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ABSTRACT 

Cluster tools are highly integrated machines that can perform a sequence of semiconductor manufacturing 
processes.  The sequence of wafer handler moves affects the total time needed to process a set of wafers.  
Reducing this time can reduce cycle time, reduce tool utilization, and increase tool capacity.  This paper 
introduces the cluster tool scheduling problem for hybrid cluster tools, which are multiple-stage tools that 
have at least one stage with two or more parallel chambers. This paper presents algorithms that can find 
superior sequences of wafer handler moves.  Experimental results show that the tool performance can be 
improved significantly if the wafer handler follows a cyclic sequence instead of using a dispatching rule.   

1. INTRODUCTION 

Manufacturing semiconductor devices involves three main steps: formation of p and n-type regions of the 
required conductivity within the semiconductor chip by doping; formation of reliable metal-semiconductor 
contacts on the surface of the chip; and encapsulation and packaging of the chip to provide protection and a 
convenient method of making electrical connection.  In the first and second steps, the chips are processed 
together as wafers.   

Most operations process each wafer individually.  However, identical wafers move together from 
one process to the next.  Each set of wafers is a lot.  The container used to move and store the wafers in a 
lot is called a cassette. 

A cluster tool is a manufacturing system with integrated processing modules linked mechanically.  
Typical cluster tools include load locks that store cassettes of wafers (cassette modules), process modules 
that modify the properties of the wafers, and single or multiple wafer handler(s) that transport the wafers 
(transport modules).  These modules are linked together by an evacuated transfer space.  Because it has 
multiple chambers, a cluster tool can process multiple wafers simultaneously.   

After a lot enters the cluster tool, each wafer must undergo a series of activities.  Each activity is 
performed in a different chamber.  The wafer handler transports each wafer from one chamber to another.  
For example, the cluster tool shown in Figure 1 has one load lock (LL), which stores a cassette of wafers, 
and three process stages.  Each wafer starts in the LL and must visit the first-stage chamber, one of the two 
second-stage chambers, and one of the two third-stage chambers before returning to LL.  

A hybrid cluster tool has multiple stages, and at least one stage has two or more parallel, identical 
chambers.  A wafer must visit exactly one chamber in each stage, so no wafer visits every chamber.  A 
cluster tool can improve yield and device performance since wafers are exposed to fewer contaminates 
between process steps.  The tool can include an in-situ metrology step that provides real-time feedback on 
process performance.  A cluster tool with multiple parallel chambers can increase capacity and reduce cycle 
times by reducing the total time needed to process a lot of wafers.  Moreover, it may be more reliable, since 
a single chamber’s failure does not necessarily stop production.  Semiconductor manufacturers are 
increasingly using cluster tools.  Annual sales of cluster tools is projected to increase from $11.2 billion in 
1997 to $21.9 billion in 2000 [1]. 

The sequence of wafers leaving the LL is not important, since the wafers are identical, and an 
activity’s time is the same for every wafer.  But the sequence of wafer handler moves, which determines 
when each activity starts, will change the total time needed to process a lot of wafers.  We will call this the 
lot makespan.  This paper addresses the problem of sequencing the wafer handler moves to minimize the 
lot makespan.  Reducing the lot makespan can reduce cycle time, reduce tool utilization, and increase tool 



capacity.  Moreover, the lot makespan is a necessary component for calculating overall equipment 
effectiveness (OEE) and cost-of-ownership (COO), which are usually used to evaluate cluster tool 
performance [11, 12]. 

Like machine tools, cluster tools use controllers that supervise the tool operations, monitor the tool 
status, and handle exceptions that abnormal events cause.  Under normal operation, sequencing wafer 
handler moves is an important responsibility.  In practice, cluster tools use a push dispatching rule or a pull 
dispatching rule to sequence the wafer handler moves.  After completing one move, the wafer handler will 
wait where it is (if no more wafers are ready to move) or start another move (if at least one wafer is ready).  
If multiple wafers are ready to be moved, the cluster tool must decide which move the wafer handler will 
perform.   

In this case, the dispatching rule selects the next move. The pull rule gives priority to the wafer 
that has fewer remaining process steps.   The push rule gives priority to the wafer that has more remaining 
process steps.  Consider the cluster tool in Figure 1.  Suppose there are unprocessed wafers in the LL, the 
first stage chamber is empty, and one second-stage and both third stage chambers each have a wafer that 
has finished processing and needs to move to the next stage.  The pull rule will give priority to the wafer in 
a third-stage chamber.  The push rule will give priority to the next unprocessed wafer in LL that needs to 
visit the first-stage chamber.  Note that the wafer in the second-stage chamber cannot be moved because 
both third-stage chambers are full. 

Although these rules help the cluster tool sequence the wafer handler moves, the push and pull 
dispatching rules do not guarantee that the resulting sequence has the optimal lot makespan for the given lot 
size, tool configuration, and activity processing times.  For instance, consider a two-stage cluster tool that 
has two chambers in each stage.  The first-stage activity requires 10 seconds. The second-stage activity 
requires 40 seconds. A wafer handler move requires 5 seconds.  The lot has eight wafers.  Figure 2 presents 
the Gantt charts of two sequences.  The push dispatching rule generates first sequence, which has a lot 
makespan the of 285.  The second sequence is an optimal sequence, which has a lot makespan the of 275.  
Each Gantt chart has five rows.  The bottom row displays the wafer handler activities.  The two rows above 
that displays the activities in the first-stage chambers.  The top two rows display the activities in the 
second-stage chambers.   

Cluster tool performance can be improved by determining a good sequence of wafer handler 
moves and providing it to the cluster tool controller, which can then use this sequence to direct normal 
operations.  We will treat the problem as a deterministic machine scheduling problem, since the processing 
and move times have little variation, and small variations do not invalidate a given sequence. 

This paper presents a branch-and-bound algorithm that can find an optimal sequence of wafer 
handler moves.  It also presents a heuristic that can find good cyclic sequences quickly.  The remainder of 
this paper is organized as follows.  Section 2 reviews the related literature.  Section 3 formulates the 
problem. Section 4 describes the branch-and-bound algorithm.  Section 5 presents the heuristic.  Section 6 
presents experimental results that compare the performance of the algorithms.  Section 7 summarizes our 
results and concludes the paper. 

2. RELATED LITERATURE 

Wood [2] derives formulas that relate the total lot processing time to the number of wafers in the 
lot for ideal sequential and parallel tools.  Considering the transitions at the beginning and the end of the 
lot, Perkinson et al. [3] derive a model that relates the total lot processing time to the number of wafers.  
Both papers present linear models and identify two operating regions: in one region, the total lot processing 
time is constrained by the wafer handling time; in the other region, by the module process time.  Venkatesh 
et al. [4] analyze the throughput of a sequential cluster tool with a dual-blade wafer handler.  They also 
identify conditions when the tool operation is constrained by the wafer handler.  Srinivasan [5] presents 
more detailed Petri net models for sequential and parallel tools and uses these to determine the steady state 
behavior of the tool.  Herrmann et al. [6] study the impact of process changes on cluster tool performance.  
They propose using a network model for a prespecified sequence of wafer moves and cluster tool 
simulation software when the controller uses a dispatching rule or scheduling algorithm to sequence the 
wafer moves.  They choose the cluster tool performance measure of interest is the lot makespan.  None of 
the previous work addresses the problem of reducing the total lot processing time (lot makespan) by 
sequencing the wafer handler moves.  



Jeng et al. [7] study the problem of sequencing robot activities for a robot-centered parallel-
processor workcell where n jobs and m identical processors exist in the cell.  They provide a branch and 
bound algorithm to find an optimal sequence of robot activities, which minimizes the total completion 
times. Hall et al. [8] discuss the problem of scheduling activities in a serial two or three machine 
manufacturing cell that is served by a robot. For multiple part-type problems in a two-machine cell, they 
provide an algorithm that simultaneously finds sequences of parts and robot moves to minimize the steady 
state cycle time.  They also address a conjecture about the optimality of repeating one-unit cycles for a 
three-machine cell with general data and identical parts.  Restricted to a special problem where the number 
of machines is arbitrary, but all parts are of the same type, Crama and van de Klundert [9], relying on the 
concept of pyramidal permutation, present a dynamic programming approach that finds an minimum one-
unit cycle time in O(m3) time. Herrmann and Nguyen [10] analyze the problem of finding an optimal 
sequence of wafer hander moves for sequential cluster tools, which have just one chamber per stage. 

3. PROBLEM STATEMENT 

This paper focuses on single load lock, single wafer handler cluster tools.  The following 
information about the cluster tool scheduling problem is given.  The cluster tool has one load lock (LL) and 
S stages (S > 1).  The number of chambers in one stage can be one or more.  Let mi be the number of 
chambers in stage Si (i = 1,…, S).  Let M = m1 + …+ mS be the total number of chambers.  The chambers 
are numbered 1 to M.  Let � = min {m1, …, mS}.  Each stage Si has a wafer processing time pi.  The wafer 
handler move time is pr.  The lot has L identical wafers.  Since each wafer must visit each stage and return 
to LL, the total number of moves is L(S+1). 

The sequence of wafers leaving LL is not important, since the wafers are identical.  However, the 
sequence of moves affects the lot makespan Cmax, the total time needed to complete all moves.  The 
scheduling objective is to minimize the lot makespan.  By convention, scheduling problems are described 
by triplets of the form � � � � �� The � field describes the machine environment.  We use � = CTm1-m2 to 
describe a two-stage hybrid cluster tool that has m1 chambers in the first stage and m2 chambers in the 
second stage.  We use � = CTm1-m2-m3 to describe a three-stage hybrid cluster tool that also has m3 
chambers in the third stage.  For our problem, the objective function � = Cmax. 

When processing begins, the wafer handler is at LL, and all of the wafers are unprocessed and in 
LL.  For convenience, we will number the wafers in the order they leave LL.  Let R0,j denote the move that 
takes wafer j from LL to a chamber in S1.  Let  Ri,j denote the move that takes wafer j from a chamber in Si 
to a chamber in Si+1 (i = 1, ..., S-1).  Let RS,j denote the move that takes wafer j from a chamber in SS to LL. 

A feasible sequence of moves must satisfy the following constraints.  For all j = 1, …, L-1, R0,j 
must precede R0,j+1.  All wafers must follow the fixed sequence of processing steps.  Therefore, for all j = 1, 
…, L, and i = 0, ..., S-1, Ri,j must precede Ri+1,j.  Since there are no buffers (besides LL) to store wafers, Si+1 
must have at least one free chamber before Ri,j begins.  That is, the wafer handler must have moved the 
previous wafer to the next stage.   

The following facts describe the operation of the cluster tool.  Each and every move requires the 
wafer handler. Since there is just one wafer handler, then, at any time, there is at most one move in process.  
The wafer handler cannot unload an empty or busy chamber and cannot load a busy or full chamber.  (A 
full chamber has a wafer that has completed processing and is waiting to be moved.) 

A chamber at stage Si begins processing wafer j when move Ri-1,j ends (i = 1, ..., S).  This activity 
cannot be interrupted until the chamber is finished processing the wafer.  For example, if a chamber in Si 
starts processing at time t, then the chamber is busy during the interval [t, t + pi], and the wafer cannot be 
unloaded during that time.   

Move Ri,j starts when the chamber finishes processing wafer j and the wafer handler completes any 
previous move.  Ri,j requires pr time units if the wafer handler is already at the chamber that processed 
wafer j (at LL if the move is R0,j).  Ri,j requires 2pr time units otherwise, for the wafer handler must move to 
the correct chamber at Si before moving the wafer to a chamber at stage Si+1 (to LL if the move is RS,j).  The 
wafer handler cannot make anticipatory moves.  That is, the wafer handler cannot move to the chamber 
before processing ends.   

That is, R0,1 requires pr time units.  For j � 2, R0,j requires pr time units if and only if the previous 
move is RS,k for some k < j.  For i � 1 and j � 1,  Ri,j requires pr time units if and only if the previous move 
is Ri-1,j.   



Special cases.  We can identify two special cases.  If pr = 0, there is no scheduling problem since 
moves require no time, and all wafers move as soon as they are ready.  If all pi = 0, then an optimal solution 
is R01, R11, …, RS1, R02, R12, …, RS2, …, R0L, R1L, …, RSL.  This sequence has a lot makespan of L(S+1)pr. 

Cyclic sequences.  Unless the lot size L is very small, a typical sequence has three phases, which 
we label filling-up, steady state (or cyclic), and completion.  The chambers are empty when processing 
begins.  Until the first wafer is completed, the tool is filling up with wafers.  Then the tool is in a steady-
state phase as it completes wafers and loads new wafers.  When there are no more wafers to start, the tool 
enters the completion phase and completes wafers until the last wafer is unloaded from the last stage.  Then 
processing ends. 

We assume that � < L.  Let us define a �-unit cycle as a subsequence that loads and unloads each 
stage � times and thus completes � wafers.  Complete sequences formed by repeating a cycle in the steady 
state and completion phase we will call �-unit cyclic sequences.  Consider the sequences presented in 
Figure 2.  The push sequence has a cyclic phase that starts at time 65 and follows the 1-unit cycle R2, q – R1, 

q+2 – R0, q+4, for q = 1, 2, 3, 4.  The optimal sequence has a cyclic phase that starts at time 65 and follows the 
2-unit cycle R2, q – R1, q+2 – R2, q+1 – R1, q+3 – R0, q+4 – R0, q+5, for q = 1 and 3.   

The order of events in the completion phase resembles that in the cyclic phase, but the cycles are 
incomplete because there are no unprocessed wafers and some moves are no longer needed.  The six moves 
in the completion phase of the push sequence form four incomplete cycles.   

Note that the cycle does not define the filling-up phase, which ends with the first wafer being 
completed.  There may exist more than one feasible filling-up phase for a given cycle.  Unfortunately, there 
may be no optimal sequences in the set of �-unit cyclic sequences. 

Theorem 1: The best �-unit cyclic sequence is not necessarily optimal for the problem CTm1-…-mS | | 
Cmax. 

For the proof (by counterexample), please see Section 5. 

4. THE BRANCH-AND-BOUND ALGORITHM 

This section discusses Algorithm BB.  The algorithm begins by using the push dispatching rule to 
construct a feasible sequence and then using the pull dispatching rule to construct another feasible 
sequence.  The smaller lot makespan becomes the initial upper bound on the optimal lot makespan.  For 
each partial solution constructed, the algorithm creates a lower bound by calculating the completion time of 
the last scheduled activity. 

4.1.  Algorithm BB 

Given S, m1, ..., mS, pr, p1, ..., pS, and L, Algorithm BB proceeds as follows.  Note that this 
algorithm calls Algorithm P to generate sequences using the push and pull dispatching rules.  Section 4.2 
describes Algorithm P. 
Step 0 

Use the push dispatching rule (Algorithm P) to generate a feasible sequence.  Use the pull 
dispatching rule (Algorithm P) to generate a second feasible sequence.  Save the sequence with the 
smaller lot makespan as the current best sequence, and let the upper bound UB equal the lot 
makespan.  

Step 1 
Initialize the cluster tool.  All L unprocessed wafers are in LL, and the wafer handler is at LL.  All 
of the chambers are free.  The current sequence is a sequence with no moves.  Set C = 0, n = L, 
and tk = 0 for all chambers k (k = 1, …, M). 

Step 2 

Based on the tool state, let t = C, the last move completion time, and identify all feasible moves.  
R0,j is feasible if n > 0, j = L+1-n, and there is a free chamber in S1.  This can begin at time t.  Ri,j 
(0 < i < S) is feasible if wafer j is at chamber k in Si and there is a free chamber in Si+1.  This can 
begin at max{t, tk}.  RS,j is feasible if wafer j is at chamber k in SS. This can begin at max{t, tk}.  



Use the permutation condition and Theorem 3 to remove any dominated moves from further 
consideration. 

Step 3 
For each feasible move, form a new sequence with that move and perform one of the following 
steps (which calculates the lower bound and updates the tool state).  Then go to Step 4.  

	 If the feasible move was R0,j, then go to Step 3a.   

	 If the feasible move was Ri,j, 0 < i < S, then go to Step 3b.   

	 If the feasible move was RS,j, then go to Step 3c.   

Step 3a 

Reduce n by one.  If the wafer handler was at LL, then the move completion time C = t + pr.  
Otherwise, the move completion time C = t + 2pr.  Let q be the lowest-numbered free chamber in 
S1.  The wafer handler is now at chamber q, which now has wafer j, and tq = C + p1.  Let LB = tq.  
Go to Step 3d. 

Step 3b 

Let k be the chamber in Si that was processing wafer j.  If the wafer handler was at chamber k, 
then the move completion time C = max{t, tk} + pr.  Otherwise, the move completion time C = 
max{t, tk} +2pr.  Chamber k is now free.  Let q be the lowest-numbered free chamber in Si+1.  The 
wafer handler is now at chamber q, which now has wafer j, and tq = C + pi+1. Let LB = tq.  Go to 
Step 3d. 

Step 3c 

Let k be the chamber in SS that was processing wafer j. If the wafer handler was at chamber k, 
then the move completion time C = max{t, tk} + pr. Otherwise, the move completion time C = 
max{t, tk} +2pr.  Chamber k is now free.  LB = C.  Go to Step 3d. 

Step 3d 

If LB � UB, then discard this new sequence.  If this new sequence includes all L(S+1) moves, the 
lot makespan equals C.  Consequently, if C < UB, save this new sequence as the current best 
sequence and set UB = C. 

Step 4 

If any incomplete new sequences remain, select one, identify the corresponding tool state, and go 
to Step 2.  Otherwise, stop and return the current best sequence and UB, its lot makespan. 

4.2.  Algorithm P 

Given S, m1, ..., mS, pr, p1, ..., pS, and L, Algorithm P proceeds as follows.  Note that Algorithm P generates 
only non-delay schedules. 

Step 1 
Initialize the cluster tool.  All L unprocessed wafers are in LL, and the wafer handler is at LL.  All 
of the chambers are free.  Set t = 0 and n = L. tk = 0 for all chambers k (k = 1, …, M). 

Step 2 

Based on the tool state, identify any feasible moves that could begin at time t. R0,j can begin at 
time t if n > 0, j = L+1-n, and there is a free chamber in S1.  Ri,j (0 < i < S) can begin at time t if 
wafer j is at Si, tk 
 t, and there is a free chamber in Si+1.  RS,j can begin at time t if wafer j is at SS 
and tk 
 t.  If there is exactly one feasible move, then perform that move and go to Step 4.  If there 
is more than one feasible move and the dispatching rule is push, select the feasible move Ri,j with 
the smallest value of i and go to Step 4.  If there is more than one feasible move and the 
dispatching rule is pull, select the feasible move Ri,j with the largest value of i and go to Step 4.  
Otherwise, go to Step 3. 

Step 3 

Let t = min { tk: tk > 0, k = 1, …, M}.  Go to Step 2. 
Step 4 



Update the tool state.  

	 If the selected move was R0,j, then reduce n by 1.  If the wafer handler was at LL, then the 
move completion time C = t + pr.  Otherwise, the move completion time C = t + 2pr.  Let q be 
the lowest-numbered free chamber in S1.  The wafer handler is now at chamber q, which now 
has wafer j, and tq = C + p1.   

	 If the selected move was Ri,j, 0 < i < S, let k be the chamber in Si that was processing wafer j.  
If the wafer handler was at chamber k, then the move completion time C = t + pr.  Otherwise, 
the move completion time C = t +2pr.  Chamber k is now free.  tk = 0.  Let q be the lowest-
numbered free chamber in Si+1.  The wafer handler is now at chamber q, which now has wafer 
j, and tq = C + pi+1.  

	 If the selected move was RS,j let k be the chamber in SS that was processing wafer j. If the 
wafer handler was at chamber k, then the move completion time C = t + pr. Otherwise, the 
move completion time C = t +2pr.  Chamber k is now free.  tk = 0.  The wafer handler is now 
at LL. 

Step 5 

If all L(S+1) moves are complete, then stop.  The lot makespan equals C.  Otherwise, let t = C and 
go to Step 2. 

4.3. Dominance Criteria 

Algorithm BB uses some dominance criteria to avoid unnecessary searching.  First, since all 
chambers in a stage are identical, move Ri,j loads the lowest-numbered free chamber in Si+1 (i = 0, ..., S-1). 

In addition, each wafer must be moved in turn.  That is, Ri,j must precede Ri,j+1 for all i = 0, ..., S, 
and j = 1, ..., L-1.  If all stages have exactly one chamber (all mi = 1, i = 1, ..., S), then all feasible 
sequences satisfy this condition, which we call the permutation condition.  In a hybrid tool, there may exist 
feasible sequences that violate this condition.  We will show however, that, in some cases, there exists an 
optimal sequence that does satisfy this condition. 

Theorem 2.  If, for each i = 1, ..., S, either mi = 1 or pi � pr, then there exists an optimal sequence that 
satisfies the permutation condition. 

Proof.  Consider an optimal feasible sequence Q that violates the permutation condition.  Then, find i such 
that Rk,j precedes Rk,j+1 for k = 0, ..., i-1, but Ri,j+1 precedes Ri,j. Since R0,j must precede R0,j+1, then i is at 
least 1. 

If mi = 1, then Ri-1,j+1 is infeasible until Ri,j empties the chamber in Si.  Thus, Ri,j must precede Ri-
1,j+1, which precedes Ri,j+1.  This is a contradiction, so Si must have multiple chambers (mi > 1).  By the 
given, pi � pr. 

Now, form a new sequence Q’ by interchanging Rk,j and Rk,j+1 for k = i, ..., S.  We will show that 
Q’ is a feasible sequence and that, since pi � pr, it does not increase the lot makespan.  If Q’ is not a 
permutation sequence yet, then we can repeat this construction until we have a feasible permutation 
sequence that does not increase the lot makespan of Q.  Thus, this forms a feasible permutation sequence 
that is also optimal. 

Q’ is a feasible sequence because creating it only interchanges wafer j moves with wafer j+1 
moves.  If there was a chamber free to accept wafer j+1, then it is still free to accept wafer j (and vice 
versa). 

Now consider two cases.  In the first case, there is, in Q, a move between Ri-1,j+1 and Ri,j+1.  Thus, 
in Q, Ri,j+1 requires 2pr time units (since Ri-1,j+1 does not immediately precede it).  Also, Ri,j requires 2pr 
time units (since Ri-1,j does not immediately precede it).  After the interchange, in Q’, both moves still 
require 2pr time units.  For k = i+1,..., S, move Rk,j in Q’ requires the amount of time that Rk,j+1 required in 



Q (and vice versa).  Thus, all moves still require the same amount of time.  Because Ri-1,j precedes Ri-1,j+1, 
wafer j is complete at Si before wafer j+1.  Thus, in Q’, Ri,j can start at the time that Ri,j+1 started in Q.  Ri,j+1 
is delayed after the interchange and can certainly start in Q’ when Ri,j started in Q.  Thus Q’ delays no 
moves other than those interchanged and they can start at the same time, so the lot makespan is not 
increased. 

In the second case, there is, in Q, no move between Ri-1,j+1 and Ri,j+1.  Thus, in Q’, there is no move 
between Ri-1,j+1 and Ri,j.  Let Q1 be the subsequence in Q that occurs between Ri-1,j and Ri-1,j+1.  Now we 
need to consider the following sub-cases: (A) Q1 is empty, or Q1 is not empty and doesn’t end with Ri-2,j+1; 
(B) Q1 ends with Ri-2,j+1. 

Consider subcase A.  Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1 finishes 
processing wafer j+1 and there is a free chamber in Si).  Consider the move that precedes Ri-1,j+1.  Let tc 
denote the time that this move finishes.  Thus, Ri-1,j+1 begins at max{tc, td}.  Let ta be the time that Ri-1,j 
finishes.  If Q1 is empty, ta = tc.  Otherwise, because the first move in Q1 is not Ri,j, tc � ta+2pr.  Note that 
Ri,j in Q and Ri,j+1 in Q’ both require 2pr time units.  We need to show that, in Q’, Ri,j finishes no later than 
Ri,j+1 finishes in Q.  Then, Q’ does not increase the lot makespan because no remaining moves are delayed.  
One of the following conditions will hold: 
	 If pr 
 pi 
 tc-ta+2pr and td 
 tc, then, in Q, Ri,j+1 completes at tc+3pr+pi.  In Q’, Ri,j completes at tc+4pr.  

Since pi � pr, Ri,j finishes earlier. 
	 If pi � tc-ta+2pr and td 
 tc, then, in Q, Ri,j+1 completes at tc+3pr+pi.  In Q’, Ri,j completes at ta+2pr+pi.  

Since tc > ta, Ri,j finishes earlier. 
	 If pi � tc-ta+2pr and tc 
 td 
 ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi.  In Q’, Ri,j completes at 

ta+2pr+pi.  Since td � tc > ta, Ri,j finishes earlier. 
	 If pi � pr and tc 
 td and td � ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi.  In Q’, Ri,j completes at 

td+4pr.  Since pi � pr, Ri,j finishes earlier. 

Consider subcase B.  Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1 finishes 
processing wafer j+1 and there is a free chamber in Si).  Consider the move that precedes Ri-1,j+1.  Let tc 
denote the time that this move finishes.  Because the last move in Q1 is Ri-2,j+1, td = tc+pi-1.  Thus, Ri-1,j+1 
begins at td and ends at td+pr.  Let ta be the time that Ri-1,j finishes.  Because the first move in Q1 is not Ri,j, 
tc � ta+2pr.  Note that Ri,j in Q and Ri,j+1 in Q’ both require 2pr time units.  We need to show that, in Q’, Ri,j 
finishes no later than Ri,j+1 finishes in Q.  Then, Q’ does not increase the lot makespan because no 
remaining moves are delayed.  One of the following conditions will hold: 
	 If pi � td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi.  In Q’, Ri,j completes at ta+2pr+pi.  Since td > tc 

> ta, Ri,j finishes earlier. 
	 If pr 
 pi 
 td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi.  In Q’, Ri,j completes at td+3pr.  Since pi � 

pr, Ri,j finishes earlier. 

This completes the proof.    � 

Finally, Algorithm BB uses Theorem 3 as a dominance property, since it prohibits a move Ri,j if 
there exists another move Rp,q that can be done first without delaying the completion of Ri,j.  Note that 
using this condition limits Algorithm BB to the set of active schedules. 

Theorem 3.  Given Q1, a feasible partial sequence that satisfies the permutation constraint, move Rp,q 
dominates Ri,j if both are feasible and the following conditions hold: The last move in Q1 ends at time t.  
The wafer handler is at chamber k after this move (k may be LL).  Ri,j can begin at time ta � t and wafer j is 
at chamber ca, which is not chamber k.  Rp,q can begin at time tb � t and wafer q is at chamber cq.  Either cq 
= k and tb+pr 
 ta or cq is not k and tb+2pr 
 ta. 

Proof.  Consider a complete feasible permutation sequence Q that begins with Q1 and Ri,j.  Since ca is not 
k, Ri,j requires 2pr time units.  Form a new sequence Q’ by moving Rp,q before Ri,j.  Because Rp,q remained 
feasible from the end of Q1 to its position in Q, Q’ is also a feasible permutation sequence.  If cq = k and 
tb+pr 
 ta, the wafer handler can complete Rp,q at tb+pr and still begin Ri,j at ta.  Otherwise, cq is not k and 



tb+2pr 
 ta.  Still, the wafer handler can complete Rp,q at tb+2pr and still begin Ri,j at ta.  Thus, no move must 
be delayed, and the lot makespan of Q’ is not worse than the lot makespan of Q.  This completes the proof.   
 � 

In summary, Algorithm BB reduces its search space by applying the following three dominance criteria: 
1. The wafer handler should always load the lowest-numbered free chamber in a stage. 
2. The permutation condition, which forces the wafer handler to unload wafer j before wafer j+1 

in the same stage (Ri,j should precede Ri,j+1). 
3. Theorem 2, which prohibits a move Ri,j if there exists another move Rp,q that can be done first 

without delaying the completion of Ri,j. 
Note that if an instance of the scheduling problem does not satisfy the given of Theorem 2, then 
Algorithm BB may be unable to find an optimal solution. 

5. THE TRUNCATED BRANCH-AND-BOUND ALGORITHM 

This section presents an algorithm (Algorithm TBB) to find the best �-unit cyclic schedule.  
(Recall that � = min {mi}.)  This algorithm is called “truncated” because, unlike Algorithm BB, it stops 
adding moves to a sequence when the sequence has � + 1 wafer completions.  Algorithm TBB first 
generates two feasible sequences using the push and pull dispatching rules and uses the smaller lot 
makespan as the upper bound on the best lot makespan.  For a partial solution, the completion time of the 
last scheduled activity is the lower bound.  

Algorithm TBB 

Given m1, ..., mS, pr, p1,..., pS, and L, Algorithm TBB proceeds as follows.  Recall that � = min {m1, …, 
mS}. 

Step 0 
Use the push dispatching rule (Algorithm P) to generate a feasible sequence.  Use the pull 
dispatching rule (Algorithm P) to generate a second feasible sequence.  Save the sequence with the 
smaller lot makespan as the current best sequence, and let the upper bound UB equal the lot 
makespan.  

Step 1 
Initialize the cluster tool.  All L unprocessed wafers are in LL, and the wafer handler is at LL.  All 
of the chambers are free.  The current sequence is a sequence with no moves.  Set C = 0, n = L, F 
= 0, d = 0, e = 0, and tk = 0 for all chambers k. 

Step 2 
Based on the tool state, let t = C, the last move completion time, and identify all feasible moves.  
R0,j is feasible if n > 0, j = L+1-n, and there is a free chamber in S1.  This can begin at time t.  Ri,j 
(0 < i < S) is feasible if wafer j is at chamber k in Si and there is a free chamber in Si+1.  This can 
begin at max{t, tk}.  RS,j is feasible if wafer j is at chamber k in SS. This can begin at max{t, tk}. 

Step 3 
For each feasible move, form a new sequence and perform one of the following steps (which 
calculates the lower bound and updates the tool state).  Then go to Step 4.  
� If the feasible move is R0,j, then go to Step 3a.   
� If the feasible move is Ri,j, 0 < i < S, then go to Step 3b.   
� If the feasible move is RS,j, then go to Step 3c.   

Step 3a 
Add one to e.  Reduce n by one.  If the wafer handler was at LL, then the move completion time C 
= t + pr.  Otherwise, the move completion time C = t + 2pr.  Let q be the lowest-numbered free 
chamber in S1.  The wafer handler is now at chamber q, which now has wafer j, and tq = C + p1.  
Let LB = tq.  If LB is greater than or equal to UB, then discard this new sequence.   

Step 3b 
Add one to e.  Let k be the chamber in Si that was processing wafer j.  If the wafer handler was at 
chamber k, then the move completion time C = max{t, tk} + pr.  Otherwise, the move completion 



time C = max{t, tk} +2pr.  Chamber k is now free.  Let q be the lowest-numbered free chamber in 
Si+1.  The wafer handler is now at chamber q, which now has wafer j, and tq = C + pi+1. Let LB = 
tq.  If LB is greater than or equal to UB, then discard this new sequence.   

Step 3c 
Add one to e.  Let k be the chamber in SS that was processing wafer j.  If the wafer handler was at 
chamber k, then the move completion time C = max{t, tk} + pr.  Otherwise, C = max{t, tk} + 2pr.  
Chamber k is now free.  LB = C.  Add one to F.  If F = 1, let d = e. (This marks the first wafer 
completion.)   

If F = � + 1, consider the last e-d moves.  If they form a �-unit cycle, then repeat this 
cycle until all wafers are completed.  Let C be the lot makespan of this complete cyclic sequence.  
If C < UB, then save the sequence as the current best sequence and let UB = C.  Otherwise, 
discard this complete sequence.  If the last e-d moves do not form a �-unit cycle, then discard this 
new sequence.   

Step 4 
If any incomplete new sequences remain, select one, identify the corresponding tool state, and go 
to Step 2.  Otherwise, stop.  The current best sequence is an optimal sequence. 

Figure 3 presents Algorithm TBB’s search tree for an instance of CT1-2.  Each node describes the 
last move in the partial sequence and the tool state <x1, x2, x3> after the move completes, where xi = 1 if 
chamber i has a wafer and 0 otherwise.  Four branches yield 1-unit cycles (listed below and denoted �1, �2, 
�3, and �4).  The other branches (marked with a “$”) are discarded because the cycle after the filling-up 
phase was not a valid 1-unit cycle. 

�1 = R2, j 
 R1, j+1 
 R0, j+2, 
�2 = R2, j 
 R1, j+2 
 R0, j+3, 
�3 = R2, j 
 R0, j+2 
 R1, j+2, and 
�4  = R2, j 
 R0, j+1 
 R1, j+1. 

Note that �1 is similar to �2, and �3 is similar to �4, but the resulting cyclic sequences have 
different filling-up phases.  The cyclic sequence that uses �1 and the cyclic sequence that uses �4 do not 
use the third chamber.   

Proof of Theorem 1:  We provide a counterexample.  Consider CT1-2 || Cmax, with pr = 1, p1 = p2 = 5, L = 9.  
� = min{1, 2} = 1.  As discussed above, there are four feasible 1-unit cyclic sequences.  The 1-unit cyclic 
sequences that use �1, �2, and �3 all have a lot makespan of 85.  The 1-unit cyclic sequence that uses �4 
has a lot makespan of 108.  However, these are not optimal, as there exists a sequence with a lot makespan 
of 81. See Figure 4, which shows the 1-unit cyclic sequence that uses �2 and this better sequence.   � 

6.  RESULTS 

We conducted experiments to determine the performance of Algorithms BB and TBB.  
Specifically, we wanted to know how much computational effort each required and whether either 
algorithm produced superior sequences.  We wanted to determine how tool configuration, lot size, and the 
ratio of move time to process time affected performance.   

We created 72 problem sets of instances, nine for each of eight tool configurations.  Each problem 
set included ten randomly generated instances.  Each problem set used different parameter values to 
generate its instances.  The parameters were chosen so that 24 problem sets contained instances with short 
move times and long processing times, another 24 problem sets contained instances with approximately 
equal move times and processing times, and the remaining 24 problem sets contained instances with a long 
move time and short processing times.  We will refer to these three classes as short, equal, and long moves, 
respectively. 

Table 6 lists the parameter values for each move class, and Table 7 identifies the problem set for 
each combination of tool configuration, lot size, and move class.  Given S, L, and a, b, c, d, we used the 
following generation scheme to create the instances.  Note that all data are integers, so X ~ U[a, b] implies 



that the random variable X has a discrete probability distribution and P{X = x} = 1/(b-a+1) for x = a, a+1, 
…, b. 

pr ~ U[a, b]. 
pi ~ U[c, d], for i = 1, …, S. 

The push and pull dispatching rules were the benchmarks.  (Note that both algorithms begin with 
these sequences.)  For each instance, we used Algorithm BB, Algorithm TBB, the push dispatching rule 
(Algorithm P), and the pull dispatching rule (Algorithm P) to find solutions.  However, we halted 
Algorithm BB if it generated 100,000 nodes for an instance and Algorithm TBB if generated 50,000 nodes 
for an instance.   

Tables 8 and 9 present the results for each problem set.  The third and fourth columns present the 
average CPU times that Algorithm BB and Algorithm TBB required.  The fifth column is the number of 
instances that the Algorithm BB solved within 100,000 nodes.  Similarly, the sixth column is the number of 
instances that the Algorithm TBB solved within 50,000 nodes.  The seventh, eighth, ninth, and tenth 
columns show the average lot makespan of the sequences that each algorithm constructed.  The last four 
columns show the average percent improvement from the push and pull sequences.  

From Table 8, we can see that, when L = 5 or the tool configuration is CT1-1, Algorithm BB was 
able to find optimal sequences.  When the moves are short and the tool configuration is CT1-2 or CT2-1, 
Algorithm BB constructs sequences that are slightly better than the sequences that Algorithm TBB 
constructs.  When the moves are equal or long and the problem is too hard for Algorithm BB to solve 
optimally, Algorithm TBB constructs much better sequences. For all problem sets, Algorithm TBB can find 
the best cyclic sequence with very little computational effort. 

From Table 9, we can see that, when the moves are short and the tool configuration is CT1-1-1, 
neither Algorithm BB nor Algorithm TBB perform better than the push dispatching rule.  When the tool 
configuration is CT1-2-2, however, Algorithm BB is slightly better than Algorithm TBB, and both are 
better than the dispatching rules.  In most of the other problem sets, Algorithm TBB is better than 
Algorithm BB.  When the tool configuration is CT1-1-1, CT1-2-2, or CT2-2-1, Algorithm TBB can find 
the best cyclic sequence with very little computational effort.  For the CT2-2-2 instances, Algorithm TBB 
is searching for 2-unit cycles, so that requires additional computational effort. 

Figure 5 presents the computing times those Algorithms BB and TBB required for CT1-2-2.  
Figure 6 illustrates the percent improvement from the push sequence to the best sequence found by 
Algorithm BB and TBB for CT1-2-2.  Note that the lot does not affect the performance of Algorithm TBB 
as much as it affects the performance of Algorithm BB. 



 
Table 6. Parameters for Move Classes. 

Parameters Move  
Class a b c d 
Short 1 10 20 40 
Equal 10 20 10 20 
Long 20 40 1 10 

 
Table 7. Problem sets. 

Problem Set for Move Class Tool 
Configuration 

S L 
Short 
Moves 

Equal 
Moves 

Long 
Moves 

CT1-1 2 5 1 13 25 
CT1-1 2 10 2 14 26 
CT1-1 2 15 3 15 27 
CT1-2 2 5 4 16 28 
CT1-2 2 10 5 17 29 
CT1-2 2 15 6 18 30 
CT2-1 2 5 7 19 31 
CT2-1 2 10 8 20 32 
CT2-1 2 15 9 21 33 
CT2-2 2 5 10 22 34 
CT2-2 2 10 11 23 35 
CT2-2 2 15 12 24 36 

CT1-1-1 3 5 37 49 61 
CT1-1-1 3 10 38 50 62 
CT1-1-1 3 15 39 51 63 
CT1-2-2 3 5 40 52 64 
CT1-2-2 3 10 41 53 65 
CT1-2-2 3 15 42 54 66 
CT2-2-1 3 5 43 55 67 
CT2-2-1 3 10 44 56 68 
CT2-2-1 3 15 45 57 69 
CT2-2-2 3 5 46 58 70 
CT2-2-2 3 10 47 59 71 
CT2-2-2 3 15 48 60 72 

 
 



Table 8.  The performance of Algorithms BB and TBB on two-stage cluster tool configurations. 
CPU time 
(mm:ss) 

Instances 
solved 

Average makespan 
% improvement 

over push 
% improvement 

over pull Tool 
Configuration 

Problem 
Set 

BB TBB BB TBB BB TBB Push Pull BB TBB BB TBB 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

CT1-1 1 0:01 0:01 10 10 303.1 303.1 303.1 303.1 0 0 0 0 
CT1-1 2 0:02 0:01 10 10 585.6 585.6 585.6 585.6 0 0 0 0 
CT1-1 3 0:28 0:01 10 10 868.1 868.1 868.1 868.1 0 0 0 0 

              
CT1-2 4 0:01 0:01 10 10 280.9 285.3 294.1 294.1 4.49 2.99 4.49 2.99 
CT1-2 5 0:46 0:01 7 10 536.2 546.6 564.6 564.6 5.03 3.19 5.03 3.19 
CT1-2 6 1:23 0:01 0 10 789.3 807.1 835.1 835.1 5.48 3.35 5.48 3.35 

              
CT2-1 7 0:01 0:01 10 10 298.3 302.4 306.1 306.1 2.55 1.21 2.55 1.21 
CT2-1 8 0:57 0:01 7 10 575.9 585.7 589.6 589.6 2.32 0.66 2.32 0.66 
CT2-1 9 1:32 0:01 0 10 859.4 869.2 873.1 873.1 1.57 0.45 1.57 0.45 

              
CT2-2 10 0:01 0:01 10 10 216.0 216.3 221.7 231.7 2.57 2.44 6.78 6.65 
CT2-2 11 0:51 0:01 4 10 378.2 377.1 401.5 406.9 5.80 6.08 7.05 7.32 
CT2-2 12 1:31 0:01 0 10 559.7 543.3 588.7 609.4 4.93 7.71 8.16 10.85 

              

CT1-1 13 0:01 0:01 10 10 372.7 372.7 420.3 420.3 11.33 11.33 11.33 11.33 
CT1-1 14 0:02 0:01 10 10 745.2 745.2 852.3 852.3 12.57 12.57 12.57 12.57 
CT1-1 15 1:13 0:01 0 10 1117.7 1131.7 1284.3 1284.3 12.97 11.88 12.97 11.88 

              
CT1-2 16 0:01 0:01 10 10 401.3 401.3 468.0 468.0 14.25 14.25 14.25 14.25 
CT1-2 17 1:16 0:01 0 10 811.0 798.3 951.0 951.0 14.72 16.06 14.72 16.06 
CT1-2 18 1:36 0:01 0 10 1294.0 1194.8 1434.0 1434.0 9.76 16.68 9.76 16.68 

              
CT2-1 19 0:01 0:01 10 10 383.0 383.0 451.2 451.2 15.12 15.12 15.12 15.12 
CT2-1 20 1:16 0:01 0 10 775.6 761.2 919.2 919.2 15.62 17.19 15.62 17.19 
CT2-1 21 1:27 0:01 0 10 1134.4 1138.2 1387.2 1387.2 18.22 17.95 18.22 17.95 

              
CT2-2 22 0:03 0:02 10 10 382.0 382.0 446.6 419.8 14.46 14.46 9.00 9.00 
CT2-2 23 1:20 0:02 0 10 818.9 753.7 908.6 847.0 9.87 17.05 3.32 11.02 
CT2-2 24 1:39 0:03 0 10 1263.8 1126.6 1370.6 1263.8 7.79 17.80 0.00 10.86 

              
CT1-1 25 0:01 0:01 10 10 510.5 510.5 812.5 812.5 37.17 37.17 37.17 37.17 
CT1-1 26 0:02 0:01 10 10 1021.0 1021.0 1700.5 1700.5 39.96 39.96 39.96 39.96 
CT1-1 27 0:22 0:01 10 10 1531.5 1531.5 2588.5 2588.5 40.83 40.83 40.83 40.83 

              
CT1-2 28 0:01 0:01 10 10 478.5 478.5 767.7 767.7 37.67 37.67 37.67 37.67 
CT1-2 29 0:44 0:01 10 10 957.0 957.0 1607.7 1607.7 40.47 40.47 40.47 40.47 
CT1-2 30 1:34 0:01 0 10 1803.7 1386.0 2447.7 2447.7 26.31 43.38 26.31 43.38 

              
CT2-1 31 0:01 0:01 10 10 547.0 547.0 897.7 897.7 39.07 39.07 39.07 39.07 
CT2-1 32 0:55 0:01 9 10 1098.9 1094.0 1884.7 1884.7 41.69 41.95 41.69 41.95 
CT2-1 33 1:33 0:01 0 10 2083.6 1641.0 2871.7 2871.7 27.44 42.86 27.44 42.86 

              
CT2-2 34 0:02 0:02 10 10 471.5 471.5 794.6 697.1 40.66 40.66 32.36 32.36 
CT2-2 35 1:15 0:03 0 10 1210.0 943.0 1616.6 1507.0 25.15 41.67 19.71 37.43 
CT2-2 36 1:35 0:04 0 10 2032.0 1414.5 2438.6 2204.1 16.67 42.00 7.81 35.82 

 



Table 9. The performance of Algorithms BB and TBB on three-stage cluster tool configurations. 
CPU time 
(mm:ss) 

# instances 
solved 

Average makespan 
% improvement 

over push 
% improvement 

over pull Tool 
configuration 

Problem 
Set 

BB TBB BB TBB BB TBB Push Pull BB TBB BB TBB 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

CT1-1-1 37 0:01 0:01 10 10 369.0 369.0 369.0 371.1 0 0 0.57 0.57 
 38 1:04 0:01 5 10 677.5 677.5 677.5 683.1 0 0 0.82 0.82 
 39 1:44 0:01 0 10 986.0 986.0 986.0 995.1 0 0 0.91 0.91 
              

CT1-2-2 40 0:17 0:02 10 10 334.9 337.8 349.9 350.8 4.29 3.46 4.53 3.71 
 41 1:34 0:03 0 10 613.5 616.8 638.4 641.1 3.90 3.38 4.31 3.79 
 42 2:00 0:04 0 10 889.4 895.4 926.9 930.5 4.05 3.40 4.42 3.77 
              

CT2-2-1 43 0:34 0:03 7 10 349.2 350.3 359.6 356.0 2.89 2.59 1.91 1.60 
 44 1:38 0:05 0 10 638.8 634.1 644.6 641.6 0.90 1.63 0.44 1.17 
 45 2:05 0:07 0 10 923.8 918.1 929.6 926.6 0.62 1.24 0.30 0.92 
              

CT2-2-2 46 0:49 0:46 6 5 290.1 294.0 296.1 318.1 2.03 0.71 8.80 7.58 
 47 1:42 1:27 0 0 549.6 524.9 563.9 578.6 2.54 6.92 5.01 9.28 
 48 2:10 1:44 0 0 817.3 760.3 831.9 839.5 1.76 8.61 2.64 9.43 

              
CT1-1-1 49 0:03 0:01 10 10 521.7 521.7 591.8 591.8 11.85 11.85 11.85 11.85 

 50 1:37 0:01 0 10 1083.0 1032.2 1195.8 1195.8 9.43 13.68 9.43 13.68 
 51 2:10 0:01 0 10 1687.0 1541.7 1799.8 1799.8 6.27 14.34 6.27 14.34 
              

CT1-2-2 52 1:13 0:04 0 10 515.6 509.2 573.7 577.5 10.13 11.24 10.72 11.83 
 53 1:43 0:06 0 10 1107.9 1005.2 1161.7 1164.5 4.63 13.47 4.86 13.68 
 54 2:15 0:08 0 10 1695.9 1501.2 1749.7 1753.5 3.07 14.20 3.28 14.39 
              

CT2-2-1 55 1:14 0:06 0 10 539.3 525.2 600.6 600.6 10.21 12.55 10.21 12.55 
 56 1:50 0:09 0 10 1158.0 1044.5 1216.6 1216.0 4.82 14.15 4.77 14.10 
 57 2:19 0:11 0 10 1774.0 1446.5 1832.6 1832.6 3.20 21.07 3.20 21.07 
              

CT2-2-2 58 1:12 1:17 0 0 534.4 537.9 577.2 549.9 7.42 6.81 2.82 2.18 
 59 1:51 1:25 0 0 1110.0 1077.8 1169.2 1110.0 5.06 7.82 0.00 2.90 
 60 2:10 1:42 0 0 1659.9 1595.8 1761.2 1659.9 5.75 9.39 0.00 3.86 

              
CT1-1-1 61 0:01 0:01 10 10 670.0 670.0 1095.4 1071.6 38.84 38.84 37.48 37.48 

 62 1:28 0:01 0 10 1585.6 1340.0 2267.4 2267.4 30.07 40.90 30.07 40.90 
 63 1:54 0:01 0 10 2757.6 2010.0 3439.4 3415.6 19.82 41.56 19.26 41.15 
              

CT1-2-2 64 0:35 0:04 10 10 694.5 694.5 1152.4 1105.3 39.73 39.73 37.17 37.17 
 65 1:40 0:06 0 10 1984.7 1389.0 2360.4 2337.1 15.92 41.15 15.08 40.57 
 66 2:06 0:08 0 10 3192.7 2083.5 3568.4 3521.3 10.53 41.61 9.33 40.83 
              

CT2-2-1 67 0:50 0:06 10 10 650.0 650.0 1047.2 1069.6 37.93 37.93 39.23 39.23 
 68 1:40 0:10 0 10 1836.3 1300.0 2167.2 2167.4 15.27 40.01 15.28 40.02 
 69 2:09 0:12 0 10 2961.7 1950.0 3287.2 3309.6 9.90 40.68 10.51 41.08 
              

CT2-2-2 70 1:09 1:15 0 0 780.0 883.3 1092.0 968.2 28.57 19.11 19.44 8.77 
 71 1:44 1:25 0 0 1946.2 1903.2 2212.0 2100.0 12.02 13.96 7.32 9.37 
 72 2:11 1:42 0 0 3049.8 2819.3 3332.0 3066.4 8.47 15.39 0.54 8.06 

 



7. SUMMARY AND CONCLUSIONS 

This paper studied the hybrid cluster tool scheduling problem.  The goal is to improve tool 
performance by reducing the total lot processing time (the lot makespan).  We have developed and tested 
two enumeration algorithms that can find sequences of wafer handler moves.  Algorithm BB searches the 
entire set of sequences.  Algorithm TBB focuses on cyclic sequences.  This paper focused on cluster tools 
that have a single wafer handler and a single load lock.  The scheduling objective is to minimize the lot 
makespan. 

Algorithm TBB requires significantly less computational effort than Algorithm BB does.  
Compared to the sequences that current push and pull dispatching rules generate, we found that Algorithm 
TBB constructs sequences that reduce the lot makespan significantly.  This is especially true when the 
move time and processing times are approximately equal and when the move time is longer than the 
processing times.  Algorithm BB, however, requires excessive computational effort and cannot find better 
sequences (except for the smaller problem instances).  Of course, these statements about performance apply 
to the specific problem instances that we created.  Still, we believe that focusing on cyclic sequences 
reduces the search effort and yet yields very good sequences that improve cluster tool performance 
significantly.  (Both the filling-up phase and the cycles must be considered when constructing a cyclic 
sequence.) 

Although our experiments have focused on two- and three-stage cluster tools, the algorithms 
presented here can be applied to configurations with more stages. 

Future work on cluster tool scheduling should consider more complex tool configurations and 
sequencing anticipatory moves, which position the wafer handler before the wafer is ready to be moved.  
Such anticipatory moves should further improve the cluster tool performance. 
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Figure 1.  A CT1-2-2 Cluster Tool Configuration. 
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Figure 2.  Sequences for a CT2-2 instance. 



 

 Start 
<0 0 0>

R0, 1 
<1 0 0>

R1, 1 
<0 1 0>

R0, 2 
<1 1 0>

R2, 1 
<0 0 0>

R2, 1 
<1 0 0>

R1, 2 
<0 1 1>

R1, 2 
<0 1 0>

R0, 3 
<1 1 0>

R2, 2 
<0 0 0>

R1,  3 
<0 1 1>

R2,  2 
<1 0 0>

R0, 4 
<1 1 1>

R2, 2 
<0 0 1>

R2, 2 
<1 0 1>

�1

$

$

$

R0, 3 
<1 1 1>

R2, 1 
<0 0 1>

R2, 1 
<1 0 1>

R1,  3 
<0 1 1>

R2,  2 
<1 0 0>

R0, 4 
<1 1 1>

R2, 2 
<0 1 0>

$

L

R2, 2 
<1 1 0>

�2

R0, 3 
<1 0 1>

R2, 2 
<0 0 0>

$

R1,  3 
<0 1 1>

R2, 2 
<0 1 0>

�3

R0, 4 
<1 1 1>

R2, 2 
<1 1 0>

$

R0, 2 
<1 0 0>

R1, 2 
<0 1 0>

R0, 3 
<1 1 0>

R2, 2 
<0 0 0>

�4

R1,  3 
<0 1 1>

R2,  2 
<1 0 0>

$

R0, 4 

<1 1 1>
R2, 2 

<0 1 0>

$

R2, 2 
<1 1 0>

$

 
Figure 3.  Algorithm TBB search tree for CT1-2. 
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1-unit cyclic sequence: MS = 85. 

 
Figure 4.  Sequences for a CT1-2 instance. 



 

 

0 
20 
40 
60 
80 

100 
120 
140 

5 10 15 
Lot size 

C
P

U
 ti

m
e 

(s
ec

)  Algorithm BB, short moves 

Algorithm BB, long moves 

Algorithm BB, equal moves 

Algorithm TBB, short moves 

Algorithm TBB, long moves 

Algorithm TBB, equal moves 

 
Figure 5. 
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Figure 6. 


