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Programming has become a new literacy, but is still inaccessible to ordinary people. 

Programming-by-example (PBE) is an alternative approach that allows people to teach 

computers repetitive tasks by demonstrating couple input and output examples of the 

tasks. While the advancements of PBE have been mainly driven by algorithmic 

improvements, a growing community of researchers started realizing the importance of 

issues on the human side of PBE. For instance, inexperienced users often find it hard 

to provide complete and consistent examples, which is crucial for computers to learn 

the correct programs. Unfortunately, most PBE systems have limited ways to 

communicate with users about what it can or cannot do, and how to handle unsuccessful 

situations. The lack of symbiotic interaction between human users and PBE engines 

remain as a major hurdle against a widespread adoption of PBE techniques.  



  

To address the issues on the human side of PBE, this dissertation has four research 

threads. First, we began with two formative studies to establish a better understanding 

of inexperienced users' needs and mental models. Second, based on the findings of the 

formative studies, we developed a Visual Environment for Symbiotic Programming, 

called VESPY. VESPY interleaves visual programming and PBE techniques, enabling 

users (1) to decompose complex tasks into small modules on its 2-d grid, and (2) to 

complete each module by providing input and output examples. Four sample programs 

demonstrate VESPY's remarkable versatility. However, we also noticed that VESPY 

still had a number of usability issues. Third, to better understand the usability issues 

and how to help users out from common mistakes, we conducted an online user study 

that observed how inexperience users perform program decomposition and 

disambiguation, which are the two core activities of PBE. We identified seven types of 

mistakes, and reaffirmed that informative feedback on those mistakes is crucial for 

designing usable systems. Finally, we explored the design space of feedback 

components, in order to understand their impact on user's experience.  

My dissertation contributes to the AI and HCI communities with: (i) identification 

of unmet needs of end-users of the Web; (ii) characterization of non-programmers’ 

mental model; (iii) design process of interleaving visual programming and PBE; (iv) 

identification of mistakes people make while using PBE; and (v) design and assessment 

of feedback components for PBE users. 
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Chapter 1: Introduction 

 Motivation 

Programming has become a new literacy, but is still one of the most challenging skills 

for ordinary people. As of 2016, only 2.54% of the employed workforce in the United 

States are software developers [83]. To enable ordinary people to perform complex and 

customizable computational tasks, researchers have proposed the concept of End-User 

Development (EUD), “a set of methods, techniques and tools that allow users of 

software systems, who are acting as non-professional software developers, at some 

point to create, modify, or extend a software artifact” [51]. Since end-user programmers 

have characteristics different from professional programmers, they need specially 

designed programming environments, which is the goal of end-user programming 

(EUP) research. EUP researchers have proposed various approaches for making 

programming concepts easy to learn, as reviewed in section 2.1. While every EUP 

approach has its own strengths and weaknesses, the common ground is that end-user 

programmers need to learn the constructs of such systems, and imperatively specify 

them.  

Programming-by-Example (PBE) is an alternative approach that allows users to 

teach computers to perform repetitive tasks by demonstrating or providing examples 

using conventional direct manipulation interface, instead of directly specifying via text-

based coding or visual programming techniques [14,50]. Therefore, PBE has been 

successful in the areas where users can easily demonstrate complete and consistent 
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examples, such as controlling robot arms, automating repetitive tasks, creating 

animations, and wrangling structured data (reviewed in Chapter 2.2.4).  

Despite its strong potential, the advancements of PBE are mostly driven by 

technical improvements rather than addressing issues on the human side. For example, 

users of PBE systems often express frustration at not knowing the capability and 

limitations of the PBE engine [88]. If users make a mistake while expressing their intent, 

or if the intent is not expressible, PBE systems would fail without the second plan [44]. 

There is no easy way to check the correctness of generated programs, especially when 

extensive test cases are unavailable [54]. Decomposing a complex task into smaller 

subtasks is a challenge for inexperienced users [25]. In sum, usability issues remain as 

barriers to widespread adoption of PBE [44].  

 Dissertation goals and statement 

At a high level, the goal of this dissertation has been to improve the design of PBE 

systems. More specifically, our goal was to answer the following research questions: 

R1. (Chapter 3) What do end-user programmers need to improve the Web?  

a. What challenges do end-users experience on the Web? 

b. What features should EUP system provide to end-user 

programmers?    

R2.  (Chapter 3) How do non-programmers express their programming intent?  

R3.  (Chapter 4) Is PBE better than direct specification? 

R4.  (Chapter 5) Can inexperienced users perform problem decomposition and 

disambiguation?  

a. What mistakes do users make when using PBE? 
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R5.  (Chapter 6) What is the impact of feedback design on user's experience of 

PBE? 

a. Is showing either system information, instruction, or both helpful for 

completing tasks, understanding the system, and fixing human 

mistakes? 

b. Does feedback design affect user's behavior of using PBE features? 

c. Does feedback design affect user's credibility of the programs they 

make?   

d. Does demographic information affect user's performance and 

behavior of using PBE features? 

e. Is the history of previous trials helpful for users to understand and fix 

their mistakes? 

We addressed these questions with four research threads: (1) studying inexperienced 

users’ needs and mental models, (2) designing a symbiotic environment that interleaves 

visual programming and PBE, (3) identifying mistakes that inexperienced users make 

while using PBE; (4) exploring the design space of feedback for human mistakes. 

 Approach and overview 

Towards the objectives of the dissertation outlined above, we started by conducting 

two formative user studies (Chapter 3). First, a semi-structured interview study 

explored challenges that 35 end-users experience daily, and identified seven categories 

of web enhancements that would be helpful to be included in future EUP systems. 

Second, a Wizard of Oz study with 13 non-programmers observed how they naturally 

explain common computational tasks through conversational dialogue. This study 

expands existing work with characteristics of non-programmers’ mental models. The 
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findings, though preliminary, suggest that future EUP tools should support multi-modal 

and mixed-initiative interaction for making programming more natural and easy-to-use. 

Building on the findings from the formative studies, we developed VESPY, an 

end-user programming environment for creating interactive web components (Chapter 

4). The development of VESPY was a long iterative process, taking 1.5 years to explore 

various ways to accommodate visual programming and PBE. The design goal was to 

interleave visual programming and PBE so that users could decompose complex tasks 

into modules, and generate solutions for each module by providing input and output 

examples to the PBE engine. Section 4.5 presents four scenarios of sample 

enhancements that demonstrate the unique capability and versatility of the approach. 

We also conducted a preliminary user study with VESPY to compare PBE and direct 

specification approaches. For complex tasks requiring multiple inferences, PBE 

outperformed direct specification in terms of user’s performance. However, for simple 

tasks, direct specification was as good as PBE, particularly after participants 

understood the domain specific language. We also observed that the participants 

experienced usability issues similar with the other PBE systems.  

While PBE systems can be quite difficult for inexperienced users, there is little 

research on people's ability to accomplish complex tasks by providing examples. 

Chapter 5 presents an online user study that investigates to what extent inexperienced 

participants perform decomposition and disambiguation for complex PBE tasks, and 

identifies types of common mistakes. We developed an experimental PBE system that 

supports simple tasks (e.g. arithmetic, string extraction, and conditional filtering). 

Among 161 participants recruited from Amazon Mechanical Turk, only 18.6% (30 
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participants) could finish the entire study. We identified seven types of common 

mistakes, and reaffirmed that decomposition and disambiguation are tricky for 

inexperienced users. In addition, we observed that providing actionable feedback for 

unsuccessful trials can significantly improve the success rate of users, as compared to 

simple feedback.     

Finally, we explored the design space of feedback for PBE (Chapter 6). First of all, 

we created three types of feedback messages that included: (1) detection of user intent; 

(2) system information; and (3) instructions for resolving the current issue. We also 

developed a history panel that shows all the unsuccessful trials for the current task. 

Using the same experimental system, we compared eight combinations of the feedback 

design factors. The findings suggest that feedback messages have no significant impact 

on participants' performance. However, providing both system information and 

instruction increases the perceived effectiveness of feedback messages. The result also 

suggests that the high dropout rates and information overloads lowered the validity of 

the study, we will conduct a follow-up experiment with a revised system and study 

design. The contributions and future research direction of this dissertation are discussed 

in Chapter 7. 

 Organization of the Dissertation 

The rest of this dissertation is organized as eight chapters. In Chapter 2, we discuss a 

literature review related to my thesis. Chapter 3 reports the Wizard of Oz study result 

that explores how non-programmers describe computational tasks. Chapters 4 

introduces the implementation of VESPY, a visual programming environment that 

employs PBE techniques. Chapter 5 presents the online user study of how ordinary 



 6 

people perform PBE decomposition and disambiguation with the seven types of human 

errors. Chapter 6 reports the follow-up study of the extended feedback components. 

Finally, Chapter 7 proposes possible future research projects that can extend the current 

scope of this dissertation.  
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Chapter 2: Related Work 

This chapter provides an overview of end-user development in terms of interaction 

approaches for making programming accessible for inexperienced people, as well as a 

brief history of human-AI interaction research. We begin with a general background of 

how the End-User Development (EUD) paradigm has evolved to make programming 

accessible to ordinary people (Section 2.1). Section 2.2 describes the End-User 

Programming (EUP) concept, which is a subset of EUD but focuses on enabling end 

users to create their own programs. We delve into a variety of interaction styles used 

in EUP systems. In Section 2.3, we review End-user Software Engineering (EUSE), 

which is another related concept overlapping with EUD and EUP, emphasizing the 

quality of the software that end-users create, modify, and extend. Finally, Section 2.4 

reviews research topics that have been advanced toward symbiotic interaction between 

human and AI.   

 End-User Development (EUD) 

More and more people use computers on daily basis for diverse, complex and 

frequently changing needs [9]. Enabling people to solve their own problems is a value 

in itself. Moreover, professional software developers, who comprise only 2.54% of a 

total employed workforce in the United States by 2016, cannot fully meet all the needs 

of the country [83]. EUD is “a set of methods, techniques and tools that allow users of 

software systems, who are acting as non-professional software developers, at some 

point to create, modify, or extend a software artifact” [51]. End user programmers are 

also domain experts such as teachers using a spreadsheet for efficient grading, 
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interaction designers building working prototypes, and journalists crawling data from 

Web pages as surveyed by Ko et al. [39].  

Spreadsheet applications such as VisiCalc, Lotus 1-2-3, and Microsoft Excel are 

the first and by far the most successful EUD environment. Although end users may not 

think they are creating programs, the spreadsheet artifacts they create are actually first-

order functional programs [33]. In the early days of personal computers, spreadsheet’s 

EUD support was a major factor for buying expensive machines.  

Complex applications such as word processors usually have a lot of functionalities 

sufficient to satisfy a diverse target user groups but not optimized for a single user. 

Customization or tailoring of UI is specifying parameters to an existing application to 

meet the user’s needs [9]. For instance, a wide range of tools such as web browsers, 

word processors, integrated development environments, and even games allow users to 

add plug-ins and change configurations.  

The first step of creating a successful EUD is to understand what additional 

features people want, and how to enable them to specify those features. In this 

dissertation, we conducted a formative interview study (Chapter 3) to investigate what 

problems end-users experience on the Internet, and how they would fix them (Chapter 

3).  

 End-User Programming (EUP) 

End-user programming is defined as “programming to achieve the result of a program, 

rather than the program itself” by Ko et al. [39]. According to the definition, end-user 

programmer, compared to professional programmers, are less concerned about re-

usability, reliability, and security of the programs they create. Instead, end users are 
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interested in quick-and-dirty ways to solve problems at hands. Programs created 

through EUP extend functionalities of existing applications (e.g. web pages) or run as 

stand-alone software. Kelleher and Pausch [36] have surveyed EUP systems, and 

identified five interaction styles in addition to text-based programming. In this section, 

we review EUP by their interaction styles [63].    

 End-User Programming (EUP) 

Textual programming is often considered unfriendly to end-user programmers. 

However, if users had sufficient programming skills, text-based scripting is an efficient 

and expressive way to use the full functionality of domain-specific languages. For 

example, early EUP systems for customizing the Web such as Greasemonkey [100] are 

as versatile as JavaScript, at the expense of requiring professional programming skills. 

To make the efficiency of text-based programming accessible for end-users, EUP 

researchers have proposed various interactive supports of textual programming. 

Chickenfoot [6] automatically identifies page elements matching with user-provided 

keywords shown in Figure 1. When a user types click(“Go”) command, 

Chickenfoot finds clickable elements (e.g. hyperlink or button) containing a keyword 

“Go”, and triggers click events that are assigned to the elements. Inky [58] has sloppy 

syntax and rich feedback features that allows commands with incorrect ordering, 

missing keyword or parameters.  While the user is typing, Inky incrementally and 

continuously shows rich feedback of how it interprets and fixes the command as shown 

in Figure 2. Many of those supports are later applied to even professional IDE  
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 (e.g. Eclipse) as auto-completion or code quality suggestion plug-ins.  

While EUP systems that support other interaction styles (e.g. PBE, visual 

programming) rarely require end-users to write code from scratch, textual description 

is still a common representation of existing programs, because once users understand 

textual description they can easily validate and modify programs [34,37,86,89].  In this 

dissertation, we employ textual description to present programs generated by PBE 

engines in VESPY (Chapter 4) and the online usability study of PBE (Chapter 6).  

 

Figure 1. Chickenfoot scripting environment running inside the Firefox browser. Users 
type scripting code in the script editor (left) to automate, customize, and integrate Web 

applications without examining HTML source code.  

 

 

Figure 2. The Inky command line window. When user types a command in the Input 
area, the Feedback area shows a list of interpreted and fixed candidates.  
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 Visual programming 

To address the steep learning curve of textual coding, many EUP tools employ visual 

elements to represent low-level language constructs (e.g. commands, control structure, 

and variables) so that end user programmers can arrange them to build programs, 

animated stories, and games. Using visual constructs has many advantages. First, the 

widgets’ shapes and colors help users understand program structure and memorize 

language constructs. Like Lego bricks, connectors of widgets constrain how they 

should be put together without obscure syntax or punctuation of textual coding. Also 

the palette of available commands and the options of each command present the tool’s 

capability intuitively. It is not surprising that many visual programming environments 

have educational purposes, such as Alice [37], LEGOsheets [21], and Scratch [71] (see 

Figure 3). In spite of their educational benefits, visual programming is often criticized 

for being impractical for solving real-world problems. For instance, visual blocks take  
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large spaces on screen, and arranging visual blocks takes much longer than typing code 

[2].   

 

Figure 3. A screenshot of Scratch, a visual programming environment for creating stories, games, and 
animations. Children can easily understand and use Scratch’s visual widgets.   

 

Figure 4. LabView is a dataflow programming language widely used in laboratories. 

 

Figure 5. Sample widgets in Yahoo's Pipes. Users create complex operations by connecting widgets 
and customizing parameters.  
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 Dataflow Programming 

Dataflow programming (DFP) models a program as a direct graph of information 

flowing between operations [32]. Recently many advancements have been made in 

visual DFP because complex program structure becomes easy to reason with visualized 

flow of information. DFP’s application domains include signal processing for real-time 

music / video performance (e.g. Max/MSP1, Pure Data2, VVVV3), processing large 

amounts of data (e.g. Marmite [86], Karma [81], Yahoo! Pipes [97]), and prototyping 

interactive UI (e.g. Quartz Composer [99]). DFP falls short when representing complex  

cyclic control flows such as For-loops and recursions [32]. Thus many DFP tools 

conceal the entire loop in each operation so that a node deals with a list of input and 

output values without explicit looping.  

                                                

1 http://cycling74.com/products/max 
2 http://en.wikipedia.org/w/index.php?title=Pure_Data&oldid=629733021 
3 http://vvvv.org/documentation/vvvv-a-multipurpose-toolkit 

 

Figure 6. A sample mashup in Marmite [86]2] extracts address and other information from a Web 
page. Users select operators on the left, the widgets in the middle show the data flow, and the table 

on the right shows the processed data. 
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LabView4  is a well-known DFP for analyzing data in laboratories. Nodes in 

LabView programs are predefined functions, and connect to each other passing data 

around as shown in Figure 4. Internet mashup builders have employed dataflow as their 

program representation. For example, Yahoo! Pipes5 (Figure 5) and Marmite (Figure 

6) enable users to compose nodes to aggregate, manipulate, and mashup content around 

the Web. Origami toolkit for Quartz Composer6 (Figure 7) is a visual DFP tool for 

creating interactive design prototypes. Dataflow programming is often confused with 

visual programming, because both rely on visual elements. The difference is whether 

visual elements represent either low-level language constructs such as variables, 

operators, and control flows (in visual programming) or a high-level structure such as 

sub-process (in dataflow programming). In this dissertation, we employed visual 

                                                

4 http://www.ni.com/labview/ 
5 https://en.wikipedia.org/wiki/Yahoo!_Pipes 
6 https://en.wikipedia.org/wiki/Quartz_Composer 

 

Figure 7. Quartz Composer can process and render graphical data. 
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elements for the dataflow approach - allowing users to decompose a complex 

programming task into small modules. 

 Programming-by-Example / Demonstration (PBE / PBD) 

Programming-by-example (PBE), sometimes called programming-by-demonstration 

(PBD), is an EUP technique for teaching a computer to perform certain tasks by 

demonstrating or providing examples using conventional direct manipulation interface, 

instead of directly specifying via text-based coding or visual programming techniques 

[14,50]. Given that end users are readily able to demonstrate consistent and complete 

examples, PBE is supposed to be easier to learn and use than traditional programming. 

PBE is commonly used for creating animations [55,70], drawing geometric shapes   [1], 

creating macros for repetitive document editing [45] or Web-based processes [47], 

extracting data from structured documents [42,46,78], transforming data in 

spreadsheets [23,25], or controlling robot arms [61]. In this dissertation we build an 

EUP system for data extraction, transformation, and web automation and customization, 

and we discuss couple PBE systems that are relevant to those topics.  

First, generating automation scripts from user’s activity is a common use case of 

PBE. Koala [53] and CoScripter [48] enable end-users to create and share automation 

scripts to perform Web-based processes. To create an automation script, end-users 

record their interactions with the Web pages, and correct parts that should be 

generalized.  

Data transformation is a common application of PBE techniques. For instance, 

Wrangler [34] is a system for interactive data transformation shown in Figure 8. To 

build a sequence of basic transforms in Wrangler, users demonstrate their intent by 
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selecting or editing a few examples on the spreadsheet. Then the PBE engine of 

Wrangler suggests a list of transforming operations ordered by relevancy so that users 

can choose one of them to apply.  The goal of the Wrangler interface is to provide 

multiple means to add each transformation step so that users can choose the most 

convenient one for their tasks. Karma [79] (Figure 9) is another example of a data 

transformation tool that enables users to quickly extract, clean, and integrate data from 

multiple sources including databases, spreadsheets, text files, XML, and Web APIs. 

Karma uses PBE techniques that generate data transformation scripts from user’s action 

on its data table.  

Text processing tasks (e.g. extracting / replacing substring, reformatting structured 

text) are tedious and error-prone even for professional programmers. Therefore, text-

editing tools often employ PBD / PBE techniques to automate text editing based on a 

user’s keyboard stroke and mouse clicks. For instance, SMARTedit [43] generates 

macros from repetitive editing actions. Karma [79] and Wrangler [34]) generate 

corresponding text transforms from multiple pairs of input and output examples. 

STEPS [89] enables end-users to select and manipulate part of the hierarchical structure 

of text by example.  
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Figure 8. The Wrangler interface. Users can select or edit data in the right panel. Then the left-bottom 
panel shows suggestions of transforming operations based on a user’s latest action. As the user selects 

one of the suggestions, it will be applied to the data set and appended to the transform script (left-
top).    

       

Figure 9. The user interface of Karma. By highlighting a segment of text (“Japon Bistro”) in the 
embedded Web browser (left) and dragging it into the table (right), a user can specify a data retrieval 

operation. 

 

Figure 10. Sorting by year in STEPS. Mock input/output pairs1 specify each step; nested colored 
blocks represent structure. 
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 Summary 

In Section 2.2, we reviewed four interaction styles commonly used in EUP systems. It 

is noteworthy that none of them is better or worse than the other. Instead, each of them 

has strengths and weaknesses. Text-based programming is hard to learn, but very 

effective at describing programs. Visual programming makes it easy to learn basic 

programming concepts, but not as scalable as text-based or dataflow programming. 

Dataflow programming provides an effective way to handle the high-level structure of 

certain programs. PBE allows end users to create programs without learning how to 

specify them, but it may not be applicable for every task. In fact, most EUP systems 

employ multiple styles in combination. For example, visual constructs and textual 

descriptions are commonly used together to describe programs [86,97]. EUP systems 

provide PBE as well as traditional direct manipulation [34]. In Chapter 4, we build 

VESPY, an EUP system that employ a combination of dataflow and PBE. 

 End-User Software Engineering (EUSE) 

End-user programmers may not have the same skills and goals as professional 

programmers. However, issues of software engineering, such as maintainability, 

reusability, privacy, and security are essential requirements for the success of EUD. 

End-user software engineering (EUSE) is a body of research that focuses on systematic 

and disciplined activities that address the quality of software created by end-users [39]. 

In this chapter, we review a few research topics in EUSE that are most relevant to this 

dissertation.       
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 Supporting the exploratory approach of end-user programming 

Professional developers usually do not have complete knowledge about the domain, 

but are supposed to investigate and define requirements of software before starting 

software development. In contrast, end-user programmers usually have good 

understanding of their needs, and directly jump into development without specifying 

requirements or considering other issues of software engineering [72]. End user 

programmers tend to take evolutionary or exploratory approaches, leaving parts of the 

design in a rough and ambiguous state. An integrative approach is using community 

support to help less experience users learn from more experienced end-user 

programmers. For example, CoScripter community supports end-user programmers to 

share and extend macro scripts in an enterprise [5]. As another approach, EUP systems 

often have design critic features that give end-users context-aware design critics for 

improving their designs [17]. In this dissertation, we propose context-aware critic 

features to help end-users decompose PBE tasks (Chapter 5 and 6).  

 Understanding end-user programmer’s mental model 

Understanding of end-user’s needs and mental model is essential for building 

successful programming tools [73]. Researchers have studied a wide range of end-user 

programmers including children [68], teachers, interaction designers [62], or anyone 

else who would develop programs for professional or personal needs. Keller and 

Pausch [36] surveyed development environments of novice programmers, mainly 

focusing on the educational impacts of such settings [51]. Miller [57] examined non-

programmers generating procedural instructions in natural language, which resulted in 

a set of recommended features of programming languages. For instance, he suggested 
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that contextual referencing would be a good alternative method of using variables and 

traversing data structure. Pane et al. [67] studied vocabulary and structure of non-

programmers expressing solutions to computational problems, and identified patterns 

of imprecise and underspecified information in them.   

In this dissertation, I conducted an interview study to examine how people with 

varying programming expertise express their needs for Web customization (section 

3.2), and a Wizard of Oz study to investigate non-programmers describing 

computational tasks through conversational dialogue (section 3.3). I also examined 

what mistakes people make while using PBE to solve complex problems (Chapter 5).  
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 Preventing mistakes of end-user programmers 

Even though end-user programmers usually create software artifacts for their own 

needs, small bugs in their code can make critical consequences for failures. For instance, 

a Texas oil firm lost millions of dollars in an acquisition deal because of a buggy 

spreadsheet formula [69]. A business Web site with broken links can result in loss of 

revenue and credibility [73]. In consideration of the quality issues in EUSE, researchers 

have begun to study what mistakes end-user programmers make, and have proposed 

supports for preventing such human mistakes. For instance, “What You See Is What 

 

Figure 11. WYSIWYT approach highlights potential bugs in spreadsheets. Red borders indicate incorrect 
cells. Check marks indicate that the cells have passed generated test cases, while question marks indicate 

that the cells need testing.  

 

Figure 12. Whyline is a debugging tool in the Alice programming environment. Users can press “why” 
or “why not” buttons for getting detailed information (e.g.  program’s execution history) of specific 

animated behavior. 



 22 

You Test” (WYSIWYT) is an end-user testing approach, which helps users 

systematically validate and find bugs in their spreadsheets [19]. When WYSIWYT 

finds a potential bug in spreadsheets, it highlights the area with colored borders to 

attract user’s attention, and adds a tooltip that explain its meaning (Figure 11). 

Interrogate Debugging [40] is another interactive debugging support for the Alice 

storytelling system. End-user programmers can ask why did and why didn’t questions 

for runtime failures in their programmed animations to get detailed information such 

as the program’s execution history (Figure 12).     

End-user programmers using PBE systems also make mistakes. User-provided 

examples are often ambiguous in that the PBE engine might synthesize an unintended 

program that is consistent with the provided examples. This can let users lose their 

confidences in the PBE system, which is a major usability issue of PBE as Lau [44] 

pointed out. To resolve the ambiguity, researchers have proposed a few interaction 

models. For instance, Wrangler [35] lets users choose an operation among top candidates. 

FlashProg [54] have suggested two interaction models. First, program navigation 

(Figure 13) allows users to effectively choose the intended program among a large 

number of candidates by comparing positive and negative test results. Second, a 

conversational clarification interaction model (Figure 14) asks users specific questions 

that can effectively resolve ambiguities. A few PBE systems [35,88] support 

decomposition by allowing users to  create multiple operations one-by-one. However, 

users of such systems are often frustrated at not knowing what the possible primitive 

operations are [24,88], progress of the current state towards the solution, or intermediate 

steps to reach the solution [25]. Supporting users in decomposing complex tasks into 
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small subtasks and incrementally composing solutions is still an open-ended research 

question. 

  

 Human-AI Interaction  

 Direct manipulation vs. Autonomous agent  

A great visionary in the beginning of human-computer interaction, Licklider [49] 

envisioned symbiotic interaction as an optimal collaboration of man and machine, 

which aims to solve complex problems by tightly coupling human minds and 

computers. For decades, system developers and researchers have built on his vision, 

striving for an optimal division of role, responsibility, and initiatives. There was a hot 

 

Figure 13. Conversational Clarification being used to disambiguate different programs that extract 
individual authors.    

 

Figure 14. Program Navigation tab allows users to navigate sub-expressions of a program, and choose 
among alternative sub-expressions that other programs have suggested.  
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debate between Ben Shneiderman and Pattie Maes [76] about whether direct 

manipulation or autonomous agents would be the ultimate form of human-computer 

interaction. Direct manipulation provides rapid, incremental, reversible actions and 

feedback that give users the feeling of being in control and the responsibility for the 

decisions they make [74]. However, as all the initiative has to come from the user, 

solving complex problems with direct manipulation can be very inefficient and hard to 

learn [27]. In contrast, autonomous agents proactively keeps track of the user model, 

and suggest the most likely solutions so that users can delegate complex problems to 

software agents [76]. The debate did not end up with a winner but an open-ended 

research question – how to make the two approaches complement each other [29]. For 

example, autonomous agents can improve the productivity of direct manipulation 

systems by automating repetitive tasks. Even if users trust autonomous agents and 

delegate all their tasks, direct manipulation is still important to keep the system 

comprehensible, predictable, and controllable. 

 Mixed Initiative interaction 

“Mixed-initiative … refers broadly to methods that explicitly 

support an efficient, natural interleaving of contributions by users 

and automated services … allowing computers to behave like 

associates… Achieving … fluid collaboration between users and 

computers requires solving difficult challenges.” –[28] 

In response to the debate between direct manipulation and autonomous agent [76], 

mixed-initiative interaction aims to interleave them by letting humans and computers 

work on shared tasks, monitor each other’s activity, and negotiate who will take an 

initiative. Eric Horvitz has summarized principles [28] and challenges [29] of mixed-
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initiative interaction. Tecuci et al. [20] have introduced seven aspects of mixed-

initiative interaction (task, control, awareness, communication, personalization, 

architecture, and evaluation) to help understand existing mixed-initiative systems and 

building general design principles. Example applications of mixed-initiative interaction 

include, 

• Major search engines 7  update suggested keywords and searched web 

pages for every keystroke made by users. The rapid feedback loop enables 

users to understand what combination of keywords would give better 

results.   

• Integrated developing environments predict language constructs that the 

user is currently typing. It reduces the number of characters to be typed, 

and also prevents users from making typos.  

• Planning tools (e.g. floor planning CAD [18], meeting scheduler [10], 

and thermostat [38]) suggest advices (e.g. stove and refrigerator being too 

far apart in a floor plan) according to a user’s activity.  

It is noteworthy that the applications of mixed-initiative interaction listed above 

are exploratory and creative processes where neither users nor computer agents have 

complete understanding of the problems or the solutions. Instead, users would 

incrementally refine their goals, based on the solutions suggested by computer agents 

[26] as shown in the applications such as meeting scheduler [10,96], and thermostat 

[38].  

In spite of the aforementioned opportunities, mixed-initiative interaction may not 

be the panacea for all usability issues. For instance, users of Proactive Wrangler [25] 

                                                

7 google.com; www.bing.com; search.yahoo.com 
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did not trust programs that are generated without their initiation. Causal relationships 

of mixed-initiative systems tend to be more complex than fixed-initiative systems. 

Developing a mixed-initiative system requires synergistic integration of AI and HCI 

[20]. From the AI perspective, it might require knowledge representation of the task 

and user’s intention, problem solving and planning, and learning algorithm. From the 

HCI perspective, it has to design an effective UI for dialogue, intent expression, 

understanding generated solution, and building trust.   

In this dissertation, we applied principles of the mixed-initiative interaction to 

propose two solutions for usability issues of PBE. First, I proposed a novel interaction 

model of VESPY that allows both user and the PBE engine to take an initiative of 

program decomposition (Chapter 4). I also identified patterns of common mistakes that 

users make while using PBE (Chapter 5), and proposed a novel mixed-initiative 

feedback mechanism to help users quickly understand and fix mistakes in collaboration 

(Chapter 6).  
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Chapter 3: Formative Study: End-User Needs 

for Enhancing the Web 

End-user programming (EUP) is a common approach for helping ordinary people 

create small programs for their professional or daily tasks. Since end-users may not 

have programming skills or strong motivation for learning them, tools should provide 

what end-users want with minimal costs of learning – i.e., they must decrease the 

barriers to entry. However, it is often hard to address these needs, especially for fast-

evolving domains such as the Web.  

To better understand these existing and ongoing challenges, we conducted two 

formative studies with Web users – a semi-structured interview study, and a Wizard-

of-Oz study. The interview study identifies challenges that participants have with their 

daily experiences on the Web. The Wizard-of-Oz study investigated how participants 

would naturally explain three computational tasks to an interviewer, who acted as a 

hypothetical computer agent. The two user studies demonstrate a disconnect between 

what end-users want and what existing EUP systems support, and thus open the door 

for a path towards better support for end user needs. In particular, our findings from 

the interview study are (1) analysis of challenges that end-users experience on the Web, 

and solutions they envision, and (2) seven core functionalities of EUP for addressing 

these challenges. Findings from the Wizard-of-Oz study include (3) characteristics of 

non-programmers describing three common computation tasks, and (4) design 

implications for future EUP systems.  
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 Introduction 

Over the decades, the Web has become the most popular and convenient workbench 

for individuals and businesses supporting an incredible number of activities. However, 

developers of Web services cannot completely anticipate future uses and problems at 

design time, when a service is developed. Thus we can expect users, at use time, will 

discover misalignment between their needs and the support that an existing system can 

provide for them [16]. Numerous examples of this misalignment exist. For example, a 

site designed to support comparison shopping for online shoppers may not meet the 

needs of shoppers who want to compare prices across different sites and even track 

daily prices8. Another is that people often use customizable applications (e.g. RSS feed 

readers) to manage ever-growing channels instead of visiting individual sites. More 

broadly, fraudulent sites and deceptive opinion spam are ongoing concerns for 

consumers [65]. When a Web page does not match their needs, people often use 

mashups [15,85,90,91,93], browser extensions and scripts [7,47,60,98] built by third-

party programmers. Unfortunately there are not enough third-party solutions to address 

all 1.4 billion end-user's needs of 175 million websites [78], and enabling end users to 

develop their own solutions is the goal of end-user programming on the Web 

(WebEUP).  

A clear understanding of end-user needs is essential for building successful 

programming tools [73]. In this chapter we report two user studies. The first study, a 

semi-structured interview study addresses the research questions defined at section 1.2: 

R1. What do end-user programmers need to improve the Web? 

                                                

8 http://camelcamelcamel.com 
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a.  What challenges do end-users experience on the Web? 

b.  What features should EUP system provide to end-user programmers?    

The second study addresses, 

R2. How do non-programmers express their programming intent?  

Answering the above questions is important to have a clear understanding of the 

direction we should take to develop WebEUP systems that will be useful and effective 

for a broad range of people.  

 Prior studies [91–93] characterize potential end-user programmer’s mindset and 

needs. Researchers also investigated end-user programmer’s real world behavior and 

software artifacts they created with specific WebEUP tools such as CoScripter [5]. Live 

collections such as the Chrome Web Store9 and ProgrammableWeb10 are valuable 

resources that address user needs by community developed scripts and mashups. This 

chapter reports on an interview study with similar motivations – to investigate what 

challenges end-users experience and how they would improve – but focuses on unmet 

needs of 35 end-users on the Web with minimal bias of current technology. Through 

iterative coding we identify the pattern of challenges that end-users experience. We 

also suggest seven functionalities of EUP for addressing the challenges - Modify, 

Compute, Interactivity, Gather, Automate, Store, and Notify. 

There is a wealth of study for the second research question. Researchers have 

studied the psychology of non-programmers. Miller [56,57] examined natural language 

descriptions by non-programmers and identified a rich set of characteristics such as 

                                                

9 https://chrome.google.com/webstore/category/apps 
10 http://www.programmableweb.com/ 
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contextual referencing. Biermann, Ballard and Sigmon [3] confirmed that there are 

numerous regularities in the way non-programmers describe programs. Pane et al. [67] 

identified vocabulary and structure in non-programmer’s description of programs. We 

conducted a Wizard of Oz study with 13 non-programmers to observe how they 

naturally explain common computational tasks through conversational dialogue with 

an intelligent agent. The interviewer acted as a hypothetical computer agent, who 

understands participant’s verbal statements, gestures, and scribbles. This study expands 

existing work with characteristics of non-programmers’ mental models. 

Findings from the interviews and the Wizard-of-Oz study together demonstrate a 

disconnect between what end-users need from EUP and what current systems support. 

In addition to identifying a set of important functionalities that should be included to 

best support end-users, our findings specifically highlight the needs of social platforms 

for solving complex problems, and interactivity of programs created with EUP tools to 

alleviate end-user’s concerns about using third-party programs. The Wizard-of-Oz 

study also shows that future EUP tools should support multi-modal and mixed-

initiative interaction for making programming more natural and easy-to-use.   

The two studies have the following contributions: 1) identification of unmet needs 

of end-users of the Web; 2) characterization of non-programmers’ mental models 

describing computational tasks; 3) implications for designing future EUP systems.  

 Study 1: End-User Needs on the Web 

To better understand end-user needs on the Web, we conducted a semi-structured 

interview study. The goal was to better understand the challenges that the participants 

experience, and enhancement ideas that they envision without technical constraints. 
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The approach is to qualitatively analyze the participant responses to identify themes 

that should be considered in the development of future WebEUP systems. 

 Participants 

35 participants (14 males, 21 females) were recruited via a university campus mailing 

list, social network, and word-of-mouth. They were on average 30.8 years old (SD = 

5.1) and had a wide range of occupations as shown in Table 1. Every participant spends  

at least one hour per day on the Web. 10 out of 35 participants had used at least one 

programming language, and five participants had created web pages. However, none 

of them had the experience of end-user programming on the Web. We did not offer any 

incentive for participation.  

  Procedure 

18 interviews were conducted via a video chat program with shared screen11, while the 

rest were face-to-face interviews at public areas such as libraries and cafes. I asked 

participants,  

                                                

11 Google Hangout (https://hangouts.google.com/) 

Table 1. Occupational background of the participants of study 1	
Graduate students 15 
 Engineering 8 
 Business 4 
 Psychology 2 
 Education 1 
Professionals 12 
 IT specialists 8 
 Directors and office managers 4 
Non-professionals (e.g. homemaker) 8 
Total 35 
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“Show me a couple Web sites that you recently visited, and tell us 

challenges that you experienced there. If you could hire a team of 

designers and developers for free, how would you improve the Web 

sites?”  

We recorded (or videotaped for the face-to-face interviews) the participants visiting 

two to four sites they recently experienced problems. While demonstrating regular 

tasks on the sites, participants followed the think-aloud protocol. For the challenges 

they mentioned, we asked them to imagine a team of third-party developers, and to 

explain to the “team” an enhancement for the Web site. Each interview covered 

approximately three (M = 3.02) sites, and took approximately 20-40 minutes. The study 

was found to be exempt from IRB review. 

 Data and Analysis 

35 participants demonstrated the use of 92 sites (M = 2.63) that included online 

shopping (24 sites), academic research (17), streaming video (11), news (10), work-

related sites (7), forums (5), search engines (5), social network services (4), travel (4), 

finance (2), review sites (1), job market (1), and weather (1). Note that these frequencies 

do not correlate the frequency of regular visits but the challenges that our participants 

experienced. While visiting the sites the participants explained 106 challenges. Every 

interview video was transcribed, and coded. As an exploratory work, we pursued an 

iterative analysis approach using a mixture of inductive and deductive coding [8,30]. 

First, we created a codebook derived from the literature [13,92] and an initial post-

interview discussion within the research team. The codebook included types of 

challenges (lack of relevant information, repetitive operations, poorly-organized 

information, privacy, security, fake information, bugs), and functionalities required for 
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doing a wide range of WebEUP tasks (mashup, redesign, automation, social knowledge, 

sharing, monitoring). To assure high quality and reliable coding, two researchers 

independently coded ten randomly selected ideas. Analyzing the Inter-Rater Reliability 

(IRR) of that analysis with Krippendorff’s alpha (α = 0.391; total disagreements = 24 

out of 255), we revised the codebook. Then the two researchers coded another ten 

randomly selected ideas, and achieved a high IRR (α = 0.919; total disagreements = 6 

out of 248). After resolving every disagreement, the first researcher coded the 

remaining data. Following the guide of thematic analysis [8], we collated the different 

codes into potential themes, and drew initial thematic maps that represent the 

relationship between codes and themes. We then reviewed and refined the thematic 

maps, to make sure that data within a theme was internally coherent, and that different 

themes were distinguished as clearly as possible. The two following subsections 

summarize the two groups of themes: challenges that participants experience on the 

Web, and functionalities of WebEUP for addressing those challenges.  

 Result: Challenges 

Based on the above-described process, four groups of common challenges and 

enhancement ideas were found which are described in the following sections.  

Challenge	#1:	Untruthful	information	 	

While trust is a key element of success in online environments [12], 17 participants 

reported four kinds of untruthful information on the Internet.  

Deceptive ads were reported by three participants. Two of them reported deceptive 

advertisements that used confusing or untrue promises to mislead their consumers. For 
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example, P31 gave a poignant example that a local business review site posts 

unavailable items on the Internet: 

“If you're looking for a contractor to work on your home, and other 

home stuff, [local business review site] shows them with ratings. A 

few weeks ago I started paying them again for other information, 

but they have something very frustrating. They have a several page 

list of mortgage brokers searchable from [search engine]. But when 

you pay the fee for their service, they have only a fraction of the 

information. I complained to them, but they have some stories why 

it is not... Anyways, I canceled my membership without getting my 

one-month fee refunded.” (P31) 

Another participant tried to avoid using an online marketplace because of 

deceptive ads in it: “I know there are rental houses with good value on [online 

marketplace], but I do not use it often. There are too many liars on [online marketplace]. 

Instead I post on [Social Network Service] to get help or recommendations from people 

that I trust.” (P21) 

Links to low-quality content were reported by seven participants. During the 

interview, two participants clicked broken links to error pages. Five participants 

reported that they had to spend significant time and effort to find high-quality video 

links in underground streaming video sites: “At [Underground TV show sites], I have 

to try every link until I find the first ‘working’ link. By working, I mean the show must 

be [in] high-resolution, not opening any popup, and most of all as little ads as possible.” 

(P6) A straightforward solution is to attach quality markers next to the links. However, 

it is extremely challenging to define a metric of high-quality links that everybody will 

agree upon.  
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Virus and Malware was reported by four participants. They were aware of the 

risks of installing programs downloaded from the Internet, but estimating risks is often 

inaccurate. For example, two participants stopped using a streaming video site and a 

third-party plugin worrying about computer viruses, though in fact, those site and 

plugins were safe. 

“I used this streaming link site for a while, but not after a friend of 

mine told me her computer got infected with malwares from this 

Web site. I wish I could check how trustworthy the site [is] when 

using [it].” (P24) 

“I have [used popup blocker extension], but am not using [it] now. 

Those apps have viruses, don't they?  I also don't use any 

extensions.” (P17) 

This suggests that end-users may have inaccurate knowledge about the risks of 

their activities on the Internet. Even though third-party programs provide terms and 

conditions, and permission requests, users are often ‘trained’ to give permission to 

popular apps [11] as stated by P27: “If the site is important to me, I just press the 'agree' 

button without reading.” 

Opinion spam was reported by four participants. While social ratings and 

consumer reviews are conventional ways to see feedback on products and information, 

the reliability of the feedback is often questionable [66]. Four participants reported 

concerns about opinion spam – inappropriate or fraudulent reviews created by hired 

people. For example, P31 reflected, “I saw that some sites have certificates, but they 

were on their own sites. So, who knows what they’re gonna do with that information? 

[…] For example, I had a terrible experience with a company that I hired for a kitchen 
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sealing repair, even though they had an A+ rating on [a local business review site].” 

P27 also expressed concerns about fake reviews, “ratings are somewhat helpful. 

However, I cannot fully trust them especially when they have 5 star ratings - they might 

have asked their friends and families to give them high ratings.” Similar to deceptive 

ads, opinion spam is a gateway to serious financial risks such as Nigerian scams [12], 

but there is no simple way to estimate the risk.         

Summary. In order to deal with untruthful information, participants would look 

for more trustworthy alternatives. For example, P21 used a social network service 

instead of online marketplaces. If participants could not find an alternative source, they 

would assess the risks and benefits of using the untruthful information, and decide 

either to give up the task or to take the risk, as P31 said, “I don’t believe everything on 

the Internet. But sometimes I have no other choices than to try it with caution.” The 

remaining issue is that estimating the risk of untruthful information is often quite 

difficult.  

Challenge	#2:	Cognitive	Distraction	

Most participants reported cognitive distractions that make information on the Web 

hard to understand. We identified four types of cognitive distractions as listed below.   

Abrupt design changes were reported by three participants. Websites are 

occasionally redesigned – from a minor tune-up to a complete overhaul – for good 

reason. However, it often undermines the prior knowledge of its users, and makes the 

sites navigation difficult. For example, P22 could not find her favorite menu item 

because “the library recently changed its design, making it much harder to find the 

menu.” Since she found a button for switching back to the classic design at the end, she 

didn’t take advantage of new features in the updated design. P24 shared a similar story: 
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“One day Facebook suddenly changed the timeline to show this double column view. 

That was very annoying.”  

Annoying advertisements were reported by 30 participants. We found that the 

degree of cognitive distraction varies across different types of ads. For example, ads 

with dynamic behavior are much more annoying than static banner ads: 

“There are popup ads that cover the content and follow your 

scrolling. Although they usually have very small 'X' or 'Close' 

buttons, I often miss-click the popup to open the Web page. That's 

pretty annoying.” (P17) 

This finding is consistent with prior research that found display ads with excessive 

animation impair user’s accuracy on cognitive tasks [22]. 16 participants were using 

browser extensions (e.g. Chrome AdBlock12) to automatically remove ads. However, 

one participant had stopped using it for security and usability issues: 

“I have, but am not using [AdBlock] now. Those apps have viruses, 

don't they? […] They would be very useful in the beginning, 

however they also restrict in many ways. For example, the 

extension sometimes automatically block crucial popup windows. 

So I ended up manually pressing 'X' buttons.” (P17) 

Unintuitive tasks. Six participants reported that several Websites are hard to use. 

For example, to create a new album in Facebook, users are required to upload pictures 

first. This task model clearly did not match a participant’s mental model: “I tried to 

create a new photo album. But I could not find a way to create a new album without 

                                                

12 http://goo.gl/rA6sdC 
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uploading a picture. That was a very annoying experience.” (P18). Another user 

reported a similar issue of not being able to create a new contact after searching in a 

mailing list: 

 “I'm adding a new person to the contact database. I should first 

search the last name in order not to put duplicate entry. If the name 

does not exist, it simply shows [0 result found]. Obviously I want to 

add a new entry, but there's no button for that. That bugs me a lot, 

because I have to get back to the previous page and type the name 

again.” (P16) 

Websites with unintuitive navigational structures would require users to do many 

repetitive trial-and-errors.   

“When preparing to visit a touristic place, I look for entrance fee, 

direction, and other basic information from their official sites. 

However, some sites have that information deep in their menu 

structure, so I had to spend much time finding them. I wish those 

information were summarized and shown in one page. Sometimes 

it's hard to find useful images for campsites or cabins. For example, 

I want to see the image of bathroom, but people upload pictures of 

fish they caught.” (P33) 

Information overload. Five participants reported that excessive and irrelevant 

information prevents them from understanding the main things that they care about. 

For example, P22 was disappointed at blog posts full of irrelevant information: “I was 

searching for tips to clean my computer. However, most blog posts have very long 

explanations of why I should keep computers clean without telling how to clean it till 

the end.” (P22)  
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A long list without effective filtering also causes information overload as P2 stated:   

“I want these conferences filtered by deadline, for example, 

showing conferences whose deadlines are at least 1-month from 

now. Also, if possible, the filter can look at descriptions of each 

venue and choose ones containing at least three relevant 

keywords.”  

A simple enhancement to solve this problem is to remove unnecessary, excessive 

information, which is often very hard to decide. For example, P27 criticized an online 

shopping site for having a lot of unnecessary and irrelevant information. However, 

when evaluating usefulness of individual components, she became more vigilant, and 

stressed that her opinions are personal and depending on her current situation. 

“I would remove these promoted products on the side bar. 

However, if these promotions were relevant to my current interest, I 

would keep them. […] Shopping cart and Personal coupon box can 

be useful later. […] I don’t need extra information about secured 

payment, getting products at the shop, or printing receipts.” (P27) 

To enhance websites with an over-abundance of information, participants 

envisioned creative scenarios including interactivity and design details. For example, 

P2 proposed to add a custom filter for a long list. P26 wanted to have the personalized 

summary at the top of a long document with a pop-up window for important 

information:    

“I do not read every Terms and Condition agreement. It’s too long 

and mostly irrelevant.  However, it would be useful if hidden 

charges or tricky conditions were highlighted. I think critical 

information such as hidden charges can be shown in a pop-up 
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window. It would be best the most important summary is shown at 

the top, because I could just click 'yes' without scrolling it down.” 

(P26) 

Challenge	#3:	Repetitive	Operations	

Participants reported tedious and repetitive operations on the Web. Based on them, we 

identified three common reasons for repetitive operations. 

Unsupported Tasks. Seven participants wanted to automate repetitive tasks. 

Efficient repeating of some of the tasks is unsupported by the websites. For example, 

four participants wanted to automate simple interactions such as downloading multiple 

files or clicking a range of checkboxes with a single click.  

“[At an academic library], I click the "Save to Binder" button, then 

select a binder from the drop-down in a new window. Then I click 

the "save" button then the "done" button, then close the window. It's 

really annoying to do it over and over. It would be great to create a 

"save this!" button.” (P4) 

Three participants wanted to automate filling the forms of personal / credit card 

information.   

Information from multiple sources. Reported by 20 participants, integrating 

information from multiple sources is a common practice on the Web [93]. End-users 

switch between browser tabs to compare information repeatedly, but it can be time 

consuming since it requires short-term memory to compare information on tabs that are 

not simultaneously visible. 17 participants wanted to save their time and effort by 

integrating information across multiple sources. For example, P33 told, “I often search 

for videos on YouTube for baby diapers or other things to wear because those videos 
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are very helpful to understand usage of products.”   Similarly, four participants wanted 

to integrate course schedule page with extra information available such as student 

reviews, lecture slides, and reading lists.  

Time-sensitive Information. Five participants reported that they regularly check 

time-sensitive information such as price (3), hot deals (1), second-hand products (1), 

and other notifications (1). Using price trends as an example, three participants 

envisioned a complex service that automatically archives price information retrieved 

from multiple sites, visualizes the price data as timeline graph, and sends email / mobile 

notifications when the price drops:   

“I can imagine that program or Web site will be able to grab 

information, especially prices from various malls, and compare it 

automatically.  [...] It will also say ‘this is the lowest price for 

recent three months.’ so that I don't have to visit Amazon and 

Newegg everyday. […] I want it to send me email alerts - saying 

‘Hey, based on your recent search history on the Canon G15, we 

found these new deals and prices. It's the lowest price in the last 

month.’ ” (P21)  

“[She opened CamelCamelCamel.com] If I want to buy a bread 

machine, I search and choose one model. Here the graph shows the 

price trend of the model. I can make a decision on whether I should 

buy or wait. Unfortunately, this site only shows products from 

Amazon.com.” (P33)  

Challenge	#4:	Privacy	

Privacy did not come up much, but one participant (P24) expressed strong negative 

opinions about the way that a social networking service handles her data:  
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“[At a social network service] a friend of mine told me that if I 

'like' her photos or put comment on them, others will be able to see 

it even if the photos are private. […] Here's another example that I 

don't like about [the SNS]. One day I uploaded a family photo, and 

my family-in-law shared those photos. That's totally fine. However, 

the problem began when friends of my family-in-law started liking 

and commenting on my family photos. I received a lot of 

notifications of those activities by people I do not know at all. I felt 

a little scared.” (P24) 

As another example of privacy issues, P24 believed that her browser tracks her 

activity history, and shared it with online advertisement companies without her 

permission, because banner ads on other Web pages show ads related to her previous 

activity.  

 Potential Functionality of Web Enhancements 

Based on the challenges of the previous section, here we present functionality that we 

believe future WebEUP systems should consider. The functionality has seven 

categories: Modify, Compute, Interactivity, Gather, Automate, Store and Notify. To our 

knowledge, Interactivity, Store, and Notify among them were not supported by existing 

EUP systems for the Web.  

Modify. Modification of existing web pages is the most commonly required 

functionality for 66 out of 109 enhancements. Examples include attaching new DOM 

elements to the original pages (31 enhancements), removing or temporarily hiding 

unnecessary elements (15 enhancements), and highlighting information of interest by 

changing font size, color, or position (5 enhancements). Modification often involves 

adding new interactive behavior of Web sites (8 enhancements). Existing WebEUP 
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tools support a wide range of modification such as removing unwanted DOM elements 

[7], and attaching new DOM elements or interactive behavior to existing elements [78].   

Compute. 29 enhancements require a variety of data transformation: filtering 

elements by user-specified criteria (13 enhancements), extracting specific information 

from text documents (9), and arithmetic operations (7). While computation is a 

fundamental part of programming languages, existing EUP systems support it in 

varying degrees. For example, scripting languages [98] offer an extensive set of 

language constructs such as general-purpose languages (e.g. JavaScript). Data 

integration systems [80,87] focus on handling large amount of semi-structured text 

input, but provide less support on numerical operations. Systems for automated 

browsing [47,59] provide few language constructs for computation.     

Interactivity. 29 enhancements would need interactive components that address 

the dynamic needs of users. For example, 13 enhancements include triggering buttons, 

because users wanted to make use of them in-situ. Eight enhancements show previews 

of changes it will make on the original sites so that users can choose among them. 

Enhancements often require users to configure options such as search keywords, 

filtering criteria, specific DOM elements based on their information needs (8 

enhancements). WebEUP tools often employ predefined interactive components such 

as buttons and preview widgets [78]. However, none of them enable users to create 

their own interactivity.   

Gather. 18 enhancements gather information from either the current domain (9 

enhancements) or external sources (5 enhancements). One example use of information 

of the current domain is to preview linked resources without clicking, as P5 stated, “At 
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various cosmetic malls, I wish the main listing page showed detailed direction on how 

to use the products.” In contrast, participants wanted to gather information from 

external sources that current sites are missing. Information gathering is supported by 

mashup tools [15,82,87].  

Automate. 15 enhancements automate repetitive tasks that include filling in input 

forms (4 enhancements), downloading multiple images and files (4), page navigation 

(3), clicking a series of buttons, checkboxes, and links (3), and keyword search (1). 

Existing WebEUP tools such as CoScripter [47] and Inky [60] support automating 

repetitive tasks.   

Store. 14 enhancements store three types of data while being used. The first type 

relates to user’s activities such as filling input forms, page navigation, and job 

applications found in five enhancements. The second type is temporal information 

periodically gathered from designated sources such as online shopping malls, or 

ticketing sites found in five enhancements. The last is bookmarks of online resources 

such as news articles, blog posts, or streaming videos found in four enhancements. 

Existing WebEUP systems such as CoScripter [5] often provide public repositories for 

scripts, but none of them allow end-users to create custom storage of usage data.  

Notify. Eight enhancements send notifications to users via emails (7 enhancements) 

or SMS messages (1), periodically or when user-specified events occur. To our 

knowledge, no existing WebEUP tool supports notification.   
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 Design Implications 

Based on the challenges and the potential functionality of Web enhancements, we 

discuss two design implications for future WebEUP systems and designing Web sites 

in general.  

Social	Platform	beyond	Technical	Support	

Traditional WebEUP systems focus on lowering the technical barrier of Web 

programming. For example, mashup tools enable users to integrate information from 

multiple pages with just a few clicks. Automation tools allow users to create macro 

scripts through demonstration. Despite the advantage of those technical aids, we noted 

a few enhancement ideas require domain knowledge of multiple users who have the 

same information needs. For instance, when end-users want to integrate additional 

information with original pages, the key question is where the additional information 

can be found. When users want to focus on an important part of a long text, the key is 

which part of the text previous visitors found useful (similar to Amazon Kindle’s 

“Popular Highlights” feature.) An example of how a social platform could address the 

untruthful information issue follows. An end-user programmer creates and deploys an 

enhancement that attaches an interactive component (e.g. button for rating individual 

hyperlinks) to the original page. Users who have installed the enhancement would use 

the new component to provide their knowledge (e.g. quality of the linked resources), 

which will be saved in the enhancement’s database. As more data is collected, the 

enhancement will become more powerful.  

To enable end-users to build social platforms in the aforementioned scenario, 

future WebEUP systems need two functionalities. First, end-user programmers should 
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be able to create and attach interactive components that collect knowledge and 

feedback from users. Second, end-user programmers should be able to set up 

centralized servers that communicate with individual enhancements running in each 

user’s browser, and store collected information. To our knowledge, no prior WebEUP 

system has fully supported these functionalities for social platforms. However, there 

are certainly custom solutions of this type that are commonly used such as, for example, 

Turkopticon13 that helps web workers using Amazon Mechanical Turk rate job creators. 

Alleviate	the	Risk	of	Using	Enhancements	

According to the attention investment framework [4], end-users would decide whether 

to use an enhancement or not as a function of perceived benefit versus cost. Even 

though our participants assumed no development costs, we could identify the following 

concerns about risks of using enhancements. 

Uncertain needs. Our participants often had concerns about the dynamic and 

uncertain nature of their needs and situation. For example, P27 found advertisements 

on an online shopping site to be annoying, but did not remove the advertisements 

because of their potential usefulness in the future. WebEUP systems should be able to 

support interactivity so that users can change configurations or make decisions 

whenever their needs change. Otherwise end-users will be forced to stop using it, as 

P26 and P17 did with non-interactive pop-up blockers. 

Breaking the original design. Enhancement developers should try to minimize 

unnecessary change of the original site. Two participants expressed concerns about 

                                                

13 https://turkopticon.ucsd.edu/ 
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breaking the original site’s design and functionality: “I think the best part of Craigslist 

is its simplicity. I might have seen the filters, but did not bother setting them every time 

I visit this site.” (P20)  

Privacy and Security. End-users have significant privacy and security concerns 

about installing extra software, especially those developed by third-party programmers. 

Ironically, we observed end-users rarely read legal documents, and are trained to give 

permissions to popular apps. Future work should confront these practical concerns and 

design how to communicate potential risks and treatments.  

Summary	of	Design	Implications	

The seven categories of enhancements can be useful to web site designers as they think 

about what a wide range of users might want. There is another potential of more directly 

benefiting from end-user modifications to web sites. Actual enhancements made by 

end-users could provide valuable feedback for designers of the sites if those desires 

were expressed via use of a WebEUP tool. For example, designers could learn what 

kind of information users consider to be untruthful by learning about user feedback on 

specific information. Repetitive operations could be observed by seeing what 

modifications users make, etc. Nevertheless, those feedbacks cannot replace WebEUP, 

as designers and users often have conflicting interests. For instance, designers may not 

agree to remove advertisements that end-users find annoying since they provide 

revenue. Some ideas may be useful for specific user groups but not for everyone, and 

so are not worth pursuing. Ideally, designers should consider providing hooks or APIs 

that enable end-users to build robust, high-quality enhancements.  
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 Limitations 

We made several simplifying assumptions that limit the scope of our findings. First, 35 

participants of the interview study were not large enough to represent the entire 

population of potential end-user programmers. In order to extend the generalizability 

of the findings, an online survey would be an appropriate method. Second, around half 

of our participants have non-technical backgrounds, which is an unusual characteristic 

of end-user programmers. Some of the challenges and solutions they shared could be 

different from end-user programmers who usually have technical knowledge. Third, in 

order to minimize technical bias, the semi-structured interview did not provide any 

technical constraints. Therefore, participants imagined EUP solutions without 

considering the time and effort of development.  

 STUDY 2: NON-PROGRAMMERS MENTAL MODEL OF 
COMPUTATIONAL TASKS 

Programming is difficult to learn since its fundamental structure (e.g. looping, if-then 

conditional, and variable referencing) is not familiar or natural for non-programmers 

[67]. Understanding non-programmer’s mindset is an important step to develop an 

easy-to-learn programming environment. This second study builds on the first by 

examining how non-programmers naturally describe computational tasks common to 

the WebEUP enhancements described in the first study. The findings suggest both 

design implications and open-ended research questions for future EUP systems.   

 Participants 

The study was conducted with 13 participants, including five males and eight females, 

average 33.3 years old (SD = 5.86) with varying occupations as summarized in Table 
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2. All of the participants were experienced computer users, but they all said that they 

had not programmed before. The participants were recruited by the university mailing 

list that we used in the first study. They received no compensation for participation in 

this study.  

 Method 

The study aims to characterize how non-programmers naturally describe complex tasks 

without being biased by specific language constructs or interactive components. We 

employed the Wizard-of-Oz technique [95] where the interviewer acted as a 

hypothetical computer agent that could understand the non-programmer’s verbal 

statements, behavioral signals (e.g. page navigation, mouse click), gestures, and 

drawing on scratch paper, and help them through conversational dialogue. The 

computer agent (called “computer” from here on) followed the rules listed below.  

1. The computer can understand all the literal meaning of participants’ 

instruction, gestures, and drawings. However, the computer cannot 

automatically infer any semantic meaning of the task or the material. For 

example, a rental posting “4 Bedrooms 3 Lvl Townhome $1650 / 4br” is just a 

line of text to the computer.  

Table 2. Occupational background of the participants	
Graduate students 6 
 Engineering 3 
 Business 2 
 Education 1 
Professionals 3 
 IT specialists 2 
 Directors and office managers 1 
Non-professionals (e.g. homemaker) 3 
Total 13 
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2. The computer can perceive a pattern from participant’s repeated examples 

and demonstration. For example, if a participant counted numbers within 

a range 1-3 in a table, the computer asks the participants “Are you counting 

numbers that are within a specific range?”     

3. The computer can execute the participant’s instruction only if it is clearly 

specified without ambiguity. Otherwise the computer asks for additional 

information to resolve it through conversational dialogue like below:  

Programmer: Delete houses with fewer than three bedrooms. 

Computer: Please tell me more about ‘houses with fewer 

than three bedrooms’.  Which part of the page is relevant? 

When the programmer demonstrates a set of examples, the computer will 

suggest a generalizing statement like below:   

Programmer: Delete this one because it contains 3br.  

Computer: Do you want me to delete every line that has 3br?  

 

Figure 15. Participants were asked to explain how to draw a histogram of the numbers in the table. In 
this example, the participant gave histogram bins different codes (A-D), and marked each number with 

the codes. Since the participant could not put 12 into any bin, he marked the number with question mark 
and a line that points a missing bin.   
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A sheet of paper containing basic instruction was provided, and the participants could 

draw or write anything on the paper as shown in Figure 15 and Figure 16.   

Task	1.	Drawing	Histogram	

Given a sheet of paper containing a blank histogram and 10 random numbers between 

0 and 12 (see Figure 1), the participants were asked to explain the computer how to 

draw a histogram of the numbers. The blank histogram has four bins (0~3, 3~6, 6~9, 

and 9~12). The purpose of this task was to observe how non-programmers perform: (1) 

common data-processing operations (e.g. iteration, filtering, and counting), and (2) 

visualize numeric data by examples and demonstration.  

 

Table 3. In Task 2, the participants were asked to create a filter than removes houses 
with less than three bedrooms among housing rental posts scraped from Craigslist.com. 	

“You	want	 to	 create	a	 filter	 that	 removes	houses	having	 less	 than	3	bedrooms.	How	
would	you	explain	it	to	the	computer?”	
	

Brand New Townhome! $2200 / 3br - 1948ft² - (Clarksburg)  

Lanham 2/1 new deck $1050 / 1818ft² - (Lanham)  

4 Bedrooms 3 Lvl Townhome $1650 / 4br - (MD)  

823 Comer Square Bel Air, MD 21014 $1675 / studio   

       … (6 more)… 
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Task	2.	Custom	Filter		

We prepared 10 rental postings in Table 3 copied from an online marketplace14. The 

participants were asked to create a program that removes houses having fewer than 3 

bedrooms. The program consists of three components: (1) extracting text that 

represents the number of bedrooms in each post (e.g. “3br(s)”, “3bedroom(s)”, “3 

BEDROOMS”, “3/2”), (2) a conditional logic for filtering posts with less than three 

bedrooms, and (3) removing / hiding the filtered houses. The purpose of the task is to  

                                                

14 Craigslist.com 

 

Figure 16. In this example of Task 2, the participant used scribbles along with verbal statements. For 
example, the participant wrote variations of keywords that indicate “bedroom” used in the list. 

He/she also circled and underlined the number of rooms in each title to demonstrate the text 
extraction logic, crossed out titles that did not meet the criteria, and drew arrows from houses to 

empty slots in the list. 
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observe how non-programmers decompose a big task into sub-tasks, specify extraction 

queries, and refer temporary variables such as sub-strings and selected postings.   

Task	3.	Mash	Up		

At Amazon.com, each product has different options (e.g. available colors and sizes) 

that are shown in the product detail page. The participants are asked to create a program 

that extracts the available colors from detail pages, and attaches to the product listing. 

The purpose of the task is to understand how non-programmers would describe copy 

operations across multiple pages, and event handling. 

  Procedure 

Each session began with a brief interview about the participant’s programming 

experience and occupational background. The interviewer introduced the Wizard-of-

 

 

Figure 17. In Task 3, participants were asked to describe a simple Mashup program that shows 
available colors of each individual product in the Main page (top left) extracted from the Product 

Detail (bottom right) page.     
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Oz method, and gave an exercise task – ordering the interviewer (acting the 

hypothetical computer agent) to move a cup to another corner of the table. After 

participants said they fully understood the concept of the hypothetical computer agent, 

we started the actual study by introducing the three scenarios in a randomized order. 

For each scenario, participants were asked to explain the task to the “computer”. 

Participants were allowed to finish or to give up a task at any point.    

 Data and Analysis 

The entire session was video recorded, and transcribed for qualitative analysis. The 

transcript of each task consists of a sequence of conversational dialogue between the 

participant and the interviewer, finger and mouse pointing gestures, scribbles on the 

paper (Figure 16 and Figure 17; only for T1 and T2), and page scroll and mouse events 

in the browser (only for Task 3). To analyze the transcript, the first author created the 

initial codebook derived from the literature [67] and an initial post-interview discussion 

within the research team. The codebook included how the participants described and 

what challenges they experienced. While repeating the coding process, a few categories 

emerged: programming styles, imperative commands, ambiguities, and multi-modal 

intent.  

 Findings 

In this section we characterize how non-programmers describe computational tasks. 

Participants were allowed to stop at any moment, but all of them could eventually 

complete tasks with the computer’s help. Each task took an average of 415.3 seconds 

(SD = 217.4). We did not observe any fatigue effect. Since participants had very limited 

understanding of the computer at the beginning, most of their initial explanations were 
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not very informative. Thus the computer asked for further information as the examples 

below.   

(Task 1) 

P12: Wouldn't computers draw graph when numbers are assigned? I'm asking 

because I have no idea. 

P11: Find the numbers, and draw them at the first bin.  

Computer: How can I draw them?  

P11: What should I tell?  Color? 

(Task 2. Custom Filter) 

P5: First, I scan the list with my eyes and exclude them. They clearly stand out. 

Computer: How do they stand out? 

P8: I'd order, “Exclude houses with one or two bedrooms.”  

Computer: How can I know the number of bedrooms? 

(Task 3. Mash Up) 

P11: I'd ask computer to show available colors of this Columbia shirt.  

Computer: Where can I get available colors? 

Natural language tends to be underspecified and ambiguous [67]. We frequently 

observed that our participants skipped mentioning essential information. For example, 

most participants did not specify how to iterate multiple elements in list. They instead 

demonstrated handling the first item, and expected the computer to automatically repeat 

the same process for the rest of the items. They did not refer to objects by names as 

programmers use variables. However, they referred to previously mentioned objects by 

their actual values (underlined in the following example), as P20 said, “In this next 

column, we need items going 6, 7, and 8. So please find those 6, 7, 8, and draw bar in 

this column.” They also used pronouns (e.g. “Remove them”), data type (e.g. “Attach 

colors”), and gestures (e.g. “Paste them here.”). While loops and variable referencing 
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are core concepts of programming languages, our findings suggest that non-

programmers would find them unnecessary or even unnatural. We will discuss the issue 

further with design implications for future EUP systems in the discussion section.   

Through conversational dialogues, participants figured out what information the 

computer requires and how to explain. We found several characteristics of how non-

programmers explain computational tasks as listed below. 

Explaining with rules and examples was used by 9 of 13 participants. When 

participants explained rules first, the following examples usually provided information 

that the rules were potentially missing. For example, while drawing a histogram for 

Task 1, P4 stated a rule, “Determine which bin each number is in”, followed by an 

example, “If the number is one (pointing the first item in the table), then count up this 

bin (pointing the first bin in the histogram).” Participants also provided examples first, 

and then explained the rules. P10 doing Task 1 gave all the numbers (0, 1, and 2) for 

the first bin, “For here (pointing the first column) we need 0, 1, and 2”, and then 

explained the range of those numbers, “Find numbers including zero, smaller than two.” 

Traditional programming languages rarely allow example-based programming. 

Although EUP systems often support Programming-by-Example (PBE) techniques, 

they do not allow this pattern – combining rules and examples to describe individual 

functional elements.    

Elaborating general statement through iteration was observed for every 

participant. Initial explanations of tasks were usually top-level actions (e.g. draw bars, 

remove houses, attach pictures) that contained a variety of ambiguities; but participants 

then iteratively elaborated the statements by adding more details. For example, P1 
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doing T3 described the top-level action, “Attach pictures here.” Then he elaborated 

where the pictures were taken from, “Attach pictures from the pages.” He kept on 

elaborating what the pages are and how to extract pictures from the pages. For T 1, as 

another example, P14 told the computer, “Draw a graph.” She then rephrased the 

statement with more details, “Draw a graph to number 2.” This pattern is far from 

traditional programming languages that support users to create statements in the order 

of their execution.  

Multi-modal expressions including gestures and scribbles were frequently used 

by all participants. While verbal statements were still the central part of explanation, 

they used gestures along with pronouns (e.g. “Count these”, “Put them here”), and 

scribbles to supplement verbal statements like an example in Figure 2. While multi-

modal expressions seem to be natural and effective for non-programmers, traditional 

programming environments rarely support them.  

Rationales are not direct instructions for the computer. However, we consistently 

observed participants explaining rationales. For example, P6 doing T3 explained why 

she chose to attach small color chips rather than larger images, “While we can show 

images, which would be quite complex, I'd want you to do use color boxes.” P13 also 

explained rationale of her scribbles on the sheet of T1, “We can also secretly write 

number here (center of each cell) to remember, so track for afterward so we didn't 

make any mistake.”  

 Implications 

This study provides characteristics of non-programmers explaining how they would 

solve computational tasks. Given that traditional programming environments do not 
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fully support the way these participants conceptualized their solutions, we discuss the 

implications for the design of multi-modal and mixed-initiative approaches for making 

end-user programming more natural and easy-to-use for these users. Our 

recommendations are to: 

Allow end-users to express ideas with rules, examples, gesture, and rationales. 

Traditional programming environments mostly support single programming styles: 

imperative, declarative, or example/demonstration-based. However, as seen in the user 

study, end-users express ideas via combinations of rules, example, and rationales.  

Support iterative refinement of programs. End-users may not be able to provide 

complete information of the programs they want. Instead, they would start with quick 

and brief description of task outlines, goals, or solutions that handle only a subset of 

the potential scenarios. They then iteratively refine it by adding more rules and 

examples. In order to support this iterative refinement, future EUP tools should allow 

users to sketch programs with missing details, and guide them to fill in.     

Support mixed-initiative interaction to disambiguate user intent. To guide non-

programmers to explain essential information such as loops and variable referencing, 

our study employed conversational dialogue (as explained in Section 5.2) between 

participants and the computer. For example, when participants gave incomplete 

statements (e.g. demonstration for the first item), the computer asked them for 

additional information (“What would you like to do for the rest items?”) or confirmation 

(e.g. “Do you want to do the same for the rest items?”) Likewise, future EUP tools 

should incorporate mixed-initiative interaction to help end-users express unambiguous 
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statements; although it is an open-ended research question how the computer and end-

users have mutual understanding. 

 Limitations 

We made several simplifying assumptions that limit the scope of our findings. First, 

the computer followed three informal rules, which may not be specific enough to design 

working a system. A formal set of rules would make the Wizard-of-Oz study stronger. 

Second, participants could not review or test programs they built, which is uncommon 

for most programming environments. Third, the three tasks do not represent a full 

spectrum of computational tasks. However, we believe that even this narrow analysis 

provided useful insights for designing natural and intuitive EUP systems. To adress 

these limitations, a follow-up study should employ an actual, interactive EUP system 

that presents and tests solutions that address the challenges and the implications of this 

study.   

 Conclusion 

This chapter reports two formative studies that extend the understanding of end-users' 

needs and mental models. The first study, a semi-structured interview, explores 

challenges that end-users daily experience, and suggests seven functionalities of future 

EUP systems. The second, a Wizard-of-Oz study, demonstrates how non-programmers 

explain common computational tasks and provides design implications for more natural 

programming environments. Based on these findings, we designed VESPY, an 

interactive EUP system VESPY, which is presented in the following chapter.  
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Chapter 4: VESPY: A Visual Environment for 

Symbiotic Programming 

 Introduction 

In the previous chapter, we reported end-users’ needs for enhancing the web, and how 

they express programming intent. Based on that, we developed VESPY (Visual 

Environment for Symbiotic Programming), an end-user programming tool that enables 

amateur programmers to build interactive Web enhancements. This chapter presents 

VESPY’s user interface, domain-specific language, and PBE engine. While most end-

user programming systems for the Web (WebEUP) focus on specific application 

domains (e.g. extracting data from pages, automation, information mashup), VESPY 

covers much wider range of enhancements by letting users orchestrate common 

functionalities (e.g. extraction, transformation, integration, automation, customization, 

and interactivity). Our approach is to interleave visual programming techniques with 

programming-by-example (PBE) so that users decompose complex tasks into tractable 

modules (with the grid UI), and generate solutions for each module by providing input 

and output examples to the PBE engine. To demonstrate the versatility of VESPY, we 

present four example enhancements. Finally, a preliminary user study shows that PBE 

helps users do complex tasks with efficiency, but simple tasks are more suitable for 

direct specification. We also observed that participants experienced usability issues and 

made a variety of mistakes.  
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 Design Iteration 

The development of VESPY was a long iterative process, taking 1.5 years to explore 

various ways to accommodate visual programming and PBE. In this chapter we 

describe design prototypes of VESPY UI with our consideration of challenges and 

rationales.  

 Version 1: Spreadsheet 

The first UI design (Figure 15) was matrix-based, motivated by the generality and 

understandability of standard spreadsheets. Each column represented a list of 

homogeneous values, calculated by the same operation (e.g. DOM elements extracted 

with a single query). When the “application” represented by the spreadsheet is executed, 

VESPY executes an operation assigned to the leftmost column to update its values, and 

then repeats the same process for columns to the right. The blue arrows between 

adjacent columns represent operations that calculate the next column from the previous 

columns on the left side. Note that PBE can suggests multiple operations for a single 

column, illustrated as multiple blue arrows next to the first column. The numbers in the 

blue arrows are number of values it calculates.  For example, in Figure 15, the first 

column has a single value, which represent the current page, before executing the 

program. As the entire program is executed, the second column’s operation extracts 

100 DOM elements of each row (p.row). The third column extracts 100 URLs from 

each row. The fourth column loads pages of the URLs, and then gets images in the fifth 

column.  

We informally assessed strength and weakness of the spreadsheet design. We felt 

that the spreadsheet approach was an effective, intuitive representation of values, and 
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the linear flow of data was straight forward. However, we decided to try an alternative 

design, because the spreadsheet metaphor was too limiting. We were not able to find a 

way to adapt it to support complex control flow such as branches or nested loops.  

 

 
Figure 18. The 1st design of VESPY UI looks like a spreadsheet. Each column represents a list of 

values. The green arrows represent operations that calculate the next column.  

 

Figure 19. The 2nd design of VESPY UI. Widgets that contain small spreadsheets represent complex 
program structure such as branching and merging.  
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 Version 2: Graph of Multiple Spreadsheets 

The 2nd version was designed to represent more complex, non-linear data flow such as 

branching, merging, and executing other modules. Although existing dataflow 

programming environments accommodate graph structure (as discussed in the Related 

work section), they do not consider how to support interaction, such as reviewing how 

individual values change along the control flow, or providing input and output 

examples. We wanted our UI to represent control flow and data flow at the same time. 

For example, Figure 19 illustrates a data flow with a branching and a merging for 

finding a specific item in the list. While the 2nd design is clearly more versatile than the 

1st one, we felt the 2nd version is still weak at presenting what the entire program is 

about. 

 

Figure 20. The 3rd design of VESPY UI is optimized for showing the description of every operation.     
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 Version 3: List of Operations 

While designing the 3rd revision, we changed our focus on describing operations rather 

than values. As illustrated in Figure 20, items in the vertical list (e.g. “Pick elements”, 

“Inspect links”) represent steps, which will be executed in sequence when users run the 

program. The vertical list works like an accordion, where users can fold / unfold items 

 

 

Figure 21. The 4th design of VESPY UI employs a 2D grid and a semantic zoom feature.  
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to see details. To add an operation, users click at the bottom of the list. To insert an 

operation, users click between two items. To infer commands for a step, users can click 

the step to unfold its input (above the step) and output (below the step) value tables. As 

users type examples in the value tables, the PBE engine recommends corresponding 

commands that users can click to confirm. The design is relative compact – taking only 

small part of the entire screen, thus it would be comfortable to use alongside with the 

web pages. However, the design also has many limitations. For example, it would be 

extremely difficult to visualize complex non-linear programs that contain branching 

and merging. Moreover, the design was not flexible to accommodate large amount of 

input and output examples. In sum, we felt the 3rd design was too simplistic to support 

symbiotic interaction.    

 Version 4: Grid and Semantic Zoom 

The 4th revision was designed to better visualize non-linear control flow and data 

at the same time. Each cell on the 2D grid represent an operation and calculated values. 

By default, each cell accepts input data from the left and the above, and thus data flows 

top-to-bottom, or left-to-right. Users could manually modify each node to take input 

from arbitrary node as well. For example, the program in Figure 21 starts from the 

leftmost cell, “Run when page loaded”, and triggers the cell on the right side. The cell 

in the middle, “Choose [left] containing [above]”, gets input from left and above. After 

filtering, 37 items that contains the keyword becomes invisible by the rightmost cell. 

We liked the grid UI, not only because it represents non-linear flow of execution, but 

also provides extra flexibility for program decomposition. For example, to solve 
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complex problems, users can create sets of connected operations, and connect them 

later.  

 

The biggest design challenge was to find a balanced representation for both 

operations and values of each node. The 4th design addresses the requirement with 

semantic zoom. As users click a cell, the system would zoom into the selected nodes 

and show more details, such as full description of the operation, and current values. 

Although semantic zoom sounded brilliant, we soon realized that it also has a major 

limitation. When creating a new node or arranging multiple nodes, which are common 

 

Figure 22. The 5th design of VESPY UI includes a pop-up panel that shows details of the currently 
selected node. The top row represents values of the input nodes and the current node. The middle row 

explains what operation is assigned to the current node. The bottom row shows a set of operations 
that users can click to assign to the current node.  
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activities of visual programming, users need to see the overview (for organizing nodes) 

and node details (for providing input and output examples) at the same time. Since 

semantic zoom can only provide a single view at a time, we could not confirm that the 

small and the large level of semantic zoom provide much benefits.    

 Version 5: Grid and Pop-up Panel 

For the 5th revision, we designed a pop-up panel that shows details of the current node 

and supports PBE interaction. As illustrated in Figure 22, the top of the panel shows 

values of the input nodes (left) and the current node (right) side by side so that users 

can easily compare corresponding input and output examples for PBE. The middle row 

gives title and description of the operation assigned to the node. The bottom row shows 

operations generated by the PBE engine based on the input and output examples. Users 

pick one of the operations to assign to the current node. I liked the panel design for its 

top, middle, and bottom structure can represent a wide range of situations. However, 

we soon realized that the bottom part can easily be overcrowded with a large number 

of generated operations. Moreover, in pilot studies we observed that inexperienced 

users could not easily grasp in what order they have to use the top, middle, and bottom 

parts of the panel. In the end, we decided to separate the bottom, so that the panel can 

focus on details of the current node.     
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 Version 6: Grid, Pop-up Panel, and Side Panel 

The 6th design was the last revision, as illustrated in Figure 23.  It has a side panel on 

the left, which contains the information of the current program (called enhancement), 

and operations (called actions) that the PBE engine generates or filters based on the 

current node values. The pop-up panel shows information of the current node. Another 

pop-up panel, called Inspector, appears when users select DOM elements of the web 

page. More details will be discussed in the following sections.  

 Example Walkthrough  

Here is a typical walkthrough of creating simple enhancements using VESPY. Jane is 

a knowledge worker who frequently calculate the sum of numbers in a HTML table. 

Although she has been doing the task by manually importing the entire page to 

 

Figure 23. The VESPY user interface consists of the grid, info, actions, and node details. s can open 
the UI at any web page by pressing the button on the top right corner of web browsers. 
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Microsoft Excel. She wants to add an interactive feature to the web page so that she 

can calculate the sum simply by clicking a button.  

Jane first navigates to the page she visits, and clicks the button on top of her 

browser (Figure 23). Then the VESPY UI appears on the left side of the browser, 

pushing the original page to the right. In the middle, the grid UI shows a new empty 

enhancement with a Trigger node (Figure 24). The Trigger node will execute nodes below 

and right when the page is completely loaded.  

 

 

Figure 24. A new enhancement is created. The grid UI contains a Trigger node to begin with. The 
original web page is shown on the right side.    
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Since Jane wants to calculate the sum only when she needs it, the next step is to 

attach a button for executing the calculation. She drags Create	Element operation from 

Actions	panel to the below of the Trigger node. The pop-up panel shows the detail of 

Create	Element operation (Figure 25), she directly specifies parameters from “Create	

 
Figure 25. User can (1) drag an operation from Actions panel (left) to the grid (center), (2) directly 

change options of the operation (e.g. “button”, “calculate sum”) in the floating node detail window, 
and then (3) run the operation by clicking the play button on the right side of the window. Finally, (4) 

the values of the node will be updated.   

 
Figure 26. User can attach new elements to any place in the web page by (1) drag-and-drop an element 
to the target place, (2) choosing the relative position (before, front, back, after) to the target, and (3) 

clicking a suggested program in the Actions panel. Then (4) two nodes are added to the grid.  
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[span]	elements	using	the	[input1]” to “Create	[button]	elements	using	the	[calculate	sum]”. 

Now she tests the Create Element operation by clicking the play	button on the right side 

or the panel (Step 3 in Figure 25), the node runs the operation and puts newly created 

button element to its values.  

Then she attaches the “calculate sum” button to the page as Figure 26 illustrates. 

Users can drag a DOM element, which is a value of the current node, to any target 

DOM element of the current page. As she drops the button to the table header (Step 1 

of Figure 26), another pop-up panel shows up and asks her to clarify its relative 

placement (before,	front,	back,	after) to the target. If she chose back, and the button would 

be attached as the last element in the target. After attaching at least two elements, the 

PBE engine generates corresponding a 2-step operation (Extract	Element, and Attach		

 
Figure 27. User can set an event handler by (1) dragging Trigger operation next to the node containing 

elements, and (2) setting the correct input channel.   
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Element), and shows them in the Actions	panel. As she clicks the 2-step operation, 

they are inserted in the grid UI.  

Next step is to create an event handler, which specifies what will happen when the 

button is clicked in runtime. She drags Trigger	operation at the right of the Attach	Element	

node, which contains the button element (Step 1 in Figure 27). Now the Trigger node 

 
Figure 28. s can specify a node that extracts elements at a specific DOM position by (1) create an 

empty node, (2) click an element of interest and press extract button (repeat twice for extracting a set 
of elements), and (3) confirm the suggested Extract Element operation in the action panel. Then (4) 

the empty node is replaced with the node that can extract all the elements at the same position.   

 
Figure 29. s can create new elements from values with Create Element node. 
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monitors the button element, and executes the following nodes when the button is 

clicked.  

Thus far the enhancement creates a new button, attaches it to the table, and 

assigned an event-handler to the button. The next step is to define how to calculate the 

sum of the numbers. As illustrated in Figure 28, she creates an empty node next to the 

trigger so that the node will be executed when the button is clicked. She clicks the DOM 

elements of the numbers, and click Extract button in the inspector pop-up to add them to 

the current node. (Step 2 in Figure 28). As multiple (at least 2) elements are added to 

the current node, the PBE engine generates an Extract	Element operation (or multiple 

operations), and show it in the Action panel. She validates the suggested operation, and 

clicks to assign to the current node (Step 4 in Figure 28). 

 
Figure 30. s can extract specific attributes from elements by (1) creating an empty node next to the 
elements, (2) clicking the attribute value in the detail window, and (3) confirming the suggested 

action. 
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The Extract	Element node contains DOM elements of numbers of which she wants 

to calculate the sum. Thus the next step is to get the attribute from the elements. She 

creates an empty node next to the extracted elements (Step 1 of Figure 30), and clicks 

the attribute of interest (“50”; Step 2 of Figure 30). Then the PBE generates “Get	[test]	

of	[Input1]” operation, and suggests it in the Actions	panel (Step 3 of  Figure 30). Lastly, 

she clicks the operation to assign to the current node.  

She needs to specify how to calculate the numbers. There are two methods for 

specifying the Sum operation: first, she can drag and drop the Sum operation directly 

from the Action panel to the empty cell below the numbers. Second, she can create an 

empty node below the numbers, and type the correct value of the Sum operation so that 

the PBE engine will generate and suggest the Sum operation at the top of the Action 

panel. After specifying the Sum operation, she drag and drop the Create	 Element 

 
Figure 31. A simple enhancement creates a button for calculating total points.  Three nodes on the left 
side create and attach “calculate sum” button to the table. When the button is clicked in runtime, the 

trigger node executes the following nodes to extract all the points from the table, add them, and attach 
the result back to the page. 
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operation, and change the parameter to “Create	[span]	elements	using	the	[input1].” The 

step is important, as we can attach only DOM elements to the page.  

Finally, she drags and drops the span element to the table, and clicks the Attach	

Element operation suggested in the Action panel – as she previously attached the button 

element to the table. The complete enhancement (Figure 31) attaches a “calculate sum” 

button to the HTML table, and when the button is clicked, the nodes on the right side 

of the trigger extract the points, sum them up, and then attach it back to the page.  

 VESPY System 

Along with the iterative design process, we implemented VESPY as a Chrome browser 

extension. Users could activate VESPY for any HTML based web pages, to create an 

enhancement that would automatically customize all the pages in the same domain. 

This section describes design and technical details of how VESPY works.     

 The Grid UI 

VESPY includes several UI components, illustrated in Figure 23. Users open the UI by 

clicking the button at the top of the browser window. The Grid panel shows all the 

nodes of the current enhancement. The Info panel contains the current enhancement’s 

 

Figure 32. A simple enhancement creates a button for calculating total points.  Four nodes on the left 
side attach “calculate total points” button to the Web page. When the button is clicked, the trigger 

node runs the following nodes to extract all the points from the table, add them, and attach the result 
back to the page. 
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title and description. The Actions panel shows operations defined in the VESPY’s 

domain specific language and actions suggested by PBE and PBD. The node detail UI 

shows details of the currently selected node such as operation, values, and input nodes. 

VESPY employs the data-flow programming paradigm [32] that represents a 

program as a directed graph of data flowing between connected operations. Edges 

between nodes pass not only data but also define which node should run next. As an 

example, Figure 32 illustrates the structure of a simple enhancement that attaches a 

“Calculate total points” button below a plain HTML table. When the button is clicked, 

the nodes on the right side of the trigger extract the points, sum them up, and then attach 

it back to the page.  

Most real-world problems are complex enough that state-of-the-art PBE engines 

cannot solve in single steps. Thus it is crucial for users to deconstruct and reconstruct 

smaller modules. Our approach is to interleave visual programming and PBE 

techniques. With the grid UI, users create nodes and arrange them to compose large 

programs without necessarily following the order of execution. Although some existing 

PBE tools such as CoScripter [47], Wrangler [25] or Karma [79] allow users to build 

up multi-step programs, they support sequential lists only that users have to create steps 

in the exact order of execution. In contrast, VESPY’s grid UI provides more flexibility 

for users to arrange multiple groups of operations, where each group can be 

independently created and tested, and connect them later to compose large programs.  

 Direct Specification 

VESPY allows users to directly specify a node by dragging an operation from the Action 

panel to the grid. Users then manually change the parameters in the node detail UI, and 
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test the completed operation. While direct specification is simple and efficient for 

simple operations, and applicable for most programming tasks, it has learnability and 

efficiency issues as previously noted by researchers [76]. First, direct specification 

requires users to know all the syntax and usage from documentation. Second, even if 

end-users had sufficient knowledge, directly specifying complex tasks requires a 

significant amount of time and effort. While direct specification is suitable for simple 

WebEUP tools, expressive programming tools like VESPY, which has more than 30 

operations, require alternative methods. 

 

 Programming-by-Example (PBE) Engine 

As reviewed in section 2.2.4, PBE is an approach to find programs that are consistent 

with a few input and output pairs given from the user. VESPY provides PBE techniques 

to generate single or multiple operations from user intent. VESPY offers provides six 

ways to express their intent. 

 
Figure 33. Users can bring elements in the input node by (1) clicking the arrow button in the node 

detail window.  (2) When the current node contains elements of the input node, PBE suggests a three-
step task that filters the input elements by their properties. (3) Clicking the task will add three new 

nodes for the filtering task.  
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First, users can type desired output values in a node that follows the input. This is 

suitable for data transform operations such as arithmetic, filter, sort, and substring. Figure 

34 illustrates the example process of creating sort operation using PBE.  

Second, users can extract couple examples of DOM elements from web pages, and 

ask the PBE to infer a consistent Extract	Element operation for elements at the same 

position. Figure 28 illustrates a typical use case of this process.  

Third, users can choose specific attributes (e.g. text) directly from input elements 

(e.g. paragraph). For example, Figure 33 illustrates the process of getting text attribute 

from TD element by clicking an example of desired attribute values in the following 

node’s detail.  

Fourth, users can directly choose a subset of input elements as intent of filtering 

task. Then the PBE infers tasks that consist of 2-4 operations (Get	Attribute, Number	/	

String	Test, and Filter).  

Fifth, users can drag and drop values in the current node to the web page. To attach 

elements to current page, a user opens up the node containing the elements, and drags 

the button tag to the target as shown in Figure 26. If the user wants to attach the element 

 
Figure 34. VESPY PBE suggests single / multiple operation tasks based on the values of the input 

nodes and the current node.  To sort a list of numbers, an user (1) creates an empty node that follows 
the input node. (2) He starts typing desired output “-5”. However, at this point, PBE can only suggest 

a task with Number Test + Filter operations. (3) As he typed the sufficient output values, PBE 
suggests a correct Sort operation. (4) He clicks the suggestion to confirm it as the node’s operation. 
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to a set of targets, he/she repeats the steps once more. Then VESPY will suggest a 2-

step task (Extract	Element	à Attach	Element).  

Lastly, users can express their intent with multiple input nodes. For example, as 

Error! Reference source not found. illustrates, if an user wants to filter elements with 

a complex predicate logic, he can prepare a few steps to get the key values, and then 

use both the original elements and the key values as input nodes for the node of filtered 

elements.  

 Domain Specific Language (DSL) 

The expressive power of VESPY enhancements is defined with the domain-specific 

language (DSL) written in JavaScript. The DSL enables users to build a wide range of 

enhancements by combining the five areas of common WebEUP functionalities. As 

summarized in Figure 36 and Figure 37, an enhancement consists of multiple nodes 

that are connected to other input nodes. Each node contains an operation (P) and a list 

 

Figure 35. Filtering a set of table rows by values of a specific column requires the filtered list [c] and 
the key values for predicate [b]. Users (1) extract key values from the original list, (2) 
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of values (V). VESPY currently supports only four value types (DOM element, String, 

Number, and Boolean), and each value list can have single data type, defined by the 

top element. An operation has a type (e.g. Load	page, Extract	Elements) and parameters.        

The DSL’s operations are shown in Table 2, covering five areas the common 

WebEUP functionalities plus event handling and data storages.  

 

Figure 37. Representation of the VESPY program. An enhancement consists of multiple nodes. The 
enhancement in this figure calculates the average of numbers ([1,3,6]) by running the four nodes in the 

numbered order (1à2à3à4). Each node contains an operation, values, and input nodes. When its 
preceding node triggers a node, it executes its operation, updates its values, and then triggers its 

following nodes. 

 

 

 

Figure 36. The syntax of VESPY enhancements. 
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Operation Input Output Param Description 
DATA EXTRACTION 
Load page IURL ODOM - Load page DOM elements of IURL 

Extract Elements IDOM ODOM path Extracts elements using path from IDOM  

Extract Parent  IDOM ODOM d Get enclosing elements of IDOM, d steps above 

Find Tab IURL   Find a currently open tab of IURL, and executes the 
following nodes in the tab.  

Get attribute IDOM OVAL k Get attribute k of elements of IDOM 

DATA TRANSFORMATION 

Literal I O  Directly set the current node data to I 

Filter I O  Get a subset of I whose corresponding boolean value in 
IBOOL is true 

IBOOL 

Sort IVAL OVAL direction Sort values in IVAL in ascending / descending direction 

Unique I O  O ß I without repeating same values  

Substring ISTR OSTR S1, S2, B1, B2  Get substring of ISTR from string S1 to S2, including Si if 
Bi is true. 

String Test ISTR1 OBOOL p OBOOL will have True if ISTR1 contains ISTR2 , False 
otherwise  ISTR2 

Number Test INUM1 OBOOL op Evaluate inequality (INUM1  op  INUM2) and update true / 
false in OBOOL.  op can be <,<=,>,>=,==,!=  INUM2 

Arithmetic INUM1 ONUM op Calculate two operands INUM1 and INUM2 with operator 
op, which can be  +,-,*,/,%.  INUM2 

Compose text ISTR1 OSTR s Concatenate every pair of values in ISTR1 and ISTR2 with 
separator s ISTR2 

MODIFYING / CREATING DOM ELEMENTS 

Attach elements IDOM1 ODOM  Attach DOM elements of IDOM1 to IDOM2. 

IDOM2 

Create elements IVAL ODOM t Create new DOM elements using Input values and tag 
name t, which can be button, span, or img.  

Literal element - ODOM t Create a single element from t, which is JSON string of 
an arbitrary element.   

Hide / Show IDOM ODOM  Hide / Show IDOM elements. 

Set attribute IDOM ODOM k Updates IDOM elements’ attribute k with IVAL 

IVAL 

SIMULATING MOUSE AND KEYBOARD INTERACTION 

Click IDOM -  Simulate mouse clicks on Input elements.  

Type IDOM - str Simulate keyboard input str on input field of VDOM.  

DATA STORAGE 

Store data IVAL - k Store Input values into data storage with key k. 
(Not implemented yet) 

EVENT HANDLING AND FLOW CONTROL 

Trigger IDOM ODOM e Trigger the node on the right when event e occurs.  

Table 4. VESPY operations and their required parameters. Subscripted types (e.g. VAL of IVAL) mean that 
the operation requires the type of the value. IDOM must contain only DOM elements; IVAL can be any type 

except DOM elements.  



 83 

 Single-step inference algorithms 

Many operations of VESPY have inference algorithms that find parameters 

corresponding to given Input (input node values) and Output (current node values). 

When a node value has been changed, the PBE system asks each operation to try its 

inference algorithm. An inference algorithm would fail and return false, if there is no 

parameter that satisfy the given input and output. The following list briefly explains the 

inference algorithms.   

Extract Element can infer a path for extracting a set of elements (Output) from a 

single element / multiple elements (Input). If the input node contains a single element, 

the algorithm tries to infer a 1-to-n query for extracting all the output elements from 

the element. If multiple elements are in the input node, the algorithm will try to find a 

1-to-1 query that extracts each output from matching input elements. VESPY uses a 

XPath-based algorithm similar with Sifter [31], Karma [79], and Vegemite [52].  

Extract Parent can infer how many steps a set of elements (Out) is above another 

set of elements (In) as illustrated in Figure 38. It returns fail if every output does not 

enclose the corresponding input element.  

Get Attribute can infer the attribute key for getting the output values from the 

input elements. For example, if the output elements are URL attributes of the input 

 

Figure 38. An example of Extract Parent operation inference. 
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elements, then the algorithm will return a Get	Attribute operation having ‘URL’ as the 

key parameter.  

Literal can infer the parameter for setting the current node values. For example, if 

the current node values are [1,2,3] then the algorithm simple suggest Literal operation 

with “[1,2,3]” as the parameter. 

Sort can infer the right direction to get the output values by sorting the input values.  

Unique checks whether the unique set of the input values is equivalent to the 

output values, and returns a Unique operation or false.   

Substring can infer two tokens (S1 and S2) and boolean values (B1 and B2) for 

getting the output texts from the input texts. S1 and S2 indicate the starting and ending 

position of the substring, and B1 and B2 indicate whether S1 and S2 should be included 

or not. If it cannot find a consistent set of parameters, it returns false. Table 5 shows 

three examples of Substring inference.  

String Test can infer a keyword that can determine true or false values of the 

output from the input strings. The inference algorithm also tries whether the keyword 

should be in or not in the input string as shown in Table 6. 
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Number Test can infer an operator (e.g. <, >, ==, <=, >=, !=, %=, !%=) and an 

operand node or number that can determine true of false values of the output numbers 

from the input numbers as shown in Table 7. In order to get an accurate result, Number	

Test requires around many examples.  

IN	 OUT	 RESULT.		S1	[B1]	–	S2	[B2]	
S1	 B1	 S2	 B2	

[“CSIC-1032”,	“MSC-33”]	 [“1032”,	“33”]	 “-“	 false	 “_EOF_”	 false	
[“(6/7)(4/5)”,”49(28/11)”]	 [“(6/7)”,	“(28/11)”]		 “(“	 true	 “)”	 true	
[“323-708-7700”,	“510-333”]	 [“323”,”510”]	 “”	 false	 “-“	 false	

Table 5. Examples of Substring inference. 

 

IN	 OUT	 RESULT.			
keyword	 In		/	not	in	

[“CSIC-1032”,	“MSC-33”]	 [true,	false]	 “CSIC”	 in	
[“a	1”,	”b	2”,	”a	2”]	 [false,	true,	true]	 “1”	 not	in	
[“tomato	soup”,	”potato	soup”,	
“tomato	salad”]		

[true,	false,	true]	 “tomato”	 in	

Table 6. Examples of String Test inference 
 

IN	 OUT	 RESULT.			
operator	 Operand	

[-5,	3,	9,	1,	2]	 [true,	false,	false,	false,	false]	 <=	 -4	
[1,2,3,4,5]	 [false,	true,	false,	true,	false]	 %=	(divisible)	 2	
[3,1,2,0,5]		 [false,	true,	true,	true,	true]	 !=	 3	

Table 7. Examples of Number Test inference 
 

IN1	 IN2	 OUT	 RESULT.			
Operand1	 operator	 Operand2	

[-5,	1,	2]	 [5]	 [10,6,7]	 IN1	 +	 IN2	
[1,	2,	3]	 	 [2,	4,	6]	 IN1	 *	 2	
[3]		 [6,2,-3]	 [0,2,0]	 IN2	 %	 IN1	

Table 8. Examples of Arithmetic inference 
 

IN1	 IN2	 OUT	 RESULT.			
Text1	 connector	 Text2	

[“CSIC”,	“MSC”]	 [1032,	33]	 [“CSIC-1032”,	
“MSC-33”]	

IN1	 “-“	 IN2	

[“a”,	”b”]	 	 [“a	is	good”,	“b	is	
good”]	

IN1	 “”	 “	is	good”	

[	“soup”,	”salad”]	 [“potato”]	 [“potato	soup”,	
“potato	salad”]	

IN2	 “	“	 IN1	

Table 9. Examples of Compose Text inference 
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Arithmetic can infer an operator (e.g. +, -, *, /, ^) and two operands (numbers or 

input nodes) for getting the output numbers. Table 8 shows examples of Arithmetic 

inference.    

Compose Text can infer a connector (text or an input node) and two text (or input 

nodes) for getting the output text (Table 9). 

The rest operations (e.g. Create	element,	Literal	element,	Hide,	Set	Attribute) are not 

suitable for input and output examples.   

Recipe  Condition / Decomposition 
Extract Attribute Condition: Every Output Text exists in Input Element.  

 
Find Path Condition: Target elements are not within or enclosing the Input 

elements. 

 
Filter Element  Condition: Filtered Elements is a subset of Original Elements. 

      
Table 10. The core set of task recipes in VESPY. If input and output satisfies the condition, the recipe 

will create temporary nodes (in orange color) and will try to find sub-solution. 
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 Multi-step PBE with task recipes 

PBE provides a larger benefit when it generates programs for complex tasks. For 

example, filtering	elements	by	attribute task requires at least four nodes. If PBE can 

generate the four nodes in a single step, it will save a significant amount of user’s time 

and effort. The problem is that solving large tasks mostly require multiple PBE 

algorithms.  

We thus developed a planner that decomposes a large problem into sub-problems, 

and assigns them to different PBE algorithm. Each plan is called a task recipe.  Table 

10 shows a few of them. The search algorithm was inspired by HTN (Hierarchical Task 

Network) planning [64]. The algorithm detail is beyond the scope of this paper. In short, 

when the provided input-output examples match with a recipe’s condition, the recipe 

creates several intermediate nodes (orange color in Table 10) and requests 

corresponding PBE algorithms to solve them. If they could find matching solutions for 

every intermediate node, the planner combines them and suggests to the user.  

 Example Enhancements 

To demonstrate the versatility of VESPY, this section presents four enhancements 

designed to exemplify the kinds of problems we know that users have based on the 

studies of Chapter 3.  
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 Example #1: Deep search 

A fictitious user regularly visits Craigslist.com to buy second-hand items. For every 

item he found interesting, He must visit the detail page, check information, and move 

back to the listing page. To make it more efficient, He wants to look into linked pages 

and search keywords without opening them. Let’s call it deep search. Using VESPY, 

he built an enhancement consists of 17 operations. Deep search attaches a text input 

box above the links (see Figure 39). When users type a search keyword, it automatically 

loads every page of the links, and highlights some of the links that contain the keyword. 

Also, for further preview, it extracts the key content from the pages and attaches below.  

 

 

Figure 39. The deep search enhancement adds a text input box to the original page. When user types a 
keyword in the input box, it searches all the linked pages and highlights links whose pages contain the 

keyword. The main content of the links are attached to the links as well. 
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Figure 40. The custom filter enhancement extracts all the venues from the publication list, and attaches a 

list of unique buttons. When a button is clicked, it shows only the articles published to the selected 
venue. 

 

Figure 41.  The event parser enhancement attaches button to every event in the list. When a button is 
clicked, it finds an open tab of Google Calendar and fills the input form with the event information. 

 

Figure 42. The multi-attribute ranking enhancement adds text boxes to each column header that users can 
type in their own weight factors. When a factor is changed, it updates weighted total scores and color 

codes on the right end of the table. It also attaches the Sort button that reorders the table rows by 
weighted total scores. 
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 Example #2: Custom Filter 

While reading a publication site, a user wants to filter the publications by their venues. 

However, personal Websites rarely provide filtering functionality. She saw a custom 

filter enhancement in the VESPY repository. While the enhancement had been built for 

other sites, she could adapt it by modifying two Extract Element nodes that extract 

the items to be filtered, and a target position for buttons. As shown in Figure 40, her 

custom filter extracts all the venues from the page, creates buttons that are 

alphabetically sorted without duplication. Clicking a button hides articles published to 

other domains.  

 Example #3: Event Parser for Google Calendar 

A user regularly visits the event-listing site. When he finds an interesting event he has 

to manually type essential information (when, where, description) to his calendar 

application. Event parser enhancement can help him by adding a button next to each 

event (see Figure 41). When he clicks the button, it extracts the essential information 

and looks for a tab of Google Calendar app. If the calendar app is found, it injects the 

information to corresponding input boxes so that he can check and confirm to create 

the event.  

 Example #4: Multi-Attribute Ranking 

A user is a prospective student deciding on a university. On the Web, he found a data 

table containing multiple attributes of universities. He wants to compare them with his 

own ranking formula. The multi-attribute ranking enhancement (shown in Figure 42) 

attaches input boxes to columns of a plain HTML table so that he can change weight 

factors, calculate the weighted total scores, and sort the rows. When he tweaks his 
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weight factors, the weighted total score column updates the weighted scores and colors. 

After setting the best weight factors for him, he sorts the universities by the updated 

score.  This scenario includes a wide range of tasks: (1) creating and attaching new 

DOM elements (input boxes and buttons) to the page; (2) extracting information from 

the page; (3) performing complex arithmetic; (4) modifying attributes (background-

color) of elements; (5) sorting elements by custom scores; (6) adding event handlers to 

the input boxes and the buttons; and finally (7) orchestrating the above tasks with an 

execution flow. To our knowledge, no existing WebEUP tool can support all of these 

tasks.  

 Preliminary User Study 

To answer the research question, “(R3) Is PBE better than direct specification?”, we 

conducted a preliminary user study using two interaction modes that provide limited 

functionalities of VESPY. The Direct Specification (DS) mode only allows users to 

directly drag and drop operations from the Action panel. In the Programming By 

Example (PBE) mode, the participants were not allowed to drag operations in the 

actions panel to the grid, but can use the PBE features (e.g. Typing in node values, 

suggestion of actions).   

We recruited 16 amateur programmers through a university mailing list. Three 

subjects were female and thirteen were male. Their average age was 29.25 years 

(SD=8.1). We defined the eligibility criteria for amateur programmers that they must 

be familiar with at least one programming language, and understand basic 

programming concepts such as loop, conditionals, and data objects. We excluded 
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applicant who had coded a program longer than 500 lines or for commercial purpose. 

We offered qualified participants ten dollars per hour.  

 Method 

We conducted a within-subject experiment that compared two modes (DS and PBE) of 

VESPY. The study began by learning the basics of common part of the UI using Web-

based tutorial. Throughout the study, one of the authors was sitting next to the 

participants answering questions.  

First, the participants learned the basic concepts using a web-based tutorial that 

includes short demonstration clips and exercises. The tutorial took 10-20 minutes. After 

completing the tutorial, they tried to accomplish four tasks, as shown in Table 11. For 

each task, they first read the instructions about a randomly-selected version (e.g. DS), 

tried a practice task, and then completed the actual task. The same process repeated for 

the other version (e.g. PBE). To minimize learning effects, half of the participants used 

the DS mode first, while another half used the PBE mode first. Also the practice and 

the actual tasks used variations of the same problems with different numbers and 

parameters. At the end of each task, the participants answered to a survey question 

about the problems’ difficulty. After finishing all the tasks, the participants took a 

general survey and participated in a semi-structured wrap-up interview.  
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We measured the completion time for the tasks. However, as VESPY requires 

training, and is not intended to be a walk-up-and-use system, the level of 

understandings about the system had large variance across users. During the pilot study, 

we observed that the participant’s understanding had a dominating impact on their 

performance. For example, if a participant got lost for several minutes, all the other 

aspects would make little difference to the total completion time. To avoid the situation, 

when the participants got stuck for longer than 20 seconds we reminded them high-

level hints (e.g. “If you want to extract DOM elements, click them”, “You need to 

confirm one of these suggestions.”), which were also instructed during the tutorial. 

 Tasks 

We designed four tasks that are commonly used in most enhancement scenarios and 

solvable in both modes. Each task has 1-5 problems depending on their difficulty. As 

illustrated in Figure 43, the participants were requested to add new nodes to get the 

desired result from given input nodes. They pressed the START and DONE button at the  

 
Figure 43. An example of the second problem of the Calculating	numbers task. Given the two input 

nodes, the participants need to create an Arithmetic node that multiplies the two node values. 
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beginning and end of each problem. The time gap was the metric of the system’s 

performance. 

 Tasks 

We designed four tasks that are commonly used in most enhancement scenarios and 

solvable in both modes. Each task has 1-5 problems depending on their difficulty. As 

illustrated in Figure 43, the participants were requested to add new nodes to get the 

desired result from given input nodes. They pressed the START and DONE button at the 

beginning and end of each problem. The time gap was the metric of the system’s 

performance. 

Inputs	 Problem	Description	=>	Solution	

Task	1.	Calculating	numbers	

[1,2,3],		[2,0,2]	 Add	every	number	in	[1,2,3]	with	[2,0,2]	=>	The	result	should	be	[3,2,5]	

[8,7,10],	[2,2,3]	 Multiple	every	number	in	[8,7,10]	with	[2,2,3]	=>	result:	[16,14,30]	

[3,6,9]	 Divide	numbers	[3,6,9]	with	3	=>	result:	[1,2,3]	

[1,9,-5]	 Arrange	[1,9,-5]	in	increasing	order		
=>	result:	[-5,1,9]	

[4,1,1]	 How	many	numbers	are	in	[4,1,1]?	
	=>	result:	[3]	

Task	2.	Extracting	information	

4	elements	 Get	the	text	attributes	of	the	elements		

4	elements	 Get	the	URL	attributes	of	the	links	

4	elements	 Get	the	text	of	sub-elements	within	the	input.	

2	elements	 Find	a	path	from	a	set	of	elements	to	another.		

Task	3.	Filtering	

[apple	juice,		
banana,	apple,		
peach]	

Find	text	values	that	contains	“apple”	
=>	The	result	should	be	[“apple	juice”,	“apple”]	

[1,2,3,4]	 Find	even	numbers	=>	[2,4]	

6	elements	 Find	elements	that	contains	a	specific	keyword	

Task	4.	Attaching	Elements	

1	input	element	 Attach	an	element	to	a	set	of	items	in	the	page	

Table 11. The four tasks for the controlled experiment consist of thirteen problems. 
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 Results 

We tested whether completion times of each group follow normal distribution. It turned 

out that 9 out of 26 (P1-P13 for two conditions) data groups are non-normally 

distributed (p>0.03). Therefore, we compared two conditions for the entire study using 

the Wilcoxon Signed-ranks Test. The result indicates that the participants could finish 

problems requiring multiple steps (i.e. P8-P13) significantly faster under the PBE 

condition than the Direct Specification condition (see Table 12 for Z-scores and p-

values). These results suggest that none of PBE and direct specification outperforms 

the other in all time, and thus, EUP systems should support both approaches for 

different circumstances.  

 Discussion 

 PBE vs. Direct Specification 

Before running the study, we expected to see either PBE or direct specification 

outperforms the other. To the contrary, the usefulness of PBE appears to be affected by 

three factors: (1) user’s knowledge of the domain-specific language, the PBE engine, 

and the task; (2) the amount of work for creating sufficient examples vs. directly 

specifying parameters; (3) credibility of programs. 

Task	Code	 Task	1	 Task	2		 Task	3	 T4	
Problem	Code	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P9	 P10	 P11	 P12	 P13	

Required	nodes	 1	 1	 1	 1	 1	 1	 1	 2	 3	 2	 2	 4	 2	

Comple
tion	
Time		

Direct	
Spec.	

Mean	 13.1	 14.1	 19.4	 22.4	 13.4	 17.8	 29.3	 63.9	 108.8	 53.6	 53.6	 111.5	 63.7	
Std	 4.68	 6.17	 6.30	 10.61	 8.51	 13.76	 35.56	 53.90	 69.23	 29.69	 17.81	 75.65	 27.85	

PBE	 Mean	 17	 21	 18	 14	 14	 15	 14	 28	 57	 19	 18	 55	 25	
Std	 6.26	 14.68	 7.43	 3.81	 7.21	 5.81	 12.91	 17.17	 38.50	 7.12	 11.15	 38.81	 12.44	

Wilcoxon	
signed	
rank	

Z-score	 -2.8114	 -1.5254	 -0.8519	 2.1344	 -0.6592	 -0.2841	 -0.1675	 -3.2577	 -2.7406	 -3.4645	 -3.4645	 -2.5854	 -3.5162	
p-value	 0.005	 0.126	 0.395	 0.033	 0.509	 0.779	 0.093	 0.001	 0.006	 0.0005	 0.0005	 0.01	 0.0004	

Table 12. Wilcoxon signed rank test result of the completion times for each problem. For simple problems that 
require single steps (P1-P7), the Direct Specification condition equivalent or better performance. However, for 
complex problems requiring multiple-steps (P8-13), the PBE condition was significantly more efficient (p<0.03)    
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First, to use PBE effectively, users must know what program the system can 

generate. Otherwise, users must figure out the system's capability through trials-and-

errors, which can be tedious and frustrating. For instance, while learning the Extract	

Element operation, s4 wondered, “What if I want to extract only these two elements not 

the entire set?” System knowledge is important to feel confidence of the programs they 

make, and to apply the same approach for similar problems, users need to understand 

how the PBE engine extracts DOM elements from a few examples. Existing PBE 

systems teach its capability and limitations with samples and feedback, we believe there 

is plenty of room for improvement.  

Second, if a user can create a program using both PBE and direct specification, 

he/she will choose a more efficient approach. For simple problems (P1-P7), participants 

preferred to use direct specification, which requires less time and effort, as s7 said, 

“why should I type correct outcomes when I can program it easily?” For complex 

problems (P8-P13), participants could easily perceive the benefits of PBE, which is not 

just easier but also more efficient than direct specification. Future PBE systems should 

consider how to make example creation more efficient.     

Lastly, lack of credibility is another important issue of PBE. Even after learning 

the usage of PBE, some participants were still reluctant to completely rely on it. s8 told 

us, “For larger data set, I would prefer direct specification, because PBE may generate 

incorrect solutions.” How to quickly build up credibility between user and system is 

an interesting research question of the longitudinal study in our future work.  

Designing PBE involves issues very different from conventional direct 

manipulation UI, which are still open research questions in HCI. In the next chapter we 
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will conduct a user study that investigates to what extent inexperienced users can use 

PBE, and what mistakes they make.   

 Limitations 

The study design has a few simplifying assumptions that limit the scope of its findings. 

First, participants performed relatively simple, abstract programming tasks (e.g. 

arithmetic, filtering), which can be solved in 1-3 steps. As abstract tasks are widely 

used in many EUP domains (e.g. data wrangling, text transformation), our findings are 

generalizable for PBE tasks beyond web customizations. However, if participants were 

asked to build practical solutions for real-world problems such as the four 

enhancements in 4.5, findings of the study would be different.   

Second, participants did the tasks with the both approaches (PBE and DS) while 

learning the usage of VESPY. We expect that significant ordering effects exist. For 

instance, participants could be fixated to the approach they learned first. Or, they could 

perform better with the approach they learned later. The ordering effect was counter 

balanced by letting half of the participants learn PBE first, while the other half learn 

DS first.  

Third, VESPY is a practical EUP tool, which eventually requires users to learn 

computational thinking skills and develop programs for their own problems. The 

preliminary study in this Chapter reports only the first few hours of user experience. 

To assess the efficacy of the tool, a multi-dimensional in-depth long-term case study 

(MILCs [77]) would be appropriate.  
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 CONCLUSION 

This chapter presented VESPY, an end-user programming environment for creating 

web enhancements. VESPY enables amateur programmers to deconstruct complex 

tasks into smaller sub-tasks, and to find programs for sub-tasks with examples. Four 

scenarios of sample enhancements demonstrate unique capability and versatility of 

VESPY’s approach. In the preliminary user study, we observed that PBE significantly 

increased user’s performance for multi-step tasks. However, direct specification is as 

good as PBE for single-step tasks. We believe VESPY can help Web end-users improve 

their productivity by creating, sharing, and customizing interactive Web enhancements. 
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Chapter 5: Understanding Human Mistakes 

when Programming by Example 

 Abstract 

In the previous chapters, we examined how inexperienced users would describe 

computational tasks (Chapter 3), and introduced VESPY, a WebEUP system that 

employs visual programming and PBE techniques (Chapter 4). Findings from the 

preliminary user study of VESPY indicate that PBE systems can be much harder for 

inexperienced users than PBE researcher’s expectation. Unfortunately, there is little 

research on people's ability to accomplish complex tasks by providing examples. This 

chapter presents an online user study, reporting how well people decompose complex 

tasks, and disambiguate sub-tasks. The findings suggest that disambiguation and 

decomposition are difficult for even highly-motivated workers from Amazon 

Mechanical Turk. We identify seven types of mistakes made, and suggest new 

opportunities for actionable feedback based on unsuccessful examples, with design 

implications for future PBE systems.    

 Introduction 

As described in Chapter 2, the goal of PBE is to enable ordinary people to automate 

complex and repetitive tasks, and it has even made its way into commercial products 

such as Microsoft Excel’s FlashFill [23]. However, guiding inexperienced users on how 

to provide high-quality examples is still an open-ended research question. To create 

high-quality examples, users need to consider two requirements: (1) disambiguation, 

and (2) decomposition. First, users must be able to provide diverse cases to 
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disambiguate the operation they want to create from other operations the PBE engine 

could infer. Second, to create operations for complex tasks, users need to decompose 

those tasks into small sub-tasks that the PBE engine can (more easily) infer. Both 

disambiguation and problem decomposition are challenging computational thinking 

skills and are often part of required training for computer science and engineering 

students.  

To answer the research questions, “(R4) Can inexperienced users perform problem 

decomposition and disambiguation?” and “(R4a) What mistakes do users make when 

using PBE?”, we conducted an online user study with participants recruited from 

Amazon Mechanical Turk (AMT) who were asked to complete 6 tutorials and 5 main 

tasks using our PBE system. Our research focuses on examining the behavior of ordinary 

people providing input and output examples, managing steps and cases for 

decomposition and disambiguation, and making and fixing mistakes. To provide 

recommendations for PBE tool designers, we also designed two feedback mechanisms, 

and compared their impact on the main task success rate. A total of 161 users participated 

in the study, and 30 of them successfully completed all five main tasks.   

Our findings suggest that disambiguation and decomposition are difficult for even 

highly-motivated AMT workers, and for those that had practiced all required subtasks 

during the tutorials. We report seven types of mistakes identified from unsuccessful trials. 

We also determined that that those unsuccessful trials contain meaningful information 

about users’ intent and misunderstandings about PBE. Under the actionable feedback 

condition, participants received context-aware suggestions based on the information 

from unsuccessful trials, and outperformed other participants. 
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 METHODS 

We conducted an online user study that began with a brief introduction to PBE. Then 

six tutorials on the user interface and basic PBE tasks (Table 13) were given. After 

finishing the tutorials, participants were asked to complete five main tasks, that are 

advanced variations of the tutorials. Finally, the tasks were followed by a demographic 

survey. The study took around 26 minutes (M = 25.97, STD = 11.54), and participants 

who finished the entire study were paid $3.00. The study was posted on Amazon 

Mechanical Turk for two days, during which 161 workers started the first tutorial, 137 

workers finished the tutorials and proceeded to the tasks, but only 30 finished the entire 

study. Summary demographics of the 30 participants who finished the entire study 

indicate the majority age range was 25-34 (60%, M = 36.43, STD = 7.56), male (60%), 

with bachelor (50%) or high school degrees (37%). The majority (84%) of participants 

reported that they had no programming knowledge (57%) or only basic concepts (27%). 

However, many of them had various IT experience, such as using spreadsheets (70%), 

creating web pages using HTML (30%) or content-management systems (20%), 

database (23%), and scripting languages such as Python or Ruby (20%).  



 102 

 Experimental System  

We developed an experimental PBE system that allows non-technical participants to 

quickly learn and perform decomposition and disambiguation as illustrated in Figure 1.   

The system can generate simple programs for standard PBE tasks (e.g. arithmetic, text  

Description Default examples Solution examples 

T
utorials 

T1,2 Input + 1 IN 1 
OUT 2 

 

IN 1 5 
OUT 2 6 

 

T3 (Input + 1) * 2 IN 1 
OUT 4 

 

IN 1 2 
STEP 2 3 
OUT 4 6 

 

T4 Get the sum of all numbers IN 1,1 
OUT 2 

 

IN 1,1 3,2 
OUT 2 5 

 

T5 Get length of a text value (including 
spaces). 

IN yes 
OUT 3 

 

IN yes no 
OUT 3 2 

 

T6 Find numbers that are greater than 9 IN 11,8,9,10 
OUT 11,10 

 

IN 11,8,9,10 
STEP T,F,F,T 
OUT 11,10 

 

M
ain tasks 

T7 (Input + 1) * (Input – 1) IN 1 
OUT 0 

 

IN 1 2 3 
STEP 2 3 4 
STEP 0 1 2 
OUT 0 3 8 

 

T8 Sort numbers in ascending order IN 1,-1 
OUT -1,1 

 

IN 1,-1 5,2,3 
OUT -1,1 2,3,5 

 

T9 Find words that are longer than two 
letters 

IN be, are, I, some 
OUT are, some 

 

IN be, are, I, some 
STEP 2,3,1,4 
STEP F,T,F,T 
OUT are, some 

 

T10 Find numbers that are not divisible 
by 4 without remainder 

IN 1,4,5 
OUT 1,5 

 

IN 1,4,5 2,4 
STEP T,F,T F,T 
OUT 1,5 4 

 

T11 Extract prices of cars that are 
manufactured in 2014 or later. 

IN 

Civic(2014)-$12000, 
Elantra(2012)-$9500, 

Corolla(2015)-$14000, 
Corolla(2013)-$10000 

OUT 12000,14000 
 
 

IN 

Civic(2014)-$12000, 
Elantra(2012)-$9500, 

Corolla(2015)-$14000, 
Corolla(2013)-$10000 

STEP 2014, 2012, 2015, 2013 
STEP 12000, 9500, 14000, 10000 
STEP T, F, T, F 
OUT 12000,14000 

 

Table 13. With the given description and default examples for each task, participants were asked to add more 
examples, such as the solution examples shown.    
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processing, filtering). In the system’s UI, table rows represent sequential steps from 

input to output, and table columns represent independent cases. Participants can type 

1. Initial state of the task UI that contains default Input and Output values (1 and 4), buttons for adding case (“Add Case”), adding step 

(“+”), and inferring operations from current examples (“Teach Computer”).   

 

2. As the user clicks the “Teach Computer” button, the UI shows feedback messages for every step and the entire program.  

 

3a. As the user clicks “Add Case”, an empty column is added to the right of the table in which he/she types an example (2 and 6).  

 

3b. Alternatively, the user could click [+] between two rows, and an extra step would be inserted between the rows.     

 

4. By adding a case and a step, the user makes every step find a single operation, and teaches the correct operation.  

 

Figure 44.  The study UI and basic walkthrough  
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examples values in table cells, insert steps by pressing “+” buttons between rows, and 

add cases by pressing the “Add Case” button. Pressing “Teach Computer” runs the PBE 

inference engine, to generate operations that calculate each step. When the engine fails 

to determine operations from the provided examples, feedback messages are shown to 

the right rows. If participants spent at least three minutes, and tried (unsuccessfully) to 

“Teach Computer” at least eight times for a given task, a button was shown to allow 

them to give up and move on to the next task. Through internal pilot tests, we decided 

on a reasonable, high number of minutes and trials to give people the chance to try a 

number of answers in order to study example-providing.  

We designed two types of feedback (simple and actionable) to see whether 

actionable feedback effects user’s behavior. The simple feedback provides only the 

number of programs that the system generated. We designed the simple feedback as the 

baseline condition, since most existing PBE systems [23,35,54,88] provide a similar level 

of feedback for generated programs. In contrast, the actionable feedback detects user’s 

intentions from the examples, and explains details why it failed to generate any program 

and how to resolve the issue. To our knowledge, no prior PBE systems provide actionable 

feedback.  

When the PBE system finds a single operation for the step, both types of feedback 

show the same message, "Found a single program that calculates the step."  

When the system finds multiple operations, the simple feedback is "Found N 

programs that calculate this step", where N is the number of generated operations. The 

actionable feedback is same, but adds "Provide more examples." to the end.  
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When the system finds no operation for the step, the simple feedback is "Found no 

program that calculates this step." In contrast, the actionable feedback includes the 

following messages:  

• If there is an empty cell in the current row, the actionable feedback is, "There 

is an empty case. Did you miss filling it?"    

• If the current row contains values of multiple types (e.g. number and string), 

the actionable feedback is, "There are number and string examples in this 

case. This might have caused the computer to fail in finding a program." 

• If there is any row above the current row that contains all the values of the 

current row, the actionable feedback is, "If you are trying to filter values from 

steps above, you need an additional step containing T or F." 

• If the current row is a substring of a filtered subset of any row above, the 

actionable feedback is, "Are you trying to filter and extract part of string at 

the same time? If that's the case, you have to do them in two steps." 

 SUCCESS RATE 

 

 Success rate  Average # Trials (per participant) 

Task Base. Exp. 𝜒"  
p-value 

Base. Exp. Mann Whitney 
U-test 

T
utorials 

T1 1.00 1.00 >.5 1.67 1.07 p > .5 

T2 0.93 1.00 >.5 3.00 1.20 Z = 0.91, p < .30 

T3 0.80 0.87 >.5 6.80 3.47 Z = 2.13, p < .30 

T4 1.00 1.00 >.5 3.40 1.87 Z = 0.76, p < .30 

T5 1.00 1.00 >.5 1.20 1.07 p > .5 

T6 0.67 0.67 >.5 7.40 6.47 p > .5 

M
ain tasks 

T7 0.53 0.87 <.05  10.33 3.13 Z = 2.32, p < .01  

T8 0.67 1.00 <.03 8.73 2.73 Z = 5.56, p < .3 

T9 0.27 0.93 <.001 18.27 5.27 Z = 2.90, p < .001 

T10 0.53 0.93 <.03 13.00 4.13 Z = 1.60, p < .05  

T11 0.27 0.67 <.03 28.73 6.87 Z = 3.17, p < .001 

Table 14. Success rates (proportion of participants who passed the task) and average 
numbers of trials for the baseline (Base.) and the experimental (Exp.) conditions. 

Highlighted cells are significant (p<.05). 
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As mentioned, 30 of the 161 participants finished the entire study. They successfully 

finished most tutorials (average success rate = 91.1%, # trials = 3.22) as shown in 

Table 2. The main tasks were successfully completed less often than the tutorials 

(success rate = 66.7%, # trials = 10.12) To understand the effect of feedback on 

successful task completion, we conducted a non-parametric repeated measure ANOVA 

test [84]. The result yielded an F ratio of F(1, 150) = 26.01, p < .001, indicating that 

the success rate was significantly greater with the actionable feedback than with the 

baseline feedback. We also conducted factorial ANOVA to check the effect of 

demographic factors on success rate, but found no significant impact (p > .03). 

 Types of Mistakes 

We counted mistakes as participant errors in user-provided examples that prevent the 

PBE engine from generating a single program for each step. The first author reviewed 

150 task results (5 main tasks done by 30 participants), and identified 246 mistakes. 

25.6% of the mistakes were critical, meaning that they remained until participants gave 

up the task. We grouped mistakes into the categories below.  
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 Missing steps (found 92 times; 30 were critical)   

The PBE engine failed to generate programs when participants did not provide crucial 

steps as illustrated below: (a) missing steps of key values above predicates (35 times; 

15 critical), (b) missing steps of predicates values above a list filtering step (31 times; 

7 critical), (c) subtasks of a combination of filtering and text extraction (22 times; 15 

critical), and multi-step arithmetic (T3 and T7; 4 times) as illustrated in Table 15.  

 Ambiguous cases (29 times; 11 critical)   

Participants often could not provide sufficient examples for the engine to find the right 

program. For example, participants stuck with single-case examples (18 times; 8 

critical). (a) To generate a “not divisible by 4” condition for T10, the input requires “2”, 

but eight participants had to try multiple times, and three of them gave up. (b) Similarly, 

T8 (sorting numbers) requires an additional case containing at least three numbers, whose 

output is not the input in reverse-order. See examples in Table 16.  

(a) IN be, are, I, some 
ST1 F,T,F,T 

OUT are, some 
 

For T9, A predicate step (ST1) needs a 
step of key values (“2,3,1,4”) above. 
 

(b) IN 1,4,5 
OUT 1,5 

 

For T10, filtered result (OUT) requires a 
step containing predicate values (“T” for 
including, “F” for excluding values).  
 

(c) 
IN 

Civic(2014)-$12000, 
Elantra(2012)-$9500, 

Corolla(2015)-$14000, 
Corolla(2013)-$10000 

STEP 2014, 2012, 2015, 2013 

STEP T, F, T, F 

OUT 12000,14000 
 

For T11, the output (“12000, 14000”) is 
a substring of the filtered list. It requires 
either a substring of the original list or the 
filtered list above. 
 

Table 15. Examples of missing steps 
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 Inconsistent or unsupported values (28 times; 8 critical)   

Participants provided a variety of values that the PBE engine could not find a matching 

program, such as inconsistent values for arithmetic tasks (9 times; 2 critical), incorrect 

predicates for filtering (5 times; 1 critical), and incorrectly sorted list (2 times). 

Participants also provided steps with single Boolean values, when the correct program 

requires multiple values (7 times; 3 critical). Participants often made formatting 

mistakes such as (a) Boolean values next to numbers (e.g. "T11, T10, F8, F9": 2 times), 

Boolean values without a separator (e.g. "FTFT"; 3 times) and using "Yes" and "No" 

instead of "T" and "F" (1 time). 

 Unnecessary steps (15 times; 5 critical)   

Participants often added unnecessary steps. For example, (a) they often provided steps 

of unnecessary Boolean values for filtering tasks (7 times; 2 critical), numbers for 

arithmetic (4 times; 2 critical), or completely empty steps (2 times; 1 critical). For T10, 

(a) IN 1,4,5 2,4 
STEP T,F,T F,T 
OUT 1,5 4 

 

For T10, to disambiguate “divisible by 
4” from “divisible by 2”, IN requires a 
value “2”. 

(b) IN 1,-1 5,2,1 
OUT -1,1 1,2,5 

 

For T8, examples for sorting must 
contain three numbers that are not in 
reverse order.  

Table 16. Examples of ambiguous cases 

(a) IN 11,8,9,10 

STEP 
T11, T10,F8, 

F9 
OUT 11,10 

 

“T11” probably means that the value 

“11” is marked with “T”  

 

Table 17. Examples of inconsistent or unsupported values 
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(b) two participants provided a step that contains "4", which is the operand of the 

number-predicate program they need (2 times). For examples, see Table 18 

 Describing with formula (11 times; 7 critical)   

Five participants described steps with formulas instead of example values. For instance, 

(a) they provided "Input+1", "*2", "(2)*(0)", and "+1" for arithmetic tasks (3 times; 3 

critical). For the filtering tasks, they tried (b) "<2014", "1/4", "1<2<3<4", "-1<1",  

"are>2", and "some>2" (6 times; 3 critical). For the sorting tasks, two participants tried 

to describe the direction with "increasing order" and "reverse input" (2 times; 1 critical). 

For examples, see Table 19. 

(a) IN 11,8,9,10 
STEP T,F,F,T 
STEP T,T 
OUT 11,10 

 

The third row (“T,T”) is unnecessary.    
 

(b) IN 1,4,5 3,8,15 
STEP 4 4 
STEP F F 
OUT 1,5 3,15 

 

To express a conditional “not divisible 
by 4”, a participant created steps of “4” 
and “F”. 

Table 18. Examples of unnecessary steps 

(a) IN 1 
STEP Input+1 
STEP *2 
OUT 4 

 

 “Input+1” and “*2” are formulas 
for arithmetic tasks.  

(b) 
IN 

be, are, 
I, some 

STEP T 
STEP are>2 
STEP some>2 

OUT 
are, 

some 
 

“are>2” and “some>2” are 
conditional formulas for predicates.    

Table 19. Examples of describing with formula 
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 Inconsistent program (3 times; 2 critical)   

Even when the PBE engine generated a single program for every step, the entire 

program could be inconsistent with the task. For instance, participants often created 

wrong arithmetic (2 times; 2 critical), or filtering programs (1 time). 

 Empty cases (2 times; 0 critical)   

Participants sometimes left the right most case empty. 

 LIMITATIONS 

We made several simplifying assumptions that limit the scope of our findings. First, to 

allow non-expert users to quickly learn, the study introduces only a few standard tasks 

(e.g. arithmetic, string processing, and filtering). While the general patterns of findings 

will likely apply to other tasks, it will be important to confirm the extent to which this 

is true.  

Second, our experimental system does not show generated programs, while a few 

PBE systems [35,54] support interactive disambiguation where users read program 

descriptions and disambiguate by directly choosing a desired program. Further work is 

needed to explore the opportunity and effectiveness of interactive disambiguation.  

Third, we did not collect log data of dropouts, which could explain why they gave 

up the study. The high dropout rate suggests that an attrition bias might exist between the 

baseline and the actionable feedback settings.     

The study also leads us to a wide research area. For example, how to construct and 

train a knowledge model of a PBE user is an open-ended research question. How various 

design factors effect a user’s motivation and understanding of the PBE system is the goal 

of the next chapter. 
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 CONCLUSION 

This chapter presents a user study that examines how inexperienced users learn and use 

our PBE system. Findings include seven types of common mistakes, and an evidence 

confirming that we can automatically detect a user’s programming intent, and generate 

actionable feedback that helps the user quickly fix mistakes. 



 112 

Chapter 6: Experiments on Feedback and 

Human Mistakes in PBE Systems 

 Motivation and Introduction 

Human-centered design is an essential factor for the success of any interactive system, 

but is often overlooked for PBE systems [44]. As reported in Chapter 5, inexperienced 

PBE users make a wide range of mistakes while decomposing complex tasks and 

providing unambiguous examples. However, our preliminary user study (Chapter 5) 

suggests that even unsuccessful examples contain enough clues for detecting a user's 

programming intent and misunderstanding of the system, and PBE systems can provide 

useful feedback based on those clues. The result reaffirms a widely known principle - 

human-readable, informative feedback is crucial for designing usable interfaces [75]. 

However, there is little prior research about detailed feedback design particularly for 

PBE users. The goal of our study in this chapter is to address R5 - exploring the design 

space of feedback.  

R5. What is the impact of feedback design on user's experience of PBE? 

a. Is showing either system information, instruction, or both helpful for 

completing tasks, understanding the system, and fixing human 

mistakes? 

b. Does feedback design affect user's behavior of using PBE features? 

c. Does feedback design affect user's credibility of the programs they 

make?   

d. Does demographic information affect user's performance and 

behavior of using PBE features? 
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e. Is the history of previous trials helpful for users to understand and fix 

their mistakes? 

To answer the above questions, we conducted an online experiment with 133 participants, 

who were recruited from Amazon Mechanical Turk. The experiment is based on the the 

preliminary study in Chapter 5, with a few modifications and extended features. First, we 

collected log data from not only those who finished the entire study but also who dropped 

out in the middle of the study. We compared different feedback design in terms of user’s 

dropout rates (i.e. how far participants proceeded in the tutorials and main tasks), the 

success rate (i.e. how likely each participant would accomplish each tutorial and task), 

behavioral metrics (e.g. click rates of the feedback messages), and subjective assessments 

(e.g. perceived usefulness the system, credibility of programs that participants created). 

Second, we developed 12 rules for detecting mistakes and generating feedback messages. 

We believe these findings provide valuable implications for designers of future PBE 

systems.   
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 Experimental System UI 

To conduct the study, we extended the experimental system used in Chapter 5. The new 

system has the same goal – to enable non-technical participants to quickly learn and 

perform decomposition and disambiguation. There are a few extended features. First, 

if a command is assigned to a step, the description of the command is provided next to 

the step, as “Calculate Input*2” next in Figure 45. 

Second, when the PBE engine cannot find any command from user-provided 

examples, it shows a feedback message, “No command is found. What is your intent for 

 

Figure 45. The experimental system UI. The TASK section describes the program participants should 
build. The EXAMPLES contains a table of user-provided examples and feedback from the PBE engine. In 

the RESULT panel, users press the Teach Computer button to let the PBE engine generate programs 
based on provided examples, and get feedback. Finally, the HISTORY panel shows all the trials provided 

for the current task.           
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the step?”, and a list of potential user intents that it extracted from the examples. For 

instance, Step2 in Figure 45 shows a potential intent of a user, “Calculating a multi-step 

arithmetic from above numbers”. If the user thinks the intent is correct, he/she will click 

it to see the relevant information about the system (e.g. “The system can only learn a 

single arithmetic step”), and/or instruction for fixing the examples (e.g. “Insert a step 

above that contains intermediate values of the arithmetic that you want.”)  

1. To solve a task, users need to make every step has a single command. If users provided examples that are ambiguous, 
the PBE engine provides feedback as below, “N commands found. Add another case, or CHOOSE AMONG THEM” where 
N is the number of commands consistent with the examples.  

 

2. Clicking the “CHOOSE AMONG THEM” button will open a popup that contains the list of generated commands. Users 
can select a command to lock, or close the popup.   

 

3. A selected command will be locked for the step. Locked commands will not be updated by teaching computer again.  

              

4. Clicking the “UNLOCK” button will remove the locked command. To get a command for the step, users need to teach 
again.  

 
Figure 46.  The mechanism of choosing and locking commands for a step. When the computer generates 

multiple commands users can choose one among them. Chosen commands are locked to the step, and stay 
until they got unlocked.       
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Lastly, if the PBE engine generates multiple commands for a step, it shows a 

message “n commands found. Add another case, or [CHOOSE AMONG THEM].” Users 

have two options for fixing it: (1) providing additional cases, (2) choosing among the list 

of generated programs as illustrated in Figure 46. Fourth, if a user makes more than five 

unsuccessful trials, the system shows a button for giving up in the RESULT panel. Lastly, 

the HISTORY panel shows the list of unsuccessful trials that the user has made so far for 

the current task. 

 Feedback rules 

In Chapter 5, I identified the seven types of mistakes that inexperienced users make. 

To detect types of mistakes in the current example, and to provide adequate feedback 

messages, I developed 12 rules. It has to be noted that the rules are applied only when 

the PBE engine found no command for the step - not multiple commands. Therefore, 

the rules do not cover Ambiguous cases and Inconsistent program, for which the PBE 

engine generated multiple commands or a single command respectively.   

 Missing steps  

When participants cannot decompose a complex task (i.e. did not create essential steps), 

the PBE engine would fail to generate any command for the provided examples. To 

help users understand and decompose tasks by adding essential steps, we developed 

three feedback rules.   

F1.	FILTER	WITHOUT	PREDICATE	

The PBE engine requires a predicate step between source and target steps of a filtering 

task.  However, inexperienced users often forget to create a step of predicates. The first 
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feedback rule detects the mistake using two conditions, in addition to the failure of 

generating any command. First, the current step must be a target of the filtering task. 

To check this, values of the current step (e.g. “a, d”) are a subset of values of any source 

step above (e.g. “a, b, c, d”). The second condition is non-existence of a valid predicate 

step between the current step and the source. A valid predicate step must have the same 

shape as the original step. In order for two steps to have the same shape, they must have 

the same number of cases, and every case must have the same number of values. For 

instance, the three examples below have the same shape, because all of them have three 

columns, and all the matching columns have the same number of values.  

a, b c d, e  T, F F T,F  0,0 0 0,0 
  

When the rule is satisfied, the system generates the feedback components below, 

and show users according to their experimental conditions.      

• Intent: “Trying to filter {source step}.”  

• System Information: “Filtering requires a predicate step containing T or F for each 

value.” 

• Instruction: “Insert a step above and type predicate values. For instance, F,T,F will 

keep the second values, and filter out the first and the third values.” 

F2.	PREDICATE	WITHOUT	NUMBERS	

The PBE engine can evaluate numbers. Thus, any predicate step requires a step that 

contains key numbers. Our system detects this mistake if two conditions are satisfied. 

First, the current step must hold predicates only. Second, there is no above step that 

contains numbers in the same shape as the current step. Two steps having the same 

shape means that they have the same number of columns (i.e. cases), and corresponding 
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columns always have the same number of values. When the rule is satisfied, the system 

generates the feedback as below.   

• Intent: “Predicates for filtering {source step}” where the source step is the closest 

step above that has the same shape.  

• System Information: “To calculate predicates, it requires numbers above.” 

• Instruction: “Insert a step above and type key numbers for determining predicates.” 

F3.	MULTISTEP	ARITHMETIC	

T3 and T7 require that participants decompose complex arithmetic tasks such as 

(Input+1)*2 or (Input+1)*(Input-1). However, Inexperienced users often realize they 

need to add additional steps between the input and output steps. Our system detects this 

type of mistake if the current step contains only numbers, and there exist a step 

containing numbers with the same shape. When the rule is satisfied, the system 

generates the feedback below.  

• Intent: “Calculating a multi-step arithmetic from above numbers”  

• System Information: “The system can only learn a single arithmetic step.” 

• Instruction: “Insert a step above that contains intermediate values of the arithmetic 

that you want.”  

 Ambiguous cases 

To accomplish a task, users need to specify a single command for every step. However, 

the PBE engine often generates multiple commands that are consistent with provided 

examples. In order to fix it, users either provide additional cases (i.e. additional 

columns in the EXAMPLE table) or manually choosing from the list of generated 

commands. Since these two solutions are well-explained within their own UIs, we did 

not create a feedback rule for this type of mistake.  
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 Inconsistent or unsupported values 

All the values across columns must be consistent with a command, which is supported by the 

PBE engine. However, we observed that inexperienced users make a wide range of mistakes. 

We created five rules (F4-F8) for detecting and generating feedback for inconsistent or 

unsupported values.  

F4.	INCONSISTENT	CASES	

When our participants provided multiple cases for disambiguation, they often gave a value 

inconsistent with the others. It took many trials until they noticed the mistakes. Our system 

detects inconsistent cases using the leave-one-out cross-validation technique [41]. To begin 

with, the step must contain at least three cases. Second, the PBE engine tries to generate 

commands multiple times leaving one case out of the examples. For instance, if the current step 

contains three cases, the PBE engine tries to generate commands three times using (1,2), (1,3), 

and (2,3). If it generates an alternative command from (2,3), which left out the first case, the 

system will create a feedback message as follows.  

• Intent: “Trying to teach {alternative command}”  

• System Information: “It cannot learn when cases are inconsistent.” 

• Instruction: “Consider fixing or removing the 1st case.”  

F5.	NON	MATCHING	SIZE	OF	PREDICATE	

A predicate step must have exactly the same shape with the step to be filtered. However, 

inexperienced users often use their creativity to give examples that the PBE engine cannot 

comprehend. For instance, in the previous user study (Chapter 5), we observed 7 (out of 150) 

cases in which participants provided single predicate values. To detect this mistake, the system 

checks whether the current step contains predicate values, and there is no step above has values 

of the same shape. If the rules are satisfied, the system generates feedback as follows.   

• Intent: “Making predicates for filtering”  

• System Information: 

“Predicates and items to be filtered must have the same length.” 

• Instruction: “Modify this step to have predicates (T or F) for every value in the step 

to be filtered.”  
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F6.	PREDICATE	AND	VALUE	COMBINED	

PBE users often create values in their own format. For example, we observed two (out of 150) 

cases in which participants provided predicates and values to be filtered combined (e.g. “T11, 

T10, F8, F9”; indicating that 11 and 10 are true, 8 and 9 are false cases). Our system detects 

this mistake by testing that the current step begins with a predicate value (e.g. “T”, “F”, “t”, or 

“f”) but also contains non-predicate values. If the rule is satisfied, the system generates 

feedback as follows. 

• Intent: “These are predicates with values combined”  

• System Information: “However, predicates must be T and F separated by commas.” 

• Instruction: “Modify this step to have predicates (T or F) for every value to be 

filtered.”  

F7.	LIST	WITHOUT	SEPARATOR	

PBE users often provide predicate values without a separator, such as “FTFT”. Detecting this 

mistake is simple: the current step data must consist of predicate values (e.g. “T”, “F”, “t”, or 

“f”) only. If the rule is satisfied, the system creates the {correct list} by adding separators 

between every pair of adjacent characters, and generates feedback as follows.  

• Intent: “Predicates for filtering”  

• System Information: “Values in a list must be separated by a comma (,).” 

• Instruction: “Modify the value to {correct list}.”  

F8.	YES	NO	PREDICATE	

Users can create a predicate step with “yes” and “no” – instead of “T” and “F”. This is a very 

rare mistake, which happened only once. To detect this mistake, our system uses a regular 

expression that checks whether the current step contains “yes” or “no” separated by commas. 

When the rule is satisfied, it can automatically generate {corrected predicates} by replacing 

“yes” to “T”, and “no” to “F”, and generate feedback as follows.  

• Intent: “Predicates for filtering”  

• System Information: “But predicates must be a list of T and F separated by 

commas.” 

• Instruction: “Modify the value to {corrected predicates}.”  
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 Unnecessary steps 

F9.	UNUSED	STEP	

Users often create steps that are unnecessary for calculating the output. Although unused steps 

do not fail the task, it is better to remove them for clarity. To evaluate whether the current step 

is unused, the system checks two conditions. First, the output must have a single command. 

Second, the current step is not in the ancestors of the output. When the rule is satisfied, the 

system generates feedback as follows.  

• Intent: “I have no intent for this step”  

• System Information: “This step is unnecessary for getting the output.” 

• Instruction: “You may remove the step to simplify your program.”  

F10.	EMPTY	STEP	

Users often leave a step completely empty, especially when they are exploring to the solution. 

However, since empty steps will fail to generate any command, the system provides the 

following feedback for empty steps. 

• Intent: “I left this step empty”  

• System Information: “The system cannot learn any program from an empty step.” 

• Instruction: “Consider adding relevant values or removing the step.”  

 Describing with formula 

F11.	FORMULA	

Although the PBE engine accepts example values only, PBE users often provide formulas. To 

detect formulas, the system uses a regular expression of common operators (\, <, >, =, +, -, *, 

STEP, INPUT). If the current step contains any of those common operators, it generates 

feedback messages as follows. 

• Intent: “I described the step using formula”  

• System Information: “The system cannot understand formula.” 

• Instruction: “Give values that your formula calculates.”  
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 Inconsistent program 

This is the case when the PBE engine can generate single programs for every step, but the entire 

program is wrong. We do not have any feedback rule for this type of mistake.  

 Empty cases 

F12.	EMPTY	CASES	

During the preliminary study we observed that participants often provided incomplete tables 

having a few empty cells. Since the PBE engine requires consistency across columns, a step 

with empty cases might fail to generate any command. Detecting this mistake is straightforward; 

the system checks whether a column is empty. However, this rule can make false positive errors, 

because cases are often empty for good reasons especially when they are the results of filtering. 

The system generates feedback message as follow.  

• Intent: “I left some columns empty on purpose”  

• System Information: “To teach a program, all the cases must be consistent.” 

• Instruction: “Type consistent values in every case, or remove unnecessary columns.”  

  Methods 

 Procedure 

To participate, participants clicked the hyperlink to our system posted on Amazon 

Mechanical Turk (AMT). In the landing page, they read the consent form and clicked 

the “I agree” button to proceed. In the second page, they filled in the demographic 

survey form, which asked their age, gender, and the highest level of education, major, 

current occupation, programming expertise, and technical experience. After the survey, 

participants learned basic usage and the concept of example-based programming 

through the six tutorials. They then proceeded to the five main tasks. Both tutorials and 

tasks are the same as the preliminary study in Chapter 5. Finally, participants were 

asked to fill in a closing survey about perceived usability and effectiveness of the 

system.   
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 Closing survey 

After finishing the entire study, we gave participants several questions about their 

experience and opinions. The five questions were about how much they agreed with 

the following statements.  

• The system was easy to understand. 

• The interface was effective to accomplish the tasks. 

• The feedback next to each row was helpful. 

• The programs I taught will work correctly for wider ranges of inputs.  

Lastly we asked them to give us general comments.  

• Do you have any other comments on what worked or didn’t work about the system?  

 Compensation 

During the preliminary study we observed that a lot of participants from AMT dropped 

out. Through a few rounds of pilot studies, we figured out a reasonable multi-stage 

compensation policy. Participants received a $1 basic reward as they finish the tutorials.  

Those who finished the entire study, no matter how many tasks they gave up, received 

a $2 bonus. In addition, we gave $1 extra bonus to the best performing one among 

every 10 participants.  

 Experimental design 

To explore the design space of the feedback mechanism, we chose two factors: 

feedback components and the history panel. For the first factor, our feedback rules 

generate feedback messages as three components: intent, system information, and 

instruction, as described in section 6.3. Although it is possible to make a maximum of 

eight combinations from three items, detected intent is an essential component, which 

must be included in all experimental conditions, in order to enable users to choose the 
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right feedback. Therefore, we created four conditions of feedback components as 

follows.  

• (BASELINE): The baseline setting shows no feedback component.  

o    

• (SYSTEM INFO): Shows an intent first. As users click the intent, it reveals 

the relevant system information. 

o  

• (INSTRUCTION): Shows an intent first. As users click the intent, it reveals 

the instruction for fixing the example.  

o  

• (BOTH): Shows an intent first. As users clicked the intent, it reveals the both 

system information and instruction.   

o   

The second factor is whether the UI shows the history panel of not. A participant can 

see his/her previous trials for the current task in the history panel.  

The study uses the between-subject design. When a new participant visits, our 

system randomly assigns one of the eight conditions (4 feedback components * 2 

history panel settings).  

 Measurements 

The research questions focused on user’s performance in relation with various feedback 

components. We measured each participant's progress - how many tutorials and tasks 
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he/she finished the entire study or stopped participating at a specific task. The system 

also collected the success rate - whether participants passed or gave up each task they 

finished. In addition, the system collected various information of each feedback rule, 

such as frequency (i.e. how many times the rule is activated) and click rates (i.e. % of 

feedback messages clicked by participants). The system also measured user’s behavior 

of using UI components such as “add a case”, “add a step”, “choose among them”, etc. 

 Participants 

We recruited participants from AMT. The only constraint was that participants must 

reside in North America. We kept posting batches of our HIT until we reached around 

35 participants for each feedback setting. 

 Result 

 The insignificant impact of feedback messages on completion and success 

rates   

133 participants started the study. 61.5% finished the tutorials, and 30.7% finished the 

entire study. The biggest portion (26.5%) of participants dropped out while doing T3, 

which is the first tutorial they learned decomposition of complex arithmetic 

"(Input+1)*2". The second most difficult task was T7, the first main task, where 29.5% . 

among participants who reached T7 dropped out. 

We expected dropout rates indirectly indicate the performance of each feedback 

setting. If a condition is better than the others, participants using the condition would 

be more likely to finish the entire study. It seems that Figure 47 supports the hypothesis 

- the BOTH condition (shown as a green line) was above the other conditions for the 

main tasks T8-T11. However, Pearson's Chi-squared tests do not support a significant 
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difference between pairs of conditions. For example, even the best (BOTH) and the 

worst (BASELINE) performing conditions do not have significantly different impacts 

on the probability of the participants to reach the final task, 𝜒"(2, 𝑁 = 67) =

2.5519, 𝑝 > .1. Mann-Whitney U test also do not tell significant difference between 

conditions, Z = 1.0858, p > .1. We also performed Kruskal-Wallis test on the number 

of tasks that participants reached, but could not find a significant difference between 

conditions, 𝜒"(10, 𝑁 = 67) = 14.891, 𝑝 > .1 Similarly, feedback conditions do not 

have significant impact on the number of tasks that participants successfully finished, 

𝜒"(10, 𝑁 = 67) = 2.393, 𝑝 = .495 > .1  

We compared the two conditions about the history panel in Figure 48. It seems that 

the history panel helped users keep going after T3, but through T6 and T7, they 

converged into one. 
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Figure 47. Probabilities of participants reaching and completing tasks compared across different feedback 
compositions. Lines indicate the portion of participants who reached specific tasks. Bars indicate the portions of 

participants who accomplished tasks without giving up. The green line above the other lines suggests that the 
‘BOTH’ setting, which shows both system info and instruction, outperformed the other settings.        

 

 

 

Figure 48. Probabilities of participants reaching and completing tasks compared to whether the history panel is 
given or not. Lines indicate the portion of participants who reached specific tasks. Bars indicate the portions of 
participants who accomplished tasks without giving up. The two lines go along with each other, suggesting that 

the history panel does not have a strong impact on how many users reached and completed tasks. 
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 Frequency and click rates of feedback 

The system shows feedback messages that 12 feedback rules generate based on user-

provided examples. This section analyzes the log data of 876 tasks focusing on how 

frequently each feedback rule was activated (i.e. shown), and how frequently 

participants clicked them to read system information and instruction components15. In 

total, feedback rules were activated for 314 times, and clicked 115 (36.6% click rate) 

times. As shown in Figure 50, R1. Filter without predicate is the most frequently 

activated (60 times) and clicked (25 times). R2. Predicate without number was 

activated less frequently (35 times), but clicked as many times as R1. The three rules 

(R1-R3) for the Missing Step mistakes were clicked 49.3% of the tasks they were 

shown, which is higher than the average click rate (36.6%).     

R5-R8 were activated much less (<10 times) than other rules. The rules were created 

for the Inconsistent and unsupported values type of mistakes, which occurred less 

frequently than we saw in the preliminary study. It does not necessarily mean that R5-

R8 are less useful than the other rules. 

R9-R12 were shown 25-40 times, and clicked 7-12 times. The 27.3% click rate is 

lower than the average click rate (36.6%).  

                                                

15 Note that no matter how many times a rule is activated or clicked within one task, we counted 
it as one activation or click. This is because users often try a task repeatedly (>50 times).     
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Figure 49. # of tasks (and tutorials) that a specific feedback rule was activated and clicked by participants.  

 

 

Figure 50. The closing survey result. The Likert scale ratings generally suggest that the BOTH condition is 
perceived to be intuitive, effective, and useful to increase the credibility of outcome. However, a few participants 

perceived the BOTH condition to be hard to understand and ineffective.   
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 Perceived quality of the system and the outcomes  

After finishing the main tasks, participants filled a closing survey about the 

effectiveness of the system, and the generalizability of the programs they created, as 

illustrated in Figure 50. We compared raw frequency of answers, and then conducted 

Kruskal-Wallis test to see whether the differences are significant. It has to be noted that 

there is an attrition bias across conditions because of the high dropout rate. For example, 

only seven participants in the BASELINE condition answered the closing survey, while 

10, 10, and 13 participants answered the survey for SYSTEM INFO, INSTRUCTION, 

and BOTH conditions respectively.  

The first question was about how they perceived the usability of the system. The 

majority of participants using the first three conditions (BASELINE, SYSTEM INFO, 

and INSTRUCTION) gave negative (“disagree” or “strongly disagree”) answers. In 

contrast, participants who used the BOTH condition gave either strongly positive or 

strongly negative ratings. However, the difference is not statistically significant by 

feedback conditions, 𝜒" = 2.203, 𝑝 = .5313, at the 𝛼 = 0.05 significance level.  

The second question was about the effectiveness of the UI. Participants gave similar 

but a bit more positive ratings than the first question. Ratings on the BOTH condition 

were again polarized into positive and negative opinions. However, the difference is not 

statistically significant by feedback conditions, 𝜒" = 1.003, 𝑝 = .8005, at the 𝛼 = 0.05 

significance level.  

 

The third question was about the effectiveness of the feedback. More than 60% of 

participants who used the BOTH and the SYSTEM INFO conditions rated positively, 

and no participant gave the conditions a negative rating. The difference is statistically 
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significant, 𝜒" = 8.266, 𝑝 = .0408 , at the 𝛼 = 0.05  significance level. A post-hoc 

analysis using Dunn's test adjusted by the Benjamini-Hochbrg FDR shows that the 

BASELINE and BOTH are significantly different (𝑝 = .0593). 

The last question was about how confident participants felt about the programs they 

created. More than 60% of the participants who used three conditions except the 

BASELINE rated their programs positively. 45% of the participants who used the BOTH 

condition strongly agreed that they trusted their programs. Around 10% of the 

participants who used the three non-BASELINE conditions were quite negative as well. 

The difference is not statistically significant by feedback conditions, 𝜒" = 2.461, 𝑝 =

.4824, at the 𝛼 = 0.1 significance level.  

To sum up, we found a statistically significant difference between the BASELINE 

and the BOTH conditions.  

 Participant background and behavior  

133 participants (80 males, 53 females) were recruited via AMT. They were on average 

34.6 years old (SD = 10.33, range 20-70) and all currently live in the United States or 

Canada. The majority (73) of participants have bachelor degrees, 41 graduate high 

school, 7 have master degrees, 11 have professional degrees, and 1 has a doctoral 

degree. In terms of programming experience, 48 participants have no programming 

knowledge, while 53 know basic concepts. Participants also include 23 amateur 

programmers and 9 reported that they are professional programmers.   

We conducted rank-order correlation tests to check whether participants' progress 

and demographic information are positively or negatively correlated. First, Participants' 

gender and progress were not significantly correlated, 𝑍 = 0.5053, 𝑝 = .6101 < .05. 
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Age did not affect their progress, 𝑟9 = −0.1235, 𝑝 = .1566 > .05 . Participants' 

education level have almost significant positive correlation, 𝑟9 = 0.1695, 𝑝 = .0510 >

.05. Lastly, their programming expertise has a significant positive correlation with 

progress, 𝑟9 = 0.1844, 𝑝 = .0333 < .05.    

 Discussion 

 The insignificant impact of feedback messages  

We observed that drop out rates in the experiment are statistical indifferent across 

feedback conditions, although the difference between conditions are visible in Figure 

47. The finding is contradictory to another finding from the online user study in Chapter 

5.5. There are potential reasons of the contradiction. First, it is possible that the 

experimental system has many features (e.g. choosing among generated programs), 

added or extended to the online study, which can weaken the impact of feedback 

conditions on both completion and success rates. It is possible that the UI get 

overloaded with too much information that participants ignored feedback messages.  

To confirm whether feedback settings have significant impacts on user's 

performance, we have a few options of follow-up studies. First, we can collect more 

data to see whether the feedback settings gain the statistical power or not. Second, we 

can get rid of a few irrelevant information from the system so that participants are not 

overloaded with too much information. Third, we can analyze detailed log data to 

investigate what event occurred before participant dropping out.     

 Potential reasons and remedies for the high dropout rate 

Among 131 participants recruited from AMT, only 69.3% dropped out before finishing 

the entire study. For most user studies, a low attrition rate (i.e. high dropout rate) is an 
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alarming signal that indicates serious issues might exist in the study design. In my study, 

there are several factors that possibly contributed to the high dropout rate.  

First, participants might have dropped the study because our tutorials and tasks 

were too challenging. I believe this is highly likely because the two biggest dropouts 

happened when participants first learned the concept of decomposition (T3 and T7), 

and 15.5% of participants dropped after finishing the tutorials, which suggests that they 

were demotivated not to do the main tasks. Although an immediate fix of this issue is 

to use shorter and simpler tasks and tutorials, we need to consider that the aim of the 

experiment is to give users sufficiently hard tasks so that they need additional supports.  

Second, the experimental UI and instruction might have room for improvements. 

This reason is also likely because participants made mistakes even though they had 

already read the relevant instruction. Why did they miss the relevant information? 

Information overload can be a potential reason, as discussed in 6.6.1. To improve the 

design quality of UI and instruction, we could have conducted more pilot studies in the 

lab.  

Third, AMT may not be the best platform to recruit participants for the experiment, 

which requires them to learn a lot of new concepts such as example-based programming, 

and managing steps and cases. Many experimental studies using online samples (e.g. 

Amazon Mechanical Turk) often do not report attrition rates, which can range from 30% 

to 50% and vary across experimental conditions [94]. If this is the dominant reason for 

the high dropout rate, improving UI and instruction will have only limited effectiveness. 

The best way to fix it is to conduct a lab study - which is also the best way to find out 

the actual problem. However, conducting a lab study requires much more resources 
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than running an online experiment. A more economic way is to add a screening test, 

which estimates user's ability to finish the experiment, and to allow only participants 

who pass the screening.  

 Plan for a follow-up experiment: addressing the high dropout rate 

This section describes plan for a follow-up experiment addressing the high dropout rate. 

Simplify	the	study	through	an	iterative	design	process	

To identify and fix potential usability issues in the experimental system, I will go 

through a few rounds of iterative design process that consists of in-person pilot studies 

and redesigning the tasks, UI, and instruction. While redesigning the system, I will 

consider two options for simplifying the study. First, I will observe participants to 

identify redundant or unnecessary part of the UI, and remove them to prevent 

information overloads. Second, I will consider breaking the current tasks (and tutorials) 

into a few groups so that each participant can finish the experiment with less time and 

effort.  

Diversify	the	population	and	the	study	setting		

Who the participants are, and where the experiment is conducted may have a significant 

impact on the result. To control the impact, I will conduct the study with two 

populations: (P1) Amazon Mechanical Turk, and (P2) campus mailing list. Another 

factor is the study setting. I will conduct the study with P2 in two environments: (E1) 

in-person lab study, and (E2) remotely. P1 will always participate remotely. Cross 

validation of the results will give insights of how population and study setting affect 

the dropout rate.  
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Screening	questions	

I found out that programming expertise is not perfect but still a good indicator of 

participants' completion. To lower the dropout rate, I will carefully add a few screening 

questions about their ability to understand the basic concept of PBE tasks and usage of 

the system. The first question will be about the participant's programming experience. 

It will require participants to know at least basic concepts of programming.  Second, I 

will give five tests about PBE. Each test will show four examples of input and output 

values, and participants must pick a matching program that calculates all the input and 

output examples among four programs, as illustrated below. Participants who answered 

all the questions correctly will be able to proceed to the tutorials.   

Input => Output 
1 => 3 
2 => 4 
3 => 5 
4 => 6 
Choose the right program that matches the examples above 
(a) Input * 3     (b) Input + 2    (c) Input +1   (d) Input * 4 - 2 

 

Closing	survey	when	a	participant	dropout	

The closing survey is an important source of information, but the current system does 

not collect from dropouts. I will redesign the system so that participants are asked to 

fill in the closing survey for the HIT completion code, even when they want to stop 

participating.  
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Chapter 7: Conclusion 

The goal of this dissertation was to improve the human-centered design of PBE systems 

by studying users’ needs and mental models, identifying usability issues and human 

mistakes, and developing and testing novel features.  In this chapter, we summarize 

what we have learned in response to the research questions, thesis contributions, and 

directions for future work.     

 Answers to the research questions 

 R1. What do end-user programmer need to improve the Web?  

To answer the question, we conducted a semi-structured interview study with 35 end-

users of the Web, as presented in section 3.2. The interview study explored the space 

of challenges that end-users regularly experience on the Web, and the functionalities 

of enhancements that they envisioned. We proposed seven categories of enhancements 

(Modify, Compute, Interact, Gather, Automate, Store and Notify), which provide 

guidance to website designers in the first place to be aware of the unique needs of many 

users.  

 R2. How do non-programmers express their programming intent? 

To answer the question, we conducted a Wizard of Oz study (section 3.3) that asked 

non-programmers to express computational tasks. We found interesting characteristics 

of them. First, non-programmers would express their intent effectively using multiple 

channels such as rules, examples, and rationales. Although they may not be able to 

provide complete information at first, they can iteratively refine their intent with 

additional information. To enable non-programmers to express high-quality intent, 
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future EUP tools should incorporate mixed-initiative interaction to help end-users 

express unambiguous statements.  

 R3. Is PBE better than direct specification? 

To answer the question, we conducted a preliminary user study with two versions of 

VESPY (Chapter 4). We could not find a clear answer, such as “PBE is always better 

than direct specification” or the opposite. Instead we observed that PBE is effective for 

complex tasks where users can skip multiple steps of interaction. Thus the alternative 

answer to the question is that the usefulness of PBE is affected by many factors: (1) 

user’s knowledge of the domain-specific language, the PBE engine, and the task; (2) 

the amount of work for creating sufficient examples vs. directly specifying parameters; 

(3) credibility of programs.   

 R4. Can inexperienced users perform problem decomposition and 

disambiguation? 

The answer was “No”. As reported in Chapter 5, we observed that only 30 out of the 

161 participants finished the entire study. We also identified seven types of common 

mistakes: Missing steps, Ambiguous cases, Inconsistent or unsupported values, 

Unnecessary steps, Describing with formula, Inconsistent programs, and Empty cases. 

However, we also found empirical evidence that the PBE system can automatically 

detect a user’s programming intent, and generate actionable feedback that helps the user 

quickly fix mistakes. 

 R5. What is the best feedback design for PBE users? 

To answer the last question, we conducted an online experiment with 133 participants. 

We developed 12 rules for detecting mistakes and generating feedback messages, three 
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components of feedback messages, and the history panel showing the previous trials. 

According to Figure 47, the BOTH condition seems to outperform the others, and the 

BASELINE was the worst setting. However, statistical tests could not confirm that the 

numbers of completed tasks are significantly different across conditions. We also 

compared the closing survey result across feedback conditions, and found out that only 

the third question was significant - i.e. participants rated the perceived effectiveness of 

feedback in the BOTH condition higher than the others. Participants did not give 

significantly different ratings for the system's intuitiveness and their credibility of the 

programs. We discussed about a few potential reasons of the insignificant differences, 

in relation with the high dropout rate.  

To investigate whether personal background affect user's performance, we 

conducted rank-order correlation tests on demographic information and the number of 

completed tasks. While age, gender, and education level did not have significant 

impacts on user's performance, programming expertise is helpful to complete more 

tasks. 

 Thesis contributions 

 Identification of unmet needs of end-users of the Web 

End-user programming (EUP) is a common approach for helping ordinary people 

create small programs for their professional or daily tasks. However, it is often hard to 

address these needs, especially for fast-evolving domains such as the Web. We 

conducted a semi-structured interview study (Chapter 3.2) with 35 end-users of the 

Web. The interview study explored the space of challenges that end-users regularly 

experience on the Web, and the functionalities of enhancements that they envisioned. 
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We identified seven categories of enhancements that can provide guidance to future 

EUP developers.  

 Characterization of non-programmers’ mental model 

Programming is difficult to learn since its fundamental structure (e.g. looping, if-then 

conditional, and variable referencing) is not familiar or natural for non-programmers 

[67]. Understanding a non-programmer’s mindset is an important step to develop an 

easy-to-learn programming environment. We conducted a Wizard of Oz study (Chapter 

3.3), which provided characteristics of non-programmers explaining how they would 

express their intent of computational tasks. Given that traditional programming 

environments do not fully support them, we discussed the implications for the design 

of multi-modal and mixed-initiative approaches for making end-user programming 

more natural and easy-to-use for these users.  

 Design process of interleaving visual programming and PBE 

Researchers and companies have developed many PBE systems, but how to design UI 

to support users to decompose and disambiguate complex tasks is still an open-ended 

research question. Through a 1.5 year-long iterative process, we developed VESPY UI 

(Chapter 4) in which users decompose complex tasks into tractable modules (using 

visual / dataflow programming techniques), and generate solutions for each module 

(using PBE techniques). We believe the design process and the final outcome would 

be valuable resources for future PBE system designers.  
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 Identification of human mistakes of PBE 

PBE systems can be challenging for inexperienced users. Unfortunately, there is little 

research on people's ability to accomplish complex tasks by providing examples. We 

conducted an online user study that investigates how well people decompose complex 

tasks, and disambiguate sub-tasks. We also identified seven types of mistakes made, 

and suggested new opportunities for actionable feedback based on unsuccessful 

examples.  

 Design and assessment of feedback for PBE users 

While human-readable, informative feedback is crucial for designing usable interfaces 

[75], there is little prior research about feedback design for PBE users. To explore the 

design space of feedback, in Chapter 6, we designed three components of feedback 

messages: user intent, system information, and instruction. We also proposed a history 

panel that shows previous trials of the user. To assess their impacts on user’s 

performance, we conducted an online experiment. The findings suggest that the 

feedback messages do not significantly affect participants' performance, but providing 

both system information and instruction increases the perceived effectiveness of 

feedback messages. The result also suggests that the high dropout rates and information 

overloads lowered the validity of the study, we will conduct a follow-up experiment 

with a revised system and study design.  

 Future work 

With the investigations and designs presented in this dissertation, I have demonstrated 

that human-centered aspects of PBE can be improved with mixed-initiative, actionable 
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feedback for human mistakes. From here I present several directions for continued 

research.  

 Crowdsourcing feedback rules to users   

We have shown that actionable feedback messages are essential to inexperience users 

of PBE systems. However, since the current set of rules are manually created by the 

author, they may not be scalable or generalizable to other PBE systems. To overcome 

this limitation, designers of future PBE systems can consider crowdsourcing feedback 

rules. For example, if a lot of users make similar mistakes that the current set of rules 

cannot detect, the system can ask users provide structured hints. Based on multiple 

hints, the PBE can automatically create a new feedback rule.    

 Balancing between too much or too little feedback to users 

Although a main benefit of PBE is that it requires users to learn little additional 

knowledge, we observed that inexperienced users could not provide high-quality 

examples without proper feedback. In contrast, most features proposed in this 

dissertation (e.g. adding / removing steps and cases, feedback messages) add a 

significant amount of information to the system. We observed in the last study that 

overloading users with too much information can result in negative results. Providing 

a right amount of information is an important decision for designing usable PBE 

systems. There are a few directions of future work for the issue. First, we need a metric 

to monitor whether the current feedback gives too much or too little information.  

Second, we need a metric to assess the importance of different information so that we 

can stress the most important point. Third, we need a new interaction model that 
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initially reveals a small portion of information in-situ, and users can gradually learn the 

system without getting overloaded with irrelevant or too much information.  

 Long-term user study of practical EUP systems 

Although the last two studies (Chapter 5 and 6) were motivated by the usability issues 

of VESPY (Chapter 5), we did not have a chance to apply our findings to VESPY. I 

would like to improve the usability of VESPY with actionable feedback components, 

and conduct a long-term user study of how users gradually learn the capability of PBE 

based on what feedback they get. A long-term users study will give an opportunity of 

crowdsourcing feedback rules, which is explained in 7.3.1 

 Final remarks 

We are in the early stage of a widespread adoption of automated systems including 

PBE engines, statistical models, intelligent agents, and more. As we interact with 

automated systems more frequently, the importance of symbiotic interaction between 

human minds and automated systems will only increase. Without symbiotic interaction, 

humans would risk blindly accepting what automated systems suggest, or rejecting 

them without reasoning. In this dissertation, we have provided a variety of insights into 

users’ needs, mental model, and mistakes. We also have proposed several ways toward 

symbiotic interaction including VESPY’s interleaved UI, the feedback rules, and the 

history panel. I plan to continue this research with the goal of further exploring the 

design space of symbiotic interaction between human and AI.  
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