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(mean influent Pb at 15 µg/L, Cu at 9 µg/L) supported this hypothesis. Further water 

quality improvement was achieved with an additional aluminum-based water 
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Introduction 
 

 Metals, second only to pathogens, are the most problematic pollutant in the 

303(d) list of impaired and threatened waters in the United States, according to the 

USEPA. Among all metals causing impairment of natural waters, lead (Pb), copper 

(Cu), and zinc (Zn) are all among the top six. In the United States, Pb alone was 

found to be the main cause of impairment in 851 natural water bodies, with Cu and 

Zn causing 764 and 388 impairments, respectively (USEPA, 2013). Pb, Zn, and Cu 

are each associated with nonpoint source pollution. Stormwater is the primary vector 

of nonpoint source metals to natural water bodies, and stormwater control measures 

therefore present a unique opportunity to treat diffuse sources of metals. But in order 

to apply stormwater control measures on a scale large enough to control nonpoint 

source pollution, research and development to identify inexpensive treatment media 

are necessary. In light of these pressing problems, this research project field tests and 

optimizes the design of a novel, byproduct-based treatment to remove heavy metals 

from stormwater.  

The research described in this thesis is the continuation of lab and bench-scale 

research conducted by Hunho Kim under the supervision of Dr. Allen Davis and Dr. 

Rufus Chaney from 2007 – 2010. During this time, Kim performed experiments to 

characterize roof runoff and soil in the immediate surroundings of the USDA Animal 

and Plant Health Inspection Service (APHIS) building #580 in Beltsville, MD. As had 

been previously suspected at this building, Pb and Cu concentrations in roof runoff 

were found to be extremely high. Once metals concentrations in stormwater runoff 

were quantified and the extent of metals migration had been assessed, side-by-side 
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column experiments were performed to assess the potential of a variety of media 

mixtures to act as metal adsorbents. Different mixtures of sand, steel slag, hubcutter 

heavies (an amorphous Fe rich byproduct of train wheel manufacturing), grass and 

food waste compost, and manure compost were all examined during this period. 

Media mixtures were evaluated based on their ability to remove metals, specifically 

lead (Pb), copper (Cu), and Zinc (Zn), from synthetic stormwater, and on expected 

treatment lifetimes (as quantified by breakthrough time). The most promising media 

tested consisted of 5% by weight steel slag, 25% grass/food waste compost, and 70% 

sand.     

 Kim then tested this mixed media on a bench scale, using a plastic box with 

two stainless steel screens inside to hold the media in a mat formation (Figure 1). Kim 

called this treatment the Biomat.  



 

3 

 

 

Figure 1: Box reactor design for bench scale experiments. 

The experiments performed at this stage were conducted to assess treatment 

efficiency at lower metals loadings, to determine the hydraulic characteristics of the 

mat, and to test metals removal performance at a variety of hydraulic loadings. 

Finally, after all bench scale experiments had been executed, the lability of metals 

retained within the mat was assessed by performing sequential extractions on the 

treatment media. The results of these experiments suggest that metals, especially Pb 

and Cu removed onto the mat media were tightly held to inner surfaces of the 

treatment media. These experiments suggested that metal leaching from the mats was 

not expected to occur to a significant extent. Although an increase of metal mobility 

with increased pH (Bradl, 2004) was expected, the bench scale results suggested that 
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not enough soluble organic matter was present for this effect to become noticeable 

(Kim, 2010). 

The current research project adapts Biomat treatment for field implementation 

at two sites in Beltsville, MD: one receiving direct roof runoff from the APHIS 

building, where lead (Pb) and copper (Cu) are both major contaminants, and a second 

site, a swale adjacent to a parking lot receiving stormwater with metals concentrations 

largely below regulatory limits. Research goals are to (1) evaluate the effectiveness of 

treatment on site (2) identify likely treatment mechanisms by monitoring and 

analyzing water quality parameters and performing sequential extractions on media, 

(3) improve effluent water quality from a metals and nutrient perspective, and (4) 

determine the potential for broader scale applicability of this treatment, if any.  

Research consisted of three phases. In the preparatory phase, treatment mats 

(consisting of media wrapped in filter cloth) and sampling equipment were set up on 

site. In the water quality monitoring phase, influent and effluent to the treatments 

were sampled during storm events, and water quality parameters were measured in 

these samples and used to assess treatment efficiency. In the media extraction phase, 

sequential extractions were performed on treatment media to assess the lability of 

sequestered metals. 

During the water quality monitoring phase, two treatments were evaluated. 

The first treatment was the previously described Biomat, which was designed under 

laboratory conditions to remove heavy metals at a wide range of concentrations (200 

μg/L Pb – 10 mg/L) and water heads. A second layer of treatment, consisting of 50% 

sand, 50% water treatment residual (WTR) was added after the Biomat to adsorb 
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leached phosphorous, which was observed at high levels in Biomat effluent 

throughout the water quality monitoring phase. Phosphorous leaching associated with 

the use of compost in water treatment has been widely reported (Zhou & Hanes, 

2009), and Kim had observed such a problem during bench scale experimentation. 

Previous researchers (Babatunde & Zhao, 2007; O’Neill & Davis, 2011) have found 

WTR to effectively remove phosphorous from stormwater and waste water in certain 

situations, with treatment efficacy depending on the speciation of phosphorous. 

Selection of WTR treatment in this case was supported by lab experiments in which 

batch adsorption studies were conducted using biomat effluent to assess the potential 

efficacy of water treatment residual to remove phosphorous. 

Three media extractions were performed on Biomat treatment media at both 

sites following the water quality monitoring phase. These experiments characterized 

the stability of metals held on the mat after an extended period of use. In addition, the 

extraction experiments assessed the degree to which heavy metals had penetrated 

treatment media and therefore helped to estimate treatment lifetime, and to identify 

likely treatment mechanisms by assessing the relative binding strength of each metal. 

Finally, results are compared to comparable research carried out by fellow 

researchers, and implementation and design recommendations for future Biomat 

applications are suggested.  
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Materials and Methods 

Field site preparation 

To collect runoff from the front of the APHIS building and the adjacent 

parking lot, a polypropylene-lined, trapezoidal swale was built, designated the swale 

site. Curbs direct nearly all flow from the parking lot to the swale. A 120 degree v-

notch weir was installed on the downstream end of the swale to allow for effluent 

flow measurement. A picture of this swale and the parking lot is shown in Figure 2. 

 

Figure 2: Swale and parking lot with autosamplers and mat visible 

 

On the backside of the building, a polypropylene-lined wooden structure was 

built directly parallel to the building back wall to collect direct roof runoff, known as 

the wooden structure. The structure slopes downward away from the building in order 

to facilitate flow through the mat, which was placed across the length of the wooden 

structure. This site is shown in Figure 3.  At the bottom of the structure, rainwater 

collects in a gutter and flows through a 15.25 cm pipe with a Thel-mar
TM

 insert weir 

to allow for effluent flow measurement. 
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Figure 3: The roof runoff collection area 

Preparation of mat media 

Compost was obtained from the USDA BARC campus in Beltsville, MD with 

assistance from the Environmental Management and Byproducts Utilization 

Laboratory. Two varieties of compost, leaf compost and compost made from manure 

and a small amount of food waste were mixed together in approximately equal 

proportions estimated by eye. The two composts were mixed together several times 

with a bulldozer. This mixture was initially used at both sites, but because of 

problems with insufficient hydraulic conductivity at the swale site, discussed below, 

the swale treatment mat was rebuilt using sieved manure compost only. Steel slag was 

obtained from Phoenix Services, a slag vendor in Sparrows Point, MD. Washed 

concrete sand was purchased from The Stone Store in Harmans, MD. 

Following the results of column studies, the optimal media mixture for lead 

removal had been predetermined to be 70% sand : 25% compost : 5% slag by mass. 

The dry bulk density of the mixed compost was determined according to ASTM 
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D2216 with one modification: compost samples were dried for 2 hours instead of 24 

hours, and due to this change in drying time they were estimated to be 90% dry 

instead of 100%. This shortening of the drying period allowed the media to be mixed 

together the same day as the compost moisture tests were performed, while the 

moisture content of the compost in the field was still similar to the moisture content 

measured in the laboratory (55.3% water by mass).  

Using dry bulk densities of the compost, sand, and slag, the mass ratio above 

was converted to a volumetric ratio of 14 units sand to 29 units compost to 1 unit 

slag. The constituents were then mixed on site according to this volumetric ratio, 

using 5 gallon buckets to measure approximate volumes. Media were mixed together 

thoroughly with shovels, well past the point that the mixture appeared homogenous to 

the naked eye. 

A 1.2 m (4 ft.) wide roll of black filter cloth (NO35 nonwoven needle-

punched geotextile, see Appendix C for full specifications) was used to hold in the 

media and allow water to penetrate the mat and receive treatment.  At the swale site, a 

section of cloth approximately 0.6 m (2 ft.) longer than the width of the swale was cut 

from this roll and placed across the width of the swale before being partially filled 

with media, which had been pre-mixed as described above. The filter cloth was then 

folded over the media and fastened shut with UV-resistant cable ties. The mat was 

filled with sufficient material (approximately 344 L, or 91 gal.) to ensure that it was 

taller than swale height at all points. In this way runoff could not overtop the mat 

during intense storms. Additionally, in order to prevent the mat from washing away in 

intense storms (an early problem at the swale,) two 1.2 m (4 ft.) pieces of iron rebar 
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were hammered into the ground on either side and a rope was run across, tied to each 

piece of rebar, and fastened to the mat itself with zip ties. The installed swale mat is 

shown in Figure 4. 

 

 

Figure 4: The Biomat placed across the swale, with influent stormwater visible on the right 
side 

 

This same mixing and installation procedure was followed at the wooden 

structure on the back side of the building. The incoming water head at this site was 

low enough that securing the mat with rope and rebar was unnecessary. The mat 

installed on the wooden structure held approximately 530 L (140 gal.) of media. To 

ensure that no overtopping occurred, cinder blocks, which supported the mat and 

helped it to retain its shape were used as shape supports, preventing the mat from 

settling. These cinder blocks were wrapped with 6-mm thick plastic and sealed with 

duct tape to prevent the concrete from affecting the pH of the incoming rainwater. 

The mat on the wooden structure is shown in Figure 5. 
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Figure 5: Biomat across the wooden structure, with plastic-wrapped cinder blocks as shape 
supports 

The two treatment sites varied in the amount of treatment media used, the 

dimensions of treatment mats, and the ratio of drainage area : treatment media. These 

differences are quantified in Tables 1 and 2.  

Table 1: Dimensions of each biomat and their drainage areas 

 Drainage Area  Length of mat Height of mat 

 

Swale site 

 

1390 m
2 

 

(15,000 ft.
2
) 

 

1.5 m 

 

(5 ft.) 

 

0.3 m 

 

(1 ft.) 

 

Wooden structure 

 

23.1 m
2 

 

(248 ft.
2 

) 

 

6.7 m 

 

(22 ft.) 

 

20 cm 

 

(8 in.) 

 

Table 2: Ratios of drainage area : treatment area for each Biomat. 

 

   

Swale site 

 

914 3000 3000 

Wooden 

structure 

4.9 11 24 
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The differences in ratios between the two sites, as calculated in Table 6, 

indicate that the swale receives a much higher hydraulic loading relative to the 

wooden structure. The higher loading is a practical necessity of using swale 

treatment; a drainage area as large as that of an entire parking lot would require an 

impractically wide treatment mat to provide the same ratio of drainage area : mat 

length as that at the wooden structure.   

After approximately three months of attempting to test at the swale site, it 

became clear that rainwater was overtopping the treatment mat in nearly all storms 

above 0.4 cm. Laboratory infiltration tests were performed on the mixed media and 

separately on the sand and compost, the two materials suspected of decreasing flow 

rates. The infiltration tests were performed by filling two plastic columns separately, 

one with sand and one with compost. Water ran through the sand column at a rapid 

drip, but took days to flow through the column filled with compost. Once sieved to 

sizes above ASTM #10 (>2 mm), the compost was again placed in a plastic column 

of the same dimensions. The sieved compost media allowed for visibly faster 

infiltration, similar to the rate of sand infiltration. Although previous research 

(Seelsaen et al., 2007; Gibert et al., 2005) has indicated that smaller compost particles 

are more effective adsorbents due to their higher specific surface area relative to 

larger particles, these same fine particles are known to be responsible for decreased 

hydraulic conductivity through a porous media.  

In November 2011, the swale treatment mat was rebuilt using manure 

compost sieved to >2 mm. The compost was separated by retaining the fraction which 

did not pass through an ASTM #10 sieve when placed on top of the sieve and hosed 
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with water. After rebuilding the treatment mat, overtopping occurred much less 

frequently, generally only in storms great than 1.27 cm (0.5 in.).  

Sampling equipment and setup 

ISCO 6712 Fullsize Portable Samplers were placed upstream and downstream 

of the mats at each site to collect influent and effluent stormwater samples, 

respectively. One ISCO 674 tipping bucket rain gauge was connected to the influent 

sampler at the swale site. The four samplers were synchronized to the minute and 

because of this and their close proximity to one another (all within 100 m of one 

another,) one rain gauge was used to record timed rainfall data that could be matched 

to the timed stormwater samples taken by all four samplers. Each sampler was 

additionally equipped with an ISCO 730 Bubbler Flow Module to measure effluent 

flows by constantly measuring the height of water in the channel. The bubbler tubes 

to detect water on the influent side were placed directly in front of each mat. But 

without weirs or flumes upstream of each mat, these bubblers served only to 

determine when rainfall was occurring by detecting water in the channel. Sampler 

tubes on the inflow side were placed far enough upstream of the mat that the samplers 

would not take in water ponded just in front of the mats during storms. On the 

wooden structure the inflow sampler was placed about 0.3 m (1 ft.) upstream of the 

mat, and at the swale site the inflow sampler was placed roughly 2.4 m (8 ft.) 

upstream of the mat. Downstream of the mats, the bubbler tubes were placed just 

upstream of each weir, so that flows could be accurately calculated from level 

readings. Sampler tubes on the effluent side were placed just upstream from each weir 

as well.  
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Before sampling runoff from a storm, one of two sampling regimes was 

selected. In order to obtain data from which it would be possible to analyze intra-

storm variations of pollutants, discrete samples were taken in roughly half of the 

storms sampled. Each sampler was first outfitted with 12 plastic 1-L bottles, and then 

programmed to fill the bottles one at a time with 900 mL of stormwater each at 

discrete time intervals, which were set according to the predicted duration of the 

storm. The first sample was programmed to be taken once water at the inflow and 

outflow channels of each site surpassed a critical level (3.05 cm at the swale, and 2.13 

cm at the wooden structure). As an example, the sampling program for a six-hour 

storm was set as follows: 

 1 sample at the start point 

 8 samples thereafter with 20 minutes between samples 

 2 samples thereafter with 60 minutes between samples 

 1 sample thereafter with 80 minutes between samples 

Storm durations ranging from 0.4 hours to 23 hours were sampled. Before each storm, 

to obtain multiple samples during periods of flow, the discrete time intervals were 

adjusted. During storms predicted to last fewer than 2 hours, for example, the 

program was adjusted to: 

 1 sample at the start point 

 11 samples thereafter, each taken after a 15 minute period of flow.  

For storms predicted to last 24 hours, programmed sample intervals were as follows: 

 1 sample at the start point 

 2 samples thereafter with 40 minutes between samples 
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 2 samples thereafter with 60 minutes between samples 

 3 samples thereafter with 90 minutes between samples 

 3 samples thereafter with 180 minutes between samples 

 1 sample thereafter with 430 minutes between samples 

Flow was defined at the wooden structure as periods in which water was measured in 

the channel at a depth of at least 1.5 cm (0.05 ft.) at the inflow and 3 cm (0.1 ft.), or 

the height of the weir opening, at the outflow.  Flow was defined at the swale as 

periods in which water was measured at the inflow or outflow at a depth of 1.5 cm 

(0.05 ft.) or more. 

As described above, one bottle was filled per sample during a storm, so that 

up to 12 distinct samples were taken in total. These 12 samples were used to analyze 

the variation of different water quality parameters over time during each storm. Not 

all twelve bottles were always filled, depending on how well actual rainfall agreed 

with predictions. Discrete data were accepted as valid when samples were deemed to 

have been taken at enough points during the storm such that they were adequately 

representative of the hydrograph. 

In the other half of the storms sampled, a composite sample was taken. Under 

this second sampling regimen, all samples were pumped into the same 10-liter glass 

bottle. These samples were flow weighted by the sampler, so that the concentrations 

of pollutants within the bottle represent an estimation of event mean concentrations 

(EMC). Effluent samples were taken after a specific amount of flow had passed (e.g., 

100 mL of sample per 50 L of stormwater flow). The volume of sample taken per 

volume of flow varied with the amount of rainfall predicted.  A formula was used 
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based on the drainage area of each site with the goal of taking a total of 5 L per 

composite sample, with each composite consisting of roughly 100 individual samples, 

as shown in Equation 1. 

                     (1) 

Where W is the drainage area of the site in square meters, X is the predicted rainfall 

depth in cm, and Y and Z are the values entered into the autosampler. 

 Upstream of the treatment mat no weir was present to measure flow. 

Therefore, a tipping bucket rain gauge was connected to the influent sampler under 

the composite sampling method; the inflow sampler was programmed to sample once 

every 0.01 inches of rain, and the volume of sample to be taken was changed given 

the amount of rainfall predicted, according to Equation 2. 

             (2) 

Where X is the predicted rainfall depth in inches, and Y is the value entered into the 

autosampler. Typically at least 50 of these smaller samples made up a single 

composite sample taken during a given storm. These composite samples were thus 

rainfall-weighted.  

Estimation of rational runoff coefficients 

 During 4 storms at each site, inflow was measured with no Biomat present. 

These data were used to estimate a rational runoff coefficient, as shown in Equation 

3. 

                              (3) 
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 Where c is the rational coefficient, Q is the measured flow, i is storm depth and A is 

the measured drainage area. The c value estimation was optimized by least squares, 

regressing iA against Q and estimating c to be the slope of this regression. For a given 

watershed, the value of the rational runoff coefficient is assumed to be a constant, 

independent of Q, i, and A. With the c value estimate, inflow volumes were then 

calculated from rainfall depths for the storms in which water quality samples were 

taken, again according to the rational method. 

Water quality analysis of samples 

 Stormwater samples were analyzed for the constituents and methods listed in 

Table 3. 

Table 3: Analytical methods used in field stormwater sample laboratory tests 

Water Quality 

Parameter 

Method Reference Detection 

Limit 

Operational Range 

Pb (total and dissolved) Standard 

Method 3111, 

3113 

APHA (1998) 2 µg/L 2 µg/L – 14 mg/L 

Zn (total and dissolved) Standard 

Method 3111 

APHA (1998) 40 µg/L 40 µg/L – 1 mg/L 

Cu (total and dissolved) Standard 

Method 3111, 

3113 

APHA (1998) 5 µg/L 5 µg/L – 10 mg/L 

Total and dissolved P Standard 

Method 4500 P 

APHA (1998) 0.01 mg/L 0.01 mg/L – 0.5 mg/L  

(5 cm path length) 

0.05 mg/L – 2.5 mg/L  

(1 cm path length) 

Total Suspended Solids Standard 

Method 2540 D 

APHA (1998) 1 mg/L 1 mg/L or more 

pH Standard 

Method 4500 H+ 

APHA (1998)   
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 After every monitored storm, samples were analyzed for total and dissolved 

Pb, Cu, and Zn, total P, TSS, and pH. Dissolved P measurements were taken every 

other storm.  

Both influent and effluent levels of Zn, as well as influent levels of Cu and Pb 

in samples from the wooden structure were measured on the flame module of a 5100 

Perkin Elmer atomic absorption spectrophotometer. All other metals measurements 

were made on the graphite furnace module.  

Samples were collected within 24 hours of the end of each monitored rainfall 

event. Within 24 hours of sample collection, pH was measured, filtration for TSS was 

performed, and filtrations in preparation for dissolved phosphorous measurement, and 

dissolved metals measurements were performed. Samples to be tested for metals were 

preserved at 4 degrees C after being acidified with trace metal grade HCl (Fisher 

Scientific). Samples to be tested for phosphorous were preserved with H2SO4 

(Reagent Grade, Fisher Scientific). TSS filtrations were performed with 0.45 µm 

glass fiber filters (Pall). Filtrations to separate dissolved metals and dissolved 

phosphorous were performed with 0.22 µm membrane filters (Millipore Express). 

Sample bottles, made of polypropylene, and other laboratory equipment contaminated 

during analyses were cleaned by first soaking in a tap water and Alconox solution, 

scrubbing, and then rinsing with deionized water before soaking at least 12 hours in a 

0.5 M HNO3 or HCl acid bath. Acid was rinsed from sample bottles with three 

successive washes in deionized water baths, which were replaced with fresh water at 

least once every four months.   



 

18 

 

Batch experiments: finishing treatment of field effluent samples using water 

treatment residual (WTR) 

 In May 2012, aluminum-based water treatment residual (WTR) was obtained 

from the Washington Suburban Sanitary Commission Potomac Water Filtration Plant 

in Potomac, MD. WTR for all experiments was obtained from a single filter pressing. 

Before batch experiments, WTR was air dried for one week, crushed, and sieved to 

<2 mm (ASTM #10).  

Effluent storm samples were taken at the wooden structure on June 22, 2012 

and July 14, 2012. After running each sample through a 0.22 µm filter, duplicate 

mixtures of WTR and stormwater effluent were prepared at three separate 

effluent:WTR mass ratios: 15:1, 25:1, and 30:1. These samples were spun at 29 rpm 

on an Appropriate Technical Resources tumbler in 50 mL centrifuge tubes for 24 hrs. 

. Mixing began within 48 hours of runoff sample collection. After mixing, particulate 

matter was again removed by 0.22 µm filters. Both WTR-treated and untreated 

effluent samples were tested for pH, DP, Pb, Cu, and Zn.   

Metal speciation experiments: quality assurance protocol to establish the efficacy of 

DEAE Sephadex A-25 resin (chloride form) to remove anionic metal complexes 

 The chloride form of DEAE Sephadex A-25 resin (GE Healthcare life 

sciences) was used to separate anions in several samples, with the intent of 

distinguishing anionic metal complexes from positively-charged and/or neutral metal 

complexes in stormwater effluent sampled at the wooden structure. This resin was 

successfully used for the same purpose by Jensen et al. (1999) in experiments on 
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landfill leachate. To confirm that the resin effectively and selectively removes anionic 

complexes from solution, the following procedure was carried out.  

Anionic metal complexes were synthetically created using the chelating agent 

EDTA (Fisher Scientific) to determine if the Sephadex resin would effectively 

remove these complexes. Above pH 6 and in the presence of excess EDTA, it was 

hypothesized that nearly all Pb,Cu, and Zn would be present as Pb-EDTA
2-

, Cu-

EDTA
2-

, and Zn-EDTA
2-

. By using quantities of resin, EDTA, and metal such that 

resin binding sites were in excess relative to moles of EDTA, and EDTA was present 

in excess relative to metal, the experiment was conducted so that all metal would be 

present as anionic complexes and therefore captured by the resin. Relying on this 

assumption, 50 mL of a solution containing 200 µg/L PbNO3 and 200 µg/L CuNO3 

with 1% HNO3 (VWR atomic absorption standards) and 240 µg/L ZnCl (Fisher 

Chemical - ACS grade) were mixed with 50 mL 2*10
-5

 mol/L EDTA in a 120 mL 

borosilicate beaker using a magnetic stir bar. After 10 minutes of stirring, pH was 

adjusted to 6<sample pH<8. At this point 50 mL of sample was reserved for Pb, Cu, 

and Zn measurement. After 20 minutes additional stirring, 0.15 g resin was added and 

stirring continued for an additional 20 minutes before samples were filtered through 

0.22 µm membrane filters into 50 mL centrifuge tubes to be reserved for Pb and Cu 

measurement. This process was repeated the next day using the same stock solutions 

of EDTA and metals in order to have duplicate samples. Recovery of Pb and Cu in 

samples treated with resin was below 10% of the mean Pb and Cu concentrations 

measured in the portions of each sample which had been reserved before resin 

addition.  Recovery of Zn was slightly above 10% for one of two replicates. Table 4 
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shows the concentrations of Pb, Cu, and Zn in each group. These results demonstrate 

that the Sephadex resin effectively and selectively removed anionic metal complexes 

from solution. 

Table 4: Concentrations of Pb, Cu, and Zn (in μg/L) measured in quality control tests 
performed with Sephadex DEAE A-25 resin (GE Life Sciences). 

 concentrations, in μg/L replicate 1 replicate 2 

Pb 

  control 101 81 

with resin <10 <10 

Cu 

  control 85 87 

with resin <10 <10 

Zn 

  control 120 122 

with resin 15 <10 

 

WTR finishing treatment at the wooden structure 

To capture and further treat effluent from the Biomat, a second treatment 

technique was added during 3 final storms. Several holes were drilled into a 5 gallon 

plastic bucket at its base to allow flow through its bottom. This drilled bucket was 

placed inside of another 5-gallon bucket, which was cut with a 2 cm high by 5 cm 

wide rectangular hole, 2.5 cm above its base. Both buckets were acid-washed 

overnight. A circle of filter cloth was then cut and sealed to cover the bottom of the 

drilled 5 gal bucket, which was subsequently filled to a height of 10 cm with a 

mixture of 50% sand, 50% WTR (by dry weight). A piece of cinder block was placed 

on top of the sand/WTR mixture to prevent falling water from carving into the layer 

of treatment media. The drilled bucket was then placed inside of the second bucket, 

and these were placed beneath the outlet pipe to capture Biomat effluent (Figure 6).  
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Figure 6: (a) the placement of one bucket, to contain the treatment media inside another, to 
contain the sampling lines (b) the drainage holes at the bottom of the upper bucket to allow 
for flow-through (c) a diagram of flow during a storm through the WTR/sand treatment 

In this way, effluent from the Biomat at the wooden structure flowed into the 

WTR/sand mixture, through the drilled holes, and down into the second bucket, 

where an ISCO sampling line was placed to capture storm samples. Samples were 

taken in 3 storms to obtain preliminary data on the efficacy of this secondary 

treatment to remove metals and phosphorous. All normal water quality data were 

taken for effluent from the sand/WTR mix during these 3 storms. Speciation 

experiments were also performed using DEAE Sephadex A-25 resin as follows.      

 DEAE Sephadex A-25 resin was prepared by shaking in 3 M NaCl for 24 

hours on a horizontal shake table. After filtering and washing 3 times with deionized 

water, the resin was air-dried for at least one week and then left in a desiccator until 

use. 0.25 g of resin were weighed and added to filtered samples of influent, Biomat 

effluent, and sand/WTR effluent. These samples were individually stirred for 20 
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minutes before filtration through 0.22 μm membrane filters to remove the spent resin. 

A portion of each sample was immediately measured for pH and TOC, and the 

remainder was preserved in plastic centrifuge tubes and refrigerated at 4⁰ C for 

analysis of P, Zn, Cu, and Pb. Samples to which no resin was added were also 

analyzed for all water quality parameters. 

Spatially-distributed analysis of used Biomat media lability 

 In order to characterize the metals captured by each Biomat, and to 

characterize the stability of those metals, sequential extractions were performed on 

samples of used Biomat media. Media samples were taken at discrete locations in 

each mat. These samples were taken in January, 2013 at the swale and March, 2013 at 

the wooden structure, after all water quality data had been compiled. At the swale, 

samples were taken in two cross-sections parallel to flow: one in the middle, and one 

on the side of the swale, halfway up the slope of the trapezoidal leg. Within each 

cross-section, samples were divided along two axes, as show in Figure 7. Figure 8 

shows the media samples being taken: 
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(a)                                                                      (b) 

 

Figure 7: Location of each media sample taken at the swale mat in the middle (a), and at the 
side (b). 

 

 

Figure 8: Swale media samples being subdivided 

Figures 9 and 10 show the cross-sections taken at the rear mat, and the media 

sampling process 
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Figure 9: Cross-sections taken at the wooden structure in two locations, a hotspot of high 
flows, and a second location to the side 

 

Figure 10: Two photographs taken during media sampling at the wooden structure: a) the 
rear hotspot cross-section, with only one sample (5DH) remaining in-situ b) the two rear 
cross-sections completely removed (side cross-section is in the foreground) 

Samples were air-dried for 1-2 weeks, crushed to <4.75 mm, and then stored 

in covered plastic weighing dishes. The ASTM #4 (4.75 mm) sieve was used in place 

of ASTM #10 (2.0 mm) so as to retain the steel slag pebbles, which were not 

crushable with a handheld mortar and pestle, in media samples. 

In order to characterize the strength with which metals are held by this 

treatment, 3 sequential extractions were performed on the spent Biomat media from 

both sites. For each sample and each extraction step, procedures were carried out in 

triplicate. Phytoavailable metals were removed in the first extraction. This was 
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performed according to the method outlined by Madden (1988), shaking 20 g of used 

Biomat media sample in 40 mL of 0.01 M Sr(NO3)2 extraction solution for 1 hr on a 

horizontal shake table. The extracted solution was filtered using an Ahlstrom #513 

fluted filter paper inside of a #40 Whatman filter paper. A portion of the unfiltered 

slurry was used to measure the pH. The filtered solution was stored and refrigerated 

at 4⁰ C for subsequent metals measurement by GFAAS/FAAS.  

Secondly, acid ammonium oxalate extraction in darkness was performed 

according to an adaptation of the methods of Loeppert and Inskeep (1996). To 

synthesize this extracting solution, 0.2 M (NH4)2C2O4 and 0.2 M H2C2O4 were 

combined to reach a pH of 3.0. 40 mL of extracting solution and 1g of Biomat media 

were combined in a 50 mL centrifuge tube and mixed for 2 hrs in darkness on an 

Applied Technical Resources tumbler at 29 rpm. The extracted samples were 

centrifuged for 10 min at 4000 rpm on an Allegra X-22 centrifuge and filtered with 

0.22 μm membrane filters, after which they were refrigerated at 4⁰ C and stored until 

metals analysis by GFAAS/FAAS.  

The third extraction was an aqua regia method adapted from McGrath and 

Cunliffe (1985). Several modifications to this method were implemented. Hot plates 

were used in this procedure in place of batch digesters, and 25 mL Ehrlenmeyer 

flasks were used in place of batch digester-fitted test tubes. Additionally, 5 mL of 

30% H2O2 were added to each sample prior to the addition of acids, so as to reduce 

the foaming associated with high organic matter in samples. Additional nitric acid (4 

mL) was also added to each sample prior to the addition of the volumes described by 

McGrath and Cunliffe (8 mL HCl and 2 mL HNO3). In describing this method, 



 

26 

 

however, the authors do allow for additional nitric acid addition prior to aqua regia 

digestion. Apart from these modifications, the method was performed as-written. 

Triplicate samples of 0.5 g were used, and samples were allowed to digest overnight 

prior to heating. 

Data 

Data from the autosamplers were analyzed using Flowlink 4.16. All data were 

compiled and analyzed in Microsoft Excel. Flowlink data, including timed rainfall, 

water level, and flow data were imported to Excel in .csv format. From the 

concentration values measured for total and dissolved metals, total and dissolved P, 

and TSS, values for mass in, mass out, and EMC were calculated.  

When composite samples were analyzed, EMC values were estimated as the 

concentrations measured in each composite sample.  When discrete samples were 

analyzed, EMC values were flow-weighted using the trapezoidal linear multistep 

method as shown in Equation 4. 

          (4) 

Where C1, C2,C3,…, Cn  are the concentrations (in mg/L) measured from each discrete 

sample and F1, F2,F3,…, Fn are the volumes of flow (in L) associated with each 

sample, integrated from rainfall data at the influent and level data at the effluent, 

shown Equation 5. 

          

(5) 

Where tj-1 represents the times at which the sample before sample j was taken, tj+1 is 

the time when the sample after sample j was taken, and r represents the calculated 
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rational coefficient for each site. The drainage area is measured in meters and the 

depth of rain is in millimeters.  

Mass in and mass out were calculated for each pollutant as the product of the 

the EMC (in mg/L) multiplied by volume (in L) integrated across the entire storm 

duration: 

                 (6) 

                (7) 

Equation 6 is the rational equation, with r based on hydrologic data from several 

storms measured at each site. Total flow measured at the weir was calculated 

internally by the ISCO autosamplers using measurements of the level of water above 

each weir. These measurements were taken every two minutes. 

 Based on the EMC values calculated for metals, probability plots were created 

to estimate the likelihood that influent and effluent concentrations would exceed 

regulatory limits in any given storm. To create these plots, EMC values were ranked 

from highest to lowest for each category, and assigned a rank number (highest value, 

1; second highest value 2,…, lowest value n). Nonexceedance probabilities were then 

calculated based on rank and sample size (n), according Equation 8 (Li and Davis, 

2009). A value of α=3/8 in equation 8 is used for the normal distribution (Cunnane, 

1978; Harter, 1984). 

                                    (8) 

 

 

Each exceedance value was plotted on the X-axis, paired with the corresponding 

metal concentration on the Y-axis. The X-scale is a probability scale and the Y-scale 
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is logarithmic. Straight lines on these charts would therefore suggest that the log-

normal distribution is a good fit for the data. 

 Pollutant duration curves were established to quantify intra-storm variation of 

pollutants. Utilizing the trapezoidal method of integration, each discrete sample had 

already been assigned a representative incremental time duration [ )] 

based on the sampling frequency. Discrete concentration data from the wooden 

structure were ranked from largest to smallest. Concentrations were then plotted on 

the Y-axis and cumulative representative sample times were plotted on the X-axis. 

 Annual pollutant mass loadings were also calculated. Total masses in and out 

were calculated by summing the individual masses in and out from each storm, as 

calculated in Equations 6 and 7. These masses were then normalized based on 

drainage area and annual average rainfall in Maryland (101.6 cm), as shown in 

Equation 9. 

         

(9) 
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Results and Discussion 

Direct roof runoff treatment 

From September, 2011 until February, 2013, twenty-six storms were sampled 

at the wooden structure. A wide variety of storm depths and durations were included 

in these samples, which were taken in all seasons (Figure 11). In order to compare the 

distribution of rainfall events sampled at the wooden structure to the typical climatic 

distribution of Maryland, rainfall events were classified according to the depth of 

rainfall measured and the duration of each storm (Table 5).  The characteristic 

distribution of storms in Maryland, was previously compiled by Kreeb (2003), and is 

shown in Table 6. Storms ranged in duration from 24 minutes to 48 hours, and in 

depth from 0.08 cm to 15.6 cm. Four storms were sampled in fall, nine in winter, 

eight in spring, and five in summer. Mean daily temperature during sampled rainfall 

events ranged from a minimum of 3⁰C to a maximum of 27.2⁰C. This variety of 

storm events, shown in Figure 11 and Table 5, was deemed representative of the 

distribution of rainfall events in Maryland. At least one storm was sampled at every 

discrete duration category (shown in Table 100 and 101), except for the 2-3 hour 

rainfall duration category. Every discrete depth category was sampled as well, such 

that samples were taken at both the smallest and largest, shortest and longest, and 

warmest and coldest rainfall events. Visually comparing the distributions of Tables 5 

and 6, no obvious deviation or skew from the typical distribution is visible in the 

distribution of rainfall events which were sampled.  
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Figure 11: The variety of rainfall events sampled at the wooden structure with regard to 
depth, duration, and season. The extreme event at upper right represents data from from 
Hurricane Sandy (10/29/2012) 

Table 5: Depth-duration distribution of sampled rainfall events at the wooden structure. 
White/lighter boxes indicate higher frequencies, and darker boxes indicate lower 
frequencies. 

  Rainfall Depth (cm)   

  

Event 

Duration 0.0254-0.254 0.255-0.635 0.636-1.27 1.28-2.54 > 2.54 Sum 

0-2 hr 0.12 0.04 0.04 0 0 0.200 

2-3 hr 0 0 0 0 0 0.000 

3-4 hr 0 0.04 0 0.04 0 0.080 

4-7 hr 0.04 0.04 0.08 0 0.08 0.240 

7-13 hr 0 0.08 0 0.04 0.04 0.160 

13-24 hr 0 0.08 0 0.08 0.08 0.240 

>24 hr 0 0 0 0.04 0.04 0.080 

Sum 0.160 0.280 0.120 0.200 0.240 1 
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Table 6: Depth-duration distribution of all rainfall events in Maryland (Kreeb, 2003). 
White/lighter boxes indicate higher frequencies, and darker boxes indicate lower 
frequencies. 

  Rainfall Depth (cm)   

  

Event 

Duration 0.0254-0.254 0.255-0.635 0.636-1.27 1.28-2.54 > 2.54 Sum 

0-2 hr 0.29 0.02 0.02 0.00 0.00 0.33 

2-3 hr 0.02 0.03 0.02 0.01 0.00 0.08 

3-4 hr 0.01 0.02 0.02 0.01 0.00 0.06 

4-7 hr 0.01 0.04 0.05 0.02 0.01 0.12 

7-13 hr 0.01 0.03 0.06 0.05 0.03 0.18 

13-24 hr 0.00 0.01 0.04 0.06 0.05 0.16 

>24 hr 0.00 0.00 0.00 0.02 0.04 0.07 

Sum 0.33 0.15 0.21 0.17 0.14 1.00 

 

Volume and water balance at the wooden structure 

 

 After water quality monitoring had been completed in March, 2013, and the 

treatment mat at the wooden structure removed, hydrologic monitoring continued 

until May 2, 2013, through six additional rainfall events. This allowed for the 

estimation of a rational coefficient. The rainfall-runoff volume relationship is shown 

in Figure 12. 

The slope calculated in Figure 12, 0.70, was used as the rational runoff 

coefficient to estimate inflow volume in the storms where water quality parameters 

were measured. An extremely small initial abstraction volume (9.8 L), shown as the 

x-intercept on Figure 12, was calculated, consistent with typical findings for roof 
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runoff. The calculated rational coefficient is slightly smaller than comparable findings 

from roof runoff (>0.9). It is possible that some roof runoff was not collected due to 

an imperfect seal between the wooden structure and the side of the APHIS building. 

  
Figure 12: The rainfall-runoff relationship determined from rainfall events measured at the 
wooden structure. Drainage area = 23.0 m2 (248 ft2.) 

 

Treatment efficacy at the wooden structure 

Treatment efficacy was measured mainly by reductions in the mass loading of 

pollutants in the effluent. Pollutant concentration reductions are also of concern 

however, especially for heavy metals. Figure 14 shows a typical pollutograph 

characterizing intra-storm variation of Pb and Cu concentrations. The concentrations 

shown in Figure 14 are representative of the inflow and outflow values of Pb and Cu 

regularly measured at the wooden structure.  



 

33 

 

Metals reductions by the mat were excellent; on the log scale in Figure 14, 

nearly 2-log removals are visible for each metal.  Across all storms sampled, influent 

total Pb and Cu concentrations were observed to vary from around 1-10 mg/L and 

0.2-4 mg/L, respectively. Effluent total Pb and Cu concentrations were observed to 

vary from around 15-200 μg/L and 5-60 μg/L, respectively. Mean concentration 

percent reductions were 99% for total Pb and 98% for total Cu. Total Zn was 

observed to vary from 20-400 μg/L as influent, and 9-90 μg/L as effluent. The mean 

concentration of total Zn was reduced by 41%.  

Influent Pb and Cu concentrations at the APHIS building were far higher than 

those typically observed in urban runoff, where concentrations are typically between 

5-200 µg/L for Pb and Cu (Davis et al., 2001). The concentrations of discharged Pb, 

however, are typical of normal urban runoff, and discharged Cu concentrations are 

somewhat lower. Davis et al. (2001) also reported typical Zn concentrations in urban 

stormwater of 20-5000 µg/L. Influent concentrations in APHIS roof runoff were 

therefore already on the lower end of concentrations observed in typical urban runoff, 

and effluent Zn concentrations were significantly lower than typical urban levels. In 

their review of experiments measuring roof runoff characteristics, Mason et al. (2009) 

found typical metal concentrations in roof runoff ranging from 20 to 324 µg/L Cu, 8 

to 63 µg/L Zn, and 2.6 to 20 µg/L Pb. Boller (1997) reported average roof runoff 

concentrations of 90 µg/L Pb, 200 µg/L Cu, and 400 µg/L Zn. Influent Pb and Cu 

levels in roof runoff at the APHIS building are therefore significantly higher than 

typical concentrations, but Zn influent concentrations appear normal relative to these 

previously reported values. 
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Levels of Pb and Cu are so elevated in roof runoff due to the interaction of 

several factors. Firstly, the composition of the roof tiles, which are made of ASTM 

B370 lead-coated copper (materials specifications for the roof tiles are shown in 

Appendix C). Secondly, the pH of rainfall in the state of Maryland is generally below 

5 (National Atmospheric Deposition Program, 2011), a level acidic enough to 

dissolve significant levels of the lead and copper oxides and carbonates which have 

likely formed on the roof through oxidation, a phenomenon which was observed from 

physical appearance of the roof tiles shown in Figure 3. Given that phosphorous 

concentrations were low in the influent (complete influent/effluent P concentration 

data is shown below in Figures 31-33) and that no obvious sources of organic carbon 

were present in the roof drainage area, it is likely that inorganic ligands such as CO3
2-

 

dominated the roof runoff influent. At a pH values below 5, most carbonate would be 

present as carbonic acid (first acid dissociation constant for carbonic acid, pKa1 = 5.6) 

(Stumm and Morgan, 1996). At this pH, the hydroxide ion is also present at levels far 

exceed by the concentrations of Pb and Cu on the order of 1 mg/L observed in 

influent (Figure 13) and therefore much of the Pb and Cu in solution would be likely 

to exist as free ions, Pb
2+

 and Cu
2+

. Upon penetrating the mat media however, 

solution pH likely rose due to the CaO present in steel slag, and humic matter in the 

compost provided a host of additional organic ligands which were available to bind 

with the metals present in the influent.     

Because, as Figure 13 shows, Pb and Cu concentrations were reduced to such 

a significant degree, the environmental risk posed by the metal roof tiles coating the 

APHIS building was dramatically reduced, to levels that are typical of any roadway in 
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American cities. Given that the metals in Biomat effluent are typical to urban runoff, 

it is likely that bioretention or other typical SCMs could effectively treat the effluent 

for residual metals. Jones and Davis (2013) and Li and Davis (2009) both 

demonstrated that bioretention was able to effect significant removals of Pb, Cu, and 

Zn at metals concentrations similar to those observed in Biomat effluent. This 

suggests that the Biomat may be an effective pre-treatment for dissolved metals 

hotspots, where the risk of quickly overloading the top layers of media in swales, 

detention basins, or bioretention cells would demand an unreasonable frequency of 

maintenance.  

 

Figure 13: Intra-storm pollutograph for Pb and Cu, taken from data collected in a rainfall 
event on December 22, 2011. Note the log y-axis, used so that variation in both influent and 
effluent concentrations is visible. 
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 The dissolved fraction accounted for a large portion of total Pb, Cu, and Zn in 

both the influent and effluent at the wooden structure. Approximately 55% of total 

influent Pb was present as dissolved species, relative to 66% of total influent Cu and 

73% of total influent Zn. Karlen et al. (2002) found that nearly all Cu in direct runoff 

water from a copper roof was dissolved; the data here show that a majority of Cu was 

present in the dissolved fraction, but that significant particulate Cu was also present. 

As effluent, dissolved Pb accounted for 36% of total Pb, relative to 58% dissolved for 

Cu and 57% for Zn. The reduction in the fraction of dissolved in the effluent indicates 

that the Biomat removed dissolved species more effectively than particulates. Kim et 

al. (2013) designed the Biomat specifically to remove dissolved metals species. In 

previous experiments on Biomat media (Kim et al., 2013), it was hypothesized that 

some particulates in the effluent were freshly formed amorphous solids, which may 

have been too fine to be filtered out by the Biomat media.  

Because Pb and Cu (and, to a lesser extent, Zn) have the potential to harm 

aquatic freshwater flora and fauna even at extremely low concentrations, it is 

important to quantify expected effluent concentrations of these metals in order to 

assess the likelihood of persisting negative environmental impacts after treatment. 

Numerous water quality standards have been established for Pb, Cu, and Zn; this 

study compared effluent concentrations to the most stringent of these regulations, 

which are listed in Table 7. 
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Table 7: Regulatory standards for metals of concern at the APHIS site (EPA, 2013; COMAR, 
2013) 

Pollutant Standard Issuing body Regulation 

Lead (Pb) 65 µg/L MD Dept. of the Environment 
Acute freshwater toxicity limit for 
aquatic life 

Lead (Pb) 2.5 µg/L MD Dept. of the Environment 
Chronic freshwater toxicity limit for 
aquatic life 

Copper 
(Cu) 9 µg/L MD Dept. of the Environment 

Acute freshwater toxicity limit for 
aquatic life 

Copper 
(Cu) 13 µg/L MD Dept. of the Environment 

Chronic freshwater toxicity limit for 
aquatic life 

Zinc (Zn) 120 µg/L MD Dept. of the Environment 
Freshwater toxicity limit for aquatic 
life 

  

Over the course of 10 smaller storms at the wooden structure, 100% of runoff 

was captured by the treatment mat. Because all runoff was captured and stored, no 

pollutants were released to the surrounding environment during such storm events. In 

larger storms which did produce outflow from the Biomat, the likelihood of 

regulatory compliance was assessed using probability plots (Figures 15 and 16). 

Figures 14 and 15 demonstrate that the Biomat effectively and consistently 

removed Pb, Cu, and Zn to concentrations at or relatively near to regulatory 

standards. Regulatory compliance (i.e., Biomat effluent concentrations at or below 

regulatory standards) is expected to be achieved in 81% of storms with regard to 

acute Pb and in 65% of storms with regard to acute Cu standards. With respect to 

aquatic toxicity standards, the Pb level of 2.5 μg/L is only complied with in zero-

outflow events, but in 56% of storms Cu concentrations are expected to fall below the 

chronic freshwater aquatic toxicity limit of 9 μg/L. Given the inflow data, regulatory 
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compliance is never expected in untreated direct roof runoff (influent), and Pb and Cu 

concentrations are frequently 100 or more times higher than their regulatory 

standards. Treatment using the Biomat therefore greatly reduces the risk of Pb and Cu 

causing harm to animals in the surrounding environment on both a long term 

(chronic) and individual storm (acute) basis, although further reductions are desirable 

in some storms.  

 

Figure 14: Exceedance probabilities for Pb and Cu in direct roof runoff influent and effluent 
at the APHIS building. Each data point represents an event mean concentration. Hollow 
triangles represent the 10 rainfall events in which no outflow was produced, and th 

 

Figure 14 demonstrates dramatic concentration reductions for both Pb and Cu. 

Inflow and outflow Pb and Cu appear to be sampled from log-normal populations, as 
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indicated by the high degree of linearity (Davis, 2007). The parallel lines between 

inflow Pb and Cu and between outflow Pb and Cu indicate that a similar degree of 

inter-storm variation in EMCs is expected for Pb as for Cu. Figures 13 and 14 show 

that Biomat treatment for Pb effects the same removals as treatment for Cu, both in 

the amount by which metals are removed and the variation of metals removals across 

multiple storms in which samples were taken. These observations suggest that 

treatment mechanisms in the Biomat are not specific to either Pb or Cu but may 

operate similarly for both metals.  Evans (1989) noted that the retention of metals in 

soil solutions depends on concentrations of metals in the solution, the metal itself 

(e.g., its Lewis-acid hardness, its charge, its tendency to form (hydr)oxy complexes), 

and the characteristics of ligands present (e.g. inorganic vis-a-vis organic, the Lewis-

base hardness, surface charge). Influent concentrations of Pb and Cu are typically on 

the same order of magnitude, and by virtue of entering the same treatment media, the 

characteristics of the ligands to which both metals are exposed can be assumed to be 

the same. As transition Lewis acids, Cu
+
, Cu

2+
, and Pb

2+
 all also possess a similar 

electron-attracting propensities (Nieboer and Richardson, 1980; Stumm and Morgan, 

1996). It should not therefore be surprising that Pb and Cu removals are so similar. 

Kim (2010) found weaker binding of Zn based on column and bench-scale 

evaluation of Biomat media. Sorption order preference was found to follow the order 

Cu
2+

>Pb
2+

>>Zn
2+

. Breakthrough for Zn was expected more rapidly relative to Pb and 

Cu because of this. Seelsaen et al. (2007) reported the order of metal removal affinity 

by compost as Pb
2+

>Cu
2+

>Zn
2+

, based on batch studies with a plant-waste based 

compost. Jang et al. (2005) found the same removal affinity order based on batch 
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adsorption studies with hardwood bark mulch as the adsorbent. Irving and Williams 

(1948) found the above results to fit within their findings as well, with the complete 

order for the stability of bivalent metal complexes with organic ligands listed as 

Pb>Cu>Ni>Co>Zn>Cd>Fe>Mn>Mg. 

Considering the factors proposed by Evans (1989), the removal of Zn by the 

Biomat is predicted to be different from that of Pb and Cu. Zn
2+

 is a less 

electronegative ion relative to Cu
+
, Cu

2+
, and Pb

2+
 based on the X

2
mr index (Nieboer 

and Richardson, 1980; Stumm and Morgan, 1996). Zn concentrations observed in the 

effluent were typically at least a full order of magnitude lower than Pb and Cu 

concentrations. 

Nonetheless, Figure 15 demonstrates excellent removal of Zn, resulting in 

consistent (>95%) compliance with the regulatory limit for effluent from the Biomat. 

Concentration percent reductions of Zn were clearly lower than those observed for Pb 

and Cu, but regulatory compliance was achieved with greater consistency for Zn 

relative to other metals. The fact that Zn entered the Biomat at significantly lower 

concentrations relative to Pb and Cu is important to consider. Given that regulatory 

compliance was achieved in 80% of storms as influent with regard to total Zn, 95%+ 

concentration reductions should not be expected or even necessarily desired from an 

aquatic toxicity and/or environmental risk standpoint. 
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Figure 15: Exceedance probabilities for Zn in direct roof runoff influent and effluent at the 
APHIS building. Each data point represents an event mean concentration. Hollow triangles 
represent the 10 rainfall events in which no outflow was produced, and therefore no metal 
was released. 

 

The metal concentration data presented here demonstrate that concentration 

percent reductions are a weak measure of treatment efficacy when considered alone. 

The parameters of primary environmental concern are the concentration of pollutants 

in the effluent and the total mass of each pollutant released (i.e., the acute severity 

and the amount of pollution released). By definition, concentration percent reduction 

depends on the concentration of pollutants in the influent. Because of this, the 

effectiveness of treatments is not adequately measured by percent concentration 

removals, particularly for those treatment mechanisms which rely on a concentration 

gradient to remove pollutants. 
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Treatment efficacy on a mass removal basis 

 

Total mass inputs and outputs from sampled events for each metal were 

calculated by summing the values of Equation 6 (mass in) and Equation 7 (mass out) 

from each storm. Over the course of the 26 storms sampled, for example, 22.2 g of Pb 

entered the Biomat at the wooden structure and 62 mg Pb were discharged. 

Extrapolating these Pb data and the Cu and Zn data, annual pollutant mass loadings 

(Table 8) were calculated for each metal at the influent and effluent, based on 

Equation 9. 

The influent loadings for Pb, Cu, and Zn, reflect the clear environmental risk 

posed by buildings such as APHIS 580, a risk that comes to light once all 

architectural zinc, copper, and lead is taken into account. Although the concentration 

of Pb measured in the roof runoff at the APHIS building is likely exceptional, 

architectural Cu and Zn are common design elements throughout the country. Table 8 

quantifies the amount of toxic compounds leached to stormwater runoff on an annual 

basis and demonstrates that metal roofing may be a significant source of nonpoint 

source metals. The effluent mass loadings are dramatically lower for all metals, and 

underscore the potential for widespread application of this treatment to reduce the risk 

of toxic effects in natural waters resulting from stormwater metals. These effluent 

mass loadings also demonstrate that Biomat treatment would reduce Pb, Cu, and Zn 

mass loadings at hotspots with severe contamination issues to loadings more typical 

to urban runoff. Li and Davis (2009) measuring Pb, Cu, and Zn loads at two parking 

lots in urban areas of Maryland, found pollutant loads for Pb ranging from 0.03-0.09 

kg/ha-yr and 0.12-0.26 kg/ha-yr for Cu. The Zn loadings measured by Li and Davis, 



 

43 

 

however, ranged from 0.36-1.0 kg/ha-yr, a finding not significantly different from the 

influent loading at the APHIS building. 

Table 8: Annual pollutant mass loadings for Pb, Cu, and Zn 

Annual Pollutant Mass Loadings (kg/ha/yr) 

 Pollutant: Pb Cu Zn  
     

Influent Loading: 19.0 5.8 0.6  
Effluent Loading: 0.05 0.02 0.06  

 

Intra-storm variability 

 

Several trends within individual storms were observed based on discrete storm 

sample water quality data such as Figure 13. No outflow, and therefore no metals 

release, occurred during 10 storms at the wooden structure. However, a first flush 

behavior in the effluent was observed in most outflow-producing storms, especially 

for Pb. This could suggest that prior to these outflow-producing storm events, a small 

fraction of the metals held within the mat were weakly bound, and therefore easily 

released once effluent began to flow. A similar trend for Zn and Cu in the runoff from 

green roofs was observed by Berndtsson et al. (2010), who interpreted the results as a 

first flush from the green roof media, suggesting that loosely-bound metals had built 

up prior to the storm. Two other trends are visible in Figure 13. Firstly, an initial 

release of elevated amounts of metal is visible in the influent as well as the effluent. 

Influent first flushes are considered characteristic of stormwater for metallic 

pollutants, which do not volatilize during dry periods and therefore accumulate until 

storm events wash deposited metals off of surfaces in the watershed. For this reason, 
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previous studies (Gupta and Saul, 1996; Hewitt and Rashed, 1991) have found the 

antecedent dry period to be a major factor controlling pollutant concentrations 

observed in urban stormwater runoff.     

The second phenomenon visible from the data in Figure 13 is a steady state or 

equilibrium concentration for metals in the effluent. After the first flush, effluent 

metals are present at significantly lower concentrations, and can be accurately 

described by an equilibrium model (Equation 10), with c* approximately equal to cout. 

This is evidenced by the small amount of variation in dissolved metals concentrations 

that was observed in storms where discrete sampling was used (e.g., Figures 13 and 

16-19). As the storm progresses, initially high metals concentrations (largely 

particulate) level off, and do not appear to continue decreasing. This trend was 

observed in most storms, and several additional pollutographs (Figures 16-19) from 

other sampled storm events were compiled to demonstrate the persisting trend. 

Although the speed of equilibration varies, the pattern of reduction to a constant, 

nonzero concentration for both Pb and Cu appears to indicate that an equilibrium 

pollutant level between the treatment media (which are not completely free of metals) 

and the influent runoff is eventually reached.   

Effluent metals concentrations were reasonably constant from storm to storm 

following the first flush, which varied considerably in duration and consisted 

overwhelmingly of particulate metals. Data from the 10 storms where discrete data 

was taken and effluent was produced at the wooden structure were compiled. 

Hydrologic data and water quality data from samples taken in the rising limb of the 

hydrograph, as shown beneath the blue line in Figure 16 for example, were 
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discounted in order to calculate a steady-state event mean concentration from the 

remaining hydrologic and water quality data for each of the 10 storms, according to 

Equation 4. An example of this steady-state period is shown under the green line in 

Figure 16. The rising limb of each hydrograph was specifically removed because it 

was presumed that no new flushing of previously-stored metals would occur after 

hydraulic head began decreasing. This technique is also easily transferable to storms 

of differing durations and depths.  

Comparing water quality data post-rising limb to discrete data sets from entire 

rainfall events quantified the flushing of particulate metals. Examining the data for Pb 

and Cu, dissolved concentrations post-rising limb were present at concentrations 

constituting 65% and 91% of total Pb and Cu, respectively. When including the rising 

limb of each effluent hydrograph however, dissolved Pb and Cu account for only 34% 

and 58% of total Pb and Cu, respectively. This difference can be attributed to the 

qualitative observation in Figures 18 and 19 that the first flush often was 

characterized by high particulate metals concentrations, while dissolved 

concentrations often remained comparable to those observed later in storm events. 

The post-rising limb mean concentration of total effluent Pb over the 10 discretely-

sampled storms was 30 μg/L, somewhat lower than the mean total effluent Pb 

concentration of 38 μg/L which included water quality data taken during the rising 

limb of each of the ten outflow producing, discretely measured storm events. This 

also suggests that greater amounts of particulate Pb were released during the 

beginning of storm events. 
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Figure 16: Intra-storm variation of Pb and Cu in effluent samples taken on September 23, 
2011. 

 

Figure 17: Intra-storm variation of Pb and Cu in effluent samples taken on December 22, 
2011. 
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Figure 18: Intra-storm variation of Pb and Cu in effluent samples taken on February 29, 
2012. 

 

Figure 19: Intra-storm variation of Pb and Cu in effluent samples taken on October 29, 2012 
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As mentioned, Figures 13 and 16-19 all indicate that stormwater runoff 

entering the Biomat is treated to a specific steady-state level which can be modeled as 

an equilibrium relationship between the liquid runoff and the solid treatment media. 

Kim (2010) analyzed the chemical characteristics of steel slag and two composts 

similar to those used in the APHIS Biomats, one manure-based and the other 

grass/food waste-based. The reported ranges of total metals concentrations were 13-

36 mg/kg Pb, 24-35 mg/kg Cu, and 113-172 mg/kg Zn. Although these values do not 

speak directly to the lability of the metals present in each material, they demonstrate 

that the Biomat media are not a purified treatment media and suggest that metals 

removals will not be 100% efficient. As will be directly demonstrated by the 

sequential extraction data performed on media samples, a small fraction of the metal 

that is present on the outer and inner surfaces of the treatment media does release into 

solution. A simple model will therefore be introduced to explain the equilibrium 

relationship that exists between incoming dissolved metals in stormwater runoff and 

the treatment media. 

Equilibrium model of effluent pollutant concentrations 

 

Erickson et al. (2007), in their study to increase dissolved P removal in 

stormwater sand filtration systems, proposed Equation 10 as a simplified model to 

explain the mass balance of P between incoming synthetic stormwater and their 

treatment media. This same model can be used to explain the individual mass 

balances of dissolved Pb, Cu, and Zn between incoming roof runoff and the Biomat 

media. 

            (10) 
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The variables in Equation 10 quantify properties related to the incoming 

stormwater, reactor design, and treatment media. cin refers to the dissolved pollutant 

concentration in influent stormwater runoff, and cout denotes the dissolved pollutant 

concentration in effluent stormwater runoff. The variables in the exponent describe 

the extent of the reaction: tc is the contact time, a is the volume specific surface area, 

and k is the rate constant, with units of length/time. c
*
 describes a steady-state 

concentration, which cout approaches as the contact time increases. For this study, c
*
 

was assumed to be constant because metals breakthrough did not occur. The data 

collected here, including the water quality data described by Figures 13 and 16-19, as 

well as the extraction data which will be presented later in this thesis, suggest that a 

steady-state concentration is reached in every storm, i.e., that c* ≈ cout.  

Separate from the observed steady-state behavior, the leaching of effluent 

metals at the beginning of most storms is explained by the accumulation of weakly 

bound metals from previous storms, where a fraction of influent roof runoff was 

stored in the pores and subsequently evaporated, leaving a small amount of unbound 

or weakly-bound metals behind. This explains the flushing behavior, most easily 

distinguishable in Figures 18 and 19, where effluent particulate metals represent a 

dominant fraction of total metals in the first sample from each storm. The extent of 

the effluent first flush likely depends on the antecedent dry period, a variable which 

was not included in this study. 

Table 9 shows the overall mean concentration values for each dissolved metal 

as well as characterizing the variation of these values across all sampled storms. The 

low concentrations for each metal in Table 9 suggest that the Biomat is likely to be an 
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effective treatment media for achieving metals reductions at hotspots. The entire 

range of mean concentrations is shown in the bottom two rows of Table 9. The small 

range in observed effluent dissolved metals concentrations indicates that similar 

effluent dissolved Pb and Cu concentrations were observed in each storm, with little 

overall variation. This suggests that equilibrium is being reached between the media 

and the stormwater runoff, and that consistent reductions below these values are not 

possible with this treatment media. The observed consistency in effluent dissolved 

metals concentrations occurs despite wide ranges of influent metals EMCs, storm 

depths, durations, and ambient temperatures. Whatever the reaction rates of dissolved 

Pb and Cu removals within the mat, kinetics does not appear to limit treatment 

performance for these two metals at the wooden structure. The findings in Table 9 

therefore show that the Biomat is likely to be effective as a dissolved metals removal 

technique in a wide variety of environmental conditions: in large and small storms, 

hot and cold temperatures, and at a wide variety of metals loadings. 

Table 9: Mean effluent steady-state concentrations for dissolved metals at the wooden 
structure. Standard deviation and range are shown as well. The values in parentheses in the 
Pb column indicate values which exclude the rainfall event on October 12, 2012, during 
which some bypass was suspected. Outflow was small enough in this event as to not affect 
the mean overall concentration, which is flow-weighted. 

 
Dissolved Pb Dissolved Cu Dissolved Zn 

Mean overall concentration (mg/L) 0.012 0.008 0.066 
Standard deviation (mg/L) 0.046   (0.019) 0.015 0.064 

    Maximum EMC (mg/L) 0.18   (0.068) 0.028 0.249 
Minimum EMC  (mg/L) 0.004 0.004 0.015 

 

The observations of such consistent effluent dissolved metals concentrations 

and the data in Figures 13 and 16-19 all suggest that at some point prior to discharge 
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from the mat, Pb, Cu, and Zn dissolved in solution had equilibrated with Pb, Cu, and 

Zn on the treatment media. The observed steady-state effluent concentrations of Pb, 

Cu, and Zn appear to indicate that metals removal in the mat occurred quickly relative 

to overall retention time of water during storm events. Given that the wide variety of 

storm depths and durations exerted a wide range of hydraulic heads on the Biomat 

media and yet effluent concentrations remained relatively constant, it is evident that 

within the range of treatment times observed (on the order of minutes) effluent 

dissolved metals concentrations were independent of treatment time. The chemical 

reactions governing the efficacy of treatment appear to occur much more quickly 

relative to the time required for influent water to pass through the porous treatment 

mat despite the wide ranges of treatment times and influent concentrations.  

However, it is important to note that the kinetically-controlled equilibrium 

levels of Pb, Cu, and Zn (estimated in Table 9) could change due to a variety of 

factors inherent to Biomat treatment. If treatment time were extended from minutes to 

weeks (e.g., if the mat were designed with insufficient slope to fully drain water 

following rainfall events), another set of slower reactions could alter the steady-state 

level of effluent dissolved metals. As the product of the biological breakdown of 

organic matter, compost is a dynamic material which is expected to continue to 

mature while in use as Biomat treatment media. Warm temperatures and reducing 

conditions immediately following rainfall events would be expected to accelerate the 

breakdown process, freeing more organic matter and, potentially, metals which had 

previously bound to these organic ligands. Similarly, steel slag is also expected to 

continue breaking down as time passes, and if left in solution for weeks or months 
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could push the pH of effluent solution increasingly higher, altering the chemistry of 

Biomat effluent greatly. The steady-state levels estimated in Table 9 do not therefore 

represent the concentrations of Pb, Cu, and Zn expected at thermodynamic 

equilibrium, when all reactions have proceeded to their final steady-state.  

The high degree of intra-storm variation in both influent and effluent pollutant 

concentrations also suggests that from an aquatic toxicity perspective, conditions in 

receiving environments would often deviate from the values predicted by EMC 

estimates. Pollutant duration curves (Figures 20-22) were therefore prepared to 

provide perspective on the typical concentrations of metals released.  

Effluent Pb and Cu are both present at levels at or below water quality 

standards approximately 75% of the time (Figures 20 and 21). Influent Zn 

concentrations are below the aquatic toxicity limit over 85% of the time (Figure 22), 

and effluent Zn concentrations are below this standard over 95% of the time.  

Similar to the pollutographs in Figures 17-20, the pollutant duration curves for 

Pb and Cu (Figures 20-21) suggest that equilibria may exist between metals in the 

effluent and trace amounts of each of these metals (Pb, Cu, and Zn) in the treatment 

media. If an equilibrium does exist between stormwater discharge and the treatment 

media, then consistent reductions below an equilibrated metals concentration are not 

possible with this media. Figures 23-24 provide a closer look at lower concentrations 

of Pb and Cu. In order to show these data more clearly, the range on Figures 20-21 

was adjusted to show only values at or below one standard deviation above the 

maximum event mean concentration for each metal, thereby excluding a small portion 
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of the data. A second figure was not created for Zn, because this range was already 

adequately shown in Figure 22. 

Figure 23 shows that among the lowest Pb concentrations measured in 

discrete data, no threshold value distinguishes itself as an asymptote, i.e., 

concentration data do not flatten out at a discrete, non-zero value. The lower end of 

the curve is instead fairly linear in an apparent approach to zero, or to some value 

below the method detection limit (2 μg/L). The data in Figure 24 show that Cu was 

removed to levels near the overall mean concentration with great consistency. Over 

90% of all discrete effluent data for dissolved Cu is included in Figure 24, and all Cu 

concentration measurements in Figure 24 are within a 35 μg/L range. This 

consistency is best explained by a steady-state relationship, where several factors are 

driving the incoming roof runoff towards equilibrium (e.g., concentration gradient, 

availability of sites, and contact time) before water is discharged from the mat as 

effluent. The data for Cu do appear to asymptotically approach a nonzero value, 

which appears to be at or just below the method detection limit for Cu, 5 μg/L. A 

clear flattening of the curve is visible in Figure 24, indicating that Cu concentrations 

may be approaching an equilibrium threshold that cannot be crossed using the 

existing Biomat media. 
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Figure 20: Pb pollutant duration curve. Data from all 17 storms in which discrete sampling 
was used are included. Concentration data were ranked and assigned a representative 
sample time based on the sampling program used (see methods). The dashed lines labeled 
MC In/Out” show the mean concentrations observed. 
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Figure 21: Cu pollutant duration curves. Data from all 17 storms in which discrete sampling 
was used are included. Concentration data were ranked and assigned a representative 
sample time based on the sampling program used (see methods). The dashed lines labeled 
“MC In/Out” show the mean concentrations observed. 
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Figure 22: Zn pollutant duration curve. Data from all 17 storms in which discrete sampling 
was used are included. Concentration data were sorted high-to-low and assigned a 
representative sample time based on the sampling program used (see methods). The 
dashed lines labeled “MC In/Out” show the mean concentrations observed. The dashed 
lines labeled “MC In/Out” show the mean concentrations observed. 
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Figure 23: A zoomed-in version of Figure 20, showing concentrations of Pb near the steady-
state mean value. 

 
Figure 24: A zoomed-in version of Figure 21, showing concentrations of Cu near the steady-
state mean value. 
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Variables affecting treatment efficacy at the wooden structure 

Kim (2010) hypothesized that several treatment mechanisms were at work 

during treatment by the Biomat: specific and nonspecific adsorption, precipitation by 

reaction with specific anions such as sulfide, phosphate, carbonate, and hydroxide, 

and finally coprecipitation with iron and/or aluminum. Precipitation and adsorption 

are both controlled to a large extent by solution pH, and therefore the relationship 

between effluent pH and effluent metals concentrations is likely significant. Figures 

25-27 plot observed pH levels against metals concentrations.  

 
Figure 25: EMC effluent dissolved metals concentrations as a function of effluent pH. 
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Figure 26: Effluent Pb concentrations as a function of pH. Each data point represents a single 
discrete measurement from storm events at the wooden structure which produced outflow 
and were sampled using the discrete (as opposed to composite) sampling regimen. 

 
Figure 27: Effluent Cu concentrations as a function of pH. Each data point represents a single 
discrete measurement from storm events at the wooden structure which produced outflow 
and were sampled using the discrete (as opposed to composite) sampling regimen. 
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Previous research has shown increased metal and phosphorous removal at pH 

ranges elevated by steel slag addition (Drizo et al., 2006; Okochi and McMartin, 

2011).  However, when organic matter is also present, increased metal mobility has 

also been observed to occur at alkaline pH ranges through dissolution of metals 

bound to fulvic and humic acids, which have a strong affinity for heavy metal cations 

(Zhou and Haynes, 2010). These two observations are not necessarily contradictory; 

it is likely that, from a metals removal perspective, an ideal pH exists, at which 

increased removal is effected by precipitation and sorption without significantly 

increasing organic matter dissolution. The data from Figures 25-27 suggest that at 

least up to pH 7.5, increasing pH is clearly correlated with decreased metals 

concentrations. Above pH 7.5, however, it appears that further increases in effluent 

pH have diminishing returns on metals removals. This may indicate that increased 

precipitation and adsorption is offset by the dissolution of organic matter, to which 

metals may be adsorbed. 

Speciation experiments 

 

Given that the Biomat was observed to lower metals concentrations to trace 

amounts, raise pH, and add organic matter (as discussed later in the section 

‘Phosphorous leaching’), it was suspected that effluent speciation of metals would 

vary significantly relative to the influent. Specifically, it was hypothesized that a 

greater proportion of dissolved effluent metals would be associated with negatively-

charged organic complexes relative to the influent. Jensen et al. (1999) and 

Christensen et al. (1997) successfully applied an anion-exchange technique to 
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estimate the fraction of anionic/organic complexes in landfill leachate, and their 

methods were reproduced to speciate metals in discrete samples of influent and 

Biomat effluent taken on January 16, 2013, January 30, 2013, and February 26, 2013.  

Figure 28 shows the change in Cu speciation that accompanies Biomat 

treatment. In municipal wastewaters and landfill leachate, Cu has been observed to 

bind predominantly to organic matter (Jensen et al., 1999). The results observed in 

this study are in line with these previous results. In the presence of an excess of 

organic ligands, the small amount of dissolved Cu which passed the Biomat appears 

to exists in majority as anionic complexes. In the influent, pH is significantly lower 

(average effluent pH 1/30/13 = 7.62, relative to an average influent pH = 5.54), and 

fewer organic ligands are present. These two factors explain why influent Cu exists in 

majority cationic/neutral forms.   

 

Figure 28: Proportions of anionic vis-a-vis cationic/neutral Cu anions and complexes present 
in Biomat influent and effluent. Proportions are calculated from mean flow-weighted 
concentrations measured in discrete samples taken on January 30, 2013, and February 26, 
2013. 



 

63 

 

Although it is clear that conditions are more favorable to formation of anionic 

complexes in the effluent relative to influent at the APHIS roof runoff site, 

preferential wash-through of anionic Cu may also be occurring. It was not possible to 

distinguish between wash-through and formation/release of anionic Cu complexes, 

however, because effluent concentrations are so low relative to outflow levels. Figure 

29 highlights this observation. 

 

Figure 29: Flow-weighted mean concentrations of anionic vis-vis cationic/neutral Cu present 
in Biomat influent and effluent. From discrete data taken on January 30, 2013 and February 
26, 2013. 

 

Results for Pb from the same two storms are presented in Figures 30. The data 

indicate a small increase in the proportion of anionic-Pb complexes, but again 

effluent concentrations could be purely attributable to wash through as opposed to 

formation and release of anionic complexes. In both storms, effluent dissolved Pb was 

approximately 30% anionic, suggesting that effluent dissolved Pb was not as 

predominantly bound to dissolved organic matter as effluent dissolved Cu, which 

exhibited 50-60% anionic complexes (Figures 28 and 29). Jensen (1999), however, 
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found that Pb and Cu in landfill leachate bound with similar relative frequencies to 

negatively-charged dissolved organic matter. This discrepancy may be due to 

differences in the landfill leachate and Biomat effluent matrices, however more 

speciation data from Biomat effluent is required to make definite conclusions. 

 

Figure 30: Proportions of anionic vis-a-vis cationic/neutral Pb anions and complexes present 
in Biomat influent and effluent. From discrete data taken on January 30, 2013 and February 
26, 2013. Flow-weighted mean concentration values for each species are shown in mg/L on 
the data bars. 

 

The speciation data presented in Figures 27-30 suggest that the Biomat does 

increase the fraction of metals which are bound to organic matter. This is consistent 

with the observations of pH increase in effluent samples, dissolved organic matter 

visible in effluent samples (Figure 31), and increased nutrient concentrations at the 

effluent. A greater fraction of effluent dissolved Cu appears to bind with organic 

matter relative to Pb.  
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 Phosphorous leaching 

 

Compost has proven an effective treatment media for heavy metals in many 

previous studies (Glanville et al., 2003; Seelsaen et al., 2007; Gibert et al., 2005; 

Chang-Chien et al, 2007). However, as a decaying organic substance, compost is also 

likely to leach a certain amount of nutrients as the breakdown of organic acids 

continues within the Biomat. Evidence of organic leaching was visible in effluent 

samples, manifested as a dark yellow color. The most dramatic example of this, from 

one of the first effluent samples collected in August, 2011, is shown in Figure 31. 

 
Figure 31: An inflow sample, left, opposite a Biomat outflow sample, right. These samples 
were taken in August, 2011, shortly after the mat was constructed. 

The mean, flow-weighted concentration of total phosphorous in Biomat 

effluent over all storms measured at the wooden structure was 0.7 mg/L, much higher 

than the mean influent concentration (0.049 mg/L). Mason et al. (1999) found 

concentrations of total P in roof runoff of 0.004-0.018 mg/L, indicating that while the 

APHIS site may receive slightly more deposition of pollen and/or other P-containing 

compounds, the influent concentrations observed in this study are on the order of 

those reported in previous results. The Environmental Protection Agency 

recommends that for rivers and streams in the Beltsville, MD, as part of ecoregion 
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XIV (Eastern Coastal Plane), concentrations of phosphorous should be below 31.25 

µg/L to prevent eutrophication and protect aquatic life to acceptable levels (USEPA, 

2000).  

Although such a nutrient addition would be undesirable if outflow from the 

wooden structure were draining directly to a stream or river, the lawn surrounding 

APHIS Building #580 should ensure that most of these nutrients are taken up by the 

grass and trees and not deposited into receiving waters draining to the Chesapeake 

Bay. However, the potential to contribute to eutrophication should be considered in 

other potential applications of the Biomat where effluent from treatment mats is 

expected to directly enter natural water bodies. Figure 32 plots typical phosphorous 

behavior at the wooden structure, where effluent phosphorous concentrations tend to 

build over the course of each storm at the effluent. Dissolved P, as shown, typically 

accounted for more than 80% of Total P in Biomat effluent. A more thorough 

analysis of the P speciation of Biomat effluent was also conducted during the 3 final 

storms monitored at the wooden structure. 
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Figure 32: Intra-storm variation of phosphorous concentrations during the storm of 
12/22/11 at the wooden structure.  Each data point represents a single discrete sample. 
Total storm depth: 0.64 cm. 

 

 Given the concerns of nutrient addition, a probability plot of total P EMCs at 

the wooden structure was prepared (Figure 33). Influent total P ranged from 0.008-0.5 

mg/L, while effluent total P ranged from 0.4-1.9 mg/L. As shown in Figure 33, 

effluent total P is always expected to be at least one order of magnitude above the 

regulatory standard of 31.25 μg/L. Sibbesen and Sharpley (1997), in their tests on the 

relationship between P sorption capacity of a soil and dissolved P in surface runoff, 

found dissolved P concentrations of as much as 2.5 mg/L in surface runoff from a 

wide variety of poultry-litter amended soils where P sorption capacity exceeded 50%. 

In the Biomat, where the media is 25% compost by mass, it is likely that P sorption 

capacity is also well over 50%.  
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Figure 33: Exceedance probabilities for P based on event mean concentrations from 24 
storms. Hollow triangles denote those storms in which no effluent was discharged. 

 

While it is true that concentrations of effluent total P well above regulatory 

limits were observed in all outflow-producing storms, a trend of decreasing effluent 

total P concentrations was observed at the wooden structure. Figure 34 highlights this 

trend. The data in Figure 34 suggest that more mature, stabilized compost may be less 

prone to organic leaching and therefore more suitable for Biomat use. Madrid (1999) 

found that the processes used to mature composts significantly affected the amount of 

organic leaching that occurred when the composts studied were later land-applied. 

Zhou and Haynes (2010), in their review of compost usage for heavy metal sorption 

applications, found that compost with high soluble organic matter, such as manure 
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and biosolids-based composts, were more likely not only to leach this organic matter, 

but also leach metals that were sorbed to these organic constituents. This may suggest 

that purely plant or food-waste compost may be more effective for Biomat use, and 

that the use of some manure-based compost may have increased P leaching and 

limited the effectiveness of treatment.  

 

 

Figure 34: Concentrations of effluent total phosphorous measured over the course of 14 
storms. Each data point represents one discrete measurement.  
The equation of the regression line is: (Effluent P Conc. = 1.43 mg/L – 0.0016 mg/L/day) 
where day 1 is the date of the first storm sampled event (9/23/2011). 

 

P leaching was also considered from a loading perspective. Mass loads for 

total and dissolved P were calculated by summing the differences between Equation 6 

(mass in) and Equation 7 (mass out) from each storm. Over the course of the 26 
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storms sampled, for example, 459 mg of total P entered the Biomat at the wooden 

structure and 1.2 g P were discharged. Extrapolating the P data based on drainage 

area, total rainfall depth sampled, and annual rainfall depth in MD (see Methods), 

annual phosphorous mass loadings were calculated at the influent and effluent (Table 

10). Because the main source of effluent P is the Biomat itself, these calculations 

assume a constant sizing ratio of linear feet of Biomat: square feet of drainage area 

(in this case 1:11) in future applications. The influent loading for total P is somewhat 

lower than that observed by Li and Davis (2009) in their study of mass loadings at 

two parking lots in Maryland. The effluent loading from the Biomat is slightly higher 

than the effluent loadings from bioretention systems observed by Li and Davis, but on 

the same order as the influent mass loadings observed in this 2009 study. This 

suggests that despite the high concentrations of P in Biomat effluent, the water 

storage capability of the Biomat mitigates P mass loading to a certain extent.   

Table 10: Annual pollutant mass loadings for total and dissolved P, based on Biomat data. 

 Pollutant: Total P Dissolved P  

    

Influent Loading (kg/(ha*yr): 0.39 0.11  

Effluent Loading (kg/ha*yr): 1.03 0.73  
 

The data in Figures 32-34 demonstrate  phosphorous leaching and suggest 

that, without further treatment, use of the Biomat would be best limited to situations 

where effluent does not reach natural waters. Another option considered was the use 

of a secondary treatment to remove phosphorous and residual metals from the Biomat 

effluent. It appears likely that those metals which do pass through the treatment media 
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may be attached to dissolved organic matter. Therefore, a treatment for organic matter 

may also be able to remove metals in Biomat effluent.     

 

Development of a secondary treatment for enhanced P and metals removal 

 

The moderately alkaline pH, high amount of organic acids, and high 

phosphorous concentrations which characterize Biomat effluent all suggested that an 

aluminum (hydr)oxide sorbent such as water treatment residual (WTR) may be able 

to effectively remove the phosphorous and/or residual metals from solution. 

Phosphorous removal by WTR has been noted in similar waters (i.e., those with high 

organic matter) by Codling et al. (2000), Babatunde and Zhao (2007), and Zhou and 

Haynes (2010), among others. Metals removal has also been noted, for Pb by Chu 

(1999) and Zhou and Haynes (2011), and for Cu in wastewaters by Lee et al. (2006). 

Furthermore, metals sorption onto WTR in some feasibility studies has been found to 

increase with increasing pH (Lee et al., 2006). 

 Using Biomat effluent samples from two sampled rainfall events, on June 22, 

2012 and July 14, 2012, duplicate batch tests were conducted to assess the ability of 

WTR to remove phosphorous and metals.  At a mass ratio of 40 mL solution sample: 

2.67 g WTR, reductions in phosphorous concentrations were greater than 99%. Post-

treatment concentrations were at or below the dectection limit (0.01 mg/L) for total P, 

relative to 1.5 mg/L total P as Biomat effluent (pre-WTR treatment). Metals 

reductions were also observed, with concentrations reductions above 80%, even at 

extremely low levels of metals. Biomat effluent concentrations of total Pb in the 
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samples taken were 17 μg/L and 28 μg/L. Post-WTR treatment at a mass ratio of 40 

mL solution sample: 2.67 g WTR, mean concentrations of total Pb were 5.7 μg/L and 

<2 μg/L (the method detection limit for Pb), respectively. Table 11 shows the 

phosphorous reductions observed in samples taken from the July 14, 2012 storm, 

post-WTR batch treatment. 

 

Table 11: Dissolved P concentrations in untreated and WTR-treated samples at varying 
media: solution mass ratios. These data were obtained by performing batch experiments on 
a sample of Biomat effluent collected after a storm event on July 14, 2012. Method 
detection limit = 0.010 mg/L. 

 Replicate 1 – Dissolved P 

concentration (mg/L) 

Replicate 2 – Dissolved P 

concentration (mg/L) 

Original sample 1.54 N/A 

2.67 g WTR: 40 mL solution 0.010 <0.010 

1.60 g WTR: 40 mL solution 0.015 0.022 

1.33 g WTR: 40 mL solution 0.013 0.012 

 

Given that batch treatment produced promising results for potential P and 

metals removal from Biomat effluent, a field-scale prototype was constructed to 

collect and treat Biomat effluent (Figure 7). Sampling occurred on 1/16/13, 1/30/13, 

and 2/26/13, to provide water quality data on the efficacy of this secondary treatment. 

During these three storms, phosphorous speciation was determined in inflow samples, 

Biomat outflow samples, and WTR-treated samples. Typical time-series results from 

discrete data are presented in Figures 35 and 36. 

Figure 35 demonstrates the efficient removal of P by WTR treatment in a 

rainfall event on February 26, 2013. Concentrations of total P are reduced from 0.3-

0.6 mg/L as Biomat effluent to <0.12 mg/L total P as WTR-treated effluent. Influent 

P concentrations, shown in the lighter time series, are on par with the WTR-effluent, 

at around 0.1 mg/L. Figure 35 therefore suggests that WTR-treated effluent is not 
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only greatly reduced in metals concentrations relative to influent, but also that 

nutrients are not significantly elevated due to secondary treatment. 

Figure 36 shows the speciation data for Biomat effluent from discrete data 

samples taken on February 26, 2013. These data explain in part the efficient removal 

of P demonstrated in Figure 35. Soluble reactive P (SRP) accounts for the vast 

majority of total P in Biomat effluent. Very little organic P or particulate P was 

observed; concentrations of these two species were below 0.1 mg/L in all discrete 

samples, relative to SRP concentrations which were frequently 0.3-0.5 mg/L, as 

shown in Figure 36.  

 

Figure 35: P concentrations in inflow, Biomat outflow, and WTR-treated outflow from a 
rainfall event sampled on 2/26/13. 
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Figure 36: Forms of P present in Biomat effluent during the storm event sampled on 
2/26/13. 

 

Prevalence of SRP over organic P has been found in several previous compost 

studies. Running sequential extractions on 24 composts and manures, Sharpley and 

Moyer (2000) found that 63 to 92% of total P in manure came from SRP. The data in 

Figure 36 indicate a similar prevalence of SRP in water extractable P. 

Soluble reactive phosphorous has been shown in previous studies (O’Neill and 

Davis, 2011b) to be more efficiently removed by WTR relative to organic 

phosphorous. Kim et al., (2013) pointed out that the majority of P in compost is likely 

to exist as SRP, and the data above confirm this finding, explaining the good 

removals observed at the field scale. The WTR treatment appears to alter solution 

speciation significantly, as shown in Figure 37. Nearly all SRP was removed by 

secondary treatment, and smaller removals of particulate P (likely attributable to sand 

filtration) and organic P are also visible. SRP was the overwhelming constituent of 

Biomat effluent total P, constituting 0.66 mg/L of 0.79 mg/L total P. However, 
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WTR/sand-treated samples have equal proportions of all three P species (SRP, 

dissolved organic P, and particulate P), each present at around 0.13 mg/L and each at 

lower concentrations than those present in Biomat effluent, where mean organic P 

was present at 0.07 mg/L and mean particulate P was present at 0.06 mg/L. The 

concentration of P in WTR/sand effluent is reduced to near pre-Biomat levels, around 

0.05 mg/L, and specifically the predominance of SRP in Biomat effluent is negated 

by the effective treatment of SRP by the WTR/sand mixture. 

 

 
Figure 37: Phosphorous species concentrations in influent, Biomat effluent, and WTR-
treated effluent in samples taken on January 30, 2013. The values shown are EMCs. 

  

Table 12 summarizes the efficacy of WTR/sand treatment over the course of 

all 3 storms sampled at the wooden structure. These results indicate that the 

WTR/sand treatment was able to reduce phosphorous concentrations by over 90% 



 

76 

 

relative to Biomat effluent, to a level near influent levels and the USEPA Ecoregion 

XIV standard for P (31 μg/L). Furthermore, metals reductions by the WTR/sand 

treatment are also evident from Table 12. Mean effluent concentrations leaving the 

WTR/sand bucket were below regulatory levels with respect to all metals. Given that 

metals were removed to the point of regulatory compliance, and the potential issues 

caused by nutrient addition were addressed, treatment at the wooden structure was 

deemed satisfactory with regard to all water quality parameters and appears 

potentially useful in similar applications at other metals hotspots. 

 

Table 12: Pollutant masses and flow-weighted mean concentration values observed during 
the 3 storms in which WTR/sand treatment was added after the Biomat to treat residual 
metals and leached nutrients in Biomat outflow. Standard deviations between the 3 storm 
event EMC values are listed below each mean concentration. 

 
Pb Diss. Pb Cu Diss. Cu Zn Diss. Zn TP DP 

Mean conc. 
in (mg/L) 

2.5 
+/-1.4 

1.6 
+/- 0.3 

1.2 
+/-0.3 

0.7 
+/-0.1 

0.09 
+/-0.03 

0.06 
+/-0.02 

0.037 
+/-0.03 

0.003 
+/-0.01 

Mean conc. out 
from Biomat 

(mg/L) 

0.039 
+/-

0.012 

0.022 
+/-0.011 

0.018 
+/-0.005 

0.014 
+/-0.005 

0.026 
+/-0.023 

0.017 
+/- 0.015 

0.63 
+/-0.22 

0.57 
+/-0.21 

Mean conc. out 
from WTR 

(mg/L) 

0.011 
+/-

0.004 

0.004 
+/-0.001 

0.008 
+/-0.004 

0.006 
+/-0.001 

0.018 
+/-0.018 

0.020 
+/- 0.004 

0.056 
+/-0.05 

0.040 
+/-0.05 

Mass in (mg) 6380 4050 3060 1770 227 160 95.8 7.3 
Mass out from 

Biomat (mg) 
15.8 8.8 7.2 5.8 10.5 6.9 252 230 

Mass out from 
WTR (mg) 

4.6 1.8 3.3 2.4 7.3 7.9 22.4 16.1 

 

 

Storms sampled at the swale site 

18 storms were sampled at the swale site over a period of 10 months. A wide 

variety of storm depths and durations were included in these samples, which were 

taken in all seasons. The depth-duration distribution is shown in Figure 38 and Table 
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13. Table 5 was used to compare the sampled depth-duration distribution to 

Maryland’s typical depth-duration distribution.  

Sampled storms varied in duration from 12 minutes to 31 hours, and in depth 

from 0.08 cm to 3.51 cm. The warmest storm event was sampled on a day where the 

mean daily temperature was as 27.2 ⁰C, and during the winter the coldest storm event 

sampled had a mean daily temperature of 0.2 ⁰C. Table 13 shows that rainfall events 

at every depth category were sampled and every time category apart from 2-3 hr.-long 

storms was represented as well. 

 
Figure 38: Depth-duration distribution of the 18 storms sampled at the swale site. 
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Table 13: Depth-duration distribution of the 18 storms sampled at the swale site. 
White/lighter boxes indicate higher frequencies, and darker boxes indicate lower 
frequencies. 

  Rainfall Depth (cm)   

  

Event 

Duration 0.0254-0.254 0.255-0.635 0.636-1.27 1.28-2.54 > 2.54 Sum 

0-2 hr 0.06 0.00 0.11 0.00 0.00 0.167 

2-3 hr 0.00 0.00 0.00 0.00 0.00 0.000 

3-4 hr 0.00 0.06 0.00 0.00 0.00 0.056 

4-7 hr 0.11 0.06 0.06 0.00 0.06 0.278 

7-13 hr 0.00 0.11 0.00 0.00 0.00 0.111 

13-24 hr 0.00 0.06 0.06 0.17 0.06 0.333 

>24 hr 0.00 0.00 0.00 0.06 0.00 0.056 

Sum 0.167 0.278 0.222 0.222 0.111 1 

 

Given the sample size (n=18) and the depth-duration distribution covered at 

the swale site, the portfolio of storms sampled was accepted as sufficiently 

representative of Maryland’s typical rainfall distribution, as characterized by Kreeb 

(2003). Common storm depth/duration pairs were largely accounted for in the 

sampling distribution at the swale, and the data in Table 13 do not appear to be 

skewed towards larger or smaller storms than those typically observed in Maryland, 

nor towards longer or shorter storms. 

Site Hydrology 

 

 As noted previously (Table 1), the hydraulic loading to the Biomat at the 

swale was significantly higher than that at the wooden structure. An increased ratio of 

drainage area: linear feet of treatment mat (Table 2) resulted in a linear (R
2
=0.92) 
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rainfall-discharge relationship (Figure 39), in which water storage by the Biomat was 

negligible. Given that inflow volumes ranged from a minimum of 3 m
3 
to upwards of 

35 m
3
, the storage volume of the pores in the mat, which held 0.34 m

3
 of pre-settled 

media, was discounted, and inflow volume was assumed to equal outflow volume. 

 

Figure 39: Rainfall-discharge relationship at the swale. Each point represents a data point 
measured at the swale during a single storm.  

 

Figure 40 demonstrates that in storms with a rainfall depth above 2 cm, not all 

rainfall entering the swale passed through the weir while the Biomat was in place. In 

storms above 2 cm, it appears that a portion of influent water volume bypassed the 

Biomat, flowing over and out of the swale and not receiving treatment or passing 

through the effluent weir. Evidence of bypass is observable in Figure 40, in which 

hydrology data from the 18 storms in which the Biomat was in place for water quality 

monitoring are compared to hydrology data from 13 storms in which the Biomat had 

already been removed from the swale. In storms with total rainfall depth >2 cm, 
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greater flow volume was observed without the Biomat in place. This suggests that 

when the Biomat was in place, bypass did occur during larger storms. 

 

Figure 40: Rainfall-runoff relationship during large storms at the swale site with the Biomat 
in place (squares), and with no Biomat in place (diamonds). 

 

Treatment efficacy at the swale 

Biomat treatment efficacy at the swale was found to differ significantly from 

treatment efficacy at the wooden structure. This can be attributed to several key 

differences. Firstly, influent concentrations at the swale were consistently much lower 

than at the wooden structure. Pb, Cu, and Zn levels were often below regulatory 

limits as influent. The flow-weighted mean concentrations at the swale for total 

influent Pb, Cu, and Zn were 16 μg/L, 10 μg/L, and 135 μg/L, respectively. Secondly, 

influent pH at the swale (mean pH across all storms =7.6) was consistently higher 

relative to the wooden structure (mean pH across all storms =5.9), meaning that pH-
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dependent treatment mechanisms for metals removal, including precipitation and pH-

dependent adsorption, were not as likely to be effective as at the wooden structure. 

Figure 42, taken from Benjamin and Leckie (1981) shows adsorption edges for Pb, 

Cu, Zn, and Cd onto amorphous Fe hydroxides, which are present in the steel slag. 

These edges show that the pH difference effected by the mat at the wooden structure 

would effectively increase adsorption onto steel slag, but that no such removals 

would be observed at the swale pH conditions. 

 

Figure 41: Adsorption curves for Pb, Cu, and Zn onto amorphous Fe hydroxides, from 
Benjamin and Leckie (1981). 

 

Finally, the hydraulic loading at the swale was much higher than that at the 

wooden structure (Tables 1 and 2), resulting in lower treatment times. As shown in 

Figure 40, and due to high hydraulic loading, all storms sampled produced outflow at 

the swale site. As a result of these factors, the Biomat proved to be an ineffective 

means of removing trace metals from influent at the swale. Concentration decreases 

were small except in the case of Zn, with mean effluent concentrations of total metals 

across all storms being 11 μg/L Pb, 10 μg/L Cu, and 56 μg/L Zn.  
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The likelihood of regulatory compliance with the Pb, Cu, and Zn standards 

listed in Table 7 was assessed using probability plots, shown in Figure 42 and Figure 

43. Figures 42 and 43 do not indicate significant changes in EMC for Pb, Cu, or Zn 

between influent and effluent. The fraction of storms in which metals EMC values 

met regulatory standards (in 100% of storms for acute Pb, in 75% of storms for acute 

Cu, and in 65% of storms for Zn) did not change significantly between inflow and 

outflow. Compliance with chronic Pb and Cu standards occurs in less than 10% of 

storms with respect to Pb, but in 62% of storms with regard to Cu. 

 

 
Figure 42: Probability plot for Pb and Cu concentrations at the swale site. Each data point 
represents an EMC value recorded in one of 18 storm events sampled 
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Figure 43 Probability plot for Zn concentrations at the swale site. Each data point represents 
an EMC value recorded in one of 18 storm events sampled. 

 

Significant intra-storm variation was observed in the discrete data collected at the 

swale. Typically, slightly elevated concentrations of metals were observed during the 

first samples taken in each storm, similar to the behavior observed at the wooden 

structure. However, this behavior occurs to a much smaller extent at the swale. 

Figures 44 and 45 present discrete data taken on June 12, 2012 at the swale. The first 

sample is elevated in Pb and Cu relative to later samples, but by a very small amount 

(<5 μg/L). As previously mentioned, influent total Pb, Cu, and Zn concentrations 

were significantly lower at the swale site relative to roof runoff influent. Mean 

influent concentrations of total metals across all 18 storms were 16 μg/L Pb, 9 μg/L 

Cu, and 60 μg/L Zn. Mean effluent concentrations of total metals were 15 μg/L Pb, 

10 μg/L Cu, and 52 μg/L Zn. Paired student’s t-tests of equal variance were 

performed, comparing inflow concentrations to outflow concentrations for each 
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metal. Rejection probabilities (p=0.36 for Pb, p=0.36 for Cu, and p=0.11 for Zn) were 

deemed too large to indicate a statistically significant change in EMC values from 

inflow to outflow for Pb, Cu, and Zn.  

With concentrations of metals close to detection limits, noise in measurements 

of metals levels was a consistent issue at the swale. Effluent Pb EMCs, for example, 

varied from a maximum of 33 μg/L during one storm to a minimum value of 2.5 

μg/L. The detection limit for Pb was 2 μg/L, compared to 5 μg/L Cu and 40 μg/L Zn. 

Figures 44 and 45 show that metals concentrations were often below method 

detection limits, shown in dashed lines on the plots. 

 
Figure 44: Dissolved and total Pb concentrations measured at the swale on June 12, 2012. 
The dashed line indicates the method detection limit. 
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Figure 45: Dissolved and total Cu concentrations measured at the swale on June 12, 2012. 
The dashed line indicates the method detection limit. 

 

 Figures 46 and 47 present two pollutographs from discrete data collected on 

May 29, 2012. These data are comparable to the data in Figures 44 and 45, and 

underscore the trace metal concentrations that were typically observed at the swale. 

Concentrations in this storm were consistently below method detection limits, and at 

times dissolved concentrations appear up to 5 μg/L higher than total metal 

concentrations, an irrational finding that is either attributable to experimental error or 

sensitivity limits of the method. Figure 46 does show some reduction in particulate Pb 

concentrations, but moreover Figures 46 and 47 show that concentrations at the swale 

often hovered around the lower limit of the detectable range. 

Figures 44-47 also show that influent metals concentrations at the swale were 

lower than effluent metals concentrations at times. This indicates that at certain points 

the treatment media were leaching metals, either from native metals in/on the media, 
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or from sites on the media that had previously accumulated influent metals from 

solution. Equilibrium defines the state at which a removal rate is equal to a 

corresponding leaching rate. However, the kinetics of desorption and pollutant release 

are not as well understood as those of sorption and precipitation, and rate constants 

are path-dependent- (Stumm and Morgan, 1996). Even if Equation 10 adequately 

describes both treatments using the same constants (even though sieving the swale 

media likely decreased the specific surface area of the treatment media, and an 

increased hydraulic load likely reduced contact time at the swale), the model may be 

inadequate to describe leaching behavior where influent concentrations are below c
*
. 

If recycled media is to be used for trace metals removal, the kinetics of metals release 

from recycled media (such as compost) is an area where further study may be 

required to optimize treatment.  

 
Figure 46: Dissolved and total Pb concentrations measured at the swale on May 29, 2012. 
The dashed line indicates the method detection limit. 
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Figure 47: Dissolved and total Cu concentrations measured at the swale on May 29, 2012. 
The dashed line indicates the method detection limit. 

 Such low concentration ranges made correlation analysis comparing metals 

concentrations with other variables of interest (storm duration, pH, phosphorous 

concentration) difficult to draw useful conclusions from. Figure 48 correlates effluent 

pH with effluent dissolved metals. A pattern or correlation is not distinguishable, 

indicating that changes in effluent pH did not improve or worsen effluent dissolved 

metals pollution from the swale.    
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Figure 48: Effluent dissolved metals concentrations at the swale as a function of effluent pH 
value. 

 

 Discrete data were collected in a total of 5 storm events at the swale. As at the 

wooden structure, data were analyzed using pollutant duration curves, shown in 

Figures 49-51 and each based on 36 discrete inflow samples and 21 discrete outflow 

samples. Figure 49, the Pb pollutant duration curve, indicates that effluent dissolved 

Pb concentrations decrease below the method detection limit without appearing to 

asymptotically approach a steady-state level. It is possible that such a level still exists 

below the detection limit, or that insufficient data have been collected to determine 

the behavior of dissolved Pb in Biomat effluent at the swale. 
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Figure 49: Pb Pollutant duration curve for swale data, showing both influent and effluent 
concentrations of total and dissolved Pb. 

 

 Figure 50 does appear to show equilibration of effluent dissolved Cu. Lower 

Cu concentrations approach 5 μg/L, and in fact are below this threshold in a few 

cases. Nonetheless, effluent dissolved Cu does appear to approach a steady-state 

value: the dissolved Cu duration curve in Figure 50 shows a clear flattening behavior 

from t = 1.7 hours to t = 9.8 hours, a time span that encompasses 10 of 21 discrete 

data points in the figure. During this time period, concentrations were within a 3 μg/L 

range, ranging from 5-8 μg/L. Such a narrow expected concentration indicates that an 
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equilibrium relationship between the media and incoming stormwater is likely to 

predict Cu concentrations well.   

 
Figure 50: Cu pollutant duration curve for swale data, showing both influent and effluent 
concentrations of total and dissolved Cu. 

 

 Figure 51 indicates that Zn concentrations appear to approach equilibrium as 

well. From t = 1.7 hours to t = 10 hours, a time period comprising 11 of 21 discrete 

samples, Zn concentrations were between 62 μg/L and 75 μg/L. This small range of 

typical dissolved effluent Zn concentrations suggests that an equilibrium relationship 

describes Biomat treatment for Zn well. Several values for dissolved Zn do stand out 
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as extreme high values for both influent and effluent. These may be related to human 

error given that the dissolved concentrations were measured as higher than total.  

 

 

Figure 51: Zn pollutant duration curve for concentrations measured at the swale. Influent 
and effluent concentrations are both shown, in their total and dissolved forms. 

 

Inter-site comparison of metals removal efficiencies 

If dissolved-metals equilibrium exists between metals attached to the media 

and dissolved in stormwater, and if these equilibria are reached or at least 

approached, it is likely that effluent concentrations of each dissolved metal would be 

comparable at the two sites. This hypothesis was tested in Figures 52-54, which show 

pollutant duration curves for each metal with only dissolved effluent metals plotted. 

These figures overlay the effluent dissolved concentration data from Figures 49-51 on 
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Figures 21-23, normalizing the x-axis to account for the greater amount of data 

collected at the wooden structure. As in Figures 24 and 25, the uppermost portion of 

the data from the roof runoff data has been cut out to show steady-state data at the 

right of the figures more clearly.  

The curves for dissolved effluent Pb at each site in Figure 52 show that Pb 

concentrations are <25 μg/L 80% of the time at the roof runoff site, and nearly 100% 

of the time at the swale. The higher Pb concentrations in roof runoff effluent are 

explained by influent concentrations that are dramatically higher: mean inflow 

concentration of total Pb was 2.5 mg/L at the wooden structure, relative to 16 μg/L 

mean influent total Pb at the swale. As shown in Equation 10, higher influent 

concentrations indicate that given the same media and environmental characteristics 

(e.g., temperature, pH) equilibration of dissolved metal in roof runoff with the 

treatment media will occur more slowly. Nonetheless, if Pb concentrations are 

approaching an equilibrium value, Figure 52 indicates that that value is below the 

method detection limit. 
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Figure 52: Pb dissolved pollutant duration curve showing effluent data from both sites. 
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 Cu appears to behave differently from Pb, however. Figure 53 shows similar 

patterns for effluent dissolved Cu at each site. At the wooden structure, where 

influent Cu concentrations, like Pb, were greatly elevated, effluent Cu is also elevated 

compared to data from the swale effluent. However, the lower end of these data show 

the roof and swale effluent data converging near a concentration of 5 μg/L. While 

several data points are below the detection limit, the curves at each site show a clear 

flattening, or nearly asymptotic behavior.  

 

Figure 53: Cu dissolved pollutant duration curve showing effluent data from both sites. 

 

 As Figure 54 presents, Zn also appears to reach a steady-state concentration, 

although the concentration approached appears to differ at each site. One important 

difference that distinguished Zn from Pb and Cu is that influent concentrations of Zn 

at both sites were comparable. The overall mean concentration of influent dissolved 
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Zn at the swale was 97 μg/L, relative to 75 μg/L at the wooden structure.  The swale 

data appear to reach steady-state slightly above 60 μg/L, shown in Figure 54 as a 

flattening of the curve. The Zn data from the wooden structure appear to equilibrate at 

a lower level, somewhere right around the detection limit of 40 μg/L. This is likely 

attributable to lower influent concentrations and to faster Zn removal rates at the 

wooden structure. Zn removal rates may be faster at the wooden structure due to the 

observed pH rise, (from roughly 5.5 to 7.5, on average), which did not occur at the 

swale, and the fact that compost in the Biomat there was not sieved to increase 

hydraulic conductivity. Referring to Equation 10, the smaller mean particle size of 

treatment media at the wooden structure would increase a, specific surface area, and 

increase tc, contact time. 
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Figure 54: Zn dissolved pollutant duration curve showing effluent data from both sites. 

 

 The metals data from the swale indicate that percent concentration reductions 

and mass removals were much less at the swale relative to the wooden structure. 

Table 14 shows the mass percent removals by metal at each site. These observations 

are predicted by an equilibrium model such as Equation 10. Firstly, the concentration 

gradient between influent and steady-state levels at the swale was shown to be much 

smaller. Treatment time and media specific surface area were both reduced at the 

swale as well; two factors which reduce the likelihood that complete equilibrium was 

reached in swale treatment. pH is not considered in Equation 10, specifically, but this 

variable also likely played a key role in determining the final equilibrium 

concentration at each site. Bench scale experiments by Kim et al. (2013) found that 
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the Biomat media were superior to other media mixtures at least in part because of the 

pH rise effected by this treatment. Given the close-to-detection limit concentrations at 

the swale, the effect of effluent pH variations on metals removal efficiency in field 

scale testing at the swale was difficult to assess. 

Table 14: Percent concentration reductions for each metal by site. 

 Pb Cu Zn 

Wooden structure 98.7% 98.3% 36.1% 

Swale 30.4% -1.7% -33.1% 

 

Phosphorous leaching at the swale 

 

Other changes in water quality parameters were observed, however, between 

influent and effluent. As at the wooden structure, phosphorous leaching was 

observed. Figure 55 presents a probability plot characterizing typical P concentrations 

based on EMC values measured at the swale. 



 

98 

 

 

Figure 55: Exceedance plot characterizing P concentrations at the swale site. 

 

 Leaching of P is a clear issue at the swale as well as at the wooden structure. 

The mean concentration of total P across all measured storms was increased from 

0.16 to 0.72 mg/L. Dissolved P increased as well, from 0.031 mg/L to 0.52 mg/L, 

indicating that leaching of particulate as well as dissolved phosphorous occurred. The 

fact that both dissolved and particulate phosphorous was leached to the effluent 

suggests that filtration by the Biomat at the swale was not as effective as filtration at 

the wooden structure.  This interpretation is further supported by the higher TSS data 

observed at the swale; mean effluent TSS was 4.1 mg/L, compared to values regularly 

below the detection limit (1 mg/L) at the wooden structure. The increased hydraulic 

loading at the swale may have forced more particles through the geotextile and 

decreased the likelihood of particle attachment, which is dependent on treatment time 
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(Yao et al., 1971). Having sieved out and removed the finer compost particles to 

increase hydraulic conductivity may have also weakened the ability of the Biomat to 

filter out particulate matter from the influent and hold in small particles of the 

treatment media itself.  

Sequential extractions performed on treatment media from the wooden structure 

 Three extractions were performed on media samples at each site. A Sr(NO3)2 

extraction (Madden, 1988) assessed the fraction of phyto-available Pb, Cu, and Zn 

held in the treatment mats. An acid ammonium oxalate extraction (McKeague and 

Day, 1966) was used in an attempt to measure chemically labile Pb, Cu, and Zn. 

Finally, an aqua regia digestion (McGrath and Cunliffe, 1985) removed all metals not 

bound in silicate crystals, a fraction which would not be increased or released during 

treatment. Control experiments were performed on virgin media from each mat. This 

extra media was reserved at the time that media were initially mixed, and the 

extraction data on these controls therefore represent background concentrations 

inherent to the treatment media. The background levels for Pb, Cu, and Zn are 

presented in Table 15. This table presents the data from three extractions which were 

carried out in triplicate on virgin Biomat media, conserved during initial media 

mixing at each site. The mean of these triplicate samples is presented in each cell of 

the table, with the standard deviation between the three replicate following in 

parentheses. Total background Pb, present at 12 mg/kg at the swale and 16 mg/kg at 

the wooden structure, was well within the normal range defined as any concentration 

below 50 mg/kg according to the American Assocation of Pediatrics, which also 

states that concentrations of up to 200 mg/kg Pb are frequently found in urban soils 
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(CDC, 2007).  The USEPA has set a standard of 1200 mg/kg Pb as a threshold level 

in non-play areas for cleanup projects using federal funds (CDC, 2007). Cu and Zn 

concentrations in the virgin Biomat media were 10-13 mg/kg Cu and 50-58 mg/kg 

Zn. Relative to background levels of top-layer bioretention mulch, listed as 3.8 mg/kg 

Pb, 11 mg/kg Cu, and 28 mg/kg Zn, the levels in Table 15 are slightly elevated in Pb 

and Zn (Jones and Davis, 2013). However, metals in the virgin Biomat media are at 

or below typical background soil levels in Eastern Maryland, measured by Jones and 

Davis at 45 mg/kg Pb, 12 mg/kg Cu, and 63 mg/kg Zn.  

Table 15: Metals background levels from control media extractions. The method detection 
limit for these measurements (performed on flame AAS) was 0.8 mg/kg. The mean of three 
replicates is shown in each cell, with the standard deviation among the three replicates 
shown in parentheses. 

Pb Sr(NO3)2  Oxalate  Total  

Swale Concentration (mg/kg) <0.8 <0.8 12 (0.8) 

Wooden Structure (mg/kg) <0.8 1.1 (0.3) 16 (0.3) 

    Cu Sr(NO3)2  Oxalate  Total  

Swale Concentration (mg/kg) <0.8 2.2 (0.6) 10 (1) 

Wooden Structure (mg/kg) <0.8 3.0 (0.8) 13 (6) 

    

Zn Sr(NO3)2  Oxalate  Total  

Swale Concentration (mg/kg) <0.8 30 (2) 58 (8) 

Wooden Structure (mg/kg) <0.8 34 (6) 50 (19) 

 

Lead 

 Tables 16 and 17 show the extraction results for Pb from the two rear Biomat 

cross-sections. Table 16 presents the data from samples in the side cross-section, and 

Table 17 presents the hotspot cross-section data. The Sr(NO3)2 data from both cross-

sections confirm what the water quality data from storm sampling shows: that Pb is 

minimally leachable from the Biomat by cation exchange. All concentrations of 
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Sr(NO3)2-extractable Pb are below 8 mg/kg, even in samples such as the lower 

inflow-facing corner where total metals concentrations are on the order of 1000 

mg/kg. A clear spatial pattern within the cross-section is indistinguishable in the 

Sr(NO3)2-extractable Pb data, suggesting that variable flow patterns across the mat’s 

width and height did not affect the degree to which Pb in the mat was released by 

cation exchange. 

Lower areas of the Biomat received a greater volume of water during the 

treatment period. This is because storms of low intensity produced inflow at a slow 

rate, allowing water to penetrate the Biomat at ground-level before head built up. 

Additionally, the majority of metals removal from stormwater has been observed to 

occur at the top 3-12 cm of SCMs such as bioretention cells where first contact of 

water with media occurs (Jones and Davis, 2013). Water in the Biomat can be 

expected to flow more or less horizontally, and metals accumulation was therefore 

expected to occur predominantly at the layer of the mat facing the APHIS building, 

i.e., the part of the mat that first received influent.  

Spatial patterns do emerge as expected in Tables 16 and 17 in the oxalate-

extractable Pb data. The front-to-back decreasing Pb concentrations are most 

dramatically evidenced at Depth D in both cross-sections, where the Layer 1 sample 

has an oxalate-extractable Pb concentration of 125mg/kg at the side and 190 mg/kg at 

the hotspot, both an order of magnitude higher than further back strata such as Layer 

3, where oxalate-extractable Pb was present at only 4 mg/kg at the side and 20 mg/kg 

at the hotspot. The fact that oxalate-extractable Pb concentrations are comparable in 

the A (190 +/- 31 mg/kg) and B (224 +/- 19 mg/kg) layers at Depth D in Table 17 
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suggests that the lower portion of Layer 1 may be saturated with respect to the 

oxalate-extractable fraction of Pb. As a whole, Pb appears strongly bound by the 

Biomat. Taking the average of all sample means presented in Table 16, the overall 

oxalate extractable Pb concentration was found to be 13 mg/kg out of 58 mg/kg mean 

total Pb at the side cross section. At the hotspot, the mean of all sample means 

presented in Table 17 was 50 mg/kg Pb, out of 671 mg/kg mean total Pb.  

The total metals data support evidence from the oxalate extraction data that the strata 

of the mat closest to the APHIS wall remove the greatest portion of Pb. Over 75% of 

all Pb stored in the side cross section is present in the 1/5 of the mat closest to the 

APHIS building (Layer 1). The mean Pb concentration in this fraction of the mat was 

210 mg/kg, relative to a mean concentration of 17 mg/kg total Pb across all samples 

in the further-back strata of the mat.  Comparably, nearly 85% of all Pb stored in the 

hotspot cross section was found in Layer 1. The mean Pb concentration in Layer 1 at 

the hotspot was 2,840 mg/kg, relative to a mean concentration of 128 mg/kg total Pb 

across all samples in the further-back strata of the mat. Due to preferential flow to the 

lower portion of the mat, the individual sample ‘Layer 1, Depth D’ at each cross 

section was found to hold 59% of all Pb in each mat. Table 16 shows that Pb 

concentrations noticeable above background concentrations appear only in the 1
st
 

layer of the cross-section, suggesting that the media are not yet saturated in any 

section. Table 16 shows that Pb levels in samples at all depths from Layer 3 to Layer 

5 range from 9 to 17 mg/kg. Interestingly, a majority of the media appears to remain 

relatively virgin, with total Pb levels close to the background concentration of 16 

mg/kg in the layers furthest from the inflow. Table 17 however shows total Pb 
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concentrations an order of magnitude above background levels as far back as the 

Layer 3 at Depth D however, suggesting that the media is roughly half-saturated at 

this depth. At Depths A-C, in Layers 1-3, however, concentrations of Pb at the 

hotspot are all at or below 50 mg/kg. This is higher than the 16 mg/kg mean virgin 

media Pb concentration, but on par with the 45 mg/kg typical Pb concentration for 

Eastern MD soils as reported by Jones and Davis (2013). 
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Table 16: Pb concentrations in samples from the side cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
presented below. Because the cross-section was not perfectly rectangular, no sample could 
be taken at Layer 5, Depth A. The mean of three replicates is shown in each cell, with the 
standard deviation among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

4.0 (1.9) 

 

 

17 (19) 

 

 

17 (8) 

2.1 (1.4) 

 

 

11 (12) 

 

 

10 (9) 

3.1 (1.6) 

 

 

10 (8) 

 

 

15 (6) 

1.6 (0.9) 

 

 

7 (6) 

 

 

11 (8) 

 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.8 (0.4) 

 

 

11 (4) 

 

 

68 (24) 

1.7 (0.4) 

 

 

8 (2) 

 

 

15 (8) 

1.3 (0.3) 

 

 

5 (2) 

 

 

9 (8) 

1.3 (0.2) 

 

 

6 (4) 

 

 

9 (8) 

1.4 (0.3) 

 

 

3 (2) 

 

 

17 (6) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.5 (0.4) 

 

 

9 (1) 

 

 

114 (12) 

1.5 (0.1) 

 

 

4 (3) 

 

 

17 (0) 

1.1 (0.3) 

 

 

2 (1) 

 

 

12 (6) 

1.3 (0.6) 

 

 

2 (2) 

 

 

10 (5) 

 

1.4 (0.4) 

 

 

2 (0) 

 

 

14 (8) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.9 (0.6) 

 

 

125 (73) 

 

 

640 (271) 

1.5 (0.6) 

 

 

20 (5) 

 

 

68 (19) 

1.0 (0.5) 

 

 

4(2) 

 

 

14 (5) 

1.1 (0.4) 

 

 

13 (14) 

 

 

10 (5) 

1.1 (0.5) 

 

 

4 (2) 

 

 

26 (19) 

 

 

 
Depth D 

 

 

 

 

Outflow Inflow 
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Table 17: Pb concentrations in samples from the hotspot cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
presented below. The mean of three replicates is shown in each cell, with the standard 
deviation among the three replicates shown in parentheses. 

 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.0 (0.7) 

 

 

72 (18) 

 

 

582 (103) 

1.1 (0.5) 

 

 

10 (9) 

 

 

45 (9) 

1.2 (0.7) 

 

 

6 (6) 

 

 

23 (6) 

1.0 (0.6) 

 

 

4 (3) 

 

 

13 (7) 

1.1 (0.2) 

 

 

4 (4) 

 

 

23 (9) 

 

 

 

Depth 

A 

 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.9 (0.6) 

 

 

134 (24) 

 

 

945 (129) 

0.8 (0.4) 

 

 

12 (2) 

 

 

123 (18) 

1.3 (0.9) 

 

 

2 (2) 

 

 

30 (5) 

0.6 (0.4) 

 

 

1 (2) 

 

 

21 (2) 

1.1 (0.7) 

 

 

2 (2) 

 

 

29 (4) 

 

 

 

Depth 

B 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

1.5 (0.1) 

 

 

292 (59) 

 

 

1930(241) 

0.7 (0.5) 

 

 

21 (2) 

 

 

193 (25) 

1.1 (0.7) 

 

 

4 (1) 

 

 

50 (5) 

1.1 (0.6) 

 

 

2 (1) 

 

 

34 (7) 

 

0.9 (0.4) 

 

 

1 (1) 

 

 

33 (9) 

 

 

 

Depth 

C 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

6.5 (3.2) 

 

 

190 (31) 

 

 

7920(1670) 

1.9 (1.3) 

 

 

224 (15) 

 

 

1020(181) 

1.1 (0.8) 

 

 

24 (7) 

 

 

342(261) 

1.1 (1.1) 

 

 

2 (1) 

 

 

47 (11) 

1.2 (0.7) 

 

 

3 (2) 

 

 

28 (4) 

 

 

 
Depth 

D 

 

Copper 

Tables 18 and 19 present Cu extraction data from the same two cross sections. 

Sr(NO3)2-extractable Cu was present at close-to-background levels throughout each 

cross section, with the average concentration of all samples at 1.3 mg/kg, just 0.5 

mg/kg above the detection limit. To a small degree, more phytoavailable Cu appears 

Inflow Outflow 
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to be present at the lower influent-side samples in the hotspot cross-section, where 

extracted concentrations of Cu were as high as 7.3 mg/kg. The same spatial patterns 

are observable for the oxalate extractable and total Cu as were observed for Pb. One 

notable difference between the Pb and Cu data is that Cu appears to be much more 

oxalate-extractable relative to Pb. Oxalate-extractable Cu was present at 149 mg/kg as 

a mean concentration of all hotspot samples. The oxalate fraction therefore accounted 

for 83% of total Cu, which was present at a mean concentration of 179 mg/kg. At the 

side cross-section, 27.6 out of 28.4 mg/kg total Cu was oxalate-extractable on 

average. The results suggest that Cu was more predominantly bound to organic 

ligands on compost in the Biomat media that was readily broken down by the acid-

ammonium oxalate extraction. In his extraction experiments on used Biomat media, 

Kim (2010) also found that Cu was much more oxalate-extractable relative to Pb. His 

results showed that oxalate-extractable Pb constituted 8-12% of total Pb, while 

oxalate-extractable Cu made up 65-88% of total Cu. By comparison, Pb may have 

been more predominantly bound to amorphous Fe and Mn on the steel slag in Biomat 

media.  

Cu appears to have broken through Layer 1 only at the hotspot, and 

penetration of higher concentrations appears to be less severe relative to the Pb data. 

This is likely explained by the lower Cu concentrations observed at the APHIS 

building relative to Pb. During water quality testing, it was found that 22.2 g Pb and 

6.8 g Cu were removed in all sampled storms, meaning that approximately 3.25 g Pb 

were removed for every gram of Cu removed. Averaging all samples at both cross-

sections, the mean total Pb concentration was 364 mg/kg, compared to 104 mg/kg 
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mean total Cu. The corresponding ratio from the extraction data was therefore 3.23 g 

Pb for every gram of Cu removed. The closeness of these two equal but 

independently calculated ratios suggests that the extraction data are in good 

agreement with the water quality data. 

 

Table 18: Cu concentrations in samples from the side cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
presented below. The method detection limit for these measurements (performed on flame 
AAS) was 0.8 mg/kg. Because the cross-section was not perfectly rectangular, no sample 
could be taken at Layer 5, Depth A. The mean of three replicates is shown in each cell, with 
the standard deviation among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

0.8 (0.5) 

 

 

12 (3) 

 

 

10 (4) 

<0.8  

 

 

6 (4) 

 

 

10 (6) 

<0.8  

 

 

7 (2) 

 

 

9 (1) 

0.9 (0.4) 

 

 

8 (3) 

 

 

12 (2) 

 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.8  

 

 

15 (3) 

 

 

12 (4) 

<0.8  

 

 

9 (2) 

 

 

9 (2) 

<0.8  

 

 

7 (2) 

 

 

8 (4) 

<0.8  

 

 

8 (4) 

 

 

15 (13) 

<0.8  

 

 

16 (5) 

 

 

16 (3) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.8  

 

 

33 (6) 

 

 

31 (8) 

<0.8  

 

 

13 (4) 

 

 

15 (3) 

<0.8  

 

 

9 (4) 

 

 

8 (2) 

<0.8  

 

 

9 (4) 

 

 

11 (7) 

 

<0.8  

 

 

14 (5) 

 

 

16 (4) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

2.0 (0.3) 

 

 

302 (155) 

 

 

282 (113) 

<0.8  

 

 

59 (11) 

 

 

44 (5) 

<0.8  

 

 

9 (6) 

 

 

9 (6) 

<0.8  

 

 

8 (9) 

 

 

7 (1) 

<0.8  

 

 

8 (8) 

 

 

15 (5) 

 

 

 
Depth D 
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Table 19: Cu concentrations in samples from the hotspot cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
presented below. The method detection limit for these measurements (performed on flame 
AAS) was 0.8 mg/kg. The mean of three replicates is shown in each cell, with the standard 
deviation among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

1.5 (0.3) 

 

 

113 (25) 

 

 

118 (25) 

<0.8  

 

 

9 (4) 

 

 

14 (3) 

<0.8  

 

 

10 (4) 

 

 

13 (4) 

<0.8  

 

 

10 (5) 

 

 

8 (3) 

<0.8  

 

 

15 (6) 

 

 

13 (8) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

2.1 (0.4) 

 

 

237 (16) 

 

 

230 (30) 

<0.8  

 

 

28 (6) 

 

 

27 (6) 

<0.8  

 

 

5 (4) 

 

 

11 (3) 

<0.8  

 

 

8 (3) 

 

 

9 (13) 

<0.8  

 

 

11 (2) 

 

 

10 (3) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

3.0 (0) 

 

 

663 (68) 

 

 

508 (78) 

<0.8  

 

 

68 (19) 

 

 

64 (1) 

<0.8  

 

 

15 (2) 

 

 

17 (3) 

<0.8  

 

 

6 (3) 

 

 

12 (3) 

 

<0.8  

 

 

9 (7) 

 

 

14 (5) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

7.3 (3.4) 

 

 

1271(176) 

 

 

2053(366) 

3.6 (1.5) 

 

 

391 (74) 

 

 

301 (133) 

0.6 (0.3) 

 

 

72 (23) 

 

 

141 (96) 

<0.8  

 

 

19 (7) 

 

 

17 (4) 

<0.8  

 

 

10 (4) 

 

 

10 (2) 

 

 

 
Depth D 

 

Zinc 

 The Zn extraction data are presented in Tables 20 and 21. At an overall mean 

concentration of 76 mg/kg total Zn at the side and 70 mg/kg at the hotspot, increased 

flow appears not to have correlated with metals accumulation in the case of Zn. These 

average concentrations were each within one standard deviation of the mean total Zn 
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concentration in virgin material (58 mg/kg, +/- 19 mg/kg). Zn concentrations were 

observed to decrease by 37% on average during the water quality monitoring phase of 

research, but concentrations were so low that mass removals of Zn were estimated to 

be roughly one order of magnitude less than Pb and Cu removals (0.66 g Zn removed 

at the wooden structure, relative to 22.2 g Pb and 6.8 g Cu in sampled storms only). 

Two-sample student’s t tests of unequal variance were performed comparing the 

triplicate virgin media measurements of total Zn to the raw total Zn data at each 

cross-section. At the side cross section, this test yielded a 0.12 rejection probability. 

At the hotspot, the rejection probability was 0.20. Both of these values were deemed 

too high (p>10%) to reject the null hypothesis that both the fresh media and the used 

media at each cross-section belong to populations with the same mean total Zn 

concentration. Lower overall mass removals explain why significant accumulation of 

Zn did not occur. 
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Table 20: Zn concentrations in samples from the side cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
presented below. The method detection limit for these measurements (performed on flame 
AAS) was 0.8 mg/kg. Because the cross-section was not perfectly rectangular, no sample 
could be taken at Layer 5, Depth A. The mean of three replicates is shown in each cell, with 
the standard deviation among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 (0.2) 

 

 

44 (8) 

 

 

67 (3) 

<0.8 (0.2) 

 

 

32 (4) 

 

 

70 (10) 

<0.8(0.4) 

 

 

35 (6) 

 

 

78 (12) 

0.8 (0.7) 

 

 

39 (9) 

 

 

81 (7) 

 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8  

 

 

39 (5) 

 

 

95 (47) 

<0.8  

 

 

42 (7) 

 

 

73 (10) 

<0.8 (0.3) 

 

 

36 (5) 

 

 

68 (10) 

<0.8  

 

 

43 (7) 

 

 

68 (18) 

<0.8  

 

 

54 (11) 

 

 

85 (14) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8  

 

 

40 (9) 

 

 

75 (19) 

<0.8  

 

 

36 (8) 

 

 

74 (12) 

<0.8  

 

 

34 (5) 

 

 

70 (9) 

<0.8  

 

 

44 (2) 

 

 

106 (54) 

 

<0.8  

 

 

50 (8) 

 

 

71 (7) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8  

 

 

41 (11) 

 

 

78 (3) 

<0.8  

 

 

34 (6) 

 

 

66 (14) 

<0.8  

 

 

44 (6) 

 

 

64 (13) 

<0.8  

 

 

36 (7) 

 

 

64 (3) 

<0.8  

 

 

59 (7) 

 

 

94 (9) 

 

 

 
Depth D 

 

 

 

 

 

 

 

 

 
Table 21: Zn concentrations in samples from the hotspot cross-section of Biomat treatment 
media at the wooden structure. Data for each of the three sequential extractions are 
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presented below. The method detection limit for these measurements (performed on flame 
AAS) was 0.8 mg/kg. The mean of three replicates is shown in each cell, with the standard 
deviation among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8  

 

 

34 (0) 

 

 

67 (18) 

<0.8  

 

 

30 (3) 

 

 

79 (28) 

<0.8  

 

 

35 (2) 

 

 

66 (5) 

<0.8  

 

 

34 (4) 

 

 

64 (14) 

<0.8  

 

 

41 (7) 

 

 

66 (16) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8  

 

 

35 (5) 

 

 

75 (5) 

<0.8  

 

 

32 (4) 

 

 

56 (5) 

<0.8  

 

 

23 (0) 

 

 

77 (25) 

<0.8  

 

 

36 (4) 

 

 

75 (3) 

<0.8  

 

 

37 (11) 

 

 

74 (8) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

 

<0.8  

 

 

38 (3) 

 

 

67 (28) 

 

<0.8  

 

 

25 (7) 

 

 

78 (16) 

 

<0.8  

 

 

31 (3) 

 

 

73 (19) 

 

<0.8  

 

 

29 (8) 

 

 

67 (9) 

 

<0.8  

 

 

49 (13) 

 

 

84 (8) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

4.0 (0.6) 

 

 

38 (4) 

 

 

67 (0) 

<0.8  

 

 

33 (3) 

 

 

76 (1) 

<0.8  

 

 

35 (9) 

 

 

70 (9) 

<0.8  

 

 

34 (4) 

 

 

58 (6) 

<0.8  

 

 

37 (4) 

 

 

63 (4) 

 

 

 
Depth D 

 

Mass balance of metals removed at the wooden structure 

 The data in Tables 16-21 indicate that significant amounts of Pb and Cu were 

transferred to the treatment media during the 19 months in which the Biomat served 

as a SCM. The water quality data from storm sampling indicate that this Pb and Cu 

was transferred during storms from the influent roof runoff to the Biomat media. The 

water quality data and extraction data were compared in order to estimate typical 
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concentrations of Pb and Cu in the Biomat media, and to help show the degree to 

which preferential flow may have accelerated penetration of high metals 

concentrations into the further back layers of the Biomat, as in shown at Depth D in 

Tables 16 and 18.   

 The mass of total Pb and Cu removed while the mat was in place was 

estimated from the water quality data and measured rainfall data at a nearby rain 

gauge (Wunderground site KMDLAURE5). During sampled storms, which had a 

total rainfall depth of 51.6 cm, 22 g Pb and 6.8 g Cu were removed by the Biomat. 

The Biomat at the wooden structure was treating water at the wooden structure from 

August 25, 2011 until March 11, 2013. During this period, a total of 152.6 cm of rain 

fell on-site. From these data, the Biomat at the wooden structure was estimated to 

have removed 65.7 g Pb and 20.1 g Cu. As described in the Methods and Materials 

chapter, the total volume of the Biomat during mixing was roughly measured as 530 

L. Estimated overall bulk density of the mixed treatment media was 0.73 g /cm
3
 at the 

time of mixing, translating to roughly 386 kg media.  

 The extraction data showed the mean Pb concentration in treatment media at 

the swale to be 58 mg/kg at the side cross-section and 671 mg/kg at the hotspot. 

Accounting for a mean background concentration of 16 mg/kg, the concentration of 

Pb which was added a result of treatment was 42 mg/kg at the side cross-section and 

655 mg/kg at the hotspot. If media across the entire length of the Biomat had Pb 

concentrations equal to those measured at the side-cross section, total Pb removed 

would only amount to 16.2 g. Therefore, areas such as the hotspot must more 



 

113 

 

accurately represent Pb (and Cu) concentrations at some points along the length of the 

Biomat. 

In order to reconcile the water quality data with the extraction data, the 

Biomat was hypothetically separated into two sections, a preferential flow area and a 

non-preferential area. In the preferential flow area, media concentrations of metals 

were hypothesized to be equal to those measured at the hotspot cross-section. In the 

non-preferential area, the side cross-section extraction data were judged to accurately 

represent concentrations of metals in the media. Figure 56 shows the two distinct 

sections which were hypothesized to exist for the purpose of estimating which cross-

section, the hotspot or the side, was more reflective of typical concentrations across 

the entire length of the Biomat. Given a total mat length of 6.7 m parallel to the 

APHIS building wall, the preferential flow area was estimated to occupy 21% of this 

space, or roughly 1.4 m. With these dimensions for each section, the total mass of Pb 

removed,  66 μg/L as estimated from the water quality data, is equal to the mass of Pb 

(65.9 g) accounted for by the extraction data.  

The Cu data were used to validate this estimation. 18.1 g Cu were estimated to 

have been removed according the dimensional estimates based on extraction data, 

compared to the 20.1 g estimated from water quality and rainfall data. Given that 

these estimates were made to draw general conclusions from, this amount of error in 

the Cu estimate (just less than 10%) was considered acceptable. These dimensional 

estimations suggest that a large fraction of the Biomat media remained useful after 

breakthrough occurred at preferential flow points, and suggests that media may be 
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best deployed in raised or sunken beds, where selected areas of high flow could have 

media replaced more frequently with relative ease compared to a wrapped mat.   

 

 

Figure 56: The two sections of the Biomat, used to estimate the typical concentrations of 
metals in the mat media 

 

Sequential extractions performed on treatment media from the swale 

 The same extractions performed on the wooden structure media were also 

performed on media at the swale. Two cross-sections were taken from the swale 

Biomat, one in the middle of the mat and the other on the side, at the trapezoidal leg 

of the swale (Figures 17 and 18).  

Lead 

 Tables 22 and 23 show the Pb data from the side and middle cross-sections, 

respectively. The data in Table 22 from the Sr(NO3)2 extraction show that Pb 

concentrations of Sr(NO3)2-extractable Pb in the treatment media remained at 

background levels even after treating stormwater at the swale for 18 months. Table 23 

shows similarly low levels of Sr(NO3)2-extractable Pb at the middle cross-section. In 
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fact, concentrations of total Pb remained at similar levels relative to fresh media as 

well, indicating that no significant degree of metals removal occurred at the swale 

mat. This conclusion was drawn from a two-tailed, two-sample student’s t test of 

unequal variance comparing the triplicate virgin media measurements of total Pb to 

the raw total Pb data at each cross-section. Rejection probabilities for these tests were 

0.71 at the middle cross-section and 0.86 at the side cross-section, and the null 

hypothesis was therefore not rejected in either case. These observations are consistent 

with the water quality data obtained during storm monitoring, during which time 

concentration reductions of Pb were minimal, especially in comparison to the 

removals of Pb at the wooden structure.  

As the data in Tables 15 and 16 confirm, Table 22 shows that only a small 

fraction of Pb was released by the acid ammonium oxalate extraction. Less than 7% 

of total Pb (as measured by the aqua regia digestion) was released. Concentrations of 

oxalate-extractable Pb remained below 1.5 mg/kg in all samples, at the side and 

middle cross sections. Table 23 shows that oxalate-extractable Pb constituted less 

than 5% of total Pb in the middle cross-section. 
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Table 22: Pb concentrations in samples from the side cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on furnace AAS) was 0.04 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.2 (0.1) 

 

 

1.1 (0.2) 

 

 

16 (2.5) 

0.2 (0.1) 

 

 

0.9 (0.14) 

 

 

14 (5.0) 

0.5 (0.1) 

 

 

0.8(0.1) 

 

 

11 (4.9) 

0.1(0.05) 

 

 

0.6(0.04) 

 

 

12 (2.7) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.2 (0.1) 

 

 

0.9 (0.1) 

 

 

14 (4.2) 

0.2 (0.1) 

 

 

0.7 (0.1) 

 

 

13 (3.2) 

0.2 (0.1) 

 

 

1.2 (0.7) 

 

 

10 (7.1) 

0.2(0.05) 

 

 

0.7 (0.1) 

 

 

12 (4.8) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.3 (0.1) 

 

 

0.9 (0.04) 

 

 

12 (6.8) 

0.4 (0.3) 

 

 

0.8 (0.1) 

 

 

12 (3.0) 

0.5 (0.3) 

 

 

0.6(0.02) 

 

 

10 (0.4) 

0.2 (0.1) 

 

 

0.7 (0.1) 

 

 

9 (6.3) 

 

 

 

Depth C 
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Table 23: Pb concentrations in samples from the middle cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on furnace AAS) was 0.04 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.2 (0.3) 

 

 

0.6 (0.1) 

 

 

12 (2.5) 

0.1 (0.02) 

 

 

0.6 (0.05) 

 

 

13 (4.5) 

<0.04  

 

 

0.5 (0.1) 

 

 

13 (2.8) 

0.1 (0.1) 

 

 

0.7 (0.1) 

 

 

13 (3.7) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.2 (0.2) 

 

 

0.5 (0.03) 

 

 

9 (1.3) 

0.1 (0.1) 

 

 

0.5 (0.05) 

 

 

11 (2.8) 

0.1 (0.2) 

 

 

0.4 (0.05) 

 

 

13 (0.1) 

0.1 (0.05) 

 

 

0.6 (0.03) 

 

 

11 (2.0) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.1 (0.1) 

 

 

0.5 (0.04) 

 

 

12 (2.0) 

0.1 (0.04) 

 

 

0.5 (0.03) 

 

 

11 (0.5) 

0.0 (0.05) 

 

 

0.5 (0.1) 

 

 

13 (3.2) 

0.1 (0.1) 

 

 

0.5 (0.05) 

 

 

11 (0.6) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Pb (mg/kg) 

 

Oxalate Extractable  

Pb (mg/kg) 

 

Total Pb (mg/kg) 

0.1 (3.2) 

 

 

0.6 (0.1) 

 

 

14 (2.8) 

0.1 (1.3) 

 

 

0.5 (0.04) 

 

 

13 (2.5) 

0.1 (0.8) 

 

 

0.5 (0.05) 

 

 

11 (4.7) 

0.1 (1.1) 

 

 

0.5 (0.05) 

 

 

12 (2.5) 

 

 

 
Depth D 

 

Copper 

Tables 24 and 25 present the Cu data from each cross-section. Similar to Pb, 

these data indicate no spatial patterns of Cu accumulation. It was previously shown 

that total Cu concentrations were an order of magnitude higher in Layer 1 relative to 

other strata of the media in both cross-sections at the wooden structure. In 
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comparison, the mean total Cu concentrations in Layer 1 at each cross-section at the 

swale (12.5 mg/kg in the middle, 14.7 mg/kg in the side) were close to the 

corresponding mean total Cu concentration of all samples in each cross-section (12.6 

mg/kg in the middle, 13.0 mg/kg on the side). Also, there does not appear to be any 

significant accumulation of Cu in data from any of the extractions. All Sr(NO3)2 

extractable Cu concentrations were below 0.2 mg/kg Cu at both cross-sections, 

compared to a concentration of <0.8 mg/kg Cu in the virgin media. The sample 

measurements at the swale were performed on furnace AAS, making the method 

detection limit much lower (0.04 mg/kg Cu) than the flame AAS method, which was 

used to test the virgin media and had a detection limit of 0.8 mg/kg Cu. In any case, 

however, all concentrations of Sr(NO3)2 extractable Cu at both cross-sections and in 

the virgin media were found to be below 0.8 mg/kg. Overall, the data in Tables 24 

and 25 indicate that less than 1% of total Cu was extracted by Sr(NO3)2. Cu was 

found again to be more oxalate-extractable than Pb. Oxalate-extractable Cu (at a 

mean concentration of 7 mg/kg, with a standard deviation of 1 mg/kg) constituted just 

greater than 50% of all metals at the side cross-section. Although mean total Cu 

concentrations were the roughly equal at the side and middle cross-sections (12.6 

mg/kg in the middle vis-a-vis 13.0 mg/kg on the side), oxalate-extractable Cu at the 

middle cross-section constituted just 35% of the total, or 4 mg/kg on average, with a 

standard deviation of 0.5 mg/kg. However, a two-sided, two-sample t-test of equal 

variance comparing the raw Cu concentration data from the side cross-section with 

raw data from the middle cross-section produced a rejection probability of p=0.72, 

indicating that concentration differences between the two populations were not large 
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enough to be deemed significant. The similarity of Cu concentrations throughout each 

cross-section and between the two cross-sections further reinforces the water quality 

data which indicated that Cu was not significantly removed by the Biomat at the 

swale. 

Table 24: Cu concentrations in samples from the side cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on furnace AAS) was 0.1 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

0.2 (0.03) 

 

 

8 (1.0) 

 

 

15 (1) 

<0.1 

 

 

7 (0.7) 

 

 

19 (2) 

0.1(0.08) 

 

 

7 (1.5) 

 

 

11 (3) 

0.1(0.02) 

 

 

8 (0.8) 

 

 

14 (2) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.1 

 

 

8 (0.8) 

 

 

18 (7) 

<0.1 

 

 

6 (0.7) 

 

 

13 (2) 

<0.1  

 

 

8 (1.4) 

 

 

13 (4) 

0.1(0.01) 

 

 

6 (0.3) 

 

 

15 (7) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

0.1 (0.05) 

 

 

7 (0.9) 

 

 

11 (2) 

0.1 (0.1) 

 

 

6 (1.1) 

 

 

10 (2) 

0.1(0.03) 

 

 

6 (0.1) 

 

 

10 (1) 

0.1(0.04) 

 

 

5 (0.04) 

 

 

8 (3) 

 

 

 

Depth C 
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Table 25: Cu concentrations in samples from the middle cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on furnace AAS) was 0.1 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

0.2 (0.03) 

 

 

4 (0.6) 

 

 

12 (1) 

<0.1 

 

 

5 (0.7) 

 

 

13 (3) 

<0.1 

 

 

4 (0.4) 

 

 

12 (4) 

<0.1 

 

 

5 (1.0) 

 

 

13 (2) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.1 

 

 

4 (0.7) 

 

 

10 (1) 

<0.1 

 

 

4 (0.5) 

 

 

11 (2) 

<0.1 

 

 

5 (0.2) 

 

 

12 (5) 

<0.1 

 

 

4 (0.3) 

 

 

12 (3) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.1 

 

 

5 (0.8) 

 

 

14 (4) 

<0.1 

 

 

4 (0.6) 

 

 

15 (9) 

<0.1 

 

 

5 (0.9) 

 

 

13 (2) 

<0.1 

 

 

3 (0.5) 

 

 

18 (18) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Cu (mg/kg) 

 

Oxalate Extractable  

Cu (mg/kg) 

 

Total Cu (mg/kg) 

<0.1 

 

 

5 (0.2) 

 

 

14 (3) 

<0.1 

 

 

4 (0.7) 

 

 

11 (3) 

<0.1 

 

 

5 (0.5) 

 

 

10 (1) 

<0.1 

 

 

4 (0.5) 

 

 

10 (1) 

 

 

 
Depth D 

 

 

Zinc 

Tables 26 and 27 present the Zn data from the swale side and middle cross-

sections, respectively. Mean concentrations of Zn at each cross-section were 63 

mg/kg +/-14 mg/kg at the side and 57 mg/kg +/-11 mg/kg in the middle, both within 

one standard deviation of the mean background level, 50 mg/kg +/- 19 mg/kg. Mean 

Outflow Inflow 
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oxalate-extractable Zn constituted 65-70% of total Zn at both cross-sections. Like Pb 

and Cu, however, Zn was not highly Sr(NO3)2 extractable. A mean of only 1% of 

total Zn was released at either cross-section in the strontium extractions. The lack of 

Zn accumulation relative to fresh media suggests that no significant amounts of Zn 

were removed by the Biomat. Two student’s t-tests of equal variance were performed, 

one comparing the side cross-section raw total Zn data to total Zn concentrations in 

the triplicate virgin material samples (p=0.27) and the second comparing raw total Zn 

data from the middle cross-section to virgin material total Zn concentrations (p=0.37). 

Both tests did not allow for rejection of H0 at a 10% significance level, and 

accumulation of Zn at each cross-section was therefore deemed insignificant. 
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Table 26: Zn concentrations in samples from the side cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on flame AAS) was 0.8 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 

 

 

51 (5) 

 

 

80 (1) 

<0.8 

 

 

44 (9) 

 

 

88 (18) 

<0.8 

 

 

44 (14) 

 

 

58 (15) 

<0.8 

 

 

43 (19) 

 

 

65 (21) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 

 

 

54 (0.1) 

 

 

83 (24) 

<0.8 

 

 

38 (5) 

 

 

58 (4) 

0.8 (0.4) 

 

 

41 (3) 

 

 

57 (9) 

<0.8 

 

 

36 (5) 

 

 

67 (27) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 

 

 

36 (13) 

 

 

52 (15) 

0.9 (0.5) 

 

 

34 (6) 

 

 

47 (5) 

1.3 (0.5) 

 

 

36 (10) 

 

 

60 (22) 

<0.8 

 

 

29 (13) 

 

 

39 (18) 

 

 

 

Depth C 
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Table 27: Zn concentrations in samples from the middle cross-section of Biomat treatment 
media at the swale. Data for each of the three sequential extractions are presented below. 
The method detection limit for these measurements (performed on flame AAS) was 0.8 
mg/kg. The mean of three replicates is shown in each cell, with the standard deviation 
among the three replicates shown in parentheses. 

 Layer 1 Layer 2 Layer 3 Layer 4  

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 

 

 

31 (7) 

 

 

60 (7) 

<0.8 

 

 

42 (6) 

 

 

58 (7) 

<0.8 

 

 

36 (2) 

 

 

56 (13) 

<0.8 

 

 

45 (4) 

 

 

60 (8) 

 

 

 

Depth A 

 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

0.9 (0.4) 

 

 

41 (10) 

 

 

50 (8) 

<0.8 

 

 

52 (41) 

 

 

54 (12) 

<0.8 

 

 

42 (21) 

 

 

57 (15) 

<0.8 

 

 

29 (13) 

 

 

59 (3) 

 

 

 

Depth B 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

<0.8 

 

 

38 (2) 

 

 

61 (10) 

<0.8 

 

 

40 (7) 

 

 

72 (41) 

<0.8 

 

 

37 (5) 

 

 

65 (16) 

<0.8 

 

 

33 (7) 

 

 

44 (7) 

 

 

 

Depth C 

 

Sr(NO3)2 Extractable  

Zn (mg/kg) 

 

Oxalate Extractable  

Zn (mg/kg) 

 

Total Zn (mg/kg) 

0.8 (0.6) 

 

 

62 (16) 

 

 

72 (17) 

<0.8 

 

 

37 (7) 

 

 

48 (4) 

1.0 (0.3) 

 

 

45 (9) 

 

 

48 (3) 

0.8 (0.4) 

 

 

40 (3) 

 

 

54 (9) 

 

 

 
Depth D 

 

Comparison of extraction data from both sites 

 Comparing data from the two sites, obvious differences are visible in the 

extraction data from the wooden structure presented in Tables 16-21 vis-a-vis those 

from the swale presented in Tables 22-27. Higher concentrations of Pb and Cu were 

Outflow Inflow 
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observed at the wooden structure relative to the swale. Accumulation of Pb and Cu 

was also observable at lower, inflow-facing samples collected at the wooden 

structure, while no such spatial patterns were visible from the swale extraction data. 

Student’s t-tests on mean concentrations of Pb at the side (p=0.86) and middle 

(p=0.71) cross-sections both indicated that Pb concentrations at these swale cross-

sections did not vary significantly from the concentration of Pb in virgin material. It 

therefore appears that no Pb accumulation occurred at the swale. Cu concentrations 

were shown not to vary significantly between the side and middle cross-sections (p= 

0.72) at the swale. Concentrations of Sr(NO3)2-extractable Pb, Cu, and Zn at each site 

were below 8 mg/kg in all individual samples, indicating  a small but non-zero 

portion of metals which were easily dissolved off of the media by cation exchange. 

Oxalate data at the swale showed that Zn (64-71% extractable at the swale) was 

slightly more oxalate-extractable than Cu (35-53% extractable), and much more 

oxalate-extractable than Pb (4-7% extractable), based on the mean values of oxalate-

extractable and total metals for each cross-section. Oxalate extractions on media 

samples from the wooden structure extracted 49-51% of total Zn, 83-97% of total Cu, 

and 8-23% of mean total Pb at each cross section. Based on these data, Pb appears to 

be the most strongly bound of all three metals. Kim (2010) similarly found a low 

proportion (9.6% of total Pb) of oxalate-extractable Pb in used Biomat media during 

bench-scale experiments. The work by Kim also indicates that oxalate-extractable Cu 

was found to account for 74% of total Cu, and that oxalate-extractable Zn comprised 

77% of total Zn. Kim attributed the high Cu extractability to relatively larger 

formation of Cu complexes with organic ligands, including oxalate, relative to Pb and 
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Cu, as was found by Hsu and Lo (2000) and Zhou and Wong (2001). High Zn 

extractability was explained by the greater degree of pH dependent adsorption for Zn 

relative to Pb and Cu; an example of this was shown in Figure 42, taken from 

Benjamin and Leckie (1981). Jones and Davis (2013), in field-scale experiments on 

used bioretention soil media, found the order of oxalate-extractability to be 

Cu>Zn≈Pb, based on 5-step sequential fractionation.  
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Conclusions and Recommendations 
 

Results from this study show that Biomat treatment at metals hotspots can reduce 

runoff concentrations of Pb, Cu, and Zn to levels near or below regulatory limits. At 

the wooden structure, overall mean pollutant concentrations were reduced from 2.68 

mg/L Pb, 0.78 mg/L Cu, and 0.1 mg/L Zn as influent to 35 μg/L Pb, 13 μg/L Cu, and 

66 μg/L Zn. The addition of WTR/sand treatment at the wooden structure reduced 

metals concentrations further, to levels consistently below regulatory limits: 11 μg/L 

Pb, 8 μg/L Cu, and 18 μg/L Zn as flow-weighted mean values from field-scale 

treatment during 3 storms.  

Site-to-site comparisons of the water quality and extraction data demonstrate 

several important drivers of metals treatment. Firstly, pH increase appears to drive 

metals removals at the wooden structure. By elevating pH from the roof runoff 

influent level (between 5 and 6), a majority of the unbound Pb, Cu, and Zn was made 

susceptible to adsorption onto the amorphous Fe and Mn in the steel slag and/or onto 

the negatively-charged organic functional groups which serve as ligands in the 

compost. Past a certain pH, however, it appears likely that the increase in soluble 

organic matter reduces treatment efficiency (Figure 24-26). This threshold was found 

to exist around pH 7.5 in the case of the rear Biomat, but at the swale metals 

concentrations were too low to distinguish clear variations correlated with pH. Other 

researchers (Zhou and Haynes, 2010) have made similar observations regarding the 

effect of pH on the treatment efficacy of compost and biosolids. It appears that 

beyond a certain point of pH elevation, the release of metals attached to soluble 
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organic matter in compost outweighs the incremental increase in adsorption that 

occurs onto solid treatment media.  

Secondly, it is evident that a concentration gradient drives metals removals in the 

Biomat media. Concentrations of Pb, Cu, and Zn are reduced at the wooden structure 

across a wide variety of influent concentrations, storm depths and durations, and 

temperatures. Despite this wide range of conditions, the standard deviations of 

dissolved effluent Pb and Cu EMCs over more than 20 storms was just 19 μg/L and 

15 μg/L respectively (Table 8). After a first flush of particulate effluent metals, 

concentrations quickly stabilized to steady-state. At the wooden structure, these levels 

were estimated at 12 μg/L Pb, 8 μg/L Cu, and 66 μg/L Zn. The steady-state level for 

these metals was shown to be described by an equilibrium model between the 

treatment media and dissolved metals in the Biomat (Equation 10). The water quality 

data and the model both suggest that concentrations of dissolved Pb and Cu in the 

Biomat cannot be reliably reduced below the steady-state value defined by the Biomat 

media treatment. This phenomenon is likely due to the small amount of impurities, 

which were shown to be relatively inert but still leachable at non-zero level (e.g., 

between 0.4 and 8 mg/kg extractable Pb) in the Sr(NO3)2 extraction data (Tables 15-

27). Nonetheless, Biomat treatment at the wooden structure was effective, and 

effluent concentrations were reduced from high levels of environmental concern (2.68 

mg/L Pb and 0.78 mg/L Cu) in the influent to below typical urban runoff levels 

(0.036 mg/L Pb and 0.013 mg/L Cu) in the effluent.   

First flush behaviors were observed at both the influent and the effluent. Such 

observations are likely due to the buildup of weakly-bound pollutants in both cases, 
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but the sources of these pollutants vary between the influent and the effluent. At the 

influent, it appears that continuous corrosion of Pb and Cu on the exterior surface of 

the APHIS building leads to a buildup of labile metals which are only released once 

rainwater begins to fall and dislodge and dissolve these metals. The influent first flush 

exhibited elevated concentrations of both dissolved and particulate metals as well as P 

in the rising limb of the rainfall hydrographs. The problem of acid rain accelerates 

this corrosion process during rainfall events by exposing solid Pb and Cu to 

concentrations of H
+
 capable of more rapidly dissolving PbO , PbCO3, CuO, and 

CuCO3 into Pb
2+ 

and Cu
2+

 than normal rainwater. The effluent first flush was 

observed for particulate metals, but this pattern did not extend to P, which built up 

over the storm until reaching a maximum, steady-state level. The fact that only metals 

and not nutrients were flushed at the beginning of outflow periods suggests that these 

metals were not bound strongly to the highly organic Biomat media. It is instead 

likely that the early flushing of metals occurred due to the buildup of untreated 

metals, which were left in the mat during small, non-outflow producing storms. 

Because no metals were released, treatment efficiency during these small storms was 

calculated at 100%, but in reality it is likely that a small fraction of metals left in the 

pore spaces of the mat remained unbound or bound to particles of highly broken 

down organic matter which continued to break down in the presence of residual 

moisture. It is likely that these metals were readily released as small particles at the 

beginning of the next storm. Some of these metals may have even been strongly 

bound or chelated to organic matter which was continuously breaking down in 
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between storm events, but could have been subsequently released in later storms 

nonetheless once the organic matter itself was mobilized. 

P concentrations in Biomat effluent were elevated significantly relative to influent 

(overall mean effluent P concentration was 0.7 mg/L, relative to 0.05 mg/L as 

influent), and concentrations were observed to increase over the course of each storm. 

These observations suggest that the Biomat should not be used without secondary 

treatment in areas where nutrient addition is a water quality concern (e.g., areas with 

immediate drainage to rivers and streams in the Chesapeake Bay watershed). 

However, satisfactory P reduction was achieved with a secondary treatment of 50% 

sand, 50% water treatment residual. Over the 3 storms during which this secondary 

treatment was monitored, the concentration of total P was reduced from 0.6 mg/L to 

0.06 mg/L, and the total mass of P released (22 mg) was significantly reduced relative 

to influent (96 mg). This secondary treatment also reduced metals concentrations to 

levels within regulatory limits, with mean levels of Pb, Cu, and Zn reduced to 11, 8, 

and 18 μg/L, respectively. Previous research (O’Neill and Davis, 2011a) has shown 

that, at typical stormwater concentrations of P, alum-based WTR effectively removes 

soluble reactive phosphorous, which was found to be the dominant species 

(comprising over 80%) of P in Biomat effluent.  

Metals treatment at the swale site was not effective. Several factors contributed to 

this, including most importantly lower influent concentrations of Pb and Cu (on the 

order of 0.05 mg/L relative to 2.5 mg/L at the wooden structure), higher influent pH 

(7 at the swale, as opposed to 5.5 at the wooden structure), and lower treatment time 

due to higher hydraulic loading (Table 2). Concentration percent removal of Pb was 
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below 35% (Table 14; Figures 42 and 43), and Cu and Zn were net leached. The 

swale data suggest that the Biomat may not be an effective means of pre-treating 

typical urban stormwater.  

 The differences in treatment effectiveness at the swale and at the wooden 

structure underscore the importance of selecting BMPs on a case-by-case basis. What 

works at one site may not work at another. Similarly, percent removals cannot be 

expected to transfer from site to site and require the knowledge of site conditions, 

influent concentrations, and how the treatment works to be used as a legitimate 

measure of treatment effectiveness. Nonetheless, the excellent metals removals 

demonstrated at the wooden structure do suggest broader treatment applicability. In 

situations where high metals loadings must be reduced, and where influent pH is 

below neutral, the Biomat is a promising treatment technology for heavy metals 

removal. Such situations likely exist at galvanizing plants, copper-roofed buildings, 

galvanic-roofed buildings, and structures which make use of lead and/or copper 

flashing. As Table 8 shows, Pb and Cu mass loadings from comparable areas can be 

significant totals metals sources to local watersheds, and the Biomat can serve to 

reduce heavy metal loads at their source, before toxic effects occur in nearby aquatic 

environments. 

Recommendations for application at the APHIS site 

 Given the water quality and extraction results, Biomat treatment appears to be 

an effective, inexpensive, and aesthetically attractive method of improving water 

quality at APHIS building 580. Given the severity of Pb and Cu pollution, treatment 
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should be implemented at the building as soon as is feasible. The two roofs in need of 

treatment at the APHIS building are surrounded by the red outlines in Figure 57. 

 
Figure 57: The two roofs of environmental concern at the APHIS complex 

 

 Treatment media can be mixed on site and either placed directly next to the 

building, or wrapped in mats and placed at the foot of the two roofs, as shown in 

Figure 58. If bare media are used, plantings in the media could help prevent erosion 

and media loss in high flow events. Biomat treatment media, packed to a depth of at 

least 20 cm, could replace the gravel currently placed around the foot of the APHIS 

building and effectively treat metals on site for several years. Hardy, shallow-rooting 

plants that can survive occasional flooding would be best. Plants readily grew in the 
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Biomat media even at the hotspot (Figure 59), and the Sr(NO3)2 extraction data 

confirm that phyto-toxic effects are not expected, even as metals accumulate to high 

levels in the media. Filter cloth-wrapped mats could be used just as easily. These 

would not necessarily require planting, although thin-stemmed plants could be seeded 

into the outer layers of the mat if desired. 

The same media mixture of 70% sand, 25% compost, and 5% steel slag by 

mass is recommended for use at the APHIS building. If bulk density measurements 

cannot be made, media can be mixed by the volume ratio of 29 units compost: 14 

units sand: 1 unit steel slag. Given the lab-scale results found by Kim et al. (2013), 

the use of plant and food waste based compost is preferable to manure based 

compost. Smartleaf
 
compost from the Prince George’s County Department of Public 

Works, for example, would be an affordable and well-suited option. On the sides of 

the building where the metal roofing tiles extend all the way to ground level, Biomat 

media can be placed as shown in Figure 52. On the halves of each roof draining 

towards the center of the complex, however, drainage interception becomes more 

complicated.  
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Figure 58: Proposed full-scale deployment for Biomat media at the APHIS building to treat 
direct roof runoff. 

 

Figure 59: Plants growing across the length of the Biomat on March 11, 2013. 
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Phosphorous leaching concerns can easily be addressed with media directly 

abutting the APHIS building. As long as care is taken to ensure that water leaving the 

media does not drain directly into the nearby dry creek bed, but instead passes over 

grassed or landscaped areas, nutrient export onsite can be effectively minimized. 

Towards this end, converting the polypropylene-lined swale to a grass or bio-swale 

would slow water exiting the parking lot and allow for increased particulate 

phosphorous capture.  

 Maintenance will be necessary every 3 years, assuming a 20 cm mat depth. If 

loose media are used, replacement of all media should occur at this time. If a full mat 

is used, the mat could be rotated 90⁰ counterclockwise to extend treatment lifetime by 

another 2-3 years. Table 28 uses the total Pb data from the hotspot at the rear mat to 

show how rotating 90⁰ counterclockwise would place the saturated media in the less-

used region of the mat, where only very high intensity storms would reach. The 

unspoiled media present in the Layer 3-5 strata at depths A-D, however, becomes the 

most used portion of the mat, thereby extending treatment lifetime. 

Table 28: The cross-sectional variation of total Pb concentrations at the rear Biomat hotspot, 
as-is (a), and after 90⁰ counterclockwise rotation (b) 

(a) 1 2 3  4 5  

Total Pb (mg/kg) 582 (103) 45 (9) 23 (6) 13 (7) 23 (9) Depth A 

Total Pb (mg/kg) 945 (129) 123 (18) 30 (5) 21 (2) 29 (4) Depth B 

Total Pb (mg/kg) 1930(241) 193 (25) 50 (5) 34 (7) 33 (9) Depth C 

Total Pb (mg/kg) 7915(1665) 1022(181) 342(261) 47 (11) 28 (4) Depth D 

 

(b) Depth D Depth C Depth B Depth A  

Total Pb (mg/kg) 7915(1665) 1930(241) 945(129) 592(103) 1 

Total Pb (mg/kg) 1022(181) 193(25) 123(18) 45(9) 2 

Total Pb (mg/kg) 342(261) 50(5) 30(5) 23(6) 3 

Total Pb (mg/kg) 47(11) 34(7) 21(2) 13(7) 4 

Total Pb (mg/kg) 28(4) 33(9) 29(4) 23(9) 5 

Outflow Inflow 

Outflow Inflow 
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Research Recommendations  

The effectiveness of water treatment residual in several P treatment 

applications has been demonstrated (O’Neill and Davis, 2011a; Babatunde and Zhao, 

2007; Codling et al., 2000). In other applications, however, WTR treatment has 

proven ineffective (Vacca and Wadzuk, EWRI 2013 presentation). The mechanisms 

which govern metals and nutrient removal by WTR must be studied further. 

Furthermore, processes for optimizing this waste media (e.g. drying, aging, and 

heating) are still just beginning to be explored and are little understood (Komlos et 

al., EWRI 2013 presentation). At the APHIS site, WTR treatment appears promising, 

but with water quality data from only 3 storms, no significant recommendations can 

be made. If nutrient reductions are desired on-site, further field-scale studies should 

be conducted into using a WTR-sand mixture as secondary full-scale treatment. If 

loose media are used for treatment, the WTR-sand mixture could be added as a 

bottom layer of media through which Biomat effluent could percolate. If mats are 

used, the WTR-sand mixture could form the bottom layer of the mat by adding this 

media mixture to the center of a filter-cloth strip. Pre-mixed Biomat media could then 

be added on top of the WTR/sand mixture before wrapping and sealing the filter cloth 

around the amassed media.  

Biomat media also need to be studied at a wider variety of sites to fully 

understand the scope of applications where Biomat treatment will be successful. It is 

likely that the Biomat can reduce concentrations of Pb, Cu, and Zn at other buildings 

constructed with Pb, Cu, or Zn metallic roofing. Where Pb, Cu, and Zn are 

incorporated into non-metallic materials, however, this media may be less effective. It 
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is unknown, for instance, if Biomat media effectively remove Zn which has dissolved 

from vulcanized tires. Influent speciation and metals sources may prove to be an 

important variable controlling treatment effectiveness. Biomat treatment of other 

prevalent metallic pollutants, such as arsenic, iron, and selenium, is another topic 

worthy of further study. Finally, more long-term studies on Biomat media are also 

needed to develop maintenance and end-of-life guidelines that can be easily followed 

and implemented by property owners and environmental professionals.  
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Appendix A- Water quality and flow data listed by rainfall event 

Numbers in red in discrete samples indicate that a measurement was not taken. These 

numbers were filled out to facilitate computerized EMC calculation, and should not 

be mistaken for measured data points. Where data points were missed due to a lack of 

sample water or human error, (e.g. spilling a sample prior to measurement) missing 

data points were filled in by taking the mean value of the sample immediately prior 

and following. If the missed sample value was the first sample, then the value for the 

second sample was filled in as the first, solely for the sake of EMC calculation. 

Values in red were not used for discrete data analysis (e.g. pollution duration curves 

and/or pollutographs.)  

 

September 23, 2011 

      Lead Zinc Copper TP TSS pH 

SITE Sample # Time ppm ppm ppm mg/L mg/L   

WBI 1 10:16 AM 3.91 0.0575 1.08 0.06 3.6 5.88 

WBI 2 10:36 AM 1.24 0.0197 0.364 0.05 0.5 5.08 

WBI 3 10:56 AM 2.99 0.0218 0.882 0.03 3.9 4.75 

WBI 4 11:16 AM 1.66 0.0537 0.477 0.03 2.3 5.50 

WBI 5 11:36 AM 2.70 0.0334 0.724 0.04 0.5 5.37 

WBI 6 11:56 AM 1.89 0.0211 0.328 0.04 0.5 5.60 

WBI 7 12:16 PM 1.27 0.0224 0.128 0.04 2.1 5.69 

WBI 8 12:36 PM 1.23 0.0180 0.121 0.03 3.1 5.62 

WBI 9 12:56 PM 1.05 0.0105 0.128 0.04 4.9 5.49 

WBI 11 2:56 PM 1.44 0.0353 0.177 0.04 4.6 5.61 

         
      Lead Zinc Copper TP TSS pH 

SITE Sample # Time ppm ppm ppm mg/L mg/L   

WBO 1 10:18 AM 0.113 0.148 0.026 1.61 6.4 #N/A 

WBO 2 10:38 AM 0.044 0.0294 0.0072 1.44 6.4 8.14 

WBO 3 10:58 AM 0.035 0.0198 0.0040 1.53 6.4 8.23 

WBO 4 11:18 AM 0.039 0.0254 0.0065 1.37 6.4 8.17 

WBO 5 11:38 AM 0.045 0.0146 0.0054 1.39 3.45 8.09 

WBO 6 11:58 AM 0.039 0.0242 0.0063 1.40 0.5 8.12 

WBO 7 12:18 PM 0.027 0.0135 0.0062 2.00 4.9 7.97 

WBO 8 12:38 PM 0.017 0.0442 0.0085 1.98 8 7.83 

WBO 9 12:58 PM 0.028 0.0175 0.0061 1.79 4.5 7.67 

WBO 10 1:58 PM 0.049 0.0132 0.011 1.81 0.5 7.59 

WBO 11 2:58 PM 0.033 0.0301 0.0067 1.66 8.2 7.54 

WBO 12 4:18 PM 0.037 0.0194 0.0077 1.76 #N/A 7.50 
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wood in   
 

wood out   

sample # Time flow(L) 
 

sample # Time flow(L) 

1 9/23/11 10:16 16.28 
 

1 9/23/11 10:18 0 

2 9/23/11 10:36 8.14 
 

2 9/23/11 10:38 0 

3 9/23/11 10:56 8.14 
 

3 9/23/11 10:58 0 

4 9/23/11 11:16 40.71 
 

4 9/23/11 11:18 0 

5 9/23/11 11:36 32.56 
 

5 9/23/11 11:38 0 

6 9/23/11 11:56 219.80 
 

6 9/23/11 11:58 1.84 

7 9/23/11 12:16 431.48 
 

7 9/23/11 12:18 45.02 

8 9/23/11 12:36 89.55 
 

8 9/23/11 12:38 23.75 

9 9/23/11 12:56 138.40 
 

9 9/23/11 12:58 13.49 

11 9/23/11 14:56 586.16 
 

10 9/23/11 13:58 0 

  
 

0 
 

11 9/23/11 14:58 3.08 

  
 

0 
 

12 9/23/11 16:18 0.06 

  
 

1571.22 
 

  0 87.24 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

October 12, 2012 
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS Turbidity 

SITE 
Sample 
# Time ppm ppm ppm ppm Ppm ppm mg/L mg/L NTU 

WBI 1 
3:47 
PM 3.43 1.31 0.041 0.072 1.21 1.08 0.04 0.5 7.50 

WBI 2 
4:07 
PM 2.97 2.49 0.059 0.017 0.94 0.86 0.06 0.5 7.98 

WBI 3 
4:27 
PM 2.25 1.93 0.022 0.049 0.50 0.44 0.02 0.5 0.55 

WBI 4 
4:47 
PM 2.23 2.19 0.039 0.020 0.56 0.57 0.01 0.5 0.75 

WBI 5 
5:07 
PM 2.56 2.35 0.044 0.023 0.70 0.64 0.02 0.5 1.36 

            

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS Turbidity 

SITE 
Sample 
# Time ppm ppm ppm ppm Ppm ppm mg/L mg/L NTU 

WBO 2 
4:07 
PM 0.16 0.14 0.24 0.036 0.070 0.094 0.46 0.5 

 
WBO 3 

4:27 
PM 0.18 0.18 0.040 0.014 0.061 0.094 0.46 1.2 10 

WBO 4 
4:47 
PM 0.42 0.34 0.047 0.042 0.101 0.094 1.03 0.5 8.19 

WBO 5 
5:07 
PM 0.23 0.14 0.041 0.051 0.046 0.038 1.63 0.5 16.3 

WBO 6 
5:27 
PM 0.14 0.086 0.027 0.031 0.024 0.023 1.81 #N/A 14.2 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 10/12/11 15:47 24.42 
 

2 10/12/11 16:07 0.012 

2 10/12/11 16:07 65.13 
 

3 10/12/11 16:27 4.73 

3 10/12/11 16:27 81.41 
 

4 10/12/11 16:47 0.18 

4 10/12/11 16:47 16.28 
 

5 10/12/11 17:07 0 

5 10/12/11 17:07 16.28 
 

6 10/12/11 17:27 0 

  
 

203.53 
 

  0 4.92 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

 

 

 

 

 

 

December 22, 2011 
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm Ppm ppm mg/L mg/L mg/L   

WBI 1 
8:52 
PM 7.14 5.10 0.060 0.047 2.59 2.22 0.21 0.00 3.2 5.92 

WBI 2 
9:12 
PM 5.09 3.65 0.085 0.035 1.67 1.38 0.14 0 3.2 5.92 

WBI 5 
10:12 

PM 3.50 2.20 0.035 0.023 0.71 0.54 0.07 0.00 3.2 5.92 

WBI 6 
10:52 

PM 2.08 1.82 0.026 0.014 0.33 0.30 0.04 0.00 0.5 5.95 

WBI 7 
12:12 

AM 1.90 1.82 0.025 0.027 0.36 0.35 0.02 0.00 0.5 6.01 

WBI 8 
1:12 
AM 2.75 2.04 0.023 0.016 0.59 0.46 0.08 0.00 0.5 5.95 

WBI 9 
2:12 
AM 3.47 1.61 0.023 0.022 0.58 0.39 0.19 0.01 5.1 5.85 

WBI 12 
5:52 
AM 2.35 1.87 0.020 0.017 0.36 0.35 0.04 0.00 0.5 5.89 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm Ppm ppm mg/L mg/L mg/L   

WBO 3 
9:42 
PM 0.181 0.13 0.043 0.036 0.027 0.0167 0.29 0.29 0.5 7.40 

WBO 4 
10:02 

PM 0.096 0.13 0.027 0.036 0.010 0.0167 0.91 0.84 0.5 7.97 

WBO 5 
10:22 

PM 0.070 0.046 0.018 0.021 0.015 0.0113 1.03 1.00 0.5 8.03 

WBO 6 
11:02 

PM 0.043 0.022 0.033 0.024 0.011 0.0069 1.08 1.12 0.5 7.95 

WBO 7 
11:42 

PM 0.026 0.016 0.019 0.018 0.0074 0.0065 1.28 1.21 0.5 7.90 

WBO 8 
12:22 

AM 0.027 0.017 0.026 0.020 0.0086 0.0053 1.24 1.27 0.5 7.52 

WBO 9 
1:22 
AM 0.021 0.011 0.020 0.022 0.0055 0.0062 1.18 1.12 0.5 7.59 

WBO 10 
2:22 
AM 0.018 0.0098 0.027 0.024 0.0046 0.0041 1.32 1.17 0.5 7.61 

WBO 11 
3:22 
AM 0.026 0.016 0.025 0.014 0.0062 0.0076 1.35 1.25 0.5 7.56 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 12/22/11 20:52 73.27  3 12/22/11 21:42 0 

2 12/22/11 21:12 40.71  4 12/22/11 22:02 0 

5 12/22/11 22:12 162.82  5 12/22/11 22:22 6.28 

6 12/22/11 22:52 130.26  6 12/22/11 23:02 32.72 

7 12/23/11 0:12 97.69  7 12/22/11 23:42 22.56 

8 12/23/11 1:12 32.56  8 12/23/11 0:22 17.93 

9 12/23/11 2:12 130.26  9 12/23/11 1:22 7.30 

12 12/23/11 5:52 0 
 

10 12/23/11 2:22 3.20 

  
   

11 12/23/11 3:22 13.63 

  
667.57 

 
  0 103.62 

  
TOTAL FLOW (L) 

 
    TOTAL FLOW (L) 

 

January 11, 2012 
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      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L   

SI Batch   0.0016 0.0022 0.076 0.11 0.0047 0.0059 0.14 52.3 7.52 

            

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L   

SO Batch   0.0075 0.0047 0.063 0.13 0.0056 0.0038 0.27 34.8 7.76 

            

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time Ppm ppm ppm ppm ppm ppm mg/L mg/L   

WBI 3 
8:02 
PM 3.82 2 0.095 0.057 0.993 0.783 0.19 33.8 6.15 

WBI 4 
8:22 
PM 2.91 2.33 0.082 0.070 0.894 0.886 0.06 12.5 6.10 

WBI 7 
10:42 

PM 1.58 1.94 0.071 0.059 0.551 0.611 0.06 8.35 6.18 

WBI 9 
12:42 

AM 2.24 1.94 0.081 0.059 0.615 0.611 0.06 8.35 6.18 

WBI 10 
1:42 
AM 2.01 1.55 0.073 0.049 0.380 0.336 0.06 4.2 6.26 

WBI 11 
3:02 
AM 1.86 1.90 0.074 0.073 0.349 0.350 0.01 0.5 6.19 

WBI 16 
9:42 
AM 1.95 2.03 0.073 0.075 0.365 0.462 0.12 12.2 6.16 

  
           

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm Ppm ppm ppm ppm ppm mg/L mg/L   

WBO 4 
3:16 
PM 0.420 0.021 0.110 0.085 0.136 0.0208 0.63 12.3 7.95 

WBO 9 
6:36 
PM 0.050 0.021 0.072 0.085 0.013 0.0208 0.90 12.3 7.95 

WBO 10 
7:36 
PM 0.032 0.016 0.056 0.101 0.0092 0.0163 1.24 11.8 8.04 

WBO 11 
8:36 
PM 0.021 8.7E-05 0.066 0.051 0.0085 0.0872 1.21 10.5 7.85 

WBO 12 
9:56 
PM 0.036 0.0018 0.064 0.053 0.0099 0.00180 1.39 2 7.78 

WBO 15 
12:36 

AM 0.013 0.010 0.067 0.072 0.0081 0.0104 1.09 0.6 7.70 

WBO 21 
5:36 
AM 0.023 0.023 0.067 0.081 0.0156 0.0227 0.93 0.5 7.59 

swale in   
 

swale 
out     

sample # time flow(L) 
 

sample 
# time flow(L) 

Batch 
 

19415 
 

Batch 
 

19415 

  
 

19415 
 

  
 

19415 

    TOTAL FLOW (L) 
 

    
TOTAL 

FLOW (L) 

 
 

wood in   
 

 
 

wood out   

sample # time flow(L) 
 

sample 
# Time flow(L) 

3 1/11/12 20:02 154.68 
 

4 
1/11/12 

15:16 42.12 

4 1/11/12 20:22 8.14 
 

9 
1/11/12 

18:36 31.35 

7 1/11/12 22:42 138.39 
 

10 
1/11/12 

19:36 88.36 

9 1/12/12 0:42 211.66 
 

11 1/11/12 140.50 
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20:36 

10 1/12/12 1:42 97.69 
 

12 
1/11/12 

21:56 230.22 

11 1/12/12 3:02 170.96 
 

15 
1/12/12 

0:36 776.42 

16 1/12/12 9:42 0 
 

21 
1/12/12 

5:36 813.26 

  
 

781.54 
 

  
 

2122.23 

    
TOTAL 
FLOW (L) 

 
    TOTAL FLOW (L) 

 

January 17, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI 10 
5:29 
AM 0.007 0.0030 0.0771 0.0744 0.0057 0.0043 0.09 0.03 20.8 7.71 

SI 11 
6:49 
AM 0.005 0.0024 0.0727 0.0658 0.0056 0.0044 0.06 0.03 6 7.73 

SI 15 
9:29 
AM 0.01 0.0078 0.0666 0.0974 0.0054 0.0055 0.05 0.03 4.4 7.69 

SI 21 
2:49 
PM 0.009 0.0011 0.0800 0.0795 0.0061 0.0037 0.06 0.02 9.3 7.77 

SI Grab   0.006 0.0053 0.0592 0.0643 0.0049 0.0049 0.03 0.03 2.9 7.80 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO 1 
10:06 

AM 0.019 0.0047 0.0906 0.0642 0.0091 0.0056 0.36 0.07 247.2 7.74 

SO Grab   0.015 0.0274 0.0642 0.0651 0.0108 0.0124 1.45 1.12   9.65 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI Batch 
10:42 

PM 3.193 2.251 0.0387 0.0572 0.983 0.909 0.13 0.11 14.6 6.25 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

10 1/17/12 5:29 397 
 

1 1/17/12 10:06 1270.34 

11 1/17/12 6:49 0 
 

  
 

0 

15 1/17/12 9:29 873 
 

Grab 
 

0 

21 1/17/12 14:49 0 
 

  
 

0 

  
 

1270 
 

  
 

1270.34 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

wood in   
 

wood out   
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sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

130.26 
 

No Outflow 3.40 

  
 

130.26 
 

  
 

3.40 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

January 23, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L   

SI 1 
2:54 
PM 0.0033 0.0065 0.0690 0.0425 0.0041 0.0038 0.03 7 7.11 

SI 2 
3:13 
PM 0.0021 0.0014 0.0696 0.0509 0.0038 0.0027 0.03 1.2 6.96 

SI 3 
3:33 
PM 0.0031 0.0022 0.0697 0.0520 0.0037 0.0033 0.03 0.8 7.04 

SI 4 
3:53 
PM 0.0045 0.0025 0.0700 0.0532 0.0038 0.0034 0.04 1.5 7.09 

SI 5 
4:13 
PM 0.0051 0.0026 0.0708 0.0545 0.0065 0.0027 0.03 0.8 7.06 

SI 6 
4:53 
PM 0.013 0.0040 0.0769 0.0566 0.0035 0.0030 0.03 1.8 7.06 

SI 7 
5:33 
PM 0.0048 0.0027 0.0672 0.0599 0.0038 0.0030 0.03 2.8 7.13 

SI 8 
6:13 
PM 0.002 0.0021 0.0665 0.0579 0.0050 0.0031 0.03 0.5 7.13 

SI 9 
7:13 
PM 0.0021 0.0024 0.0721 0.0674 0.0032 0.0044 0.03 2.7 7.24 

SI 10 
8:13 
PM 0.002 0.0182 0.0761 0.0640 0.0036 0.0062 0.03 0.5 7.27 

SI 11 
9:13 
PM 0.0041 0.0079 0.0728 0.0674 0.0046 0.0045 0.04 0.5 7.33 

SI Grab   0.0043 0.0045 0.0711 0.0711 0.0040 0.0051 0.03 #N/A 
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swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

1 1/23/12 14:54 55.8 
 

No sample 
 

67.73 

2 1/23/12 15:13 0 
 

  
 

0 

3 1/23/12 15:33 0 
 

  
 

0 

4 1/23/12 15:53 0 
 

  
 

0 

5 1/23/12 16:13 0 
 

  
 

0 

6 1/23/12 16:53 21.9 
 

  
 

0 

7 1/23/12 17:33 0 
 

  
 

0 

8 1/23/12 18:13 0 
 

  
 

0 

9 1/23/12 19:13 0 
 

  
 

0 

10 1/23/12 20:13 0 
 

  
 

0 

11 1/23/12 21:13 0 
 

  
 

0 

  
 

67.7 
 

  
 

67.73 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

January 27, 2012 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI 3 
10:37 

AM 0.0408 0.0036 0.129 0.091 0.0156 0.0061 0.36 0.05 120.7 7.15 

SI 5 
12:37 

PM 0.0094 0.0077 0.100 0.099 0.0069 0.0046 0.22 0.04 60.1 7.90 

SI 6 
1:57 
PM 0.0348 0.0024 0.096 0.087 0.0068 0.0047 0.20 0.04 37 8.08 

SI Grab   0.102 0.0033 0.087 0.165 0.0060 0.008 0.16 0.04 35.8 7.94 

             

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

SO 1 

1/27/12 
10:07 

AM 0.0419 0.0065 0.260 0.0748 0.018 0.0045 0.16 0.09 341.3 8.05 

SO 2 

1/27/12 
10:47 

AM 0.0188 0.0380 0.0979 0.0867 0.091 0.006 0.66 0.46 55.4 8.58 

SO Grab   0.0134 0.0026 0.110 0.0896 0.011 0.007 1.49 1.19 79.2 9.37 

             

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI Batch   5.116 1.638 0.0879 0.147 0.84 0.432 0.10 0.03 13.6 6.06 

             

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBO Batch   0.1753 0.0259 0.0860 0.0823 0.0437 0.0232 #N/A #N/A #N/A 7.93 
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swale in   
 

swale out     

sample # time flow(L) 
 

sample # Time flow(L) 

3 1/27/12 10:37 AM 5842 
 

1 1/27/12 10:07 3796.95 

5 1/27/12 12:37 PM 0 
 

2 1/27/12 10:47 2045.62 

6 1/27/12 1:57 PM 0 
 

Grab 
 

0 

Grab 
 

0 
 

  
 

0 

  
 

5842 
 

  
 

5842.57 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

244.23 
 

Batch 
 

0.027 

  
 

244.23 
 

  0 0.03 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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February 16, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm Ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI 7 
6:43 
PM 0.01 0.0439 0.0393 0.0365 0.0034 0.0022 0.08 0.03 16.6 7.90 

SI 8 
7:43 
PM 0.013 0.0221 0.0368 0.0616 0.0021 0.0023 0.05 0.02 12.1 7.87 

SI 9 
8:43 
PM 0.007 0.0081 0.0159 0.0355 0.0010 0.0014 0.04 0.04 4.9 7.66 

SI 10 
9:43 
PM 0.009 0.0034 0.0400 0.0509 0.0020 0.0021 0.04 0.02 3.4 7.67 

SI 11 
10:43 

PM 0.011 0.0356 0.0314 0.0970 0.00094 0.0016 0.04 0.02 5.6 7.64 

SI 12 
11:43 

PM 0.006 0.0236 0.0242 0.0776 0.0016 0 0.03 0.02 0.4 7.60 

SI 13 
1:03 
AM 0.011 0.0041 0.0269 0.0259 0.0001 0.0011 0.04 0.02 1.2 7.60 

SI 14 
2:23 
AM 0.003 0.0114 0.0244 0.0563 0.0356 0.0055 0.04 0.02 1.2 7.62 

SI 
Grab 
pre   0.024   0.105 0.0234 0.0102   0.23 0.03 #N/A 

 
SI 

Grab 
post   0.003   0.0218 0.0353 0.0028   0.05 0.03 #N/A 8.56 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO 
Grab 
pre   .0168 0 0.0478 0.233 73.9 0 1.02 0.77 0 

 
SO 

Grab 
post   .0106 0 0.0218 0.0351 6.04 0 1.15 0.71 0 9.78 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI Batch   6.99 1.76 0.0878 0.0543 1.826 0.667 0.09 0.01 0 5.87 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

WBO Batch   0.202 0.0251 0.0488 0.0383 0.0284 0.0092 0.67 0.63 9.6 7.87 
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swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

7 2/16/12 18:43 712.25 
 

No sample 
 

712.25 

8 2/16/12 19:43 0 
 

 
 

0 

9 2/16/12 20:43 0 
 

  
 

0 

10 2/16/12 21:43 0 
 

  
 

0 

11 2/16/12 22:43 0 
 

  
 

0 

12 2/16/12 23:43 0 
 

  
 

0 

13 2/17/12 1:03 0 
 

  
 

0 

14 2/17/12 2:23 0 
 

  
 

0 

Grab pre 
 

0 
 

  
 

0 

Grab post 
 

0 
 

  
 

0 

  
 

712.25 
 

  
 

712.25 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

73.27 
 

Batch 
 

27.01 

  
 

73.27 
 

  0 27.01 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

 

February 29, 2012 

    Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE Sample # ppm Ppm ppm ppm ppm ppm mg/L mg/L   

SI batch 0.018 0.0061 0.0257 0.0189 0.00187 0.0061 0.10 39.4 7.61 

           
    Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE Sample # ppm Ppm ppm ppm ppm ppm mg/L mg/L   

SO batch 0.032 0.0109 0.0411 0.0518 0.0024 0.0005 0.15 38.2 7.73 

    Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE Sample # Ppm Ppm ppm ppm ppm ppm mg/L mg/L   

WBI 1 11.4 2.93 0.114 0.108 3.94 2.29 0.19 26.2 6.03 

WBI 2 7.16 1.96 0.0689 0.0719 2.51 1.44 0.19 26.2 6.03 

WBI 3 5.27 1.99 0.0420 0.0320 1.63 1.44 0.19 26.2 6.03 

WBI 4 3.39 1.75 0.0352 0.0256 0.739 0.596 0.08 5.8 6.03 

WBI 5 1.70 1.60 0.0287 0.0248 0.468 0.455 0.02 1.9 6.08 

WBI 6 1.36 1.36 0.0205 0.0120 0.333 0.314 0.01 3.4 6.10 

WBI 7 1.43 1.39 0.0237 0.0148 0.302 0.295 0.01 23.4 6.11 

WBI 15 2.39 1.30 0.0266 0.0376 0.602 0.452 0.08 17 6.10 

WBI 16 2.73 1.96 0 0.0273 0.839 0.744 0.06 17 6.20 
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      Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE Sample # Time ppm ppm ppm ppm Ppm ppm mg/L mg/L   

WBO 3 10:39 AM 0.122 0.0316 0.0407 0.0329 0.0391 0.0086 0.93 2.2 7.83 

WBO 4 11:19 AM 0.028 0.0157 0.0275 0.03 0.0107 0.0074 0.97 3.3 7.74 

WBO 5 11:59 AM 0.076 0.0102 0.0311 0.0272 0.0087 0.0059 1.03 0.5 7.67 

WBO 6 12:39 PM 0.023 0.0115 0.0279 0.0286 0.0068 0.0053 1.00 0.5 7.64 

WBO 7 1:19 PM 0.017 0.0079 0.0337 0.0261 0.0056 0.0055 1.04 1.15 7.65 

WBO 8 1:59 PM 0.017 0.0070 0.0296 0.0298 0.0054 0.0043 1.10 1.8 7.65 

WBO 11 4:19 PM 0.025 0.0087 0.0256 0.0334 0.0078 0.0055 1.16 0.5 7.64 

WBO 15 8:19 PM 0.024 0.0103 0.0340 0.0506 0.0069 0.0066 1.09 0.5 7.68 

WBO 16 9:19 PM 0.017 0.0125 0.0293 0.0339 0.0056 0.0054 1.09 0.5 7.68 

WBO 17 10:19 PM 0.016 0.0098 0.0463 0.0271 0.0062 0.0054 1.09 0.5 7.68 

WBO 18 11:39 PM 0.019 0.0072 0.0632 0.0203 0.0046 0.0054 1.09 0.5 7.68 

WBO 19 12:59 AM 0.016 0.0090 0.0490 0.0479 0.0060 0.0074 1.09 0.5 7.68 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

37188 
 

batch 
 

37188.11 

  
 

37188 
 

  
 

37188.11 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 2/29/12 9:35 16.28 
 

3 2/29/2012 10:39 6.31 

2 2/29/12 9:55 24.42 
 

4 2/29/2012 11:19 50.37 

3 2/29/12 10:15 81.41 
 

5 2/29/2012 11:59 81.72 

4 2/29/12 10:55 162.82 
 

6 2/29/2012 12:39 76.78 

5 2/29/12 11:35 179.10 
 

7 2/29/2012 13:19 39.06 

6 2/29/12 12:15 187.24 
 

8 2/29/2012 13:59 5.36 

7 2/29/12 12:55 146.53 
 

11 2/29/2012 16:19 4.55 

15 2/29/12 19:55 105.83 
 

15 2/29/2012 20:19 9.55 

16 2/29/12 20:55 219.81 
 

16 2/29/2012 21:19 10.39 

  
 

0 
 

17 2/29/2012 22:19 15.46 

  
 

0 
 

18 2/29/2012 23:39 6.06 

  
 

0 
 

19 3/1/2012 0:59 4.26 

  
 

0 
 

  
 

0 

  
 

0 
 

  
 

0 

  
 

1123.47 
 

  
 

309.89 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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March 2, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI batch   0.0401 0.0048 0.108 0.121 0.0156 0.114 0.24 0.03 110.4 7.75 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm Ppm Ppm Ppm Ppm Ppm mg/L mg/L mg/L   

SO batch   0.0147 0.0055 0.064 0.0813 0.0085 0.0111 0.26 0.03 95.69 7.62 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

23326 
 

batch 
 

23326.49 

  
 

23326 
 

  
 

23326.49 

    
TOTAL FLOW 
(L) 

 
    

TOTAL FLOW 
(L) 

 

 

April 18, 2012 

      Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L   

WBI 1 
4/18/12 
1:59 PM 16.28 1.28 0.182 0.135 5.21 1.93 1.07 911.87 5.36 

WBI 2 
4/18/12 
2:29 PM 10.27 1.57 0.175 0.140 3.92 1.99 0.48 640.07 5.28 

WBI 3 
4/18/12 
2:59 PM 7.022 2.10 0.109 0.113 2.72 1.69 0.35 368.28 5.39 

WBI 4 
4/18/12 
3:29 PM 6.824 2.03 0.127 0.089 2.71 1.66 0.18 258.46 5.19 

WBI 5 
4/18/12 
3:59 PM 4.974 1.75 0.105 0.180 2.00 1.35 0.21 148.64 5.49 

WBI 6 
4/18/12 
4:29 PM 5.16 1.75 0.108 0.180 2.15 1.35 0.05 148.64 5.12 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # Time flow(L) 

1 4/18/2012 13:59 32.56 
 

  
 

0 

2 4/18/2012 14:29 8.14 
 

  
 

0 

3 4/18/2012 14:59 24.42 
 

  
 

0 

4 4/18/2012 15:29 0 
 

  
 

0 

5 4/18/2012 15:59 0 
 

  
 

0 

6 4/18/2012 16:29 32.56 
 

  
 

0 

  
 

97.69 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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April 21, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper 

Diss 
Cu TP DP TSS pH 

SITE Sample # Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI 1 7:45 PM 11.65 3.55 0.078 0.055 3.39 1.83 0.75 0.05 211.4 5.65 

WBI 2 8:15 PM 6.28 3.21 0.073 0.073 2.14 1.59 0.38 0.02 118.55 5.77 

WBI 3 8:45 PM 4.306 2.62 0.065 0.062 1.82 1.43 0.21 0.01 25.7 5.74 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 4/21/2012 19:45 40.71 
 

  
 

0 

2 4/21/2012 20:15 24.42 
 

  
 

0 

3 4/21/2012 20:45 16.28 
 

  
 

0 

  
 

81.41 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

 

April 22, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper 

Diss 
Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm Ppm ppm ppm ppm mg/L mg/L mg/L   

WBI 19 
11:05 

AM 3.98 2.19 0.0592 0.0489 2.3 1.701 0.15 0.01 16.3 5.81 

WBI 20 
11:55 

AM 2.74 1.81 0.0296 0.0324 1.605 1.335 0.06 0.01 16.3 5.92 

WBI 21 
2:25 
PM 2.66 1.43 0.0246 0.0428 1.012 0.760 0.08 0.01 31.8 6.06 

WBI 22 
4:55 
PM 2.32 1.37 0.0269 0.0222 0.825 0.638 0.04 0.04 26.6 6.03 

WBI 23 
7:25 
PM 4.58 1.44 0.0264 0.1511 2.288 0.719 0.06 0.00 38.4 6.10 

WBI 24 
7:55 
PM 3.70 1.37 0.0242 0.0649 1.848 0.771 0.03 0.01 13.8 6.07 

 

wood in   

sample # Time flow(L) 

19 4/22/2012 11:05 65.12 

20 4/22/2012 11:55 113.97 

21 4/22/2012 14:25 244.23 

22 4/22/2012 16:55 203.52 

23 4/22/2012 19:25 113.97 

24 4/22/2012 19:55 293.07 

  
 

1033.91 

    TOTAL FLOW (L) 
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April 25, 2012 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper 

Diss 
Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm ppm Ppm ppm ppm mg/L mg/L mg/L   

WBI batch 5.29 2.59 0.037 0.069 2.97 2.29 0.21 0.05 67.9 5.52 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

40.71 
 

  
 

0 

  
 

40.71 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    
TOTAL 
FLOW (L) 

 

May 22, 2012 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI 5 
7:27 
AM 0.0024 0.0044 0.0301 0.0320 0.0015 0.0024 0.01 0.01 15.82 7.40 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO 1 
6:13 
AM 0.0014 0.006 0.037 0.043 0.0038 0.0037 0.80 0.60 11.68 7.76 

SO 2 
6:33 
AM 0.0076 0.0058 0.0305 0.0121 0.0038 0.0011 0.53 0.46 11.68 7.95 

SO 3 
6:53 
AM 0.0042 0.0129 0.0314 0.01219 0.0032 0.0057 0.65 0.58 9.17 7.98 

SO 4 
6:55 
AM 0.013 0.020 0.0194 0.0122 0.0036 0.0103 0.76 0.71 6.67 8.00 

SO 5 
7:15 
AM 0.0012 0.0031 0.0107 0.0227 0 0.0035 0.61 0.46 6.67 8.00 

SO 6 
7:19 
AM 0.0012 0.0031 0.0107 0.0227 0 0.0035 0.61 0.46 6.67 8.00 

    Lead Diss. Lead Zinc Diss. Zinc Copper 
Diss 
Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm Ppm ppm ppm ppm mg/L mg/L mg/L   

WBI Batch 3.42 2.03 0.047 0.069 2.12 1.62 0.53 0.21 49.82 6.28 

swale in   
 

swale out     

sample # Time flow(L) 
 

sample # time flow(L) 

5 5/22/12 7:27 655.53 
 

1 5/22/12 6:13 93.75 

  
 

0 
 

2 5/22/12 6:33 127.15 

  
 

0 
 

3 5/22/12 6:53 75.18 

  
 

0 
 

4 5/22/12 6:55 60.15 

  
 

0 
 

5 5/22/12 7:15 64.41 

  
 

0 
 

6 5/22/12 7:19 234.86 

  
 

655.53 
 

  
 

655.53 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 



 

152 

 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

24.42 
 

  
 

0 

  
 

24.42 
 

  0 0.00 

    
TOTAL FLOW 
(L) 

 
    

TOTAL FLOW 
(L) 

 

 

May 27, 2012 

 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE Sample # ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI Batch 4.77 3.61 0.067 0.194 1.66 1.34 0.13 0.06 25.8 6.25 

wood in   
 

wood out   

sample # Time flow(L) 
 

sample # time flow(L) 

batch 
 

154.68 
 

  
 

0 

  
 

154.68 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    
TOTAL FLOW 
(L) 

 

 

May 29, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE Sample # Time ppm Ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI 1 9:13 PM 0.021 0.0085 0.0378 0.0381 0.0025 0.0052 0.15 0.04 42.1 7.48 

SI 2 9:33 PM 0.002 0.0032 0.0464 0.0728 0.0025 0.0025 0.11 0.08 13 7.31 

SI 3 9:53 PM 0.007 0.0021 0.0402 0.0586 0.0025 0.0025 0.09 0.08 13.2 7.26 

SI 4 10:13 PM 0.02 0.001 0.0359 0.0495 0.0058 0.0025 1.11 0.09 9.1 7.16 

SI 5 10:33 PM 0.004 0.0021 0.0413 0.0494 0.0025 0.0025 0.11 0.06 8.7 7.28 

SI 6 10:53 PM 0.004 0.0023 0.0345 0.1799 0.0025 0.0025 0.10 0.05 7.2 7.18 

SI 7 11:13 PM 0.006 0.0038 0.0371 0.142 0.0025 0.0025 0.10 0.08 10.4 7.39 

SI 8 11:53 PM 0.002 0.0030 0.0320 0.18 0.0025 0.0025 0.11 0.07 3.1 7.15 

SI 9 12:33 AM 0.007 0.0038 0.0300 0.319 0.0025 0.0051 0.09 0.06 5.5 7.16 

SI 10 1:13 AM 0.003 0.001 0.0304 0.163 0.0025   0.10 0.06 7.1 7.18 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE Sample # Time ppm Ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO 2 9:11 PM 0.005 0.001 0.0422 0.216 0.0025 0.0025 0.44 0.24 21.6 7.23 

SO 3 9:31 PM 0.001 0.0059 0.0302 0.0752 0.0025 0.0068 1.89 1.91 4 8.00 

SO 4 9:51 PM 0.001 0.0036 0.033 0.364 0.0025 0.0025 2.49 2.41 5.4 7.81 

SO 5 10:11 PM 0.001 0.0035 0.0367 0.403 0.0025 0.0025 2.67 2.38 4.3 7.85 

SO 6 10:31 PM 0.001 0.001 0.0309 0.094 0.0025 0.0025 2.68 2.69 6.2 8.02 
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    Lead 
Diss. 
Lead Zinc Diss. Zn Copper Diss Cu TP DP TSS pH 

SITE Sample # Ppm Ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI batch 5.39 4.24 0.050 0.042 1.54 1.31 0.08 0.05 4.3 5.78 

swale 
in   

 

swale 
out     

sample 
# time flow(L) 

 
sample # time flow(L) 

1 
5/29/2012 

21:13 7388.3 
 

2 
5/29/2012 

21:11 3449 

2 
5/29/2012 

21:33 492.6 
 

3 
5/29/2012 

21:31 617 

3 
5/29/2012 

21:53 985.3 
 

4 
5/29/2012 

21:51 567 

4 
5/29/2012 

22:13 0 
 

5 
5/29/2012 

22:11 538 

5 
5/29/2012 

22:33 0 
 

6 
5/29/2012 

22:31 5172 

6 
5/29/2012 

22:53 0 
 

  
 

0 

7 
5/29/2012 

23:13 492.6 
 

  
 

0 

8 
5/29/2012 

23:53 0 
 

  
 

0 

9 
5/30/2012 

0:33 492.6 
 

  
 

0 

10 
5/30/2012 

1:13 492.6 
 

  
 

0 

  
 

10345 
 

  
 

10345 

    
TOTAL 
FLOW (L) 

 
    TOTAL FLOW (L) 

wood 
in   

 

wood 
out   

sample 
# time flow(L) 

 
sample # time flow(L) 

batch 
 

170.962176 
 

  
 

0 

  
 

170.96 
 

  0 0.00 

    
TOTAL 
FLOW (L) 

 
    TOTAL FLOW (L) 

 

 

June 12, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time Ppm Ppm Ppm Ppm ppm Ppm mg/L mg/L   

SI 1 
5:06 
AM 0.009 0.0022 0.069 0.070 0.011 0.010 0.18 17.2 7.22 

SI 2 
5:25 
AM 0.003 0.001 0.081 0.063 0.011 0.011 0.16 14.3 7.75 

SI 3 
5:45 
AM 0.004 0.001 0.078 0.055 0.010 0.010 0.15 10 6.99 

SI 4 
6:05 
AM 0.002 0.001 0.084 0.064 0.010 0.012 0.15 10.3 6.93 

SI 5 
6:25 
AM 0.002 0.001 0.098 0.056 0.011 0.011 0.17 5.1 6.95 

SI 10 
9:05 
AM 0.004 0.001 0.067 0.061 0.009 0.011 0.14 4.6 7.11 

SI 16 
2:15 
PM 0.003 0.0023 0.11 0.055 0.011 0.009 0.09 1.8 7.18 
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SI 17 
2:55 
PM 0.003 0.001 0.12 0.058 0.007 0.008 0.09 5.3 7.20 

SI 20 
4:55 
PM 0.003 0.001 0.081 0.054 0.008 0.008 0.08 0.9 7.41 

SI 21 
5:05 
PM 0.001 0.0024 0.078 0.053 0.007 0.01 0.08 2.1 7.43 

            

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm Ppm Ppm Ppm Ppm Ppm mg/L mg/L   

SO 1 
5:06 
AM 0.003 0.0021 0.137 0.072 0.016 0.013 1.49 30.2 7.88 

SO 2 
5:25 
AM 0.005 0.001 0.080 0.074 0.014 0.010 2.30 5.9 8.04 

SO 3 
5:45 
AM 0.001 0.001 0.076 0.066 0.010 0.011 2.09 16.7 7.79 

SO 4 
6:05 
AM 0.003 0.001 0.064 0.068 0.011 0.008 2.27 5.3 7.97 

SO 5 
6:25 
AM 0.007 0.001 0.072 0.065 0.013 0.007 2.42 5.5 8.32 

SO 10 
8:17 
AM 0.001 0.001 0.061 0.061 0.010 0.006 2.29 5.6 7.80 

SO 11 
8:37 
AM 0.005 0.001 0.061 0.068 0.012 0.006 2.29 5 7.90 

SO 15 
10:13 

AM 0.005 0.001 0.023 0.067 0.011 0.006 2.33 2.1 7.95 

SO 21 
12:51 

PM 0.006 0.001 0.10 0.067 0.011 0.005 2.12 4.2 7.96 

            

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# Time ppm Ppm Ppm ppm Ppm Ppm mg/L mg/L   

WBI batch   6.70 4.65 0.081 0.0869 1.81 1.45 0.82 37.7 5.94 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # Time flow(L) 

1 6/12/2012 5:06 5087.15 
 

1 6/12/2012 5:06 902.25 

2 6/12/2012 5:25 636 
 

2 6/12/2012 5:25 678.02 

3 6/12/2012 5:45 0 
 

3 6/12/2012 5:45 717.02 

4 6/12/2012 6:05 0 
 

4 6/12/2012 6:05 612.65 

5 6/12/2012 6:25 0 
 

5 6/12/2012 6:25 1015.30 

10 6/12/2012 9:05 636 
 

10 6/12/2012 8:17 560.12 

16 6/12/2012 14:15 4452.05 
 

11 6/12/2012 8:37 475.08 

17 6/12/2012 14:55 1907.8 
 

15 6/12/2012 10:13 696.91 

20 6/12/2012 16:55 0 
 

21 6/12/2012 12:51 7698.78 

21 6/12/2012 17:05 636 
 

  
 

0 

  
 

13356 
 

  
 

13356.19 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

170.96 
 

  
 

0 

  
 

170.96 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

 

 

June 22, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm Ppm ppm ppm ppm mg/L mg/L mg/L   

WBI 1 
8:13 
PM 10.69 6.59 0.147 0.093 2.945 1.769 0.36 0.02 248.7 6.36 

WBI 2 
8:33 
PM 9.87 2.88 0.097 0.060 2.078 0.608 0.18 0.02 84.3 6.26 

WBI 3 
2:53 
AM 5.36 3.15 0.069 0.072 0.974 0.665 0.13 0.01 11.5 6.04 

WBI 4 
3:13 
AM 4.2 3.56 0.025 0.098 0.606 0.584 0.05 0.02 #N/A 6.05 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm Ppm Ppm Ppm Ppm mg/L mg/L mg/L   

WBO 5 

6/23/12 
3:08 
AM 0.034 0.029 0.003 0.190 0.010 0.015 1.54 1.35 10.2 7.43 

WBO 6 

6/23/12 
3:28 
AM 0.023 0.017 0.019 0.023 0.014 0.0172 1.67 1.54 3.4 7.45 

WBO 7 

6/23/12 
3:48 
AM 0.018 0.011 0.021 0.075 0.011 0.0108 1.67 1.54 3.40 7.73 

 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 6/22/2012 20:13 16.28 
 

5 6/23/2012 3:08 16.86 

2 6/22/2012 20:33 65.12 
 

6 6/23/2012 3:28 5.85 

3 6/23/2012 2:53 187.24 
 

7 6/23/2012 3:48 0.85 

4 6/23/2012 3:13 65.12 
 

  
 

0 

  
 

333.78 
 

  0 23.58 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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July 9, 2012 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm Ppm ppm ppm ppm mg/L mg/L mg/L   

SI Batch 0.01 0.005 0.053 0.037 0.008 0.0004 0.29 0.14 124.26 7.38 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm Ppm ppm ppm ppm mg/L mg/L mg/L   

SO batch 0.003 0.009 0.034 0.154 0.008 0.007 2.13 2.13 18.9 7.43 

      Lead Diss. Lead Zinc 
Diss. 
Zinc Copper Diss Cu TP DP TSS 

SITE 
Sample 
# Time ppm Ppm Ppm ppm ppm ppm mg/L mg/L mg/L 

WBI 1 

7/9/12 
2:19 
AM 20.4 6.68 0.231 0.080 6.33 1.31 0.27 0.12 100.84 

WBI 2 

7/9/12 
2:34 
AM 10.6 7.25 0.103 0.001 3.40 2.60 0.16 0.03 100.84 

WBI 3 

7/9/12 
2:49 
AM 9.72 5.78 0.090 0.090 0.677 2.15 0.56 0.08 161.8 

WBI 4 

7/9/12 
3:04 
AM 7.09 4.87 0.058 0.050 2.31 1.70 0.06 0.02 39 

WBI 5 

7/9/12 
3:19 
AM 2.35 4.62 0.027 0.045 0.420 1.59 0.08 0.04 44 

WBI 6 

7/9/12 
3:34 
AM 6.13 4.53 0.047 0.053 2.16 1.66 0.03 0.05 33.15 

WBI 7 

7/9/12 
3:49 
AM 5.93 4.46 0.043 0.044 2.04 1.44 0.11 0.06 33.15 

WBI 8 

7/9/12 
4:04 
AM 6.26 3.88 0.061 0.043 2.23 1.56 0.09 0.04 33.15 

WBI 9 

7/9/12 
7:04 
AM 7.47 4.84 0.063 0.056 3.16 2.33 0.13 0.02 33.15 

WBI 10 

7/9/12 
8:34 
AM 4.56 4.01 0.036 0.056 1.85 1.78 0.07 0.02 22.3 

WBI 11 

7/9/12 
8:49 
AM 4.27 2.59 0.029 0.048 1.70 1.04 0.06 0.05 22.3 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

3206 
 

batch 
 

3206.96 

  
 

3206 
 

  
 

3206.97 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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wood in   
 

wood out   

sample # time flow(L) 
 

sample # time flow(L) 

1 7/9/2012 2:19 0 
 

  
 

0 

2 7/9/2012 2:34 16.28 
 

  
 

0 

3 7/9/2012 2:49 8.14 
 

  
 

0 

4 7/9/2012 3:04 16.28 
 

  
 

0 

5 7/9/2012 3:19 8.14 
 

  
 

0 

6 7/9/2012 3:34 8.14 
 

  
 

0 

7 7/9/2012 3:49 8.14 
 

  
 

0 

8 7/9/2012 4:04 8.14 
 

  
 

0 

9 7/9/2012 7:04 8.14 
 

  
 

0 

10 7/9/2012 8:34 32.56 
 

  
 

0 

11 7/9/2012 8:49 24.42 
 

  
 

0 

  
 

138.40 
 

  0 0.00 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

July 14, 2012 
 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE Sample # Ppm ppm ppm Ppm Ppm ppm mg/L mg/L mg/L   

SI batch 0.019 0.039 0.036 0.030 0.005 0.009 0.17 0.02 76.2 7.50 

            

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE Sample # ppm ppm ppm Ppm ppm ppm mg/L mg/L mg/L   

SO Batch 0.008 0.0049 0.14 0.0578 0.005 0.005 1.22 1.10 9.09 7.45 
 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

Batch 
 

12481.21 
 

batch 
 

10799.75 

  
 

12481.21 
 

  
 

10799.75 
    TOTAL FLOW (L) 

 
    TOTAL FLOW (L) 

 

 

July 19, 2012 
 

    Lead Diss. Lead Zinc 
Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# ppm ppm Ppm ppm ppm ppm mg/L mg/L   

SI Batch 0.012 0.011 0.059 0.059 0.011 0.009 0.17 103.6 7.52 

           

    Lead Diss. Lead Zinc 
Diss. 
Zinc Copper Diss Cu TP TSS pH 

SITE 
Sample 
# ppm ppm Ppm ppm ppm Ppm mg/L mg/L   

 
 
 
SO Batch 0.011 0.007 0.044 0.044 0.025 0.009 1.33 28.8 7.56 
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     Lead 

Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm Ppm ppm ppm Ppm mg/L mg/L mg/L   

WBI 1 
8:32 
PM 8.92 6.46 0.13 0.10 3.10 2.81 0.25 0.10 21.9 5.18 

WBI 2 
8:47 
PM 5.53 5.85 0.070 0.17 1.07 1.17 0.05 0.03 21.9 5.12 

WBI 3 
9:02 
PM 9.97 6.01 0.099 0.311 2.46 1.50 0.14 0.02 38.05 5.22 

WBI 4 
9:17 
PM 7.79 7.84 0.071 0.099 1.65 1.48 0.10 0.01 54.2 5.25 

WBI 5 
9:32 
PM 6.15 7.12 0.059 0.053 0.939 0.991 0.05 0.03 46.3 5.35 

WBI 6 
10:47 

PM 5.18 5.66 0.071 0.068 1.28 1.28 0.06 0.01 38.4 5.24 

WBI 7 
11:02 

PM 1.27 1.98 0.049 0.053 0.287 0.349 0.04 0.02 23.9 5.38 

WBI 8 
11:17 

PM 1.86 1.75 0.046 0.071 0.341 0.299 0.01 0.02 9.4 5.59 

WBI 9 
11:32 

PM 2.42 2.48 0.068 0.050 0.697 0.63 0.06 0.03 15.05 5.54 

WBI 10 
12:47 

AM 2.8 3.45 0.059 0.051 0.784 0.867 0.08 0.02 20.7 5.48 

WBI 11 
1:02 
AM 2.51 2.77 0.067 0.049 0.682 0.683 0.03 0.00 20.05 5.42 

WBI 12 
1:47 
AM 3.15 2.77 0.063 0.049 0.817 0.683 0.03 0.01 19.4 5.35 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBO 2 
9:27 
PM 0.073 0.068 0.034 0.16 0.032 0.026 1.11 1.00 16.1 7.29 

WBO 3 
10:49 

PM 0.042 0.052 0.017 0.048 0.025 0.020 0.95 0.86 10.85 7.08 

WBO 4 
10:59 

PM 0.031 0.040 0.023 0.050 0.028 0.021 0.75 0.69 5.6 7.25 

WBO 5 
11:02 

PM 0.022 0.026 0.015 0.008 0.028 0.020 1.01 0.94 3.05 7.11 

WBO 6 
11:06 

PM 0.018 0.029 0.033 0.036 0.023 0.021 1.12 1.11 0.5 7.16 

WBO 7 
11:12 

PM 0.019 0.028 0.008 0.114 0.019 0.018 1.12 1.10 0.5 7.12 

WBO 8 
11:18 

PM 0.017 0.29 0.01 0.037 0.019 0.049 1.05 0.98 0.5 7.16 

WBO 9 
11:26 

PM 0.022 0.018 0.006 0.014 0.013 0.017 1.01 1.01 1.5 7.16 

WBO 10 
12:44 

AM 0 0.041 0.005 0.014 0.016 0.019 0.98 0.89 2.5 7.02 

WBO 11 
1:52 
AM 0 0.069 0.020 0.068 0.019 0.033 0.90 8.29 2.5 7.23 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

31795 
 

batch 
 

31795. 

  
 

31795 
 

  
 

31795.95 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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wood in   
 

wood out   

sample # Time flow(L) 
 

sample # time flow(L) 

1 7/19/2012 20:32 8.14 
 

2 7/19/2012 21:27 17.92 

2 7/19/2012 20:47 81.41 
 

3 7/19/2012 22:49 3.59 

3 7/19/2012 21:02 24.42 
 

4 7/19/2012 22:59 14.11 

4 7/19/2012 21:17 89.55 
 

5 7/19/2012 23:02 10.50 

5 7/19/2012 21:32 16.28 
 

6 7/19/2012 23:06 7.41 

6 7/19/2012 22:47 162.82 
 

7 7/19/2012 23:12 11.73 

7 7/19/2012 23:02 203.52 
 

8 7/19/2012 23:18 8.44 

8 7/19/2012 23:17 16.28 
 

9 7/19/2012 23:26 15.53 

9 7/19/2012 23:32 16.28 
 

10 7/20/2012 0:44 5.53 

10 7/20/2012 0:47 73.26 
 

11 7/20/2012 1:52 10.55 

11 7/20/2012 1:02 16.28 
 

  
 

0 

12 7/20/2012 1:47 105.83 
 

  
 

0 

  
 

0 
 

  
 

0 

  
 

0 
 

  
 

0 

  
 

814.11 
 

  0 105.37 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

        

 

 

July 22, 2012 
 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm Ppm ppm ppm mg/L mg/L mg/L   

SI batch   0.009 0.008 0.0920 0.25 0.0169 0.001 0.05 0.02 30.7 7.61 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm Ppm ppm Ppm mg/L mg/L mg/L   

SO batch   0.006 0.005 0.049 0.015 0.007 0.001 0.98 0.98 3.5 7.77 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm ppm Ppm Ppm ppm mg/L mg/L mg/L   

WBI 1 
6:34 
AM 2.01 1.48 0.700 0.476 0.700 0.499 0.02 0.00 7.3 5.91 

WBI 2 
9:04 
AM 1.53 0.486 0.510 0.0463 0.510 0.421 0.01 0.00 5.3 5.84 

WBI 3 
9:52 
AM 1.03 0.599 0.325 0.295 0.325 0.334 0.01 0.00 6.4 6.03 
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

WBO 1 
9:18 
AM 0.02 0.013 0.0184 0.163 0.0078 0.0073 0.67 0.63 0.5 7.23 

WBO 2 
9:44 
AM 0.013 0.007 0.0150 0.364 0.0060 0.006 0.80 0.80 0.5 7.33 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # Time flow(L) 

Batch 
 

34537 
 

batch 
 

34537 

  
 

34537 
 

  
 

34537 

    TOTAL FLOW (L) 
 

    
TOTAL FLOW 
(L) 

 

wood in   
 

wood out   

sample # time flow(L) 
 

sample # Time flow(L) 

1 7/21/2012 6:34 284.93 
 

1 7/21/2012 9:18 73.83 

2 7/21/2012 9:04 431.47 
 

2 7/21/2012 9:44 54.88 

3 7/21/2012 9:52 398.91 
 

  
 

0 

  
 

1115.32 
 

  0 128.73 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 

September 17, 2012 
 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

SI batch   0.02 0.004 0.286 0.059 0.0135 0.004 0.23 0.07 55.10 
 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

SO batch   0.005 0.003 0.161 0.034 0.0122 0.002 0.69 0.67 5.95 
 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm Ppm ppm ppm Ppm mg/L mg/L mg/L   

WBI 1 
3:52 
PM 3.90 2.13 0.116 0.046 0.741 0.393 0.16 0.09 23.59 4.15 

WBI 2 
4:12 
PM 2.65 1.49 0.122 0.048 0.265 0.243 0.04 0.07 0.5 5.36 

WBI 3 
4:32 
PM 2.06 1.60 0.122 0.044 0.432 0.395 0.17 0.03 0.5 5.45 

                  #N/A #N/A #N/A 
 

                  #N/A #N/A   
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBO 1 
1:04 
AM 0.184 0.144 0.050 0.033 0.110 0.083 1.29 1.16 3.82 6.97 

WBO 2 
1:23 
AM 0.154 0.135 0.127 0.068 0.082 0.072 0.99 1.06 1.95 7.08 

WBO 3 
1:43 
AM 0.133 0.124 0.042 0.030 0.066 0.059 1.00 0.97 1.22 7.13 

WBO 4 
2:03 
AM 0.181 0.150 0.060 0.027 0.106 0.074 1.01 1.03 1.22 7.20 

WBO 5 
12:23 

PM 0.098 0.078 0.263 0.051 0.057 0.048 0.92 0.89 1.22 7.20 

WBO 6 
12:43 

PM 0.25 0.149 0.050 0.067 0.123 0.096 0.97 0.86 1.22 7.20 

WBO 7 
3:43 
PM 0.173 0.115 0.048 0.040 0.089 0.067 0.96 0.89 0.5 7.27 

WBO 8 
4:03 
PM 0.122 0.067 0.137 0.024 0.006 0.039 0.93 0.88 13.71 6.86 

WBO 9 
4:23 
PM 0.082 0.051 0.032 0.051 0.030 0.026 0.90 0.88 2.17 6.94 

WBO 10 
4:43 
PM 0.077 0.038 0.135 0.118 0.035 0.028 1.17 0.85 0.5 6.87 

WBO 11 
5:03 
PM 0.086 0.051 0.138 0.024 0.035 0.028 0.87 0.80 0.5 6.87 

 

swale in   
 

swale out     

sample # Time flow(L) 
 

sample # time flow(L) 

batch 
 

102649 
 

batch 
 

102649 

  
 

102649 
 

  
 

102649 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 

wood in   
 

wood out   

sample # Time flow(L) 
 

sample # Time flow(L) 

1 9/18/2012 15:52 464.04 
 

1 9/18/2012 1:04 0.43 

2 9/18/2012 16:12 105.83 
 

2 9/18/2012 1:23 9.17 

3 9/18/2012 16:32 65.12 
 

3 9/18/2012 1:43 3.72 

  
 

0 
 

4 9/18/2012 2:03 0.56 

  
 

0 
 

5 9/18/2012 12:23 0 

  
 

0 
 

6 9/18/2012 12:43 0 

  
 

0 
 

7 9/18/2012 15:43 7.97 

  
 

0 
 

8 9/18/2012 16:03 23.44 

  
 

0 
 

9 9/18/2012 16:23 34.99 

  
 

0 
 

10 9/18/2012 16:43 19.39 

  
 

0 
 

11 9/18/2012 17:03 9.45 

  
 

635.00 
 

  0 109.16 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
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September 27, 2012 
 

    Lead Diss. Lead Zinc 
Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI batch 0.007 0.0031 0.6171 0.053 0.008 0.003 0.17 0.10 27.53 7.68 

            

    Lead Diss. Lead Zinc 
Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm Ppm ppm Ppm Ppm Ppm mg/L mg/L mg/L   

SO Batch 0.007 0.0034 0.598 0.073 0.003 0.003 0.64 0.62 11.14 7.45 
 

 

 
 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # Time flow(L) 

Batch 
 

17740 
 

batch 
 

17740 

  
 

17740 
 

  
 

17740 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 

October 9, 2012 

    Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

SI Batch 0.013 0.006 0.354 0.348 0.014 0.007 0.17 0.07 20 7.26 

            
    Lead Diss. Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm Ppm Ppm Ppm Ppm Ppm mg/L mg/L mg/L   

SO batch 0.021 0.0036 1.94 0.091 0.007 0.003 0.46 0.41 5.6 7.73 
 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

4302 
 

batch 
 

4302 

  
 

4302 
 

  
 

4302 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 

 

October 15, 2012 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI Batch   0.015 0.005 0.118 0.080 0.019 0.005 0.41 0.12 174.6 7.65 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO batch   0.014 0.006 0.185 0.068 0.0071 0.004 0.44 0.36 34.21 7.74 
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI 1 
3:28 
PM 2.45 1.21 0.347 0.042 0.923 0.493 0.09 0.04 16.5 5.84 

WBI 2 
5:42 
PM 1.87 0.72 0.347 0.052 0.521 0.423 0.05 0.03 7.8 6.09 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBB 1 
3:26 
PM 0.062 0.026 0.044 0.038 0.032 0.016 0.87 0.82 4.4 7.88 

WBB 2 
3:45 
PM 0.023 0.023 0.044 0.036 0.017 0.016 0.86 0.84 9.8 7.90 

WBB 3 
5:45 
PM 0.029 0.024 0.049 0.031 0.019 0.014 0.91 0.89 15.2 7.78 

WBB 4 
6:05 
PM 0.018 0.012 0.039 0.031 0.013 0.011 0.85 0.84 2.3 7.94 

 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # Time flow(L) 

batch 
 

16287 
 

batch 
 

16286 

  
 

16287 
 

  
 

16286 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 

wood in   
 

biomat out   

sample # Time flow(L) 
 

sample # time flow(L) 

1 10/15/2012 15:28 113.97 
 

1 10/15/2012 15:26 1.43 

2 10/15/2012 17:42 187.24 
 

2 10/15/2012 15:45 2.31 

  
 

0 
 

3 10/15/2012 17:45 8.61 

  
 

0 
 

4 10/15/2012 18:05 7.01 

  
 

301.22 
 

  0 19.38 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 

 
 

October 19, 2012 

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SI batch 0.013 0.003 0.628 0.036 0.009 0.002 0.14 0.05 72.2 6.87 

            

    Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

SO batch 0.007 0.009 0.575 0.024 0.006 0.004 0.57 0.56 29.3 7.44 
 

 

 

 

 

 



 

164 

 

swale in   
 

swale out     

sample # time flow(L) 
 

sample # time flow(L) 

batch 
 

16286 
 

batch 
 

16286 

  
 

16286 
 

  
 

16286 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 
 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L   

WBI 1 
5:20 
AM 3.01 0.71 0.100 0.138 1.404 0.581 0.05 0.03 7.69 

WBI 2 
6:04 
AM 3.03 0.60 0.090 0.087 1.133 0.470 0.04 0.03 7.47 

WBI 3 
6:49 
AM 1.97 0.92 0.092 0.076 0.632 0.414 0.02 0.01 7.47 

WBI 5 
8:19 
AM 1.49 0.93 0.089 0.114 0.460 0.340 0.01 0.01 7.40 

WBI 8 
1:34 
PM 1.58 0.89 0.103 0.078 0.474 0.255 0.02 0.02 7.35 

WBI 11 
3:49 
PM 1.38 0.94 0.096 0.089 0.366 0.296 0.00 0.01 7.88 

WBI 14 
6:04 
PM 2.13 1.03 0.099 0.085 0.511 0.293 0.03 0.02 7.54 

WBI 18 
9:04 
PM 0.98 0.86 0.094 0.088 0.172 0.150 0.00 0.02 6.45 

            

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP pH 

SITE 
Sample 
# Time ppm ppm ppm Ppm ppm ppm mg/L mg/L   

WBO 1 
11:39 

PM 0.111 0.009 0.439 0.057 0.030 0.008 0.98 0.83 8.25 

WBO 3 
1:38 
AM 0.023 0.005 0.417 0.017 0.021 0.007 1.10 0.96 7.81 

WBO 4 
2:38 
AM 0.031 0.004 0.451 0.028 0.029 0.009 0.90 0.75 7.36 

WBO 6 
4:39 
AM 0.055 0.003 0.037 0.037 0.017 0.006 0.76 0.68 7.36 

WBO 8 
6:38 
AM 0.034 0.002 0.032 0.041 0.014 0.005 0.74 0.64 7.62 

WBO 9 
7:38 
AM 0.032 0.004 0.447 0.026 0.019 0.004 0.66 0.57 7.62 

WBO 12 
10:38 

AM 0.032 0.006 0.037 0.017 0.011 0.005 0.48 0.41 7.60 

WBO 16 
2:38 
PM 0.029 0.003 0.045 0.024 0.010 0.002 0.49 0.42 7.76 
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wood in   
 

wood out   

sample # Time flow(L) 
 

sample # time flow(L) 

1 10/29/2012 5:20 407 
 

1 10/28/2012 23:39 1 

2 10/29/2012 6:04 146 
 

3 10/29/2012 1:38 2 

3 10/29/2012 6:49 187 
 

4 10/29/2012 2:38 1 

5 10/29/2012 8:19 67 
 

6 10/29/2012 4:39 28 

8 10/29/2012 13:34 757 
 

8 10/29/2012 6:38 101 

11 10/29/2012 15:49 439 
 

9 10/29/2012 7:38 203 

14 10/29/2012 18:04 651 
 

12 10/29/2012 10:38 384 

18 10/29/2012 21:04 1742 
 

16 10/29/2012 14:38 1377 

  
 

5006 
 

  0 2101 

    TOTAL FLOW (L) 
 

    TOTAL FLOW (L) 
 
 

 

January 16, 2013 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WO 7 
9:06 
PM 0.006 0.002 0.044 0.011 0.010 0.008 0.02 0.02 6.2 7.54 

WO 8 
9:26 
PM 0.006 0.002 0.014   0.013 0.007 0.04 0.04 0.5 7.54 

WO 9 
9:46 
PM 0.01 0.007 0.017 0.010 0.014 0.011 0.06 0.06 0.7 7.43 

WO 11 
10:26 

PM 0.01 0.008 0.017 0.007 0.015 0.009 0.10 0.08 0.5 7.48 

WO 13 
11:06 

PM 0.009 0.003 0.015 0.045 0.015 0.007 0.10 0.09 0.5 7.51 

WO 16 
12:06 

AM 0.008 0.010 0.017 0.032 0.011 0.007 0.14 0.10 0.5 7.30 

WO 17 
12:26 

AM 0.01 0.006 0.014 0.020 0.012 0.007 0.13 0.12 0.5 7.48 

WO 21 
1:46 
AM 0.023 0.005 0.012 0.010 0.014 0.005 0.14 0.13 0.5 7.58 

             

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm ppm mg/L mg/L mg/L   

WBI 3 
9:59 
PM 2.80 0.77 0.074 0.031 1.078 0.747 0.01 0.00 5.6 6.03 

WBI 6 
10:39 

PM 1.53 1.22 0.051 0.029 0.693 0.631 0.01 0.00 5.6 6.03 

WBI 7 
10:49 

PM 1.48 1.24 0.065 0.053 0.617 0.608 0.01 0.00 0.5 5.83 

WBI 8 
10:59 

PM 1.27 1.22 0.045 0.046 0.614 0.603 0.01 0.00 0.5 5.96 

WBI 9 
11:09 

PM 1.33 1.23 0.051 0.048 0.644 0.655 0.01 0.00 0.5 5.61 

WBI 10 
11:19 

PM 1.08 1.06 0.05 0.044 0.652 0.660 0.01 0.00 1 5.77 

WBI 15 
12:39 

AM 1.42 1.24 0.063 0.097 0.734 0.743 0.01 0.00 1.5 5.92 

WBI 21 
1:39 
AM 1.64 1.24 0.056 0.044 0.802 0.750 0.01 0.00 1.5 5.92 
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      ResinPhos Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L       

WO 7 9:06 PM 0.01 0 0.0064 0.021 

WO 8 9:26 PM 0.01 0 0.0065 0.015 

WO 9 9:46 PM 0.01 0.01 0.009 0.03 

WO 11 10:26 PM 0.02 0 0.0094 0.021 

WO 13 11:06 PM 0.01 0 0.007 0.041 

WO 16 12:06 AM 0.02 0.01 0.007 0.023 

WO 17 12:26 AM 0.02 0.01 0.0062 0.032 

WO 21 1:46 AM 0.02 0.01 0.0071 0.021 

    
     

      ResinPhos Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L       

WBI 3 9:59 PM 0 
   

WBI 6 10:39 PM 0 1.11 0.62 0.118 

WBI 7 10:49 PM 0 1.16 0.60 0.076 

WBI 8 10:59 PM 0 1.09 0.60 0.096 

WBI 9 11:09 PM 0 1.15 0.67 0.071 

WBI 10 11:19 PM 0 0.97 0.69 0.072 

WBI 15 12:39 AM 0 1.16 0.72 0.064 

WBI 21 1:39 AM 0 1.1 0.74 0.053 

    
     

      ResinPhos Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L       

WBO 4 10:20 PM 0.04 0.04 0.009 0.015 

WBO 5 10:44 PM 0.04 0.02 0.008 0.025 

WBO 6 11:18 PM 0.04 0.01 0.007 0.014 

WBO 7 12:04 AM 0.04 0.02 0.007 0.040 

WBO 9 1:22 AM 0.04 0.01 0.010 0.010 

WBO 10 1:55 AM 0.04 0.02 0.007 0.083 

WBO 11 2:36 AM 0.04 0.01 0.006 0.027 

WBO 12 3:15 AM 0.04 0.02 0.007 
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WTR out 
    

 
wood in   

 
biomat out   

sample 
# Time flow(L) 

 
sample # time flow(L) 

 
sample # time flow(L) 

7 
1/15/2013 

21:06 0.431 
 

3 
1/15/2013 

21:59 65.1 
 

4 
1/15/2013 

22:20 6.44 

8 
1/15/2013 

21:26 0.376 
 

6 
1/15/2013 

22:39 32.5 
 

5 
1/15/2013 

22:44 4.67 

9 
1/15/2013 

21:46 1.27 
 

7 
1/15/2013 

22:49 8.14 
 

6 
1/15/2013 

23:18 4.15 

11 
1/15/2013 

22:26 6.26 
 

8 
1/15/2013 

22:59 16.2 
 

7 
1/16/2013 

0:04 7.45 

13 
1/15/2013 

23:06 6.72 
 

9 
1/15/2013 

23:09 8.14 
 

9 
1/16/2013 

1:22 7.06 

16 
1/16/2013 

0:06 3.60 
 

10 
1/15/2013 

23:19 56.9 
 

10 
1/16/2013 

1:55 3.65 

17 
1/16/2013 

0:26 5.87 
 

15 
1/16/2013 

0:39 65.1 
 

11 
1/16/2013 

2:36 5.31 

21 
1/16/2013 

1:46 28.14 
 

21 
1/16/2013 

1:39 341.9 
 

12 
1/16/2013 

3:15 13.92 

  
 

52.7 
 

  
 

594.3 
 

  0 52.7 

    
TOTAL 
FLOW (L) 

 
  

 

TOTAL 
FLOW (L) 

 
    

TOTAL 
FLOW (L) 

 

 

January 30, 2013 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm Ppm Ppm mg/L mg/L mg/L   

WTRO 1 
9:46 
PM 0.020 0.011 0.055 0.056 0.007 0.007 0.06 0.03 3.3 7.56 

WTRO 2 
10:11 

PM 0.009 0.003 0.028 0.031 0.006 0.005 0.04 0.02 0.5 7.51 

             

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm ppm ppm ppm Ppm Ppm mg/L mg/L mg/L   

WBI 1 
9:37 
PM 4.41 1.31 0.072 0.041 1.89 0.47 0.02 0.01 25.4 5.55 

WBI 2 
9:52 
PM 1.76 1.54 0.124 0.092 0.822 0.43 0.02 0.00 0.5 5.48 

WBI 3 
10:07 

PM 2.43 1.58 0.062 0.052 1.25 0.67 0.01 0.00 0.5 5.45 

WBI 4 
10:22 

PM 2.59 1.55 0.136 0.039 1.61 0.75 0.04 0.00 11.8 5.56 

WBI 5 
10:37 

PM 2.48 2.07 0.069 0.047 1.45 0.63 0.07 0.00 6.15 5.59 

WBI 8 
2:22 
AM 2.51 1.69 0.133 0.045 1.17 0.63 0.05 0.00 0.5 5.54 

WBI 10 
2:52 
AM 1.88 1.73 0.122 0.046 1.13 0.60 0.02 0.02 0.5 5.57 

WBI 11 
3:07 
AM 1.71 1.47 0.121 0.125 1.09 0.61 0.02 0.02 1.2 5.61 

 
 
 
 
 
 
 
 
 
 
 
 
 

            



 

168 

 

      Lead 
Diss. 
Lead Zinc Diss. Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

WBO 1 
9:39 
PM 0.132 0.044 0.133 0.040 0.033 0.022 0.60 0.20 8.4 7.56 

WBO 2 
9:44 
PM 0.084 0.076 0.108 0.029 0.027 0.023 0.46 0.42 4.7 7.50 

WBO 3 
9:48 
PM 0.067 0.030 0.047 0.052 0.022 0.019 0.98 0.52 1.4 7.52 

WBO 4 
9:53 
PM 0.075 0.026 0.112 0.041 0.027 0.018 0.91 0.60 0.5 7.65 

WBO 6 
10:01 

PM 0.045 0.023 0.131 0.03 0.023 0.016 0.96 0.69 0.5 7.70 

WBO 8 
10:13 

PM 0.056 0.025 0.048 0.034 0.019 0.017 0.89 0.79 0.5 7.73 

WBO 11 
10:28 

PM 0.044 0.026 0.028 0.027 0.019 0.015 0.78 0.77 0.5 7.67 

WBO 15 
11:00 

PM 0.033 0.023 0.033 0.027 0.018 0.017 0.77 0.77 0.5 7.62 
 

      Seph P SRP SRP+Seph Organic P Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L       

WTRO 1 9:46 PM 0.004 0.011 0.015 0.019 0.025 0.008 0.11 

WTRO 2 10:11 PM 0.006 0.010 0.017 0.011 0.028 0.009 0.06 

      Seph P SRP SRP+Seph Organic P Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L       

WBI 1 9:37 PM 0 0 0 0.0075 0.47 0.21 0.078 

WBI 2 9:52 PM 0 0 0 0 1.50 0.44 0.198 

WBI 3 10:07 PM 0 0 0 0.0013 1.57 0.60 0.06 

WBI 4 10:22 PM 0 0 0 0.0006 1.50 0.77 0.13 

WBI 5 10:37 PM 0 0 0 0.0036 1.59 0.70 0.070 

WBI 8 2:22 AM 0 0 0 0.0027 0.33 0.15 0.037 

WBI 10 2:52 AM 0 0 0 0.0186 1.65 0.64 0.068 

WBI 11 3:07 AM 0 0 0 0.0186 1.35 0.60 0.11 

      Seph P SRP SRP+Seph Organic P Seph Pb Seph Cu Seph Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L       

WBO 1 9:39 PM 0.024 0.181 0.205 0.0203 0.0355 0.016 0.054 

WBO 2 9:44 PM 0.038 0.301 0.340 0.119 0.0546 0.017 0.046 

WBO 3 9:48 PM 0.057 0.424 0.482 0.0940 0.0321 0.009 0.089 

WBO 4 9:53 PM 0.080 0.489 0.570 0.105 0.0138 0.006 0.114 

WBO 6 10:01 PM 0.085 0.638 0.724 0.0541 0.0192 0.007 0.104 

WBO 8 10:13 PM 0.101 0.726 0.827 0.0606 0.0085 0.007 0.060 

WBO 11 10:28 PM 0.096 0.710 0.807 0.0551 0.0330 0.010 0.060 

WBO 15 11:00 PM 0.081 0.700 0.782 0.0656 0.0288 0.0096 0.182 
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wood WTR   
 

wood in   
 

wood out biomat   
sample 
# Time flow(L) 

 

sample 
# time flow(L) 

 
sample # time flow(L) 

1 
1/30/13 

21:46 27.72 
 

1 1/30/13 21:37 73.59 
 

1 
1/30/2013 

21:39 6.75 

2 
1/30/13 

22:11 203.97 
 

2 1/30/13 21:52 114.46 
 

2 
1/30/2013 

21:44 4.09 

  
 

0 
 

3 1/30/13 22:07 91.91 
 

3 
1/30/2013 

21:48 7.06 

  
 

0 
 

4 1/30/13 22:22 96.79 
 

4 
1/30/2013 

21:53 7.15 

  
 

0 
 

5 1/30/13 22:37 431.15 
 

6 
1/30/2013 

22:01 9.98 

  
 

0 
 

8 1/31/13 2:22 219.88 
 

8 
1/30/2013 

22:13 12.02 

  
 

0 
 

10 1/31/13 2:52 162.73 
 

11 
1/30/2013 

22:28 17.65 

  
 

0 
 

11 1/31/13 3:07 381.32 
 

15 
1/30/2013 

23:00 166.96 

  
 

231.70 
 

  
 

1571.88 
 

  0 231.70 

    

TOTAL 
FLOW 
(L) 

 
    

TOTAL FLOW 
(L) 

 
    TOTAL FLOW (L) 

 

 
 

 

 

 

 

 

 

February 26, 2013 

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

WTRO 4 

2/26/13 
4:40 
PM 0.0100 0.010 0.015 0.009 0.010 0.005 0.03 0.02 0.5 7.42 

WTRO 5 

2/26/13 
5:25 
PM 0.0129 0.008 0.019 0.038 0.006 0.002 0.03 0.02 0.5 7.48 

WTRO 6 

2/26/13 
8:20 
PM 0.010   0.022 

 
0.006 0.006 0.05 0.03 0.5 7.44 

WTRO 7 

2/26/13 
8:45 
PM 0.006 0.003 0.021 0.023 0.007 0.004 0.05 0.04 0.5 7.41 

WTRO 8 

2/26/13 
9:10 
PM 0.008 0.011 0.018 0.022 0.008 0.005 0.06 0.05 0.5 7.43 

WTRO 11 

2/26/13 
10:25 

PM 0.006 0.002 0.022 0.026 0.010 0.004 0.08 0.08 0.5 7.44 

WTRO 13 

2/26/13 
11:05 

PM 0.007 0.007 0.028 0.014 0.009 0.005 0.10 0.09 0.5 7.44 

WTRO 15 

2/26/13 
11:35 

PM 0.023 0.011 0.027 
 

0.011 0.005 0.12 0.11 0.5 7.42 

WTRO 21 

2/27/13 
1:25 
AM 0.013 0.006 0.018 0.013 0.008 0.006 0.11 0.11 0.5 7.38 
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      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time ppm Ppm ppm ppm ppm Ppm mg/L mg/L mg/L   

WBI 1 
9:18 
PM 5.64 1.99 0.063 0.051 1.55 0.97 0.10 0.01 7.2 5.23 

WBI 2 
9:30 
PM 4.42 1.1 0.102 0.04 2.22 0.70 0.04 0.01 0.5 5.44 

WBI 3 
9:42 
PM 1.92 1.14 0.088 0.062 0.969 0.68 0.02 0.01 0.5 5.68 

WBI 4 
9:54 
PM 1.92 1 0.104 0.044 0.985 0.79 0.02 0.03 #N/A 5.72 

WBI 7 
10:20 

PM 2.38 1.08 0.045 0.065 1.10 0.75 0.04 0.01 0.5 5.77 

WBI 8 
10:27 

PM 1.64 1.09 0.094 0.057 0.94 0.70 0.02 0.01 3.1 5.71 

WBI 9 
10:34 

PM 1.68 1.01 0.047 0.054 0.941 0.73 0.02 0.01 #N/A 5.72 

WBI 10 
10:41 

PM 2.10 0.89 0.050 0.067 1.09 0.70 0.03 0.02 #N/A 5.77 
 
 

            

      Lead 
Diss. 
Lead Zinc 

Diss. 
Zinc Copper Diss Cu TP DP TSS pH 

SITE 
Sample 
# Time Ppm Ppm Ppm Ppm Ppm Ppm mg/L mg/L mg/L   

WBO 2 

2/26/13 
4:32 
PM 0.066 0.031 0.032 0.020 0.030 0.020 0.35 0.29 0.5 7.67 

WBO 3 

2/26/13 
4:48 
PM 0.057 0.028 0.004 0.102 0.024 0.011 0.33 0.32 0.5 7.68 

WBO 4 

2/26/13 
5:05 
PM 0.047 0.012 0.045 0.012 0.022 0.013 0.34 0.33 0.5 7.77 

WBO 6 

2/26/13 
5:29 
PM 0.069 0.011 0.043 0.014 0.015 0.008 0.37 0.33 0.5 7.75 

WBO 8 

2/26/13 
6:54 
PM 0.021 0.014 0.049 0.043 0.012 0.008 0.38   0.5 7.71 

WBO 10 

2/26/13 
8:34 
PM 0.025 0.025 0.003 0.065 0.013 0.010 0.39 0.36 0.5 7.67 

WBO 12 

2/26/13 
9:28 
PM 0.027 0.013 0.064 0.014 0.012 0.006 0.41 0.40 0.5 7.58 

WBO 16 

2/26/13 
10:58 

PM 0.029 0.029 0.071 0.070 0.012 0.011 0.57   0.5 7.52 
 

      SRP A-25 Phos Organic P Part. P anionic P Seph. Pb 
Seph 
Cu 

Seph 
Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L   mg/L mg/L mg/L 

WTRO 4 ######## 0.00 0.01 0.01 0.02 0.01 0.0047 0 0.047 

WTRO 5 ######## 0.01 #N/A 0.01 0.01 #N/A 0.012 0 0.038 

WTRO 6 ######## 0.01 0.02 0.02 0.03 0.00 0.025 0.01 0.031 

WTRO 7 ######## 0.03 #N/A 0.01 0.02 #N/A 0.008 0 0.045 

WTRO 8 ######## 0.04 0.02 0.01 0.01 0.03 0.008 0 
 

WTRO 11 ######## 0.07 0.03 0.01 0.00 0.04 0.005 0 0.022 

WTRO 13 ######## 0.08 0.02 0.01 0.01 0.08 0.006 0 
 

WTRO 15 ######## 0.10 0.02 0.01 0.02 0.09 0.009 0 
 

WTRO 21 ######## 0.10 #N/A 0.01 0.01 #N/A 0.005 0 
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      SRP A-25 Phos Organic P Part. P anionic P Seph. Pb 
Seph 
Cu 

Seph 
Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L   mg/L mg/L mg/L 

WBI 1 9:18 PM #N/A #N/A #N/A 0.09 #N/A 
   

WBI 2 9:30 PM 0.00 0.01 0.00 0.04 -0.01 1.16 0.77 0.339 

WBI 3 9:42 PM 0.01 0.01 0.00 0.01 0.00 1.19 0.73 0.071 

WBI 4 9:54 PM 0.00 0.01 0.03 0.00 0.03 1.18 0.85 0.054 

WBI 7 10:20 PM 0.00 #N/A 0.01 0.03 #N/A 1.25 0.84 0.086 

WBI 8 10:27 PM 0.00 0.01 0.01 0.00 0.00 1.10 0.76 0.087 

WBI 9 10:34 PM 0.01 0.01 0.00 0.01 0.00 1.05 0.76 0.065 

WBI 10 10:41 PM #N/A #N/A #N/A 0.01 #N/A 
   

           

      SRP A-25 Phos Organic P Part. P anionic P Seph. Pb 
Seph 
Cu 

Seph 
Zn 

SITE Sample # Time mg/L mg/L mg/L mg/L   mg/L mg/L mg/L 

WBO 2 ######## 0.26 0.04 0.03 0.06 0.25 0.017 0.01 0.032 

WBO 3 ######## 0.29 0.05 0.03 0.02 0.27 0.041 0.01 0.054 

WBO 4 ######## 0.30 #N/A 0.03 0.01 #N/A 0.009 0 0.021 

WBO 6 ######## 0.34 #N/A 0.00 0.04 #N/A 0.011 0 
 

WBO 8 ######## 0.35 0.06     #N/A 0.015 0 
 

WBO 10 ######## 0.35 0.07 0.02 0.03 0.30 0.012 0 0.013 

WBO 12 ######## 0.39 0.05 0.02 0.01 0.35 0.011 0 
 

WBO 16 ######## 0.54 0.07     #N/A 0.015 0 0.065 
 

 

wtr 
out     

 
wood in   

 
wood out   

sample 
# time flow(L) 

 

sample 
# time flow(L) 

 

sample 
# time flow(L) 

4 
2/26/2013 

16:40 28.92 
 

1 
2/26/2013 

21:18 244.2 
 

2 
2/26/2013 

16:32 13.7 

5 
2/26/2013 

17:25 27.34 
 

2 
2/26/2013 

21:30 24.42 
 

3 
2/26/2013 

16:48 10.8 

6 
2/26/2013 

20:20 13.56 
 

3 
2/26/2013 

21:42 24.42 
 

4 
2/26/2013 

17:05 11.9 

7 
2/26/2013 

20:45 3.03 
 

4 
2/26/2013 

21:54 16.28 
 

6 
2/26/2013 

17:29 15.0 

8 
2/26/2013 

21:10 17.97 
 

7 
2/26/2013 

22:20 16.28 
 

8 
2/26/2013 

18:54 6.76 

11 
2/26/2013 

22:25 16.59 
 

8 
2/26/2013 

22:27 16.28 
 

10 
2/26/2013 

20:34 15.4 

13 
2/26/2013 

23:05 6.24 
 

9 
2/26/2013 

22:34 0 
 

12 
2/26/2013 

21:28 23.7 

15 
2/26/2013 

23:35 4.87 
 

10 
2/26/2013 

22:41 81.41 
 

16 
2/26/2013 

22:58 20.9 

21 
2/27/2013 

1:25 0 
   

0 
 

  
 

0 

  
 

118.56 
 

  
 

423.33 
 

  0 118.56 

    
TOTAL 
FLOW (L) 

 
    TOTAL FLOW (L) 

 
    

TOTAL 
FLOW 
(L) 
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Appendix B – Raw Data from Extraction Experiments 
 

Sr(NO3)2 Extraction Data, Rear Side Cross-section 

 
mg metal/ kg media 

  
mg metal/ kg media 

  
mg metal/ kg media 

 

             

 
Pb 1 Pb 2 Pb 3 St dev Cu 1 Cu 2 Cu 3 St dev Zn 1 Zn 2 Zn 3 St dev 

1AS 6.16 3.14 2.64 1.90 0.4 1.348 0.632 0.5 0.4 0.74 0.4 0.2 

2AS 3.76 1.34 1.32 1.40 0.4 0.4 0.4 0.0 0.80 0.4 0.4 0.2 

3AS 2.84 1.62 4.82 1.61 0.4 0.4 0.4 0.0 1.07 0.4 0.4 0.4 

4AS 2.64 1.08 1.08 0.90 1.03 0.4 1.12 0.4 1.54 0.4 0.4 0.7 

5AS 0 0 0 0.00 0 0 0 0.0 0 0 0 0.0 

1BS 1.96 1.3 2.08 0.42 0.4 0.068 0 0.2 0.4 0.4 0.4 0.0 

2BS 2.12 1.86 1.26 0.44 0.4 0.178 0 0.2 0.4 0.4 0.4 0.0 

3BS 1.46 0.9 1.58 0.36 0.4 0.4 0.4 0.0 0.4 0.4 0.83 0.3 

4BS 1.54 1.08 1.4 0.24 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5BS 1.5 1.62 1.12 0.26 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

1CS 1.16 1.44 1.9 0.37 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

2CS 1.46 1.68 1.46 0.13 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

3CS 0.74 1.24 1.22 0.28 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

4CS 0.78 1.12 1.94 0.60 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5CS 1.18 1.86 1.12 0.41 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

1DS 1.56 2.66 1.56 0.64 1.70 2.22 2.08 0.3 0.4 0.4 0.4 0.0 

2DS 0.92 1.5 2.08 0.58 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

3DS 0.36 1.16 1.36 0.53 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

4DS 0.66 1.2 1.54 0.44 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5DS 0.6 1.46 1.28 0.45 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 
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Sr(NO3)2 Extraction Data, Rear Middle Cross-section 

  
mg metal/ kg media 

  
mg metal/ kg media 

 
mg metal/ kg media 

             

 
Pb 1 Pb 2 Pb 3 

St 
dev Cu 1 Cu 2 Cu 3 St dev Zn 1 Zn 2 Zn 3 St dev 

1AH 1.74 0.4 1 0.671 1.79 1.17 1.40 0.3 0.4 0.4 0.4 0.0 

2AH 0.4 1.12 1.38 0.508 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

3AH 0.4 1.88 1.04 0.742 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

4AH 0.4 1.12 1.52 0.568 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5AH 0.8 1.12 1.34 0.272 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

1BH 1.4 2.56 1.62 0.616 2.30 1.62 2.26 0.4 0.4 0.4 0.4 0.0 

2BH 0.4 0.86 1.1 0.356 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

3BH 0.4 1.58 2.06 0.854 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

4BH 0.4 0.4 1.1 0.404 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5BH 0.4 1.68 1.34 0.663 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

1CH 1.6 1.48 1.4 0.101 3.31 2.34 3.28 0.6 0.4 0.4 0.4 0.0 

2CH 0.4 0.4 1.28 0.508 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

3CH 0.4 0.96 1.82 0.715 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

4CH 0.4 1.18 1.6 0.609 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5CH 0.4 0.92 1.24 0.424 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

1DH 6.72 3.1 9.56 3.23 7.60 3.80 10.54 3.4 3.70 3.60 4.74 0.6 

2DH 0.4 2.46 2.86 1.32 4.25 1.83 4.60 1.5 0.4 0.4 0.4 0.0 

3DH 0.4 2.06 0.92 0.849 0.99 0.4 0.4 0.3 0.4 0.4 0.4 0.0 

4DH 0.4 2.36 0.4 1.13 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 

5DH 0.4 1.78 1.32 0.703 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 
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Ammonium oxalate extraction – Rear side cross section 

 
  Mg/kg 

 
  

 
Mg/kg 

  
  Mg/kg 

 
  

 
Pb 1 Pb 2 Pb 3 

% 
RSD Cu 1 Cu 2 Cu 3 % RSD Zn 1 Zn 2 Zn 3 % RSD 

1AS 7.16 4 39.1 19 11.3 15.5 9.23 3 36.4 52.7 42.7 8 

2AS 4.96 3.12 24.5 12 2.65 10.2 6.25 4 30.3 37.1 29.1 4 

3AS 5.48 4.64 19.2 8 5.42 9.82 6.64 2 30.0 33.8 42.1 6 

4AS 4.16 3.88 13.6 6 4 9.94 9.12 3 29.8 38.5 48.0 9 

5AS 0 0 0 0 0 0 0 
 

0 0 0   

1BS 6.6 11.2 14.6 4 13.2 17.6 12.8 3 38.6 34.7 44.1 5 

2BS 7.64 5.76 10.1 2 6.85 9.24 10.3 2 49.2 35 42.3 7 

3BS 5.72 2.6 5.52 2 4.04 8.34 7.48 2 30.4 38.4 39.1 5 

4BS 6.24 1.8 9.2 4 4.14 7.95 12.2 4 50.0 35.4 42.9 7 

5BS 4.12 1.52 4.4 2 11.0 15.9 20.5 5 55.1 42.3 63.8 11 

1CS 8.12 8.8 9.44 1 32.9 26.9 38.5 6 42.2 29.2 47.6 9 

2CS 1.6 2.48 8 3 10.8 11.0 18.4 4 29.6 34.8 44.4 8 

3CS 2 1.4 3.76 1 5.49 7.41 13.7 4 37.8 27.8 35.9 5 

4CS 1 0.76 5 2 4.78 9.25 11.9 4 43.0 46.5 41.8 2 

5CS 1.2 2.04 1.4 0 7.87 15.7 17.9 5 57 51.6 41.0 8 

1DS 60.7 204 109 73 163 470 273 155 49.9 28.5 43.0 11 

2DS 19.6 15.4 24.8 5 46.5 67.0 63.2 11 27.8 35.8 39.4 6 

3DS 2.4 2.8 5.68 2 10.0 15.18 2.29 6 38.5 50.4 43.6 6 

4DS 4.4 29.0 4.28 14 6.33 18.3 0.696 9 34.6 44 29.6 7 

5DS 5.44 1.8 4 2 8.66 15.8 0.688 8 64.3 61.8 50.3 7 
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Ammonium oxalate extraction – Rear hotspot cross-section 

 
mg/kg 

  
mg/kg 

  
mg/kg 

 

 
Pb 1 Pb 2 Pb 3 

% 
RSD 

 
Cu 1 Cu 2 Cu 3 

% 
RSD 

 
Zn 1 Zn 2 Zn 3 % RSD 

1AH 64 93 58 18   112 139 89 25     33.9   #DIV/0! 

2AH 6 20 4 9 
 

12 10 6 4 
 

32.8 28.3 28.0 3 

3AH 6 12 0 6 
 

12 13 6 4 
 

32.7 37.5 35.9 2 

4AH 1 6 5 3 
 

9 16 5 5 
 

38.7 32.5 31.3 4 

5AH 2 8 0 4   20 16 8 6   43.1 46.3 33.7 7 

1BH 110 134 159 24 
 

224 254 233 16 
 

32.8 40.7 32.3 5 

2BH 11 14 12 2 
 

35 23 26 6 
 

28.8 31.8 36.2 4 

3BH 0 4 1 2 
 

1 8 7 4 
 

  23.6 23.2 0 

4BH 0 3 0 2 
 

7 11 6 3 
 

35.0 33.3 40.8 4 

5BH 0 0 4 2   10 14 10 2   28.3 48.7 33 11 

1CH 299 346 230 59 
 

662 732 595 68 
 

35.6 41.2 37.6 3 

2CH 24 20 20 2 
 

83 74 47 19 
 

32.9 21.9 21.4 7 

3CH 6 4 3 1 
 

16 15 12 2 
 

29.0 29.9 33.7 3 

4CH 1 3 2 1 
 

9 2 6 3 
 

37.7 26.2 23.3 8 

5CH 3 0 1 1   14 1 11 7   56.3 34.4 57.0 13 

1DH 190 221 158 31 
 

1360 1069 1384 176 
 

40.2   35.2 4 

2DH 216 241 214 15 
 

429 438 305 74 
 

33.5 30.3 36.0 3 

3DH 25 31 16 7 
 

86 84 45 23 
 

41.7 39.6 24.7 9 

4DH 1 1 3 1 
 

26 17 12 7 
 

37.9 30.6 33.3 4 

5DH 2 2 5 2 
 

15 7 10 4 
 

41.4 37.3 33.6 4 
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Aqua Regia Extraction – Rear side cross-section 

 

  
mg/kg 

   
mg/kg 

   
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 St dev Cu 1 Cu 2 Cu 3 St dev Zn 1 Zn 2 Zn 3 St dev 

1AS 25.4 14.9 9.9 8 12.86 5.87 11.24 4 64.7 66.07 70.65 3 

2AS 20.4 5.4 4.4 9 14.91 3.92 10.06 6 73.68 58.64 77.54 10 

3AS 20.8 9.4 13.4 6 9.08 8.47 9.81 1 65.16 89.2 80.93 12 

4AS 20.2 4.2 8.5 8 11.57 14.19 11.56 2 80.32 88.86 74.33 7 

5AS   
  

#DIV/0! 
   

#DIV/0!   
  

#DIV/0! 

1BS 88.1 74.2 40.6 24 16.11 13.39 7.78 4 85.92 145.4 52.3 47 

2BS 23.6 11 9.1 8 9.33 6.94 11.73 2 63.7 70.11 83.72 10 

3BS 17.7 2.7 5.2 8 11.64 4.45 8.58 4 73.93 55.99 74.3 10 

4BS 17.2 5.8 2.6 8 7.91 7.14 29.73 13 55.58 81.13 
 

18 

5BS 23.7 15.2 11.7 6 12.25 17.5 17.74 3 71.25 99.05 84.09 14 

1CS 100.1 117 123.8 12 21.7 32.64 37.19 8 54.81 92.22 79.28 19 

2CS   17.6 17.1 0 
 

13.48 17.08 3   82.63 65.12 12 

3CS 18.7 10.7 7 6 5.79 8.72 8.94 2 64.53 80.49 66.17 9 

4CS 14.7 5.7 10.3 5 5.93 7.92 18.75 7 70.25 79.3 168.5 54 

5CS 22 15 5.6 8 19.78 15.12 12.39 4 70.67 63.73 78.38 7 

1DS 547.1 428.3 945.8 271 270.5 175.5 400.5 113 74.47 80.57 79.53 3 

2DS 77.8 79.1 46.4 19 42.74 49.61 40.19 5 53.47 64.58 81.42 14 

3DS 18.9 10.5 11.4 5 4.43 7.62 15.76 6 49.68 66.19 75.4 13 

4DS 16.1 5.1 8.1 6 7.19 5.69 8.66 1 67.95 63.64 61.79 3 

5DS 20.3 47.5 10.4 19 12.59 11.52 21.39 5 98.44 83.48 100.3 9 
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Aqua Regia Extraction – Rear hotspot cross-section 

 

 
Pb 1 Pb 2 Pb 3 St dev Cu 1 Cu 2 Cu 3 St dev Zn 1 Zn 2 Zn 3 St dev 

1AH 469.7 671.6 603.7 103 89 135 131 25 47.76 82.12 71.96 18 

2AH 35.7 47.9 52.2 9 13 12 18 3 51.33 77.58 107.5 28 

3AH 17.3 22.7 28.5 6 16 14 8 4 72.37 63.03 63.64 5 

4AH 10.6 8.3 20.8 7 8 5 12 3 57.35 54.07 80.17 14 

5AH 29.7 13.2 26.1 9 22 5 13 8 66.11 49.43 82.32 16 

1BH 988.6 799.8 1046 129 227 201 261 30 69.59 78.54 76.02 5 

2BH 120.3 142.7 106.1 18 28 32 21 6 51.3 61.06 55.23 5 

3BH 25.4 35.1 29.8 5 14 8 12 3 70.35 54.98 104.2 25 

4BH 18.7 20.4 22.7 2 12 9 6 3 76.77 71.82 75.11 3 

5BH 23.8 31.2 30.6 4 12 11 6 3 64.65 79.78 77.05 8 

1CH 2112 1657 2020 241 544 418 560 78 37.31 69.41 93.2 28 

2CH 211.7 202 164.7 25 63 65 63 1 62.88 76 94.67 16 

3CH 54.5 50.9 45 5 20 17 13 3 62.45 60.81 94.58 19 

4CH 26 38 38.5 7 10 11 15 3 57.34 69.58 74.82 9 

5CH 26.9 43.5 28.2 9 16 18 8 5 92.22 79.72 78.67 8 

1DH 6387 9690 7668 1665 1935 1761 2464 366 66.77     #DIV/0! 

2DH 1176 1067 822 181 324 158 421 133 74.86 76.12 77.2 1 

3DH 214.6 170 642.1 261 89 82 251 96 77.01 59.69 72.55 9 

4DH 43.9 59 38.6 11 18 20 13 4 58.24 64.3 52.65 6 

5DH 23.7 28.4 31.7 4 12 8 9 2 65.85 58.43 63.8 4 
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Sr(NO3)2 Extraction data – Swale side cross-section 

 

  
mg/kg 

   
mg/kg 

   
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 

St. 
dev. Cu 1 Cu 2 Cu 3 

St. 
dev. Zn 1 Zn 2 Zn 3 

St. 
dev. 

1AS 0.238 0.139 0.145 0.1 0.132 0.194 0.158 0.0 0.4 0.4 0.4 0.0 

2AS 0.364 0.182 0.181 0.1 0.05 0.05 0.05 0.0 0.4 0.4 0.4 0.0 

3AS 0.450 0.578 0.471 0.1 0.05 0.208 0.126 0.1 0.4 0.4 0.4 0.0 

4AS 0.072 0.165 0.131 0.0 0.100 0.137 0.135 0.0 0.4 0.832 0.4 0.2 

1BS 0.255 0.192 0.102 0.1 0.05 0.05 0.05 0.0 0.4 0.4 0.4 0.0 

2BS 0.267 0.224 0.156 0.1 0.05 0.109 0.05 0.0 0.4 0.4 0.4 0.0 

3BS 0.244 0.130 0.161 0.1 0.05 0.05 0.05 0.0 1.15 0.823 0.4 0.4 

4BS 0.288 0.235 0.191 0.0 0.124 0.102 0.10 0.0 0.4 0.4 0.4 0.0 

1CS 0.150 0.346 0.388 0.1 0.05 0.155 0.10 0.1 0.4 0.80 0.4 0.2 

2CS 0.793 0.238 0.171 0.3 0.05 0.23 0.05 0.1 1.18 1.25 0.4 0.5 

3CS 0.752 0.622 0.239 0.3 0.05 0.05 0.103 0.0 1.21 1.77 0.85 0.5 

4CS 0.265 0.052 0.195 0.1 0.114 0.05 0.108 0.0 0.4 0.4 0.4 0.0 

 
Sr(NO3)2 Extraction data – Swale middle cross-section 

 

  
mg/kg 

   
mg/kg 

   
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 

St. 
dev. Cu 1 Cu 2 Cu 3 

St. 
dev. Zn 1 Zn 2 Zn 3 

St. 
dev. 

1AM 0.0 0.0 0.5 0.3 0.2416 0.17 0.21 0.0 0.4 0.4 0.4 0.0 

2AM 0.1 0.0 0.1 0.0 0.05 0.05 0.15 0.1 0.4 0.4 0.4 0.0 

3AM 0.0 0.0 0.0 0.0 0.05 0.05 0.05 0.0 0.4 0.4 0.4 0.0 

4AM 0.2 0.1 0.0 0.1 0.05 0.05 0.11 0.0 0.4 0.4 0.4 0.0 

1BM 0.0 0.4 0.1 0.2 0.05 0.05 0.10 0.0 0.4 1.13 1.02 0.4 

2BM 0.1 0.0 0.1 0.1 0.05 0.05 0.11 0.0 0.4 0.4 0.4 0.0 

3BM 0.0 0.0 0.3 0.2 0.05 0.05 0.05 0.0 0.4 0.4 0.4 0.0 

4BM 0.1 0.1 0.0 0.0 0.05 0.05 0.05 0.0 0.4 0.80 0.4 0.2 

1CM 0.2 0.0 0.0 0.1 0.05 0.12 0.05 0.0 0.4 0.83 0.4 0.3 

2CM 0.1 0.1 0.1 0.0 0.05 0.05 0.05 0.0 0.8694 0.86 0.4 0.3 

3CM 0.0 0.0 0.1 0.0 0.05 0.05 0.05 0.0 0.4 0.4 0.4 0.0 

4CM 0.1 0.3 0.0 0.1 0.05 0.05 0.05 0.0 0.4 1.00 0.4 0.3 

1DM 0.0 0.2 0.0 0.1 0.05 0.11 0.05 0.0 0.4 1.51 0.4 0.6 

2DM 0.0 0.0 0.2 0.1 0.05 0.05 0.05 0.0 0.4 1.23 0.4 0.5 

3DM 0.0 0.2 0.0 0.1 0.05 0.05 0.05 0.0 0.81 1.30 0.85 0.3 

4DM 0.0 0.0 0.3 0.2 0.05 0.05 0.05 0.0 1.12 0.89 0.4 0.4 
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Ammonium oxalate extraction data – swale side cross-section 

 

 
  mg/kg       mg/kg       mg/kg     

 
Pb 1 Pb 2 Pb 3 

St. 
Dev. Cu 1 Cu 2 Cu 3 

St. 
Dev. Zn 1 Zn 2 Zn 3 

St. 
Dev. 

1AS 1.17 1.29 0.94 0.2 8.75 9.20 7.21 1.0 51.1 56.3 46.8 5 

2AS 0.891 0.965 0.701 0.1 7.45 7.83 6.45 0.7 54.2 38.1 40.6 9 

3AS 0.725 0.822 0.766 0.0 6.05 8.45 5.71 1.5 58.1 44.2 29.6 14 

4AS 0.676 0.606 0.59 0.0 9.20 8.64 7.54 0.8 58.9 47.6 22.4 19 

1BS 0.930 0.952 0.82 0.1 7.79 7 8.55 0.8 53.9 54 
 

0 

2BS 0.784 0.683 0.625 0.1 6.8 5.42 6.10 0.7 41.4 40.2 31.8 5 

3BS 0.7 0.810 1.96 0.7 7.03 6.52 9.1 1.4 39.66 45.1 39.0 3 

4BS 0.741 0.754 0.628 0.1 6.31 5.81 6.2 0.3 39.7 36.6 30.1 5 

1CS 0.891 0.964 0.888 0.0 7.2 7.60 5.85 0.9 45.0 42.8 20.8 13 

2CS 0.80 0.821 0.672 0.1 5.69 7.51 5.6 1.1 41.6 30.4 31.4 6 

3CS 0.647 0.651 0.607 0.0 5.96 6.16 6.23 0.1 47.9 29.3 31.9 10 

4CS 0.709 0.729 0.606 0.1 5.03 5.10 5.12 0.0 44.1 22.7 21.3 13 

 

Ammonium oxalate extraction data – swale middle cross-section 

 

  
mg/kg 

   
mg/kg 

   
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 

St. 
Dev. Cu 1 Cu 2 Cu 3 

St. 
Dev. Zn 1 Zn 2 Zn 3 

St. 
Dev. 

1AM 0.551 0.568 0.790 0.1 3.847 3.72 4.84 0.6 23.7 36.4 33.9 7 

2AM 0.512 0.569 0.607 0.0 4.86 5.08 3.83 0.7 48.4 39.1 36.9 6 

3AM 0.593 0.455 0.528 0.1 4.28 4.05 3.46 0.4 37.3 33.7 35.7 2 

4AM 0.776 0.612 0.731 0.1 5.81 5.15 3.93 1.0 44.7 48.0 40.9 4 

1BM 0.503 0.502 0.562 0.0 4.68 4.99 3.68 0.7 52.6 35.4 35.0 10 

2BM 0.459 0.460 0.543 0.0 3.33 4.19 4.05 0.5 98.6 25.2 32 41 

3BM 0.437 0.405 0.503 0.0 4.51 4.91 4.55 0.2 66.1 25.1 34.9 21 

4BM 0.552 0.609 0.584 0.0 4.43 4.2 3.89 0.3 44.8 21.1 22.0 13 

1CM 0.538 0.47 0.478 0.0 5.13 3.96 5.42 0.8 39.4 35.9 39.0 2 

2CM 0.520 0.546 0.486 0.0 4.29 3.81 5.09 0.6 43.2 32.1 45.9 7 

3CM 0.447 0.3632 0.614 0.1 4.86 3.54 5.28 0.9 42.6 33.4 35.6 5 

4CM 0.444 0.538 0.482 0.0 3.64 3.89 2.93 0.5 41.6 28.2 30.0 7 

1DM 0.581 0.634 0.709 0.1 5.21 5.52 5.48 0.2 79.8 52.0 53.0 16 

2DM 0.514 0.557 0.476 0.0 3.92 4.11 5.22 0.7 44.4 36.9 30.0 7 

3DM 0.58 0.503 0.498 0.0 4.24 5.19 5.02 0.5 44.4 35.8 53.6 9 

4DM 0.489 0.582 0.526 0.0 4.41 3.76 4.8 0.5 40.4 37.0 42.0 3 
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Aqua Regia extraction data – swale side cross-section 

 

  
mg/kg 

   
mg/kg 

   
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 St. dev. Cu 1 Cu 2 Cu 3 St. dev. Zn 1 Zn 2 Zn 3 St. dev. 

1AS 13.5 15.4 18.5 2.5 15.8 14.9 13.6 1 81.8 79.0 80.0 1 

2AS 8.2 18 14.5 5.0 17.2 20.8 17.6 2 80.4 108 74.9 18 

3AS 15.5 5.8 11.2 4.9 13.6 8.05 12.6 3 67.3 41.3 65.5 15 

4AS 8.8 14.2 12.4 2.7 11.1 15.8 13.9 2 50.6 89.4 55.3 21 

1BS 9.3 14.5 17.7 4.2 13.1 26.4 15.4 7 68.1 110 71.1 24 

2BS 9.7 16.1 13 3.2 11.0 15.5 13.0 2 58.4 53.6 61.3 4 

3BS 4.5 17.9 7.1 7.1 9.71 17.0 10.7 4 46.0 60.9 62.6 9 

4BS 11.9 7.6 17.2 4.8 22.3 8.98 12.9 7 97.7 47.8 56.2 27 

1CS 4.3 17.8 12.7 6.8 9.24 13.1 9.5 2 40.5 68.5 47.5 15 

2CS 8.9 14.9 12.4 3.0 8.59 12.6 8.79 2 42.2 52.3 47.0 5 

3CS 10.1 
 

9.6 0.4 9.24 9.24 10.1 1 44.1 
 

75.0 22 

4CS 2.2 14.4 11.3 6.3 5.45 10.6 8.33 3 19.3 53.5 44.0 18 

 

Aqua Regia extraction data – swale middle cross-section 

 

  
mg/kg 

    
mg/kg 

    
mg/kg 

  

 
Pb 1 Pb 2 Pb 3 

St. 
dev. 

 
Cu 1 Cu 2 Cu 3 

St. 
dev. 

 
Zn 1 Zn 2 Zn 3 

St. 
dev. 

1AM 8.8 12.7 13.5 2.5 
 

11.8 11.3 13.5 1 
 

54.5 56.9 67.8 7 

2AM 17.7 12.5 8.7 4.5 
 

16.3 11.2 11.4 3 
 

65.2 57.2 51.4 7 

3AM 16.3 11.1 11.8 2.8 
 

13.0 14.9 7.8 4 
 

57.0 68.0 42.3 13 

4AM 9.6 13 17 3.7 
 

11.2 15.6 12.6 2 
 

56.3 53.9 68.2 8 

1BM 7.9 9 10.4 1.3 
 

10.3 9.4 11.1 1 
 

45.1 45.4 59.2 8 

2BM 9.3 14.5 10.3 2.8 
 

8.54 9.97 13.3 2 
 

46.0 49.3 67.5 12 

3BM 13.2 13.2 13.3 0.1 
 

6.95 16.0 12.6 5 
 

40.5 62.8 68.0 15 

4BM 10.7 9.4 13.3 2.0 
 

10.9 10.2 15.9 3 
 

59.3 55.7 62.1 3 

1CM 10.5 14.5 12.2 2.0 
 

10.4 18.0 14.4 4 
 

53.3 57 72.6 10 

2CM 11.4 11.7 10.7 0.5 
 

7.04 24.8 11.7 9 
 

37.6 117 59.4 41 

3CM 11.9 17 11.1 3.2 
 

14.1 14.7 10.8 2 
 

49.6 81.3 62.7 16 

4CM 10.5 11.6 11.5 0.6 
 

38.7 6.8 9.8 18 
 

41.0 38.0 51.7 7 

1DM 14.5 17.2 11.7 2.8 
 

12.5 17.5 12.7 3 
 

58.9 90.8 64.8 17 

2DM 11.1 11.8 15.8 2.5 
 

8.87 10.7 14.0 3 
 

44.8 51.2 
 

4 

3DM 15.8 6.5 11.1 4.7 
 

9.78 8.76 10.3 1 
 

47.6 44.4 50.4 3 

4DM 14.6 12.7 9.6 2.5 
 

8.55 10.6 11.2 1 
 

43.8 60.9 55.9 9 
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Appendix C – Material specifications of the roof tiles at APHIS 

Building #580 

SECTION 07610 SHEET METAL ROOFING AND SIDING  

PART 1 -GENERAL  

 

  

1.01 SUMMARY  

A. Section Includes:  

1. Lead-coated copper with sealed joints for sloped roof and for wall surfaces.  

2. Lead-coated copper with soldered joints for flat roof canopy and bay 

window.  

3. Lead-coated copper louvers  

 

B. Related Sections:  

1. Section 06100 -Plywood Roof Sheathing.  

1. 02 SUBMITTALS  

A. Submit in accordance with Section 01300, unless otherwise indicated.  

B. Product Options Brand Name or Equal:  

1. Comply with Section 01630, unless otherwise indicated.  

C. Quality Control Submittals:  

1. Statement of qualifications.  

a. Manufacturer's/Installer's Qualifications: Submit on letterhead 

statement qualifications including list of successful projects 

giving name of project, location, dates of participation, and 

name and telephone number of owner's representative who will 

verify information given.  

D. Shop Drawings: Indicate dimensions, description of materials and 

finishes, general construction, specific modifications, component 

connections, anchorage methods, hardware, and installation procedures, 

plus the following specific requirements.  

1. Indicate on shop drawings, material profile, jointing pattern, jointing 

details, fastening methods, and installation details.  
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E. Roofing Samples: One 24 inch by 24 inch sample of metal roofing with 

typical seam condition and with specified material and finish.  

1.03 QUALITY ASSURANCE  

A. Installer's Qualifications: Demonstrate successful completion of five (5) 

projects of similar type and scope using products/systems similar in 

complexity to those required for this Project.  

B. Mock-Up: Prepare mock-up of lead-coated copper roof at radius edge for 

Contracting Officer's review and to establish requirements for 

workmanship.  

1. Correct areas, modify method of application/installation, or adjust 

configuration as directed by Contracting Officer to comply with specified 

requirements.  

2. Maintain mock-up, and mock-up access1blity, so as to serve as a standard 

of quality for this Section.  

 

USDA GERMPLASM LAB. 07610 -1 01/26/93 7667-901  
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1. Mock-up shall consist of the following:  

 

a. Minimum 4 ft. by 4 ft. section of radius portion of lead-coated 

copper roof, so as to indicate transition from vertical to sloped 

roof, and using same materials and methods to be used in the 

actual installation, including plywood substrate and anchoring 

devices. Structure under the plywood may be any SUbstantial 

material but must c.onform to radius required. Erect on ground 

level adjacent to brick mock up panels as directed by the 

Contracting Officer.  

C. Pre-installation Conference: Contractor, installer, Contracting Officer, 

manufacturer I s representative, and representatives of other affected trades 

shall meet at Site to review mock-up, and to confirm procedures, 

acceptance of substrate surfaces, and coordination with other trades.  

1. Schedule meeting at least 1 week before start of installation.  

1.04 DELIVERY, STORAGE, AND HANDLING  

A. Packing and Shipping: Deliver materials so as to prevent damage.  

B. Storage and Protection: Store materials so as to prevent damage to materials.  

PART 2 -PRODUCTS  

2.01 MATERIALS  

A. Lead-Coated Copper: ASTM B370, cold-rolled temper, 20 oz. per sq. ft. 

weight sheet copper; lead-coated complying with .ASTM BIOI, Type 1, 

Class A, coated both sides with lead weighing 6 to 7-1/2 lbs. per 100 sq. ft. 

for each side.  

2.02 ACCESSORIES  

A. Solder: 60 -40 tin/lead solder (ASTM B32).  

B. Flux: Rosin, muriatic acid neutralized with zinc or an approved soldering 

paste.  

C. Fastening and Anchoring Devices: Hard copper, brass or bronze.  

1. Nails: Flat head, wire-slating type, not less than 12 gauge and 3.4 inch long.  

2. Screws: Round heads with lead washers.  

3. Expansion shields: Lead sleeves and washers.  

 

D. Sea1ant:ASTM C920, one-component silicone based, movement capability 

plus or minus 50 percent. Transparent and copper compatible.  
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E. Metal Accessories: Provide sheet metal clips, straps, anchoring devices, and 

similar accessory units as required for installation of Work, matching 

material being installed, size and gauge required for performance.  

F. Underlayment: Asphalt saturated roofing felt conforming to ASTM D226 or 

D2178, No. 30.  

G. Slip Sheet: Rosin sized building paper.  

USDA GERMPLASM LAB. 07610 -2 01/26/93 7667-901  
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2.03 FABRICATION  

A. Form sections true to shape, accurate in size, square, and free from distortion 

or defects.  

B. Fabricate cleats of same material as sheet, interlockable with sheet.  

C. Form pieces of 18 inch by 24 inch squares.  

2.04 LOUVER FABRICATION  

A. Formed lead-coated copper louver 4" deep, 20 ounce copper, blade pitch 45 

degrees, soldered construction with continuous drainable blades. Design to 

provide not more than 8.29 square feet of free area for a 4
1

-0" wide by 41-0
11 

high area.  

B. Insect screen: fourteen by eighteen mesh in folded frame.  

C. Blank off panel: Mfgr. standard insulated panel, close all unused louver 

area. PART 3 -EXECUTION  

3.01 EXAMINATION  

A. Verification of Conditions: Examine areas and conditions under which Work 

is to be performed and identify conditions detrimental to proper or timely 

completion.  

1. Do not proceed until unsatisfactory conditions have been corrected.  

2. Inspect roof deck and wall sheathing to verify surface ;s clean and smooth, 

free of depressions, waves, or projections.  

3. Verify openings, curbs, pipes, sleeves, ducts, or vents are solidly set, cant 

strips and reglets are in place, and naiHng strips located.  

4. Beginning of installation means acceptance of existing conditions.  

 

3.02 PREPARATION  

A. Field measur.e site conditions prior to fabricating work.  

B. Install starter and edge strips, and cleats before starting installation.  

C. Install surface mounted reglets true to lines and levels. Seal top of reglets 

with sealant.  

D. Protect elements surrounding work of this Section from damage or 

disfigurement.  

3.03 GENERAL  
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A. Apply underlayment in single layer laid perpendicular to slope; weather lap 

edges 2 inches and nail in place. Minimize nail quantity.  

B. Apply slip sheet in one layer, laid loose.  

C. Cleat and seam all joints.  

D. Use sealant joints of work not required to be soldered.  

END OF SECTION  
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Appendix D – Filter cloth specifications 

 
N035 
Polypropylene NonWoven Fabric 
N035 is a polypropylene, needle punched nonwoven geotextile for use in drainage and 
separation applications. It has 
been stabilized to resist degradation due to ultraviolet exposure and is resistant to commonly 
encountered mildew, 
insects and soil chemicals, and is non-biodegradable. 
Property Test Method Min Avg. 
Roll Values 
Grab Tensile Strength1 ASTM D4632 90 Lbs 
Grab Tensile Elongation ASTM D4632 50% 
CBR Puncture ASTM D6241 250 Lbs 
Trapezoid Tear Strength ASTM D4533 40 Lbs 
Apparent Opening Size (AOS) ASTM D4751 50 US Sieve 
Permittivity (sec-1) ASTM D4491 2.2 sec-1 

Flow Rate ASTM D4491 150 gpm/ft2 

UV Resistance after 500 hrs. ASTM D4355 70% 
Values quoted above are the result of multiple tests conducted at an independent testing 
facility. 
N035 meets or exceeds values listed. 
1Values apply to both machine and cross-machine directions 
Packaging 
Roll Width 12.5 ft 15 ft 
Roll Length 360 ft 360 ft 
Roll Area 500 sy 600 yd2 

Technical Data Sheet 

N035 
2831 Cardwell Road  Richmond, VA 23234 

800-448-3636  www.acfenvironmental.com 
10/18/2011 
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