
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Sequencing Wafer Handler Moves to Improve the Performance
of Hybrid Cluster Tools

by Manh-Quan T. Nguyen, Jeffrey W. Herrmann

T.R. 2000-31

Sequencing wafer handler moves to improve
the performance of hybrid cluster tools

Manh-Quan T. Nguyen and Jeffrey W. Herrmann

Department of Mechanical Engineering and Institute for Systems Research
University of Maryland

College Park, MD 20742
July 24, 2000

ABSTRACT

Cluster tools are highly integrated machines that can perform a sequence of semiconductor manufacturing
processes. The sequence of wafer handler moves affects the total time needed to process a set of wafers.
Reducing this time can reduce cycle time, reduce tool utilization, and increase tool capacity. This paper
introduces the cluster tool scheduling problem for hybrid cluster tools, which are multiple-stage tools that
have at least one stage with two or more parallel chambers. This paper presents algorithms that can find
superior sequences of wafer handler moves. Experimental results show that the tool performance can be
improved significantly if the wafer handler follows a cyclic sequence instead of using a dispatching rule.

1. INTRODUCTION

Manufacturing semiconductor devices involves three main steps: formation of p and n-type regions of the
required conductivity within the semiconductor chip by doping; formation of reliable metal-semiconductor
contacts on the surface of the chip; and encapsulation and packaging of the chip to provide protection and a
convenient method of making electrical connection. In the first and second steps, the chips are processed
together as wafers.

Most operations process each wafer individually. However, identical wafers move together from
one process to the next. Each set of wafers is a lot. The container used to move and store the wafers in a
lot is called a cassette.

A cluster tool is a manufacturing system with integrated processing modules linked mechanically.
Typical cluster tools include load locks that store cassettes of wafers (cassette modules), process modules
that modify the properties of the wafers, and single or multiple wafer handler(s) that transport the wafers
(transport modules). These modules are linked together by an evacuated transfer space. Because it has
multiple chambers, a cluster tool can process multiple wafers simultaneously.

After a lot enters the cluster tool, each wafer must undergo a series of activities. Each activity is
performed in a different chamber. The wafer handler transports each wafer from one chamber to another.
For example, the cluster tool shown in Figure 1 has one load lock (LL), which stores a cassette of wafers,
and three process stages. Each wafer starts in the LL and must visit the first-stage chamber, one of the two
second-stage chambers, and one of the two third-stage chambers before returning to LL.

A hybrid cluster tool has multiple stages, and at least one stage has two or more parallel, identical
chambers. A wafer must visit exactly one chamber in each stage, so no wafer visits every chamber. A
cluster tool can improve yield and device performance since wafers are exposed to fewer contaminates
between process steps. The tool can include an in-situ metrology step that provides real-time feedback on
process performance. A cluster tool with multiple parallel chambers can increase capacity and reduce cycle
times by reducing the total time needed to process a lot of wafers. Moreover, it may be more reliable, since
a single chamber’s failure does not necessarily stop production. Semiconductor manufacturers are
increasingly using cluster tools. Annual sales of cluster tools is projected to increase from $11.2 billion in
1997 to $21.9 billion in 2000 [1].

The sequence of wafers leaving the LL is not important, since the wafers are identical, and an
activity’s time is the same for every wafer. But the sequence of wafer handler moves, which determines
when each activity starts, will change the total time needed to process a lot of wafers. We will call this the
lot makespan. This paper addresses the problem of sequencing the wafer handler moves to minimize the
lot makespan. Reducing the lot makespan can reduce cycle time, reduce tool utilization, and increase tool

capacity. Moreover, the lot makespan is a necessary component for calculating overall equipment
effectiveness (OEE) and cost-of-ownership (COO), which are usually used to evaluate cluster tool
performance [11, 12].

Like machine tools, cluster tools use controllers that supervise the tool operations, monitor the tool
status, and handle exceptions that abnormal events cause. Under normal operation, sequencing wafer
handler moves is an important responsibility. In practice, cluster tools use a push dispatching rule or a pull
dispatching rule to sequence the wafer handler moves. After completing one move, the wafer handler will
wait where it is (if no more wafers are ready to move) or start another move (if at least one wafer is ready).
If multiple wafers are ready to be moved, the cluster tool must decide which move the wafer handler will
perform.

In this case, the dispatching rule selects the next move. The pull rule gives priority to the wafer
that has fewer remaining process steps. The push rule gives priority to the wafer that has more remaining
process steps. Consider the cluster tool in Figure 1. Suppose there are unprocessed wafers in the LL, the
first stage chamber is empty, and one second-stage and both third stage chambers each have a wafer that
has finished processing and needs to move to the next stage. The pull rule will give priority to the wafer in
a third-stage chamber. The push rule will give priority to the next unprocessed wafer in LL that needs to
visit the first-stage chamber. Note that the wafer in the second-stage chamber cannot be moved because
both third-stage chambers are full.

Although these rules help the cluster tool sequence the wafer handler moves, the push and pull
dispatching rules do not guarantee that the resulting sequence has the optimal lot makespan for the given lot
size, tool configuration, and activity processing times. For instance, consider a two-stage cluster tool that
has two chambers in each stage. The first-stage activity requires 10 seconds. The second-stage activity
requires 40 seconds. A wafer handler move requires 5 seconds. The lot has eight wafers. Figure 2 presents
the Gantt charts of two sequences. The push dispatching rule generates first sequence, which has a lot
makespan the of 285. The second sequence is an optimal sequence, which has a lot makespan the of 275.
Each Gantt chart has five rows. The bottom row displays the wafer handler activities. The two rows above
that displays the activities in the first-stage chambers. The top two rows display the activities in the
second-stage chambers.

Cluster tool performance can be improved by determining a good sequence of wafer handler
moves and providing it to the cluster tool controller, which can then use this sequence to direct normal
operations. We will treat the problem as a deterministic machine scheduling problem, since the processing
and move times have little variation, and small variations do not invalidate a given sequence.

This paper presents a branch-and-bound algorithm that can find an optimal sequence of wafer
handler moves. It also presents a heuristic that can find good cyclic sequences quickly. The remainder of
this paper is organized as follows. Section 2 reviews the related literature. Section 3 formulates the
problem. Section 4 describes the branch-and-bound algorithm. Section 5 presents the heuristic. Section 6
presents experimental results that compare the performance of the algorithms. Section 7 summarizes our
results and concludes the paper.

2. RELATED LITERATURE

Wood [2] derives formulas that relate the total lot processing time to the number of wafers in the
lot for ideal sequential and parallel tools. Considering the transitions at the beginning and the end of the
lot, Perkinson et al. [3] derive a model that relates the total lot processing time to the number of wafers.
Both papers present linear models and identify two operating regions: in one region, the total lot processing
time is constrained by the wafer handling time; in the other region, by the module process time. Venkatesh
et al. [4] analyze the throughput of a sequential cluster tool with a dual-blade wafer handler. They also
identify conditions when the tool operation is constrained by the wafer handler. Srinivasan [5] presents
more detailed Petri net models for sequential and parallel tools and uses these to determine the steady state
behavior of the tool. Herrmann et al. [6] study the impact of process changes on cluster tool performance.
They propose using a network model for a prespecified sequence of wafer moves and cluster tool
simulation software when the controller uses a dispatching rule or scheduling algorithm to sequence the
wafer moves. They choose the cluster tool performance measure of interest is the lot makespan. None of
the previous work addresses the problem of reducing the total lot processing time (lot makespan) by
sequencing the wafer handler moves.

Jeng et al. [7] study the problem of sequencing robot activities for a robot-centered parallel-
processor workcell where n jobs and m identical processors exist in the cell. They provide a branch and
bound algorithm to find an optimal sequence of robot activities, which minimizes the total completion
times. Hall et al. [8] discuss the problem of scheduling activities in a serial two or three machine
manufacturing cell that is served by a robot. For multiple part-type problems in a two-machine cell, they
provide an algorithm that simultaneously finds sequences of parts and robot moves to minimize the steady
state cycle time. They also address a conjecture about the optimality of repeating one-unit cycles for a
three-machine cell with general data and identical parts. Restricted to a special problem where the number
of machines is arbitrary, but all parts are of the same type, Crama and van de Klundert [9], relying on the
concept of pyramidal permutation, present a dynamic programming approach that finds an minimum one-
unit cycle time in O(m3) time. Herrmann and Nguyen [10] analyze the problem of finding an optimal
sequence of wafer hander moves for sequential cluster tools, which have just one chamber per stage.

3. PROBLEM STATEMENT

This paper focuses on single load lock, single wafer handler cluster tools. The following
information about the cluster tool scheduling problem is given. The cluster tool has one load lock (LL) and
S stages (S > 1). The number of chambers in one stage can be one or more. Let mi be the number of
chambers in stage Si (i = 1,…, S). Let M = m1 + …+ mS be the total number of chambers. The chambers
are numbered 1 to M. Let � = min {m1, …, mS}. Each stage Si has a wafer processing time pi. The wafer
handler move time is pr. The lot has L identical wafers. Since each wafer must visit each stage and return
to LL, the total number of moves is L(S+1).

The sequence of wafers leaving LL is not important, since the wafers are identical. However, the
sequence of moves affects the lot makespan Cmax, the total time needed to complete all moves. The
scheduling objective is to minimize the lot makespan. By convention, scheduling problems are described
by triplets of the form � � � � �� The � field describes the machine environment. We use � = CTm1-m2 to
describe a two-stage hybrid cluster tool that has m1 chambers in the first stage and m2 chambers in the
second stage. We use � = CTm1-m2-m3 to describe a three-stage hybrid cluster tool that also has m3
chambers in the third stage. For our problem, the objective function � = Cmax.

When processing begins, the wafer handler is at LL, and all of the wafers are unprocessed and in
LL. For convenience, we will number the wafers in the order they leave LL. Let R0,j denote the move that
takes wafer j from LL to a chamber in S1. Let Ri,j denote the move that takes wafer j from a chamber in Si
to a chamber in Si+1 (i = 1, ..., S-1). Let RS,j denote the move that takes wafer j from a chamber in SS to LL.

A feasible sequence of moves must satisfy the following constraints. For all j = 1, …, L-1, R0,j
must precede R0,j+1. All wafers must follow the fixed sequence of processing steps. Therefore, for all j = 1,
…, L, and i = 0, ..., S-1, Ri,j must precede Ri+1,j. Since there are no buffers (besides LL) to store wafers, Si+1
must have at least one free chamber before Ri,j begins. That is, the wafer handler must have moved the
previous wafer to the next stage.

The following facts describe the operation of the cluster tool. Each and every move requires the
wafer handler. Since there is just one wafer handler, then, at any time, there is at most one move in process.
The wafer handler cannot unload an empty or busy chamber and cannot load a busy or full chamber. (A
full chamber has a wafer that has completed processing and is waiting to be moved.)

A chamber at stage Si begins processing wafer j when move Ri-1,j ends (i = 1, ..., S). This activity
cannot be interrupted until the chamber is finished processing the wafer. For example, if a chamber in Si
starts processing at time t, then the chamber is busy during the interval [t, t + pi], and the wafer cannot be
unloaded during that time.

Move Ri,j starts when the chamber finishes processing wafer j and the wafer handler completes any
previous move. Ri,j requires pr time units if the wafer handler is already at the chamber that processed
wafer j (at LL if the move is R0,j). Ri,j requires 2pr time units otherwise, for the wafer handler must move to
the correct chamber at Si before moving the wafer to a chamber at stage Si+1 (to LL if the move is RS,j). The
wafer handler cannot make anticipatory moves. That is, the wafer handler cannot move to the chamber
before processing ends.

That is, R0,1 requires pr time units. For j � 2, R0,j requires pr time units if and only if the previous
move is RS,k for some k < j. For i � 1 and j � 1, Ri,j requires pr time units if and only if the previous move
is Ri-1,j.

Special cases. We can identify two special cases. If pr = 0, there is no scheduling problem since
moves require no time, and all wafers move as soon as they are ready. If all pi = 0, then an optimal solution
is R01, R11, …, RS1, R02, R12, …, RS2, …, R0L, R1L, …, RSL. This sequence has a lot makespan of L(S+1)pr.

Cyclic sequences. Unless the lot size L is very small, a typical sequence has three phases, which
we label filling-up, steady state (or cyclic), and completion. The chambers are empty when processing
begins. Until the first wafer is completed, the tool is filling up with wafers. Then the tool is in a steady-
state phase as it completes wafers and loads new wafers. When there are no more wafers to start, the tool
enters the completion phase and completes wafers until the last wafer is unloaded from the last stage. Then
processing ends.

We assume that � < L. Let us define a �-unit cycle as a subsequence that loads and unloads each
stage � times and thus completes � wafers. Complete sequences formed by repeating a cycle in the steady
state and completion phase we will call �-unit cyclic sequences. Consider the sequences presented in
Figure 2. The push sequence has a cyclic phase that starts at time 65 and follows the 1-unit cycle R2, q – R1,

q+2 – R0, q+4, for q = 1, 2, 3, 4. The optimal sequence has a cyclic phase that starts at time 65 and follows the
2-unit cycle R2, q – R1, q+2 – R2, q+1 – R1, q+3 – R0, q+4 – R0, q+5, for q = 1 and 3.

The order of events in the completion phase resembles that in the cyclic phase, but the cycles are
incomplete because there are no unprocessed wafers and some moves are no longer needed. The six moves
in the completion phase of the push sequence form four incomplete cycles.

Note that the cycle does not define the filling-up phase, which ends with the first wafer being
completed. There may exist more than one feasible filling-up phase for a given cycle. Unfortunately, there
may be no optimal sequences in the set of �-unit cyclic sequences.

Theorem 1: The best �-unit cyclic sequence is not necessarily optimal for the problem CTm1-…-mS | |
Cmax.

For the proof (by counterexample), please see Section 5.

4. THE BRANCH-AND-BOUND ALGORITHM

This section discusses Algorithm BB. The algorithm begins by using the push dispatching rule to
construct a feasible sequence and then using the pull dispatching rule to construct another feasible
sequence. The smaller lot makespan becomes the initial upper bound on the optimal lot makespan. For
each partial solution constructed, the algorithm creates a lower bound by calculating the completion time of
the last scheduled activity.

4.1. Algorithm BB

Given S, m1, ..., mS, pr, p1, ..., pS, and L, Algorithm BB proceeds as follows. Note that this
algorithm calls Algorithm P to generate sequences using the push and pull dispatching rules. Section 4.2
describes Algorithm P.
Step 0

Use the push dispatching rule (Algorithm P) to generate a feasible sequence. Use the pull
dispatching rule (Algorithm P) to generate a second feasible sequence. Save the sequence with the
smaller lot makespan as the current best sequence, and let the upper bound UB equal the lot
makespan.

Step 1
Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer handler is at LL. All
of the chambers are free. The current sequence is a sequence with no moves. Set C = 0, n = L,
and tk = 0 for all chambers k (k = 1, …, M).

Step 2

Based on the tool state, let t = C, the last move completion time, and identify all feasible moves.
R0,j is feasible if n > 0, j = L+1-n, and there is a free chamber in S1. This can begin at time t. Ri,j
(0 < i < S) is feasible if wafer j is at chamber k in Si and there is a free chamber in Si+1. This can
begin at max{t, tk}. RS,j is feasible if wafer j is at chamber k in SS. This can begin at max{t, tk}.

Use the permutation condition and Theorem 3 to remove any dominated moves from further
consideration.

Step 3
For each feasible move, form a new sequence with that move and perform one of the following
steps (which calculates the lower bound and updates the tool state). Then go to Step 4.

	 If the feasible move was R0,j, then go to Step 3a.

	 If the feasible move was Ri,j, 0 < i < S, then go to Step 3b.

	 If the feasible move was RS,j, then go to Step 3c.

Step 3a

Reduce n by one. If the wafer handler was at LL, then the move completion time C = t + pr.
Otherwise, the move completion time C = t + 2pr. Let q be the lowest-numbered free chamber in
S1. The wafer handler is now at chamber q, which now has wafer j, and tq = C + p1. Let LB = tq.
Go to Step 3d.

Step 3b

Let k be the chamber in Si that was processing wafer j. If the wafer handler was at chamber k,
then the move completion time C = max{t, tk} + pr. Otherwise, the move completion time C =
max{t, tk} +2pr. Chamber k is now free. Let q be the lowest-numbered free chamber in Si+1. The
wafer handler is now at chamber q, which now has wafer j, and tq = C + pi+1. Let LB = tq. Go to
Step 3d.

Step 3c

Let k be the chamber in SS that was processing wafer j. If the wafer handler was at chamber k,
then the move completion time C = max{t, tk} + pr. Otherwise, the move completion time C =
max{t, tk} +2pr. Chamber k is now free. LB = C. Go to Step 3d.

Step 3d

If LB � UB, then discard this new sequence. If this new sequence includes all L(S+1) moves, the
lot makespan equals C. Consequently, if C < UB, save this new sequence as the current best
sequence and set UB = C.

Step 4

If any incomplete new sequences remain, select one, identify the corresponding tool state, and go
to Step 2. Otherwise, stop and return the current best sequence and UB, its lot makespan.

4.2. Algorithm P

Given S, m1, ..., mS, pr, p1, ..., pS, and L, Algorithm P proceeds as follows. Note that Algorithm P generates
only non-delay schedules.

Step 1
Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer handler is at LL. All
of the chambers are free. Set t = 0 and n = L. tk = 0 for all chambers k (k = 1, …, M).

Step 2

Based on the tool state, identify any feasible moves that could begin at time t. R0,j can begin at
time t if n > 0, j = L+1-n, and there is a free chamber in S1. Ri,j (0 < i < S) can begin at time t if
wafer j is at Si, tk
 t, and there is a free chamber in Si+1. RS,j can begin at time t if wafer j is at SS
and tk
 t. If there is exactly one feasible move, then perform that move and go to Step 4. If there
is more than one feasible move and the dispatching rule is push, select the feasible move Ri,j with
the smallest value of i and go to Step 4. If there is more than one feasible move and the
dispatching rule is pull, select the feasible move Ri,j with the largest value of i and go to Step 4.
Otherwise, go to Step 3.

Step 3

Let t = min { tk: tk > 0, k = 1, …, M}. Go to Step 2.
Step 4

Update the tool state.

	 If the selected move was R0,j, then reduce n by 1. If the wafer handler was at LL, then the
move completion time C = t + pr. Otherwise, the move completion time C = t + 2pr. Let q be
the lowest-numbered free chamber in S1. The wafer handler is now at chamber q, which now
has wafer j, and tq = C + p1.

	 If the selected move was Ri,j, 0 < i < S, let k be the chamber in Si that was processing wafer j.
If the wafer handler was at chamber k, then the move completion time C = t + pr. Otherwise,
the move completion time C = t +2pr. Chamber k is now free. tk = 0. Let q be the lowest-
numbered free chamber in Si+1. The wafer handler is now at chamber q, which now has wafer
j, and tq = C + pi+1.

	 If the selected move was RS,j let k be the chamber in SS that was processing wafer j. If the
wafer handler was at chamber k, then the move completion time C = t + pr. Otherwise, the
move completion time C = t +2pr. Chamber k is now free. tk = 0. The wafer handler is now
at LL.

Step 5

If all L(S+1) moves are complete, then stop. The lot makespan equals C. Otherwise, let t = C and
go to Step 2.

4.3. Dominance Criteria

Algorithm BB uses some dominance criteria to avoid unnecessary searching. First, since all
chambers in a stage are identical, move Ri,j loads the lowest-numbered free chamber in Si+1 (i = 0, ..., S-1).

In addition, each wafer must be moved in turn. That is, Ri,j must precede Ri,j+1 for all i = 0, ..., S,
and j = 1, ..., L-1. If all stages have exactly one chamber (all mi = 1, i = 1, ..., S), then all feasible
sequences satisfy this condition, which we call the permutation condition. In a hybrid tool, there may exist
feasible sequences that violate this condition. We will show however, that, in some cases, there exists an
optimal sequence that does satisfy this condition.

Theorem 2. If, for each i = 1, ..., S, either mi = 1 or pi � pr, then there exists an optimal sequence that
satisfies the permutation condition.

Proof. Consider an optimal feasible sequence Q that violates the permutation condition. Then, find i such
that Rk,j precedes Rk,j+1 for k = 0, ..., i-1, but Ri,j+1 precedes Ri,j. Since R0,j must precede R0,j+1, then i is at
least 1.

If mi = 1, then Ri-1,j+1 is infeasible until Ri,j empties the chamber in Si. Thus, Ri,j must precede Ri-
1,j+1, which precedes Ri,j+1. This is a contradiction, so Si must have multiple chambers (mi > 1). By the
given, pi � pr.

Now, form a new sequence Q’ by interchanging Rk,j and Rk,j+1 for k = i, ..., S. We will show that
Q’ is a feasible sequence and that, since pi � pr, it does not increase the lot makespan. If Q’ is not a
permutation sequence yet, then we can repeat this construction until we have a feasible permutation
sequence that does not increase the lot makespan of Q. Thus, this forms a feasible permutation sequence
that is also optimal.

Q’ is a feasible sequence because creating it only interchanges wafer j moves with wafer j+1
moves. If there was a chamber free to accept wafer j+1, then it is still free to accept wafer j (and vice
versa).

Now consider two cases. In the first case, there is, in Q, a move between Ri-1,j+1 and Ri,j+1. Thus,
in Q, Ri,j+1 requires 2pr time units (since Ri-1,j+1 does not immediately precede it). Also, Ri,j requires 2pr
time units (since Ri-1,j does not immediately precede it). After the interchange, in Q’, both moves still
require 2pr time units. For k = i+1,..., S, move Rk,j in Q’ requires the amount of time that Rk,j+1 required in

Q (and vice versa). Thus, all moves still require the same amount of time. Because Ri-1,j precedes Ri-1,j+1,
wafer j is complete at Si before wafer j+1. Thus, in Q’, Ri,j can start at the time that Ri,j+1 started in Q. Ri,j+1
is delayed after the interchange and can certainly start in Q’ when Ri,j started in Q. Thus Q’ delays no
moves other than those interchanged and they can start at the same time, so the lot makespan is not
increased.

In the second case, there is, in Q, no move between Ri-1,j+1 and Ri,j+1. Thus, in Q’, there is no move
between Ri-1,j+1 and Ri,j. Let Q1 be the subsequence in Q that occurs between Ri-1,j and Ri-1,j+1. Now we
need to consider the following sub-cases: (A) Q1 is empty, or Q1 is not empty and doesn’t end with Ri-2,j+1;
(B) Q1 ends with Ri-2,j+1.

Consider subcase A. Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1 finishes
processing wafer j+1 and there is a free chamber in Si). Consider the move that precedes Ri-1,j+1. Let tc
denote the time that this move finishes. Thus, Ri-1,j+1 begins at max{tc, td}. Let ta be the time that Ri-1,j
finishes. If Q1 is empty, ta = tc. Otherwise, because the first move in Q1 is not Ri,j, tc � ta+2pr. Note that
Ri,j in Q and Ri,j+1 in Q’ both require 2pr time units. We need to show that, in Q’, Ri,j finishes no later than
Ri,j+1 finishes in Q. Then, Q’ does not increase the lot makespan because no remaining moves are delayed.
One of the following conditions will hold:
	 If pr
 pi
 tc-ta+2pr and td
 tc, then, in Q, Ri,j+1 completes at tc+3pr+pi. In Q’, Ri,j completes at tc+4pr.

Since pi � pr, Ri,j finishes earlier.
	 If pi � tc-ta+2pr and td
 tc, then, in Q, Ri,j+1 completes at tc+3pr+pi. In Q’, Ri,j completes at ta+2pr+pi.

Since tc > ta, Ri,j finishes earlier.
	 If pi � tc-ta+2pr and tc
 td
 ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi. In Q’, Ri,j completes at

ta+2pr+pi. Since td � tc > ta, Ri,j finishes earlier.
	 If pi � pr and tc
 td and td � ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi. In Q’, Ri,j completes at

td+4pr. Since pi � pr, Ri,j finishes earlier.

Consider subcase B. Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1 finishes
processing wafer j+1 and there is a free chamber in Si). Consider the move that precedes Ri-1,j+1. Let tc
denote the time that this move finishes. Because the last move in Q1 is Ri-2,j+1, td = tc+pi-1. Thus, Ri-1,j+1
begins at td and ends at td+pr. Let ta be the time that Ri-1,j finishes. Because the first move in Q1 is not Ri,j,
tc � ta+2pr. Note that Ri,j in Q and Ri,j+1 in Q’ both require 2pr time units. We need to show that, in Q’, Ri,j
finishes no later than Ri,j+1 finishes in Q. Then, Q’ does not increase the lot makespan because no
remaining moves are delayed. One of the following conditions will hold:
	 If pi � td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi. In Q’, Ri,j completes at ta+2pr+pi. Since td > tc

> ta, Ri,j finishes earlier.
	 If pr
 pi
 td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi. In Q’, Ri,j completes at td+3pr. Since pi �

pr, Ri,j finishes earlier.

This completes the proof. �

Finally, Algorithm BB uses Theorem 3 as a dominance property, since it prohibits a move Ri,j if
there exists another move Rp,q that can be done first without delaying the completion of Ri,j. Note that
using this condition limits Algorithm BB to the set of active schedules.

Theorem 3. Given Q1, a feasible partial sequence that satisfies the permutation constraint, move Rp,q
dominates Ri,j if both are feasible and the following conditions hold: The last move in Q1 ends at time t.
The wafer handler is at chamber k after this move (k may be LL). Ri,j can begin at time ta � t and wafer j is
at chamber ca, which is not chamber k. Rp,q can begin at time tb � t and wafer q is at chamber cq. Either cq
= k and tb+pr
 ta or cq is not k and tb+2pr
 ta.

Proof. Consider a complete feasible permutation sequence Q that begins with Q1 and Ri,j. Since ca is not
k, Ri,j requires 2pr time units. Form a new sequence Q’ by moving Rp,q before Ri,j. Because Rp,q remained
feasible from the end of Q1 to its position in Q, Q’ is also a feasible permutation sequence. If cq = k and
tb+pr
 ta, the wafer handler can complete Rp,q at tb+pr and still begin Ri,j at ta. Otherwise, cq is not k and

tb+2pr
 ta. Still, the wafer handler can complete Rp,q at tb+2pr and still begin Ri,j at ta. Thus, no move must
be delayed, and the lot makespan of Q’ is not worse than the lot makespan of Q. This completes the proof.
 �

In summary, Algorithm BB reduces its search space by applying the following three dominance criteria:
1. The wafer handler should always load the lowest-numbered free chamber in a stage.
2. The permutation condition, which forces the wafer handler to unload wafer j before wafer j+1

in the same stage (Ri,j should precede Ri,j+1).
3. Theorem 2, which prohibits a move Ri,j if there exists another move Rp,q that can be done first

without delaying the completion of Ri,j.
Note that if an instance of the scheduling problem does not satisfy the given of Theorem 2, then
Algorithm BB may be unable to find an optimal solution.

5. THE TRUNCATED BRANCH-AND-BOUND ALGORITHM

This section presents an algorithm (Algorithm TBB) to find the best �-unit cyclic schedule.
(Recall that � = min {mi}.) This algorithm is called “truncated” because, unlike Algorithm BB, it stops
adding moves to a sequence when the sequence has � + 1 wafer completions. Algorithm TBB first
generates two feasible sequences using the push and pull dispatching rules and uses the smaller lot
makespan as the upper bound on the best lot makespan. For a partial solution, the completion time of the
last scheduled activity is the lower bound.

Algorithm TBB

Given m1, ..., mS, pr, p1,..., pS, and L, Algorithm TBB proceeds as follows. Recall that � = min {m1, …,
mS}.

Step 0
Use the push dispatching rule (Algorithm P) to generate a feasible sequence. Use the pull
dispatching rule (Algorithm P) to generate a second feasible sequence. Save the sequence with the
smaller lot makespan as the current best sequence, and let the upper bound UB equal the lot
makespan.

Step 1
Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer handler is at LL. All
of the chambers are free. The current sequence is a sequence with no moves. Set C = 0, n = L, F
= 0, d = 0, e = 0, and tk = 0 for all chambers k.

Step 2
Based on the tool state, let t = C, the last move completion time, and identify all feasible moves.
R0,j is feasible if n > 0, j = L+1-n, and there is a free chamber in S1. This can begin at time t. Ri,j
(0 < i < S) is feasible if wafer j is at chamber k in Si and there is a free chamber in Si+1. This can
begin at max{t, tk}. RS,j is feasible if wafer j is at chamber k in SS. This can begin at max{t, tk}.

Step 3
For each feasible move, form a new sequence and perform one of the following steps (which
calculates the lower bound and updates the tool state). Then go to Step 4.
� If the feasible move is R0,j, then go to Step 3a.
� If the feasible move is Ri,j, 0 < i < S, then go to Step 3b.
� If the feasible move is RS,j, then go to Step 3c.

Step 3a
Add one to e. Reduce n by one. If the wafer handler was at LL, then the move completion time C
= t + pr. Otherwise, the move completion time C = t + 2pr. Let q be the lowest-numbered free
chamber in S1. The wafer handler is now at chamber q, which now has wafer j, and tq = C + p1.
Let LB = tq. If LB is greater than or equal to UB, then discard this new sequence.

Step 3b
Add one to e. Let k be the chamber in Si that was processing wafer j. If the wafer handler was at
chamber k, then the move completion time C = max{t, tk} + pr. Otherwise, the move completion

time C = max{t, tk} +2pr. Chamber k is now free. Let q be the lowest-numbered free chamber in
Si+1. The wafer handler is now at chamber q, which now has wafer j, and tq = C + pi+1. Let LB =
tq. If LB is greater than or equal to UB, then discard this new sequence.

Step 3c
Add one to e. Let k be the chamber in SS that was processing wafer j. If the wafer handler was at
chamber k, then the move completion time C = max{t, tk} + pr. Otherwise, C = max{t, tk} + 2pr.
Chamber k is now free. LB = C. Add one to F. If F = 1, let d = e. (This marks the first wafer
completion.)

If F = � + 1, consider the last e-d moves. If they form a �-unit cycle, then repeat this
cycle until all wafers are completed. Let C be the lot makespan of this complete cyclic sequence.
If C < UB, then save the sequence as the current best sequence and let UB = C. Otherwise,
discard this complete sequence. If the last e-d moves do not form a �-unit cycle, then discard this
new sequence.

Step 4
If any incomplete new sequences remain, select one, identify the corresponding tool state, and go
to Step 2. Otherwise, stop. The current best sequence is an optimal sequence.

Figure 3 presents Algorithm TBB’s search tree for an instance of CT1-2. Each node describes the
last move in the partial sequence and the tool state <x1, x2, x3> after the move completes, where xi = 1 if
chamber i has a wafer and 0 otherwise. Four branches yield 1-unit cycles (listed below and denoted �1, �2,
�3, and �4). The other branches (marked with a “$”) are discarded because the cycle after the filling-up
phase was not a valid 1-unit cycle.

�1 = R2, j
 R1, j+1
 R0, j+2,
�2 = R2, j
 R1, j+2
 R0, j+3,
�3 = R2, j
 R0, j+2
 R1, j+2, and
�4 = R2, j
 R0, j+1
 R1, j+1.

Note that �1 is similar to �2, and �3 is similar to �4, but the resulting cyclic sequences have
different filling-up phases. The cyclic sequence that uses �1 and the cyclic sequence that uses �4 do not
use the third chamber.

Proof of Theorem 1: We provide a counterexample. Consider CT1-2 || Cmax, with pr = 1, p1 = p2 = 5, L = 9.
� = min{1, 2} = 1. As discussed above, there are four feasible 1-unit cyclic sequences. The 1-unit cyclic
sequences that use �1, �2, and �3 all have a lot makespan of 85. The 1-unit cyclic sequence that uses �4
has a lot makespan of 108. However, these are not optimal, as there exists a sequence with a lot makespan
of 81. See Figure 4, which shows the 1-unit cyclic sequence that uses �2 and this better sequence. �

6. RESULTS

We conducted experiments to determine the performance of Algorithms BB and TBB.
Specifically, we wanted to know how much computational effort each required and whether either
algorithm produced superior sequences. We wanted to determine how tool configuration, lot size, and the
ratio of move time to process time affected performance.

We created 72 problem sets of instances, nine for each of eight tool configurations. Each problem
set included ten randomly generated instances. Each problem set used different parameter values to
generate its instances. The parameters were chosen so that 24 problem sets contained instances with short
move times and long processing times, another 24 problem sets contained instances with approximately
equal move times and processing times, and the remaining 24 problem sets contained instances with a long
move time and short processing times. We will refer to these three classes as short, equal, and long moves,
respectively.

Table 6 lists the parameter values for each move class, and Table 7 identifies the problem set for
each combination of tool configuration, lot size, and move class. Given S, L, and a, b, c, d, we used the
following generation scheme to create the instances. Note that all data are integers, so X ~ U[a, b] implies

that the random variable X has a discrete probability distribution and P{X = x} = 1/(b-a+1) for x = a, a+1,
…, b.

pr ~ U[a, b].
pi ~ U[c, d], for i = 1, …, S.

The push and pull dispatching rules were the benchmarks. (Note that both algorithms begin with
these sequences.) For each instance, we used Algorithm BB, Algorithm TBB, the push dispatching rule
(Algorithm P), and the pull dispatching rule (Algorithm P) to find solutions. However, we halted
Algorithm BB if it generated 100,000 nodes for an instance and Algorithm TBB if generated 50,000 nodes
for an instance.

Tables 8 and 9 present the results for each problem set. The third and fourth columns present the
average CPU times that Algorithm BB and Algorithm TBB required. The fifth column is the number of
instances that the Algorithm BB solved within 100,000 nodes. Similarly, the sixth column is the number of
instances that the Algorithm TBB solved within 50,000 nodes. The seventh, eighth, ninth, and tenth
columns show the average lot makespan of the sequences that each algorithm constructed. The last four
columns show the average percent improvement from the push and pull sequences.

From Table 8, we can see that, when L = 5 or the tool configuration is CT1-1, Algorithm BB was
able to find optimal sequences. When the moves are short and the tool configuration is CT1-2 or CT2-1,
Algorithm BB constructs sequences that are slightly better than the sequences that Algorithm TBB
constructs. When the moves are equal or long and the problem is too hard for Algorithm BB to solve
optimally, Algorithm TBB constructs much better sequences. For all problem sets, Algorithm TBB can find
the best cyclic sequence with very little computational effort.

From Table 9, we can see that, when the moves are short and the tool configuration is CT1-1-1,
neither Algorithm BB nor Algorithm TBB perform better than the push dispatching rule. When the tool
configuration is CT1-2-2, however, Algorithm BB is slightly better than Algorithm TBB, and both are
better than the dispatching rules. In most of the other problem sets, Algorithm TBB is better than
Algorithm BB. When the tool configuration is CT1-1-1, CT1-2-2, or CT2-2-1, Algorithm TBB can find
the best cyclic sequence with very little computational effort. For the CT2-2-2 instances, Algorithm TBB
is searching for 2-unit cycles, so that requires additional computational effort.

Figure 5 presents the computing times those Algorithms BB and TBB required for CT1-2-2.
Figure 6 illustrates the percent improvement from the push sequence to the best sequence found by
Algorithm BB and TBB for CT1-2-2. Note that the lot does not affect the performance of Algorithm TBB
as much as it affects the performance of Algorithm BB.

Table 6. Parameters for Move Classes.

Parameters Move
Class a b c d
Short 1 10 20 40
Equal 10 20 10 20
Long 20 40 1 10

Table 7. Problem sets.

Problem Set for Move Class Tool
Configuration

S L
Short
Moves

Equal
Moves

Long
Moves

CT1-1 2 5 1 13 25
CT1-1 2 10 2 14 26
CT1-1 2 15 3 15 27
CT1-2 2 5 4 16 28
CT1-2 2 10 5 17 29
CT1-2 2 15 6 18 30
CT2-1 2 5 7 19 31
CT2-1 2 10 8 20 32
CT2-1 2 15 9 21 33
CT2-2 2 5 10 22 34
CT2-2 2 10 11 23 35
CT2-2 2 15 12 24 36

CT1-1-1 3 5 37 49 61
CT1-1-1 3 10 38 50 62
CT1-1-1 3 15 39 51 63
CT1-2-2 3 5 40 52 64
CT1-2-2 3 10 41 53 65
CT1-2-2 3 15 42 54 66
CT2-2-1 3 5 43 55 67
CT2-2-1 3 10 44 56 68
CT2-2-1 3 15 45 57 69
CT2-2-2 3 5 46 58 70
CT2-2-2 3 10 47 59 71
CT2-2-2 3 15 48 60 72

Table 8. The performance of Algorithms BB and TBB on two-stage cluster tool configurations.
CPU time
(mm:ss)

Instances
solved

Average makespan
% improvement

over push
% improvement

over pull Tool
Configuration

Problem
Set

BB TBB BB TBB BB TBB Push Pull BB TBB BB TBB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

CT1-1 1 0:01 0:01 10 10 303.1 303.1 303.1 303.1 0 0 0 0
CT1-1 2 0:02 0:01 10 10 585.6 585.6 585.6 585.6 0 0 0 0
CT1-1 3 0:28 0:01 10 10 868.1 868.1 868.1 868.1 0 0 0 0

CT1-2 4 0:01 0:01 10 10 280.9 285.3 294.1 294.1 4.49 2.99 4.49 2.99
CT1-2 5 0:46 0:01 7 10 536.2 546.6 564.6 564.6 5.03 3.19 5.03 3.19
CT1-2 6 1:23 0:01 0 10 789.3 807.1 835.1 835.1 5.48 3.35 5.48 3.35

CT2-1 7 0:01 0:01 10 10 298.3 302.4 306.1 306.1 2.55 1.21 2.55 1.21
CT2-1 8 0:57 0:01 7 10 575.9 585.7 589.6 589.6 2.32 0.66 2.32 0.66
CT2-1 9 1:32 0:01 0 10 859.4 869.2 873.1 873.1 1.57 0.45 1.57 0.45

CT2-2 10 0:01 0:01 10 10 216.0 216.3 221.7 231.7 2.57 2.44 6.78 6.65
CT2-2 11 0:51 0:01 4 10 378.2 377.1 401.5 406.9 5.80 6.08 7.05 7.32
CT2-2 12 1:31 0:01 0 10 559.7 543.3 588.7 609.4 4.93 7.71 8.16 10.85

CT1-1 13 0:01 0:01 10 10 372.7 372.7 420.3 420.3 11.33 11.33 11.33 11.33
CT1-1 14 0:02 0:01 10 10 745.2 745.2 852.3 852.3 12.57 12.57 12.57 12.57
CT1-1 15 1:13 0:01 0 10 1117.7 1131.7 1284.3 1284.3 12.97 11.88 12.97 11.88

CT1-2 16 0:01 0:01 10 10 401.3 401.3 468.0 468.0 14.25 14.25 14.25 14.25
CT1-2 17 1:16 0:01 0 10 811.0 798.3 951.0 951.0 14.72 16.06 14.72 16.06
CT1-2 18 1:36 0:01 0 10 1294.0 1194.8 1434.0 1434.0 9.76 16.68 9.76 16.68

CT2-1 19 0:01 0:01 10 10 383.0 383.0 451.2 451.2 15.12 15.12 15.12 15.12
CT2-1 20 1:16 0:01 0 10 775.6 761.2 919.2 919.2 15.62 17.19 15.62 17.19
CT2-1 21 1:27 0:01 0 10 1134.4 1138.2 1387.2 1387.2 18.22 17.95 18.22 17.95

CT2-2 22 0:03 0:02 10 10 382.0 382.0 446.6 419.8 14.46 14.46 9.00 9.00
CT2-2 23 1:20 0:02 0 10 818.9 753.7 908.6 847.0 9.87 17.05 3.32 11.02
CT2-2 24 1:39 0:03 0 10 1263.8 1126.6 1370.6 1263.8 7.79 17.80 0.00 10.86

CT1-1 25 0:01 0:01 10 10 510.5 510.5 812.5 812.5 37.17 37.17 37.17 37.17
CT1-1 26 0:02 0:01 10 10 1021.0 1021.0 1700.5 1700.5 39.96 39.96 39.96 39.96
CT1-1 27 0:22 0:01 10 10 1531.5 1531.5 2588.5 2588.5 40.83 40.83 40.83 40.83

CT1-2 28 0:01 0:01 10 10 478.5 478.5 767.7 767.7 37.67 37.67 37.67 37.67
CT1-2 29 0:44 0:01 10 10 957.0 957.0 1607.7 1607.7 40.47 40.47 40.47 40.47
CT1-2 30 1:34 0:01 0 10 1803.7 1386.0 2447.7 2447.7 26.31 43.38 26.31 43.38

CT2-1 31 0:01 0:01 10 10 547.0 547.0 897.7 897.7 39.07 39.07 39.07 39.07
CT2-1 32 0:55 0:01 9 10 1098.9 1094.0 1884.7 1884.7 41.69 41.95 41.69 41.95
CT2-1 33 1:33 0:01 0 10 2083.6 1641.0 2871.7 2871.7 27.44 42.86 27.44 42.86

CT2-2 34 0:02 0:02 10 10 471.5 471.5 794.6 697.1 40.66 40.66 32.36 32.36
CT2-2 35 1:15 0:03 0 10 1210.0 943.0 1616.6 1507.0 25.15 41.67 19.71 37.43
CT2-2 36 1:35 0:04 0 10 2032.0 1414.5 2438.6 2204.1 16.67 42.00 7.81 35.82

Table 9. The performance of Algorithms BB and TBB on three-stage cluster tool configurations.
CPU time
(mm:ss)

instances
solved

Average makespan
% improvement

over push
% improvement

over pull Tool
configuration

Problem
Set

BB TBB BB TBB BB TBB Push Pull BB TBB BB TBB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

CT1-1-1 37 0:01 0:01 10 10 369.0 369.0 369.0 371.1 0 0 0.57 0.57
 38 1:04 0:01 5 10 677.5 677.5 677.5 683.1 0 0 0.82 0.82
 39 1:44 0:01 0 10 986.0 986.0 986.0 995.1 0 0 0.91 0.91

CT1-2-2 40 0:17 0:02 10 10 334.9 337.8 349.9 350.8 4.29 3.46 4.53 3.71
 41 1:34 0:03 0 10 613.5 616.8 638.4 641.1 3.90 3.38 4.31 3.79
 42 2:00 0:04 0 10 889.4 895.4 926.9 930.5 4.05 3.40 4.42 3.77

CT2-2-1 43 0:34 0:03 7 10 349.2 350.3 359.6 356.0 2.89 2.59 1.91 1.60
 44 1:38 0:05 0 10 638.8 634.1 644.6 641.6 0.90 1.63 0.44 1.17
 45 2:05 0:07 0 10 923.8 918.1 929.6 926.6 0.62 1.24 0.30 0.92

CT2-2-2 46 0:49 0:46 6 5 290.1 294.0 296.1 318.1 2.03 0.71 8.80 7.58
 47 1:42 1:27 0 0 549.6 524.9 563.9 578.6 2.54 6.92 5.01 9.28
 48 2:10 1:44 0 0 817.3 760.3 831.9 839.5 1.76 8.61 2.64 9.43

CT1-1-1 49 0:03 0:01 10 10 521.7 521.7 591.8 591.8 11.85 11.85 11.85 11.85

 50 1:37 0:01 0 10 1083.0 1032.2 1195.8 1195.8 9.43 13.68 9.43 13.68
 51 2:10 0:01 0 10 1687.0 1541.7 1799.8 1799.8 6.27 14.34 6.27 14.34

CT1-2-2 52 1:13 0:04 0 10 515.6 509.2 573.7 577.5 10.13 11.24 10.72 11.83
 53 1:43 0:06 0 10 1107.9 1005.2 1161.7 1164.5 4.63 13.47 4.86 13.68
 54 2:15 0:08 0 10 1695.9 1501.2 1749.7 1753.5 3.07 14.20 3.28 14.39

CT2-2-1 55 1:14 0:06 0 10 539.3 525.2 600.6 600.6 10.21 12.55 10.21 12.55
 56 1:50 0:09 0 10 1158.0 1044.5 1216.6 1216.0 4.82 14.15 4.77 14.10
 57 2:19 0:11 0 10 1774.0 1446.5 1832.6 1832.6 3.20 21.07 3.20 21.07

CT2-2-2 58 1:12 1:17 0 0 534.4 537.9 577.2 549.9 7.42 6.81 2.82 2.18
 59 1:51 1:25 0 0 1110.0 1077.8 1169.2 1110.0 5.06 7.82 0.00 2.90
 60 2:10 1:42 0 0 1659.9 1595.8 1761.2 1659.9 5.75 9.39 0.00 3.86

CT1-1-1 61 0:01 0:01 10 10 670.0 670.0 1095.4 1071.6 38.84 38.84 37.48 37.48

 62 1:28 0:01 0 10 1585.6 1340.0 2267.4 2267.4 30.07 40.90 30.07 40.90
 63 1:54 0:01 0 10 2757.6 2010.0 3439.4 3415.6 19.82 41.56 19.26 41.15

CT1-2-2 64 0:35 0:04 10 10 694.5 694.5 1152.4 1105.3 39.73 39.73 37.17 37.17
 65 1:40 0:06 0 10 1984.7 1389.0 2360.4 2337.1 15.92 41.15 15.08 40.57
 66 2:06 0:08 0 10 3192.7 2083.5 3568.4 3521.3 10.53 41.61 9.33 40.83

CT2-2-1 67 0:50 0:06 10 10 650.0 650.0 1047.2 1069.6 37.93 37.93 39.23 39.23
 68 1:40 0:10 0 10 1836.3 1300.0 2167.2 2167.4 15.27 40.01 15.28 40.02
 69 2:09 0:12 0 10 2961.7 1950.0 3287.2 3309.6 9.90 40.68 10.51 41.08

CT2-2-2 70 1:09 1:15 0 0 780.0 883.3 1092.0 968.2 28.57 19.11 19.44 8.77
 71 1:44 1:25 0 0 1946.2 1903.2 2212.0 2100.0 12.02 13.96 7.32 9.37
 72 2:11 1:42 0 0 3049.8 2819.3 3332.0 3066.4 8.47 15.39 0.54 8.06

7. SUMMARY AND CONCLUSIONS

This paper studied the hybrid cluster tool scheduling problem. The goal is to improve tool
performance by reducing the total lot processing time (the lot makespan). We have developed and tested
two enumeration algorithms that can find sequences of wafer handler moves. Algorithm BB searches the
entire set of sequences. Algorithm TBB focuses on cyclic sequences. This paper focused on cluster tools
that have a single wafer handler and a single load lock. The scheduling objective is to minimize the lot
makespan.

Algorithm TBB requires significantly less computational effort than Algorithm BB does.
Compared to the sequences that current push and pull dispatching rules generate, we found that Algorithm
TBB constructs sequences that reduce the lot makespan significantly. This is especially true when the
move time and processing times are approximately equal and when the move time is longer than the
processing times. Algorithm BB, however, requires excessive computational effort and cannot find better
sequences (except for the smaller problem instances). Of course, these statements about performance apply
to the specific problem instances that we created. Still, we believe that focusing on cyclic sequences
reduces the search effort and yet yields very good sequences that improve cluster tool performance
significantly. (Both the filling-up phase and the cycles must be considered when constructing a cyclic
sequence.)

Although our experiments have focused on two- and three-stage cluster tools, the algorithms
presented here can be applied to configurations with more stages.

Future work on cluster tool scheduling should consider more complex tool configurations and
sequencing anticipatory moves, which position the wafer handler before the wafer is ready to be moved.
Such anticipatory moves should further improve the cluster tool performance.

Acknowledgements

This research was supported by the Semiconductor Research Corporation and the National Science
Foundation under grant DMI 97
13720. We would like to thank Professor Gary W. Rubloff, Mr. Brian F.
Conaghan, Mr. Praveen Mellacheruvu, and Mr. Rock Z. Shi of the Institute for Systems Research,
University of Maryland, for their useful insights. The research was performed using the facilities of the
Computer-Integrated Manufacturing Laboratory at the University of Maryland.

Bibliography

1. Semiconductor Business News. “Applied Materials, Novellus, LAM Research lead cluster tool
market” CMP Media Inc. 26 March 1998. 14 Jan. 2000.
<http://www.semibiznews.com/stories/8c26tools.htm>

2. Wood, Samuel C, “Simple performance models for integrated processing tools,” IEEE Transactions on
Semiconductor Manufacturing, vol. 9, n. 3, pp. 320-328, 1996.

3. Perkinson, Terry L., Peter K. McLary, Ronald S. Gyucsik, and Ralph K. Cavin, “Single-wafer cluster
tool performance: an analysis of throughput,” IEEE Transactions on Semiconductor Manufacturing,
vol. 7, n. 3, pp. 369-373, 1994.

4. Venkatesh, Srilakshmi, Rob Davenport, Pattie Foxhoven, and Jaim Nulman, “A steady-state
throughput analysis of cluster tools: dual-blade versus single-blade robots,” IEEE Transactions on
Semiconductor Manufacturing, vol. 10, n. 4, pp. 418-424, 1997.

5. Srinivasan, R. S, “Modeling and performance analysis of cluster tools using Petri nets,” IEEE
Transactions on Semiconductor Manufacturing, vol. 11, n. 3, pp. 394-403, 1998.

6. Herrmann, Jeffrey W., Niranjan Chandrasekaran, Brian F. Conaghan, Manh-Quan T. Nguyen, Gary W.
Rubloff, and Rock Z. Shi, “Evaluating the impact of process changes on cluster tool performance,” to
appear on IEEE Transactions on Semiconductor Manufacturing.

7. Jeng, Wu-De, James T. Lin, and Ue-Pyng Wen, “Algorithms for sequencing robot activities in a
robot-centered parallel-processor workcell”, Computers Ops. Res. v20, n2, pp. 185-197, 1993

8. Hall, Nicholas G., Hichem Kamoun, and Chelliah Sriskandarajah, “Scheduling in robotic cells:
classification, two and three machine cells,” Operations Research, vol. 45, n.3, pp. 421-439, 1997.

9. Crama, Yves and Joris van de Klundert, “Cyclic scheduling of identical parts in a robotic cell”,
Operations Research, vol. 45, n. 6, Nov. – Dec. 1997.

10. Herrmann, Jeffrey W., and Manh-Quan T. Nguyen, “Sequencing wafer handler moves to improve the
performance of sequential cluster tools,” Technical Report 2000-03, Institute for Systems Research,
University of Maryland College Park, 2000.

11. Murphy, Robert, Puneet Saxena, William Levinson, “Use OEE; don’t let OEE use you,”
Semiconductor International, pp. 125-132, Sep. 1996.

12. Dance, Daren L., Devid W. Jimenez, and Alan L. Levine, “Understanding equipment cost-of-
ownership,” Semiconductor International, pp. 117-122, July 1998.

13. Nguyen, Manh-Quan T., “Improving Cluster Tool Performance By Finding The Optimal Sequence
And Cyclic Sequence Of Wafer Handler Moves,” M.S. thesis, Institute for Systems Research,
University of Maryland, 2000.

S1

S2

S2

S3

LL

S3

Handler

Unprocessed
wafers

Completed
wafers

Wafers
undergoing
processing

Figure 1. A CT1-2-2 Cluster Tool Configuration.

Handler

Handler

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

PUSH SEQUENCE: MS = 285

OPTIMAL SEQUENCE: MS = 275

Load S1 Load S2 Unload S2

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Figure 2. Sequences for a CT2-2 instance.

 Start
<0 0 0>

R0, 1
<1 0 0>

R1, 1
<0 1 0>

R0, 2
<1 1 0>

R2, 1
<0 0 0>

R2, 1
<1 0 0>

R1, 2
<0 1 1>

R1, 2
<0 1 0>

R0, 3
<1 1 0>

R2, 2
<0 0 0>

R1, 3
<0 1 1>

R2, 2
<1 0 0>

R0, 4
<1 1 1>

R2, 2
<0 0 1>

R2, 2
<1 0 1>

�1

$

$

$

R0, 3
<1 1 1>

R2, 1
<0 0 1>

R2, 1
<1 0 1>

R1, 3
<0 1 1>

R2, 2
<1 0 0>

R0, 4
<1 1 1>

R2, 2
<0 1 0>

$

L

R2, 2
<1 1 0>

�2

R0, 3
<1 0 1>

R2, 2
<0 0 0>

$

R1, 3
<0 1 1>

R2, 2
<0 1 0>

�3

R0, 4
<1 1 1>

R2, 2
<1 1 0>

$

R0, 2
<1 0 0>

R1, 2
<0 1 0>

R0, 3
<1 1 0>

R2, 2
<0 0 0>

�4

R1, 3
<0 1 1>

R2, 2
<1 0 0>

$

R0, 4

<1 1 1>
R2, 2

<0 1 0>

$

R2, 2
<1 1 0>

$

Figure 3. Algorithm TBB search tree for CT1-2.

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Load S1 Load S2 Unload S2

Better sequence: MS = 81.

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

1-unit cyclic sequence: MS = 85.

Figure 4. Sequences for a CT1-2 instance.

0
20
40
60
80

100
120
140

5 10 15
Lot size

C
P

U
 ti

m
e

(s
ec

) Algorithm BB, short moves

Algorithm BB, long moves

Algorithm BB, equal moves

Algorithm TBB, short moves

Algorithm TBB, long moves

Algorithm TBB, equal moves

Figure 5.

0

10

20

30

40

50

0 5 10 15 20

Lot size

P
e

rc
e

n
ta

g
e

Algorithm TBB

Short Equal Long

Algorithm BB

0

10

20

30

40

50

0 5 10 15 20

Lot size

P
e

rc
e

n
ta

g
e

Figure 6.

