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Abstract

In this paper, we present a distributed, extensible framework for supporting adaptive, dynamic network

monitoring and control. We borrow the paradigm of management by delegation [8] and distribute some

processing intelligence to network elements. The functionality of the delegated agents, and even that of

the native software processes, could be extended dynamically without recompilation. Such procedure is

called change of logic and we explain it in the framework of communicating finite state machines for

extending native process functionality. We use Java technology and C/C++ dynamic linkage mechanism

to achieve the standard hosting infrastructure for these agents and our system designs span a wide scope

of applications.
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1. Introduction

The increasing complexity and importance of communication networks have given rise to a steadily high

demand for advanced network management. Network management system handles problems related to

the configurability, reliability, efficiency, security and accountability of the managed distributed

computing environments. Accurate and effective monitoring and control is fundamental and critical for

all network management functional areas.

A conventional network management system consists of two classes of components:managersand

agents. Applications in the management station assume the manager role; Agents are server processes

running in each involved manageable network entity. These agents collect network device data, stores

them in some format, and support a management protocol, e.g., Simple Network Management Protocol

(SNMP) [23,24]. Manager applications retrieve data from element agents by sending corresponding

requests over the management protocol.

Such a system favors a centralized framework and works well for small networks. But as the networks

become larger, more complex, and heterogeneous (e.g. multimedia networks), the centralized paradigm

will incur vast amounts of communication between manager and agent and thus occupy too much

bandwidth inefficiently. In this regard, we borrow the idea of Management by Delegation (MbD) [8] and

distribute some of the processing logic and responsibilities by embedding code within the network

elements. This embedded code within the network element is called a delegated agent.

In conventional network monitoring systems, the set of services offered by the element agents is fixed

and is accessible through interfaces that are statically defined and implemented, for example Remote

Monitoring (RMON) [27]. Statically pre-assigning functionality implies that the decision of what

functionality to delegate needs to be taken at the agents’ design phase. But, not all possible management

tasks can be predefined this way. Further, requirements in the dynamic network environment change very

often, which means that new type of functionality might be required now and then. To this end, not only

do we need to distribute intelligence, we also need to provide a dynamically extensible interface between

such agents and the manager, such that the manager could change the parameter values, and extend the

processing logic of the delegated agents dynamically.



Further, the functionality of the underlying native processes could also be dynamically extended via our

callback mechanisms. The native processes, written in C/C++ for many cases, embody the processing

logic viewed as necessary at the time of native software design and implementation. They may, however,

lack consideration of some unanticipated cases. Such unanticipated cases, if they do occur, might lead to

inconsistency in the processing followed. Thus we need to modify or extend the native software

processing logic somehow to accommodate those unanticipated cases. Based on the observation that we

would not like to re-code the C/C++ programs and recompile, reinstall, and reinstantiate the server

processes, which usually incurs system down time, we need a flexible way such that the processing logic

could be extendeddynamically.Here, we respect the current processing logic and put on more processing

capabilities to handle the unexpected cases. This is more like putting a “booster” rather than replacing the

original logic.

To make it possible for agents to exist in heterogeneous environments, there needs to be a standard

infrastructure on each system where they need to be hosted. Then agents may be developed as if they will

be always on the same machine—the Virtual Machine, which could be but not limited to Java Virtual

Machine (JVM). In this paper, we use either JVM or C/C++ dynamic linkage technology to serve as the

Virtual Machine under different situations.

2. Related Work

Management by Delegation

Management by Delegation (MbD) [8] is one of the earliest efforts towards decentralization and

increased flexibility of management functionality, and it greatly influenced later research and exploration

along this direction [16,22]. The main advantage of this approach is that it is language independent.

However, the proof-of-concept MbD system was implemented with a proprietary server environment and

we hardly see any working systems that are built upon this proprietary environment. Also, the MbD

server environment is so comprehensive and complicated that it can turn out to be an “overkill” in most

real-world applications. Still, we must give credit to MbD because it can be considered a precursor of the

ideas discussed in this paper. The major difference is that we have adopted the standard Java or C/C++



platform and, from the very beginning, aimed to build a portable, simple, yet powerful framework that

can be easily understood, implemented and enhanced.

Flexible Agents and AgentX

In [21], Mountzia discussed temporal aspects of the delegation process and analyzed many issues

concerning the application of the delegation concept in integrated network management. This framework

is close to our system designs and it provided some helpful tips for our work. However, we also need to

tackle the problem of extending the functionality of the native processes, which incurs many other issues,

such as native collection API, callback mechanisms, etc.. In Internet community, RFC 2741 [5] defines a

standardized framework for extensible SNMP agents. It defines processing entities called master agents

and subagents, a protocol (AgentX) for the communication between them, and the elements of procedure

by which the extensible agent processes SNMP protocol messages. RFC 2742 [11] defines the associated

Management Information Base (MIB) that uses the AgentX protocol. In our work, however, we need to

face such situations that there is no MIB embedded in network elements, i.e. small satellite terminals,

and again, we tackle the problem of native process extension.

Mobile Agents

Another approach that enables dynamic downloading of functionality is provided by mobile agents

[2,3,10,18,20]. Languages that are used to develop mobile agents include Java [9], Tcl/Tk [28], and

Telescript [25], among others, and using mobile agents in decentralized and intelligent network

management is a great leap from client-server based management pattern. Our system exploits the idea of

code-on- demand and focuses on mobile code [7] rather than mobile agents (in the sense of existence of

an itinerary), still retains client-server architecture, and assumes a management server in each device

concerned. Comparing with their mobile agent counterparts, the behaviors of our agents are much easier

to understand and anticipate. Since our agents could also be implemented via native code, they are less

straightforward, but more powerful.



Web-based Network Management

We are by no means the first people thinking of using Java technology in network management [12,19].

Web-based Network Management is a well-justified idea that attempts to provide uniform management

services through such common client-side interface as Web browsers. Instead, we have used Java for a

totally different purpose, which is not to facilitate client-side presentation or Web integration, but to use

Java’s native support for distributed computing, remote class downloading and object serialization to

implement dynamic and intelligent network monitoring. However, it makes perfect sense to include

Web-based front-ends into our systems.

The rest of the paper is organized as follows. Section 3 describes the conceptual structure of the system,

followed by the system design considerations in section 4. In section 5 we give two classes of system

designs that use Java or native code technology and present the trade-offs between them. We conclude

the paper in section 6.

3. System Architecture

The system has been realized by a set of adaptable network element management agents and a network

manager-coordinator, as shown in Figure 3-1.

The adaptable network element management agent provides the network Manager-Coordinator with an

information view of the supported network element management information. Such an agent possesses a

Collection API, by which the agent can dynamically change the way the information is collected from

the network element.

The network manager-coordinator is responsible for accessing the network management information

provided by the delegated agents, coordinating the dynamic definition of the information view of such

management information, and coordinating the way the network management information is collected

from the network elements by the delegated agents. The network manager-coordinator coordinates the

dynamic update of the information views by specifying the specific filtering expressions and the various

threshold values. When a threshold crossing is detected an asynchronous notification will be forwarded



to the manager-coordinator. This event-based paradigm for network monitoring results in huge reduction

of monitoring traffic [1].

The dynamic control of the monitoring system is based on decision making and knowledge embedded in

the network manager-coordinator. This enables the manager-coordinator to take decisions that re-direct

the data collection, change the logic of the processing within the elements, and even direct the elements

to execute tests. Similar level of intelligence is embedded in the fault and performance management

applications [13,14,15].

4. System Design Issues

The design consists of facilities that allow a manager to collect data from the network element in such a

way that changes to the collection method can be made at run-time. And, it allows run-time extension of

the network element behavior through callbacks.
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Figure 3-1: Components of Network Monitoring System



Agent Management

From the point of view of the manager, it is important to be able to manage the delegated agents.

Management of the agents includes deploying and terminating them. It is also essential that the agents

be able to send messages back to the manager. The manager should be able to send commands to the

agents as well, perhaps to adjust some parameter of the agents.

� Distribute Logic as Agents: Sends agent collection logic across the network from the Manager-

Coordinator to the network element. Must support dynamic linkage onto the network element.

� Terminate Agent: For an agent that has been deployed by invoking theDistribute Logic as Agents

use case and still exists in the system, causes the Agent to be removed from the system.

� Control Agents: For agents that have been deployed with theDistribute Logic as Agentsuse case,

send a command to the Agent instructing it to perform a generic action. The actual command to be

performed will be determined by the specific command and Agent implementations.

� Provide Feedback from Agents: For an agent that has been deployed by invoking theDistribute

Logic as Agentsuse case and still exists in the system, causes feedback to be sent from the agent

back to the manager that created it.

Agent Functions

From the point of view of the deployed agents, being able to read values and write values from and to the

network element is critical. Also, it is necessary for the agents to be able to collect data across arbitrary

data structures. Navigating these data types, such as queues and hashtables, could usually be performed

through some native API associated with the abstract data type in the native processes. For this purpose,

we shall include a facility to allow agents to call functions defined in the network element itself.

� Read Values: For an agent, which has been deployed using theDistribute Logic as Agentsuse case

and has the address of what data it is looking to read, read values from the address space of the

Network Element.

� Write Values: For an agent, which has been deployed using theDistribute Logic as Agentsuse

case and has the address of what data it is looking to write, writes values into the memory space of

the Network Element.



� Call Functions Defined on the Network Element: Suppose an agent that is going to do the actual

function call has been deployed. Invoke a native C/C++ function defined in the Network Element.

Collection API

To enable the above functions, we need an interface between the network element native software and

the delegated agent, with which the agent can define the specific set of resources that are considered

useful to be monitored. The collection API must be able to support a range of data structures like queues

and hash-tables.

If we know the address of any variable, we can read or assign its value. Of course, this implies that we

know the type of variable we are dealing with, which probably requires the source code to be available.

To access variables in such a way requires that we can find the addresses of the variables of interest. This

is accomplished by examining the symbol table of the compiled code.

For the symbol table examination to work, we require that there is some way to extract addresses from

the compiled code. For example, Solaris UNIX provides an ‘nm’ (name mangle) utility that allows the

listing of symbols in an executable. We could use such utilities to create a directory of variables. A

directory service will provide variable lookup by name; it also includes addresses of functions and

function pointers. This address extraction is also possible with standard dynamic linkage mechanisms as

provided by VxWorks [29] and Solaris.

On Extensions and Callbacks

As we claimed above, we could dynamically extend the functionality of the delegated agents or even the

native software. The awareness of the need for extension is from human, not from the delegated agents or

native processes themselves. It is the administrator again that determines what functionality to add.

For the delegated agents, since the manager has full control of the agents’ lifecycle, it is always a good

option for the manager to create new agents with appropriately added functionality to replace the old

ones by killing the old agents and deploying new agents. All the development is at the manager site and

there is no need to recompile any code.



For native software, on the other hand, we don’t have the luxury to put extra code off-line onto the

original code at the manager site and deploy to network elements as a whole piece, without any

recompilation. Here, the native code was already compiled and fixed; what we can do at the manager site

is only to design and deploy the added code in its own fragment. We need a way to make sure that this

added code could cooperate with the original code to have expected performance.

First, callback hooksare defined at certain places in the native code. Such hooks could be the places

where the developer is reasonably suspicious that additional functionality may be needed later, but what

he/she does not yet know at the time of software development. Defining a hook could mean putting an

empty function at a certain place in the native code. But theoretically, all functions in the native code

could be thought of as suspects, even though we would usually not be so suspicious. Such hooks

represent the possible places to add new functionality and they are the only locations where additional

functionality could possibly be integrated.

If callbacks are determined as needed by administrator, the defined callbacks will be deployed and

dynamically linked into the network element code by replacing the corresponding empty function at

appropriate hook. Obviously, we need access to the function pointers in order to achieve the function

replacement. Such function pointers could be obtained by the directory service or dynamic linkage

mechanisms as described above. Then, in the native software, this added code would be executed the

next time this particular hook is encountered. Figure 4-1 illustrates these ideas.
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Figure 4-1: Callbacks

To better understand callback mechanisms, we model software processes using communicating finite

state machines [4,17]. A finite state machine (FSM) consists of a finite set of states with one initial state,



input set of the machine, and transition function, which is a partial function from the states and inputs to

its states. An extended finite state machine (EFSM) introduces state variables in addition to the explicit

states. These variables can take on a number of values themselves and they are treated asimplicit states.

The complete set of the states, orglobal state, of a process instance is now the union of the explicit and

implicit states. When performing analysis, however, our focus is mainly onsystem state, which consists

of explicit states, plus the status of enabled transitions from those states. The problem of state explosion

is avoided as such.

Each native process is modeled as an EFSM. Each process instance has its own memory space that is

under its own control. No other process instances are allowed to change the values of its variables. Such

variables are called local variables. Local variables are further categorized as either state variables or

temporary variables. State variables are those implicit states that represent the information accumulated

and retained by a process. State variables are persistent, meaning that from the perspective of each

process, they retain their value over time. One example is the variable that captures some certain

statistics of interest, e.g. number of packets in the queue. Temporary variables are used to store

information that does not require persistence. For example, an integer variable used as the index of a loop

is typically treated as a temporary variable.

Apart from local variables, we also define some variables that are visible to all process models and they

are called shared variables. Shared variables could be typically implemented via header files, in a C/C++

programming environment, and they are used as a communication mechanism among the process

instances. Another way to model inter-process communication is message passing via input buffers. The

management procedure of the input queue could also be modeled as an EFSM and to this end, we claim

that our communications between EFSMs are all through shared variables.

There are no clear rules on the use of explicit states and state variables, as this is often a matter of design

and depend very much on particular application. In our software process modeling, we use explicit states

to represent the top-level modes or stages that a process can enter. Such a mode could be any waiting or

inactive status, or it could be a decision place that leads to different situations. To facilitate callbacks, we

also identify those places where some unanticipated situations might happen and where we might later



put added functionality. We call these places callback hooks. Specifically, we associate each callback

hook with two states: one is called pre-callback state and the other post-callback state. There is a

transition from pre-callback state to post-callback state, with TRUE as the predicate and the callback

function as theaction associated with this transition. At the time of software process design, the callback

functions could be just empty functions, and the pre-callback state and post-callback state look identical

in the sense that all the accessible local/shared variables are the same. Or, as mentioned above, the

callback function within the native code could be any function. In this case, the pre-callback state and

post-callback state are not identical any more. Right after each post-callback state, we put a decision state

to accommodate the possible multiple branches the process may lead to. The different branches defined

over local/shared variables are mutual exclusive and exhaustive.

The parameters in the declaration of such empty functions are visible to an external entity. Symbol table

examination via directory service or dynamic linkage mechanisms, as discussed above, provides a

scheme to access the shared variables and the stack. The external callback function will use these

local/shared variables to fulfill some added logic, and probably, some changes will be made on them

since the function call is by reference. After this added external function is executed, the post-callback

state will usually be different from that before this external callback function execution, in terms of the

enabling branches from the decision state that follows. Such a mutual exclusive and exhaustive decision

state ensures that there will always be a valid progress route for the process to move ahead, with or

without addled logic.

Conceptually, our callback mechanism is similar to the idea of protocol boosters [6]. It is a supporting

agent and by itself is not a process or protocol. Beyond protocol boosters, it handles some unanticipated

situations. Many callback places in a process model may use the same function call, likeDoCallbacks

(CallbackID, shared_variables, state_variables, temporary_variables), and we assign for each callback

hook a uniqueCallbackID for identification. To make sure that the augmented system work well, for both

original and new conditions, we need to investigate some certain syntactic and semantic properties using

system state analysis, based on the identification of states as discussed above. Such issues are beyond the

scope of this paper.



5. System Designs

5.1 System Designs based on Java Technology

Java Virtual Machine (JVM) provides the uniform infrastructure and native distributed programming

API through Remote Method Invocation (RMI). In our Java based designs, agents are Java codes created

at the manager site and deployed to the network elements via RMI.

5.1.1 Java-based system design with MIB

In our first design here, we focus on systems where SNMP is used. The SNMP agents collect raw data

from network elements and store those data into Management Information Base (MIB). Our work here is

to design a Java-based Extensible Management Server (JEMS) that runs as a server process at the

network elements to host the delegated Java agents, which in turn, could access the MIBs and carry out

their predetermined functionality.

Figure 5-1: Prototype JEMS System

Figure 5-1 illustrates our proof-of-concept prototype system. The managed device is a Fore ATM switch,

which is connected to a LAN. It has a built-in SNMP agent that serves requests for variables defined in

two MIB files: RFC1213 for IP management, and Fore-Switch-MIB for ATM-switch-specific

management. There is no JVM ported to the Fore ATM switch yet, and we have to run a JEMS server in

a workstation which is equipped with a JVM and acts as a proxy for the ATM switch. We have
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implemented some monitoring objects and conclude that JEMS provides a simple and flexible model to

construct management systems, by allowing dynamic creation, manipulation and integration of delegated

agents. Our system has better scalability, performance and online extensibility than centralized polling

systems. For more information about this system design, we refer to [30].

5.1.2 Java-based system design without MIB

The previous design is suitable for network elements equipped with MIBs, i.e. routers and switches. In

many cases, however, network elements are not equipped with such MIBs. Even worse, these network

elements may be equipped with only minimum amount of memory and computing resources, e.g. VSAT

terminals for satellite communication networks. This Java-based design and the next native code based

design are for such situations. One important issue of using Java in this case is that the network element

side JVM has to be lightweight. We simply could not assume that we could ship the whole suite of the

standard JVM down there. Specific versions of JVM are needed. For example, if the real-time operating

system of the network elements were VxWorks [29], Personal Java suite was ported onto VxWorks.

Another alternative is the so-called KVM [26], or Kilobyte Virtual Machine, that encapsulates only the

core JVM and APIs. Such a KVM suite would typically require about 150KB memory, which is not

stringent.

As to the collection API, Java Native Interface (JNI) could be utilized to help the communication

between Java agents and the native C/C++ processes embedded in network elements. With addresses of

functions and function pointers, we can provide callbacks and function replacement. For a function that

is accessed through a function pointer, we can replace the function, by simply redirecting the pointer to

our own replacement code. In the same way, we can provide a callback service. A function pointer can

be declared in a native process, which calls this function pointer whenever it wants a callback. The

function pointer in the beginning points to a null operation. Only when the Java code replaces the

function will the callback be ready. Finally, we come full circle with the communication between Java

and the target process by allowing a Java client to call functions from the target process. As mentioned

previously, the directory service also has addresses of functions and the Java client can call these

functions using JNI and the function addresses. Figure 5-2 illustrates the logical view.
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Figure 5-2: Java-based system design

5.2 System Design based on Native Code Technology

The last design based on Java technology assumes that the global variables and the processes are in a

common address space. If, however, the network elements have multiple processors and separate address

spaces, we have a different situation. Simply delegating Java agents to each address space would incur

little extra work, but if we wish to change the native processes’ logic and do the callbacks, things get

worse. In this situation, the only way for a native C/C++ code to perform a callback onto Java is for a

JVM to be running on each processor. This does not seem practical. Also, in order for Java to interact

with native C/C++ processes, it is necessary to use JNI, which incurs a great deal of overhead. This

interface is quite limited and not particularly easy to use.

A native C/C++ implementation has neither the multiple JVM burden, nor the overhead and difficulty of

a JNI implementation. And here we use native C/C++ codes in the system design. In order to read, write

or call functions, the ordinary dereferencing of the pointers or function pointers will suffice, assuming

that the Agent has the correct addresses in the memory of the network element.



This design requires Inter Process Communication (IPC) in two distinct places. One is between the

network element and the management site, and the other is between the processes running on the network

element in different address spaces. For the former, it seems sensible to use Remote Procedure Call

(RPC) or just an ordinary TCP/IP socket. The IPC between processes on the network element however,

should not use sockets, which have much more overhead than required. We use shared memory based

message queues with some semaphores to handle the IPC on the network element.

The network element code links the Agent code dynamically, so the network element resolves Agent

symbols dynamically through ordinary dynamic linkage mechanisms. However, the Agent code does not

have a dynamic mechanism to support the lookup of symbols in the target process. The solution to this

problem is to look at the statically defined symbol table of the process residing in the executable code.

As stated above, Solaris UNIX provides an ‘nm’ (name mangle) utility that allows the listing of symbols

in an executable. Since the Agent code shall be defined in C/C++, we can provide a feature that takes the

output of ‘nm’ and construct a directory based on it. Once again, this could be done via dynamic linkage

mechanisms. Figure 5-3 illustrates the logical view of our native code design.
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5.3 Trade-offs between Java and Native code designs

During the processes of our systems designs, we encountered many issues that we need to balance

between various design options. Choosing Java or native code technology is one of the most important

considerations. Here we list the advantages and disadvantages of using Java or native code for the system

designs.

Table 1: Java System Design

Advantages Disadvantages

� Distributed computing via RMI

� Code deployment and shipping via

dynamic class loading

� JVM availability and portability

� Mobile computing support

� Exceptions handling

� One memory space assumption

� JVM memory footprint

� Callbacks are cumbersome

� Overhead of JNI

� Inflexible low-level synchronization

primitives

Table 2: Native codes System Design

Advantages Disadvantages

� Allows multiple processors

� Clear and neat design

� Lightweight callbacks via dynamic

linkage

� No JNI overhead

� Flexible low-level synchronization

primitives

� No RMI support; needs handle IPC

explicitly

� No outsource dynamic class loading via

HTTP

� No portability; it’s rather a ad hoc design

� Explicit exceptions handling

6. Conclusions

In this paper, we have presented a distributed, extensible framework for supporting adaptive, dynamic

network monitoring and control. The focus of our work has been on three aspects. First, the design of the

standard infrastructure, or Virtual Machine, based on which agents could be created, deployed, managed

and initiated to run. Second, the collection API for our delegated agents to collect data from network



elements. Third, the communicating finite state machine based callback mechanism through which the

functionality of the delegated agents or even the native software could be extended.

Our first design uses full-blown JVM in both manager and network element site and assumes the

presence of MIBs. It is a proof-of-concept design and is suitable for network elements equipped with

powerful computing and memory capabilities, i.e. routers and ATM switches. Here we use the off-the-

shelf JVM and we do not need to access the network element native software directly; instead, we need

only to access the MIBs that store the raw monitoring data. Our prototype system works well, which

encouraged us to research further into the Virtual Machines and collection API issues.

In our second design, we consider the situations where there is no MIB embedded with network

elements. We still use JVM but here our focus is on the network elements equipped with limited

computing and memory capabilities. Specific versions of JVM are considered. For the delegated Java

agents to access the native software, Java Native Interface (JNI) is exploited and a directory containing

addresses of the native global variables and function pointers is set up. The processing logic of the

delegated agents could be extended by creating new agents with the desirable functionality, followed by

deploying them to the network elements to replace the old agents. To extend the native software

functionality, we carry out function replacement by swapping the function pointers of the Java agents and

the corresponding native code functions.

Further, in our third design, we remove the convenient JVM for those network elements equipped with

multiple processors and address spaces. The focus here is to use dynamic linkage technology to emulate

the Virtual Machine concept. The delegated agents are dynamically linked to the native code by the

C/C++ run-time environment. The collection API in this case is very thin since all that is needed is to

access the native code directly. The extension of functionality is similar as the second design, with the

difference that we do not need JNI in this case. It is a neat design with respect to a pure C/C++

environment, but without JVM, it loses Java’s portability. This design is suitable for those resource

limited network elements that run over a real-time operating system and will not use Java as the native

code development. An important advantage of this design is that large amount of data can be processed

quickly via this native code callback mechanism, as compared with Java-based designs.



Now that we have the framework for adaptive, distributed network monitoring and control, our next step

will be focused on the intelligence part of network management. In particular, we are interested in fault

and performance management using such a framework, where the embedded intelligence would probably

be domain knowledge, implementation of filters, execution of some tests, to name a few. For more

information, see our previous publications [13,14] and a sister paper submitted to this conference [15].
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