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Abstract

The Advanced Orbiting System (AOS) Data Generator/Simulator is a software implementation of the
transmitter (data generation) section of the CCSDS Recommendation 701.0-B-2 for Advanced Orbit-
ing Systems: Networks and Data Links. An object-oriénted approach to the simulation of a complex,
high-performance communication protocol, it makes full use of the concepts of data-encapsulation and
inheritance to ease implementation. The backbone of the software is a general-purpose packet descrip-
tion and generation module that may be used as part of any packet-based simulation software. The
user-interface to the program is in the form of a command-language, designed to ease the process of
generation of large, multiple data-streams. The output of the program may be configured for interpre-
tation by a graphical user interface (for visual inspection of the data), or as a bit-stream suitable for
further processing.

This paper consists of three sections. The first two sections provide a brief, yet comprehensive de-
scription of the above CCSDS Recommendation. The various kinds and qualities of user-services, data
units involved, and data-paths defined by the protocol are discussed. The different qualities of service
(in terms or data reliability) available to the user (and the error-control schemes used to provide
them) are also discussed. The last section describes the structure and user-interfaces of the AOS Data
Generator/Simulator.

1. Introduction

Between 1982 and 1986, in response to space mission requirements of that period, the Consultative
Committee for Space Data Systems (CCSDS) developed a series of technical recommendations for the
standardization of the common data system functions associated with conventional space missions.
These recommendations provided a broad basis for the standardization of data communications for

many types of unmanned spacecrafts.

To meet the needs for the technologically Advanced Orbiting Systems (AOS) of the *90s as evidenced
by the international Space Station, the CCSDS decided to extend (in an upward compatible man-
ner) its original recommendations for conventional space-systems to a more diverse and flexible set of
data-handling services. Typical AOSs include manned and man-tended space transportation systems,
unmanned space platforms, free-flying spacecraft and advanced space transportation systems. To serve
the needs of this wide variety of space data-communication applications, the AOS recommendation has
provisions for concurrently transmitting multiple classes of digital data (including real-time audio and
video) through space/space, space/ground and ground/space data channels at relatively high combined
data rates, with high protocol efficiency. The AOS recommendations also provide the capability to
interface with, and exploit the rich service environment of worldwide Open Systems Interconnection,
allowing for the first time, support for commercially derived network protocols over the space segment.

The principal difference between the conventional and AOS recommendations by the CCSDS is the
much wider range of services provided for Advanced Orbiting Systems. Advances in technology (leading
to increased on-board processing power) have now made it possible to consider the space segment



as a conceptually symmetric counterpart of its supporting ground network, allowing the provision of
symmetric services and protocols for AOS, so that bidirectional exchange of video, audio, high-rate
telemetry and low-rate transaction data etc., is possible over space-links.

Because of the varied nature of the data to be transmitted, and the transmission requirements of
each over a common link, different transmission schemes (e.g., asynchronous, isochronous and syn-
chronous), different user-data formatting protocols (e.g., bitstreams, octet blocks, and packets), and
different grades of reliability (error-control) are provided.

1.1. User Applications

The AOS recommendation supports single space vehicles or constellations of space vehicles which may
simultaneously execute a wide-spectrum of applications in near-earth, geostationary or deep-space
orbit. Application areas are categorized as either observational science, experimental science or core

operations (operation of the space vehicle itself).

1.1.1. Observational Science

Observational science is typically performed from unpressurized platforms in orbit around the earth,
or some other planetary body. Typical lifetime of such investigations is in the order of years. The
user equipment is fairly stable in terms of location and functionality, and transmission data-rates are
usually high. For such applications, the protocol must be optimized to reduce on-board processing and
communication bandwidth, and a large degree of flexibility is unnecessary. The CCSDS Path Service
is particularly suited for the data handling needs of the observational user.

1.1.2. Experimental Science

Experimental science, such as materials processing or the effects of space on human physiology, is
conducted primarily in pressurized space vehicles and may require a high degree of flight crew interac-
tion. Such experiments usually have a very limited lifetime, and require a wide variety of interaction
between human operators (on both the ground and in space) and experimental apparatus. Hence,
source-destination data-communication pairs may be only temporarily associated with any one exper-
iment and these associations typically exist for relatively short sessions. Much of the information
generated is processed on-board, and the volume of data transmitted to and from the ground is low.
The experimental user requires protocols with routing flexibility, and a rich repertoire of upper-layer
data-handling services. The CCSDS Internet Service is designed to meet the needs of the experimental
user.

1.1.8. Core Operations

The core infrastructure operates and maintains the space vehicle systems that support the payload
users. Core user requirements share attributes common to both observational and experimental appli-
cations. In addition, since the safety of the space mission (and of human lives) is involved, reliability
is a strong concern for the transmission of core data. Core users are likely to use both the Internet and

Path service.



1.2. The Space Networking Environment

The space data-communication environment poses unique problems, not found in conventional ter-
restrial networks. These include very large propagation delays (on the order of seconds or more),
low signal-to-noise ratios, high Doppler shifts (due to vehicle motion), and short space-ground contact
periods. Because of the intermittent nature of the space/ground link, data must be stored on-board
when the link is down, and replayed later, when the link is re-established. Costly tracking facilities,
and constraints on on-board power, weight, volume and the costs involved, all suggest a data-handling
service that is robust, and optimized for efficiency and low utilization of on-board resources. Further,
the data-handling system must provide for the removal of space-transmission related artifacts prior to
delivery to the end users.

1.8. Production Data Processing
The removal of space-transmission related artifacts is known as Production Data Processing.

Spacecraft in near-earth orbit often have visibility of their ground station for only a few minutes per
orbit. Deep-space missions have longer contact periods, but they may occur only once a day, or even
once a week. Typically, only manned spacecraft are provided with virtually constant ground contact
(subject to interruption due to unavoidable coverage gaps). To provide complete and continuous data
sets to mission users, data is stored on board for retransmission during the next contact period, and to
protect against loss, some of the data generated during the period of contact is stored as well, leading
to overlap between real-time and stored data. If data storage is to tape, rewinding the tape may not be
viable (since it reduces its life), and so replayed data is often transmitted in reverse.

Fairly comprehensive processing is needed to remove transmission induced artifacts like data-overlap
and reversal. Some spacecraft may also have multiple links to ground, resulting in contemporaneous
data being collected separately. Users may also require merging of such data sets. The functions
included in production data processing are (i) reversal of on-board recorded data, (ii) removal of
overlaps between real-time and stored data, (iii) removal of duplicate data sets, (iv) restoration of the
sequence of data, and (v) generation of data-quality information.

The CCSDS recommendation for AOSs recognizes the need for such specialized production data process-
ing, and incorporates features to facilitate their implementation. Because such processing is required
only prior to delivery to the end-user, and because significant resources may be required to perform it,
production data processing is always done on a ground station.

1.4. Scope of the CCSDS Recommendation for AOS

This recommendation defines a conceptual model for a CCSDS Principal Network (CPN). A CPN serves
as (or is embedded within) the project data handling networks which provide end-to-end data flow for
space mission users. A CPN consists of an Onboard Network in an orbiting segment connected via
a CCSDS Space Link Subnetwork (SLS) to either a Ground Network or to an Onboard Network in
another orbiting segment. (See Fig. 1.) Only a limited portion of the Ground Network (called the
CCSDS Ground Network) and the Onboard Network (called the CCSDS Onboard Network) are within



the scope of this recommendation. Even though the recommendation uses the notion of a CCSDS
Principal Network, it is silent on several issues that must be resolved before the CPN is completely
defined. This includes extending the AOS protocols beyond the subnetworks, and complete end-to-end
specification of the Path service (which is an end-to-end service provided under the recommendation).
Additionally, the recommendation does not address real-world issues like data-storage (during link-

down periods) and playback (when the link is resumed), and store-and-forward situations.
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Fig. 1. CCSDS Principal Network Elements

The conceptual model of a typical CPN is shown in Fig. 2. Various kinds of services offered by SLS
and the on-board and ground networks under the CCSDS AOS recommendation are indicated. While
the figure presents a data-flow scenario between space and ground, the recommendation, due to its
symmetric nature, does not differentiate conceptually between a Space Network and a Ground Net-
work. The configuration for space-to-space and space-to-ground networks are therefore, conceptually
identical. (Because of various physical and cost limitations on space platforms, the resources available
to a ground station may be potentially much greater than that available to a space station. The recom-
mendation is designed with efficiency, and ease of implementation on limited-resource space platforms



in mind. The additional processing power available to ground networks may be used to perform value-
added processing prior to delivery of the data to the end-user, and to implement other aspects of the
data-communication system, that are associated with, but not part of the recommendation.)

Fig. 2. CCSDS Principal Network Service Model




2. Overview of AOS Services and Protocols

The CCSDS recommendation for Advanced Orbiting Systems provides for eight separate services within
a CPN. Two of these (Internet Service and Path Service) are end-to-end services operating across the
entire CPN. The other six (Encapsulation Service, Multiplexing Service, Bitstream Service, Virtual
Channel Access Service, Insert Service and Virtual Channel Data Unit Service) are provided by the
SLS.

In keeping with the layered design principle of other major protocols, the CCSDS AOS recommendation
provides at the bottom level, the Physical Layer. A SLS has available to it, a single physical space
channel (either a space-ground link or a space-space link). To allow the transmission of multiple
higher-level data-stream over the space link, the SLS uses the concept of Virtual Channels (Virtual
LayeD. A single physical space channel is divided (by time-division multiplexing) into several separate
logical data channels, each known as a Virtual Channel (VC). (See Fig. 3.)
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Fig. 8. Virtual Channels



Data flow across each Virtual Channel is sequence preserving, and isochronous. However, the services
using a single Virtual Channel may operate either in asynchronous or isochronous mode. Because of
the nature of various services (and the applications that use them), it may not be wise to dedicate a
single virtual channel to a single data source (e.g., a low-volume Internet Service user may generate
data only once a while.) The recommendation allows for multiplexing of multiple data-streams onto
a single VC. On a conceptually higher level than the virtual layer, the recommendation also defines
a Path Layer, which provides support for the end-to-end Path and Internet Service, and through a
process called encapsulation, provides support for the integration of commercial protocols with the
CCSDS AOS recommendation.

2.1. User Services

The CCSDS AOS recommendation provides for two end-to-end services: Path Service and Internet
Service, both of which operate across the CPN. Since both Internet and Path Services rely on underlying
sub-networks, which may not be sequence preserving, end-to-end data transfer using these services is
defined to be non sequence-preserving. The Space Link Subnetwork, however, does preserve sequence.

2.1.1. Path Service
The Path Service is implemented using a special-purpose protocol designed by the CCSDS, optimized to
handle telemetry data (e.g., measurement data from payload instruments), which is characterized by
moderate to very high data rates, large volumes of structured, delimited data units between fairly static
source and destination associations. The Path Service provides high processing speed and efficiency at
the cost of flexibility.

To support the Path Service, Logical Data Paths (LDPs) which identify the fixed route between the
source/destination pair are preconfigured by management. Each LDP is uniquely identified by a Path
Identifier. Data is relayed across the CPN by tagging each packet with the thin Path identifier, rather
than extensive global source-destination routing information. Routing decisions are made by using the
Path ID as an index in routing tables supplied by management, giving the next point in the data flow.

The protocol data unit of the Path Service is called a CCSDS Path Protocol Data Unit (CP_PDU) and
follows the format of the Version-1 CCSDS Packet, which will be described later.

The Path Service offers two service options: (i) a Packet service transfers CP_PDUs preformated by
the user, intact across the CPN, and (ii) an Octet String service transfers delimited strings of user
octets (8-bit words) across the CPN, by building them into CP_PDUs on the user‘s behalf.

The Path Service is available only in asynchronous mode.

2.1.2. Internet Service

The CCSDS Internet Service complements the Path Service by providing a large degree of flexibility
in support of interactive applications at the cost of speed and efficiency. The CCSDS has chosen the
commercially supported ISO 8473 connectionless network protocol for use within the Internet Service,



allowing space missions to exploit the rich upper-layer service structure of the OSI. This protocol fea-
tures full addressing of the source and destination Service Access Points (SAPs), and the possibility
of partial or full source routing, at the expense of a larger and more complex communications header
than is provided within the Path Service.

This service is expected to be used for intermittently transferring, at low data-rates, low-to-moderate
volumes of structured, delimited data from a single source to a single destination. This service could
be used to support, for example, real-time interactive command and control operations, file transfer
and interactive operations like electronic mail and remote-terminal access.

Within the SLS, the ISO 8473 packet is encapsulated into a CP_PDU using the Encapsulation Service
(to be explained later) provided by the SLS.

The Internet Service is available only in asynchronous mode.

The SLS, which forms the core of the CPN supports bi-directional transmission of Path and Internet
Service data units. It also provides six other services which do not extend further through the CPN.

Transmission of data across space-space and space-ground links poses problems unique to this envi-
ronment. The CCSDS has designed customized protocols that make efficient use of the channel, and
at the same time, make channel characteristics invisible to the higher layers.

The CCSDS Data-Link Layer (Physical Layer) uses fixed-length frames of data, with boundaries delim-
ited by a 32-bit pseudo-noise encoded synchronization marker. A Virtual Channel identifier (VCID) is
inserted into each frame header, allowing the implementation of a number of VCs on the same physical
link (Virtual Layer). The basic protocol data unit of the Virtual Layer is known as a Virtual Channel
Data Unit (VCDU).

To clean up the noise introduced by the low-SNR Physical Layer, two optional error-control schemes
may be implemented: abit-oriented convolutional code to encode the entire data stream, and/or a block-
oriented Reed-Solomon code. The Reed-Solomon Code may be applied to selective Virtual Channels; a
Reed-Solomon encoded VCDU is known as a Coded VCDU (CVCDU), and supports almost error-free

transmission across the space-link.

Each spacecraft in the domain of the CCSDS AOS recommendation is assigned a unique Spacecraft
Identifier (SCID). (In some cases, a more advanced space platform may be assigned more than one
SCIDs.) The SCID is inserted into the frame header of each frame in the stream of VCDUs/CVCDUs
generated by the spacecraft.

2.1.8. Virtual Channel Data Unit (VCDU) Service

In some AOS configurations, a spacecraft generating its own stream of VCDUs/CVCDUs (identified
with its own SCID) may wish to accept a stream of VCDUs/CVCDUs that has been generated with
another spacecraft (with a different SCID). The two streams may then be merged for transmission
across a single space-link.

The VCDU Service allows such independently created VCDUs/CVCDUs from a guest spacecraft to be
inserted frame by frame into the data stream of the host spacecraft without any protocol checking.



This service is available only to “trusted” guest users, who are certified during the design process to
ensure that the independently created data units do not cause protocol violations.

2.1.4. Virtual Channel Access (VCA) Service
The VCA Service provides a facility whereby a project may transfer private service data units (which
have size exactly equal to the fixed-length data-field of one dedicated VCDU/CVCDU), and of unknown
content, across the SLS. The VCA Service is likely to be used to transmit high-rate video, telemetry
information, or a privately encrypted data block.

2.1.5. Bitstream Service

The Bitstream Service allows a string of bits, whose internal structure and boundary is unknown to
the. data transmission system, to be transmitted across the space link. The Bitstream Service breaks
down the stream of bits from each SLS user into blocks called Bitstream Protocol Data Units (B_PDUs)
which are sized to exactly load the fixed-length data-field of one dedicated VCDU. (Fill data may be
added and removed transparently as necessary to match the bitstream to the fixed length data field.)

Bitstreams from different users may not be multiplexed onto the same virtual channel.

The Bitstream Service was originally intended primarily to support the bit-oriented replay of on-board
tape recorders. The transfer is sequence preserving and may be either asynchronous or isochronous.
(Isochronous transfer is provided with a specified maximum delay and a specified maximum jitter at
the service interface. High rate video data may use this service in the isochronous mode.)

The format of the B_PDU is as shown in Fig. 4.

B_PDU Header
Spare | Bitstream .
Data B_PDU Bitstream Data Zone
Pointer
2 14

Fig. 4. Bitstream Protocol Data Unit (B_PDU)
SPARE (Bits 0-1) Currently undefined by CCSDS, Shall be set to “00”.

Bitstream Data Pointer (Bits 2-15) When incremented by one, gives the location of the last valid
user data in the Bitstream Data Zone. Project defined fill follows this position. If there is no fill data,
this is set to “all ones”. If there is no user data, this is set to “all ones minus one”.

10



2.1.6. Insert Service

The Insert Service allows small fixed-length, octet-aligned service data units to be transferred isochro-
nously across the SLS in a mode which efficiently utilizes the channel at relatively low data rates. When
activated, the Insert Service is implemented by establishing a small Insert Zone in every frame that
is transmitted across the particular Physical Channel, and by placing the Insert Service Data Units
in this zone. (See Fig. 6-8.) When the Insert Service is used, the Insert Zone must be present in all
Virtual Channels that share the same Physical channel, and its length is established by management.
Since the size of the insert zone in each frame, and the size of each frame are fixed, a regular sampling
interval is provided, and the Insert Service is therefore isochronous. VCA Service and Insert Service
are mutually exclusive over a SLS: A SLS supporting Insert Service will not allow VCA Service users.

The most likely use of the Insert service is to support digitized audio over low-rate space links.

2.1.7. Encapsulation Service

The Encapsulation Service supports end-to-end services by allowing variable-length, octet aligned “for-
eign” service data units, that are not formatted as CP_PDUs to be transferred transparently through
the space link. The CCSDS Path Packet Service, which uses CP_PDUs is directly compatible with
the Multiplexing Service (to be explained later), and therefore bypasses the Encapsulation Function.
The CCSDS Internet Service however uses the ISO 8473 packet format and uses this Service. The
Encapsulation Service simply takes any delimited service data unit (in a non Version-1 CCSDS Packet
format) (e.g., the ISO 8473 packet) and encapsulates it within a special Version-1 CCSDS “carrier”
Packet called the Encapsulation Protocol Data Unit (E_PDU), which is compatible with the Multiplex-
ing Service. At the other end of the SLS, the carrier Packet is stripped off, and the original service data
unit continues its path through the CPN. The Encapsulation Service therefore provides the flexibility
to support different OSI network-layer protocols across the CPN.

The format of the E_PDU is as shown in Fig. 5. This is identical to the structure of the CCSDS
Version-1 Packet.

g Primary Header —
Packet Identification Packet Sequence | Packet E_PDU Data Field
Control Length
Version |Type| Secondary | AP_ID|Sequence] Packet
Number Header or Flags |Sequence] (One E_SDU)
Flag PC_ID Count
3 1 i 11 2 14 16 N Octets

Fig. 5. Encapsulation Protocol Data Unit (E_PDU)
Version Number (Bits 0-2) Set to “000” indicating a Version-1 CCSDS Packet.

Type (Bit 3) Unused. May be set to “0” or “1”.
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Secondary Header Flag (Bit 4) Set to “0”, since there is no secondary header in the E_PDU.

Application Process ID (AP_ID) or Packet Channel ID (PC_ID) (Bits 5-15) The assignment of
this field is as shown in Table. 1.

PC_ID (11 Bits)
(Hexadecimal - Utilization
Equivalent)
- 7FF Reserved by CCSDS to identify a “Fill Packet”.
7FE Reserved by CCSDS to Identify a Flow of

Encapsulated ISO 8473 Packets.

7F0-7FD Reserved by CCSDS for possible Future Use.

000-7EF Available for User Domain Assignment by
Project Organizations.

Table. 1. Packet Channel/Application Protocol Identifier Allocations

Sequence Flags (Bits 16-17) Set to “11”.

Packet Sequence Count (Bits 18-31) This field contains a straight sequential count (modulo 16384)
which numbers each E_PDU generated on each reserved Packet Channel (identified by the PC_ID).
The count shall be incremented independently for each Packet Channel. If the Packet Channel contains
fill data (PC_ID = “7FF” (hexadecimal)), the count shall be permanently set to the value “all zeros”.

Packet Length (Bits 32—47) This contains the binary number corresponding to N -1, where N is the
length of the E_PDU data field in octets.

E_PDU Data Field (Bits 48 onwards) This contains one E_SDU. The length of this field must be an
integer number of octets.

2.1.8. Multiplexing Service

To efficiently utilize the space channel, variable-length service data units must be packet together so
that they fully occupy the fixed-length data-zone of the CVCDU. Incoming CCSDS Packets are simply
concatenated back-t,o-back‘, until they fill the data-zone of the CVCDU. The header of the Multiplexing
Protocol Data Unit (M_PDU) (the data unit constructed by the Multiplexing Service) contains a pointer
to the boundary between the first Packet pair, and individual Packet length fields then delimit the other
boundaries. Multiplexing service can therefore accept both Encapsulation Service data units (encapsu-
lated Internet Service packets) and Path Service data units and concatenate them within one Virtual
Channel if desired. Several “Packet Channels” (each locally identified with an Application Process ID
(APID)) may thus concurrently share a VC using the Multiplexing Service. (Path Service users with

12
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a higher data-rate requirement may use dedicated VCs.) The demultiplexing and delivery of CCSDS
Packets is achieved by examining the APID and Packet Length fields in the Packet headers. Since
these fields are not protected against errors, demultiplexing and delivery can be performed reliably
only if the the M_PDUs are placed within Reed-Solomon protected CVCDUs.

The format of the M_PDU is as shown in Fig. 6.

M_PDU Header M_PDU Packet Zone
Spare First End of CCSDS CCSDS Start of
Header CCSDS Packet Packet CCSDS
Pointer Packet #k+1 Mg #m Packet
#k #m+1
5 11

Fig. 6. Multiplexing Protocol Data Unit (M_PDU)
Spare (Bits 0—4) Currently undefined by CCSDS. Shall be set to “00000”.

First Header Pointer (Bits 5-15) When incremented by one, gives the location in octets of the first
CCSDS Packet header in the M_PDU Packet Zone. If the Packet Zone contains fill data, it is set to
“all ones minus 17, and if the Packet zone does not contain the start of any header (if a packet being

multiplexed is too long), it is set to “all ones”.

M_PDU Packet Zone (Bits 16 onwards) Contains a variable number of (variable length) CCSDS
Version-1 Packets (E_PDUs and CP_PDUs). The first and last packet of the M_PDU may not be com-
plete, since the first one may be a continuation of a packet begun in the previous M_PDU, and the last
one may continue into the next M_PDU.

2.2. Grades of Service

The various types of data transmitted over the space link may not have the same requirements for
data quality and reliability. For instance, asynchronous packetized data transmission requires virtu-
ally error-free service, whereas raw video-data can tolerate fairly high error-rate without noticeable
degradation. The CCSDS therefore provides three different Grades of Service. These Grades of Ser-
vice are only defined across a space link, and do not extend automatically to end-to-end service. The
error-control is provided using a combination of error detection, error correction and retransmission.

Each VC supports a single Grade of Service.

13



2.2.1. Grade 3 Service

Grade 3 Service provides the lowest quality of service. Data transmitted using Grade 3 may be incom-
plete (due to lost packets) and there is a moderate probability of transmission induced errors being
present. Further, data packet sequence may not be preserved.

The raw VCDU (without Reed-Solomon encoding) supports Grade 3 service. The error-rate therefore
is that of the underlying Physical Layer (which may be encoded with a convolutional code). To protect
critical VCDU Header routing information, a special header error-control code is provided. To detect
errors in other fields of the VCDU, a CRC error control code (which covers the entire VCDU) is provided.

Grade 3 is not suitable for asynchronous packetized data transfer because of inadequate protection of
control information in the packet headers. The structure of a Grade 3 frame is as shown in Fig. 7.

Version | VCDUId. | VCDU | Signalling | VCDU | VCDU VCDU Data Zone VCDU

Number Count Header | Insert Error
SCID|VCID Replay|Spare| Error Zone Control

Flag Control Field

Optional
2 8 6 24 1 7 16 Varies Varies 16

~ap——— VCDU Primary Header =i S
VCDU

Trailer

Fig. 7. Grade 3 CVCDU

2.2.2. Grade 2 Service

Grade 2 Service provides a much higher quality of service than Grade 3. Data transmitted using
Grade 2 may be incomplete (due to lost packets), but data sequencing is preserved and there is a very
low probability of induced transmission errors being present. The structure of a Grade 2 frame is as
shown in Fig. 8.

Version | VCDUId. |CVCDU| Signalling |CVCDU|CVCDU CVCDU Data Zone CvVCDU| CVCDU
Number Count Header {. Insert Error Reed-
SCID]VCID Replay | Spare| Error Zone Control | Solomon
Flag | Control Field [Check Bits
Optional | Optional Optional
2 8 6 24 1 7 16 Varies Varies 16 Varies
~ap——— CVCDU Primary Header =—————f— -
CVCDU
Trailer

Fig. 8. Grade 2 CVCDU
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The Grade 2 Service is implemented by using a powerful Reed-Solomon code. Because the overhead
induced by this code is small, and is fully compensated by the huge coding gain, many missions
implement the Grade 2 Service option only.

2.2.3. Grade 1 Service

Data transmitted using the Grade 1 Service option enjoys the highest reliability: Packets are delivered
in sequence, without duplication or deletion, and with a very low probability of induced transmission
erTors.

Grade 1 Service is implemented using a Reed-Solomon forward-error correction scheme to correct most
transmission errors, and an Automatic Repeat Queuing (ARQ) retransmission scheme (Go Back n) to
retransmit those packets that are found to contain uncorrectable errors. A Space Link ARQ Procedure
(SLAP) has been developed, which uses two paired VCs operating in opposite directions to implement
bi-directional Grade 1 Service. The structure of a Grade 1 frame is as shown in Fig. 9.

Version | VCDUId. JCVCDU{ Signalling |CVCDU[CVCDU | CVCDU Data Zone [LACWCVCDU| CVCDU
Number Count Header | Insert Error Reed-
SCID}{VCID Replay} Spare| Error Zone Control | Solomon
Flag Control Field {Check Bits
Optional | Optional Optional
2 8 6 24 1 7 16 Varies Varies 48 16 Varies
~ag——— CVCDU Primary Header ———————— e
‘ CvCDU
Trailer

Fig. 9. Grade 1 CVCDU

Note that an implementation is not required to support all three Grades of Service. The Grades of
Service are not signaled by protocols, but are rather set up by management.

Grade of | Retransmission | Reed-Solomon Header CRC Error
Service Protocol Encoding Error Control Control
Grade 1 M M Oo/M 0]
Grade 2 N M Oo/M O
Grade 3 N N M M

Table. 2. Features of SLS Grades of Service
N — Not Applicable, M — Mandatory, O — Optional. O/M — this

feature is usually optional but may be mandatory in some cases.
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1 2 3 Grade of

Service
I{|A]JI|A}I]| A ] Transfer
Type
SLS Services
Multiplexing X X
Encapsulation X X
Bitstream X | x| x| x| x
Virtual Channel Access x x| x| x| x
Virtual Channel Data Unit x| x| x| x
Insert X X

Table. 8. Allowable Transmission Types and Grades of Service
x: allowed; I: isochronous mode; A: asynchronous mode.

2.3. Physical Layer

The Physical Layer supports the transmission of a sequence of bits across a single space-link. The Phys-
ical Layer encompasses all those components of the CCSDS AOS recommendation that are defined on a
bit-level. These include frame synchronization, the use of NRZ-M/NRZ-L notations, convolutional en-
coding and pseudo-randomization. The Physical Layer accepts a sequence of frames (VCDUs/CVCDUs)
from the Virtual Layer, and converts it into a data stream. In doing so, a synchronization marker called
an Attached Synchronization Marker (ASM) is attached to the beginning of each frame (and the frame
is pseudo-randomized if required), converting it into a Channel Access Data Unit (CADU) and the
sequence of CADUs are concatenated to produce a bitstream. The frame (or its pseudo-randomized
form) occupies the data zone of the CADU called the Channel Access Slot. (See Fig. 10.) Most of the
bit-oriented Physical Layer functions operate on this bitstream.

. SYNC
Previous 3 CHANNEL ACCESS SLOT Next
CADU —%— | MARKER , — CADU
32 Up to 10,200 bits
~afj— Channel Access Data Unit =i
(CADU)

Fig. 10. Structure of the CADU

A functional overview of the physical layer, showing the various options available for control of the
transmitted bit-stream is shown in Fig. 11.
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Frame

VCDU /CVCDU

Pseudo-Randomization . No Pseudo-Randomization

0001 1010 1100 1111 1111 1100 0001 1101

or
00110101 0010 1110 1111 1000 0101 0011

CCSDS Attached Sync Marker (ASM) (Hex: 1ACFFC1D)
or CCSDS ASM for Embedded Data Stream (Hex: 352EF853)

Sync.3l\2darker Channel Access Slot

Channel Access Data Unit (CADU)

soe CADU k-2 CADU k-1 CADUk CADU k+1 see

P |
NRZ-M NRZ-L
L ]
| |
Convolutional Coding No Convolutional Coding
l |
|
Physical Medium
Sequence of bits

Fig. 11, Functional Overview of Physical Layer

2.3.1. Pseudo-Randomization
In order to maintain bit synchronization on an asynchronous link, the receiver requires that the in-
coming signal have a minimum density of bit transitions (so that the clock may be extracted). If a
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sufficient bit-transition density is not assured by other means (e.g., choice of modulation scheme or use
of the convolutional code) then a pseudo-randomizer is required. Its use is optional otherwise.

The method for ensuring adequate bit-transitions is to XOR the data sequence with a pre-determined
binary pseudo-random sequence. The sequence to be used is specified by the polynomial

7 5

hx) =28 +x7 +x5 +28 + 1.

The sequence generator is kept initialized to an all-ones state during the Synchronization Marker
period. The first 40 bits of the sequence are as follows

1111 1111 0100 1000 0000 1110 1100 0000 1001 1010 ...

The left-most bit above is XORed with the first bit of the VCDU. The logic diagram of the pseudo-
randomizer is shown in Fig. 12.

VCDU/CVCDU Data In ———» ®—— Data Out
4L

[

M
™%

Pseudo-Random
D D D D D Sequence

——> 0
—>0

Initialize to "all ones" during ASM period

Fig. 12, Pseudo-Randomizer Logic Diagram

2.3.2. Frame Synchronization

Frame synchronization is the process of detecting the boundaries between frames. It is necessary for
proper decoding of the Reed-Solomon code block, synchronization of the pseudo-randomizer and assists
in the synchronization of the Viterbi decoder.

Synchronization is achieved by using a fixed block-size for the frame (i.e., all VCDUs/CVCDUs trans-
mitted over a link have to have the same length) and by inserting a CCSDS Attached Sync Marker
(ASM) at the head of each frame. Synchronization is acquired at the receiving end by recognizing
the specific bit pattern of the ASM in the received data stream. Synchronization is then customarily
confirmed by making further checks. The ASM used shall be the 32-bit marker

0001 1010 1100 1111 1111 1100 0001 1101
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corresponding to the hexadecimal number 1ACFFC1D. The first bit transmitted shall be the leftmost
bit, and the last bit transmitted shall be the rightmost bit.

A different ASM may be required when another data stream (e.g., a stream of transfer frames played
back from the tape recorder played in the forward direcﬁon) is embedded within the data field of the
transfer frames of the main stream appearing on the link. The ASM for the embedded data stream (to
differentiate from the main data stream) shall consist of a 32-bit marker

0011 0101 0010 1110 1111 1000 0101 0011

corresponding to the hexadecimal number 352EF853.

2.3.3. NRZ-M and NRZ-L Options

Two conventions are provided to convert the binary data into a modulating waveform. In the NRZ-L
notation, a “1” represents one level (usually high), and a “0” represents the other level (usually low).
In the NRZ-Mnotation, a “1” represents a change in level, and a “0” represents no change in level. The

NRZ-M notation has the added advantage of being immune to phase-reversal (i.e., complementation of
all bits). See Table. 4.

Last Output Bit | Current Input Bit | NRZ-M Output | NRZ-L Output

0
1
0

= =]
bt O = O
QO = O

1
Table. 4. NRZ-M/NRZ-L Encoding

Decoding is done according to Table. 5 below.

Last Received Bit | Current Received Bit | NRZ-M Output | NRZ-L Output

- O
= o = o
c = o

QO = = O

Table. 5. NRZ-M/NRZ-L Decoding

2.3.4. Convolutional Encoding/Decoding

In case the coding gain provided by the other coding methods is not enough, an option is provided to
encode the data using a rate 1/2 convolutional code in Fig. 13. The bit in position 1 is the first bit
to be transmitted, the bit in position 2, the second. The symbol corresponding to the second bit is
inverted to provide adequate transition density (otherwise, a long sequence of zeros at the input of the
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convolutional encoder would result in a corresponding sequence of zeros at the output). The decoder is
a maximum-likelihood (Viterbi) decoder with at least 3-bit quantization for soft decisions. When the
convolutional decoder makes a decision error, this results in a burst of errors. The Reed-Solomon code

(especially with an interleaving depth greater than one) provides good protection against burst errors.

a0, oD, gAY o T\
Position 2
Switch
Input D D D D D D = /—» Output
Position 1
R . 2 X

D: One Unit Delay

Fig. 18. Rate 1/2 Convolutional Encoder

2.4. Virtual Layer

In this section, we give a more detailed description of the Virtual Layer—which corresponds to the
implementation of Virtual Channels. The Virtual Layer provides for the establishment of a number (a
management parameter) of Virtual Channels over the same physical channel. Each Virtual Channel
operates independently and provides for the transmission of a stream of VCDUs/CVCDUs. A functional
block-diagram of the Virtual Layer is presented in Fig. 14.
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M_PDUs / B_PDUs / VCA_PDUs

No SLAP

SLAP

No Insert

Insert

VC_PDU Header

|

|

No VC_PDU Header Error Control

VC_PDU Header Error Control

No VC_PDU Error Control

VC_PDU Error Control

VCDU Service
User

Reed-Solomon Coding

No Reed-Solomon Coding

VCDU Service

[

]

Frame

Fig. 14. Functional Overview of the Virtual Layer

2.4.1. Reed-Solomon Error Control

One of the functions of the Virtual Layer is the construction of frames. Depending on the Grade of
Service implemented, the frame may be a VCDU (uncoded) or a CVCDU (coded). For a Grade 1 or
Grade 2 Service option, Reed-Solomon‘error-control coding is implemented. A functional block-diagram
description of the procedure is presented in Fig. 15. The Reed-Solomon Coding Function performs
the action of construction of a CVCDU at the transmitting end, and error correction/detection of the
received CVCDU at the receiving end. If the error was uncorrectable, a flag is set to inform higher

level functions about this.
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VC_PDU | VC_PDU VC PDU VC_PDU
Primary | Insert Zone Data Unit Zone Trailer
Header | (ontional) ‘ (Optional)
Reed-Solomon Encoder
Reed-Solomon Code Data Space gﬁzcl;(agl?s
VC_PDU | VC_PDU VC_PDU VC_PDU  |Reed-Solomon
l;g:g"y Insert Zone Data Unit Zone Trailer Check Bits
€T 1 (Optional) (Optional)
Coded Virtual Channel Data Unit (CYCDU)
(VC_PDU)
(2040, 1784) code used with
Interleave depthup to 5
Interleave VC_PDU 32-Bit Compatible
Depth Length VC_PDU Length
1 255 octets 2040 bits 252 octets 2016 bits
2 510 octets 4080 bits 508 octets 4064 bits
3 765 octets 6120 bits 756 octets 6048 bits
4 1020 octets 8160 bits 1020 octets 8160 bits
5 1275 octets 10200 bits 1260 octets 10080 bits

Table of Standard VC_PDU Lengths
(For any link transmitting CVCDUs)

2.4.2. VCDU Error Control

For those frames that are not protected with a Reed-Solomon code (Grade 3) it is mandatory to imple-
ment VCDU Error Control Coding, which provides excellent error-detection for VCDUs. (For CVCDUs,
the Reed-Solomon Encoder provides excellent error-detection capabilities, even when it cannot correct
the error, and VCDU Error Control Coding is therefore not required.) The VCDU Error Control field
contains a 16-bit cyclic redundancy code (CRC) which provides the capability to detect transmission
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errors. Since the Header Error Control Code (discussed later) independently protects key elements
of the VCDU Primary Header, the main use of the CRC is to detect errors occuring elsewhere in the
VCDU structure. '

The CRC is characterized by the generator polynomial ‘

12

g)=x16+x12 42541,

Both the encoder and the decoder are initialized to “all ones” at the start of each VCDU. Parity gen-
eration is performed over the entire VCDU (excluding the last 16-bit VCDU Error Control field), and
the generated parity symbols are inserted into the final 16-bit VCDU Error Control field. The logical
block-diagram for the CRC is as shown in Fig. 16.

0
1 Pos 2

T~

Pos 1
A
S-LHLHCHCHCHH- ot
Pos2 Pos 1

Initialize to all ones at beginning of each frame

Switches in Pos 1 for Data: First n - 16 bits |
Switches in Pos 2 for Parity: Last 16 bits Output

n: Size of Frame in bits (Excluding RS Parity field if any)

Fig. 16. A Shift-Register Implementation of VCDU Error Control Coding

2.4.3. VCDU Header Error Control

Some of the critical fields in the Primary header of the frame may be protected by a Header Error
Control Code, whose check bits are contained within the 16-bit VCDU Header Error Control Field.
This error-protection is optional for Grade 1 and Grade 2 Services (CVCDUs) because of the error-
protection provided by the Reed-Solomon Code, and is mandatory for Grade 3 Service. The primary aim
is to provide error-protection to critical fields of the frame, corruption of which may result in protocol
errors like delivery of frames to the wrong destination, etc..

The code used is shortened Reed-Solomon (10,6) code over GF(16), i.e., 4 bits per symbol. This code is
capable of correcting up to two symbol errors within the R-S codeword. The field GF(16) is generated
using the irreducible polynomial

Fx)=x*+x2+1
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over GF(2). The generator polynomial for the code is

gx) = (x+a®)x+ o)+ a®)x+ )

4 3,3 2

=2ttt rax?+alx+1

over GF(16) where the mapping from group symbols to 4-tuples is:

0 = 0000, a° = 0001, & = 0010, & = 0100,

o2 = 1000, o = 0011, a® = 0110, &® = 1100,

o’ = 1011, ® = 0101, &® = 1010, ? = 0111,
all = 1110, a2 = 1111, o3 = 1100, 2™ = 1011.

Within a R-S Symbol, the transmission is from left to right. The Primary Header bit-position to R-S
symbol mapping is:

0,1,2,3—~0 4,56,7—1
8,9,10,11 —2 12,13,14,15— 3
40,41,42,43 — 4 44,45,46,47 — 5
48,49,50,51 — 6 52,53,54,55 — 7
56,57,58,59 — 8 60,61,62,63 — 9

2.5. Path Layer

The Path Layer provides the interface between the user-services (except VCA Service and VCDU Ser-
vice) and the Virtual Layer. It accepts user-data in various formats (depending on the kind of service
being used) and converts it into CP_PDUs. This conversion may be done by the user himself (as in
Path Packet Service) or using the Encapsulation Service on the user’s behalf. The CP_PDU is the
functional data unit of the Path Layer, and has the same format as the E_PDU shown in Fig. ??. The
Multiplexing Service provides an interface between the Path Layer and the Virtual Layer by converting
the sequence of variable-length Version-1 CCSDS Packets into a sequence of fixed-length blocks (called
M_PDUs), each sized to exactly fill the data zone of a VCDU. The functional over-view of Path Layer is
given in Fig. 17.
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Path Encapsulation  Multiplexing Path Bitstream VCA

Internet SLS-SLS  Octet Serv. SLS - SLS Service Service Packet Serv. Service Service
End-User Subnet End-User Subnet User User End-User User User
Path Path
Internet Internet Octet Path Packet
Service Gateway Service Gateway Service
Encapsulation
Multiplexing Bitstream

M_PDU/B_PDU/VCA_PDU

Fig. 17. Functional Overview of the Path Layer
All fuctions related to the path layer have been discussed in previous sections.

This completes our overview of the CCSDS-701.0-B-2 Recommendation for Advanced Orbiting Systems.
In the next section, we discuss issues related to the design of a data generator and channel simulator

for the above protocol.

8. AOS Data Generator/Simulator Project Design

In this section, we describe a design for the implementation of a simulator for the transmitter and
channel sections of a SLS. The aim of this software is to provide a means for the user to generate a
data-stream that resembles the data stream received at the receiver section of the SLS after being
formatted using the CCSDS AOS recommendation at the transmitter section, and being transmitted
over the space channel (possibly with transmission induced artifacts like channel noise). This shall in
turn allow a user—who is interested in building a receiver section for an AOS system conforming to the
CCSDS 701.0-B-2 recommendation—to test his software or hardware implementations at each stage,
and to allow diagnostic testing of the receiver under various protocol errors caused by the occurrence of
uncorrected channel errors in critical header sections of the data units. The software provides a means
for the user to easily specify the contents of any field or sub-field of any packet or frame in the data
stream, and also to specify the error in any location. An error model may also be used to inject errors.
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3.1. Object-Oriented Programming

A goal of this project is to pi‘ovide a structured implementation of the complex CCSDS AQOS protocols
described in the previous section. Upon careful analysis of the structure of the protocol and the data
types, it was agreed that an object-oriented approach is best suited to this task. The protocol itself may
be viewed as a collection of data types (e.g., the Version-1 CCSDS Packet, M_PDUs, etc..) and functions
(e.g., the Encapsulation Function, the Multiplexing Function, procedures for error-encoding etc..). The
data types exhibit a strong similarity between themselves—each packetized data type consists of a
storage space for bits, and field information. On the other hand, the manner in which various fields are
processed is very specific to each data type. This is an ideal application of object-oriented programming:
those aspects of the data types that are common to all, are encapsulated within a common implemen-
tation, and then the specific data types are created from this “parent class” through the process of
inheritance. Similarly, the various functional blocks of the protocol may be viewed as operations on
these abstract data types, and this allows a cleaner implementation.

In addition to the advantages of object-oriented programming as applied to this project, the other
advantages of this technique are all still valid: a structured programming style with increased flexi-
bility, readability and reusability of code, all at no cost to efficiency, through the use of a standardized
language that supports object-oriented programming: C++.

3.2. Object-Oriented Packetized Data Representation
At the heart of the AOS Data Generator/Simulator is a C++ class, called packet, which may be used
to represent any packetized, formatted binary data unit.

A structured data unit can be described in terms of a sequence of bit-positions—which may be further
grouped into higher level structures called fields—and the binary data stored at each of those bit
positions. A field may contain within it, a number of smaller fields (called sub-fields). Further, it
should be possible to access the data (both read and write) at the bit level, word (or octet) level,
and the field level. For the representation of packetized data, we decided to create the packet class,
which fulfills the above requirements, with the emphasis being flexibility, rather than efficiency. (See
Fig. 18 below.)

It was decided to represent the field-structure of the packet as an ordered set of triples: the field-name,
the starting bit-position and the length of the field (which is itself a class, called field). The ordering
of the fields within the packet is user-specified. (Any gain in efficiency due to a ordering of the fields
sorted in some fashion will be ekpect,ed to be small, since there are only a handful of named fields
in any realistic packetized data structure. At the same time, preserving the order in which the user
specifies the fields may be of some convenience to the user.)

To store the binary data, and to provide both bit-level and octet-level access to it (field-level access
to the data can be defined in terms of these), another class bin_array is created. This class simply
allocates a contiguous storage space (consisting of a sequence of machine words) of adequate size, and
provides functions to access this space in a structured manner.
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Octet Interface Bit Interface Field Interface

Field Information

Field 0
Binary Data Field 1
Class bit_array ‘ Field n

Class packet

Fig. 18. The Structure of the Packet Class

3.3. Program Structure

The CCSDS 701.0-B-2 recommendation for AOSs is meant to be an efficient protocol for space data
systems. To increase the efficiency of the protocol, and at the same time, to allow flexibility in im-
plementation, many optional features of the protocol are designated as “management functions” and
“management selected options”, which are to be decided by the parties involved in the project. The
manner of selection and configuration of these features in not a part of the protocol, but the behaviour
of the protocol is dependent on the specific choices made. Once decided, these options are fixed for the
duration of the life of the protocol (i.e., if a change is made, the system may need to be reinitialized,
and restarted). We have similarly divided the implementaton of the protocol into two sections: the
Management Function, and the Data-Generation functions, each with a separate user-interface to the
software. These interfaces are separately termed the Management Interface, and the User Interface.
The overall structure of the program is as shown below.
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Fig. 18. Logical Structure of the Data Generator/Simulator

3.3.1. Management Functions
The user performs management functions by inserting commands in the management file, which com-
prises the management interface to the program. The structure of the management file is described
below. For a detailed account of the management interface, see [5].
management_file
—  NUM_CHANNELS = decimal_number ;
channel_list
end of file

The first command in the management file is a declaration of the number of virtual channels that are
supported on the SLS. The number of virtual channels must be a positive number num_ve (> 0). and
the virtual channels are numbered 0, 1,...,num_vc — 1. After that must follow a list of exactly num_uvc
channel configuration commands, one for each channel.
channel_list

— channel channel ... channel (repeated num_vc times.)

Each channel configuration command corresponds to the set up of the management parameters related
to one virtual channel. There is no restriction on the order in which the channels are configured. Each
channel specification is as follows:

channel
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— CHANNEL decimal_number
BEGIN
VC_PDU_format
VCDU_ID_specification
END

The first line of a channel specification specifies the number of the virtual channel being specified. We
call this number ve. The number ve must be in the range 0 <= vc <= num_vc — 1. The specification
of the channel number vc is enclosed within the BEGIN ... END block. First after the BEGIN block is
the VC_PDU format specification. It corresponds to the management functions that specify the format
of the VC_PDU (both the Reed-Solomon encoded form: CVCDU, and the non-Reed-Solomon encoded
form: VCDU) that are transported over the virtual channel. Each virtual channel supports only a
single format for the VC_PDU. A virtual channel is uniquely identified by the VCDU_ID field of the
VC_PDU. (All VC_PDUs transmitted over the same virtual channel must have the same VCDU_ID
field.) The VCDU_ID_specification is the assignment of the VCDU_ID field. Both of these are described

in more detail below.

VC_PDU Format Specification

The VC_PDU specification is enclosed within a BEGIN ... END block. Its syntax is as follows:

VC_PDU_format

—  VC_PDU

BEGIN
THIRTY TWO_BIT query ;
SIZE_OPTION decimal_number ;
REED_SOLOMON_ENCODING query ;
HEADER _ERROR_CTRL query ;
CRC_ERROR query ;
OPERATIONAL CTRL query ;
INSERT_ZONE decimal_number ;
END

where query matches either yes (YES, Y, yes, y)orno(NO, N, no, n).
THIRTY TWO_BIT specifies whether 32-bit compatibility is required or not.

SIZE_OPTION specifies the size option chosen. When Reed-Solomon encoding is enabled, the following
five size options are available:
Size Option Size (Octets) 32-bit Compatible Size (Octets)

1 255 252
2 510 508
3 765 756
4 1020 1020
5 1275 ' 1260
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When Reed-Solomon encoding is disabled, the size is an integral number of octets, with a minimum
value of 124, and a maximum value of 1275. In this case, the size option is equal to the size of the
packet in octets.

REED_SOLOMON_ENCODING specifies whether Reed-Solomon encoding is required or not. (If yes, then
the virtual channel supports Grade-1 or Grade-2 service, and if no, then the channel supports Grade-3

service.)

HEADER ERROR_CTRL specifies whether header-error control is implemented. This is mandatory if
REED_SOLOMON_ENCODING is set to no.

CRC_ERROR specifies whether crc-check bits are to be inserted in the trailer. This is mandatory if
REED SOLOMON_ENCODING is set to no.

OPERATIONAL CTRL specifies whether the operational control field is present.

INSERT_ZONE specifies the size of the insert zone in octets. If this number is zero, there is no Insert
zone in the VC_PDU, otherwise an insert zone is created.

VCDU_ID Specification
The VCDU_ID is the identifier for a particular virtual channel, and uniquely identifies the virtual
channel on which, the VC_PDU is transmitted. The value of the VCDU_ID field set here shall be the
default value of the VCDU_ID field of each data VC_PDU transmitted on this channel. The syntax for
specifying the VCDU_ID field (or equivalently, the SCID and VCID fields) is as follows:
VCDU_ID_specification

—  VCDU_ID = bit_sequence;

I [scip = bit_sequence ; VCID = bit_sequence ; ]

The assignment of the VCDU_ID field, or equivalently, the assignment of the SCID and VCID fields
obeys the general syntax for field-assignments discussed in detail in the users manual.

3.3.2. Data-Generation Functions

We described in detail, in the previous section, the various aspects of the CCSDS 701.0-B-2 Recom-
mendation for Advanced Orbiting Systems. An overview of the protocol showing the various modules
and data-paths involved is shown in Fig. 19.
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Fig. 19. Overview of the CCSDS 701.0-B-2 recommendation.

The user performs data-generation functions by inserting commands in the data file, which comprises
the Data Generation Interface to the program. Because of the complex nature of the protocol, the de-
scription of the data-generation and error-injection functions is also quite cumbersome. The structure

of the data file is as follows:

31



data_file
— packet*
transmission_sequence*
output_format
end_of _file

The data file is divided into three parts. The first part consists of construction of data units through
user specifications. The second part is the construction of transmission sequences, based on the the
packets constructed in the first part. The third part is the specification of the output format. The
packets section of the data file consists of a sequence of packet specifications. Each packet specification
is the construction of a single data unit.

The user can declare whether this is to be used as a data packet or an error packet. (Data packets
will get some of their fields initialized in accordance with the format for the CCSDS recommendation.
Error packets will start with all zero’s and the user will need to specify the locations of all the errors
by filling in 1s in the appropriate places.)
packet

— string = [DATA | ERROR] data_unit

where the syntax for the type, header and field_list is dependent on the kind of data-unit under con-
struction. There are five kinds of data units accepted by the program. They are: CP_PDU (CCSDS
Version-1 Packet), M_PDU, B_PDU, VCA_PDU and VC_PDU.

data_unit
— cp_pdu
] m_pdu
| b_pdu
| vea_pdu
| ve_pdu

The details of the constructions of various data unit are described below. The syntax for the construction
of each data unit is enclosed within a BEGIN ... END block.

Construction of CP_PDUs

The construction of a CP_PDU is as follows:

cp_pdu

—  CP_PDU

BEGIN
cp_pdu_construction_header
cp_pdu_field_assignment*
octet_assignment*
bit_assignment*
END
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The keyword CP_PDU signifies that the following data-unit specification is for the construction of a
CP_PDU. The construction is enclosed within a BEGIN ... END block. The first part of the construction
is the header, which is as follows:
cp_pdu_construction_header

— copy_cp_pdu

| new_cp_pdu

A CP_PDU can be constructed in two ways: either an already constructed CP_PDU can be modified, or
a construction can be done from scratch. The first option is useful if a CP_PDU differs only slightly from
another one already constructed. The copy_cp_pdu construction header corresponds to this approach,
and has the following syntax:

copy_cp_pdu
-  COPY_FROM string ;

where string is the name of the already constructed CP_PDU.

The new_cp_pdu construction header corresponds to the construction of a packet from scratch. When a
CP_PDU is to be constructed from scratch, the user needs to specify (i) whether a secondary header is
present or not (and if present, then the size of the secondary header), and (ii) the size of the data-field
of the CP_PDU. The syntax of the new_cp_pdu construction header option allows this:
new_cp_pdu

— sec_header

set_size

sec_header

—  [SEC_HEADER decimal_number ; | nothing]
set_size

—  DATA FIELD SIZE = decimal_number ;

I PACKET SIZE = decimal_number ;

When a secondary header is to be added, the line
SEC_HEADER decimal_number ;

is present, and the decimal_number specifies the size of the secondary header in octets. If not, then the
secondary header is not present. If the packet being constructed is a data packet (indicated by the pres-
ence of the DATA keyword immediately preceding the packet construction), the PACKET_SEC_HDR FLAG
field of the CP_PDU is set to 1 (indicating the presence of a user-defined secondary header). Next, the
size of the packet is specified by specifying the size of the data-field using either the format:

DATA FIELD_SIZE = decimal_number;

in which the total size of the packet is calculated automatically, or by directly specifying the size of the
packet using the format:
PACKET SIZE = decimal_number;

in which case, the size of the data field is adjusted accordingly. In this case, the packet size must be
large enough to accommodate the header (primary and secondary header if any) and a single octet of
data. The decimal_number specifies the size in octets.
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If this is a new construction, and the CP_PDU being constructed is a data packet (indicated by the
presence of the keyword DATA immediately preceding the data-unit construction), the PACKET LENGTH
field of the CP_PDU is set to the correct value. (If it is an error CP_PDU, the complete packet is set to

all zeros (no errors anywhere).)

The assignment of the fields in the CP_PDU follow the syntax:
cp_pdu_field_assignment
—  PRIMARY_HEADER = bit_sequence;
I PACKET_ID = bit_sequence;
| VERSION _NO = bit_sequence;
I PACKET TYPE = bit_sequence;
! PACKET SEC_HDR FLAG = bit_sequence;
| PACKET_APID = bit_sequence;
| PACKET SEQ CTRL = bit_sequence;
I PACKET SEQ FLAGS = bit_sequence;
I PACKET_SEQ COUNT = bit_sequence;
| PACKET LENGTH = bit_sequence;
| PACKET SEC_HEADER = bit_sequence;
| DATA_FIELD = bit_sequence;

where each option is of the form:
field_name = bit_sequence;

and where bit_sequence is either a hexadecimal_number or a binary_number (from the lexical ana-
lyzer):
bit_sequence

— [hexadecimal_number | binary_number]

The field PACKET SEC_HEADER is only allowed if there exists a user-defined secondary header.

The bit_sequence is a sequence of zero or more bits. (If it is a binary_number, then the bit_sequence is
directly equal to the binary_number sequence, after stripping off the leading #. If on the other hand,
this is a hexadecimal_number, then it is converted into the equivalent binary_number by substituting
each hexadecimal symbol with its equivalent 4-bit representation, and stripping off the leading $.)
Each field specification of the form:

field_name = bit_sequence;

corresponds to the following assignment: The first bit of the bit_sequence is assigned to the first bit of
the field, the second bit to the second bit, and so on, until either (i) all the bits in the field have been
specified, or (ii) all the bits in the bit_sequence have been consumed, or (iii) both. If the bit_sequence
is shorter than the length of the field, the remaining bits of the field remain unchanged; if longer, then
the extra bits in the bit_sequence are discarded.

After the field assignments, follow a sequence of octet assignments. This allows the user to directly
specify the contents of specific octets in the packet. The assignment of octets follows the syntax:
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octet_assignment
— OCTET ( decimal_number ) = bit_sequence ;

Consider an assignment of the form:
OCTET (n) = bit_sequence;

In this case, the assignment is done as follows: The first bit in the bit_sequence is assigned to bit 0 in
the octet n, the second bit to bit 2 ...the 8th bit to bit 7, the 9th bit to bit 0 of octet n+1, ..., until either
(i) all the bits in the bit_sequence have been used, or (ii) all the bits in the packet starting from bit 0 of
octet n have been assigned, or (iii) both. The octets in the packet are numbered 0,1,.... After the octet
assignments, come the bit assignments. This allows the user to directly specify the contents of specific
bits. The assignment of bits follows the syntax:

bit_assignment

— BIT( decimal_number ) = bit_sequence ;

Consider an assignment of the form:
BIT(n) = bit_sequence;

In this case, the assignment is done as follows: The first bit in the bit_sequence is assigned to bit n,
the second bit to bit n+1, ..., until either (i) all the bits in the bit_sequence have been used, or (ii) all

the bits in the packet starting from bit n have been assigned, or (iii) both.
The bits in the packet are numbered 0,1,....

Construction of M_PDUs

The construction of a M_PDU is as follows:

m_pdu

— M _PDU

BEGIN
m_pdu_construction_header
m_pdu_field_assignment
octet_assignment
bit_assignment
END

As before, the M_PDU may be constructed either by starting from a previously constructed M_PDU, or
from scratch. The syntax for this is as follows:
m_pdu_construction_header

—  COPY_FROM string ;

| CHANNEL = decimal_number ;

where, for a construction from another M_PDU, string is the name of the already constructed M_PDU
being copied from. For a new construction, management needs to set up the exact format of the
VC_PDU (which decides the format for the M_PDU), which has already been done during the manage-
ment interface, for each virtual channel. The line

CHANNEL = decimal_number ;
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specifies which channel is to be used to derive the format for the M_PDU.

The assignment of fields in the M_PDU follows the syntax:
m_pdu_field_assignment

— HEADER = bit_sequence ;

| M_PDU_PACKET ZONE = bit_sequence ;

| SPARE = bit_sequence ;

| FIRST HDR PTR = bit_sequence ;

The behavior of field, octet and bit assignment functions is the same as for CP_PDU construction.

Construction of B _PDUs

The construction of a B_PDU is as follows:

b_pdu

-  B_PDU

BEGIN
b_pdu_construction_header
b_pdu__ﬁeld_aésignment
octet_assignment
bit_assignment
END

As before,
b_pdu_construction_header
—  COPY_FROM string ;
I CHANNEL = decimal_number ;

For a new construction, the line
CHANNEL = decimal_number ;

specifies which channel is to be used to derive the format for the B_PDU.

The assignment of fields in the B_PDU follows the syntax:
b_pdu_field_assignment _

— HEADER = bit_sequence ;

| SPARE = bit_sequence ;

| BITSTREAM DATA PTR = bit_sequence ;

I DATA ZONE = bit_sequence ;

The behavior of the field, octet and bit assignments is the same as for CP_PDU construction.

Construction of VCA PDUs
The construction of a VCA_PDU is as follows:
vea_pdu
—  VCA_PDU
BEGIN
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vca_pdu_construction_header
octet_list

bit_list

END

As before,
vca_pdu_construction_header
— COPY_FROM string ;
| CHANNEL = decimal_number ;

For a new construction, the line
CHANNEL = decimal_number ;

specifies which channel is to be used to derive the format for the VCA_PDU. No field_assignment func-
tions are available for the VCA_PDU (because there are no fields in the VCA_PDU). Octet-assignment
and bit-assignments follow the same syntax, and have the same behavior as for CP_PDU construction.

Construction of VC_PDUs

The construction of a VC_PDU is as follows:

ve_pdu

—  VC_PDU

BEGIN
ve_pdu_construction_header
ve_pdu_field_assignment
octet_assignment
bit_assignment
END

As before,
ve_pdu_construction_header
—  COPY_FROM string ;
| CHANNEL = decimal_number ;

For a new construction, the line
CHANNEL = decimal_number ;

specifies which channel is to be used to derive the format for the VC_PDU. The assignment of fields in
the VC_PDU follows the syntax:
ve_pdu_field_assignment

—  PRIMARY_ HEADER = bit_sequence ;

I VERSION NO = bit_sequence ;

I VCDU_ID = bit_sequence ;

| SCID = bit_sequence ;

| VCID = bit_sequence ;

I VCDU_COUNTER = Dbit_sequence ;
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I SIGNALLING_FIELD = bit_sequence ;
| REPLAY FLAG = bit_sequence ;

| SPARE = bit_sequence ;

| HDR_ERR CTRL = bit_sequence ;

l INSERT ZONE = bit_sequence ;

I DATA ZONE = bit_sequence ;

1 TRAILER = bit_sequence ;

I ERR_CTRL = bit_sequence ;

| OPER_CTRL = bit_sequence ;

| RS_PARITY = bit_sequence ;

Depending on the VC_PDU format specified through management functions, some of these field as-
signments may be invalid. The behavior of field, octet and bit assignment are the same as for CP_PDU
construction.

Multiplexing CP_PDUs

After a number of CP_PDUs have been constructed, we can use the multiplexing function to convert
them into a sequence of M_PDUs. Each such sequence of CP_PDUs represents data generated by
a single path-layer source. The syntax for the construction of a multiplexed sequence allows for the
setting of the APID, ‘which will then over-ride the default APID field assignment of all the data packets
in the multiplexed sequence. Controls are provided to set this value, and to activate and deactivate
this automatic assignment.

It also allows for the automatic sequencing of CP_PDUs. A sequence of CP_PDUs multiplexed into a
M_PDU sequence have their PACKET SEQUENCE COUNT field increment by 1 (modulo 16384) for
each new CP_PDU. The syntax for the construction of the multiplexed sequence also allows for the
setting of the counter field, and its automatic increment with each CP_PDU being multiplexed. This
value will then over-ride the PACKET_SEQ_COUNT field of all the data CP_PDUs in the multiplexed
sequence. Controls are provided to set this value, to have it increment automatically (or to remain
constant) and to deactivate its automatic assignment.
multiplexed_sequence '
— string = MULTIPLEX

CHANNEL = decimal_number

BEGIN

multiplex_one*

END

where string is the name of the resulting multiplexed sequence. This will produce two multiplexed
sequences, one for the data packets, and one for the error packets. The line
CHANNEL = decimal_number

specifies which virtual channel is used to obtain the format for the M_PDU.
multiplex_one
— set_mux_controls*
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data;and_error_cp _pdu
data_and_error_cp_pdu
— [REPEAT decimal_number | nothing]
— DATA = string ;
I DATA = string , ERROR = string ;

Here,
DATA = string

specifies that the data CP_PDU is the one whose name is given by string. If the line
ERROR = string

is present, then the corresponding CP_PDU is used to inject errors. If absent, then there is assumed
to be no error in the corresponding packet. The
REPEAT decimal_number

option may be used to repeat the following data-and-error combination a number of times specified by
the decimal_number. Note that the data and error packet must have the same size.
set_mux_controls

— APID = bit_sequence ;

[ [ACTIVATE APID ; | DEACTIVATE_APID ;]

] COUNT = bit_sequence ;

| [ACTIVATE_COUNT ; | DEACTIVATE COUNT ;]

Each multiplexing sequence starts with the following initial values: the APID and COUNT assignment
are deactivated; and the sequence APID and COUNT are set to 0. After the insertion of each CP_PDU,
the COUNT is incremented. If the most recent APID control was a ACTIVATE_APID, the current
value of the APID is assigned to the APID field of every data packet, otherwise the APID field of
the data packet is unchanged. If the most recent COUNT control was a ACTIVATE_COUNT, the
current value of COUNT is assigned to the PACKET_SEQ_COUNT field of the data packet, otherwise,
the PACKET_SEQ_COUNT field of the data packet remains unchanged. Note that COUNT keeps

incrementing, even when deactivated.

Thsi concludes the description of the data-generation and error-injection interfaces to the project.

4. Conclusions and Future Work

In this paper, we gave an overview of the CCSDS Recommendation 701.0-B-2 for Advanced Orbiting
Systems. Next, we described the design of an object-oriented data-generation and error-injection pro-
gram that implements the transmitter sections of this protocol. A discussion of the user interfaces to
the software is included. The previous section describes the implementation of only the virtual layer
and the path layer. The physical layer and the management functions associated with it have not been
implemented yet, and are part of the next phase of this project.
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