center, Baltimore, MD station. 

  
Monthly average temp 

(ºC) Maximum 
high (ºC) 

Maximum 
low (ºC) 

Precipitation 
(total cm) Month High Low 

July 30.3 21.3 36 16 8.7 
August 28.3 20.3 34 17 16.1 
September 25.9 18.3 35 12 7.1 
October 19.7 12.2 25 6 9.4 
November 11.3 3.5 22 -6 8.6 
December 8.1 2.2 22 -2 8.5 

 
 
Panel design and installation 

Design requirements for the green bulkhead system included the following: 
 

• Shallow horizontal profile 

• Overall size no larger than bulkhead space provided by Living Classrooms 

• Capable of supporting wetland plants at different heights above Harbor 
(“zones”) 

• Relatively lightweight and ideally modular 

• Capable of slowing and retaining water flow through the panel 
 

 Green bulkhead panels (N=3, 180 cm high x 60 cm wide) were constructed 

from lightweight, durable, inexpensive, and easily sourced materials. A full materials 

list is provided in Appendix 1. The body of each panel consisted of a section of Poly-

Flo Biological Filtration Media attached to a backing of sturdy plastic mesh that 

provided structural support. Six 60-cm lengths of 10 cm (4”) diameter corrugated 

drainage pipe were affixed using beaded cables to the front of each panel at ~2° 

angles, alternating right and left. One end of each length was sealed. This allowed 

water poured into the top level to drain down through its entire length and into the 

next lower level, and so on (Fig. 4). The center of each level was 30 cm above the 
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next, to allow vertical room for plant growth, and all levels combined spanned a total 

of 180 cm from the top of the bulkhead to just above the harbor floor. Sections (6.4 

cm by 51 cm) were cut from each irrigation pipe length to provide space for planting. 

Each level was filled with approximately 2000 ml soil (to ~5 cm depth) and planted 

with one species of wetland plant, as described below. The final weight of each panel 

including six planted levels of soil was ~19.5 kg. 

 

 

Figure 4. Water is channeled along a more sinuous vertical path through constructed 
green bulkhead models (L) than simply draining vertically through the panel (R). 

 

Green bulkhead panels were hung on a sheltered, south-facing wall of the 

Living Classrooms campus (Fig. 5). At low tide the panels were fully exposed; high 

tides routinely submerged the bottom (6th) and often the 5th levels, and occasionally 

reached as high as the 4th level.  
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Figure 5. Schematic of green bulkhead positioning in Baltimore Harbor. Water enters 
the green bulkhead at point A, flows in succession through each gently inclined 
horizontal level, and exits into the Harbor at point B. 

 
Irrigation and water measurements 
 
Irrigation 

A white 114 L water cistern was installed on the harbor wall directly above 

the experimental panels, and connected via a bulkhead fitting to a low-pressure hose 

timer (Toro 54736 Drip Hose End Timer), adjustable hose splitter, and a length of 

clear 5/8” (1.59 cm) outside diameter hose running to the intake point of each panel   

(Fig. 6). White and clear materials were selected where possible to reduce cistern 

water temperature during the summer months.  

Cistern 

Plane of Harbor bulkhead 

Green bulkhead panel 

A 

B 

Mean high tide 
mark 
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Each panel was provided with ~8 L water/day. Exact irrigation amounts and 

timing varied depending on the extent of algal growth in the timer filter and resulting 

flow rates.  

The cistern was refilled manually on a biweekly basis. Water was strained 

through 1-mm mesh to remove particulate matter before being poured into the cistern, 

which was cleaned monthly to remove algal build-up. A removable filter in the timer 

provided another barrier against algae and other debris. This filter was cleaned as 

needed, roughly every two weeks, to remove algal growth. Bivalve biofouling of the 

connection between the tank and timer was noted on one occasion (Appendix 2); no 

routine antibiofouling measures were necessary. In September, the cistern was 

replaced with a larger (209 L) model to reduce maintenance time. 

 

 
 

Figure 6. Green bulkhead panel irrigation system: 209 L cistern (A) connected to 
zero-pressure irrigation timer (B), hose splitter (C), and three hoses running to 
bulkhead panels (out of frame).  

 

A B C 
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Water flows and retention time 

 

The capacity of individual green bulkhead panels to slow and retain water 

passing through the systems was assessed in 15 trials (1 trial = 1 test of a single 

panel). For each trial, 4 L water was poured into a panel’s intake point over the course 

of 6 minutes (~667 ml/minute) and allowed to flow through the panel. Water drained 

from level 5 at 2, 5, 19, and 60 minutes after cessation of pouring was captured and 

measured. Level 6 quantities were not assessed because in practice panel level 6 was 

so frequently submerged at high tide. The total amount of water lost from the system 

via leaking from individual levels or splashing out of the system was also quantified. 

For trials conducted while the panels were installed in the Harbor, the amount lost to 

splashing was estimated; in subsequent indoor trials all water quantities were 

captured and measured. At the 60 minute mark, the difference between 4 L and the 

total amount of water draining or leaked mark was considered retained in the system. 

Vegetation measurements 
 

Plant selection and zonation 

 

Salt-tolerant native wetland plants were sourced as 2” (5.1 cm) plugs from 

American Native Plants (Perry Hall, MD). Each panel level was planted with one 

species, mimicking zonation patterns of Chesapeake brackish marshes (Flowers 1973, 

Perry et al. 2001). In vertically descending order, the plant species selected were 

Solidago sempervirens (seaside goldenrod), Distichlis patens (seashore saltgrass), 

Spartina patens (salt-marsh hay), Hibiscus moscheutos (swamp rose-mallow), Juncus 

gerardii (black needle rush), and Spartina alternifolia (salt-marsh cordgrass) (Fig. 7). 

Juncus roemerianus was unavailable from the vendor at the time plants were selected. 
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Solidago sempervirens 
(seaside goldenrod) 
FACW; perennial; 60–240 cm. 
Photograph: José Luís Ávila  
Silveira/Pedro Noronha e Costa, 
Public domain via Wikimedia  
Commons 

Distichlis spicata 

(seashore saltgrass) 
OBL; perennial; 30–90 cm. 
Photograph: Matt Lavin via 
Wikimedia Commons 

Spartina patens 
(saltmarsh hay) 
OBL; perennial; 30–90 cm. 
Photograph: By V. Howard,  
UCGS; Public domain via 
Wikimedia Commons 

Hibiscus moscheutos 
(swamp rose-mallow) 
OBL; perennial; 90–240 cm. 
Photograph: Mokkie via  
Wikimedia Commons 

Juncus gerardii  
(black needle rush)  
OBL; perennial; 30–90 cm. 
Photograph: Kristian Peters via 
Wikimedia Commons 

Spartina alterniflora  
(salt-marsh cordgrass) 
OBL; perennial; 90–180 cm, 
sometimes 60–240 cm. 
Photograph: MPH, Public domain 
via Wikimedia Commons  

 

Figure 7. Native salt-tolerant wetland species selected for green bulkhead panels. 
OBL: obligate wetland species in Maryland. FACW: Facultative wetland species in 
Maryland. Height ranges are listed.  
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Plant height 

 

Plant height was measured six times between 16 July–15 November, on 

average every three weeks. Each plant was measured from its base to the highest 

photosynthetic tissue on any stem.  

 

Flowering 

 

 All species were examined for flower production during height measurements. 
 

 

Leaf water content 

 

To obtain a species-specific indicator of relative water status, leaf water 

content was measured once monthly from Aug–Nov. All plant species were sampled 

with the exception of H. moscheutos, which produced so few leaves it was judged 

their removal would adversely affect individual survival. Individual leaves were 

selected at random. On two sampling dates, all plants were sampled except for those 

out of reach due to tide conditions; on the remaining two sampling dates, alternating 

plants were sampled. This approach was chosen to reduce cumulative stress on any 

given plant. The top five cm of a selected leaf was clipped and immediately double-

bagged in plastic. Leaf fresh weights were taken within five hours of clipping. 

Clippings were dried for 24 hours at 70 C° and then re-weighed to obtain percent 

water content. Water content is expressed as a percentage of fresh weight. 
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Biomass 

 

 At the end of the experiment, all above-ground biomass was harvested and 

oven-dried for 24+ hours at 70 C° to obtain dry weights. Total dry weights were 

summed by species and expressed as dry g/m2 (each individual panel level area 

equaled 0.03 m2). 

 
Soil measurements 
 

Soil sourcing 

 

Wetland soil was collected on 30 June from Church Creek, Homewood Farm 

Park (Edgewater, MD). This site is approximately 1500 m from Maryland 

Department of Natural Resources long-term fixed monitoring station WT8.1 - South 

River (mesohaline site). Soil was homogenized before being used to fill panel levels; 

samples of unused homogenized soil were stored at ~5° C throughout the course of 

the panels’ installation period. 

 

Soil moisture 

 

Soil moisture readings were taken on a frequent, ad hoc basis using a 

copper/aluminum probe that registered fully saturated soil as a value of 10 on a 1-10 

scale. Readings were taken at two points along the length of each level, at 14 and 28 

cm from the point where water entered that level. After the experimental period, the 

probe was calibrated to calculate gravimentric (g/g) soil water content using irrigation 

water and soil taken from the panels (Fig. 8). 
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Figure 8. Calibration results of soil moisture probe.  

 
Soil organic matter 

 

On 31 Dec 2014–1 Jan 2015, soil subsamples were taken from three points 

along levels 1, 3, 5, and 6 of each panel, for a total of 36 panel subsamples. Six 

subsamples were also taken from original soil used to plant the panels, which had 

been stored at ~5° C since 4 July 2014. Subsamples were analyzed for organic matter 

content (% as loss on ignition, 16 hours at 400ºC).   

  
Reducing conditions 

 

IRIS (indicator of reduction in soils) tubes were cut to 10-cm lengths and 

placed as deeply as possible in the soil at panel levels 5 and 6, following Rabenhorst 

(2008) (Fig. 9). Seven IRIS tubes were installed at level 5 and nine tubes were 

installed at level 6. Tubes remained in the panels from 15 November–20 December. 

Paint removal from tubes was calculated using the grid method described by 

Rabenhorst (2012). 
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Figure 9. IRIS (indication of reduction in soils) tubes installed in green bulkhead 
panels.  

 
Arthropod counts 
 

Arthropod presence in the panels (at soil surface and in foliage) was assessed 

12 times between August–November 2014 by directly searching all above-ground 

habitat (Ausden and Drake 2006). Each level of each panel was inspected for the 

presence of spiders (Araneae), ants (Formicidae), or other invertebrate species. These 

categories were selected based on the relative scarcity and lack of diversity of 

invertebrates noted in preliminary assessments. Each level took >120 s to search. 

Searches were made on an opportunistic basis during regular panel maintenance 

visits, which depended on high tide timing; therefore, timing of arthropod searches 

varied accordingly.  
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Reference site measurements 
 

 One objective of this study was to evaluate the extent to which green 

bulkhead panels functioned like native marshes. Data was therefore collected from 

two reference sites in Baltimore Harbor for purposes of comparison with the panels.  

Reference site #1 was located at the Living Classrooms campus, on the north 

side of the property (39.282116, -76.597501). On 29 September 2014, six Hibiscus 

sp. and ten Solidago sp. individuals were randomly selected. Height and soil moisture 

at the base of the plant were collected; leaf cuttings were taken to determine water 

content as described above. 

Reference site #2 was located near the Gwynns Fall South trailhead 

(39.273770, -76.624589). Ten Juncus sp. and ten Hibiscus sp. individuals were 

randomly selected and measured as above on 12 October 2014. Flowering rates were 

also noted for Hibiscus sp; because Juncus flowers earlier in the season, the flowering 

success of this genus was not described. 

 

Results 

Irrigation: water flow/retention 
 

Trials of water flow through individual green bulkhead panels demonstrated 

that panels were capable of slowing and retaining a significant amount of water, 

although there was considerable variability between trials (Table 2). On average, in 

twelve trials, 28% of the 4000 ml used to irrigate panels flowed through five levels of 

the panels, following the intended path of flow, while 35% was retained in the panels 

for at least 60 minutes. 
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Table 2.       Mean percent of 4000 ml water used to irrigate green bulkhead  

        panels that drained fully through 5 levels of panel, was lost as    
        leakage, or was retained in the panel for at least 60 min. N =  
        number of individual trials. 

 Mean (%) SD (%) N 
Total drained through 5 levels 28 15 12 
Total lost (leakage) 38 15 12 
Total retained 34 19 12 

 

 

Trials revealed considerable variation in the rates of flow through panels. In 

one instance, where panel soil had been allowed to dry for several days, all irrigation 

water either leaked from a point within the panel or was absorbed by panel soil, 

resulting in a total of 0 ml draining from the lowermost level (Fig. 10) 

 
 

 
Figure 10. Cumulative amount of water (ml) filtering through five levels of green 
bulkhead panels within 60 minutes. Each line represents a single trial. N=12. 
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Considerable quantities of water were lost to leaks within the system (Table 2) 

either by flowing backward from the point in each level where water entered it from 

the previous level, or due to splashing off soil or leaf surfaces (pers. obs.).  

 
 
Plant measurements 
 
Height 

With the exception of Spartina alterniflora, mean heights of all species 

decreased over the course of the installation period. Solidago (Fig. 11), Distichlis 

(Fig. 12), and Spartina patens (Fig. 13) exhibited an overall pattern of stunted growth 

followed by a slow decline in height over the course of the installation period. Main 

stems of Hibiscus (Fig. 14) and Juncus (Fig. 15) both experienced near-complete 

dieback by November, although Juncus continued to put out shoots (pers. obs.). In 

contrast, Spartina alterniflora heights initially decreased and then more than 

recovered, to reach roughly twice their mean starting point (mean height in November 

= 45.4 cm ± 5.0 cm, compared to mean height of 27.1 cm ± 2.6 cm in mid-July) (Fig. 

16). No species’ mean height exceeded 67 cm (the maximum mean height recorded 

for S. patens mid-growing season). Solidago, Distichlis, Spartina patens, Juncus, and 

S. alterniflora all maintained active photosynthetic tissue into November (Fig. 17). 
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Figure 11. Mean heights (cm) of Solidago sempervirens planted in green bulkhead 
panels. Error bars are ± 1 SEM; N=18. 

 

 
Figure 12. Mean heights (cm) of Distichlis spicata growing in green bulkhead panels 
from July–November 2014. Error bars are ± 1 SEM; N=18. 
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Figure 13. Mean heights (cm) of Spartina patens growing in green bulkhead panels 
from July–November 2014. Error bars are ±1 SEM; N=17.  
 

 

 
Figure 14. Mean heights (cm) of Hibiscus moscheutos growing in green bulkhead 
panels from July–November 2014. Error bars are ±1 SEM; N=15. 
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Figure 15. Mean heights of Juncus gerardii growing in green bulkhead panels from 
July–November 2014. Error bars are ± 1 SEM; N=21. 
 
 
 

 
Figure 16. Mean heights of Spartina alterniflora growing in green bulkhead panels 
from July–November 2014. Error bars are ±1 SEM; N=18. 
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Figure 17. Green bulkhead panels in Baltimore Harbor, MD (15 November 2014).  
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Reference plant heights 

 
Green bulkhead Solidago and Hibiscus measured on 9/27/14 were on average 

25.3 ± 0.8 cm (Solidago) and 4.6 ± 2.2 cm (Hibiscus) high. Congeners growing in a 

reference marsh site and measured two days later averaged 119.5 cm ± 11.4 cm 

(Solidago) and 112.0 cm ± 6.7 cm (Hibiscus) high, respectively (Fig. 18).  

 
 
Figure 18. Mean heights of green bulkhead plants (measured on 9/27/14) and 
congeners from a natural marsh (measured on 9/29/14). Error bars are  ± 1 SEM.  

 

Leaf water content 

  

 Species-specific percent leaf water content expressed as average values over 

time either decreased slightly or did not change over the course of the panel 

installation period (Fig. 19). 
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Figure 19. Leaf water content in six wetland plant species growing in green bulkhead 
panels in Baltimore Harbor. Means ± 1 SEM are shown. 

 
 Leaf water content was not directly comparable between reference natural 

marsh plants and green bulkhead panel plants because measurements were taken on 

different days and/or species. In one exception, Juncus sp. were both measured on 12 

October. Natural marsh plants had far higher leaf water content (36% ± 7% compared 

to 5% ± 1% in green bulkhead plants) (Fig. 20). 
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Figure 20. Mean leaf water content (± 1 SE) in Juncus growing in green bulkhead 
panels and naturally occurring marsh in Baltimore Harbor.  
 

 

Flowering success 

 

Juncus gerardii flowers in April–May; the plugs used to plant panels had 

already flowered when the panels were built. Two green bulkhead panel Spartina 

patens individuals flowered and set seed over the course of the installation period. No 

other green bulkhead species successfully flowered during the installation period. In 

contrast, 100% of the ten Hibiscus sp. individuals surveyed on 10/12 were in flower. 

 

Above-ground biomass 

  
 When adjusted to values of dry g/m2, biomass production ranged from 47.5 

(Hibiscus) to 833.6 (Spartina patens) (Table 3). 
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Table 3. Above-ground dry biomass of species in green bulkhead panels harvested in        
January 2015.  

Species Total dry g 
collected 

Dry g/m2 

(adjusted) 
Literature values 

(dry g/m2) 

Solidago sempervirens 18.0 185.9 *  
Distichlis spicata 15.1 156.0 991a  
Spartina patens 80.7 833.6  807-1200b 
Hibiscus moscheutos 4.6 47.5 1212–1224c  
Juncus gerardii 10.2 105.4 244–524b  
Spartina alterniflora 20.7 213.8  750–2600d 

Literature values reported in:  
a Hopkinson et al. (1980) 
b Linthurst and Reimold (1978) 
c Cahoon and Stevenson (1986) 
d Kirby and Gosselink (1976) 
 

 

 

Soil measurements  
 
Moisture 

 

Panel soil moisture was consistently high (Fig. 21) and pooling water was 

frequently observed in panel levels (Fig. 22) after irrigation. A one-time, temporary 

drop in moisture was noted in all three panels when the timer flow rate was 

mistakenly increased and the cistern ran out of water for 1-2 d in August.  
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Figure 21. Soil moisture values for green bulkhead panels, July–November 2014. 
Each point is the mean of 8-12 readings per panel. 

 
 
 

 
Figure 22. Pooling water in a green bulkhead panel after an irrigation cycle. 
Photograph: Lela Stanley. 

 
The amount of water retained by panels decreased linearly with increasing 

mean panel soil moisture (p=0.025; Fig. 23). 
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Figure 23. Water retention by green bulkhead panels as a function of mean panel soil 
moisture in individual trials (N=8).  

 

Soil organic matter content  

 

Soil subsamples taken from four levels of each panel were higher (two-sample 

t-tests; p<0.05) in soil organic matter than subsamples collected from the original soil 

used to plant green bulkhead panels (Fig. 24), with the exception of subsamples from 

level 1. SOM values ranged from 2.76 ± 0.19% in original soil used to 5.19 ± 0.71% 

in the soil in level 6, but did not vary significantly as a function of level (p=0.293; 

Fig. 25). 

 

y = -4.6186x + 2.4804
R² = 0.5973

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0.35 0.45 0.55

%
 w

a
te

r 
re

ta
in

ed

Panel soil moisture (g/g)



 35

 
Figure 24. Mean organic matter content of soil harvested from green bulkhead panel 
levels (L1–L6; N=9 per level) and soil used to plant panels (N=6). Error bars are ± 1 
SEM.  

 

 
Figure 25. Soil organic matter as a function of green bulkhead panel level.  
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Reducing conditions 

 

               The 14 IRIS tubes installed in green bulkhead panels levels 5 and 6 

demonstrated considerable variation in the amount of Fe oxide paint removed, 

ranging from 0–68% in level 5 and from 0–75% in level 6 (Table 4). The average 

amount of Fe oxide paint removed did not differ significantly between levels. 

Reducing conditions were present in multiple locations but most noticeably in level 6, 

where 6 of 7 tubes demonstrated >20% paint removal (Fig. 26).   

 

 

Table 4.    Percentage of Fe oxide paint removed from IRIS (indicator of reduction in  
                 soils) tubes installed at two elevations in green bulkhead panels in  

     Baltimore Harbor, MD between 15 November – 20 December 2014.    
     Average paint removal between levels was not significantly different (two-  
     sample t-test; df=4; p=0.1748). N=number of panels.  

                   
 
 
 

 

 

 

 

 

Elevation above Harbor 
mean low water mark 
(cm) 

Mean 
removal 

(%) 

Standard 
deviation 

Range N 

60 38.3 25.0 0-68 3 
30 15.3 25.6 0–75 3 
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Figure 26. Fe oxide paint removal from IRIS (indication of reduction in soils) tubes 
installed in level 5 (A) and 6 (B) of green bulkhead panels in Baltimore Harbor, MD 
from 15 November–20 December 2014. Black bars represent soil height at individual 
tube locations.  

 
 
 
 
 
 
 
 
 

A 
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Arthropod presence  

 
Surveys of the green bulkhead panels revealed few arthropods. Twelve 

surveys over four months revealed a total of 12 spiders, 3 ants, and 4 unidentified 

insects (Table 5).  

 
Table 5.   Total invertebrates observed by level within green bulkhead panels, 5               

August–15 November 2014.  

Level planting 
Arthropod group 

Ants Spiders Other 
Solidago sempervirens 0 0 0 
Distichlis spicata 0 1 1 
Spartina patens 0 3 1 
Hibiscus moscheutos 3 5 0 
Juncus gerardii 0 3 2 
Spartina alterniflora 0 0 0 
Total 3 12 4 

 

Discussion 

The green bulkhead system described in this thesis is a novel approach to 

green wall construction that attempts to recreate some guiding conditions of wetland 

ecosystems. In the Baltimore context, that wetland template is a tidal mesohaline 

marsh. This iteration of the green bulkhead model demonstrated significant overlap 

with features of both native tidal marshes and traditional green walls (Fig. 27). Green 

bulkhead panels successfully supported some native macrophytes throughout the 

2014 growing season (Fig. 28), demonstrated the possibility of reducing conditions, 

and absorbed and retained water flowing through the system.  
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Figure 27. Venn diagram of characteristics of and ecosystem services provided by salt marshes, green bulkheads, and traditional green 
walls. * indicates this property was not evaluated in the green bulkhead panel system.
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Figure 28. Green bulkhead panels on July 4 (L) and October 30, 2014 (R). 

 

Water measurements 
 

Flow 

The design of this version of green bulkheads relied entirely on gravity to 

move water through the panels. Water was allowed to fall freely from the upper level 

into the lower one. This design choice was made to minimize complexity and 

materials used, and to allow gravity alone to direct water flows. Although successful 

in this regard, from an engineering perspective, the transition between levels was 

flawed. Windy conditions sometimes resulted in falling water being blown away from 
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the wall. Allowing water to fall freely sometimes resulted in splashing and the loss of 

water into the Harbor. This issue could be addressed in the next design iteration of 

green bulkheads. Using small rain chains, for instance, would cut back on water 

losses while not adding significant weight or cost to panel design. 

 

Residence time 

 

Water turnover rates and residence times in wetlands are key elements of 

ecosystem function. These dynamics, influenced by factors including total inflow rate 

and wetland volume, in turn affect plant community composition and primary 

productivity, nutrient cycling, and the accumulation of organic matter (Mitsch and 

Gosselink 1993). In normal tidal marshes, residence time is measured in days. In 

contrast, the green bulkhead panels, limited by their size and steep gradient, 

experienced very fast flow-through (short residence times) of a percentage of 

irrigation water. However, not all irrigation water flowed immediately out of the 

panels. Even panels with moist to saturated soils retained measurable quantities of 

water after the 60-minute mark. On average, this figure was 35% of the 4000 ml used 

to irrigate panels. Factors influencing flow rate through the panels include, notably, 

the incline of each level and the rapid drop in elevation between levels.   

 Green bulkhead panels provided a total of 2.5–3 linear meters of planted soil 

through which water could flow, depending on whether the lowermost level was 

submerged. Increasing this length by increasing either the length of individual levels 

or by including more levels per panel would improve the residence time, thus 

providing longer opportunities for nutrient cycling and SOM build-up. 
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Vegetation parameters 
 

In general, green bulkhead panel plants remained stunted and never 

approached the values observed in reference sites or in literature. While all non-

Hibiscus species continued to put out new shoots into November (pers. obs.), overall, 

plants in the green bulkhead panels slowly died back over the course of the 

installation period with the exception of Spartina alterniflora. Hibiscus individuals 

fared especially poorly, demonstrating virtually complete dieback by the end of the 

study period. Interestingly, floating wetlands installed in the Harbor by the 

Waterfront Partnership and National Aquarium reported similar results with H. 

moscheutos in 2010 (Table 6). 

 
Table 6.    Comparison of plant performance in green bulkhead panels and floating         
wetlands installed by the National Aquarium and Baltimore’s Waterfront Partnership. 
Assessments of floating island vegetation are provided in MDE (2011).  

 

Species Green bulkhead panel National Aquarium 

floating wetland 

Waterfront Partnership 

floating wetland 

Hibiscus moscheutos Complete dieback Complete dieback/early 
senescence 

Not thriving 

Solidago sempervirens Stunted growth          
No flowering 

Extremely robust 
growth and flowering 

Not planted 

Spartina patens Fair performance   
Stunted growth       
Limited flowering and 
seed production 

Not planted Fair growth        
Some flowering and seed 
production 

Spartina alterniflora Fair growth                   
No flowering/seed 
production 

Thriving             
Limited flowering/seed 
production 

Thriving          
Extensive flowering/seed 
production 

Volunteers None None Polygonum 

pensylvanicum 
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Because each plant species was restricted to a single level within the green bulkhead 

panels, therefore circumventing competition between species and preventing a direct 

comparison between levels, it is not possible to determine why Spartina alterniflora 

rebounded and grew where other species failed. Generally, the panels presented 

difficult growing conditions for all species, most strikingly in the limited amount of 

space available for root expansion. Positioned at the lowest level within panels, S. 

alterniflora was inundated twice daily, and soils in its level demonstrated 

significantly higher levels of organic matter - potentially a result of that inundation 

and subsequent deposition of detritus. At the same time, its positioning exposed S. 

alterniflora to waterfowl herbivory, and the same detritus deposition tended to cover 

leaves with a heavy layer of muck, potentially reducing photosynthetic capacity.  

 Solidago in green bulkhead panels experienced high rates of fungal (rust) 

infection (Fig. 29) (pers. obs.). Rust can be caused by overly moist conditions, 

including watering from above (Moorman 2015). The irrigation design of the green 

bulkhead panels may have contributed to this infection, which in turn likely 

contributed to the poor growth rates observed in Solidago. No other pathogens were 

identified in green bulkhead panel plants. 

Plants were installed in the green wall panels in early July, relatively late in 

the growing season. Earlier planting times might have allowed individuals to better 

acclimate to panel growing conditions. 

Baltimore Harbor water has been consistently found to be high in total 

nitrogen and phosphorus; e.g. 2009 Inner Harbor concentrations ranged from ~1.0–

3.0 mg l-1 (N) and 0.06–0.20 mg l-1 (P) (Wicks 2011). Given these concentrations in 



 44

the water used to irrigate green wall panels, nutrient scarcity was likely not a 

contributing factor to plant growth.  

 
Figure 29. Rust infection in Solidago sempervirens. Photograph: Lela Stanley. 

 

Leaf water content 

 

 Leaf water content is no longer widely used as an indicator of plant water 

stress because of the high variability between species leaf water contents (Jones 

2007). However, on a per-genus basis it may serve to illustrate the different 

conditions experienced by particular green bulkhead plants, e.g. Juncus, versus 

congeners growing in natural marshes. Although green bulkhead plants were 

saturated on a regular basis, their root systems may have been too constricted to 

benefit.  
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Soil parameters 

 Panel irrigation schedules, soil moisture and reducing conditions 

measurements, and the frequent visible surface pooling of water in green bulkhead 

panel levels all support the conclusion that panel soils were frequently flooded. Due 

to equipment limitations, however, irrigation schedules could not follow a diurnal 

tidal schedule, and so only levels that were directly inundated at high tide (containing 

Juncus gerardii and Spartina alterniflora) were flooded on a natural tidal schedule.  

 
Organic matter 

Soil organic matter content in wetlands is critical to overall ecosystem 

functioning, including plant establishment and growth, cation exchange, water 

retention, and N fixation (Zedler and Callaway 2001).  Although the green bulkhead 

panels are not a form of ecological restoration per se and were not intended to exactly 

mimic conditions of local wetlands, their SOM content still provides a useful 

indicator of function.  

Soil organic matter content in green bulkhead panels was low compared to 

literature values for brackish tidal wetlands. Morrissey et al. (2014) report SOM 

values of 16.4% ±7% for a brackish Chesapeake wetland. Their numbers, like those 

in this thesis, were calculated via loss on ignition. Although low, SOM values from 

green bulkhead panel soil were still higher on average than subsamples collected from 

stored original soil used to plant panels. This suggests that some accumulation of 

SOM is due to Baltimore harbor conditions. In Baltimore, water quality is 

compromised not only by nutrient concentrations, which are consistently 

unacceptably high (Wicks et al. 2011), but also by a profusion of garbage flowing 



 46

through the Gwynns Falls and Jones Falls Creek outfalls (Fig. 30). Lower levels of 

the green bulkhead were submerged by tidal flux on a regular basis and experienced 

visible deposition of a remarkable diversity of organic matter and detritus including 

leaves, plastic trash, and woody debris. Frequent flooding also saturated the soil at 

those levels. Both of these dynamics may have contributed to the slightly higher 

build-up of soil organic matter in lower panel levels.  

 
 

Figure 30. Trash and woody debris are left behind after heavy rains in October 2014. 
Green bulkhead panels are obscured by the ramp to the right. Photograph: Lela 
Stanley. 
 
Reducing conditions 

 

IRIS (indication of reduction in soils) tubes signal the presence of reducing 

conditions by the amount of Fe oxide paint removed from a tube during its 

installation in suspected hydric soils (Rabenhorst 2008). IRIS tube use typically calls 

for 60-cm tubes to be installed in soils for ~4 weeks. Upon removal, the top ~15 cm 
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of a tube is inspected for paint removal. If 20% of the paint has been removed, 

reducing conditions are expected to be present 90% of the time (Rabenhorst 2008).  

The very shallow soils of the green bulkhead panels precluded typical 

installation. Soil in each level was ~5 cm deep. However, reducing conditions were 

still present at several tube locations throughout the panels, notably in level 6. The 

fact that paint removal took place during an especially cold 5-week period of the year 

(15 November–20 December) when microbial activity is lower suggests that reducing 

conditions would be even more extensive in warmer weather. Since levels 5 and 6 

experienced tidal inundation as well as regular irrigation, more extensive use of tubes, 

or Eh electrode measurements of reducing conditions at each level, would provide 

information on whether regular irrigation alone is sufficient to produce reducing 

conditions throughout panels. 

 

Arthropod presence 

 

Surprisingly few arthropods were observed using the green bulkhead panels. 

No surveys of unused (non-greened) bulkheads were made for comparison. However, 

even conservatively assuming that no arthropods would colonize unmodified 

bulkheads, the low diversity and richness of observed invertebrates observed in green 

bulkhead panels is striking. Extrapolated to total counts/m2 over the observation 

period, green bulkhead panels supported fewer than 100 individuals/m2. In contrast, 

Angrandi et al. (2001) report total macroinvertebrate densities in brackish Spartina 

alterniflora and Phragmites australis marshes in New Jersey on the order of 82,000–

97,000/m2. Several elements of the panel design and performance may explain this. 
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Surveys were strictly observational, relying on direct searches of above-ground 

habitat to find individuals; no destructive methods such as traps or vacuum 

collections were used. This likely contributed to severely underestimating the total 

arthropod population.  

However, it may be more useful to compare these green bulkhead panel 

arthropod numbers with those of other green walls In her survey of arthropod use of 

urban green walls, Matt (2012) found on the order of 6-10 (least square means) 

individuals per 0.56m2 quadrat in summer (June-August) months. These numbers, 

though collected using vacuum sampling, are significantly closer to green wall panel 

arthropod totals and suggest this comparison may be more appropriate.  

Finally, vegetation cover within panels was generally patchy and may not 

have provided sufficient cover for arthropod species. These results suggest that the 

green bulkhead panels, at least in isolation, do not afford choice arthropod habitat. 

Increasing the number of panels (reducing bulkhead habitat patchiness) and 

increasing the foliage cover within each panel would partially address this issue.  

 

Panel design and durability 
 

Design process 

 

Each choice made in the design process limits and directs subsequent choices 

and the ultimate product of the process. For instance, numerous internet searches, 

personal communication with garden stores, and queries on Internet gardening fora 

yielded a single available model of timer that could function with the very low water 

pressure of the green bulkhead cistern. That timer, which was used for green 
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bulkhead panel irrigation, had a limited number of predefined, inflexible settings for 

watering duration and frequency. This influenced the watering schedule for green 

bulkhead panels and ruled out the possibility of watering them only at high tide, for 

instance.  

Panel design considerations included the following limitations. The total 

amount of bulkhead space could be no larger than the space provided by Living 

Classrooms (a ~2m X 3 m area). Panels needed to be lightweight enough to be 

handled and installed by an individual researcher, but at the same time sturdy enough 

to hold multiple levels of planted and frequently saturated soil. Water retention time 

and minimalist design were prioritized. Finally, the working budget was conservative, 

which limited material selection and prioritized use of materials on hand. 

In these regards, the panel design succeeded. However, sacrifices were made 

in other areas. The result was not aesthetically pleasing (pers. obs.), although it drew 

considerable interest from marina users, who frequently stopped to ask how the 

panels worked.  

 

Model durability 

 

The green bulkhead panel model proved physically durable. Over its 24-week 

installation period, no components of the model failed or needed replacement, with 

the exception of the timer. This failed in mid-September, after only two months, and 

was replaced with an identical model. Heavy summer rains did not compromise panel 

structural integrity, nor did tides rising as high as level 4 (Fig. 31) wash any plants out 

of the panels. The two other attempts at developing green bulkhead-like systems, 
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reviewed in Dyson and Yocom (2015), failed at this point in deployment, although 

both of those examples were on river walls where tidal forces may have been 

stronger. The panels’ installation in a sheltered section of the harbor likely 

contributed to their success in this regard. 

 

 

   
Figure 31. Heavy rainfall and high tide submerged green bulkhead panels as high as 
level 4 (L), stranding a hapless fish (R) and washing debris into the panels. No other 
adverse effects of high tide levels were observed. Photographs: Lela Stanley. 

 
Algal growth in the irrigation hoses was so light that no cleaning was required 

throughout the entire growing season. However, algae frequently clogged the timer’s 

filter, requiring maintenance to allow the irrigation system to function. A single 

instance of bivalve biofouling was also recorded, wherein several larval molluscs had 

[adhered] and grown to ~1cm inside the hose connecting the water tank to the timer 

(Appendix 2).  
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Accessibility and maintenance 

 

At 10,800 cm2 and ~19.5 kg when planted, individual panels were unwieldy to 

move and adjust as a unit. The ability to easily remove individual planted levels made 

it possible for a single researcher to install panels. 

The bulkhead location provided by Living Classrooms was in a shallow area, 

where low tides routinely left the entire green bulkhead panels exposed. This made it 

possible to access all but one individual level either from above or below the 

installation, at low tide. (Panel 1/Level 2 was not accessible from either direction and 

as such could not be included in arthropod surveys.) Most bulkhead areas in the Inner 

Harbor are not as easily accessed. For green bulkheads to be deployed on a large 

scale, either maintenance would need to take place from the water (e.g. via municipal 

vessel) or bulkhead panel would need to be light enough to be readily removed from 

the top of the bulkhead. The former scenario is more practical, but raises new issues 

of boat traffic and operating time. 

Major issues and delays encountered with green bulkhead panel design, 

assembly and operation were primarily the result of operator inexperience. 

 

Study problems and sources of error 

 

Space and budget constraints precluded creating more than one set of 

bulkhead panels. Any subsequent trials of this model should deploy several replicate 

sets throughout the Harbor in order to directly test similarities with natural marsh 

conditions. At the same time, extensive reference marsh plant and soil sampling was 

not done for this thesis. Having a robust set of such measurements to better 
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contextualize and evaluate the performance of the green bulkhead panels is an 

invaluable   

Time and financial considerations likewise precluded water quality testing on 

the 2014-2015 green bulkhead model. Particularly given the emphasis of Baltimore 

Harbor decision-makers on improving water quality, subsequent green bulkhead 

design testing would be well advised to incorporate testing improvements. Any 

significant reduction in these parameters would increase the value of green bulkhead 

design. 

 
Recommendations for future designs 

 

Although the panels were originally inspired by Chesapeake Bay marsh 

zonation, because of the intertidal compression experienced in the Harbor, actual 

zonation is very different than that in native marshes (see e.g. Chapman 2006). In salt 

marshes, factors influencing zonation range from salinity and inundation tolerance to 

extant mycorrhizal fungi (Daleo et al. 2008). It would be informative for urban 

waterfront ecological design as a discipline to understand what the comparable 

factors in city harbors and riparian systems are. To test this, replicate panels could be 

pre-planted with the same mixture of species at each level and deployed at several 

locations around the Harbor under, for example, different light conditions (south- vs. 

north-facing), protection from debris, etc. 

Design constraints imposed by various elements (e.g. timer settings) made it 

impossible to irrigate green bulkhead panels on a truly tidal schedule. This moved 

them conceptually one step further from the original marsh ecosystem template. 

Devising a way to use actual tidal flux to water walls – whether by constraining them 
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to a single planted level within the natural narrow urban intertidal, or by mechanical 

means. 

 
Sustainability 

 

It may be tempting to assume that green walls are an inherently more 

sustainable option than leaving walls bare. This is not necessarily the case. Feng and 

Hewage (2014) considered the environmental costs of producing, maintaining, and 

disposing of three green wall modalities (trellis, planter box, and felt layer) balanced 

against their air pollution removal and cooling benefits. They found that materials 

selection can have a profound effect on the overall sustainability of a green wall 

system: e.g. that a felt layer system containing PVC foam would not subsist long 

enough to balance out the costs of its production. Significantly more thorough 

quantification of green bulkhead benefits would be necessary in order to assess their 

overall environmental cost/benefit ratio. For instance, panels were not evaluated for 

their cooling properties. In fact, because panels were made of primarily black 

materials, it is possible that they actually raised the temperature of the bulkheads 

more than they cooled it (via shading and evapotranspiration). Ambient air 

temperatures inside the panels were almost certainly higher than their surroundings as 

a result of these dark materials. This may have influenced plant survivorship and 

performance by increasing heat stress during the summer months, and/or by warming 

the panel microclimate in cooler fall months, thereby potentially lengthening the 

growing season.  
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Societal benefit 

 

 It is interesting to speculate on the non-ecological effects of deploying green 

bulkheads at a large scale throughout the Harbor. Research on the psychological 

benefits of green walls specifically is sparse, but numerous studies have indicated a 

positive link between green spaces and mood, and between the perception of 

biodiversity and psychological well-being (Fuller et al. 2007). Barton and Pretty 

(2010)’s review showed that exercise near green spaces, including water, improved 

mood and self-esteem, while Taylor et al. (2002) found that views of nature 

replenished directed attention and improved self-discipline in girls living in urban 

neighborhoods. These results tantalizingly suggest that greening large, currently 

blank areas like urban waterfront walls (Fig. 32) could have benefits to communities 

that extend beyond the ecological ones already enumerated here. The green bulkhead 

model offers a way to integrate such urban waterfront greening with extant 

architectural choices, as well as a paradigm for future urban landscape design.  

 

Conclusions 

Baltimore’s Inner Harbor bulkheads can be ecologically engineered to support 

green walls that provide some of the functions of native marsh ecosystems, including 

slowing and retaining water used to irrigate them and growing some species of native 

macrophytes, particularly Spartina alterniflora. This design of green bulkheading 

does not compromise bulkhead/retaining wall function, is modular and easily 

removable, and maintains a shallow horizontal profile so as not to interfere with boat 

traffic.  



 55

Urban waterfront walls are an abundant spatial resource that have to date been 

overlooked in the development of green wall technologies. Using this space to 

promote the restoration of some ecological function is an example of a reconciliation 

ecology approach to urban development relevant to any city with a river, harbor, or 

coastline. As sea levels rise, cities are increasingly challenged to rethink and redesign 

their coastal and waterfront infrastructure (Airoldi et al. 2005). Green bulkheads offer 

an opportunity to do so in a way that restores ecological function to the urban 

landscape.  
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Figure 32. Bulkheads in Baltimore’s Inner Harbor without (above) and with (below) 
rendition of green bulkhead modifications. Illustration and photograph: Lela Stanley. 
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Chapter 3: Design and Performance of a Grassland-Inspired 
Green Wall 

 

Introduction 

Green façades and living walls, here collectively termed green walls, are a 

rapidly growing field at the intersection of ecology, horticulture, architecture, and 

urban design. Depending on their structure, irrigation design, and plants used, green 

walls can provide a range of benefits from building envelope shading and cooling and 

graywater recycling to food provision and arthropod habitat (Dunnett and Kingsbury 

2008, Loh 2008, Köhler 2008, Matt 2012). 

Compared to the closely related field of green roof development, research into 

the functions and performance of green walls, including the viability of native Mid-

Atlantic species for green walls, is sparse. Furthermore, few studies have examined 

the potential to recreate elements of naturally occurring ecosystems using green walls. 

Francis and Lorimer (2011) propose this approach as a form of reconciliation 

ecology: using otherwise overlooked “edges” of anthropogenically dominated 

landscapes to foster the development of ecosystems, which may resemble natural 

analogues to a greater or lesser degree. 

Like green roofs, green wall environments on building exteriors offer harsh 

growing conditions. Thin substrate levels and increased wind speeds and 

temperatures, driving increased evapotranspiration compared to ground level, are all 

identified issues (Dunnett and Kingsbury 2008). Green wall growing conditions are 

further complicated compared to green roofs by the pull of gravity on plants, 
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substrate, and water. Some of these dynamics, especially the movement of water, are 

mitigated to a degree by green wall design elements (see Manso and Castro-Gomes 

2015), but green walls are still a broadly challenging place in which to grow.  

These challenges presented by green walls can be compared to physiological 

stressors in natural ecosystems. Cliffs are often postulated as the closest natural 

analog to green walls (Lundholm and Richardson 2010). Another possible template is 

the serpentine grasslands of North America. Well known for the endemic, rare, and 

unusual assemblages of species they support above serpentinite deposits (Latham 

1993), serpentine areas present generally high-light conditions and dry, nutrient-

limited soils (Latham 1993).  

This convergence of natural and designed systems presents an interesting 

dynamic. Once planted with species tolerant of moisture-limited, thin soils, how 

would green wall panel plant communities self-organize? We hypothesized that 

species characteristic of serpentine grasslands should be able to survive in thinly 

soiled, low-moisture green walls, but that they would demonstrate better performance 

with regular irrigation than rainfall alone. We further hypothesized that volunteer 

species composition would vary between different watering regimes and between 

planted and unplanted levels within a green wall panel.  

 

Materials and Methods 

 
Green wall panels were installed and operated from July 18, 2014–October 

31, 2014 on the University of Maryland College Park, MD campus. 
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Study species selection and sourcing 

 

A list of common plant species found in Eastern serpentine barrens grasslands 

was compiled based on Latham (1993), Tyndall (1993) and Tyndall and Farr (1994). 

This list was then narrowed down to include only plants currently (in June 2014) 

available in 2” (5.1 cm) plug sizes at local Mid-Atlantic native plant nurseries. Two 

species (Schizachyrium scoparium, little bluestem, and Sorghastrum nutans, 

Indiangrass (Fig. 33), both C4 grasses, were selected from the final list of 5 available 

species. Plants were ordered as 2” (5.1 cm) plugs from Mid-Atlantic Natives (New 

Freedom, PA). 

Schizachyrium scoparium 

(little bluestem) 
Photograph: Chhe/Wikimedia 
Commons/Public Domain 

Sorghastrum nutans 

(Indiangrass) 
Photo: Matt Lavin/Wikimedia 
Commons/Public Domain 

 

Figure 33. Grass species chosen for grassland–inspired green wall panels.  

 

Green wall panel construction  

 

Six panels were constructed using wooden pallets (100 cm wide X 122 cm 

high) as frames, and waterproofed with 1-mm plastic slip covering. Each panel held 
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four wooden levels set at angles of ~2º from the horizontal, tilted alternately right and 

left to allow water to drain from one level into the next. These levels supported 

lengths of corrugated 4” (10.2 cm) diameter drainage pipe, with a 6.4-wide cm cut 

made to allow plant growth. Rows were screwed directly into panel backing for 

additional support, and could be removed easily for maintenance. Each row was filled 

with 2000 ml soil, or to approximately 5 cm depth, which was collected in June 2014 

from a nearby floodplain meadow on the University of Maryland campus. 

Panels were aligned at 20” intervals and secured along the east-facing wall of 

the University of Maryland Animal Science building wing 5 (College Park, MD) (Fig. 

34). 

 

 
 

Figure 34. Green wall panels installed at the University of Maryland (College Park, 
MD). 

Green wall terminology and classification systems are still in a state of flux 

(e.g. Francis and Lorimer 2011, Manso and Castro-Gomes 2015), but practitioners 
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separate these approaches to modifying building walls into several categories based 

on their physical characteristics. Using the classification system proposed by Manso 

and Castro-Gomes (2015), this design is a type of modular tray living wall.  

 
Planting design 

 
Wall panel levels L1-L4 were planted as follows: L1 was planted with two 

individuals each of Sorghastrum nutans and Schizachyrium scoparium, alternating 

between species; L2 contained five S. nutans individuals; L3 contained five S. 

scoparium individuals; and L4 was left unplanted (Fig. 35). 

 

 
Figure 35. Planting diagram of green wall panels. 

 

Watering 

 

Wall panels 1, 3, and 5 were designated as watered walls, while walls 2, 4, 

and 6 were left unwatered. Over the course of the experiment, watered panels 

L1: Sorghastrum nutans and  
      Schizachyrium scoparium alternating 

L2: Sorghastrum nutans 

L3: Schizachyrium scoparium 

L4: Unplanted 



 62

received a total of 120 L water each (4 L every ~3 d) from irrigation, in addition to 

rainfall. Unwatered panels received only rainfall. 

Panels were watered in four-liter increments, an amount that allowed each 

level to be fully saturated. When watering panels, all water was poured into the 

beginning of the top level and allowed to drain through each level in succession. 

Rainfall was measured with a gauge installed on Panel 2. A total of 10.4 cm 

was collected over the course of the experiment (July 23–October 31). 

 

Vegetation measurements 
 
Height 

Stem heights (base of stem to tallest visible photosynthetic tissue on a plant) 

of Sorghastrum nutans and Schizachyrium scoparium were measured once monthly 

from July–October. Rapid and complete dieback of plants in unwatered walls meant 

that these measurements were only taken in July for this subset of plants. 

 
Leaf water content 

 
Leaf water content of grasses was measured in July, September, and October. 

Leaves were selected at random from each S. nutans and S. scoparium individual. The 

top five cm was clipped and immediately weighed. Clippings were dried for 24 hours 

at 70 C° and then re-weighed; leaf moisture is expressed as a percentage of original 

fresh weight. 

 

Flowering success 
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Flowering was noted in S. nutans and S. scoparium individuals at the same 

time height measurements were made. Flowering success in volunteer species was not 

assessed systematically but was noted on an ad hoc basis. 

 
Volunteer species surveys 

 
All volunteer plants growing in watered panels were counted on three dates (8 

August, 9 September, 30 October). Unwatered panels had no volunteer species on the 

first two survey dates and were thus excluded from surveying. 

 
Climate 

 

Precipitation data was sourced from the National Oceanic and Atmospheric 

Administration’s National Climatic Data Center (NOAA-NCDC) (College Park, MD 

station) to provide a comparison with rain gauge measurements. Temperature data for 

the experimental period was sourced from NOAA-NCDC (Beltsville, MD station, ~6 

km from site). This data was unavailable for the College Park station.  

Temperature and precipitation amounts during the experimental period were 

typical for the Mid-Atlantic region (Table 7). 

 

Table 7. National Oceanic and Atmospheric Administration National Climatic Data 
Center temperature1 and precipitation2 data for July–October 2014. 

  
Monthly average temp 

(ºC) Maximum 
high (ºC) 

Maximum 
low (ºC) 

Precipitation 
(total cm) Month High Low 

July 29.4 18.9 35.0 13.9 8.3 
August 27.6 17.1 31.7 11.7 8.2 
September 25.8 15.3 32.8 6.1 6.4 
October 20.2 9.6 26.7 1.7 5.9 

Total 28.8 
1Beltsville, MD station 
2College Park, MD station 
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Results 

Plant height 

 

Plants of both species in unwatered panels demonstrated a rapid and complete 

dieback. Sorghastrum nutans unwatered plant height fell from 19.8 ±1.2 cm to 0 by 

the second measurement period (Fig. 36). This pattern was consistent among all 

planted levels.  

 
 

 
Figure 36. Heights (in cm) of all Sorghastrum nutans growing in watered and 
unwatered green walls. N=3. Differences are not statistically significant on the July 
measurement (two-sample t-test; p=0.0785). After the July measurement, all 
unwatered plants had died completely back. No initial measurement data was taken; 
July data represents plant height after ~1 week at experimental conditions. Means ± 1 
SEM are shown. 

 

Schizachyrium scoparium demonstrated a similar pattern of unwatered plants 

dying immediately; in this species, watered plants exhibited an insignificant decline 

in height from August–October (Fig. 37). 
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Figure 37. Heights (in cm) of Schizachyrium scoparium growing in watered and 
unwatered green walls. N=3. Differences are significant in July (two-sample t-test, 
df=4, p=0.0015). A single plant was still alive in August in unwatered walls; after this 
point all unwatered plants had completely died back. No initial measurement data was 
taken; July data represents plant height after ~1 week at experimental conditions. 
Means ± 1 SEM are shown. 

 

Watered panel plants also died back over the course of the growing season, 

but at different rates and to different degrees depending on species and level.  

Comparing species performance by row shows that level 1 plants of both species died 

back faster than plants of the same species in a lower row, though differences were 

not always significant (Fig. 38, Fig. 39). 
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Figure 38. Heights of Sorghastrum nutans growing in levels 1 and 2 of green wall 
panels in autumn 2014. Values for level 1 plants in September and October = 0. N=3. 
Differences are not significantly different in July (two-sample t-test, df=4, p= 0.6758) 
or August (p=0.8225); by the September measurement all Level 1 plants were dead.  
 

 
Figure 39. Heights of Schizachyrium scoparium growing in levels 1 and 3 of green 
wall panels in autumn 2014. N=3. Differences were significant on the July 
measurement dates (two-sample t-test, df=4, p=0.0004) but not the August, 
September, or October measurements (p=0.1195, p=0.1220, p=0.0838). 
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Leaf water content 

 

 Unwatered wall plants of both species demonstrated the same pattern of rapid 

reduction in leaf water content as their height dieback (data not shown). 

When compared by growing level, leaf water content of Sorghastrum nutans 

fell in both levels over the course of the experimental period (Fig. 40).  

 

 
Figure 40. Mean leaf water content (as % fresh weight) of Sorghastrum nutans 
growing in watered green wall levels 1 (L1: full sun) and 2 (L2: part shade). Error 
bars are ± 1 SEM. N=3. Differences are significant on the September date only (two-
sample t-test, df=4, p=0.0242).  

 
Leaf water content of S. scoparium did not follow the same pattern; while 

LWC of plants in level 1 fell from 23% ±8% to 4% ±1% over the experimental 

period, plants in the partially shaded level 3 displayed the same LWC at the end of 

the period as at the beginning (Fig. 41). 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

27-Jul 10-Sep 25-Oct

L
ea

f 
w

a
te

r 
co

n
te

n
t

Level 1

Level 2



 68

 
Figure 41. Mean leaf water content (as % fresh weight) of Schizachyrium scoparium 
growing in watered green wall levels 1 (L1: full sun) and 3 (L3: part shade). Error 
bars are ± 1 SEM. N=3. Differences are not significant on the July date (two-sample 
t-test, df=4, p=0.1774) or September (p=0.3719) but are significant in October 
(p=0.0011). 

 
Flowering success 

 

A total of two S. scoparium individuals flowered over the course of the 

experimental period. No S. nutans individuals flowered. 

On the 9/8 survey date, 100% of one volunteer species (Mollugo verticillata) 

was flowering. 

 
Volunteer counts 

 
A total of 2,275 volunteer plants were counted over three survey dates 

spanning August 9–October 31, 2014 (Fig. 42). Volunteers were keyed to genus and 

species where possible and assigned to categories based on taxonomy. All grass 

species were combined into one category (Poaceae). Unidentifiable individuals, 

many at the cotyledon stage, were combined into a single category. All groups with 
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fewer than 10 individuals counted over the course of the season were included in this 

unidentified category. 

Some individual volunteers were visible in unwatered panels on 30 October 

but were extremely dessicated and unidentifiable, and were not counted. 

 

 

 

Figure 42. Volunteer plants germinating in grassland green wall panels on three 
survey dates in 2014. Total numbers of volunteers are shown by category. Plants were 
keyed to genus and species level where possible; all volunteer grasses were lumped 
into Poaceae. ‘Unidentified’ category includes individuals too small to identify 
(cotyledon stage) and groups containing a combined total of ten or fewer individuals. 
N = 3 panels. 

 

Discussion 

Over the course of the experimental period, planted native grasses 

Sorghastrum nutans  and Schizachyrium scoparium generally died back as a prolific 

number of weeds germinated in green wall levels. Although chosen for their ability to 
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survive in stressful environments, these species may have simply been overstressed 

by the design and irrigation of this green wall. Substrate depth was extremely 

shallow, at ~5 cm, and did not include any content engineered to enhance moisture 

retention.  

Because of the modular planter design of this green wall, comparisons to 

green roof studies may be helpful to understand its stressors and the plant community 

dynamics exhibited in walls over time. Substrates on extensive green roofs may be as 

shallow as 4 cm without supplemental irrigation (Getter and Rowe 2008), but plants 

succeeding in these conditions tend to exhibit low growth forms and high 

groundcover density. Given the shallow design of this green wall and the root depths 

normally observed by these species in prairie environments (Nippert et al. 2012) it 

seems likely that the limited substrate depth and space available for developing root 

structures was a significant limiting factor in the establishment of these plugs and 

subsequent plant performance (but see Schedlbauer and Pistoia 2013).  

Native grass performance in the green walls was indicated by generally falling 

maximum heights and species-specific leaf water contents, and an almost complete 

failure to flower. During the course of the experimental period, a total of 28.8 cm 

precipitation was recorded at a nearby (Beltsville) weather station; however, less than 

11 cm was collected by the rain gauge installed on one wall replicate. Even allowing 

for local precipitation variation and the possibility that some water evaporated from 

rain gauges before it could be measured, this discrepancy suggests a very significant 

rain shadow effect created by the building against which green wall panels were 

secured. Rain shadows are an issue in green wall success or failure (Dunnett and 
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Kingsbury 2008) and the effects here suggests that a more frequent irrigation 

schedule was needed to supplement low natural rainfall. Additionally, including soil 

amendments such as perlite to retain additional soil moisture would be a simple, low-

cost approach to increasing the water available to plants. Getter and Rowe (2008) 

used a water-retaining membrane in tests of sedum growth on an extensive green 

roof; this could be applied to a modular green wall system as well.  

Temperatures of the green wall panels were not compared to local ambient air 

temperatures. Because black materials were used to waterproof the panels and support 

the plantings, however, temperatures within the panel were almost certainly higher, 

with the possible exception of sporadically shaded areas within panels. These 

relatively higher temperatures can reasonably be assumed to have increased heat 

stress on already water-stressed grasses. Additionally, the panels were oriented along 

an east-facing wall. Compared to a theoretical north-facing site, which was not 

available for this study, this orientation increased the hours of direct sunlight the 

panels received, and therefore also contributed to increasing plant water stress.  

Grasses were planted in mid-July as 2” (5.1 cm) plugs sourced from a local 

wholesale supplier using unspecified ecotypes. This approach may have additionally 

impeded their rooting success and subsequent growth. Planting levels with grass seed 

might allow germinating individuals to acclimate to the extremely challenging 

conditions presented by wall panels. Alternately, sourcing ecotypes of these species 

from analog grassland ecosystems might also improve overall performance with these 

levels of irrigation (see e.g. Smith et al. 2009). Starting plugs at the beginning of the 
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growing season would also allow plants to establish in green wall levels before high 

mid-summer temperatures and related heat stress peaked. 

Competition from volunteer species may have also played a role. Volunteer 

species representing at least seven families and possibly many more, due to a large 

number of unidentified individuals, were found in green wall panels. Volunteer 

species identified to genus were all weeds commonly found in Maryland (Table 8). 

No weeds were ever removed, indicating that the fluctuations in weed populations 

were due entirely to natural (biotic and abiotic) conditions. Weeds may have entered 

the panels in the seed bank in the soil used to plant panels, or have been transported 

via wind or animal dispersal. Although volunteer plant measurements were not taken 

(with the exception of simple counts) on a systematic basis, the 100% flowering rate 

observed in one species compared with virtually 0% in planted grass species suggests 

that at minimum Mollugo verticillata developed a self-sustaining population within 

wall panels. 

 
Table 8. Characteristics of volunteer plant taxa germinating in grassland green wall 
panels (July–October 2014) in College Park, MD. 

Family Genus/species Life cycle Distribution notes 

Asteraceae Galinsoga parviflora Summer annual Global distribution 
Caryophyllaceae Cerastium vulgatum Perennial Found in most of U.S. 
Caryophyllaceae Stellaria medina Winter annual Global distribution 
Cyperaceae Cyperus esculenta Perennial Widespread in N. Am. 
Fabaceae Trifolium sp. Perennial Widespread in N. Am.  
Molluginaceae Mollugo verticillata Annual Common in eastern N. Am. 
Oxalidaceae Oxalis sp. Perennial Global distribution 

 

While the robust weed germination rates in walls may be unwelcome from an 

aesthetic standpoint, from a functional perspective it simply alters some of the 
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benefits offered by plant communities, such as providing resources for invertebrates 

(Nagase et al. 2013). 

 As in green roof systems (MacIvor et al. 2013), plant survival and coverage 

within green walls is key not only to societal uptake but to many of the benefits 

provided by green walls including albedo change, the potential for evaporative 

cooling, and the self-sustaining nature of plant communities. The failure of native 

grasses to establish in this green wall contrasted with the germination rate of 

numerous aggressive volunteer species suggests that this moisture-limited and 

shallow wall may be too challenging an environment for the cultivation of even these 

hardy native C4 grasses. 

Conclusions 

Native grass species Schizachyrium scoparium and Sorghastrum nutans, 

although capable of survival in difficult environments including serpentine barren 

savannas, did not thrive in moisture-limited, modular, planter-style green walls with 

shallow natural soil substrates. As these grasses died back, a profusion of weeds 

germinated in the wall models. These volunteers numbered in the hundreds (an order 

of magnitude higher than planted grasses) and included species from eight identified 

families and hundreds of unidentified individuals. Weed community composition and 

total population varied over the course of the growing season. Limited moisture and 

very shallow soil depths likely contributed to the failure of the grass species to thrive, 

compounded by competition from vigorous weed species.  



 74

 

Appendices 
 

Appendix 1. Green bulkhead panel materials and cost list. 

 

 

Table A1.    Green bulkhead panel parts list. Panel component cost and number of units 
needed for assembly of three panels and irrigation system are presented.  

Component Units Unit 

cost 

Total cost 

($) 

Solidago sempervirens (2” [5.1 cm] plug) 18 0.85 15.30 
Distichlis spicata (2” [5.1 cm] plug) 18 0.75 13.50 
Spartina patens (2” [5.1 cm] plug) 18 0.75 13.50 
Hibiscus moscheutos (2” [5.1 cm] plug) 15 0.85 12.75 
Juncus gerardii (2” [5.1 cm] plug) 21 0.75 15.75 
Spartina alterniflora (2” [5.1 cm] plug) 18 0.75 13.50 
55 gal. (209 L) plastic drum 1 65.00 65.00* 
180 cm x 60 cm Poly-Flo Biological Filtration Media 3 3.21 9.63* 

180m x 60 cm heavy-duty plastic mesh  3 1.44  4.32* 

60-cm length, 10.16 cm (4”)-diameter corrugated plastic   
     drainage pipe 18 1.24 22.32 
45 cm (18”) plastic bead ties, set of 10 8 6.49 51.92 

30 cm of 5/8" (1.59 cm) outside dimension hosing  8 1.99 15.84* 
4-way adjustable hose faucet connection 1 14.99 14.99 
Toro 54736 Drip Hose End Timer 1 30.00 30.00 
Bulkhead fitting  1 1.99 1.99 
Rubber gasket  1 1.19 1.19 
9/16”–1 ¼” (1.43–3.18 cm) hose clamps 2 1.99 3.98 
Polypropylene rope (1' / 30 cm) 15 0.49 7.35* 
Landscaping fabric   † † 
  † † 
Total cost       312.83 

* = materials used for construction in this thesis were donated or on hand. † = negligible 
cost. 
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Appendix 2. Biofouling of green bulkhead panels.  

 

 

 
 

 
 

Figure A1. Bivalve growth in green bulkhead panel irrigation system.  
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