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ABSTRACT

This paper presents a class of Quasi-Birth-and-Death processes with finite state space for
which the invariant probability vector is found to admit a matriz-geometric representation. The
corresponding rate matrix is given explicitly in terms of the model parameters, and the resulting
closed-form expression is proposed as a basis for efficient calculation of the invariant probability
vector. The framework presented in this paper provides a unified approach to the study of several
well-known queueing systems.
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1. INTRODUCTION
As already apparent from the monograph by Neuts [9], Quasi-Birth-and-Death (QBD) pro-

cesses naturally arise in the modelling of a wide variety of applications. In addition to the modelling
flexibility they provide, QBD processes enjoy interesting structural properties which can be used
to advantage in the computations. Indeed, under fairly general assumptions, the stationary prob-
ability vector m = (mg,my,...) of a QBD process with countably infinite state space exhibits the
matriz-geometric property [9], i.e., there exists a matrix R such that

Tot1=7TxR, k>0 (1.1)

where R is the minimal nonnegative solution of a matrix quadratic equation.

For QBD processes with finite state space, the situation is quite different owing to the presence
of boundary states, and it is not possible in general to assert that the invariant distribution exhibits
a matrix-geometric structure in the form (1.1). However, for arbitrary QBD processes with finite
state space, Hajek [7] showed that the invariant probability vector can be written as a “sum of two
matrix-geometric terms plus a linear term”. The corresponding computations involve solving two
matrix quadratic equations and then finding an invariant probability distribution on the boundary
states.

It is the purpose of this paper to show that more precise results can be obtained for a class of
finite state QBD processes which arise in modelling finite capacity queues with phase-type servers.
In that case, the basic method — presented in Section 2 - yields a closed-form expression for the
invariant probability vector m such that (1.1) holds on the non-boundary states for some matrix
R. An ezplicit expression is available for this matrix R in terms of the model parameters, and no
matrix quadratic equation needs to be solved as is generally the case in the algorithmic approaches
suggested by Neuts and Hajek. The closed-form expressions obtained here are proposed as a basis
for efficient computation of the invariant probability vector.

This matrix R is obtained through purely algebraic manipulations; it has no probabilistic
interpretation and therefore does not coincide in general with the rate matrix introduced by Neuts.
The rate matrix R introduced here is not always positive and this could lead to some numerical
instabilities. The matrix-geometric form of 7 on the non-boundary states can be exploited to yield
several necessary conditions satisfied by the component 71, none of them being of the right rank in
all generality. However, for the specific models discussed in Section 3, the vector 7 can be expressed
in terms of the component 7, and while no proof is available, extensive numerical evidence suggests
that the necessary conditions thus obtained yield a unique vector mg.

Although the discussion is given specifically for continuous-time QBD processes, the ideas apply
mutalis mutandis in the discrete-time set-up to obtain closed-form matrix-geometric expressions
for the steady-state probabilities of the system states. Moreover, the adopted framework is broad
enough to allow for a unified approach to the study of several well-known queueing systems with
phase-type (PH) distributions. In fact, the ideas of Section 2 are illustrated in Section 3 on the

following continuous-time systems



1. The two node tandem system with finite buffers and feedback, under the assumption that the
first node server is always busy. At each node PH-type servers, possibly subject to failures
with PH-type repair distributions, are in attendance [6].

2. Two node closed queueing system with blocking and feedback [1].

3. The PH/PH/1/K queue with feedback and arrival rejection [3, 5].

4. Queues with paired customers and arrival rejection [8], [9, pp. 300-320].

In each case, the necessary conditions are shown to hold so as to apply the solution technique of
Section 2.

In both Sections 2 and 3, it is indicated how the structural results of this paper can be exploited
to algorithmically solve for the invariant probability distribution of the QBD processes of interest.

A word on the notation used hereafter: The r X r identity matrix is denoted by I, and the
r X 1 column vector of ones is denoted by e,, while the r X r matrix and the 1 x r dimensional row
vector with zero entries are denoted by 0,, and O,, respectively. The notation % is used to denote
l-zfor0< <1,

2. THE MODEL AND ITS SOLUTION
2.1. The model
Consider a QBD process with finite state space given by

(0,¢7), ifk=0andl1<i<s,
E={(ki), ifl1<k<Kand1<i<r,
(K,¢), ifk=Kand1<i<p,

and assume its generator matrix to be of the form

B Bo
By A Ao
Ay A1 Ao
T = o . (2.1)
A A Co
\ C: Ci/

The block entries Bo, By, and B; have dimensions s X r, s X s and r X g, respectively, the matrices
Ag, Ay and Aj are all of dimensions r X r, while the matrices Cy, C} and C; have dimensions r X p,
pX p and p X r, respectively. If the underlying Markov chain with generator matrix 7T is irreducible,

then the matrices along the diagonal can be shown to be nonsingular [9, p. 13]. Here, only the
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nonsingularity of the matrices B; and C; is assumed and no irreducibility assumption is made on
the matrix 7.

Any invariant probability vector x for T is partitioned as # = (mg,7y,...,7x), where the

row vectors wg, #, 1 < k < K, and wx are of dimension 8, r and p, respectively. Pose
|E| = (K — 1)r + s + p, and observe that the equation

7T =0g, mep; =1 (2.2)

satisfied by the invariant vector = can be rewritten in the form

7o B1 + 7 By =0, (2.3.a)

o Bo + 71 Ay + 73 Ay =0, (2.3.5)

M1 Ao+ 7k Ay + 7541 A42=0,, 1<k<K-1, (2.3.¢)
T—2A0+ TK_1A1+ 7 Cy =0, (2.3.d)
Tk_1Co+mgC1 =0, . (2.3.€)

Although the model and the correponding balance equations are given for a continuous-time
Markov chain, the solution technique also applies to problems formulated in discrete-time, with the

understanding that the underlying probability transition matrix is now T + I|g|.

2.2. The solution technique
The QBD processes of interest are characterized by the properties (P0)-(P1), where

(PO): The matrices By and Cy are nonsingular.

(P1): There exist r X r matrices X andY such that the equalities

AQX:A2Y :()rxr s BQX=Osxr and CzY——_-OpX,. (24)
AL, = X)), - Y) = —Ao(I, - Y) — Ay (I, - X) (2.5)
By Bi'Bo(I, - Y) = —A,(I, — X) (2.6)
and
XY =YX

hold, and one of the r X r matrices M and N defined by
NI:AIX—A(), M::A]_Y'—Az (27)

is invertible.

In view of (2.4), postmultiplication of (2.3.b)-(2.3.c) by X and of (2.3.b)-(2.3.d) by Y yields
7rkA1X+7rk+1A2X:0,, ISIC<K—1, (28)
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and

WoBoY‘f‘ﬂ'l A1Y=0r 5 (29(1)
Tr-1A0Y +71, A1 Y =0, , 1<k<K, (2.9.1))

respectively. With the definitions (2.7) of the matrices M and N, equations (2.8) and (2.9) can be
rewritten as

mpt (N+Ao) + 71, A X =0, , 1<k<K, (2.10)
and
moBoY + w7y M = —my Ay, (2.11.a)
k1 AoY +7x(M+ A2)=0,,1<k< K, (2.11.b)
respectively.

On the other hand, postmultiplication of (2.3.c) by (I, — X)(I, — Y) and use of (2.4) yield
th1Ac(ly = V) + 1k Ar (I, — X)L, = Y) + mpy1 A (I, —X) =0, , 1<k<K—-1. (2.12)
Substitution of (2.5) into this last relation implies
Yo =k-1, 2<k<K, (2.13)
where the notation
Vi = mpA2(l, — X) —mp_1 A (I, - Y), 1<k<K,

has been adopted.
The matrix B; being invertible, it follows from (2.3.a) that 7o = —m; B3 By ' and (2.3.b) now

becomes
m1(Ay — By B{' Bg) + 73 Ay =0, . (2.14)

Postmultiplication of (2.14) by (I, — X)(I, — Y) and use of the properties (2.4)-(2.6) readily yield
2 = modg(Iy — X) — mAo(l, — Y) =0, .
Therefore, it is plain from (2.13) that
% =0,, 1<k< K,

or equivalently,

WkAz(I,—X)Zﬂ'k_le(Ir—Y) , 1<k< K. (2.15)

Although the equations (2.10), (2.11) and (2.15) all provide a relation between the vectors

7,—1 and 7w for 1 < k < K, these relations cannot be exploited to yield in general a recursive
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solution for the vectors mg, 1 < k < K, since the coefficient matrices in these equations are typically
singular. In fact, it is easy to check that all the coefficients in (2.10)-(2.11) are singular as a result
of the enforced assumptions (2.4). However, the models that motivated the work reported here [6]
suggest a different approach which is now briefly discussed. Upon equating the left handsides of
(2.10) and (2.11.b), it follows from (2.15) that the recursion

TrM=7mp_1N,1<k< K, (2.16)

holds, and this leads to the following structural result.

Theorem 2.1. For any finite state QBD process enjoying the properties (P0) and (P1) with M
tnvertible, the invariant probabilities of the non-boundary states are given in matriz-geometric form
by
me=m R 1<k< K, (2.17.0)
with
R=NM1, (2.17.b)

while the invariant probabilities of the boundary states can be expressed in terms of w1y as
g = —WleBi-l N TK = —7r1RK_20001_1 . (2176)

The case where N is invertible can be treated in a similar way; details are omitted for sake of
brevity. It is worth pointing out that Theorem 2.1 only gives the structure of the vector = and that
the vector =y still needs to be determined. In principle, this could be done by substituting (2.17)
back to the balance equation (2.2) where now

x=m[~By B, I,,R,R%,--- ,RE"2 —R¥-20,07 1.
More precisely, 7y could be computed from either one of the equations

m1[~B2 By 'Bo + Ay + RA;] =0,
7|'1Rk_2[A0+RA1+R2A2]:Or’ 1<k<K—1, (2'18)
T1RE"3[Ag + RA; — CoC{'Ca] =0, .

Although this approach leads to various necessary conditions for =, there does not appear to be
any general guidelines on how to proceed from here. Indeed, it would be desirable that at least
one of the equations (2.18) (or linear combination thereof) have nullity one, so as to allow for
unique determination of my. Unfortunately, specific examples suggest that the rank of each one of
the equations (2.18) is essentially arbitrary, and as of this writing, computation of 7y from these
equations is still under investigation. However, an alternative approach can be taken for many QBD
processes that appear in applicationg; this is discussed in Section 3.5 for the models presented in

the next section.



In most applications, s is much smaller than », and it is thus computationally much more
convenient to express the vector « in terms of the vector 7g. To that end, assume that in addition
to properties (P0) and (P1) the following property (P2) also holds, where

(P2): There exists an 8 X r matriz V such that B,V = A,.
In view of (P2) and (2.11.a), postmultiplication of (2.3.a) by V yields
WoBoY + 7l'1M = —7I'1A2 = 7r0B1V ; (2.19)

and equations (2.17) and (2.19) combine to give the following Lemma.

Lemma 2.1. For any finite state QBD process enjoying the properties (P0)-(P2) with M invertible,
the tnvariant probabilities of the system states satisfy the matriz-geometric property

7o S RF-1 1<k< K,
T = (2.20)
—7o S RE-2CoC;', k=K,

where the matriz R 1s given in Theorem 2.1 and the s X r matriz S s defined by

S :=(BV - BY)M~ L.

3. APPLICATIONS

In this section, the solution methodology just outlined is discussed for four different queueing
models. The first-come first-served service discipline is assumed in these models, which all lead to
Markov processes with generator matrices of the form (2.1).

The first two models are concerned with two node tandem queueing systems with blocking.
In each case, smmediate blocking is assumed in that blocking of a server occurs as soon as the
destination buffer becomes full. The server remains blocked until the congestion is reduced at the
destination node, at which time the blocked server resumes service and begins to process its next
job (if any). The methodology developed in Section 2 also applies to such two node systems under
the non-tmmediate blocking policy. Under this policy, the server is blocked at a service completion
time if the job that has just completed service cannot proceed to the next buffer due to congestion.
When the congestion is reduced downstream, this job proceeds to the next buffer without receiving
any further service, and the blocked server resumes service and begins processing its next job (if
any). These models can be generalized to capture the situation where the servers are unreliable
with PH-type up and down time distributions. Similar results hold for this case and the reader is
referred to [6] for details.

In both models, the service times at each node are assumed to be independent and identically
distributed (1.1.d) with common PH-distribution given by the ¢rreducible representations (e, A) and

(8, B) for the first and second node server, respectively. The service times at different servers are
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also assumed mutually independent. The row vectors a and 8, and the matrices A and B have
dimensions 1 x I, 1 X m, { x I and m x m, respectively, and the corresponding ! X 1 and m x 1
column vectors of absorption rates for the first and the second node server are denoted by a and b,
respectively.
3.1. Two node tandem system with PH-type servers and feedback

The model consists of two nodes separated by a finite intermediate buffer of capacity K, i.
e., there are exactly K positions in the buffer, inclusive of the one taken by the job in service
at the second node server. There is an infinite supply of jobs available in front of the first node
server and the second node server never gets blocked. The service distributions are of PH-type as
described above. A job whose service is completed in the 7** node server receives another service
from this server with probability p;, where 0 < p; < 1, 1 = 1,2, 1. e., a job serviced at station 1
joins the intermediate buffer with probability p, and a job serviced at station 2 leaves the system
with probability 7,.

A natural state space E for this system is the one that contains |E| := (K — 1)im+ [+ m

states with
(O,i), k=0, 1<i<],

E=1< (k,i,7), O0<k<K, 1<i<l,and1<j<m,
(K,7), k=K, 1<j<m,

where k indicates the buffer size, and ¢ and j represent the service phase in the first and the second
node server, respectively. The phase of the second node server is not defined when it has no jobs
to process and the phase of the first node server is not defined when the buffer is full since blocked.
With the notation of Section 2, r =Im, s =1 and p = m.

By lexicographically ordering the states, the generator matrix T' of the underlying Markov
process can be put in the form (2.1) with

Ao = ﬁlaa ® Im, A1 = (A-i—plaa) @ (B +P2b,3); A2 = I[ ®526ﬂ, (31&)
By =p,a0® B, By = A+ praa, B =1, ® p,yb, (31b)
Co = 72,29 Im, Ci=B +szﬂ, Cy;=a ®52bﬂ, (31C)

where ® and @ denote the Kronecker product and the Kronecker sum [4], respectively.
Properties (P1) and (P2) are satisfied by choosing

X = (I[ - e;a) ® I, Y=I® (Im - emﬂ) and V=I®8. (3.2)

The matrices X and Y obviously commute, and the invertibility of the matrices By, Cy, M and
N is shown in the Appendix.
3.2. Two node closed queuneing system with blocking and feedback

This model consists of two nodes which handle a total of N jobs. The service distributions are
of PH-type as described above. There is a buffer of capacity K, inclusive of the job in service, at

node 7, 7 = 1,2, in front of the server. Buffers can have infinite capacity but N is assumed finite.
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It is also assumed that there is sufficient capacity in the system to accomodate all the jobs, i. e.,
N < K1+ K,. A job whose service is completed at the ¢** node server proceeds to the j** buffer
with probability p;;, 4,5 = 1,2, where p;; +pi; =1, i # 3, 1,5 =1,2.

A natural state space E for this system again contains |E| := (K — 1)Im + [ 4+ m states with

(x,9) , k=x, 1<1<,
E={ (ki7), k<k<K, 1<i<l,and1<j<m,
(K,5), k=K, 1<j<m,

where k¥ and K are defined as
k := max{N — K;,0} , K :=min{K,,N} .

Here, k indicates the number of jobs in the second buffer, while ¢ and j represent the service phase
in the first and the second node server, respectively. Since the number of jobs in the system is
fixed, knowledge of the number of jobs in one buffer gives complete information about the number
of jobs in the other buffer. The phase of the first (resp., second) node server is not defined when
it has no jobs to process, i. e., K = N (resp., k = 0), or when it is blocked, i. e., K = K, (resp.,
k=N — K;).

By lexicographically ordering the states, the generator matrix T of the underlying Markov
process can be seen to be exactly as in the previous model, but with p; = p;;, + = 1,2. Therefore,

the same choice of matrices X, Y and V' given by (3.2) can be made for this model.

3.3. The PH/PH/1/K queue with feedback and arrival rejection
A single server queue with a buffer of size K, inclusive of the service station, is considered.
Jobs arriving when the buffer is full are considered lost. The arrival process is a PH-renewal process
and its underlying PH-distribution has irreducible PH-representation («, A) of order I. The service
times are assumed 7..d with a common PH-distribution whose irreducible PH-representation (8, B)
is of order m. The vectors a and b are as defined above. Arrivals to the system when the buffer is
not full are rejected and assumed lost with probability p;, while a job whose service is completed
is fed back to the buffer with probability p;, where 0 < p; < 1, 1 =1,2.
The state space F for this system is given by
(0,§), k=0, 1<i<I,
FE =
(k,3,7), 0<k<K,1<i<land1<j5<m,

where k indicates the buffer size, while 1 and j represent the service phase of the arrival and
service processes, respectively. This time, r = p = Im and s = [, and the block entries A; and

Bi, 1 =0,1,2, of the matrix T are as given by (3.1.a) and (3.1.b), respectively, while
Co=Ap, Ci1=A1+ Ao and C,; = As,. (3.3)
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Properties (P1) and (P2) are again satisfied by choosing the matrices X, Y and V as in
equation (3.2).

3.4. Queues with paired customers and arrival rejection

The following infinite capacity queue with two different job classes is now considered. Jobs
for each class arrive into the system according to a PH-renewal processes whose underlying PH-
distribution has irreductble PH-representation (o, A) and (8, B) for job class I and II, respectively.
The PH-representations are of orders I and m for job class I and II, respectively. Job arrivals
of class I and II are rejected and assumed lost with probability p; and p,, respectively, where
0<p; <1, i=1,2. Accepted arrivals form a queue in front of a single server. Jobs are serviced
in pairs, one from each class, and when no such pair is present, the servers stays idle.

At any time, the queue length may be represented by a pair (Y, Z) of random variables where
Y denotes the number of job pairs present in the system and Z denotes the ezcess number of jobs
of class I over those of class II. The range of Y is the set of non-negative integers and Z may assume
arbitrary integer values, in that Z = j with j > 0 (resp. j < 0) indicates an excess of j (resp. —j)
jobs of class I (resp. II).

With the service permitted only in pairs, the excess process Z will tend to +oco or —oo depend-
ing on the rejection probabilities and the average arrival rates of the job classes, or it will exhibit
the behavior typical of symmetric random walks. Therefore, upper and lower bounds J; and —Js,
Jy > 0, Jz > 0, must be imposed on the excess for an algorithmic solution. With these bounds the
excess process {Z(t), t > 0} is {—Jp,—J2+ 1,-++, J1}-valued and when it reaches its upper (resp.
lower) bound, arrivals of class I (resp. class II) are rejected until the excess no longer assumes the
boundary value.

In studying such queueing systems, it is important to obtain the steady-state probabilities of
the Markov process with finite state set

E={(k,i,7), -J2<k<J;, 1<i<] and 1<j<m},

where k indicates the excess number of jobs, while ¢ and j represent the phase of the arrival process
for class I and class II jobs, respectively. This time, r = p=s=1Im and K = J; + J2 + 1. The
block entries A; and C;, ¢ = 0,1,2, of the matrix T are given by (8.1.a) and (3.3), respectively,
while

By =Ap, Bi=A;1+ A4, and B;=A,. (3.4)

Property (P1) is again satisfied by choosing the matrices X and Y as in equation (3.2), while
(P2) is trivially satisfied by V' = I;,,,. It is an easy exercise to check that for this model S = R.

3.5. Computation of the vector g

For the models discussed in this section the special structure of the state space E allows for a
computation of the vector 7y (or my) through the calculation of the marginal probabilities of the
PH-renewal processes (o, A) and (8, B). The argument is presented for the last model, and the
results are only mentioned for the other models.

-10 -



Let Z denote the number of excess jobs as before, and let PH; and PH, denote the phase of

the PH-renewal processes (o, A) and (8, B), respectively. Let the 1 X [ and 1 X m vectors z and y
be the solutions of the equations

z(A+aa)=0;, =z =1
y(B+b:3)=Om: yem =1.

Then, the marginal probability of the event {PHy =1, PH; = j} can be computed as

K
P{PHy=i,PHy=35}y=Y P{Z=kPH =i,PH;=j}, 1<i<l, 1<j<m,
k=0
= P{PH, =i} P{PH, = j}, (3.5)

where the second equality follows from the independence assumption of the random variables PH,

and PHj,. Therefore, (3.5) can be rewritten as a vector equation in the form

K
a:®y=§:7rk=7r0U (3.6)
k=0

where the Im X I'm matrix U is given by

K-1
U:=§8 (Z RF- RK—2000;1) :

k=0

For the other models, the phase of the process (o, A) is defined only when k = 0 and (3.6)
takes the form

K—-1
T = cmo {I, + S (Z Rk-1 _ dRK‘z(}oCl‘l) (L ® em)] (3.7)

k=1

where the scalars ¢ and d take different values depending on the model. The term I;®e,, corresponds
to summation of the right hand-side of (3.5) over 5, 1 < 7 < m. For the third model, ¢ = d = 1.
For the first two models, the phase of the process (a, A) is not defined when k = K. Therefore
(3.7) is obtained by conditioning on the event that the buffer is not full, and ¢ = (1 — 7gen,) !
while d = 0. It is an easy exercise to show that for the first two examples 7y can be obtained by

solving the linear system
K-1
z=mo |L+8 Y R ®em) — SRE2CoC emz| . (3.8)

k=1

Although no proof is available, extensive numerical evidence indicates that equations (3.6)-

(3.8) lead to a unique vector mo. This is congruent with the fact that in all four models, the
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enforced irreducibility of the phase-type servers guarantees the corresponding Markov chain to be
irreducible.
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Proof. The Lemma is proved only for N as the nonsingularity of M follows along the same lines.

The matrices (A + pjaa) and (B + pbf) being nonsingular by Lemma 1, the matrix N can be
rewritten in the form

N = (A+p1aa) ® I, + (Ii — e1) ® (B + p2bB)
= [(A+ p1aa) ® In] D[I; ® (B + p2bp)]

where
D= (A—}—plaa)_l(fz —ea)® (B +P2bﬂ)_1 .

This clearly shows that N is nonsingular if and only if the matrix D is nonsingular. Each eigenvalue
of the matrix D is the sum of the eigenvalues of the matrices (A+pjac) "' (I;—e;x) and (B+pyb8) 1
[4]. By Lemma A.1, it is an easy exercise to check that the eigenvalues of (B+p2bB3) ™! have strictly
negative real parts. The matrix D is thus invertible if the real parts of the eigenvalues of the matrix
(A + prac)~!(I; — ea) are non-positive.

Let (7, y) be any right eigenpair for (A+ pjac)~(I; — e;a), and let Re() denote the real part
of 4. The argument proceeds ab absurdo by assuming Re(y) > 0. Since (v, y) is a right eigenpair,
the relation

(A+ prac) YL — ega)y = (A+ prac) 'y — () (A + prac) le = vy (A.2)

holds and therefore ay # 0; indeed, otherwise (7, y) would also be a right eigenpair for (A+piac)™!
and by Lemma A.1 this would contradict the assumption Re(y) > 0.

Since ay # 0, assume without loss of generality that ey = 1 and note from (A.2) that
(I, = 7(A + praa)]y = e;. The assumption Re(vy) > 0 implies that the matrix [I; — v(A + piac)] is
invertible and the relations

1.1
y=[I — v(A+ praa)|~le = ;[;Iz — (A + praa)]te (A.3)

thus follow. Premultiplying the last equation by « now yields

1 1 1

F*(=)=1- =a[~I; — (A+ p1aa)]"te, =0 (A.4)
( ,7) ” [ " ( )]

where F*(+) is the Laplace transform of the PH-distribution with representation (a, A+ piac) [9].
However, the Laplace transform of a non-negative random variable is strictly positive in the right
half-plane and the assumption Re(vy) > 0 thus contradicts (A.4). Consequently, Re(y) < 0 and the
proof is now completed by the arguments given in the first paragraph. I
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