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Chapter 1

Introduction

Recent times have seen a rapid growth in the development of digital systems.
The cost of the hardware has shown a remarkable decline allowing designers
to build systems which are extremely complex. This in turn has resulted in
these complex systems being used in applications which require a high degree
of reliability. With the advent of a distributed processing environment a large
number of quasi independent modules are now interconnected to form megasys-
tems. The real time applications in which these systems are used require that
their designers build into them efficient means of failure detection and in most
cases correction mechanisms.

Circuit level fault diagnosis and correction techniques are used widely in
building digital systems. However the complexity and the interconnections of
the various modules involved in the structure of these systems require fault
diagnosis at a system level too. The importance of system level diagnosis has
been recognized by many in the recent past and has encouraged a lot of research
which has now reached quite an advanced stage.

This report describes in fair detail some of the infportant developments that
have taken place in system level fault diagnosis since interest was aroused in this
field of research by Preparata, Metze and Chien [36] in 1967. It is organized
in three parts each one dealing with a specific subfield in the area. Knowledge
of fundamental graph theory is assumed. Wherever necessary references for
specific topics in graph theory are provided.

1.1 Graph Theoretical Models of Fault Diag-
nosable Systems
A system could be perceived as an interconnection of a number of modules or

units forming a network in the context of fault tolerant computing. A system
of units which are interconnected is represented by a graph G(V, E), where the



Figure 1.1: The digraph model

set V' of vertices in the graph corresponds to the set of units in the system, and
the set E of edges in the graph corresponds to the interconnections between the
units.

Graph theoretic models may be divided into two classes, namely the digraph
model and the undirected graph model depending on the nature of the testing
mechanisms used to identify faulty units.

1.1.1 The Digraph Model '

The digraph model is used to represent systems where each unit can evaluate
a subset of the other units and can in turn be evaluated by a subset of the
other units in the system. A directed edge from vertex v; to vertex v, indicates
that the unit v; is capable of testing the unit v;. The outcome of this test is
associated with a weight 0 or 1 depending on whether v; evaluated v; to be
fault-free or faulty. Figure 1.1 shows such a model.

1.1.2 The Undirected Graph Model

The undirected graph model could be used to represent systems where the
test measures and compares the responses of two different units in the system
to external stimuli. The stimuli is input from an external device and the mea-
surement and the comparison are also done by the external device. In such
a test environment the test is not administered by either of the two systems.
Figure 1.2 shows such a model.

1.1.3 Definitions

Some of the basic definitions used widely in the text of this report are listed
below. Other definitions are introduced as and when they are required.

Diagnostic Graph: A diagnostic graph is a graph which represents the
system as described in either section 1.1.1 or 1.1.2.
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Figure 1.2: The undirected graph model

Diagnostic Test: A diagnostic test is a test which has a binary outcome
(either a 0 or a 1) and is represented by a directed edge or an undirected edge
depending on the type of test performed.

Test Invalidation Assumptions: Test invalidation assumptions are a set
of assumptions made on the behavior of the modules in the system. These
agsumptions enable us to characterize the systems as will be seen later.

Syndrome: The set of all outcomes of the diagnostic tests performed on
the system is called a syndrome. .

t-diagnosability: A system is said to be t-diagnosable if, given a syndrome
and the fact that the system contains no more than t faulty units, all the faulty
units in the system can be identified.

Consistent Fault Set: A set of units X CV is a consistent fault set only
if it is consistent with the test results that X contains only faulty units and
V — X contains only fault-free units.

1.1.4 Notations

The notations used in the text of this report are described below.

| X|: For any set X, |X| is defined to be the cardinality of the set X.

T'~(z): For any given digraph G(V, E) and a vertex z € V,T 7 (z) = {v € V|
(v,2) € E}.

I't(z): For any given digraph G{V, E) and a vertex s € V,T*(z) = {v e V|
(z,v) € E}.

I'~(X): For a given digraph G(V, F) andaset X CV, I (X) = Uyex I (v)~
X.

I't(X): For a given digraph G(V, E) andaset X CV,I'*(X) = U, ex T {v)~
X.

I'(X): For a given undirected graph G(V, E) and a set X C V, I'(X) =
ex T(v) — X.
['(z): For any given undirected G(V, E) and a vertex z € V,T'(z) = {v e V|
(z,v) € E}.



d~(v): For a vertex v in a given digraph G(V, E), |~ (v)| is called the inde-
gree of v and is denoted by d~ (v).

d(v): For a vertex v in a given undirected G(V, E), |T'(v)] is called the degree
of v and is denoted by d(v).

1.1.5 Synthesis and Analysis of Fault Diagnosable Sys-
tems

The fundamental areas of research in fault diagnosable systems are characteri-
zation, synthesis and analysis of these systems. The following chapters in the re-
port describe these areas specifically for different test invalidation assumptions.
An brief description of the characterization, synthesis and analysis problems are
provided below.

Characterization of t-diagnosable systems

The characterization of t-diagnosable systems refers to the problem of determin-
ing the necessary and sufficient conditions for the ¢-diagnosability of the systems
under the assumptions on which they are based.

Synthesis of t-diagnosable systems

The synthests problem involves determining a set of tests which would be suf-
ficient to diagnose a system that is t-diagnosable. The aim of most researchers
in this area has been to design a system which contains a minimum number
of such tests and to develop efficient algorithms to analyze the results of these
tests. Nakajima [29] provided the first adaptive algorithm for the system level
diagnosis. This and other approaches used in the synthesis of fault diagnosable
systems are discussed in detail later in this report.

Analysis of ¢t-diagnosable systems

Analysis of t-diagnosable systems refers to the problem of determining the the
maximum value of ¢ for which a given system is t-diagnosable. Analysis in
other words is the determination of properties of a predefined system like the
maximum number of faulty units that the system can tolerate etc. Sullivan [39]
has given the first polynomial time algorithm for the analysis of a system in the
model proposed by Preparata, Metze and Chien {36]. The problem of analysis
could in a sense be perceived as the opposite of the problem of synthesis.



Chapter 2

Characterization of
t-Diagnosable Systems

A survey of different t-diagnosable systems along with their characterizations
are presented in this part of the report. Various researchers have used different
test invalidation assumptions to characterize their models. Each of the models
can be justified for a some specific physical properties inherent to the system.
Common to all the models however are some basic assumptions.

In systems which can be represented by the digraph model it is assumed
that

(i) no unit tests itself,

(ii) each unit has the capability of testing another unit in the system solely
by itself if a test connection is provided from the testing unit to the tested
unit and,

(1i1) for any pair of units vy and vz, unit v, performs at most one diagnostic
test on unit vy. Note, however, that the diagnostic test itself may consist
of may test stimuli but can have only a binary outcome.

In systems represented by the undirected graph model it is assumed that
(i) comparative tests are performed between pairs of units and
(ii) at most one diagnostic test is performed on a pair of units in the system.

Based on the test invalidation assumptions, ¢-diagnosable systems can be
broadly classified into two categories. They are the symmetric and the asym-
metric models. The symmetric model first proposed by Preparata et. al. [36]
postulates that the result of a test performed by a fault-free unit is always re-
liable whereas the result of a test performed by a faulty unit is never reliable.



Testing unit | Tested unit | Test outcome(Edge weight)
Fault-free Fault-free 0

Fault-free Faulty 1

Faulty Fault-free 0/1 unpredictable
Faulty Faulty 0/1 unpredictable

Table 2.1: The PMC model

The asymmetric model first proposed by Barsi, Grandoni and Maestrini [2]
postulates that it is very unlikely that two units in the system would fail pre-

cisely in the same way and hence a faulty unit will never find another faulty
unit fault-free.

2.1 Symmetric Models

2.1.1 The PMC Model

The characterization of the PMC model first proposed by Preparata et. al. [36]
was provided by Hakimi and Amin [13]. The model is referred to as the PMC
model in this report. The proof of their characterization is provided based on a
more elegant and generalised characterization theorem given by Allan, Kameda
and Toida [1]. The PMC model is a digraph model whose test invalidation
assumptions are shown in Table 2.1.

Theorem 2.1 (Hakimi and Amin) Let S be a system of n units under the
PMC model represented by a digraph G(V, E). S is t-diagnosable <= (i) n >
2t+1, (11) Vo € V,d~(v) > t and (3i) Vg€ {0,1,2,...,t —1} and VX C V with
X|=n—2t+q, [T(X)|>t—q+1.

An example of a 2-diagnosable PMC model is shown in Figure 2.1. The
system consists of five units 1,2,3,4,5 represented by the vertices vi, vz, vs, ug
and vs and a connection assignment of ten tests. It can be easily seen from the
figure that units 1,4 and 5 cannot be faulty. If 1 is faulty then 5 must be faulty
and hence 4 must be faulty too. Hence there are at least 3 faulty units in the
system. For the given syndrome, using similar arguments, it can be shown that
there must be at least 3 faulty units if units 4 or 5 are faulty. We conclude that
units 4 and 5 cannot be faulty. Units 2 and 3 must be faulty since unit 1 finds
them faulty and unit 1 is fault-free.

Figure 2.2 shows a system which is not 2-diagnosable. For the connection of
units there are two possible consistent fault sets, namely {vz, v3} and {vz, va}.

Allan, Kameda and Toida {1] have presented the necessary and sufficient
conditions for characterization of the PMC model in a slightly different manner.
Their characterization is based on the properties of the partitions of the vertices



Figure 2.2: PMC systerm which is not 2-diagnosable
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Z=2U2
Y 2T~ (2)
X=V-Y-2Z2
YUZ|<t

lYUZzlSt

Figure 2.3: An AKT partition for proof of necessity

of the diagnostic graph. The partitions of ¢t-diagnosable systems defined for their
characterization are referred to as AKT partitions in this report.

Theorem 2.2 (Allan, Kameda and Toida) Let P be the set of partitions
(X,Y,Z) of V of a digraph G(V, E) defined with (i) |Z| > 1, and (©) T~ (Z) C
Y. Let k(p) be defined as k(p) = |Y|+ [L‘Z—l], where [r] = the ceiling of r. The
system S represented by the digraph G(V, E) is t-diagnosable <= Vp € P, k(p) >
t.

Proof. The proof of this theorem is provided in two parts. The first part
shows the necessity and the second part shows the sufficiency.

Necessity: Suppose there exists a partition p = (XY, Z) € P with k(p) < ¢.
Partition the set Z of p into two sets Z; and Z; such that [Z;]|+ 1 > |Z;|. Then
for the syndrome shown in Figure 2.3 figure both the sets Y{J 2, and Y {J Z;
are consistent fault sets. Note that |Y |JZ;| and |Y |J Z2| are less than t. The
system is thus not t-diagnosable.

Sufficiency: Suppose that a given PMC system is not t-diagnosable. This
means that there exists a syndrome for which there are at least two possible
consistent fault sets whose cardinalities do not exceed t. Let Vy and V;1 be two
such fault sets. Define the sets X, Y, Z, Z; and Z as follows :

Y:anVfl
Zl :Vf—Y
Zo=Vp-Y
Z=2UZ%

11
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I Y =V, NV
Zi=V,-Y
Z2 =Vf1 -Y
Z2=72U%
X=v-(Yy2z

1

Z3

Figure 2.4: An AKT partition for proof of sufficiency

X=V-(YU2).

If V; and V)1 are distinct fault sets, then at least one of |Z;| or |Z;] is not
equal to zero. The units in the set X are all fault-free. Since the diagnosis of a
fault-free unit is always reliable, the units in X cannot test any unit in either 2,
or Z;, because then the unit tested would be positively identified as faulty and
Vs and V;1 will not be two distinct fault sets. Therefore I (Z) (1 X = ¢ and
I'~(Z) C Y. Hence the partition p = (X, Y, Z) € P. Such a partition is shown in
Figure 2.4. From the definition of Y,Z; and Z; we see that |V;| = |Y|+|Z;| and
[Vi1| = |Y|+]Z,]. Since |Vy| < t and |Vj1| < ¢, we note that k(p) < t. Therefore
there exists a partition p for which k(p) < t. This proves the sufficiency of the
theorem. O

The conditions given by Hakimi and Amin [13] for a PMC system to be ¢-
diagnosable can be easily derived from Theorem 2.2 as shown by Allan, Kameda
and Toida [1]. In other words, the conditions imposed by Theorem 2.1 on
the system can be shown to be properties of the partition p as defined by
Theorem 2.2.

1. p=(¢,¢,V) € P. Then k(p) >t => [2] > t. Therefore n > 2t + 1.

2. Let v € V be a vertex such that d7(v) = dunin(G), where d,m-n(G) is the
minimum of the indegrees of the vertices in the graph. Let Z = {0}, Y =T (v)
and X =V — (YU Z). The partition p = (X,Y, Z) € P. See Figure 2.5. Then
k(p) = dmin{G) + 1. Since k(p) > ¢, dmin(G) > t + 1. Therefore dnin(G) > t.

3. To prove the third condition it is shown that the condition is both nec-
essary and sufficient for the generalised characterization to be true. That is, if

12



Z = {v}
Y =T"(v)

X=V-(rYUz)

Figure 2.5: An AKT partition proving that dp,(G) >t

k(p) > t,Vp € P, then the condition is true and vice versa.

Necessity: If k(p) < t,|Y| + I'%L] <t Let [Y| =gq Thus 0 < q < ¢,
because |z| > 1. Hence [I—Zl] < t — q. Therefore |Z| < 2t — 2q. Since X =
V-(YUZ),|X| > n—2t+q. There is thus at least one X such that the
condition (¢77) of Theorem 2.1 is violated.

Sufficiency: If condition (2i7) of Theorem 2.1 is violated, then 3 an integer
g with 0 < ¢ <t and a set X C V with |X|=n — 2t+ g such that {7 (X)| =1,
r < q. Let p = (X1,Y1,Z2,) be defined as X; = X, ¥; =T (X) and Z; =
V- (XUY). Then |Z;| = V|~ |Xy|=|Yi]=n—(n—2t+q) —r=2t—q—r.
Since 0 < ¢ < t and r < ¢,|Z;| > 2. Furthermore Y7 = I't(X;) ,and hence
I'~(Z,) C Y1. Therefore p € P. Since |Z;j| =2t —g—rand r < g, [Lg—'-] <t—r.
Then k(p) = |{Y1]| + [J%L] <t—r+r=t. Hence p is a partition with k(p) < ¢.

If ppnin is a partition with the minimum value of k(p), then 7(G) = k(pmin) —
1, is called the diagnosability number of the system. k(p,.in) is also referred
to as kuin (G).

2.1.2 Symmetric Undirected Graph Models

The motivation for the undirected graph models arose from the attempt to com-
pare the performance of fault tolerant computing systems based on modularly
redundant systems and t-diagnosable systems. Chwa and Hakimi [4] proposed
an undirected version of the PMC model in an application of the theory of
t-diagnosable systems to fault tolerant computing. Table 2.2 shows their test

13



First unit | Second unit | Test outcome(Edge weight)
Fault-free | Fault-free 0

Fault-free | Faulty 1

Faulty Faulty 0/1 unpredictable

Table 2.2: The Chwa-Hakimi Model

invalidation assumptions. They then showed that the throughput and the re-
liability of fault tolerant systems are better in t-diagnosable systems than in
modularly redundant systems.

Theorem 2.3 (Chwa and Hakimi) Let S be a system of n units under the
Chwa-Hakimi model represented by an undirected G(V, E). S s t-diagnosable
<= (i) n>2t+1, (%) dv) 2 t,YVv €V and (i) Vg € {0,1,2,...,t — 1} and
VX CV with |[X|=n—2t+gq, [[(X)|>t—-qg+1.

This system can also be characterized by using a generalised approach as
in Theorem 2.2. applied to the PMC model. Refer to Narasimhan [33] for the
characterization.

-

2.2 Asymmetric Models

The PMC model presented in Section 2.1.1 presumes that the outcome of a test
performed by a faulty unit is unpredictable. It is very unlikely that two faulty
units one of which is testing the other will fail precisely in a manner that would
provide an outcome O for the test if the test contained a very large number of
stimuli. Then it is not unreasonable to assume that a faulty unit will never find
another faulty unit fault-free. Barsi, Grandoni and Maestrini [2]| considered the
t-diagnosability of systems based on these assumptions. This model is referred
to as the BGM model in this report. Such a model will be particularly useful
when systems contain very few similar modules. They have given the necessary
and sufficient conditions for the t-diagnosability of this model.

The test invalidation assumptions are shown in Table 2.3. From the table
it may be observed that if the outcome of a test is 0, then the tested unit is
necessarily fault-free. Further, since tests may not be complete, it is not possible
to predict the outcome of a test performed by a faulty unit on a fault-free unit.

Figure 2.6 shows a 2-diagnosable system in the BGM model. According to
the syndrome shown, units 1 and 4 are necessarily fault-free. Units 2 and 3
are therefore faulty. A system which is not 2-diagnosable in the BGM model
is shown in Figure 2.7. The only differences between the systems shown in
Figure 2.6 and Figure 2.7 are that unit 4 tests unit 2 instead of unit 3 and unit
1 tests unit 3 instead of unit 2 in the latter system. For the system shown in

14



Testing unit | Tested unit | Test outcome{Edge weight)
Fault-free Fault-free 0

Fault-free Faulty 1

Faulty Fault-free 0/1 unpredictable
Faulty Faulty 1

Table 2.3: The BGM model

Figure 2.6: A 2-diagnosable BGM systgm

Figure 2.7, it is not possible to decide whether the consistent fault set is {1, 2}
or {3,4}.

Theorem 2.4 (Barsi,Grandoni and Maestrini) Let § be a system of n units
in the BGM model represented by o digraph G(V, E). S is t-diagnosable <= (1)

n>2, (1n)d (v) 2t Yo eV and (W) Vo,v' €V withd™(v) =d~ (V') =t and
v € T (v) T (v'), 3 at least one unit u € T (v) ~I'" (v') and I'™ (u) # '~ (v')

oru€l (V) —T* (v} and I (u) # T (v).

Though Theorem 2.4 fully characterizes a system under the BGM model, it
is quite convenient to characterize the system using a generalized approach to
study some of its properties. The following theorem is similar to Theorem 2.2

for the PMC model.

Theorem 2.5 (Narasimhan and Nakajima) Let P be the set of partitions
(X,Y, 2y, 22) of V of a digraph G(V, E) defined with (i) |ZJ 22| > 1, (i)
I~ (Z.\J 2:) €Y, and (1ii) Z, and Zy are independent sets. Let k(p) be defined
a3 a function mapping the set of partitions P to the set of non-negative integers
I given by k(p) = |Y |+ maz{|Z,|,|Z]|2}. The system is t-diagnosable <= Vp €
P k(p) > ¢t.

Proof This theorem like Theorem 2.2 is proved by first showing the necessity
and then the sufficiency.

15



Figure 2.7: BGM system which is not 2-diagnosable

Necessity: Suppose that there exists a partition p = (X, Y, Z;, Z2) of V such
that I (X) C Y,Z:UZ; # ¢,Z; and Z; are independent sets and k(p)
maz{|Z.|,|Z2|} < t. Note that [Y|{JZ;| < t for + = 1,2. Then there is a
syndrome shown in Figure 2.8 for which there are two consistent fault sets.
Therefore the system is not t-diagnosable.

Sufficiency: Suppose that the system is not t-diagnosable. Then there are
two distinct fault sets V; and Vj1 such that |Vy| < tamd [Vu| <t Let Y =
anVfl,Zl =Vf—Y,Z2 =V,1—Y andX=V—-Y—Z1—-Z2. Since Vf f,éfo
it can be easily seen that Z; # Z,. Furthermore Z; and Z; are independent
sets. To prove this, suppose otherwise, say Ju;, u; € Zy, (us, u;) € E. Since V;
is a consistent fault set, w(u;, u;) = 1. However, since V1 is a consistent fault
set and u;, u; € V; we see that w(u;, u;) = 0, a contradiction. Therefore (u;, u;)
cannot belong to E. Therefore Z; is an independent set. Likewise Z3 must also
be an independent set. Since Vy and Vy1 are distinct fault sets, no unit in X
can test units in either of Z; or Z;. Thus I'"(X) C Y. Therefore p € P. This
partition is shown in Figure 2.9. Further, since Vy <t and V;: < £, we see
that k(p) = |Y| + maz{|Z1|,|Z2|} < t. For details about the properties of the
minimum partitions, the reader is referred to Narasimhan and Nakajima [35].

If dynin(G) is the minimum indegree of G, ¢(@) the connectivity of the graph
G and 7(G) the diagnosability number of the system, then

1. 7(G) € dmin(G).

2. 7(G) 2 dmin(G) — 1.

3. 7(G) <n—2.

4. 7(@) > min{c(G), n - 2}.

5. If no two units in the system test each other, then 7{G) = dpnin(G).

The three conditions stated in Theorem 2.4 characterizing a system in the
BGM model can be derived form the above theorem and vice versa.

16



Z=zZU2
Y 2T (2)
X=V-Y-7Z7
YUZ|<t

IYUZQI <t

Figure 2.8: A partition for proof of the necessity for the BGM characterization
theorem -

Zy

i Y=V, NV
Z1=V]—Y
Z2=Vf1°-Y
Z =22
X=V_(YU2)

4

Z

Figure 2.9: A partition for the proof of sufficiency for the BGM characterization
theorem
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First unit | Second unit | Test outcome
Fault-free | Fault-free
Fault-free | Faulty
Faulty Faulty

]

Edge weight)

el Ml K=}

Table 2.4: The Malek Model

2.2.1 Asymmetric Undirected Graph Models

Malek {26] proposed an undirected graph model corresponding to the BGM
system. The motivation for such a model could be seen to be a combination of
the motivations for the BGM system and the Chwa-Hakimi undirected graph
model. Table 2.4 shows the test invalidation assumptions. The characterization
theorem for such a system was given by Dal Cin [5].

Theorem 2.6 (Dal Cin) Let S be a system of n units in the Malek model
represented by an undirected graph G(V, E). § 1is t-diagnosable <= (i) n >
t+2, (1) d(v) > t, Vv € V and (3i) Yv,v' € V with d(v) = d(v') = ¢t and
v € T(v)(T(v'),3 at least one unit u € T'(v) — ['(v') and T(u) # T'(v') or
u € (v} = T'(v) and T'(u) # I'(v). .

This system can also be characterized by using an approach similar to the
generalised method of characterization used for the BGM system. The reader
is referred to Narasimhan and Nakajima [34] for more details.

2.3 Kreutzer-Hakimi Directed Graph Models

Kreutzer and Hakimi {20] have suggested two other models which are basically
digraph models for whose characterization the undirected graph models of Sec-
tions 2.1.2 and 2.2.1 could be easily adapted. Their first model assumes that
due to a large number of stimuli a faulty unit will never find a fault-free unit
faulty, However in a system containing a large number of modules it is not
impossible that two systems fail in exactly the same way. Such an assumption
gives rise to a digraph model with test invalidation assumptions as shown in
Table 2.5. As can be seen the table, though it represents a digraph model, is
very much similar to Table 2.2 in Section 2.1.2. It can be easily shown that
Theorem 2.3 can be used to characterize such a system. Their next model is
a directed graph model which assumes that a faulty unit will alway obtain an
outcome 1 for any test it performs. Like the first model, one can observe that
thé test invalidation assumptions in Table 2.6 are very much similar to those in
Table 2.4 for the undirected graph of Section 2.2.1. Theorem 2.4 could thus be
used to characterize a system in such a model.
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Testing unit

Tested unit

—

Test outcome(Edge weight)

Fault-free Fault-free 0
Fault-free Faulty 1
Faulty Fault-free 1
Faulty Faulty 0/1 unpredictable

Table 2.5: Kreutzer-Hakimi Model-I

Testing unit | Tested unit | Test outcome(Edge weight)
Fault-free Fault-free 0
Fault-free Faulty 1
Faulty Fault-free 1
Faulty Faulty 1

Table 2.6: Kreutzer-Hakimi Model-11
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Chapter 3

Synthesis of t-Diagnosable
Systems

The theory of t-diagnosable systems as can be seen from the discussion in pre-
vious chapters has reached an advanced stage. One of the main areas of interest
in t-diagnosable systems is that of designing systems which require the mini-
mum number of diagnostic tests and that of developing efficient algorithms to
analyze the results of these tests. The process of synthesis could be explained
as one which first chooses a set of tests, then seeks the results of the tests and
finally proceeds to use the test results to identify the faulty units in the system
assuming that the number of faulty units does not exceed ¢.

Dahbura and Masson (6] have provided an O(n?) algorithm that isolates
all the faulty units for any syndrome in a digraph representing a t-diagnosable
system in the PMC model. Their technique uses some special properties of a
diagnostic graph relative to their vertex cover sets and maximum matchings
for a system in the PMC model. For specific classes of t-diagnosable systems,
however, the diagnosis procedure could be done faster. It should be noted that
Dahbura and Masson’s algorithm is applicable to any diagnostic graph of a PMC
system.

Algorithms have been developed by various researchers to analyze certain
classes of t-diagnosable systems. Nakajima [29] proposed the first adaptive diag-
nosis algorithm for these systems. The adaptive diagnosis procedure as applied
to systems under the digraph model first determines a fault-free unit. This unit
is then used to identify all other faulty units in the system.

For a system in which each unit is capable of testing all the remaining units,
Nakajima [29] showed that one can identify a fault-free unit in ¢(t + 1) tests.
Using this fault-free unit, it is then possible to determine all the faulty units for
such a system using exactly n — 1 tests. Therefore, for a fully connected system
the total number of tests required is at most n — 1+ ¢(t + 1) tests. Hakimi and
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Nakajima [15] advanced the adaptive diagnosis technique further and showed
that for the system described above at most 2¢ — 1 tests are required to identify
a fault-free unit. Thus n + 2¢ — 2 tests are required to identify all faulty units.
By using a different adaptive procedure Blecher |[3] showed that all the faulty
units could be identified in at most n+¢—1 tests and that n+¢—1 is the lower
bound on the number of tests required to find all faulty units in such a system.

Hakimi and Schmeichel [16] provided an algorithm which identifies a fault-
free unit in any system of 2¢ + 1 units where no two units test each other. The
algorithm is referred to as the HS algorithm in this report. Preparata et al. [36]
proposed a second class of systems. This class of systems is known as Dj;. This
system is explained in greater detail in Section 3.1.3. Hakimi and Nakajima [15]
showed that their adaptive algorithm identifies faulty units in the Ds; system.
Chwa and Hakimi [4] proposed another class of systems known as the D(n, t, X).
Nakajima and Krothapalli [31] have shown that a variation of the HS algorithm
is applicable to a subset of the D(n, ¢, X) class of systems known as D*(n, t, X).
The HS algorithm identifies a fault-free unit in at most 2t — B;(t) tests, where
By (t) is the number of ones in the binary representation of t.

Some of the major classes of systems along with efficient adaptive diagnosis
algorithms are given in the sections that follow in this chapter. A detailed
proof showing the validity and complexity of each of the algorithms is beyond
the scope of this report and is therefore omitted. Diagnosis algorithms are
provided for t-diagnosable systems under the PMC and BGM models. Since
all these algorithms are also applicable to the undirected graph models with
in some cases minor modifications, no separate discussion of algorithms for the
undirected graph models are presented. Finally, a brief discussion on distributed
diagnosis algorithms is presented.

3.1 Synthesis of Symmetric Systems

This section presents some of the important adaptive diagnosis algorithms devel-
oped to diagnose systems in the PMC model. Systems under the PMC models
are classified according to the types of interconnection. The applicability of the
algorithms to the different classes is discussed.

3.1.1 Fully Connected Systems

The simplest of the classes of t-diagnosable systems under the PMC model would
be a system consisting of 2¢ -+ 1 units, where each unit tests every other unit. In
this case since every unit tests every other unit, once a fault-free unit has been
located, all the faulty units can be located in exactly n — 1 tests.

Algorithm 3.1 (Hakimi and Nakajima)
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1. Initialization. V is the set of units, V; «— ¢,|Vy| «+— 0,L «—
é,|L| «— 0, E +—— ¢, and ¢ is a given positive integer.

2. If |L| = 0 select an arbitrary member vy € V, place v; at the end
of list L, and set |L| «— |L|+1and V «— V — {v;}.

3. If |L|+ 1[Vy| < ¢t + 1Jet u be the last element of L and v € V.
Seek the result of the test tx = (v, u) denoted by R(v, u), set V «—
V — {v}, and E +— EY{(v,u)}.

(a) If R(v,u) = O,place v at the end of L and set |L| «— |L|+ 1,
Return to 2.

(b) If R(u,v) = 1, remove u from the end of L and set |L| «— |L|—1
and set V; «— V; |J{x, v} and |Vi| — |V4| + 2, return to 2.

4. If |L| + £|Vi| = t + 1, stop; the first element of list L is fault-free.

In the process of determining a fault-free unit Algorithm 3.1 also constructs
a directed weighted forest G(U, E) where U = L, |JV; and L,, denotes the set
of units in L. The number of roots of this forest is the number of times Step 1
of the algorithm is used to select an arbitrary member of V. It is easy to see
that the algorithm terminates in at most 2¢ — 1 tests. The reader is referred to
Hakimi and Nakajima [15] for proof of the validity of this*algorithm.

Example 3.1 Figure 3.1 shows a 2-diagnosable system. The steps used by
Algorithm 3.1 to identify a fault-free unit for the syndrome shown in the figure
are outlined below. For this example ¢ = 2. Figure 3.1 also shows the forest
with 3 roots generated by Algorithm 3.1 when determining a fault-free unit.

1. The first pass through the algorithm isolates the pair of units
{v1,v2}. Since R(vi,v2) = 1, at least one of the two units must be
faulty. |Vi] = 2 and |L| = 0.

2. The second pass through the algorithm isolates the pair of units
{vs,vs4}. Since R(vs,vs) = 1, at least one of the two units must be
faulty. |Vi| =4 and |L| = 0.

3. The third pass concludes that vs is fault-free since at least 2 of
{vy, v2, v3,vs} are faulty. At this stage it may be noted that vs has
been included in L. |L| = 1 and |V}| = 4, and therefore |L|+ £|V1| >
2. The last element of L, namely, v; is thus fault-free.

4. Tracing from vy it is now easy to conclude that the consistent fault
set is {vg, va}.
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root; rooty roots

Figure 3.1: A syndrome and the forest generated by an adaptive algorithm for
a complete graph

.

3.1.2 Systems with n =2t + 1 and no Mutual Testing

A system with n = 2¢t+1 and where there is no mutual testing of units is clearly
an optimal system. For as per the characterization provided for systems in the
symmetric digraph model, each unit must be tested by at least ¢ other units.
In this system each unit is tested by exactly t other units and the system is
t-diagnosable. Hakimi and Scheimechel [16] developed an adaptive algorithm
which identifies a fault-free unit in such a system. It is presented in this section
as Algorithm 3.2. This algorithm also makes use of the fact that if the outcome
of a test R{vi,v;) = O and v; is faulty, then there are 2 faulty units in the
system, and if R{v;,v;) = 1, then the pair contains at least one faulty unit.

Algorithm 3.2 (Hakimi and Schmeichel)

1. Let V' be a subset of V with |[V’'| = 2t + 1. For each u € V'’ set
f(u) «— 1. Construct a list of the pairs L = {(f(u),u)} for all
u € V' in an arbitrary order. Set L' «— ¢ and F «+— 0.

2. while [L| > 1 do
Pick the first two members, say (f(u), ) and (f(v),v), and remove
them from L and seek the result of the test {u, v) denoted by R(u, v).

(a) If R(u,v) = 0, then set f({v) +— f(v) + f(u) and create a
pair (f(v),v) and place it at the beginning of the list L'. If
f{v) + F > t, then stop, v is fault-free.

23



NN,

Figure 3.2: Binomial trees of order 2 and 3

(b) If R(u,v) = 1, then set F «— F + f(v). Let (f{w), w) be the
first member of L'. If L' = ¢, then let (f(w),w) be the first
member of L. If F + f(w} > ¢, then w is fault-free. Stop.

end while

3. Let (f(2), 2) be the first member of L. Set L «— L' followed by
(f(2),2). Set L' — ¢ and go to step 2.

Algorithm 3.2 always identifies a fault-free unit in at most 2¢t — By (t) tests,
where B (t) is the number of ones in the binary representation of t. It is quite
useful to note at this point that despite the fact that the‘algorithm identifies a
fault-free unit, it may be impossible to determine all faulty units using just this
fault-free unit. Nakajima and Krothapalli [31] have provided an example to
show that locating one fault-free unit may be insufficient to locate all the faulty
units in the system. The essence of the algorithm is in constructing binomial
trees which have the property that if the root is faulty, then all the units in
the tree are faulty. Two such trees of the same order could be combined by
connecting the roots of the two trees to create a binomial tree, of a higher order
with the same property. If there are 2™ nodes in a binomial tree then n is the
order of the tree. Figure 3.3 shows a binomial tree of order 2 and a combination
of two such trees generating a binomial tree of order 3.

Example 3.2 Figure 3.3 shows a 2-diagnosable system where n = 2t + 1 and
there is no mutual testing. The steps used by Algorithm 3.2 to identify a fault-
free unit for the syndrome shown in Figure 3.3 are outlined below. For this
example t = 2.

1. Initially L= {(1) vl)) (1, ‘Ug), (1) U3)) (1: U4)) (1) US)}

2. The first time through step 2 of the algorithm, 2{b) is executed
and F is set to 1 since R(vy,v2) = 1 implying that at least one of
them must be faulty.

3. The second time through step 2 the algorithm executes 2{a). f{v4)
is set to 2 at this point indicating that if vy is faulty, then at least 2
units in the system, namely, vy and v are faulty. At this point the

24



Figure 3.3: Syndrome for example illustrating the Hakimi-Schmeichel algorithm

algorithm notes that F + f(vs) > t and concludes that v4 must be
fault-free since otherwise there would be 3 faulty units in the system.

If the algorithm were applied to Example 3.1, then it would have executed
step 2(b) twice and concluded that vs is fault-free.

3.1.3 D;; Systems

Let V = {vg,v1,...,Un-1}. Let G(V, E) be a digraph representing an inter-
connected system. The system is a Ds, system if (v;,v;) € E <= 7 —1¢ =
Sk{modn),Vk € {1,2,...,t}. Note that the system used in Example 3.2 is a
D2 system. When § and n are relatively prime it has been shown that the
Dy, system is t-diagnosable by Preparata, Metze and Chien [36]. The same au-
thors have also shown that by appropriately renaming the units any Dy, system
1s equivalent to a Dj, system. Krothapalli {22] has shown that a variation of
Algorithm 3.2 identifies a fault-free unit in a Dy system.

Algorithm 3.3 (Nakajima and Krothapalli)

1. Construct a list L of pairs {(f(u), )} in the following manner.
for each ¢ = 0,1,...,t — 1 do Set f(u) «— 1 and f{ui4:) — 1.
Insert the pairs (f(u;), w:) and (f(ui4¢), vite) at the end of list L in
this order.



end for.

Set f(up—3) «— 1 and insert (f(un—1), un—1) at the end of L. Note
that since n > 2¢+ 1, we can always find the unit u,—;. Set L' +— ¢
and F +— 0.

2. while |L| > 1 do Pick the first two members, say (f(u),u) and
(f(v),v), and remove them from L and seek the result of the test
R(u,v).

(a) If R(u,v) =0, then set f(v) «— f(v) + f(u) and create a pair
(f(v),v) and place it at the end of list L'. If f(v)+ F > t, then
v is fault-free. Stop.

(b) If R(u,v) = 1, then set F «— F + f(v). Let (f{w), w) be the
first member of L'. If L' = ¢, then let (f(w),w) be the first
member of L. If F + f(w) > ¢, then w is fault-free. Stop.

end while

8. Let (f(2),z) be the first member of L. Set L «— L' followed by
(f(2),2). Set L' «— ¢ and go to step 2.

In Ds. systems it may be noted that once a fault-free unit is located, it can be
used to locate a set of faulty units or to locate a fault-free‘unit unidentified thus
far. The new fault-free unit may now be used recursively to locate more faulty
units and fault-free units until all the faulty units are identified. Algorithm 3.4
shows a method to locate faulty units in a D, system.

Algorithm 8.4 (Nakajima and Krothapalli)

1. Let v; be a fault-free unit. Set F «— 0,V «— V — {v;},U «— ¢
and W «—— ¢.
2. for each unit v; € T (v;) 1V do Set V «— V —T't(v;) and seek
the result of the test R(v;,v;).
(a) ¥ R{vi,v;) = 0, then set U «— U J{v;}.
(b) If R(vi,vj) = 1, then set F «— F + 1 and W +— W J{u;}.
end for
8. If F = ¢, then all units in V{JU are fault-free and all units in
W are faulty. Stop. If F # t, then let v, be the unit such that
vg € IT(v;) and (¢ — k) mod n has the highest value among all

units in T {y;)NU. If U = ¢, all the units in w are faulty. Stop.
Otherwise set ¢ +— k and go to step 1.

In the D;; system as Example3.2, once vg has been identified as fault-free,
vs is immediately identified as faulty. v; is included in the set U. The next pass
through the algorithm enables v; to identify v, as faulty.
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3.1.4 D*(n,t,X) Systems.

The class of t-diagnosable systems, denoted by D*(n,t, X), consists of n units
{v1,v2,...,v5-1} and has exactly nt links. If X = {z;,22,...,2,} with 1 <
23 < z9 <. <:z:t<]_L—Janda1=z1anda.=z,—x.1for1<z<t
then a system of n units, represented by a digraph G(V, E), is said to be in the
D*(n,t, X) system if:

(v5,v;) € E <= (i — j) mod n € X, and
a;>a;. for1 <2 <t~—-1.

As an example a D*(7,2, {1, 3}) system is shown in Figure 3.4 If the condi-
tion (b) in the above definition is omitted, then the class of systems is referred
to as the D(n,t, X) first introduced by Chwa and Hakimi [4].

Nakajima and Krothapalli [31] have shown that a variation of Algorithm 3.2
correctly identifies a fault-free unit in the D*(n,t, X) system. They have also
shown that if a fault-free unit is identified, then all the faulty units in the system
can be easily located for such a system. Since the algorithms follow a nearly
similar pattern to Algorithms 3.2 and 3.4, they have not been ellaborated upon
here.

-

3.2 Synthesis of Asymmetric Systems

All the discussion thus far has been on adaptive algorithms for systems based
on symmetric models, that is, systems based on the PMC test invalidation as-
sumptions. In this section the focus is on an adaptive algorithm for asymmetric
models based on the BGM test invalidation assumptions. Only one algorithm
is presented here. Hakimi and Nakajima [15] first developed this algorithm
and showed that it is optimal. That is, the number of tests used by their algo-
rithm is the smallest number needed by any algorithm. Algorithm 3.5 locates
a fault-free unit in a BGM system.

To determine a fault-free unit in a system under the BGM model one merely
has to locate a test with outcome 0. Once such a test is located, the tested unit
is definitely fault-free. See the test invalidation assumptions in Table 2.3. For
n = 2t-+ 11t is easy to see that by picking distinct uls and v;.s and examining
the outcome of the tests {u;, v;)'s, it is quite easy to locate a fault-free unit in ¢
steps. The algorithm outlined below describes a method which is applicable to
systems where t < n + 2.

For a system represented by a digraph G(V, E) with a set of n units in V and
an integer t withn >t +2,let m=n—t—1and ¢=|22]. |r] is the largest
integer smaller than r. Let Vo=V - {v,} with v,, € V. Define V, V5, ..
to be a partition of V™ such that their cardinalities differ by at most 1. |V;| = q
fort =n—gm,...,mand [Vi| = ¢+ 1fori = 1,2,...,(n—1—gm). Let
Vi={vi,viz,. vz, } withg< z; < g+ 1fori=1,23,..., m.
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n=
t=3
X ={1,3}

Figure 3.4: A D*(n,t, X) system
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Algorithm 3.5 (Hakimi and Nakajima)

1. Initialization. Set E «— ¢ and let V; and z; as defined earlier for
1=12,...,m

2. Seek the results of the tests R(vik,vy) for ¢ = 1,2,3,...,m and
k<lwithl<k<!<az. If R(vig,vt) = 0, then vy is fault-free.
Stop. Otherwise set E «— E'|J{(vik, vi1)} and continue.

3. u, is fault-free. End.

Algorithm 3.5 always identifies a fault-free unit in no more than (2n — 2 —
mgq — m)% tests. For a proof that this is the upper bound on the number of
tests required by the algorithm to identify a fault-free unit and that this is also
the lowest bound possible, the reader is referred to Hakimi and Nakajima [15].

Example 8.3 In Figure 3.5 the various elements of the partition are shown
along with the values of n,¢, m and ¢. If vz, v4 and vg are faulty, then Algorithm
3.5 determines that there are 3 faulty units in the set {vy, v, vs, v4, v5,v6} and
concludes that vy is fault-free.

3.3 Distributed Diagnosis

With advances in LSI technology interest in investigating the possibilities of
constructing large distributed processing systems has increased considerably.
A distributed processing system could be conceived as an interconnection of
a large number of smaller units. As the number of such elements increases it
is very likely that their reliability will decrease substantially. If a single such
element fails and is allowed to operate unchecked, it could act in a manner
which could cause a faulty functioning of the entire system. This could happen
because unsuspecting elements could be led totally off track when they accept a
result from the faulty element and continue to process incorrect data. In such a
scenario it will not be long before enough corruption has occurred to make the
entire system unreliable. It is necessary therefore to incorporate some method of
diagnosing and possibly removing or correcting the faulty element. The system
should be built so that it is self diagnosing in this distributed environment. In
this section algorithms to diagnose faulty elements in such a distributed system
are presented.

The fault model and the algorithms developed by Kuhl and Reddy (23]
are presented in this section. The fault models used to devise the distributed
diagnosis algorithms are based on the test invalidation assumptions for the PMC
model given in Table 2.1.
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m=n—t—1=7—3—-1=3
g=|22t] =15 =2

Partition set = {(vy, v2), {vs, v4), (vs, vs)}
of V -~ {v,}

Figure 3.5: A syndrome for example of an adaptive diagnosis algorithm for a
BGM system
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3.3.1 The Distributed Fault Model

Every distributed fault model consists of units {vy,ve,...,v,} and a set of
communication links through which these elements can communicate. It is
assumed that no more than ¢ units in the system can be faulty simultaneously.
It is assumed that these units are capable of testing a subset of the units with
which they have a direct communication link. Further these units are assumed
to exchange diagnostic information about their evaluation of the other elements
in the system periodically. Distributed diagnosis algorithms should be able
to decide rationally which of the units in the system are faulty based on this
exchange of information. The test invalidation assumptions for this model are
the same as those of the PMC model discussed earlier. The system will thus be
associated with a diagnostic graph like systems under the PMC model.

Algorithm 3.6 (Kuhl and Reddy)

Messages for the purpose of exchanging diagnostic information are assumed to
be of the form Dy; D, where each of Dy and D; is a set of integers in the range
of 1,...,n. Each unit computes a fault vector F; = f}, f2,..., f* where fl=1
if v; concludes that vy is faulty and f] = 0 if v; concludes that v; is fault-free.
It is worth noting at this point that information about same unit v might not
have reached v; and the entry f* = u in such a case is said to be unspecified.
The fault vector F; for unit v; is said to be completely specified if F; contains
only ones and zeros or if F; consists of t ones. Let a] be the outcome of the test
performed by v; on v,. a} can either be 0 if v; finds v, fault-free or 1 otherwise.

1. Initialization. Set Do «— ¢, Dy «— ¢, f' = 0 and F? = u for
7 #%. (u indicates unspecified.)

2. for each v, € 't (v;) do

Let fI =af.
if a] = 0 then

Do «— Do U{r}
else
Dy — Dy U{r}.
end for.
3. Broadcast message Do; Dy to all v, € T {v;).
4. for each message Dj; D| received from a neighbour v; where v; €
I'*(v:) and o] =0, until F; is completed do
Dy «— ¢, Dy — 4.
for each k € D}y |J D} such that fF is not yet specified do
if k € D then
Dy — Do\ J{k}
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fk=o0

1
else

D1 — D1 U{k}
=1

end for

if DOUDI 75 ¢ then

broadcast message to all units v; such that v, € ' (v;) —
{v;} and af # 1.
end for

6. Let any still unspecified positions of F; be set to 0.

Example 3.4 The example used to illustrate the mechanism of Algorithm 3.6
is based on the D;; system of Figure 3.3. For the syndrome shown, after the
first round of testing is completed, the fault vectors are F; = 010uu, F; =
©000u, F3 = uu001, Fy = Ouu01, Fy = 01uu0. v; now receives messages {4}; {5}
from vz and {3, 4}; ¢ from v,. Fy will get updated to 01001. v3 receives messages
{1}; {5} from v, and {1}; {2} from vs and updates F3 to 0u001 and subsequently
to 01001. Fy is updated to 01001 when vy receives {3}; {2} from v; and {1}; {2}
from vs. Note that when Fy, F3 and Fy are completed, they identify {2,5} as
the consistent fault set. In all cases messages from v; and vg are ignored when
generating the fault vectors for units vy, vs and v,.

One major drawback of the model outlined above is that it is impossible for
the units to synchronize themselves so that they are certain about the state of
the sender at the instant when the message was sent. Therefore their analysis
may not be accurate. It is quite reasonable to assume that each unit performs
its tests and broadcasts messages quite independently of the others. The fault
vector cannot be viewed as an entity that is calculated at discrete intervals of
time, but rather as one which is continuously evolving in time. Due to the
time difference between evaluation and sending the messages it is impossible
for the units to maintain an accurate picture of the system at all times. The
diagnosis of a unit may be outdated. However, it is necessary to ensure that
incorrect diagnosis is not made based on the incorrect information received by
a unit. One method of ensuring this is to test the sender of the message before
using the information already received from the sending unit. Algorithm 3.7
ensures that such an error does not occur. To accomplish this, the scenario is
changed slightly. Firstly it is assumed that at some initial startup time all the
fault vectors are all set to zero. Subsequently whenever a unit v; finds a unit vgq
faulty, then it broadcasts a message containing a single integer d" to all units
vk such that vy € T7{v;).



Algorithm 8.7 (Kuhl and Reddy)

1. Perform the test of v; and obtain af .
2. if al = 1 then

fle—1

broadcast message "5 to all v € '~ (v;) and f‘k = Q.

Each time v; receives a diagnostic message "d” from a neighbour v;, v; should
perform the following:

1. if f/ = 0 and v; € 't (v;) and f¢ = 0 then

Test v; and obtain al.

if a7 = 0 then

set fi=1
broadcast message ""d" to all vy € T (v;) — {v;} whose
fF=o.

else .

set ff = 1 and broadcast message """ to all v, € 't (v;)
whose fF = 0.

end if

Example 3.5 Consider the same connection assignment of Figure 3.3. Assume
that at time to all units were fault-free and all f/ were initialized to 0. If at
time ¢, the unit v; fails and proceeds to diagnose v; as faulty, v; may initiate
messages to vy and vy indicating that vz has failed. On receipt of this message
vy and vs will proceed to test v;. Finding that v, has failed the test, they
will set f} and f3 to 1. vy will broadcast the message 1" to v2 and v;. vs
will broadcast the message /1" to v3 and v4. Depending on which message was
received first, v; and vz will test v4 and vs and set f} and f3 to 1.

Kuhl and Reddy [24] have explored the effects of communication link failure
and provided another distributed fault diagnosis algorithm to identify faulty
units under these circumstances. Hosseini, Kuhl and Reddy [18] have extended
this work further and have published a much more comprehensive algorithm to
diagnose systems with dynamic failure in a distributed environment.

33



Chapter 4

Analysis of t-Diagnosable
Systems

The research survey on t-diagnosable systems presented thus far has been in the
area of designing and diagnosing these systems. Various interconnection schemes
which have been introduced in the previous chapters are essentially different
approaches to designing ¢-diagnosable systems and the algorithms presented
earlier are means of using these designs effectively to locate faulty units in the
system.

In the context of ¢-diagnosability it must be noted that the configuration of
these systems could change with time. That is, the t-diagnosability itself could
change. This could happen because of various reasons like introduction of new
links, removal of faulty units, removal of links and addition of new units to
the system. With reconfiguration of this nature, the properties of the system
could get altered very much. For the algorithms presented earlier to function
correctly, the properties of the reconfigured system need to be ascertained. This
branch of research into t-diagnosable systems is termed analysis.

4.1 Analysis of Symmetric Systems

The first polynomial time algorithm for systems under the PMC model was
provided by Sullivan [39]. This section gives a brief summary of his technique
for analyzing systems under the PMC model. Sullivan [39] has shown that
the analysis of these systems is equivalent to the maximal flow problem for a
network generated from the diagnostic graph.

For a system under the PMC model let G(V, E) be the diagnostic graph. Its
corresponding flow graph G’(V', E') is defined as follows:

V! =V J{s} and
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Figure 4.1: PMC digraph

Figure 4.2: Flow graph

E' =E{s — v, VveV}.

s is a new node introduced into G’ termed as the source node. Let ¢’ be a
capacity function on E'{J V" defined as follows:

Ve € {s ~—vjveV},d(e) =%,

Ve € E,c'(e) = oo and
YveV,d(e) =1.

Theorem 4.1 (Sullivan) A system in the PMC model represented by the di-
graph G{V, E) is t-diagnosable <=> Vv € V the mazimal flow in the graph
G'(V',E') from s — v > t.

To prove Theorem 4.1 Sullivan has made use of the characterization of sys-
tems under the PMC model given by Theorem 2.2. Figure 4.1 and Figure 4.2
show a PMC digraph and its corresponding flow graph,



To reduce the order of computation of the maximal flow problem, it becomes
useful to redefine the flow graph as shown below. For the digraph G(V, E) let
the flow graph G”(V", E") be defined as follows:

V" = {s} | U{voi, v1i, v2i,t = 1,2,...,n}, where V = {v1, v2,...,v,},

[ B y
E" = {3 — w4000 — v1i, 015 — vzt = 1,2,...,n}U{vis —
V15, V1§ —*+ V24, V2i —* U1, V2§ — V25, Yy; — v; € E}

The capacity function for G"(V", E") is defined as follows :

Ve € E",c"(e) = co and
YoeV"” ") =1.

Theorem 4.2 (Sullivan) The mazimum flow in the network G'(V', E') from
s — v = F\Vv' € V' <=> the mazimal flow in the graph G”"(V",E") from
s — W =2F, V" e V",

Even and Tarjan [9] have shown that Dinic’s algorithm for finding the max-
imal flow in a network with all edge capacities = oo and all node capacities
= 1 from a source to any vertex has a time complexity Q(lEHVI%') Sullivan’s
algorithm involves solving |V'| such maximal flow problems and thus determines
the diagnosability of a system in the PMC model in O(|E“V!%)

4.2 Analysis of Asymmetric Systems

The analysis of asymmetric systems appears to be a much simpler problem. If
one is to find an approximate solution, it is readily available as t > dnin(G) — 1
and t < din(G) where d,,in(G) is the minimum indegree of the graph G. If
one is content with an approximate value for the diagnosability, one could stop
here. The authors [35] provided the first polynomial time algorithm for a sys-
tem in the BGM model using the generalized characterization of these systems
presented earlier. Recently Kreutzer and Hakimi [21] have used a different ap-
proach to determine the diagnosability of an asymmetric system in polynomial
time. Nakajima [30] has shown that these two algorithms algorithms compute
the diagnosability in O(nd2 . (G)) time. Algorithm 4.1 determines the diagnos-
ability of a system in the BGM model. For further details about the algorithm
the reader is referred to Narasimhan and Nakajima [35].

Algorithm 4.1 (Narasimhan and Nakajima)

comment: d will be set to be equal to the diagnosability number when
the algorithm is completed.

d+—n-—-1,U — ¢;
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foreach veV

if d > d™ (v) then d — d~(v);
foreachveV

if d~(v) = d then U «— U |J{v};
for each v € U do

Y «— T (v);

Y, —Tt(o)OYNU;

if |Y1| # 0 then do

foreach ye Y;
i T7(y) = {v}U(Y - {y}) then

de—d-—1,
Stop;
X' e—V-Y—-{v}
X2 — ¢;

for each y € Y; do
X — X'NT (y);
for each z € X
if I'"(z) =T (v) then X, — X, {J{z};
if X; = ¢ then do
Zz +— {y};
Y — Y1 - {y};
foreach y €Yy
if T (y') =T~ (y) then Z; — Z2U{y'};
if |Z2| = | X2] + 1 then
d=d—1,
Stop;
end if

end for
end if

end for

S
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Chapter 5

Conclusion

This report is an introduction to system level fault diagnosis using basic models
where two single units are involved in each test. It has dealt with the problems
of t-fault diagnosability for interconnected systems. Some of the fundamental
characterization theorems for t-diagnosability of these interconnection networks
have been presented. Algorithms for identifying faulty units in some classes of
these systems have been provided. Distributed diagnosis has been introduced.
Finally the problem of analysis of ¢-diagnosable systems has been mentioned.

In the time span covering the introduction of system level fault diagnosis by
Preparata, Metze and Chien [36] in 1967 and the present, numerous researchers
have worked in this area and have developed on the field extensively. It can be
expected that with the rapid expansion in the use of computer networks, the
theories developed in this field will be used very widely. The practicalities of
the applicability of system level fault diagnosis and repair both in the area of
hardware and that of software would be worth investigating. In one form of gen-
eralization of the PMC model provided by Russel and Kime {37| [38], a group
of units test another group of units or a single unit. Such variants of the main
theme of t-diagnosability would be worth investigating with an eye towards im-
plementation. With regard to asymmetric invalidation assumptions Holt and
Smith [17] have investigated these systems further. It is conceivable that the
diagnosis algorithms could be speeded up considerably if approximate solutions
are sufficient for certain applications. These solutions, however, should never
be incorrect. The solutions may isolate a set of units to be faulty, in which case
this contains all the faulty units and possibly some fault-free units but its com-
plement should strictly consist of only fault-free units. Imposing conditions of
this nature could simplify the diagnosis procedures considerably at the expense
of losing some information which could probably be lived with. In this respect
the notion of t/k-diagnosability has been introduced by Friedman [10] and some
interesting results have been obtained by Karunanithi and Friedman [19], Chwa
and Hakimi [4] and Yang, Masson and Leonetti [42].
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The effect of intermittently faulty units in a system has been explored by
Mallela and Masson [28]. The same authors [27] have presented an analysis
of hybrid fault systems in another of their research endeavours. Their efforts
have exposed many new topics of research in the area of intermittently faulty
systems. A new characterization for intermittent fault systems was obtained by
Nakajima and Narasimhan [32]. Dahbura and Masson {7] have also provided
a detailed analysis of these systems. Dahbura and Masson [8] have introduced
a clasg of systems known as self implicating systems. The concept of redun-
dancy, introduced in these systems by Toida [40], has also opened new areas for
research.

Procedures for testing units in a t-diagnosable system are still not very
clearly specified. If a complete test of a unit is not performed by another,
then it is not impossible for a fault-free unit to find a faulty unit fault-free
in some cases. Maheshwari and Hakimi [25] and later Fujiwara and Kinoshita
[11] [12] have provided an analysis of probabilistically diagnosable systems.
Effects of introducing probabilities into t-diagnosable systems would be well
worth investigating further. Application of t-diagnosability to analog systems
have been investigated by Wu, Nakajima, Wey and Saeks [41] and could be of
interest in a number of applications. A theory of t-diagnosable analog systems
has been established by Hakimi and Nakajima [14]. .
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