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We entertain the hypothesis that leverage considerations are relevant in de-

scribing the evolution of asset returns both statistically and risk neutrally. Adopting

a constant elasticity of variance formulation in the context of a general Lévy pro-

cess as the driving uncertainty we show that the presence of leverage effects in this

form has the implication that asset pricing satisfy a scaling hypothesis. Examples

of continuous and pure jump Lévy cases are constructed and explicit forms for the

semigroups are obtained with empirical investigations.

In our study, we build in the leverage effect by introducing a time change

dependent on the level of asset and hence affect the expected local volatility in an

explicit manner. This is a fairly direct approach in the context of Lévy processes.

The continuous case in our study coincides with the development of the constant

elasticity of variance models. We however, conduct our investigation in the contin-

uous case through our incorporation of BESQ process as the semi-stable Markov

process. In the pure jump case with underlying time changed Lévy process being

specified as CGMY process, we hope to engage the leverage effect as well as the



ability of explaining long-tailedness and skewness as already being provided by us-

ing such pure jump Lévy process with infinite activity. We show how to implement

Generalized Method of Moments in this case to estimate parameters without the

assumption of knowing the law of the process.

The development of forward Partial Integro-Differential Equations is under

a general setup and shows great advantage over the backward ones. In both the

continuous case and the pure jump case, we show how to calibrate our model pa-

rameters by solving such forward PIDEs and compare model prices to the market

data. Although the numerical approach used in the pure jump case is discussed in

the context of CGMY process, it is evident that the approach can be extended to a

general frame work indifferent of the choice of Lévy process and shall be similarly

carried out where other Lévy processes are specified in our model.
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4.3.4 Exponential Tilting of a Lévy Process in General . . . . . . . 75

5 THE DIFFUSION CASE WITH SQUARED BESSEL 78
5.1 The Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Take Bessel Squared Process as the Lamperti . . . . . . . . . . . . . 81
5.3 Maximum Likelihood Estimation of Parameters . . . . . . . . . . . . 82

5.3.1 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



5.4 Forward PDE in The Diffusion Case . . . . . . . . . . . . . . . . . . 92
5.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.2 Risk-Neutral Estimation by Solving PDE . . . . . . . . . . . . 97

6 THE DISCRETE CASE 102
6.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Deriving the Infinitesimal Generator for St . . . . . . . . . . . . . . . 105
6.3 GMM Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Introduction of GMM . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 Using GMM in CGMY case . . . . . . . . . . . . . . . . . . . 116
6.3.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Backward Partial Integro-Differential Equations for Option Prices . . 127
6.5 Forward Partial Integro-Differential Equations . . . . . . . . . . . . . 129
6.6 Using CGMY process as the underlying Lévy . . . . . . . . . . . . . . 136

6.6.1 Backward PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6.2 Forward PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.6.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.6.4 The Evaluation of f1(a) and f2(a) . . . . . . . . . . . . . . . . 150
6.6.5 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.6.6 An Alternative Scheme for Faster Computations . . . . . . . . 160
6.6.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 163

7 CONCLUSION 167

A Evaluation of γ + ω 170

B Integral Evaluation in the CGMY Case 175
B.0.8 Evaluation of Integral (6.41), when β̂ 6= 1 . . . . . . . . . . . . 175
B.0.9 Evaluation of Integral (6.42), when β̂ 6= 1 . . . . . . . . . . . . 180
B.0.10 Evaluation of Integral (6.43), when β̂ 6= 1 . . . . . . . . . . . . 182
B.0.11 Evaluation of Integral (6.44), when β̂ 6= 1 . . . . . . . . . . . . 184
B.0.12 Evaluation of Integrals (6.41-6.44) when β̂ = 1 . . . . . . . . . 187

Bibliography 193

vi



LIST OF FIGURES

2.1 One Sample Path of Geometric Brownian Motion . . . . . . . . . . . 15

5.1 S&P500 Daily Prices from 09/21/1983 to 09/20/2004 . . . . . . . . . 85

5.2 Data Fitting For Calls of All Strikes and Maturities on 12-31-2003.
Strikes vs. Option prices, ? - Model prices, o - Market prices . . . . . 100

6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Calculated values of f versus ν using FFT in Matlab with G = 10,
M = 10 and Y = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Data Fitting For Calls of All Strikes and Maturities on 12-31-2003.
Strikes vs. Option prices, ? - Model prices, o - Market prices . . . . . 166

vii



Chapter 1

INTRODUCTION

The objective of this thesis is to enhance the applicability of Lévy processes

as models for stock prices. We entertain the hypothesis that leverage considerations

are relevant in describing the evolution of asset returns both statistically and risk

neutrally. Adopting a constant elasticity of variance formulation in the context of

a general Lévy process as the driving uncertainty we show that the presence of

leverage effects in this form has the implication that asset pricing satisfy a scaling

hypothesis. Examples of continuous and pure jump Lévy cases are constructed and

explicit forms for the semigroups are obtained with empirical investigations.

Lévy processes have long been used in mathematical finance. In fact, the best

known of all Lévy processes, Brownian motion, was originally introduced as a stock

price model (see Bachelier (1900, [4]).) Osborne (1959, [54]) refined Bachelier’s

model by proposing the exponential exp(Bt) of Brownian motion as a stock price

model. In a more systematic manner, the same process exp(Bt), which is called

exponential, or geometric Brownian motion, was introduced as a stock price model

by Samuelson (1965, [59]). Eight years later, in 1973, Black, Scholes and Merton

demonstrated how to price European options based on the geometric Brownian

model. This stock-price model is now called the Black-Scholes model, for which

Scholes and Merton received the Nobel Prize for Economics in 1997 (Black had

1



already died).

Despite of the success of Black-Scholes model, however, the analysis of uni-

variate time series data on financial market asset returns has long confirmed their

long-tailedness relative to the normal distribution. Analysis of such returns using

data on option prices confirms this phenomenon on a risk neutral basis, with the

addition now of a marked negative skewness as well. These observations have led

to an increased adoption of alternative processes for describing these returns. Many

researchers have begun to employ purely discontinuous Lévy processes with infinite

activity (i.e. with infinitely many jumps in any interval of time). Lévy processes

are now increasingly employed in both the analysis of value at risk and the pricing

of options.

A Lévy process X = (X(t), t ≥ 0) is a right continuous process with indepen-

dent stationary increments and can be decomposed as the sum of a linear drift, a

Brownian motion and a pure jump process: X(t) = µt + σW (t) +
∑

0≤u≤t ∆Y (u).

The jump process Y = (Y (t), t ≥ 0) is independent of W (t) and the rate at which

jumps of size dz occur is governed by a positive measure ν(dz) which summarizes the

distribution as well as the arrival intensity of jumps. The only restriction on ν(dz)

is that
∫

Rd\{0}
|z|2

1+|z|2ν(dz) < ∞ which ensures that the resulting process is a semi-

martingale. The jumps allowed under the Lévy process definition are slightly more

general than Poisson jumps since the arrival rate can be infinite when
∫
ν(dz) = ∞,

but not much more so since such jumps can always be obtained as the uniform

limit of Poisson jumps. A Lévy process is thus uniquely determined by its drift,

its volatility and the measure ν(dz). The triple (µ, σ, ν(dz)) is often referred to as
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the semimartingale characteristics of X(t) and Lévy models can conveniently be

parameterized in terms of these quantities. Chapter 2 will focus on Lévy processes

in Finance in more detail.

A classical result, due to John Lamperti, establishes a one-to-one correspon-

dence between a class of strictly positive Markov processes that are self-similar or

semi-stable (according to John Lamperti), and the class of one-dimensional Lévy

processes. This correspondence is obtained by suitably time-changing the exponen-

tial of the Lévy process. In Chapter 3 Lamperti’s 1962 and 1972 papers ([44], [45])

are studied, and we introduce the definitions and properties of the class of semi-

stable Markov processes. Some important theorems and proofs are summarized as

well.

The objective of this thesis is to enhance the applicability of Lévy processes

by addressing some shortcomings associated with these processes. The particular

issue we address here is that of the presence of leverage effects. Many researchers

have documented a negative relationship between market volatilities and the level

of asset prices. It is argued that this negative relation reflects greater risk taking

by management, induced by a fall in the asset price, with a view of maximizing the

option value of equity shareholders. This leverage effect is modeled in the context

of diffusion by allowing the volatility to be a deterministic function of the spot

price and has led to the development of the constant elasticity of variance models

and the local volatility models. The analogs in the context of Lévy processes are

absent. Stochastic volatility models in the context of Lévy processes have introduced

correlation terms to capture this leverage effect but such an approach is relatively
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indirect. Recently, Carr, Geman, Madan and Yor (2003) have extended the local

volatility models to allow for local Lévy models. In this thesis we address leverage

directly in the context of a Lévy process.

In Chapter 4, We construct the Leveraged Lévy model for stock prices. We

allow for a direct dependence of volatility for a Lévy process, measured by the

speed at which the Lévy process is locally proceeding, on the price of asset and

seek to determine probability laws of such a leveraged process. We show that such

processes are closely linked to processes introduced by Lamperti ([45]), and we

term them the Lamperti processes associated with Lévy processes. We discover

the probability laws and characteristics of the associated Lamperti process from

those of the Lévy process and construct the Leveraged Lévy process as precisely the

associated Lamperti process. This precise association explains our title.

We anticipate that the use of such leveraged Lévy processes will shed better

light on the exact role of leverage in financial markets both statistically and risk

neutrally. Our reasoning is that since Lévy processes can internally explain both

long-tailedness and skewness without the addition of leverage, the estimation of

a significant leverage effect is probably just that and not a proxy for other well

known and stylized features of the return density. In the context of diffusions, given

their documented inability to address these aspects of the density it is possible that

estimated risk neutral leverage for example is just a reflection of well documented

skewness and has little to do with volatilities actually moving with a market drop.

The development of the models here will also enable an assessment of the

impact of leverage on the valuation of claims otherwise analyzed in a zero leverage

4



context. We expect that subsequent developments will allow for both stochastic

volatility and leverage by incorporating stochastic volatility into Lamperti processes.

In this dissertation we shall make the assumption that the process of interest,

S = (S(t), t ≥ 0), is of Lévy type rather than literally being a Lévy process. This

means that the characteristics (µ, σ, ν) are allowed to be state dependent, which is

of key importance for capturing essential features of financial data. Time homoge-

neous diffusions as well as processes with state dependent jump intensities and jump

distributions are special cases. This expands the set of models to include most pop-

ular time homogeneous strongly Markovian semimartingales. As in the Lévy case,

these processes can conveniently be parameterized by parameterizing the triplet of

semimartingale characteristics which now uniquely define the process in terms of its

conditional drift, its conditional volatility, its conditional intensity and distribution

of its jumps.

Chapter 5 is an example of Leveraged-Lévy model in the diffusion case. Brow-

nian motion is the only uncertainty in this situation. Since the family of Squared

Bessel processes (BESQ) is the only family of continuous semi-stable Markov pro-

cesses, we study our model by incorporating BESQ processes as the Lamperti pro-

cesses. The knowledge of BESQ processes enables us to derive the transition densi-

ties of the stock price process. The Maximum Likelihood Estimation as estimation

of parameters in the model is carried out on time series data of S&P500 Index. In

this chapter, we also study how to price options assuming that the underlying stock

price follows this Leverage-Lévy process. We derive the forward Partial Integro-

Differential Equations (PIDE) and solve the problem numerically by implementing
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a finite difference algorithm which allows to price European options. Forward PIDE

is preferred to backward PIDE since it obtains option prices on the whole surface

of all strikes and maturities after one run of solving. By numerically solving the

forward PIDE, the model parameters are calibrated to actual market data of option

prices.

In Chapter 6, we consider only the pure jump Lévy processes, that is the ones

without exposure to Brownian motions. It is argued in [11] that the use of a jump

process with infinite activity, i.e. one allowing infinitely many jumps in any time

interval, effectively subsumes the need for an additional diffusion component. We

therefore replace the local diffusive risk neutral dynamics in local volatility models

(Dupire 1994, [25]) (Derman and Kani 1994, [23]) by a local exposure to a Lévy

process. Essentially our idea is to replace Brownian motion with a Lévy process

running at what we call the local speed function. This local speed function is

still a deterministic function of the level of the stock price and time. The Lévy

process involved in this procedure is fixed through time, with only its speed that is

space time dependent. In analogy with the local volatility function, we introduce a

local speed function A(S, t) that measures the speed at which the Lévy process is

running at time t when the stock price is at the level S. In the case of Brownian

motion, scaling and time changing are equivalent operations by the scaling property

of Brownian motion, but for general Lévy processes these are different operations.

Time changing leads to tractable results while scaling is much more complicated.

We study the case where the underlying Lévy process is taken to be CGMY process,

which is introduced by Carr, Geman, Madan and Yor (2002, [11]).
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We implement the Generalized Methods of Moments (GMM) estimation in

order to estimate the parameters in the model. Generalized Methods of Moment

(GMM) estimation is one of two developments in econometrics in the 80s that

revolutionized empirical work in macroeconomics. (The other being the under-

standing of unit roots and cointegration). The path breaking articles on GMM

were those of Hansen (1982, [33]) and Hansen and Singleton (1982, [35]). The

GMM procedure chooses parameters so as to match the moments of the model

to those of the data as closely as possible. Consider a set of competing models(
µ(·; θ), σ(·; θ), ν(dz, ·; θ)

)
θ∈Θ

indexed by a finite dimensional compact set Θ. Our

goal is to infer which model θ ∈ Θ most likely generated the observed data. For

all but the most trivial examples the transition functions of the Markov process

are unknown and thus classic Maximum Likelihood Estimation is infeasible. Conse-

quently we instead consider a method of moments approach that requires knowledge

only of the drift, volatility and jump characteristics of the process in terms of which

the model is given. This leads us to study the relationship between the conditional

expectation operator and the infinitesimal generator of time homogeneous Markov

Processes.

In this thesis we also explore the precise link between option prices in Lever-

aged Lévy models and the related Partial Integro-Differential Equations in the case

European options in exponential Lévy models. The Markov property of the price al-

lows us to express option prices as solutions of Partial Integro-Differential Equations

(PIDEs) which involve, in addition to a (possibly degenerate) second-order differ-

ential operator, a non-local integral term which requires specific treatment both at
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the theoretical and numerical level. Such partial integro-differential equations have

been used by several authors to price options in model with jumps ([1], [15], [24],

[50]). For example, in the paper by Hirsa and Madan (2003, [37]), PIDE for pricing

American options was derived and put to numerical experiments when the log price

dynamics of the underlying asset is given by the variance gamma (VG) law.

Before ending this introduction, I would like to briefly review some basic eco-

nomic concepts that matter to this thesis. First is the concept of “Arbitrage”.

Arbitrage is any trading strategy requiring no cash input that has some probability

of making profits, without any risk of a loss ([42], pg. 33). Another more formal

definition: “an arbitrage opportunity is a consumption plan that is nonnegative al-

ways and strictly positive in at least one event, and has a non-positive initial cost”

([28], pg. 226). The definitions are equivalent. However, every investor wishes to

earn money without risk. Whenever arbitrage opportunities are available, no in-

vestor will be satisfied with any unbounded portfolio, and no equilibrium can be

obtained. Hence if this opportunity exists for some time, the investors actions (the

arbitrageurs) entering in this under-priced portfolio will press the prices levels, so

that prices will be adjusted until arbitrage is no longer possible. On the other hand,

if there are no-arbitrage opportunities in the set of returns, then these returns can

be supported in some equilibrium. Prices that do not allow arbitrage opportunities

are in equilibrium.

Another important concept is “risk-neutral” pricing. We show its essence as

only in the discrete state space. Every investor believes, by definition, that the

subjective expected rate of return on each asset is the appropriate discount rate.
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Every investor must also agree that assets can be priced in a “risk-neutral” manner

if the subjective probabilities are suitably adjusted. Furthermore, they all must

agree on these adjusted probabilities, or, to the extent that the probabilities are

not unique, they must agree on the possible sets. We know from Theorem 2 and

3 on pg. 55-57 ([43]) that a positive pricing vector exists whenever no arbitrage

condition is met, and that all investors regardless of beliefs agree on these prices

or possible sets of prices. Choose a particular pricing vector p and define π = pR,

and R = (1′p)−1. We denote the vector of values of assets v, and the state space

tableau of payoffs Y, e.g. Ys,i is the payoff in state s on asset i. Since v = Y′p,

we have v = Y′π
R

, or vi = Ê(Ỹi)
R

. Ê is the expectations operator with respect to

the “probabilities” π. The elements of π are called the risk-neutral probabilities, or

martingale probabilities. R is the corresponding risk-neutralized risk-free rate. Note

that π > 0 (since p > 0), and 1′π = 1, we also have Ê(z̃) = Z′π = R1, where Z is

the state space tableau of returns and by definition Z′p = 1. This result is saying

that, under the risk-neutral probabilities the expected rate of return on each asset

is the (risk-neutralized) risk-free rate. If a risk-less asset exists with risk-free rate

r, then R must equal r for any choice of risk-neutral probabilities since all pricing

vectors must price the risk-less asset correctly, that is p′(r1) = 1.

The Fundamental Theorem of Asset Pricing states the equivalence of the fol-

lowing statements:

1. Existence of a positive supporting price vector q.

2. The absence of arbitrage opportunities.

9



3. Existence of an optimal demand for some agent who prefers more to less (i.e.

an individual who has strictly positive marginal utility u′(·) > 0.

4. Existence of positive risk-neutral probabilities and an associated risk-less rate

(the Martingale property).

5. Existence of a positive state price density.
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Chapter 2

LÉVY PROCESSES IN FINANCE

Lévy processes have long been used in mathematical finance. Lévy processes

can be thought of as random walks in continuous time, that is they are stochastic

processes with independent and stationary increments. The best known and most

important examples are the Poisson process, Brownian motion, the Cauchy process,

and more generally stable processes.

Lévy processes concern many aspects of probability theory and its applications.

In particular, they are prototypes of Markov Processes (actually, they form the class

of space-time homogeneous Markov processes) and of semimartingales; they are also

used as models in the study of queues, insurance risks, dams, and more recently in

mathematical finance. From the viewpoint of functional analysis, they appear in

connection with potential theory of convolution semigroups. Several books contain

sections or chapters on Lévy processes, e.g. Lévy (1954, [47]), Itô (1961, [38]),

Gihman and Skorohod (1975, [30]), Jacod and Shiryaev (1987, [41]), Sato (1990,

[60]) (1995, [61]), Skorohod (1991, [64]) Rogers and Williams (1994, [58]),. . . . See

also surveys by Taylor (1973, [66]), Fristedt (1974, [27]) and Bingham (1975, [5]).

In this Chapter we review aspects of Lévy processes that apply to modeling

financial securities and are used in later Chapters. We first introduce the well known

Black-Scholes Model; then in Section 2.2 Lévy processes are studied. We introduce
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the CGMY process as an example of pure jump Lévy process. We conclude with a

review of semigroups and generators for Lévy processes which are of important use

in this thesis.

2.1 The Black-Scholes Model

2.1.1 Stochastic Integrals and SDEs

Stochastic integration was introduced by Itô in 1941, hence the name Itô

calculus. It gives meaning to ∫ t

0

Xu dYu

for suitable stochastic processes Xt = (X(u), u ≥ 0) and Yt = (Y (u), u ≥ 0), the

integrand and the integrator. Because we will take as integrators processes of infinite

(unbounded) variation on every interval (e.g. Brownian motion), the first thing to

note is that stochastic integrals can be quite different from classical deterministic

integrals. The SDEs we encounter always have a unique solution and are of the

following form:

dXt = a(Xt, t)dt+ b(Xt, t)dYt, X0 = x0.

The solution to such an SDE is a stochastic process Xt = (X(t), t ≥ 0), which

satisfies

X(t) =

∫ t

0

a(X(u), u) du+

∫ t

0

b(X(u), u) dY (u), X(0) = x0. (2.1)

We refer to Jacod (1979, [40]), Protter (1990, [57]) and Jacod and Shiryaev

(1987, [41]) for detailed expositions on stochastic calculus.
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2.1.2 Geometric Brownian Motion

In the Black-Scholes model, the time evolution of a stock price St = (St, t ≥ 0)

is modeled as follows. Consider how S will change in some small time interval from

the present time t to a time t + ∆t in the near future. Writing ∆St for the change

St+∆t − St, the return in this interval is ∆St/St. It is economically reasonable to

expect this return to decompose into two components, a systematic part and a

random part.

Let us first look at the systematic part of the expected return. We assume that

the expected return of stock over a period is proportional to the length of the period

considered. This means that in a short interval of time [St, St+∆t] of length ∆t, the

expected increase in S is given by µSt∆t, where µ is some parameter representing

the mean rate of the return of the stock. In other words, the deterministic part of

the stock return is modeled by µ∆t.

To consider the random part of the expected return we look at the stochastic

fluctuations in stock price. A reasonable assumption is that the variance of the

return over the interval of time [St, St+∆t] is proportional to the length of the interval.

So, the random part of the return can be modeled by σ∆Wt, where ∆Wt represents

the (Normally distributed) noise term (with variance ∆t) driving the stock-price

dynamics, and σ > 0 is the parameter that describes how much effect the noise has,

i.e. how much the stock price fluctuates. In total, the variance of the return equals

σ2∆t. Thus σ governs how volatile the price is, and is called the volatility of the

stock.

13



Putting them together, we have

∆St = St(µ∆t+ σ∆Wt), S0 > 0.

In the limit, as ∆t→ 0, we obtain the stochastic differential equation:

dSt = St(µdt+ σdWt), S0 > 0. (2.2)

The above stochastic differential equation has the unique solution

St = S0 exp((µ− 1

2
σ2)t+ σWt),

which is the functional of Brownian motion called geometric Brownian motion. Note

that

lnSt − lnS0 = (µ− 1

2
σ2)t+ σWt

has a Normal (t(µ − 1
2
σ2), σ2t) distribution. Thus St itself has a log-normal dis-

tribution. This geometric Brownian motion model and the log-normal distribution

which it entails form the basis for the Black-Scholes model for stock-price dynamics

in continuous time.

In Figure 2.1, the realization of a sample path of the geometric Brownian

motion in T = 1 year and with S0 = 100, µ = 0.05, σ = 0.4 is shown.

2.1.3 The Black-Scholes Option Pricing Model

In the early 1970s, Fisher Black, Myron Scholes ([9]) and Robert Merton ([51])

made a major breakthrough in the pricing of stock options by developing what has
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Figure 2.1: One Sample Path of Geometric Brownian Motion

become known as the Black-Scholes model. The model has had huge influence on

the way that traders price and hedge options. In 1997, the importance of the model

was recognized when Myron Scholes and Robert Merton were awarded the Nobel

Prize for economics.

We show how the Black-Scholes model for valuing European call and put

options on a stock works.

Investors are allowed to trade continuously up to some fixed finite planning

horizon T . The uncertainty is modeled by a filtered probability space (Ω,F , P ). We

assume a frictionless market with two assets.

The first asset is one without risk (the bank account). Its price process is given

by Bt = (B(t) = exp(rt), 0 ≤ t ≤ T ). The second asset is a risky asset, usually

referred to as a stock, which pays a continuous dividend yield q ≥ 0. The price

process of this stock, St = (S(t), 0 ≤ t ≤ T ), is modeled by the geometric Brownian
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motion,

B(t) = exp(rt), S(t) = S(0) exp
(
(µ− 1

2
σ2)t+ σW (t)

)
, (2.3)

where Wt = (W (t), t ≥ 0) is a standard Brownian motion.

Note that under P , W (t) has a Normal(0, t) and that St = (S(t), t ≥ 0) satisfies

the SDE (2.2). The parameter µ reflects the drift and σ models the volatility; µ and

σ are assumed to be constant over time.

We assume, as underlying filtration, the natural filtration F = (Ft) generated

by W . Consequently, the stock-price process St = (S(t), 0 ≤ t ≤ T ) follows a strictly

positive adapted process. We call this market model the Black-Scholes model. It was

shown by Itô (1951) that Brownian motion possesses the Predictable Representation

Property. The economic relevance of the representation theorem is that it shows

that the Black-Sholes model is complete, that is, that every contingent claim can

be replicated by a dynamic trading strategy.

Since the Black-Scholes market model is complete, there exists only one equiv-

alent martingale measure Q. It is not hard to see that under Q, the stock price is

following a geometric Brownian motion again (Girsanov theorem). This risk-neutral

stock-price process has the same volatility parameter σ, but the drift parameter µ is

changed to the continuously compounded risk-free rate r minus the dividend yield

q:

St = S0 exp((r − q − 1

2
σ2)t+ σWt).

Equivalently, we can say that under Q our stock-price process St = (S(t), 0 ≤ t ≤ T )
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satisfies the following SDE:

dSt = St((r − q)dt+ σdWt), S0 > 0. (2.4)

This SDE tells us that in a risk-neutral world the total return from the stock must

be r; the dividends provide a return of q, the expected growth rate of the stock

price, therefore, must be r − q.

By the risk-neutral valuation principle, the price Vt at time t of a contingent

claim with payoff function G(S(u)) is given by

Vt = exp(−(T − t)r)EQ[G(S(u))|Ft], t ∈ [0, T ]. (2.5)

Furthermore, if the payoff function depends only on the time T value of the stock,

i.e. G((S(u), 0 ≤ u ≤ T )) = G(S(T )), then formula (2.5) can be written as (for

simplicity, set t = 0)

V0 = exp(−Tr)EQ[G(S(T ))]

= exp(−Tr)EQ[G(S0 exp((r − q − 1

2
σ2)T + σWT ))]

= exp(−Tr)
∫ +∞

−∞
G(S0 exp((r − q − 1

2
σ2)T + σx))fnormal(x; 0, T )dx.

Moreover, if G(S(T )) is a sufficiently integrable function, then the price is also given

by Vt = F (t, St), where F solves the Black-Scholes partial differential equation,

∂

∂t
F (t, s) + (r − q)s

∂

∂s
F (t, s) +

1

2
σ2s2 ∂

2

∂s2
F (t.s)− rF (t, s) = 0, F (T, s) = G(s).

(2.6)
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This follows from the Feynman-Kac representation for Brownian motion (see for

example, Bingham and Kiesel 1998, [7]).

Solving the Black-Scholes partial differential equation (2.6) is not always easy.

However, in some cases it is possible to evaluate explicitly the above expected value

in the risk-neutral pricing formula (2.5).

Take, for example, a European call on the stock with strike K and maturity

T , so that G(S(T )) = (ST −K)+, the Black-Scholes formulas for the price C(K,T )

at time zero of this European call option on the stock (with dividend yield q) is

given by

C(K,T ) = C = exp(−qt)S0N(d1)−K exp(−rT )N(d2), (2.7)

where

d1 =
ln(S0/K) + (r − q + 1

2
σ2)T

σ
√
T

,

d2 =
ln(S0/K) + (r − q − 1

2
σ2)T

σ
√
T

= d1 − σ
√
T ,

and N(x) is the cumulative distribution function for a variable that is standard

Normally distributed.

From (2.7) via put-call parity we can easily obtain the price P (K,T ) of the

European put option on the same stock with same strike K and same maturity T :

P (K,T ) = P = − exp(−qt)S0N(−d1) +K exp(−rT )N(−d2).
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For the call, the probability (under Q) of finishing in the money corresponds

to N(d2). Similarly, the delta1 of the option corresponds to N(d1).

The Black-Scholes model has turned out to be very popular. One should bear

in mind, however, that this elegant theory hinges on several crucial assumptions.

We assumed that there was no market friction, such as taxes and transaction costs,

and that there were no constraints on the stock holding, etc.

Moreover, empirical evidence suggests that the classical Black-Scholes model

does not describe the statistical properties of financial time series very well. The

two main problems are:

1. The log returns do not behave according to a Normal distribution. Instead,

the analysis of univariate time series data on financial market asset returns has

confirmed their long-tailedness relative to the normal distribution. Analysis of

such returns using data on option prices confirms this phenomenon on a risk

neutral basis, with the addition now of a marked negative skewness as well.

2. It has been observed that the volatilities or the estimated parameters of un-

certainty change stochastically over time and are clustered. Many researchers

have documented a negative relationship between market volatilities and the

level of asset prices.

1That is, the change in the value of the option compared with the change in the value of the

underlying asset.
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2.2 Lévy Processes

2.2.1 Introduction

One of the main problems with the Black-Scholes model is that the data sug-

gest that the log returns of stocks are not Normally distributed. This has led to an

increasing adoption of alternative processes for describing these returns. Looking

at the definition of Brownian motion, we would like to have a similar process (i.e.

a process with independent and stationary increments), based on a more general

distribution than the Normal. However, in order to define such a stochastic process

with independent and stationary increments, the distribution has to be infinitely di-

visible. Such processes are called Lévy processes, in honor of Paul Lévy, the pioneer

of the theory.

One of the first to propose an exponential non-normal Lévy process was Man-

delbrot (1963, [49]). He observed that the logarithm of relative price changes on

financial and commodities markets exhibit a long-tailed distribution. His conclu-

sion was that Brownian motion in exp(Bt) should be replaced by symmetric α-stable

Lévy motion with index α < 2. This yields a pure jump stock price process. Roughly

speaking, one may envisage this process as changing its values only by jumps. Nor-

mal distributions are α-stable distributions with α = 2, so Mandelbrot’s model

may be seen as a complement of the Osborne (1959, [54]) and Samuelson (1965,

[59]) models. A few years after Mandelbrot’s proposal, an exponential Lévy process

model with a non-stable distribution was proposed by Press (1967, [56]). His log

price process is a superposition of a Brownian motion and an independent com-
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pound Poisson process with normally distributed jumps. Again, the motivation was

to find a model that better fit the empirically observed distribution of changes in

the logarithm of stock prices. Examples of more complicated distributions, which

take into account skewness and excess kurtosis, are the Variance Gamma (VG), the

Normal Inverse Gaussian (NIG), the CGMY, the (Generalized) Hyperbolic Model

and the Meixner distributions.

A review of financial modeling with jump processes may be found in [17]. Now

let us begin to introduce Lévy processes.

2.2.2 Definitions and Theorems

Suppose φ(u) is the characteristic function of a distribution. If, for every

positive integer n, φ(u) is also the nth power of a characteristic function, we say

that the distribution is infinitely divisible.

Let Xt = (X(t), t ≥ 0) be a stochastic process defined on a probability space

(Ω,F ,P). We say that it has independent increments if for each n ∈ N and each

0 ≤ t1 < t2 ≤ · · · < tn+1 <∞ the random variables (X(tj+1)−X(tj), 1 ≤ j ≤ n) are

independent and that it has stationary increments if each X(tj+1)−X(tj)
d
=X(tj+1−

tj)−X(0).

We can define for every such infinitely divisible distribution a stochastic pro-

cess, Xt = (X(t), t ≥ 0), called a Lévy process, which satisfies:

(L1) X(0) = 0 (a.s);

(L2) X has independent and stationary increments;
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(L3) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|X(t)−X(s)| > a) = 0,

such that the distribution of an increment over [s, s+t], s, t ≥ 0, i.e. X(t+s)−X(s)

has (φ(u))t as its characteristic function. Note that in the presence of (L1) and (L2),

(L3) is equivalent to the condition

lim
t↓0

P (|X(t)| > a) = 0

for all a > 0.

We are now going to explore the relationship between Lévy processes and

infinite divisibility.

Proposition 2.2.1. If X is a Lévy process, then X(t) is infinitely divisible for each

t ≥ 0.

Proof. For each n ∈ N, we can write

X(t) = Y
(n)
1 (t) + · · ·+ Y (n)

n (t),

where each

Y
(n)
k (t) = X

(
kt

n

)
−X

(
(k − 1)t

n

)
.

The Y
(n)
k (t) are i.i.d. by (L2).

By Proposition 2.2.1, we can write φX(t)(u) = eη(t,u) for each t ≥ 0, u ∈ Rd,

where each η(t, ·) is a Lévy symbol. We will see below that η(t, u) = tη(1, u) for

each t ≥ 0, u ∈ Rd, but first we need the following lemma.
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Lemma 2.2.2. If Xt = (X(t), t ≥ 0) is stochastically continuous, then the map

t→ φX(t)(u) is continuous for each u ∈ Rd.

Proof. For each s, t ≥ 0 with t 6= s, write X(s, t) = X(t)−X(s). Fix u ∈ Rd. Since

the map y → ei(u,y) is continuous at the origin, given any ε > 0 we can find δ1 > 0

such that

sup
0≤|y|<δ1

|ei(u,y) − 1| < ε

2
.

By stochastic continuity, we can find δ2 > 0 such that whenever 0 < |t − s| < δ2,

P (|X(s, t)| > δ1) <
ε
4
. Hence, for all 0 < |t− s| < δ2 we have

|φX(t)(u)− φX(s)(u)|

=

∣∣∣∣∫
Ω

ei(u,X(s)(ω))
[
ei(u,X(s,t)(ω)) − 1

]
P (dω)

∣∣∣∣
≤

∫
Rd

|ei(u,y) − 1|pX(s,t)(dy)

=

∫
Bδ1(0)

|ei(u,y) − 1|pX(s,t)(dy) +

∫
Bδ1(0)c

|ei(u,y) − 1|pX(s,t)(dy)

≤ sup
0≤|y|<δ1

|ei(u,y) − 1|+ 2P (|X(s, t)| > δ1)

< ε.

The result follows.

Theorem 2.2.3. If X is a Lévy process, then

φX(t)(u) = etη(u)

for each u ∈ Rd, t ≥ 0, where η is the Lévy symbol of X(1).

Proof. Suppose that X is a Lévy process and that, for each u ∈ Rd, t ≥ 0. Define
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φu(t) = φX(t)(u); then by (L2) we have for all s ≥ 0

φu(t+ s) = E(ei(u,X(t+s)))

= E(ei(u,X(t+s)−X(s))ei(u,X(s)))

= E(ei(u,X(t+s)−X(s)))E(ei(u,X(s)))

= φu(t)φu(s). (2.8)

Now φu(0) = 1 by (L1), and from (L3) and Lemma 2.2.2 we have that the map

t → φu(t) is continuous. However, the unique continuous solution to (2.8) and

initial condition φu(0) = 1 is given by φu(t) = etα(u), where α : Rd → C (see e.g.

Bingham et al. [6], pg. 4-6). Now by Proposition 2.2.1 X(1) is infinitely divisible,

hence α is a Lévy symbol and the result follows.

We now have the Lévy-Khinchine formula for a Lévy process Xt = (X(t), t ≥

0),

E(ei(u,X(t))) = exp

(
t

{
i(b, u)− 1

2
(u,Au)+

∫
Rd−{0}

[
ei(u,x)−1− i(u, x)χB̂(x)

]
ν(dx)

})
for each t ≥ 0, u ∈ Rd, where (b, A, ν) are the characteristics of X(1). In the one

dimensional case, Lévy symbol η(u) is

η(u) = iγu− 1

2
σ2u2 +

∫ +∞

−∞

[
eiux − 1− iuxχB̂(x)

]
ν(dx) (2.9)

where γ ∈ R, σ2 ≥ 0 and ν is a measure on R \ {0} with∫ +∞

−∞
inf{1, x2} ν(dx) =

∫ +∞

−∞
(1 ∧ x2) ν(dx) <∞.

This infinitely divisible distribution has a triplet of Lévy characteristics, or Lévy

triplet in short, (γ, σ2, ν(dx)), and the measure ν is called the Lévy measure of X.
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If the Lévy measure is of the form ν(dx) = u(x)dx, we call u(x) the Lévy density.

The Lévy density has the same mathematical requirement as a probability density,

except that it does not need to be integrable and must have zero mass at the origin.

From the Lévy-Khintchine formula, we see that in general, a Lévy process

consists of three independent parts: a linear deterministic part, a Brownian part

and a pure jump part. The Lévy measure ν(dx) dictates how the jumps occur.

Jumps of sizes in the set A occur according to a Poisson process with intensity

parameter
∫
A
ν(dx).

A subordinator is a nonnegative nondecreasing Lévy process. It is not hard to

see that as such a subordinator has no Brownian part (σ2=0), a nonnegative drift

and a Lévy measure which is zero on the negative half-line. Note that a subordinator

is nondecreasing and always of finite variation.

Let us now discuss more about the path properties of Lévy processes. If σ2 = 0

and
∫ +1

−1
|x|ν(dx) <∞, it follows from standard Lévy process theory that the process

is of finite variation. In that case the Lévy symbol can be re-expressed as

η(u) = iγ′u+

∫ +∞

−∞
(exp(iux)− 1)ν(dx)

for some γ′, which we call the drift coefficient. In the finite-variation case, we can

decompose the process into the difference of two increasing processes.

If σ2 = 0 and
∫ +1

−1
ν(dx) < ∞, there are finitely many jumps in any finite

interval. We say that the process is of finite activity.

Because the Brownian motion is of infinite variation, a Lévy process with

a Brownian component is of infinite variation. A pure jump Lévy process, i.e.
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one with no Brownian component (σ2 = 0), is of infinite variation if and only if∫ +1

−1
|x|ν(dx) = ∞. In that case special attention has to be paid to the small jumps.

Basically, the sum of all jumps smaller than some ε > 0 does not converge. However,

the sum of the jumps compensated by their mean does converge. This peculiarity

leads to the necessity of the compensator term iuxχB̂(x) in (2.9).

There are many examples of Lévy processes and many of them are popular as

building blocks of stock price models. A list of Lévy processes together with their

density functions, their characteristic functions and their Lévy triplets and other

important properties can be found in [62]. We now turn our focus to an example

of pure jump Lévy processes, CGMY processes, that we use later as the underlying

Lévy processes when constructing our stock price model.

2.2.3 The CGMY Process

In order to obtain a more flexible process than the Variance Gamma (VG)

process, one allowing finite activity, infinite activity and infinite variation, the ad-

ditional parameter Y was introduced by Carr, Madan, Geman and Yor in 2002

([11]).

The CGMY(C,G,M, Y ) distribution is a four-parameter distribution, with

characteristic function

φCGMY (u;C,G,M, Y ) = exp(CΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY )).

The CGMY distribution is infinitely divisible and we can define the CGMY Lévy
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process

X
(CGMY )
t = (X(t)(CGMY ), t ≥ 0)

as the process which starts at zero with independent and stationary increments

and whose increment over a time interval of length s follows a CGMY(sC,G,M, Y )

distribution; in other words, the characteristic function of X
(CGMY )
t is given by

E[exp(iuX
(CGMY )
t )] = φCGMY (u; tC,G,M, Y )

= (φCGMY (u;C,G,M, Y ))t

= exp(CtΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY )).

The Lévy measure for the CGMY process is give by

νCGMY (dx) =


C exp(Gx)(−x)−1−Y dx, x < 0,

C exp(−Mx)x−1−Y dx, x > 0.

The first parameter of the Lévy triplet equals

γ = C

(∫ 1

0

exp(−Mx)x−Y dx−
∫ 0

−1

exp(Gx)|x|−Y dx
)
.

The range of the parameters is restricted to C,G,M > 0 and Y < 2. Choosing the

Y parameters greater than or equal to two does not yield a valid Lévy measure.

The CGMY process is a pure jump process, that is, it contains no Brownian

part. The path behavior is determined by the Y parameters. If Y < 0, the paths

have finite jumps in any finite interval; if not, the paths have infinitely many jumps

in any finite time interval, i.e. the process has infinite activity. Moreover, if the Y

parameters lie in the interval [1, 2), the process is of infinite variation.
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The Variance Gamma distribution (process) is a special case of the CGMY

distribution (process). When Y = 0, the CGMY reduces to VG.

2.3 Semigroups and Their Generators

There are many good books on semigroup theory and we have followed Davies

[21] very closely. Let B be a real Banach space and L(B) be the algebra of all

bounded linear operators on B. A one-parameter semigroup of contractions on B is

a family of bounded, linear operators (Tt, t ≥ 0) on B for which

(1) Ts+t = TsTt for all s, t ≥ 0,

(2) T0 = I,

(3) ||Tt|| ≤ 1 for all t ≥ 0,

(4) the map t→ Tt from R+ to L(B) is strongly continuous at zero, i.e. limt↓0 ||Ttψ−

ψ|| = 0 for all ψ ∈ B.

From now on we will say that (Tt, t ≥ 0) is a semigroup whenever it satisfies the

above conditions.

In the context of Markov process, we associate each Markov process X a family

of operators (Tt, t ≥ 0) on B by the prescription

(Ttf)(x) = E(f(X(t))|X(0) = x)

for each t ≥ 0, f ∈ B, x ∈ R. If X admits transition probabilities ps,t defined as

ps,t(x,A) = (Ts,tχA)(x) = P (X(t) ∈ A|X(s) = x), (2.10)
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we then have

(Ttf)(x) =

∫
R
f(y)p0,t(x, dy),

for each t ≥ 0, f
∫
B, x ∈ R.

Now let (Tt, t ≥ 0) be an arbitrary semigroup in a Banach space B. We define

DA =

{
ψ ∈ B;∃φψ ∈ B such that lim

t↓0

∥∥∥∥Ttψ − ψ

t
− φψ

∥∥∥∥ = 0

}
.

It is easy to verify that DA is a linear space and thus we may define a linear operator

A in B, with domain DA, by the prescription

Aψ = φψ,

so that, for each ψ ∈ DA,

Aψ = lim
t↓0

Ttψ − ψ

t
.

We call A the infinitesimal generator, or sometimes just the generator, of the semi-

group (Tt, t ≥ 0). In the case where (Tt, t ≥ 0) is the Feller semigroup associated

with a Feller process Xt = (X(t), t ≥ 0), we sometimes call A the generator of

X. Before we focus on the semigroups and their generators for Lévy processes, we

review some important technical results about semigroups and their generators in

the general framework.

Lemma 2.3.1. ψ(t) ∈ DA for each t ≥ 0, ψ ∈ B and

Aψ(t) = Ttψ − ψ.
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Proof. Apply the continuity of Ts together with the semigroup condition (1) to write

Tsψ(t) =

∫ t

0

Ts+uψ du.

Using this and the fundamental theorem of calculus, the fact that T0 = I and a

standard change of variable, we find for each t ≥ 0,

lim
h↓0

1

h
[Thψ(t)− ψ(t)] = lim

h↓0

(
1

h

∫ t

0

Th+uψ du−
1

h

∫ t

0

Tuψ du

)
= lim

h↓0

(
1

h

∫ t+h

h

Tuψ du−
1

h

∫ t

0

Tuψ du

)
= lim

h↓0

(
1

h

∫ t+h

t

Tuψ du−
1

h

∫ h

0

Tuψ du

)
= Ttψ − ψ,

and the required result follows.

Theorem 2.3.2.

(1) DA is dense in B.

(2) TtDA ⊆ DA for each t ≥ 0.

(3) TtAψ = ATtψ for each t ≥ 0, ψ ∈ DA.

Proof. (1) By Lemma 2.3.1, ψ(t) ∈ DA for each t ≥ 0, ψ ∈ B, but by the funda-

mental theorem of calculus, limt↓0(ψ(t)/t) = ψ; hence DA is dense in B as required.

For (2) and (3), suppose that ψ ∈ DA and t ≥ 0; then, by the definition of A and

the continuity of Tt, we have

ATtψ =

[
lim
h↓0

1

h
(Th − I)

]
Ttψ = lim

h↓0

1

h
(Tt+h − Tt)ψ

= Tt

[
lim
h↓0

1

h
(Th − I)

]
ψ = TtAψ.
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The strong derivative in B of the mapping t → Ttψ, where ψ ∈ DA, is given

by

d

dt
Ttψ = lim

h↓0

Tt+hψ − Ttψ

h
.

From the proof of Theorem 2.3.2, we deduce that

d

dt
Ttψ = ATtψ.

More generally, it can be shown that t→ Ttψ is the unique solution of the following

initial-value problem in Banach space:

d

dt
u(t) = Au(t), u(0) = ψ;

see e.g. Davies [21], pg. 5. This justifies the notation Tt = etA.

We now can investigate the application of the analytical concepts of semigroups

and their generators to Lévy processes. To begin, we introduce a Lévy process

Xt = (X(t), t ≥ 0) that is adapted to a given filtration (Ft, t ≥ 0) in a probability

space (Ω,F ,P). The mapping η is the Lévy symbol of X, so that

E(eiuX(t)) = etη(u) (2.11)

for all u ∈ R. We know that η is a continuous, hermitian, conditionally positive

mapping from R to C that satisfies η(0) = 0 and whose precise form is given by the

Lévy-Khintchine formula. For each t ≥ 0, qt will denote the law of X(t). Since every

Lévy process is a Feller process ( see proof in e.g. [3] pg. 126-127) and if (Tt, t ≥ 0)

is the associated Feller semigroup then

31



(Ttf)(x) =

∫
R
f(x+ y)qt(dy) (2.12)

for each f ∈ Bb(R), x ∈ R, t ≥ 0, i.e.

(Ttf)(x) = E(f(X(t) + x)).

This is not hard to see since by definition Ttf(x) = E(f(X(t))|X(0) = x) =∫
f(y)p0,t(x, dy), where ps,t(x,A) are transition probabilities defined as

ps,t(x,A) = (Ts,tχA)(x) = P (X(t) ∈ A|X(s) = x),

and moreover, Lévy process X admits the relation

ps,t(x,A) = qt−s(A− x),

for each 0 ≤ 0 < t <∞,

We now turn our attention to the infinitesimal generators of Lévy processes.

The next theorem is of great importance in the analytic study of Lévy processes

and of their generalizations. Let f be in the Schwartz space of rapidly decreasing

functions S(Rd). We recall that f has its Fourier transform f̂ ∈ S(Rd,C), where

f̂(u) = (2π)−d/2
∫

Rd

e−i(u,x)f(x) dx

for all u ∈ Rd, and the Fourier inversion formula yields

f(x) = (2π)−d/2
∫

Rd

ei(u,x)f̂(u) du

for each x ∈ Rd.
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Theorem 2.3.3. Let X be a Lévy process with Lévy symbol η and characteristics

(b, a, ν). Let (Tt, t ≥ 0) be the associated Feller semigroup and A be its infinitesimal

generator.

(1) For each t ≥ 0, f ∈ S(Rd), x ∈ Rd,

(Ttf)(x) = (2π)−d/2
∫

Rd

ei(u,x)etη(u)f̂(u) du,

so that Tt is a pseudo-differential operator with symbol etη.

(2) For each f ∈ S(Rd), x ∈ Rd,

(Af)(x) = (2π)−d/2
∫

Rd

ei(u,x)η(u)f̂(u) du,

so that A is a pseudo-differential operator with symbol η.

(3) For each f ∈ S(Rd), x ∈ Rd,

(Af)(x) = bi∂if(x)+
1

2
aij∂i∂jf(x)+

∫
Rd−{0}

[f(x+ y)− f(x)− yi∂if(x)χB̂(y)]ν(dy).

(2.13)

Proof of this theorem can be found in [3] pg. 139-140.

As finishing this chapter, we shall emphasize that the knowledge of Lévy pro-

cesses is very rich and their applications in many areas has drawn more and more

attention in to the study of Lévy processes. Our study here in this chapter has

only focused on the aspects of Lévy processes which matter to this thesis the most.

The next chapter will be dedicated to the study of semi-stable stochastic processes

and will eventually lead us to the important relation between semi-stable Markov

processes and Lévy processes, established by Lamperti ([45]).
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Chapter 3

SEMI-STABLE MARKOV PROCESSES

A classical result, due to John Lamperti, establishes a one-to-one correspon-

dence between a class of strictly positive Markov processes that are semi-stable,

and the class of one-dimensional Lévy processes. This correspondence is obtained

by suitably time-changing the exponential of the Lévy process. This relation also

makes our attempt to “leverage” the Lévy processes become possible as in Chapter

4 we show that our stock model constructed by time change the Lévy process can

in fact be expressed as some semi-stable Markov process raised to a power.

In this chapter Lamperti’s 1962 and 1972 papers ([44], [45]) are studied. We

first introduce the definitions and properties of the class of semi-stable processes.

Then we focus on the study of Markov processes which are semi-stable. The bijection

between exponentials of Lévy processes and semi-stable Markov processes will be

stated as the main theorem in Section 3.2.2. We also include an introduction of

Bessel squared processes since the family of Bessel squared processes is the only

family of continuous semi-stable Markov processes. Because of this special role of

Bessel squared processes, they are exclusively included in the construction of our

diffusion model of leveraged Lévy in Chapter 5.

34



3.1 Semi-Stable Stochastic Processes

An interesting chapter in modern probability theory began with the search for

all the possible limit distributions for sums of independent, identically-distributed

random variables. The result, the theory of the stable laws, generalizes and illu-

minates the original examples of normal convergence with which the problem origi-

nated. In [44], John Lamperti formalized and studied an analogous situation in the

theory of stochastic processes. It is natural to raise the following question: Which

processes can similarly occur as limits upon subjecting a fixed stochastic process

to infinite contractions of its time and space scales? It is essentially this class of

processes which Lamperti terms semi-stable. The name is intended to suggest the

analogy with the theory of stable laws, and in fact is rendered more appropriate by

the fact that a semi-stable process, if it is assumed to have independent increments,

must actually be a stable one.

3.1.1 Definitions and Theorems

All the processes considered in this section have states in Euclidean space of

s dimensions, non-negative time parameter, and are continuous, i.e.

lim
h→0

P (‖xt+h − xt‖ > ε) = 0 (3.1)

for every t ≥ 0, ε > 0. We shall speak of a proper process if xt has a non-degenerate

distribution for every t > 0.

Definition 3.1.1. Two processes {xt} and {yt} belong to the same type (denoted
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{xt} ∼ {yt}) if there exist constants b, c, respectively a positive number and an

s-vector, such that {xt} ≈ {byt+ c} (this indicates {xt} and {byt+ c} have the same

state space and finite-dimensional distribution functions).

It is easily verified that this is an equivalence relation, and that the Markov

property, stationary transition probabilities, and the continuity condition (3.1) hold

either for all processes of a given type or for none.

Definition 3.1.2. A process {xt} is semi-stable if it obeys the condition (3.1) and

if for every a > 0, {xat} ∼ {xt}.

The semi-stable property can be rephrased by saying there exist functions

b(a) with positive real values, and c(a) with values in Rs, such that for every a > 0,

{xat} and {b(a)xt + c(a)} are the same process. This property also holds for all or

none of the members of a give type, so that one can speak of a semi-stable type of

processes. The first theorem which we state without proof (proof can be found in

[44]), illuminates these notions somewhat.

Theorem 3.1.1. If {xt} is a proper semi-stable process, then

b(a) = aα for some α ≥ 0. (3.2)

If α 6= 0, the distribution of x0 is concentrated at a point ω and

c(a) = ω(1− aα). (3.3)

If α = 0, then c(a) ≡ 0 and the process is trivial in the sense that xt = x0 a.s. for

each t.
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Remark 3.1.1. The constant α is easily seen to be the same for all processes of the

same type; we accordingly can and will speak of a semi-stable process or type of

order α. We observe that each nontrivial semi-stable type of order α contains a

process with x0 = 0 and such that {xat} ≈ {aαxt}. Thus in trying to find or classify

semi-stable processes these assumptions may be imposed without loss of generality.

Remark 3.1.2. It is also easy to establish a one-to-one correspondence between the

processes of one order and those of another; in fact, if {xt} is semi-stable of order

α > 0, and x0 = 0, then the process {yt} defined by

yt = ‖xt‖β/α−1xt (3.4)

is semi-stable of order β > 0.

Proof.

{yat}≈{‖xat‖β/α−1xat}

≈{aβ−α‖xt‖β/α−1aαxt}

≈{aβ‖xt‖β/α−1xt}

≈{aβyt}.

(3.5)

The point of all this is that the semi-stable processes defined above are the

only processes which can result from certain limiting operations. Let {Xt} be a

discrete or continuous time, s-dimensional stochastic process. We next assume that

there exist real and vector valued functions 0 < f(ξ) ↗ ∞, g(ξ) and a proper
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s-dimensional process {xt} satisfying assumption (3.1) such that

lim
ξ→∞

{Xξt + g(ξ)

f(ξ)

}
= {xt} (3.6)

in the sense of convergence of finite-dimensional joint distributions, i.e.,

lim
ξ→∞

P
(Xξt1 + g(ξ)

f(ξ)
≤ x1, . . . ,

Xξtn + g(ξ)

f(ξ)
≤ xn

)
= P (xt1 ≤ x1, . . . , xtn ≤ xn)

(3.7)

The main result of [44] (see proof of this theorem in pg.71-73, [44]), is contained

in Theorem 3.1.2.

Theorem 3.1.2. If (3.6) holds, then process {xt} is semi-stable, and

f(ξ) = ξαL(ξ), g(ξ) = ω(ξ)ξαL(ξ) (3.8)

where α > 0, L(ξ) is a slowly varying function1 , and the vector valued function

ω(ξ) has a limit ω as ξ →∞. The order of {xt} is then α, and x0 = ω. Conversely,

every semi-stable process of positive order is such a limit for some process {Xt}.

Remark 3.1.3. It is obvious that every semi-stable process arises as a limit of this

sort. (The process {Xt} may be chosen to be {xt} itself.) In other words, the

semi-stable processes form exactly the class of possible “asymptotes” which can be

obtained by taking some fixed random process and expanding indefinitely the unites

in which space and time are measured. This is the basic reason, why such processes

play a very large role in many aspects of probability theory and its applications.

1That is, L(ξ) is positive and satisfies L(cξ)/L(ξ) → 1 as ξ →∞ for any c > 0.

38



Remark 3.1.4. If {yτ} is a strictly stationary process, −∞ < τ <∞, continuous in

the sense (3.1), and if for some α > 0

xt = tαyln t for t > 0, x0 = 0, (3.9)

then {xt} is semi-stable of order α. Conversely, every nontrivial semi-stable process

with x0 = 0 is obtained in this way from some stationary process {yτ}.

The proof simply consists of noticing that if {yτ} is stationary, then

{xat} ≈ {aαtαyln t+ln a} ≈ {aαtαyln t} ≈ {aαxt},

while if {xat} ≈ {aαxt}, then

{yτ+σ} ≈ {e−ατe−ασxeτ eσ} ≈ {e−ατxeτ} ≈ {yτ},

which in short proves: if {xt} is semi-stable of order α > 0, then {yτ = e−ατxeτ} is

strictly stationary.

One instance of (3.9) has been used by Doob to deduce properties of the

(stationary) Ornstein-Uhlenbeck velocity process from those of the Wiener process.

The most interesting class of semi-stable processes is the class of Markov pro-

cesses with stationary transition probabilities. The correspondence (3.9) does pre-

serve the Markov property but not stationarity. In the example of Doob mentioned

above, for instance, only α = 1/2 gives and {xt} with stationary transition proba-

bilities, although {xt} is semi-stable and Markov for all values of α > 0. Section 3.2

will discuss semi-stable Markov processes in more detail.
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3.1.2 Examples of Semi-Stable Processes

Example 1. Independent increments.

A remark about terminology is first called for. In [46], P. Lévy defines a

stable distribution function as one such that if X1 and X2 are independent random

variables with the given distribution, then for every a1 > 0, a2 > 0 there exists

a3 > 0 satisfying

a1X1 + a2X2 = a3X3, (3.10)

where X3 again has the given distribution. Lévy calls the distribution quasi-stable

if (3.10) holds with a constant (depending on a1 and a2) added to the right-hand

side. This distribution is not usually maintained today, and all of these laws are

simply called stable. However, we will now show that a process {xt} with stationary

independent increments and with x0 = 0 is semi-stable if and only if the increments

have distributions which are stable in P. Lévy’s sense. If the stable distribution is

of index γ, the order of {xt} is 1/γ.

To prove this, notice that if the process is semi-stable of order α and x0 = 0,

then

φt(λ) = E(ei(λ,xt)) = E(eit
α(λ,x1)) = φ1(t

αλ).

Since it also has stationary independent increments, we find that

φ1(t
αλ)φ1(s

αλ) = φt(λ)φs(λ) = φt+s(λ) = φ1[(t+ s)αλ].

This, if α 6= 0, implies that the distribution of x1 (and so of all increments) satisfies
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(3.10) and so is stable in Lévy’s sense. The case α = 0 is trivial, for all increments

are then 0 by Theorem 3.1.1.

In one dimension the general form of a characteristic function which is stable

of index γ in the sense of (3.10) is as follows:

lnφ(t) =

{ −B|λ|γ
(
1 + sgn(λ)iC tan πγ

2

)
, 0 < γ < 2, γ 6= 1,

−B|λ|+ iAλ, γ = 1,

−Bλ2, γ = 2.

It is easily checked that each of these laws lead to an additive process which

is semi-stable of order 1/γ, proving the converse part of the above statement when

s = 1. The same approach of direct verification, coupled with knowledge of the

form of a stable law in several dimensions [46], suffices also for the multidimensional

cases.

Remark 3.1.5. s-dimensional Brownian motion is semi-stable of order 1/2, and more

generally any direct product of semi-stable processes of order α is itself semi-stable

of order α.

Example 2. Zeros of a semi-stable process.

Suppose that {xt} is a measurable strong Markov process with x0 = 0, and

define

yt = t− sup
{
τ
∣∣τ ≤ t, xτ = 0

}
. (3.11)

Then {yt} is a Markov process whose paths consist of a collection of straight-line

segments of slope 1 with left ends on the t-axis, plus the remaining points of the
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axis itself. It is very easy to see that if {xt} is semi-stable of any order, {yt} is

semi-stable of order one.

3.2 Semi-Stable Markov Processes

As introduced in 3.1, a real valued stochastic process {xt}, continuous in prob-

ability and with x0 = 0, is called semi-stable if there is a constant α > 0 (called

the order of the process) such that for every α > 0 the random functions {xat} and

{aαxt} have the same joint distributions. If {xt} is Markovian with the stationary

transition function Pt(x,E), it is obvious that this condition holds provided that

x0 = 0 and that

Pat(x,E) = Pt(a
−αx, a−αE) (3.12)

for all a > 0, t > 0, x ∈ R, and all measurable sets E. Markov processes whose

transition probabilities satisfy (3.12), and which fulfill certain regularity conditions

stated in [45] section 2, are the object of study in the rest of this chapter.

3.2.1 General Preliminaries

Definition 3.2.1. A function Pt(x,E) is a semi-stable transition function provided

that (i) it is a conservative Markov transition function in the sense of ([26], pg. 47)

with respect to the state space (R+,B+) consisting of [0,∞] and its Borel subsets;

that (ii) the semi-stable condition

Pat(x,E) = Pt(a
−αx, a−αE) (3.13)
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holds for some α > 0, all a > 0, t > 0, x ∈ R+, E ∈ B+; and that (iii) Pt is uniformly

stochastically continuous in some neighborhood of x = 0. The constant α is called

the order of the function (or associated process).

Associated with such a transition function is the semi-group of operators {Qt}

defined by

Qtf(x) =

∫ ∞

0

Pt(x, dy)f(y) (3.14)

for any bounded, measurable function f . For properties and facts about the semi-

stable transition function, please refer to ([45], pg. 208-210).

Definition 3.2.2. A semi-stable Markov process (SSMP) is a strong Markov process

with right-continuous paths having no discontinuities except jumps, whose transition

probabilities are give by a semi-stable transition function.

For the rest of this chapter, {xt} will always denote a Markov process with a

semi-stable transition function and with the “nice paths”2 guaranteed by Lemma 2.3

in [45]. We denote the space of right-continuous functions with left limits everywhere

by Ω; the Borel field generated by the cylinder sets by F ; and the probability

measures of the process {xt}, with x0 = x, by Px. Let us now define the first

passage time for the process {xt}

ξ = inf{t > 0 : xt = 0 or xt− = 0}; (3.15)

it is quite possible that ξ = ∞. If {xt} is strong Markov and so quasi-left continuous,

2That is, paths that are almost surely right-continuous for all t and have no discontinuities

other than jumps, and if {xt} is strong Markov, its paths are also quasi-continuous from the left.
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then xt− = 0 implies xt = 0, but this might not hold in general. In any event, as we

have defined ξ the events {ξ > t} belong to the Borel field F , and so the law of ξ is

determined by the transition function Pt. Now we prove a fact used often later:

Lemma 3.2.1. Either Px(ξ <∞) = 1 for all x > 0, or else Px(ξ <∞) = 0 for all

x > 0.

Proof. The set F = {xt : ∃τ ∈ (0,∞) such that xτ = 0 or xτ− = 0} belongs to F .

Also F has the property that xt ∈ F implies a−αxat ∈ F for all a > 0. Then Px(F )

is independent of x, x > 0. We prove this assertion briefly before moving on. Since

from the semi-stable condition (3.13), it is very easy to see that

Px(F ) = Paαx(
{
x(·) : a−αxat ∈ F

}
) (3.16)

for any cylinder set F . Then by the uniqueness of the extension of measure to F ,

(3.16) must also hold for all sets F ∈ F . But if F satisfies the property that xt ∈ F

implies a−αxat ∈ F for all a > 0, the right side of (3.16) equal Paαx(F ). Since a > 0

is arbitrary, then we have that Px(F ) is independent of x, x > 0.

Now, set Px(F ) = p. For any t > 0

Px(t < ξ <∞) = Ex(χ{t<ξ}Px(xτ = 0 or xτ− = 0 for some τ ∈ (t,∞)|Ft)) (3.17)

where χA is the indicator function of A and Ft is the subfield of F generated by

{xs; s ≤ t}. However, by the (simple) Markov property, with probability one (Px)

we have (when xt > 0)

Px(xτ = 0 or xτ− = 0 for some τ ∈ (t,∞)|Ft) = Pxt(ξ <∞) = p, (3.18)
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and so for all t

Px(t < ξ <∞) = pPx(t < ξ). (3.19)

But then

p = Px(ξ ≤ t) + Px(t < ξ <∞) = Px(ξ ≤ t) + pPx(t < ξ) (3.20)

so that (1 − p)Px(ξ ≤ t) = 0. Thus, unless p = 1, we have Px(ξ ≤ t) = 0 for all

x > 0 and all t so that there is a.s. no zero; this proves the lemma.

Now, we define

φτ (ω) =

∫ τ

0

xs(ω)−1/α ds, (3.21)

which is obviously a continuous and strictly increasing function of τ as long as τ < ξ.

In view of the quasi-left continuity of {xt}, we now can use the simpler definition

ξ = min{t : xt = 0}.

Let T (t) be the inverse function to φ, or in other words, define the random

variables T (t) = T (t, ω) as the (unique) solutions of the equation

t =

∫ T

0

xs(ω)−1/α ds = φT , (3.22)

which exist when t < φξ−. We assume x0 = x > 0, so that ξ > 0 a.s. Next, we

define

yt(ω) = xT (t,ω)(ω), (3.23)

provided t < φξ−, and yt is not defined otherwise. According to a theorem first

published by Volkonski ([26], Chapter 10) the random variables {yt} constitute a

new strong Markov process whose paths again have the properties that they are
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right continuous and have no discontinuity other than jumps. We also note that

yt > 0 as long as it is defined, so that we can set zt = ln yt; clearly {zt} will be a

strong Markov process on (−∞,∞) with nice paths.

3.2.2 The Theorem

The following theorem relates semi-stable Markov processes to the well studied

Lévy processes and is truly the heart of 1972 paper [45]. More importantly, it is

this theorem that makes the idea of leveraging Lévy processes possible, which is

the main focus of this thesis. Because the proof involves many other theorems and

lemmas, we state the theorem without proof. The proof of this theorem can be

found in [45] pg. 215-218.

Theorem 3.2.2. The process zt = ln xT (t) has stationary independent increments.

The lifetime of {zt} is a.s. infinite either if {xt} does not reach 0, or if it does

so by continuous approach. If {xt} jumps to 0, then {zt} may be considered to be

an additive process with infinite lifetime which has been killed by an exponentially

distributed random variable independent of the process.

We make a couple of remarks to emphasize the equations that relate semi-

stable Markov processes (SSMP) to Lévy processes (or vise versa).

Remark 3.2.1. Writing xt (SSMP of order α) and zt (Lévy) together in one equation

is simply

ezt = x

(∫ t

0

(ezs)
1
α ds

)
. (3.24)

Here, please forgive the change in notation from xt to x(t), for the sake of clarity.
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To see why (3.24) is true, remember

ezt = yt := xT (t), (3.25)

and T (t) is the inverse function to φτ =
∫ τ

0
xs

−1/α ds and is the unique solution to

equation (3.22). Differentiating both sides of (3.22), we get

dt = x
−1/α
T (t) dT (t), (3.26)

therefor

dT (t) = x
1/α
T (t)dt, (3.27)

hence,

T (t) =

∫ t

0

x
1/α
T (s) ds. (3.28)

Thus (3.25) then gives the relation

ezt = x

(∫ t

0

x
1/α
T (s)) ds

)
= x

(∫ t

0

(ezs)
1
α ds

)
.

Remark 3.2.2. Consider the case when the order α is one, and change notations to

ξt as the Lévy process; L
(ξt)
t as SSMP (or Lamperti processes consistent with later

use in Chapter 4), termed as the Lamperti associated with the Lévy. We have the

so-called Lamperti Representation of equation (3.24) as

eξt = L(ξt)

(∫ t

0

eξs ds

)
. (3.29)

Remark 3.2.3. In the paper by Jacobsen and Yor (2002, [39]), the concept of self-

similar processes, together with the Lamperti Representation has been generalized

to processes in n dimensions.
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Remark 3.2.4. Suppose eξt = L(At), At =
∫ t

0
eξ(s)ds =

∫ t
0
L(A(s))ds, and denote

L the IG of ξt, and L the IG of Lt, we have the relation between infinitesimal

generators:

Lf(l) =
1

l
L(f ◦ exp)(ln l)

Lf(ξ) = eξL(f ◦ ln)(eξ).

Proof. Suppose Yt = L(A(t)) = eξt , and let B be the generator of {Yt}. It’s easy

to see that a function f on (0,∞) is in the domain of B iff g(ξ) = f(eξ) is in the

domain of L, and that then Bf(eξ) = Lg(ξ). Also notice that B = lL (obtained by

random time substitution), so

lLf(eξ) = Bf(eξ) = Lg(ξ)

Lf(l) =
1

l
L(f ◦ exp)(ln l)

The proof of the second equation similarly follows. With these relations, we

can go back and forth between Lévy and Lamperti. The next two sections discuss

this in more detail.

3.2.3 The Diffusion Case

We assume that the semi-stable process {xt} has (a.s.) trajectories which are

continuous for all t. According to Theorem 3.2.2, the process {zt} has independent

increments; it cannot have finite lifetime since {xt} does not jump to 0. Since {xt}
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has continuous paths, so does {zt}; it follows that {zt} can be nothing other than

Brownian motion, possibly degenerate and possibly with a constant drift super-

imposed. In the degenerate case, {zt} is the deterministic motion zt = bt + z0. It

is not hard to reverse the transformations embodied in Theorem 3.2.2 in this case.

Specifically

φ(t) =

∫ t

0

x(s)−1/α ds

and zφ(t) = ln xT (φ(t)) = ln xt, so then

zφ(t) = b

∫ t

0

x(s)−1/α ds+ z0 = ln xt,

or ∫ t

0

x(s)−1/α ds =
1

b
(lnxt − z0),

and the result is

xt =

(
x0

1/α +
bt

α

)α
as long as xt > 0, where α > 0 is the order of the process and x0 = ez0 > 0. In

case b < 0, after reaching 0 the process can only be continued by sticking at 0 if

path continuity is to be maintained. When b > 0 and x0 = 0, either xt ≡ 0 or

xt = (bt/α)α are possible choices for completing the definition of {xt}.

The description of {xt} in all other cases is stated in the following theorem:

Theorem 3.2.3. Any non-degenerate semi-stable Markov process on R+ with (a.s.)
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continuous paths has a generator of the form

Af(x) = bx1−1/αf ′(x) + dx2−1/αf ′′(x), x > 0 (3.30)

where d > 0 and b are constants.

Proof. For the process {xt} considered here the corresponding additive process {zt}

must be simply a Wiener process with a constant drift. Thus the generator C of

{zt} is a differential operator with constant coefficients

Cg(z) = cg′(z) + dg′′(z), (3.31)

d > 0 since the deterministic case is now excluded.

Let us now return to (0,∞) via the transformation yt = exp(zt), and let

B denote the generator of {yt}. It is easy to see that a function f on (0,∞) is

in the domain of B if and only if g(z) = f(ez) is in the domain of C, so that

Bf(ez) = Cg(z). We change the variable by letting ez = x, which implies that

g′(z) = f ′(ez)ez = f ′(x)x

and

g′′(z) = f ′′(ez)e2z + f ′(ez)ez = f ′′(x)x2 + f ′(x)x.

Thus

Bf(x) = Bf(ez) = Cg(z)

= cg′(z) + dg′′(z)

= cf ′(x)x+ d(f ′′(x)x2 + f ′(x)x)

= (c+ d)xf ′(x) + dx2f ′′(x).
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Eventually, we come back to {xt}. Since the relation B = x1/αA holds between

the generator A of {xt} and that of the process {yt} obtained by random time

substitution, (3.30) follows at once with b := c+ d.

3.2.4 The generator of a SSMP

Let us now generalize Theorem 3.2.3 to obtain a formula for the generator of

any SSMP on R+ when x > 0. Let {xt} be an SSMP of order α, and let {zt} be

that additive process which corresponds to {xt} according to Theorem 3.2.2. By

the theorem of Lévy and Khintchine, we have

E(eiλ(zt−z0)) = exp

{
iµtλ+ t

∫ ∞

−∞

(
eiλy − 1− iλy

1 + y2

)
1 + y2

y2
dG(y)

}
, (3.32)

where dG is a finite measure uniquely determined by {zt}. According to a theorem

due to Ito and Neveu (see [48], pg. 628-630), the generator C of {zt} has the form

Cg(z) = µg′(z) +

∫ ∞

−∞
h(z, y) dG(y), (3.33)

where

h(z, y) =

{ [
g(z + y)− g(z)− y

1+y2
g′(z)

]
1+y2

y2
for y 6= 0;

g′′(z)/2 for y = 0.

(3.34)

The domain of C contains at least all functions g such that g, g′ and g′′ are

continuous on [−∞,∞].
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Theorem 3.2.4. Let {xt} be a SSMP of order α, whose corresponding additive

process {zt} satisfies (3.32). Then the characteristic operator of {xt} has for x > 0

the form

Af(x) = µx1−1/αf ′(x) + x−1/α

∫ ∞

0

h∗(x, u) dG∗(u)− βx−1/αf(x), (3.35)

where G∗(u) = G(lnu) and

h∗(x, u) =

{ [
f(xu)− f(x)− lnu

1+(lnu)2
xf ′(x)

]1+(lnu)2

lnu2 for u 6= 1;

x2f ′′(x)/2 for u = 1.

(3.36)

Formula (3.35) holds at least for all f such that f , xf ′ and x2f ′′ are continuous

on [0,∞], and uniquely determines the process {xt} for all t < ξ. Conversely, give

{xt}, µ, G∗ and β are determined.

Proof. Formulas (3.35) and (3.36) follow formally from (3.33) and (3.34) in ex-

actly the same way that (3.30) was derived from (3.31); indeed, the latter is a

special case. Since g ∈ DC when g, g′, g′′ are continuous on [−∞,∞], we find that

f(x) = g(lnx) ∈ DB (B being the generator of {yt} = {ezt}) when f , xf ′ and x2f ′′

are continuous on [0,∞]. For at least these functions, therefore, the characteristic

operator of {xt} is given by A = x−1/αB. But the formula for Bf is obtained from

(3.33) and (3.34) by a change of variable; combining the result with A = x−1/αB

leads to (3.35) and (3.36).
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3.2.5 Bessel Squared Processes

Bessel processes possess two major features: first, besides the Ornstein-Uhlenbeck

processes, they are essentially the only diffusion processes in addition to Brownian

motion (with drift), for which a relatively simple expression for the transition prob-

ability is known; second, they appear naturally in a number of interesting problems

in finance and insurance. For instance, hypergeometric functions, which are related

to Bessel processes, are used for the pricing of options on zero coupon bonds in

the Cox-Ingersoll-Ross general equilibrium model of interest rates. Another key

point is that the standard hypothesis in most financial papers assumes stock price

dynamics driven by the exponential of a Brownian motion with drift, which is in

turn the square of a time-changed Bessel process. Especially, this reminds us that

Bessel squared processes, BESQ, plays one of the two roles of the bijection between

exponentials of Lévy processes (in this case, the diffusion case, standard Brown-

ian motion) and semi-stable Markov processes introduced by Lamperti. In fact,

the family of BESQ processes is the only family of continuous semi-stable Markov

processes.

Let us now introduce the Bessel squared process of dimension δ, BESQδ. A

Bessel process BES is the square root of a BESQ.

Definition 3.2.3. For any δ ≥ 0, the δ-dimensional Bessel squared process BESQδ

is a continuous diffusion process Zδ
t = (Zδ(t), t ≥ 0) taking its values in R+ and

satisfying the stochastic differential equation

dZδ
t = δdt+ 2

√
Zδ
t dWt, Z0 = z0 ≥ 0,
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or the stochastic integral form

Zδ
t = z0 + δt+ 2

∫ t

0

√
Zδ
sdWs, (3.37)

where Wt is a standard one-dimensional Brownian motion.

When δ ≥ 2, BESQδ will never reach 0 for t > 0; for 0 ≤ δ < 2, BESQδ will

reach 0 a.s.; when δ < 0, BESQδ hits 0 a.s. The real ν = δ
2
− 1 is called the index of

the process BESQδ. As a consequence of the stochastic differential equation satisfied

by (Zδ(t), t ≥ 0), the process

{
f(Zδ

t )−
∫ t

0

(Iδf)(Zδ
s ) ds, t ≥ 0

}
is a local martingale as long as f belongs to C2((0,∞)), where

Iδf(z) = 2z
d2f

dz2
+ δ

df

dz
,

and Iδ is the infinitesimal generator associated with BESQδ.

We denote byQδ
z0

the distribution of the process BESQδ starting at z0 ≥ 0; this

distribution is defined on the canonical space of continuous functions C(R+,R+) on

which we consider the coordinate process (R(t), t ≥ 0) which is defined by Rt(f) =

f(t) for every f ∈ C(R+,R+) and the σ-field G = σ(Rt, t ≥ 0).

The following important property of the Bessel squared processes was obtained

by Shiga and Watanabe (1973, [63]).

Proposition 3.2.5. For every δ, δ′, x, x′ ≥ 0, Qδ
x ⊗ Qδ′

x′ = Qδ+δ′

x+x′, where P ⊗ Q

denotes the distribution of the process (Xt+Yt, t ≥ 0), for Xt and Yt, two independent

processes with respective distributions P and Q.
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This property permits, whether δ is an integer or not, the reduction of a

number of problems involving BESQδ to the case δ = 1, where BESQ1 is precisely

the square of one-dimensional Brownian motion.

Recall that if W x
t is a Brownian motion started at x, then for any c > 0, the

processes W x
c2t and cB

x/c
t have the same law.

Proposition 3.2.6. If Z is a BESQδ started at z and c > 0, then Zct/c is a BESQδ

started at z/c.

Proposition 3.2.6 can be easily proved by a change of variable in the stochastic

integral in 3.37

Zct/c = z0/c+ δt+ 2

∫ t

0

√
Zcs/cd(Wcs/

√
c)

and Wcs/
√
c is a Brownian motion.

Remark 3.2.5. We should realize here Proposition 3.2.6 implies that {Zct} ≈ {cZt}.

Hence Zt is a semi-stable Markov process of order α = 1.

Bessel (squared) processes are, by definition, Markov processes and their tran-

sition functions have the following form.

Proposition 3.2.7. For δ > 0, the semigroup of BESQδ has a density in y equal to

qδt (x, y) =
1

2t

(
y

x

)ν/2
exp

(
−x+ y

2t

)
Iν

(√
xy

t

)
, t > 0, x, y > 0, (3.38)

where Iν is the modified Bessel function of first kind with index ν.

The density of the semigroup of the Bessel process BESδ can be obtained from (3.38)

by a straightforward change of variable and is found equal, for δ > 0, to

pδt (x, y) =
1

t

(
y

x

)ν
y exp

(
−x

2 + y2

2t

)
Iν

(
xy

t

)
, t > 0, x, y > 0, (3.39)
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The key result for our applications is due to Williams (1974, [70]).

Proposition 3.2.8. The exponential of Brownian motion with drift is a time-

changed Bessel process; more specifically,

exp(W (t) + νt) = R(ν)

(∫ t

0

exp 2(W (s) + νs) ds

)
, t ≥ 0,

where (R(ν)(u), u ≥ 0) is a Bessel process with index ν.

We can give two extensions of Proposition 3.2.8.

1. A similar result holds more generally for (exp(aW (t)+νt), t ≥ 0). Thanks to the

scaling property of Brownian motion, we can write

exp(aW (t) + νt) = exp(Ŵ (ta2) +
ν

a2
ta2,

= R̂(ν/a2)

(∫ ta2

0

exp 2
(
Ŵ (s) +

νs

a2

)
ds

)
= R̂(ν/a2)

(
a2

∫ t

0

exp 2
(
Ŵ (a2u) + νu

)
du

)
,

(3.40)

(with Ŵ denoting another Brownian motion, and corresponding R̂ from Proposition

3.2.8) so that

exp(aW (t) + νt) = R̂(ν/a2)

(
a2

∫ t

0

exp 2(aW (u) + νu) du

)
. (3.41)

2. The exponential of Brownian motion with drift is a time-changed Bessel squared

process. This property is straightforward since, from (3.41), we deduce
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exp(aW (t) + νt) = exp 2(
a

2
W (t) +

νt

2
)

=

[
R̂(2ν/a2)

(
a2

4

∫ t

0

exp 2(
a

2
W (s) +

ν

2
s) ds

)]2

.

There are a couple of important transformations which relate the squared

Bessel processes with other well known processes. We here look at three examples

which start with the CIR (Cox-Ingersoll-Ross) process.

1. The Cox-Ingersoll-Ross (CIR) processes

Xt = x+

∫ t

0

(a+ bXs) ds+ σ

∫ t

0

√
Xs dWs,

for t ≥ 0, a ≥ 0, σ ≥ 0, were introduced in ([20]) as in a model for interest rates.

The CIR process is a space-time transformed BESQ process, more explicitly: A

BESQδ process Z can be transformed to the CIR process X by

Xt = ebtZ
(σ2

4b
(1− e−bt)

)
,

where δ = 4a/σ2.

2. A squared radial Ornstein-Uhlenbeck process is the solution to the equation

Yt = y +

∫ t

0

(δ − 2λYs) ds+ 2

∫ t

0

√
Ys dWs

for t ≥ 0, δ ≥ 0. A squared radial Ornstein-Uhlenbeck process can be transformed

by the time transformation g(t) = σ2t/4 to the CIR process X, where δ = 4a/σ2,

λ = −2b/σ2. Hence it can also be related to squared Bessel process.
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3. Consider the stock price process St has independent increments with constant

elasticity of variance. That is:

dSt = µStdt+ σSρt dWt, S0 = s ≥ 0, (3.42)

where ρ means the elasticity of variance. This model was first considered by Cox

([19]) where it was called the constant elasticity of variance model (CEV model).

For ρ < 1 is a well known model that many have studied. Here we draw on Delbaen

and Shirakawa (1996, [22]). We may define the BESQ process of dimension δ by

X(δ) with the SDE

dX
(δ)
t = δdt+ 2

√
X

(δ)
t dWt.

For the parameters ν > 0 and δ < 2 consider the deterministic time change

τ
(δ,ν)
t =

σ2

2ν(2− δ)

(
1− exp

(
− 2ν

2− δ
t
))
,

then define the process

Y δ,ν
t = eνt

(
X

(δ)

τ
(δ,ν)
t ∧ζ

)1− δ
2
,

where

ζ = inf{t|X(δ)
t = 0}.

We have the result that

{St, t ≥ 0}law= {Y (δρ,µ)
t , t ≥ 0},
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where

δρ =
1− 2ρ

1− ρ
.

Hence such price processes are deterministic time change of BESQ raised to a power

where the dimension relates to the power ρ as does the power of the BESQ which is

1

2(1− ρ)
.

We also know that X
(δ)
t is the Lamperti process (or SSMP) for the Lévy process

2Wt + (δ − 2)t,

and this relates the solution of CEV to Lamperti for

2Wt −
1

1− ρ
t. (3.43)

3.3 Exponential Functionals of Brownian Motion and Related Pro-

cesses

In computing the price of Asian options, the study of the variable
∫ t

0
S(u) du

comes to interest. We assume the asset price driven under the risk-neutral proba-

bility measure Q by the dynamics described as

dS(t) = rS(t)dt+ σS(t)dW (t).

We also assume that the number of values whose average is computed is large enough
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to allow the representation of the average A(T ) over [0, T ] by the integral

A(T ) =
1

T

∫ T

0

S(u) du.

This quantity is needed for calculating the option price, say call option, as in

Ct,T (K) = e−r(T−t)EQ[(A(T )−K)+|Ft].

In general we are interested in computing integral

∫ t

0

exp(as+ σW (s)) ds, (3.44)

where here a may be equal to r − 1
2
σ2. This exponential function of Brownian

motion has recently been a subject of common interest for mathematicians and

for physicists. The Lamperti Representation stated in Proposition 3.2.8, and more

specifically in equation (3.41), exhibits the importance of the functional 3.44. After

the study of of Lamperti’s 1972 paper ([45]), we now know that this representation

is a particular instance of the Lamperti relation which expresses (exp(ξt), t ≥ 0) as

eξt = X

(∫ t

0

e2ξs ds

)
, (3.45)

where (ξt, t ≥ 0) is a Lévy process and (X(u), u ≥ 0) is a semi-stable Markov

process.

In the article by Carmona, Petit and Yor (1994, [71]), they generalize the work

of M. Yor concerning the law of A =
∫ T

0
exp(ξs) ds where ξ is a Brownian motion

with drift and T an independent exponential time, to the case where ξ belongs

to a certain class of Lévy processes. Their method again hinges on a bijection,

introduced by Lamperti, between exponentials of Lévy processes and semi-stable
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Markov processes. A collection of articles dealing with the exponential functionals

of Brownian motion and related processes during 1992 and 1998, is in a book by

Marc Yor ([72]).

In this chapter, we introduce the semi-stable stochastic processes as limits

upon subjecting a fixed stochastic process to infinite contractions of its time and

space scales. We also establish the lamperti relation which connects semi-stable

Markov processes to Lévy processes. This important relation will be put into use

as we attempt to build leverage into Lévy processes as models for stock prices.

Chapter 4 starts with the general set up and from then on our study of leveraging

Lévy processes via Lamperti has begun.
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Chapter 4

LEVERAGING LÉVY VIA LAMPERTI

4.1 Leveraging Lévy

The leverage effect is where negative return sequences are associated with in-

creases in the volatility of stock returns. The leverage effect was studied in some

early work by Black (1976, [8]), while it motivated the introduction of the EGARCH

model of Nelson (1991, [52]) and the threshold ARCH model of Glosten, Jagan-

nathan, and Runkle (1993, [31]). An economic theory behind such effects is dis

cussed by Campbell and Kyle (1993, [10]).

Models for the stock price process typically arrange for the limited liability

feature and attain positivity of the price process by explicitly modeling the logarithm

of the price. The literature now contains many examples of log prices modeled

as Lévy processes. These processes are processes of independent and identically

distributed increments with constant volatilities and as a consequence are devoid

of a leverage effect. To incorporate leverage into these models we follow the local

Lévy development of Carr, Geman, Madan and Yor (2003, [13]) by introducing a

time change that depends on the level of the asset price. This dependence affects

the expected local quadratic variation in an explicit manner and hence builds in

desired levels of leverage. We begin now with the general model to set a foundation

for understanding how semi-stable Markov processes [45] come into play.

62



From now on, we will always term semi-stable Markov processes as Lamperti

processes associated with some Lévy processes, or in short Lamperti processes.

4.2 The General Model

4.2.1 Leveraging Lévy

Let the stock price process be denoted by St = (S(t), t ≥ 0) and let Xt =

(X(t), t ≥ 0) be the log price process with Xt = lnSt. Additionally let ξt = (ξ(t), t ≥

0) be a Lévy process that we wish to see leveraged. To begin with, we focus our

attention on the case of constant elasticity of variance and define the desired local

speed adjustment A(St), at spot price S, for the lévy process as A(St) = St
a.

It follows that the desired model for the log price is the following time changed

Lévy process,

X(t) = ξ

(∫ t

0

S(u)a du

)
= ξ

(∫ t

0

eaX(u) du

)
. (4.1)

Here the specific time change for the Lévy process is defined as Tt = (T (t), t ≥ 0)

where

T (t) =

∫ t

0

eaX(u) du.

We note that if (k(x), x ∈ R) is the Lévy density for the Lévy process ξ then

the process X(t) has a Lévy system with jump compensation measure νX(dx, du)

given by

νX(dx, du) = eaX(u)k(x)dxdu = S(u)ak(x)dxdu (4.2)

and the compensator splits into a product of two functions. The first depends on

63



the asset price and incorporates leverage while the second addresses the specific

jump sizes. For the expected negative relation between volatility and spot price, we

expect to estimate the parameter a to be less than unity.

The risk neutral dynamics for the stock price are now given by

dS(t) = (r−l)S(t−)dt+σ(S(t−), t)dW (t)+

∫ ∞

−∞
S(t−)(ex−1)(m(dx, du)−νS(dx, du))

where m(dx, du) is the counting measure associated with the jumps in the logarithm

of the stock price.

We term the class of processes St for which Xt = lnSt is defined by (4.1) as

a (ξt, a)-Leveraged Lévy processes in recognition of specific space dependence of the

Lévy system observed in (4.2). Leveraging Lévy processes are defined with refer-

ence to the specific form of the time change employed and they may or may not be

martingales. When modeling the historical or true process, martingale restrictions

do not arise. From a risk neutral perspective, however, we are interested in asset

price processes being discounted martingales. We may accommodate this require-

ment by writing a model directly for the forward price as a martingale with leverage

depending on the level of the forward price. The spot price is then defined as the

discounted forward price. To get the forward price to be a martingale we choose

the Lévy process such that its exponential is a martingale. The incorporation of our

suggested time change leaves it a martingale.
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4.2.2 Lamperti and Leveraged Lévy

The class of Leveraged Lévy processes is closely tied to the processes studied by

Lamperti [45] and we determine the laws of the process Xt by relating the leveraged

Lévy processes to the Lamperti processes. We first review how Lamperti processes

are defined and the relation between a Lamperti process (SSMP, details in Chapter

4) and a Lévy process.

Given any one-dimensional Lévy process ξ = ξt = (ξ(t), t ≥ 0), Lamperti

associated with such a Lévy process a positive Markov process that we denote by

L
(ξ)
t = (L

(ξ)
t , t ≥ 0) and call it the Lamperti process associated with ξ. The process

L(ξ) is implicitly defined by the time change

τ
(ξ)
t =

∫ t

0

eξ(s) ds

whereby L(ξ) is defined as satisfying

eξ(t) = L(ξ)(τ
(ξ)
t ) = L(ξ)

(∫ t

0

eξ(s) ds

)
(4.3)

One may deduce from the independence and stationarity of ξ that L(ξ) satisfies

the scaling property

(L
(ξ)
at , 0 ≤ t;Px) = (aL

(ξ)
t , t ≥ 0;Px/a)

where Px is the law of L(ξ) starting at x. In [45] Lamperti calls such positive

processes as semi-stable Markov processes and then shows that there is a one-to-one

correspondence between such semi-stable processes and Lévy processes via equation

(4.3). This is precisely what was introduced in Section 3.2.2.
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This result leads to the following theorem.

Theorem 4.2.1. Every (ξt, a)-Leveraged Lévy processes {St} is a Lamperti process

raised to a power. Specifically,

St =
[
L

(−aξ)
t

](−1/a)
. (4.4)

Proof. The relationship between Lamperti processes and leveraged Lévy processes

follows on considering the exponential of aX(t) for a leveraged Lévy process S(t).

From equation (4.1) we see that

exp(aX(t)) = exp

(
aξ(

∫ t

0

eaX(u) du)

)
. (4.5)

Defining

Z(t) = exp(aX(t)), (4.6)

we deduce that

Z(t) = exp

(
aξ(

∫ t

0

Z(u) du)

)
. (4.7)

By defining the inverse time change ζ(t) of T (t) by T (ζ(t)) = t, precisely

∫ ζ(t)

0

eaX(u) du = t, (4.8)

and evaluating both (4.6) and (4.7) at ζ(t), we obtain

Z(ζ(t)) = exp
(
aX(ζ(t))

)
, (4.9)

and

Z(ζ(t)) = exp(aξ(t)), (4.10)
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hence,

exp(aξ(t)) = exp
(
aX(ζ(t))

)
. (4.11)

The time change ζ(t) is identified by differentiating (4.8) to obtain

dt = eaX(ζ(t))dζ(t) = eaξ(t)dζ(t),

or equivalently

dζ(t) = e−aξ(t)d(t).

It follows that

ζ(t) =

∫ t

0

e−aξ(s) d(s). (4.12)

From (4.10) we have

exp(−aξ(t)) = Z−1

(∫ t

0

e−aξ(s) ds

)
, (4.13)

and we observe Z−1 is the Lamperti process L−aξ associated with −aξ(t).

But as Z(t) = exp(aX(t)) we have that

X(t) =
1

a
ln(Z(t)) = −1

a
ln(L−aξ), (4.14)

recalling that S(t) = exp(X(t)) we see (4.4) holds.

Given the close connection between leveraged Lévy processes and the Lamperti

processes, we review the connections between the infinitesimal generator of the Lévy

process and that for the associated Lamperti process. Denote by A the infinitesimal
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generator for the Lamperti process associated with a Lévy process ξ and let B denote

the infinitesimal generator for ξ. We have the following relations [71]:

Af(l) =
1

l
B
(
f ◦ exp

)
(ln l),

Bf(ξ) = eξA
(
f ◦ ln)

)
(eξ).

(4.15)

We shall use this relations to go back and forth between Lévy processes and

the associated Lamperti processes.

4.3 Stock Price Modeling Using Leveraged Lévy Processes

The model for the price of a stock suggested by leverage considerations in

the context of local uncertainties characterized by Lévy processes in light of Theo-

rem 4.2.1, is to employ powers of Lamperti processes. The specific power is related

to the Lévy process used in constructing the Lamperti process.

From the perspective of risk neutral modeling we may be interested in either

martingale models consistent with particular forms of no dynamic arbitrage, or if we

focus attention on just the absence of static arbitrage following [13], we may wish to

just impose particular levels for the term structure of forward prices as determined

by market data. We term the former class of models, martingale leveraged Lévy

models, while the latter are referred to as normalized leveraged Lévy models.

We present in several subsections the procedure for constructing both classes

of models, given the prior choice of the Lévy process ξ and the leverage coefficient

a.
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4.3.1 Martingale Leveraged Lévy Models

Given a Lévy process ξ, consider a stock price model in the suggested form

S(t) =
[
L(ξ/α)

]α
(t),

where we have α = − 1
a
. For a martingale model we need this stock price process to

be a martingale. Note from equation (4.13) that

exp(−aξ(t)) =
[
L(ξ/α)

]
(

∫ t

0

e−aξ(s) ds) =
[
L(ξ/α)

]
(ζ(t)).

Evaluating this expression at the inverse of ζ, T (t) we get

exp(−aξ(T (t))) =
[
L(ξ/α)

]
(t),

and by raising both sides to the power α we obtain

[
L(ξ/α)

]α
= exp(ξ(T (t))).

Recall that the original stock price model in Theorem 4.2.1 is S(t) =
[
L

(−aξ)
t

](−1/a)
=[

L(ξ/α)
]α

. So our original stock price model is now written as the exponential of a

time changed Lévy process,

S(t) = exp(ξ(T (t))).

To obtain a martingale process for the stock price we only have to choose the orig-

inal Lévy process such that its exponential is a martingale. This may be easily

accomplished by an adjustment of the drift term.

On the other hand, if it is discounted stock prices that are to be martingales

then for a continuously compounded interest rate of r and a dividend yield of q we
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suggest the model

S(t)e−(r−q)t =
[
L(ξ/α)

]α
(t).

Leverage is here formulated homogeneously in terms of the forward price, with the

appropriate inhomogeneity when working with the asset spot price, but the essential

dependence has been incorporated.

4.3.2 Normalized Leveraged Lévy Models

For particular Lévy processes that one associates with a Lamperti process it

may be difficult to identify the laws of the Lamperti process after one has made

the drift correction in the Lévy process to get a martingale as discussed in the last

section. One may still be interested in models based on a leveraged Lévy process that

is consistent with the absence of static arbitrage as studied in [13]. The approach

here is to normalize a power of the Lamperti process to unit expectation and adjust

the spot price to re-price correctly the forward contracts.

Specifically, let Lt = (L(t), t ≥ 0) be a Lamperti process. We define the stock

price process by

S(t) = S(0)e(r−q)t
L(t)α

E[L(t)α]
. (4.16)

The Lamperti process here may be obtained from a specific Lévy process or alterna-

tively we may start with a Lamperti process from which we may construct a Lévy

process ξ that is consistent with it through the Lamperti equation (4.3). Taking

the Lévy process as ξ/α or equivalently −aξ, we recover the Lamperti as L(−aξ) and
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thus

S(t)e−(r−q)tE[L(t)α]

S(0)
= L(t)α

is a (ξ, a)-leveraged Lévy process. We observe that a deterministic perturbation of

the stock price is a leveraged Lévy process and so the stock price would inherit these

leverage properties.

4.3.3 The Absolute Value of a Cauchy

We show one example of exact solutions for leveraged Lévy processes. Our

approach is to begin with equation (4.16), recognizing that we need only to consider

the power of a Lamperti process for the stock price process. The specific Lévy

measure may then be deduced by application of (4.15). For a start we concern

ourselves only with the absence of static arbitrage and develop processes for the

stock price that when mean corrected, yield a measure on the space of paths that

we employ for pricing.

We begin with any Lamperti process, which is any positive Markov process

that satisfies the scaling property. A classic example of a Lamperti process is the

absolute value of a Cauchy process1. Let (C(u), u ≥ 0) be the value of a Cauchy

process and define by

S(t) = S(0)e(r−q)t
|C(t)|−β

E[|C(t)|−β]
.

1Recall that the Cauchy process is a one-dimensional Brownian motion with random time

evolution as the Lévy subordinator.
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where we take β > 1 and hence as a = 1/β, we have 0 < a < 1. This process allows

for an elastic leverage effect. We organize S(t) to approach S(0) as t tends to 0 by

starting C(t) at 1. Defining

ω(t) = − ln(E[|C(t)|−β]), (4.17)

we may then write lnS(t) as

lnS(t) = lnS(0) + (r − q)t+ ω(t)− β ln(|C(t)|).

For the estimation of return densities we will need the semigroup of the Cauchy

process while for risk neutral pricing we need to determine option prices.

Let us now derive the semigroup for absolute value of Cauchy. Let the candi-

date Lamperti process be

L(u) = |C(u)|,

where C(u) is the Cauchy process. Suppose that L(u) = l, and let t > u, we are

interested in the density for L(t) = y given that L(u) = l. By the homogeneous

Markov property for the process L we know that this density is of the form qt−u(l, y).

Noting that C(t)− C(u) is a Cauchy process started at zero, and taking C(u) = c,

t− u = h, then for a test function f(y), we may write
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E[f(L(t))|C(u) = c] =
1

π

∫ ∞

−∞

h

h2 + x2
f(|c+ x|) dx

=
1

π

∫ ∞

−∞

h

h2 + (w − c)2f(|w|) dw

=
1

π

∫ ∞

0

h

h2 + (w − c)2f(w)dw +
1

π

∫ ∞

0

h

h2 + (w + c)2f(w)dw

=
1

π

∫ ∞

0

2h(h2 + w2 + c2)

(h2 + w2 + c2)2 − 4w2c2
f(w)dw.

It follows that the semigroup of L(u) when starting at l has density

qh(l, y) =
2h

π

h2 + y2 + l2

(h2 + y2 + l2)2 − 4y2l2
.

For the normalization factor over h units of time, noting that we start the

Cauchy process at unity, we obtain from (4.17) that

e−ω(h) =

∫ ∞

0

y−βqh(1, y) dy

=
2h

π

∫ ∞

0

y−β
1 + h2 + y2

(1 + y2 + h2)2 − 4y2
dy.

The density for the stock price at time t follows by the change of variable and we

have the risk neutral density

pt(S) = qh

(
1,
( S

S(0)e(r−q)t+ω(t)

)− 1
β
)[

1

βS

( S

S(0)e(r−q)t+ω(t)

)− 1
β
]
.

For a model that is to be useful in calibration we need to introduce parameters

that allow for flexibility. In this regard we may introduce a volatility parameter by
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considering a time change whereby we let h→ σ2h and we write

qh(l, y) =
2σ2h

π

σ4h2 + y2 + l2

(σ4h2 + y2 + l2)2 − 4y2l2
.

One may also introduce a scale parameter so that the variable of interest is

c−1L(t). This leads to

qh(l, y) =
2cσ2h

π

σ4h2 + c2y2 + c2l2

(σ4h2 + c2y2 + c2l2)2 − 4c4y2l2

=
2σ2h

πc

σ4

c2
h2 + y2 + l2

(σ
4

c2
h2 + y2 + l2)

2 − 4y2l2
.

This transformation is equivalent to the time change h → σ2c−1h and hence

the scale transformation is absorbed by the time transformation. We therefor have a

two parameter density for the stock price, with parameters σ, β. We have a volatility

parameter and a shape parameter but as yet no skew parameter. The risk neutral

density for the stock may be written with positive parameters σ, γ with β = 1 + γ

as

pt(S;σ, γ) = qσ2h

(
1,
( S

S(0)e(r−q)t+ω(t)

)− 1
1+γ
)[

1

(1 + γ)S

( S

S(0)e(r−q)t+ω(t)

)− 1
1+γ
]

e−ω(h) =
2h

π

∫ ∞

0

y−(1+γ) 1 + h2 + y2

(1 + y2 + h2)2 − 4y2
dy.

Finally, we come to the Lévy process when absolute value of Cauchy is the

Lamperti process. It is shown in [71] proposition 2.3 that the L’evy process ξ(t)

yielding the absolute value of the Cauchy process as the Lamperti process has char-

acteristic function
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E[exp(iuξ(t))] = exp

(
−tu tanh(

πu

2
)

)
with Lévy measure

kξ(x) =
1

π

cosh(x)

sinh(x)2
.

Furthermore, we may see the process ξ(t) as

(ξ(t); t ≥ 0)
d
=
(∫ τt

0

I{|Bs|≤π
2
} dWs; t ≥ 0

)
where B and W are independent Brownian motions and τt is the inverse of the local

time at 0 of B.

We could attempt to build in skew by exponentially tilting the Lévy measure

of this Lévy process. This is shown in the following section.

4.3.4 Exponential Tilting of a Lévy Process in General

Suppose we have a Lévy process ξ(t) with Lévy measure k(x) and characteristic

exponent ψ(u) defined as

E[exp(iuξ(t))] = exp(tψ(u)).

Define the martingale

M(t) = exp(aξ(t)− tψ(−ia)))

and let the law of ξ(a) be defined by

E
[
F (ξ(a)(u), u > 0)

]
= E[F (ξ(u), u > 0)M(T )].
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The characteristic function of ξ(a) follows from

E[eiuξ
(a)(t)] = E[eiuξ(t)eaξ(t)−tψ(−ia)]

= exp(tψ(u− ia)− tψ(−ia))

= exp(t[ψ(u− ia)− ψ(−ia)]).

Now suppose

ψ(u) = ium− c2u2

2
+

∫ +∞

−∞
(eiux − 1− iuxI|x|≤1)k(x) dx.

We then have

ψ(u− ia) = i(u− ia)m− c2(u− ia)2

2
+

∫ +∞

−∞

(
ei(u−ia)x−1− i(u− ia)xI|x|≤1

)
k(x) dx,

ψ(−ia) = am+
c2a2

2
+

∫ +∞

−∞

(
eax − 1− axI|x|≤1

)
k(x) dx.

We thereby obtain

ψ(u− ia)− ψ(−ia) = iu(m+ ac2)− c2u2

2
+

∫ +∞

−∞
(eiuxeax − eax − iuxI|x|≤1)k(x) dx

= iu(m+ ac2)− c2u2

2
+

∫ +∞

−∞
(eiux − 1− iuxI|x|≤1)e

axk(x) dx

+iu

∫ 1

−1

(eax − 1)xk(x) dx

= iu
(
m+ ac2 +

∫ 1

−1

(eax − 1)xk(x) dx
)
− c2u2

2

+

∫ +∞

−∞
(eiux − 1− iuxI|x|≤1)e

axk(x) dx.

We see that the process ξ(a)(t) has the same diffusion coefficient, but an altered

drift coefficient given by
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m+ ac2 +

∫ 1

−1

(eax − 1)xk(x) dx,

and exponentially tilted Lévy measure

eaxk(x)dx.

Skew may then be introduced by working with ξ(a)(t) in place of ξ(t).
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Chapter 5

THE DIFFUSION CASE WITH SQUARED BESSEL

In this chapter, we construct a leveraged diffusion model. Void of jumps,

the Brownian component is the only uncertainty that drives the model. A for-

mulation similar to the one used in Chapter 4 is implemented. A natural choice of

Bessel Squared process as the “Lamperti” is made since the family of Bessel Squared

processes is the only family of continuous semi-stable Markov processes. We also

estimate the model parameters both statistically and risk-neutrally.

5.1 The Formulation

We wish to maintain the growth rate of the stock and allow for an additional

parameter in the volatility structure relative to what we were considering in the

general formulation of Chapter 4. The growth rate for the stock is set to be µ (r− q

in the risk-neutral world), and we suggest that the local absolute volatility be of the

form

σS1+α
t e−αµt,

whereby the relative volatility is of the form

σ(Ste
−µt)α,

so that we have with α = 0, a constant volatility, while for α 6= 0 we do not engineer

any trend into the volatility, given the stock price is assumed to be trending at rate
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µ. To expect the leverage effect, we would like to have α < 0. Noticing the change

of parameter notation here, and in fact α + 1 is equivalent to the parameter a in

earlier general model (Section 4.2).

We would like Ste
−µt to be a positive martingale and hence take as a generic

model the stochastic exponential of a martingale. exp(Wt − 1
2
t) is such Martingale

in this case. We also incorporate the change in volatility using time changes and

begin with the formulation

Ste
−µt = exp

(
W

(∫ t

0

σ2S2α
u e

−2µαu du

)
− 1

2

∫ t

0

σ2S2α
u e

−2µαu du

)
(5.1)

We now relate to Lamperti process by defining the time change

ζ(t) =

∫ t

0

σ2S2α
u e

−2µαu du,

and let

t =

∫ η(t)

0

σ2S2α
u e

−2µαu du,

We note that

η′(t) =
1

σ2
S−2α
η(t) e

2µαη(t).

Evaluating expression (5.1) at η(t) we get

Sη(t)e
−µη(t) = exp

(
W (t)− t

2

)
.

It follows that
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S−2α
η(t) = exp(−2αWt + αt)e−2αµη(t),

so

η′(t) =
1

σ2
exp(−2αWt + αt).

Integrating we get that

η(t) =
1

σ2

∫ t

0

e−2αWs+αs ds.

Let

ξ(α)(t) = −2αWt + αt.

we have from Lamperti’s relation

exp(−2αWt + αt) = L(ξ(α))

(∫ t

0

e−2αWs+αs ds

)
= L(ξ(α))(σ2η(t)).

But we also have

S−2α
η(t) e

2αµη(t) = exp(−2αWt + αt),

together we obtain the relation

S−2α
η(t) e

2αµη(t) = L(ξ(α))(σ2η(t)).

Using the scaling property of Lamperti processes, the general model for the stock

price in diffusion case is
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St = S0{e−2αµtσ2L(ξ(α))(t)}−
1
2α . (5.2)

It is a Lamperti process raised to a power.

5.2 Take Bessel Squared Process as the Lamperti

Bessel Squared Process of dimension δ (BESQδ) Z
(δ)
t has SDE

dZ
(δ)
t = δdt+ 2

√
Z

(δ)
t dWt

Since BESQ is the only family of continuous Lamperti processes, we replace

the Lamperti process in (5.2) with Z
(δ)
t , where by Martingale property

δ =
1

α
+ 2.

We have for stock price model:

St = S0e
µt{σ2Z

(δ)
t }

2−δ
2 . (5.3)

where Z
(δ)
t is BESQ process of dimension δ. Knowing the SDE for Z

(δ)
t and (5.3),

the SDE of St is easily derived by applying Ito’s Lemma

dSt = µStdt+ σ(2− δ)

(
St

S0eµt

) 1
δ−2

StdWt. (5.4)

In the risk-neutral setting, µ = r the interest rate. Use l (to avoid confusion with

q as density function in the following sections) to denote the dividend yield, our

generalized SDE in the risk-neutral world is

dSt = (r − l)Stdt+ σ(2− δ)

(
St

S0e(r−l)t

) 1
δ−2

StdWt. (5.5)
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5.3 Maximum Likelihood Estimation of Parameters

We want to estimate the parameters µ, σ (σ > 0) and δ. Parameter δ is the

dimension parameter (we only consider positive dimension here) from the BESQ

process and it is related to the power parameter α by δ = 1
α

+ 2. For the leverage

effect, we expect 0 < δ < 2.

The transition density of BESQ process Z
(δ)
t is:

qδh(x, y) =
1

2h

(
y

x

)ν/2
exp

(
−x+ y

2h

)
Iν

(√
xy

h

)
,

where ν = δ
2
−1 and Iν is the modified Bessel function of the first kind with index ν.

According to the relation in (5.3), and with a simple variable change, the transition

density of St is given by:

qSt
h (St, St+h) = qδh(Zt, Zt+h)

∣∣∣∂Zt+h
∂St+h

∣∣∣. (5.6)

Assuming the time series of stock prices St0 , St1 , St2 ,. . . , Stn , corresponding

to time t0 = 0, t1, t2,..., tn, and change of time ∆i := ti+1 − ti (i = 1, 2, . . . , n− 1),

and the log likelihood function is defined as

L(µ, σ, δ) =
n−1∑
i=1

ln qSt
∆i

(Sti , Sti+1
)

We want to maximize L with respect to µ, σ and δ according the sample.

5.3.1 Data and Results

We implement the Maximum Likelihood Estimation using the optimization

tool in Matlab. Before going into the MLE for real data, we first test our optimiza-
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tion routine on simulated stock prices. Since we know the transition density of St is

given explicitly by (5.6), at each time point t, knowing the value of S at time t, x, we

could generate the conditional cdf of y, the value of S at t+h, by specifying the range

of movement of S from t to t+ h. Specifically, we pre-specify T , number of years, h

the step size in time, hence M = T/h the number of observations. The initial value

S0 is set to be 0.5 and the parameters µ, σ and δ are set to be 0.32, 0.6 and 1.5

respectively. At each time t = [0, h, 2h, . . . , T ], knowing value St, x and the specified

possible values of St+h, for example y = [x−movement : stepsize : x+movement]

for some chosen “movement” and “step size”, we use (5.6) to calculate q values. After

normalizing the q′s, the cdf of y given x is simply obtained by command “cumsum”

in Matlab. In the end, we use the Inverse Transform simulation technique to obtain

a random value y at time t + h with the help of cubic spline interpolation and a

randomly generated number. The simulated data will then be put into the test of

Maximum Likelihood Estimation to see if the estimated values for parameters µ,

σ and δ are indeed the true values 0.32, 0.6 and 1.5. We selectively show some

results of MLE on simulated data in Table 5.1. N is the number of replications of

simulation.

We observe from Table 5.1 that as we increase the number of observations and

number of replications of simulation, the estimated parameters are convergent to

the true values. The optimization routine is ready to be used on market data to

provide trustable results.

Next, the MLE is implemented on S&P500 Index daily data from September

21, 1983 to September 20, 2004. In these 21 years, there are 5298 observations
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Table 5.1: Maximum Likelihood Estimation Results on Simulated Data. True Value:

µ = 0.32, σ = 0.6, δ = 1.5

h = 0.01 T = 1 N = 100

µ̂ 0.2799 0.1231(std)

σ̂ 0.6566 0.3007(std)

δ̂ 1.3982 0.7613(std)

h = 0.01 T = 2 N = 100

µ̂ 0.3108 0.0540(std)

σ̂ 0.5886 0.1398(std)

δ̂ 1.4862 0.1185(std)

h = 0.01 T = 4 N = 200

µ̂ 0.3169 0.0161(std)

σ̂ 0.5913 0.0587(std)

δ̂ 1.4954 0.0503(std)

excluding the initial S0 = 168.41. A plot of the data is shown in Figure 5.1. The

estimated µ, σ and δ are respectively:

µ̂ = 0.1389; σ̂ = 0.0777; δ̂ = 0.0024.

which suggests the model of price as

dSt/St = 0.14dt+ 2e0.07tS−0.5
t dWt.

Here δ̂ is between 0 and 2 which implies a “Leverage” effect in this model.
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Figure 5.1: S&P500 Daily Prices from 09/21/1983 to 09/20/2004

Now, we implement the same Maximum Likelihood Estimation on individual

stocks and hope to see leverage effect prevails as well. All data is drawn from CRSP

daily stock prices, available for a 10-year period from December 1, 1993 to December

31, 2003. We order the S&P500 component companies by the estimated Market

Capitalization percentage. The top 60 companies are chosen to be examined. The

estimated Market Capitalization is calculated by multiplying the number of shares

outstanding times previous close price of the last day of this 10-year period. This

number reflects the total dollar value of a company’s outstanding shares.

We also implement a hypothesis test of our leveraged Lévy model (5.4) against

the Geometric Brownian Model. In order for the GBM case to nest in our model

here, we define
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Vt = Ste
−µt,

and derive our hypothesis:

H0: the GBM model (dSt = µStdt+ σStdWt)

dVt = σVtdWt;

H1: leveraged Lévy model (dSt = µStdt+ σ(2− δ)

(
St

S0eµt

) 1
δ−2

StdWt)

dVt = σ(2− δ)

(
Vt
V0

) 1
δ−2

VtdWt.

Let ∆Vt

Vt
= Rt, so we see that in H0, Rt is Normally distributed as N(0, σ2∆i) and

in H1, Rt is Normally distributed as N(0, γ∆i), where

γ = σ2(2− δ)2

(
Vt
V0

) 2
δ−2

.

Let

L0 = − ln

(n−1∏
i=1

e−R
2
t (i)/2σ2∆i

√
2πσ2∆i

)
= −

n−1∑
i=1

R2
t (i)/2σ

2∆i − (n− 1) ln
√

2πσ2∆i

where Rt(i) = V (i+1)−V (i)
V (i)

, i = 1, . . . , n− 1, and

L1 = − ln

(n−1∏
i=1

e−R
2
t (i)/2γ∆i

√
2πγ∆i

)
= −

n−1∑
i=1

R2
t (i)/2γ∆i − (n− 1) ln

√
2πγ∆i.

We set the significance level at 0.05 = 5%. Since the degree of freedom is 1,

our critical value for the chi-squared distribution is 3.84. Compare the ratio −2L0

L1
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with this critical value, a ratio larger than 3.84 leads to rejecting hypothesis H0 and

is favorable to us. The results are shown in Table 5.2, Table 5.3 and Table 5.4.

In these two tables, the leverage effect can be observed when 1

δ̂−2
is negative.

Only 7 out of 60 tested cases have this effect. We see that the Geometric Brownian

Model is 100 percent rejected which supports our “leveraged” model being better.

However, the relation between volatility and the spot price is seemingly more “pos-

itive” than “negative” in these top 60 companies. Although the observation here

deviates from our expectation, it confirms the existence of leverage. The results

are in fact consistent with another rising argument, which argues that volatilities

rise when stock prices go up. This is because they reach bubble territory or levels

unsupported by earnings and thus there is increasing uncertainty about their ability

to maintain such levels.

Being curious, we explore the same tests on another 19 companies, but this

time the companies are chosen to be the ones of lowest credit rating. The Reuters

credit report for S&P500 companies is used. Interestingly, 8 out of the 19 cases

have parameters indicating leverage. This is a much higher percentage than the

leverage result observed from the top 60 companies, which is only 7 out of 60. Table

5.5 shows a summary of MLE result for these 19 companies. This result confirms

our leverage consideration and is consistent with the argument of reaching bubble

territory. For these companies that are not “doing so well”, they are further away

from reaching the bubble territory so that the market fear of price drop is more of

the driving effect to the movement of the volatility.
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Table 5.2: Summary of MLE Result of Top 60 Companies in S&P500, Part One

Ticker Data µ̂ σ̂ δ̂ 1

δ̂−2
Leveraged? −2L0

L1
H1?

MSFT 2540 0.0257 0.05 8.2759 0.1593 No 134.8534 Yes

INTC 2540 -0.5175 0.0322 13.0514 0.0905 No 260.3315 Yes

CSCO 2540 -0.0243 0.0424 13.7732 0.0849 No 89.4885 Yes

GE 2540 -0.2626 0.034 8.0783 0.1645 No 288.5841 Yes

ABC 2203 0.2177 0.3687 0.7076 -0.7737 Yes 309.3126 Yes

PFE 2540 0.0832 0.0604 6.5447 0.2200 No 185.9992 Yes

DELL 2540 0.7661 0.054 13.9961 0.0834 No 82.7444 Yes

C 2540 0.0434 0.0476 9.372 0.1356 No 69.7444 Yes

XOM 2540 0.0131 0.0926 3.8939 0.5280 No 238.2123 Yes

AMAT 2540 -0.0944 0.0448 15.2958 0.0752 No 105.9012 Yes

IBM 2540 0.0291 0.0462 9.0602 0.1416 No 116.9723 Yes

YHOO 1943 0.6803 0.0501 20 0.0556 No 46.3246 Yes

MRK 2540 -0.0539 0.0414 8.0521 0.1652 No 125.986 Yes

CAH 2540 0.2697 0.199 0.3627 -0.6107 Yes 132.5642 Yes

WMT 2540 0.0772 0.0449 9.8492 0.1274 No 125.4873 Yes

AMGN 2540 0.062 0.063 8.0882 0.1643 No 162.254 Yes

EBAY 1324 2.2755 0.2185 8.5785 0.1520 No 496.5704 Yes

BAC 2540 -0.1219 0.0404 9.1234 0.1404 No 107.4701 Yes

ORCL 2540 -0.2135 0.0402 15.3509 0.0749 No 153.6999 Yes
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Table 5.3: Summary of MLE Result of Top 60 Companies in S&P500, Part Two

BRCM 1435 0.3471 0.0554 20.0108 0.0555 No 42.1781 Yes

JNJ 2540 0.003 0.0378 8.3314 0.1579 No 95.4829 Yes

GS 1172 0.719 0.2041 5.4658 0.2885 No 187.0127 Yes

KLAC 2540 -0.0552 0.0434 18.0188 0.0624 No 66.0579 Yes

TWX 2540 0.656 0.053 15.0244 0.0768 No 72.693 Yes

QCOM 2540 0.3045 0.0501 16.5568 0.0687 No 134.5756 Yes

AIG 2540 -0.0909 0.0529 6.0518 0.2468 No 253.3821 Yes

LLY 2540 -0.0419 0.0459 8.4642 0.1547 No 173.0266 Yes

MO 2540 0.2068 0.1679 2.48E-04 -0.5001 Yes 121.876 Yes

CVX 2540 0.0531 0.1331 3.5587 0.6416 No 156.3164 Yes

FNM 2540 0.0973 0.0424 9.4846 0.1336 No 78.1516 Yes

NXTL 2540 -0.9658 0.0387 17.4686 0.0646 No 179.1065 Yes

VZ 2540 -0.3458 0.0357 8.5309 0.1531 No 231.2349 Yes

JPM 2540 -0.4458 0.0341 9.8419 0.1275 No 239.4546 Yes

PG 2540 -0.0559 0.0562 6.5346 0.2205 No 160.0144 Yes

MCK 2287 -0.111 0.1185 4.0868 0.4792 No 276.7385 Yes

FDX 2540 -0.0523 0.0484 8.9672 0.1435 No 105.1398 Yes

NEM 2540 0.0086 0.2761 0.6733 -0.7537 Yes 451.4878 Yes

GM 2540 -0.1581 0.0529 7.5021 0.1817 No 105.3464 Yes

BMY 2540 -0.123 0.0729 4.338 0.4277 No 582.3003 Yes
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Table 5.4: Summary of MLE Result of Top 60 Companies in S&P500, Part Three

WFC 2540 0.2054 0.0523 8.0183 0.1662 No 94.241 Yes

CAT 2540 -0.039 0.0421 9.9601 0.1256 No 60.841 Yes

TXN 2540 -0.4109 0.0361 14.6575 0.0790 No 203.8517 Yes

HD 2540 -0.3925 0.0349 10.3468 0.1198 No 271.1829 Yes

KO 2540 -0.1586 0.0386 7.7848 0.1729 No 146.9029 Yes

MXIM 2540 -0.1797 0.0408 15.8084 0.0724 No 133.2019 Yes

PEP 2540 0.0254 0.0415 9.4295 0.1346 No 85.2386 Yes

SBC 2540 -0.3796 0.0341 9.1148 0.1406 No 260.6096 Yes

ERTS 2540 0.5452 0.0577 15.6207 0.0734 No 75.5943 Yes

MWD 2540 -0.3702 0.0353 12.0341 0.0997 No 225.9111 Yes

CIEN 1734 0.751 0.0449 29.936 0.0358 No 69.228 Yes

ABT 2540 -0.0939 0.042 8.3587 0.1573 No 130.4067 Yes

TYC 2540 0.5017 0.1135 0.0092 -0.5023 Yes 1.06E+03 Yes

MER 2540 -0.0302 0.0581 8.6304 0.1508 No 131.5425 Yes

FDC 2540 0.1777 0.3782 1.1962 -1.2441 Yes 445.1442 Yes

COP 2540 0.1073 0.2022 0.449 -0.6447 Yes 66.5387 Yes

WYE 2540 -0.2977 0.0515 5.6907 0.2710 No 488.7357 Yes

BUD 2540 -0.0698 0.0395 7.5176 0.1812 No 180.543 Yes

UNH 2540 0.5982 0.0586 12.1608 0.0984 No 37.5259 Yes

EMC 2540 -0.3974 0.0372 16.2022 0.0704 No 164.2499 Yes

HPQ 2540 -0.3019 0.05 8.5908 0.1517 No 244.0798 Yes
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Table 5.5: Summary of MLE Result of Low 19 Companies in S&P500

Ticker Data µ̂ σ̂ δ̂ 1

δ̂−2
Leveraged? −2L0

L1
H1?

GLK 2540 -0.0415 0.2211 0.8984 -0.9078 Yes 179.7616 Yes

RBK 2540 0.0349 0.2359 0.4761 -0.6562 Yes 665.1394 Yes

HPC 2540 0.0162 0.1565 4.02E-04 -0.5001 Yes 451.7621 Yes

GTW 2535 -0.4139 0.0398 17.6878 0.0637 No 88.5499 Yes

PLL 2540 0.0482 0.1917 0.0869 -0.5227 Yes 98.9453 Yes

PKI 2540 -0.6418 0.0395 9.2756 0.1374 No 472.6433 Yes

AW 2540 0.1289 0.0452 16.3807 0.0695 No 36.1774 Yes

FSH 2540 -0.1693 0.0401 11.7491 0.1026 No 118.9657 Yes

TMK 2540 -0.0944 0.0423 8.061 0.16499 No 75.1405 Yes

PWER 1571 -0.3288 0.0518 20.1252 0.0552 No 69.1856 Yes

MIL 2540 -0.325 0.037 10.1312 0.1230 No 179.7226 Yes

MDP 2540 0.1373 0.0492 7.9746 0.16734 No 63.6244 Yes

R 2540 0.0521 0.2953 1.0796 -1.0865 Yes 328.2285 Yes

BLI 2540 -0.2109 0.0468 12.0394 0.0996 No 64.481 Yes

MYG 2540 -0.3555 0.0381 9.6224 0.1312 No 216.7474 Yes

BF-b 2540 0.2714 0.052 7.8122 0.1721 No 66.6923 Yes

PGL 2540 0.1091 0.21 0.9159 -0.9224 Yes 78.3922 Yes

SNA 2540 0.0941 0.207 0.7915 -0.8275 Yes 270.4967 Yes

PMTC 2540 -1.0595 0.036 17.5679 0.0642 No 181.2074 Yes

MKC 2540 0.106 0.2785 1.0816 -1.0889 Yes 152.8774 Yes

91



5.4 Forward PDE in The Diffusion Case

In Sections 6.4 and 6.5 we derive in the general framework the Backward Par-

tial Integro-Differential Equations and Forward Partial Integro-Differential Equa-

tions for option pricing. In these sections, the processes are general Markov pro-

cesses without any further assumptions. Here we use the result in Section 6.5 and

develop the forward equations in our BESQ case.

We consider the log price process Xt = ln(St), and then apply Ito’s lemma to

(5.4) to obtain

dXt =

[
r− l− 1

2
σ2(2− δ)2

(
eXt

S0e(r−l)t

) 2
δ−2
]
dt+ σ(2− δ)

(
eXt

S0e(r−l)t

) 1
δ−2

dWt. (5.7)

We know that in this case, we have a diffusion model without the jump component.

The generator of Xt is

IX(f)(x, u) = a(x, u)
∂f

∂x
+

1

2
b(x, u)

∂2f

∂x2
,

where

a(x, u) = r − l − 1

2
σ2(2− δ)2

(
eXt

S0e(r−l)t

) 2
δ−2

,

b(x, u) = σ2(2− δ)2

(
ex

S0e(r−l)u

) 2
δ−2

.

Hence, by the result in (6.26), we have
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qT (y, T ) = − ∂

∂y
[a(y, T )q(y, T )] +

1

2

∂2

∂y2
[b(y, T )q(y, T )]

= −(r − l)
∂

∂y
q(y, T ) +

σ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

∂

∂y
[e

2y
δ−2 q(y, T )]

+
σ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

∂2

∂y2
[e

2y
δ−2 q(y, T )].

For European Call option, we know that

C(K,T ) = e−rT
∫ ∞

lnK

q(y, T )(ey −K) dy.

Again q(t, x, T, y) denotes the transition density for the process X(t) to be at level

y for time T > t, given it is at level x at time t. We keep the dependence of q on y

and T , and suppress the dependence on x and t.

It is easy to see that

CK = −e−rT
∫ ∞

lnK

q(y, T ) dy,

e−rT
∫ ∞

lnK

eyq(y, T ) dy = C −KCK ,

KCKK(K,T ) = e−rT q(lnK,T ),

and

CT = −rC + e−rT
∫ ∞

lnK

qT (y, T )(ey −K) dy. (5.8)
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Putting qT (y, T ) into (5.8), we have

CT = −rC − (r − l)e−rT
∫ ∞

lnK

(ey −K)
∂

∂y
q(y, T ) dy

+
e−rTσ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

∫ ∞

lnK

(ey −K)
∂

∂y
[e

2y
δ−2 q(y, T )] dy

+
e−rTσ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

∫ ∞

lnK

(ey −K)
∂2

∂y2
[e

2y
δ−2 q(y, T )] dy

= −rC + (r − l)e−rT
∫ ∞

lnK

eyq(y, T ) dy

+
e−rTσ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

[−
∫ ∞

lnK

e
δy

δ−2 q(y, T ) dy]

+
e−rTσ2(2− δ)2

2(S0e(r−l)T )
2

δ−2

[KK
2

δ−2 q(lnK,T ) +

∫ ∞

lnK

e
δy

δ−2 q(y, T ) dy]

= −rC + (r − l)(C −KCK) +
σ2(2− δ)2K

δ
δ−2

2(S0e(r−l)T )
2

δ−2

KCKK(K,T )

= −lC − (r − l)KCK +
σ2(2− δ)2K

2δ−2
δ−2

2(S0e(r−l)T )
2

δ−2

CKK(K,T )

We switch to the log strike space by defining

k = lnK.

This transform will benefit the discretization of the system. This is because strike

prices collected from real market data are often sparsely distributed in a large range,

which brings difficulty to the discretization of the system when we always require the

spacing of K be small enough to achieve convergence. Because of the large range of

strike prices, small spacing means too many points which substantially slow down

the calculation, although most of these points are not even traded strikes of our

interest. By the transform from strike space to log strike space, we can achieve the

small spacing without making the system huge. We define
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c(k, T ) = C(ek, T ) = C(K,T ),

so that

KCK(K,T ) = ck(k, T ) CKK(K,T ) = e−2k[ckk(k, T )− ck(k, T )].

then, the forward PDE becomes

cT (k, T ) = −lc− (r − l)ck(k, T )

+
σ2(2− δ)2e

2k
δ−2

2(S0e(r−l)T )
2

δ−2

[ckk(k, T )− ck(k, T )] (5.9)

5.4.1 Discretization

We discretize this system with N + 1 mesh points in k-direction and M + 1

mesh points in T -direction. So:

∆k =
kmax − kmin

N
, ∆T =

Tmax − Tmin
M

.

Hence T1 = Tmin, TM+1 = Tmax, Tj = T1 + (j − 1)∆T for all j = 1, . . . ,M + 1,

and k1 = kmin, kN+1 = kmax, ki = k1 + (i − 1)∆k for all i = 1, . . . , N + 1, where

kmin = lnKmin, kmax = lnKmax.

Using

ci,j ≈ c(ki, Tj),

we approximate the derivatives in k using centered differences:

cT (ki, Tj) ≈
ci,j+1 − ci,j

∆T
;
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ck(ki, Tj) ≈
ci+1,j − ci−1,j

2∆k
;

ckk(ki, Tj) ≈
ci+1,j + ci−1,j − 2ci,j

(∆k)2 .

Initial condition

c(ki, T1) = [ST1 − exp(ki)]
+ for all i = 1, . . . , N + 1.

Boundary conditions

c(k1, Tj) = ST1e
−lTj − exp(k1)e

−rTj for all j = 1, . . . ,M + 1,

c(kN+1, Tj) = 0 for all j = 1, . . . ,M + 1.

Using these notations, now we discretize equation (5.9) using implicit scheme.

ci,j+1 − ci,j
∆T

= −lci,j+1 − (r − l)
ci+1,j+1 − ci−1,j+1

2∆K

+
σ2(2− δ)2e

2ki
δ−2

2(S0e(r−l)Tj+1)
2

δ−2

[
ci+1,j+1 + ci−1,j+1 − 2ci,j+1

(∆k)2 − ci+1,j+1 − ci−1,j+1

2∆k

]
(5.10)

we set λ = ∆T
2∆k

, γ = σ2(2−δ)2

2S0

2
δ−2

, and rearrange (5.10) to find the following discretized

system. Indeed, the interest rates and dividend yields are not constants as what we

have presented in the previous formulation. In fact they vary across time. According

to the data we obtain together with strikes and maturities, we calculate all the

needed interest rates and dividend rates by assuming piece wise constant forward

rates. In the following discretized system, we will see r and l both have time index.
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[
(l − r)λ− (2 + ∆k)∆Tγe

2
δ−2

[ki−(rj+1−lj+1)Tj+1]

2(∆k)2

]
ci−1,j+1

+

[
1 + l∆T +

2∆Tγe
2

δ−2
[ki−(rj+1−lj+1)Tj+1]

(∆k)2

]
ci,j+1

+

[
(rj+1 − lj+1)λ+

(∆k − 2)∆Tγe
2

δ−2
[ki−(rj+1−lj+1)Tj+1]

2(∆k)2

]
ci+1,j+1

= ci,j. (5.11)

During each time step, we will then solve the tri-diagonal matrix system (5.11).

5.4.2 Risk-Neutral Estimation by Solving PDE

The parameters employed in our study are obtained by calibrating our lever-

aged Lévy model prices to market data. The forward PIDE formulation allows us to

receive option prices for all maturities and all strikes after one execution of the PDE

solver. The prices used in the calibration are those of all exchange traded strikes

lying within 20% of the forward price on either side. The data is drawn from CRSP

daily option data on S&P500 for December 31, 2003. The criterion for selection

of the parameters is the minimization over the parameter space, (δ, σ), of the root

mean square error on an equally weighted basis between market prices and model

prices, specifically:

min
δ,σ

z =

√√√√ 1

n

n∑
i=1

(marketpricei −modelpricei(δ, σ))2.

The S&P500 spot price on December 31, 2003 was 1110.595285. Market

prices used in parameter estimation are for out-of-money options on account of
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their relative liquidity. More exactly, for strikes below the forward price we use put

prices and for strikes above the forward price we use call prices. There are total

32 calls and 66 puts of 5 maturities. A summary of maturities we choose and the

corresponding interest and dividend rates can be found in Table 5.6.

Table 5.6: Summary of T , r and q for S&P500 on December 31, 2003. Strikes vs.

Option prices, ? - Model prices, o - Market prices

S0 T r q

1110.595285 0.139350188 0.010861433 0.01615076

1110.595285 0.215852921 0.011020496 0.016844507

1110.595285 0.464372957 0.011821679 0.01599182

1110.595285 0.713006837 0.012776774 0.015944081

1110.595285 0.96175456 0.014074942 0.01647996

The model prices are calculated on a fine mesh of both maturities and strikes

and the ones that correspond to the strikes and maturities of the market prices

are calculated using cubic spline interpolation. Table 5.7 contains the calibrated

parameters. The fitted data plot is shown in Figure 5.2.

Table 5.7: Calibrated Parameters for S&P500 on December 31, 2003

δ σ z

1.6729 0.4849 1.4203

The calibrated value for parameter δ is 1.6729, which implies that α = −3.0572
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(δ = 1
α
+2), negative α value indicates the leverage effect. However, in the context of

diffusions, given their documented inability to address certain aspects of the density

(e.g. long-tailedness and skewness), it is possible that estimated risk neutral leverage

for example is just a reflection of well documented skewness and has little to do with

volatilities actually moving with a market drop.

We now show some convergence results demonstrating numerical stability. In

Table 5.8, we illustrate some examples of convergence as ∆T and ∆k approach zero.

For all the options in the table, the maturity is T = 0.464372957 and the prices

shown there are all for call options. This result shows that the scheme is stable and

convergent.
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Figure 5.2: Data Fitting For Calls of All Strikes and Maturities on 12-31-2003.

Strikes vs. Option prices, ? - Model prices, o - Market prices
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Table 5.8: Convergence results for maturity T = 0.464372957 with various strikes.

K
/
M,N 365, 99 365, 199 365, 299 365, 399 365, 799

1125 39.1534 39.1617 39.1637 39.1645 39.1679

1150 28.1146 28.1253 28.1276 28.1285 28.1319

1175 19.2731 19.2828 19.2848 19.2857 19.2887

1200 12.5320 12.5377 12.5390 12.5395 12.5418

1250 4.3969 4.3912 4.3904 4.3901 4.3908

1300 1.1450 1.1345 1.1326 1.1319 1.1317

K
/
M,N 500, 99 500, 199 500, 299 500, 399 500, 799

1125 39.2099 39.2182 39.2202 39.2210 39.2244

1150 28.1664 28.1770 28.1793 28.1803 28.1836

1175 19.3170 19.32678 19.3289 19.3297 19.3326

1200 12.5663 12.5721 12.5734 12.5739 12.5762

1250 4.4121 4.4066 4.4057 4.4054 4.4061

1300 1.1487 1.1382 1.1363 1.1356 1.1354

K
/
M,N 1000, 99 1000, 199 1000, 299 1000, 399 1000, 799

1125 39.2228 39.2311 39.2330 39.2338 39.2372

1150 28.1772 28.1878 28.1901 28.1911 28.1944

1175 19.3244 19.3342 19.3363 19.3371 19.3401

1200 12.5697 12.5755 12.5768 12.5773 12.5796

1250 4.4090 4.4035 4.4026 4.4024 4.4031

1300 1.1444 1.1339 1.1320 1.1313 1.1311
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Chapter 6

THE DISCRETE CASE

In this chapter we consider pure jump Lévy processes as our building blocks

for constructing the Leveraged Lévy model. It is argued in [11] that the use of a

jump process with infinite activity, i.e. one allowing infinitely many jumps in any

time interval, effectively subsumes the need for an additional diffusion component.

We replace Brownian motion with a Lévy process running at what we call the local

speed function and this local speed function is still a deterministic function of the

level of the stock price and time. The Lévy process involved in this chapter is the

CGMY process which was introduced in the 2002 paper by Carr, Geman, Madan

and Yor ([11]). The parameters in the model are estimated using the Generalized

Methods of Moment (GMM). A more complicated forward PIDE for options pricing

under risk-neutral condition is developed and used to calibrate the parameters to

the same option data used in Chapter 5. We conclude that this model with only

exposure to pure jumps fits the data much better than the model in Chapter 5 where

the uncertainty is modeled by Brownian motion.

6.1 The Model

The growth rate for the stock is µ and we suggest that the local absolute

volatility be of the form σS1+α
t e−αµt. We would also like Ste

−µt to be a positive
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martingale. We incorporate the change in volatility using time changes and begin

with a base Lévy process (here we are considering the pure jump case) with the

property that exp(Z(t) + ωt) is a martingale. Our proposed model for the stock

price process is

Ste
−µt = exp

(
Z
(∫ t

0

σ2S2α
u e

−2αµu du
)

+ ω

∫ t

0

σ2Su
2αe−2αµu du

)
. (6.1)

We now relate to Lamperti processes by defining the time change

ζ(t) =

∫ t

0

σ2Su
2αe−2αµu du.

Let η(t) = inf{s|ζ(s) ≥ t}, and we have

t =

∫ η(t)

0

σ2S2α
u e

−2αµu du. (6.2)

Evaluating equation (6.1) at η(t) we obtain that

Sη(t)e
−µη(t) = exp(Z(t) + ωt). (6.3)

We also recognize from differentiating (6.2) that

η′(t) =
1

σ2
S−2α
η(t) e

2αµη(t)

=
1

σ2
[Sη(t)e

−µη(t)]
−2α

=
1

σ2
exp(−2αZ(t)− 2αωt).

Integrating both sides we have that (noticing η(0) = 0)

η(t) =
1

σ2

∫ t

0

exp(−2αZ(s)− 2αωs) ds.
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Let β = − 1
2α

1 , and obviously β 6= 0 which we shall be aware throughout the

rest of the chapter. Let the Lévy process ξ(β)(t) be

ξ(β)(t) =
1

β
(Z(t) + ωt). (6.4)

Also now

σ2η(t) =

∫ t

0

exp

(
1

β
(Z(s) + ωs

)
ds.

From the Lamperti representation we have that

exp(ξ(β)(t)) = L(ξ(β)(t))(σ2η(t)).

But from (6.3) we have

S
1/β
η(t)e

−µη(t)/β = exp(
1

β
(Z(t) + ωt)

= exp(ξ(β)(t))

= L(ξ(β)(t))(σ2η(t)).

It follows that

Ste
−µt = [L(ξ(β)(t))(σ2t)]

β
.

Noticing the scaling property of Lamperti processes, hence the general model for

the stock price is

St = S0e
µtσ2β[L(ξ(β)(t))(t)]

β
. (6.5)

In the next section, we derive the infinitesimal generator of St which will be

of important use in our empirical investigation.

1Note that we exclude α = 0 which is the constant relative volatility case, without loss of

generality under our emphasis of the setup of the Model
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6.2 Deriving the Infinitesimal Generator for St

Our model for the stock price is basically presenting St as a Lamperti process

to some power:

St = S0e
µtσ2β[L(t)]β,

where L(t) is the Lamperti process associated with a Lévy process, which we now

denote as ξ(t). However, in this pure jump case we no longer know what the Lam-

perti process is specifically2 , our knowledge of the model is solely based on the

knowledge of the underlying Lévy and what is given in the model construction.

Now let us begin to derive the infinitesimal generator of S from the generator of ξ.

The infinitesimal generator will then be used in the context of conditional expecta-

tion to help set up both the GMM estimation and the forward equation for option

pricing. Although the process is nontrivial, it is accessible given the knowledge of

the underlying Lévy and the model connection.

Assume the Lévy triplet for ξ(t) is (a, 0, kξ(x)dx), where a is the drift coeffi-

cient associated with a certain truncation function. According to a theorem due to

Ito and Neveu (through applying results about Fourier and Fourier inversion trans-

formation, and applying the Lévy-Khinchine formula, see [3] Page 139 for detail),

2In Chapter 5 we incorporate the BESQ process as the continuous Lamperti processes since

BESQ is the only family of such processes and we know very well the law and other properties of

BESQ process. Here in the pure jump case, we have no longer this knowledge. Dr. Madan and

Dr. Yor attempted to study the characteristics of the associated Lamperti, but only came to an

unsolved iterative equation.
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the infinitesimal generator of ξ(t) is

Iξf(ξ) = af ′(ξ) +

∫
R−{0}

[f(ξ + η)− f(ξ)− f ′(ξ)h(η)]kξ(η) dη.

From the result in 1994 paper ([71]) we know that IL, the generator of the associated

Lamperti L(t) is related to Iξ in the following way

ILf(x) =
1

x
Iξ(f ◦ exp)(ln x).

Hence, we see that

ILf(x) =
1

x

[
axf ′(x) +

∫
R−{0}

[f(xeη)− f(x)− xf ′(x)h(η)]kξ(η) dη
]
.

We can now calculate the generator of St via the following computation:

E[f(St)− f(S0)]

= E[f(S0e
µtσ2βLβt )− f(S0)]

= E

[∫ t

0

f ′(Su−)µSu− du+

∫ t

0

IL(f(S0e
µuσ2βLβu)) du

]
. (6.6)

We now work on the second term

IL(f(S0e
µuσ2βLβu))

=
1

L

[
aL

∂

∂L
f(S0e

µuσ2βLβu) +

∫
R−{0}

[
f(S0e

µuσ2β(Lue
η)β)

−f(S0e
µuσ2βLβu)− L

∂

∂L
f(S0e

µuσ2βLβu)h(η)
]
kξ(η) dη

]
, (6.7)

the term

∂

∂L
f(S0e

µuσ2βLβu) = f ′(Su)S0e
µuσ2ββLβ−1

u

= f ′(Su)
Suβ

L
,
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or equivalently,

L
∂

∂L
f(S0e

µuσ2βLβu) = βSuf
′(Su).

We also have from Su = S0e
µuσ2βLβu, that Lu =

(
Su

S0eµuσ2β

)1/β

. We may now write

(6.7) in terms of S

IL(f(S0e
µuσ2βLβu))

=

(
Su

S0eµuσ2β

)−1/β[
aβSuf

′(Su)

+

∫
R−{0}

[
f(Su−e

βη)− f(Su−)− βSu−f
′(Su−)h(η)

]
kξ(η) dη

]
.

Substituting back in (6.6), we get

E[f(St)− f(S0)]

= E

[∫ t

0

µSu−f
′(Su−) du+

∫ t

0

du

(
Su

S0eµuσ2β

)−1/β[
aβSuf

′(Su) +∫
R−{0}

[
f(Su−e

βη)− f(Su−)− βSu−f
′(Su−)h(η)

]
kξ(η) dη

]]
.

We know it is also true that

E[f(St)− f(S0)] = E

[∫ t

0

IS(f)(Su) du

]
,

so it follows that

IS(f)(x) = µxf ′(x) +

(
x

S0eµuσ2β

)−1/β[
aβxf ′(x) +∫

R−{0}

[
f(xeβη)− f(x)− βxf ′(x)h(η)

]
kξ(η) dη

]
.

By rearranging the terms, we write the infinitesimal generator of St as
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IS(f)(x, u) =

[
µ+

(
x

S0eµuσ2β

)−1/β

aβ

]
xf ′(x)

+

(
x

S0eµuσ2β

)−1/β ∫
R−{0}

[
f(xeβη)− f(x)− βxf ′(x)h(η)

]
kξ(η) dη.

With q denoting the dividend yield, and changing µ to µ−q in IS, we have the more

general form

IS(f)(x, u)

=

[
(µ− q) +

(
x

S0e(µ−q)uσ2β

)−1/β

aβ

]
xf ′(x)

+

(
x

S0e(µ−q)uσ2β

)−1
β
∫
R−{0}

[
f(xeβη)− f(x)− βxf ′(x)h(η)

]
kξ(η) dη. (6.8)

6.3 GMM Estimation

Generalized Methods of Moment (GMM) estimation is one of two develop-

ments in econometrics in the 80s that revolutionized empirical work in macroeco-

nomics. (The other being the understanding of unit roots and cointegration). The

path breaking articles on GMM were those of Hansen (1982, [33]) and Hansen and

Singleton (1982, [35]).

GMM, is an econometric procedure for estimating the parameters of a model.

Hansen (1982, [33]) developed GMM as an extension to the classical method of

moments estimators dating back more than a century. The basic idea is to choose

parameters of the model so as to match the moments of the model to those of the

data as closely as possible. The moment conditions are chosen by the analyst based

on the problem at hand. A weighting matrix determines the relative importance

108



of matching each moment. Most common estimation procedures can be couched in

this framework, including ordinary least squares, instrumental variables estimators,

two-stage least squares, and in some cases maximum likelihood.

A key advantage to GMM over other estimation procedures is that the statis-

tical assumptions required for hypothesis testing are quite weak. Of course, nothing

comes for free. The cost is a loss of efficiency over methods such as Maximum

Likelihood (MLE). One can view MLE as a limiting case of GMM: under MLE the

distribution of errors is specified so in a sense all of the moments are incorporated.

The trouble with MLE is often that the errors may not follow a known distribution

(such as the Normal, which is almost the universal standard in MLE). Thus, GMM

offers a compromise between the efficiency of MLE and robustness to deviations

from normality (or other distributional forms). Also note that, except for some

special cases, the GMM results are asymptotic. These are the reasons we are to use

GMM to estimate the parameters in our model.

Due to the lack of knowledge of the law or characteristic function of our lever-

aged Lévy model, we implement the Generalized Methods of Moments (GMM)

estimation to estimate our parameters.

6.3.1 Introduction of GMM

GMM chooses the parameters which minimize the quadratic

JT = m(θ)′Wm(θ), (6.9)
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where θ is a k-vector of parameters, m(θ) is an L-vector of orthogonality conditions,

and W is an L × L positive definite weighting matrix. The objective function has

a least-squares flavor.

The moment conditions m(θ) set means of functions of the data and parame-

ters to zero. One simple restriction estimates the mean µ of data yt

E[yt] = µ,

given the population orthogonality condition

E[yt − µ] = 0,

and sample counterpart

m(θ) =
1

T

T∑
t=1

yt − µ.

Another restriction, on the variance (σ2), is

E[(yt − µ)2] = σ2,

giving the system

E

 yt − µ

(yt − µ)2 − σ2

 =

 0

0

 .
Note that the moment condition for the mean is needed to estimate the variance.

Similarly, a covariance restriction would be

E[(xt − µx)(yt − µy)] = σx,y,
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giving the system

E


xt − µx

yt − µy

(xt − µx)(yt − µy)− σx,y

 =


0

0

0

 .

The terms µx, µy, σx, σy and σx,y are parameters we wish to estimate, whereas xt

and yt are data.

A key ingredient to GMM is the specification of the moment, or orthogonality,

conditions m(θ). The moment conditions are commonly based on the error terms

from an economic model. Consider a general model of the form

y[T×1] = f(X[T×k]; θ) + ε, (6.10)

where f can be a nonlinear function. We then will need L ≥ k (independent) re-

strictions in order to identify the k-vector of parameters, θ. The moment conditions

restrict unconditional means of the data to be zero. The population version of each

of these restrictions (l = 1, . . . , L) is of the form

E[ml(y,X; θ)] = 0.

The sample analog is

ml(y,X; θ̂) =
1

T

T∑
t=1

ml,t(yt,xt; θ̂),

where yt and xt denote row t of the matrices y and X, transposed to be column vec-

tors. Note that mt (with the time subscript) indicates an observation-by-observation
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set of values, while m (no time subscript) indicates the moment (average) of the

mt’s.

The moment conditions utilized, though somewhat arbitrary, are often guided

by economic principles and the model of interest. For example, in finance the return

on an asset of this period is generally modeled as unpredictable by (orthogonal to)

information in prior periods, so moment conditions often incorporate past returns,

interest rates, etc.

Note that there must be at least as many moment conditions as there are pa-

rameters to achieve identification. If you have too few restrictions, you can “create”

more by using instruments. Returning to (6.10), suppose E[εtxt] 6= 0, but that

E[εtzt] = 0. The zt’s are referred to as instruments. In sample, the model errors

are

e(θ̂) = y − f(X; θ̂), (6.11)

giving the moment conditions

m(θ) =
1

T

T∑
t=1

zte(yt,xt; θ) =
1

T
Z′e(y,X; θ̂). (6.12)

This can actually be generalized for simultaneous equations by letting et represent

the vector of residuals for each equation at time t, giving mt = εt⊗zt. The notation

⊗ indicates the Kroneker product, which multiplies every element of εt by zt.

This approach with the instruments changes the question of “which moments”

to “which Z”. It is common to include a constant as an instrument to restrict the
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model errors to have mean zero.

Illustration of a simple example:

Suppose we have a simple model yt = α + xtβ + εt and three observations of

{xt, yt}: {0, 1}, {1, 3}, {2, 5}. We need (at least) two moment conditions to identify

α and β. The natural ones to choose are E[εt] = 0 and E[xtεt] = 0, the normal

equations from OLS. In this case, zt = [1xt]. In sample,

m =

 m1

m2

 =
1

3

3∑
t=1

z′tet =
1

3

3∑
t=1

 1et

xtet

 =
1

3

3∑
t=1

 1(yt − α− xtβ)

xt(yt − α− xtβ)

 .
In this case, the objective function is minimized when m = 0, or

m1 =
1

3
[(1− α− 0β) + (3− α− 1β) + (5− α− 2β)]

= 3− α− β = 0, (6.13)

m2 =
1

3
[0(1− α− 0β) + 1(3− α− 1β) + 2(5− α− 2β)]

=
1

3
(13− 3α− 5β) = 0.

(6.14)

Equation (6.13) gives α = 3− β, which can be substituted into (6.14) to get β = 2,

implying α = 1.

The above analysis ignored the presence of the weighting matrix W in the

minimization of the objective function (assuming it is equal to the identity matrix).

We will now consider the role of the weighting matrix.

If there are as many moment conditions as parameters, the moments will all be
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perfectly matched and the objective function JT in (6.9) will have a value of zero.

This is referred to as the “just-identified” case. In the situation where there are

more moment conditions than parameters (“over-identified”) not all of the moment

restrictions will be satisfied so a weighting matrix W determines the relative impor-

tance of the various moment conditions. An important contribution of Hansen (1982,

[33]) is to point out that setting W = S−1, the inverse of an asymptotic covariance

matrix, is optimal in the sense that it yields θ̂ with the smallest asymptotic variance.

Intuitively, more weight is given to the moment conditions with less uncertainty. S

is also known as the spectral density matrix evaluated at frequency zero. There

are many approaches for estimating S which can account for various forms of het-

eroskedasticity and/or serial correlation, including White (1980, [69]), the Bartlett

kernel using by Newey and West (1987, [53]), the Parzen kernel of Gallant (1987,

[29]), the truncated kernel of Hansen (1982, [33]) and Hansen and Hodrick (1980,

[34]), or the “automatic” bandwidth selection from Andrews and Monahan (1992,

[2]) with Quadratic-Spectral or Tukey-Hanning kernels. More details of theory of

Generalized Method of Moments can be found in e.g. [32].

The Spectral Density Matrix for the kernel-based estimators ( White, Hansen,

Newey-West and Gallant) is given by

Ŝ = Ŝ0 +
J∑
j=1

w(j)[Ŝj + Ŝ′j],

where
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Ŝj =
T

T − k

1

T

T∑
t=j+1

mt(θ̂)mt−j(θ̂)
′

=
1

T − k

T∑
t=j+1

[εt ⊗ zt][εt−j ⊗ zt−j]
′

=
1

T − k

T∑
t=j+1

[εtε
′
t−j ⊗ ztz

′
t−j].

The T
T−k term is a small sample degrees of freedom correction. The term w(j) is the

kernel weight, and it is what distinguishes the various estimators. Terms beyond

the lag truncation parameter J are given weights of zero in kernel other than the

Quadratic-Spectral and Tukey-Hanning.

In general, and “optimal” weighting matrix requires an estimate of the param-

eter vector, yet at the same time, estimating the parameters requires a weighting

matrix. To solve this dependency, common practice is to set the initial weighting

matrix to the identity, and then calculate the parameter estimates. A new weight-

ing matrix is calculated with the last parameter estimates, then new parameter

estimates with the updated weighting matrix.

W0 = I,

θ̂1 = argmin

[
m(θ)′W0m(θ)

]
,

W1 = f(θ̂1),

θ̂2 = argmin

[
m(θ)′W1m(θ)

]
.

The process can then be iterated further by calculating W2 then minimizing to find
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θ̂3 and so on. In general, iterating to end with θ̂n is called n-stage GMM. You can

also iterate until the change in objective function is sufficiently small.

6.3.2 Using GMM in CGMY case

We set Xt = lnSt to be the log price. We know that for any function f

Et[f(Xt+h)− f(Xt)] = Et[

∫ t+h

t

IX(f)(Xu, u) du]

≈ Et[hIx(f)(Xt, t)],

where IX(f)(Xt, t) is the infinitesimal generator of Xt which, from Section 6.5 we

know as

IX(f)(x, u) = a(x, u)
∂

∂x
f +

∫
R−{0}

[f(x+ η)− f(x)− η
∂

∂x
f ]k(x, u, η) dη,

where

a(x, u) = µ+ aβ
( ex

S0eµuσ2β

)− 1
β

,

k(x, u, ν) =

(
ex

S0eµuσ2β

)− 1
β

kCGMY (ν).

Recall a = γ+ω
β

, and γ + ω = −
∫
R−{0}(e

ν − 1− ν)kCGMY (ν) dν.

To use the GMM procedure, we provide the orthogonality conditions for dif-

ferent choices of Zt as

E[(f(Xt+h)− f(Xt)− hIX(f)(Xt, t))Zt] = 0. (6.15)
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which will be replaced in the GMM procedure by its sample counterpart. Zt are

taken to be instruments known at time t, we use constant C, and St, St − St−1,

(St − St−1)
2, St − 2St−1 + St−2, (St − 2St−1 + St−2)

2.

We take the function f to be

f(x) = e−λ(x−lnS0) = S0
λe−λx

for some chosen λ. So then

f ′(x) = −λS0
λe−λx.

The function f , by construction, acts like a Laplace transform on scaled log price of

stock. Since ln S
S0

will be in a range of 1, we choose λ to be between 0.25 and 2 with

step-size 0.25. We have 8 functions and 6 instruments yielding 48 orthogonalities to

be tested simultaneously.

Now we should compute IX(f)(Xt, t)):

IX(f)(Xt, t)

= (−λ)S0
λ

[
µ+ (γ + ω)

( St
S0eµtσ2β

)− 1
β
]
e−λXt

+CS0
λ
( St
S0eµtσ2β

)− 1
β
∫
R−{0}

[e−λ(Xt+η) − e−λXt + ληe−λXt ]
eAη−B|η|

|η|1+Y
dη

= (−λ)S0
λ

[
µ+ (γ + ω)

( St
S0eµtσ2β

)− 1
β
]
e−λXt + CS0

λ
( St
S0eµtσ2β

)− 1
β

e−λXtφ(λ),

where φ(λ) is

φ(λ) =

∫
R−{0}

[e−λη − 1 + λη]
eAη−B|η|

|η|1+Y
dη.
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We see that φ(λ) is related to γ + ω = −
∫
R−{0}(e

ν − 1 − ν)kCGMY (ν) dν. In fact,

γ + ω = −Cφ(−1). Analogous to the evaluation of γ + ω in the Appendix and by

knowing the value

γ + ω =

C
[
Γ(1− Y )(MY−1 −GY−1)− Γ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ]

]
,

Y < 0;

CΓ(1− Y )

[
MY−1 −GY−1 + (M−1)Y

Y
− MY

Y
+ (G+1)Y

Y
− GY

Y

]
,

0 < Y < 1;

C Γ(2−Y )
Y (1−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY + YMY−1 − Y GY−1

]
,

1 < Y < 2.

as well as

γ =

∫
R−{0}

h(x)kCGMY (x) dx

=

∫
R−{0}

xkCGMY (x) dx

=

{
CΓ(1− Y )(MY−1 −GY−1), Y < 1,

CΓ(2−Y )
1−Y (MY−1 −GY−1), Y > 1.

We can evaluate φ(λ) as:
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φ(λ) =

λΓ(1− Y )(MY−1 −GY−1) + Γ(−Y )[(M + λ)Y −MY + (G− λ)Y −GY ],

Y < 0;

λΓ(1− Y )(MY−1 −GY−1)− Γ(1−Y )
Y

[(M + λ)Y −MY + (G− λ)Y −GY ],

0 < Y < 1;

λΓ(2−Y )
(1−Y )

(MY−1 −GY−1)− Γ(2−Y )
Y (1−Y )

[(M + λ)Y −MY + (G− λ)Y −GY ],

1 < Y < 2.

Putting the results together, in GMM condition (6.15) we have,

f(Xt+h)− f(Xt)− hIX(f)(Xt, t)

= S0
λe−λXt+h − S0

λe−λXt

−hS0
λe−λXt

[
−λµ+

( St
S0eµtσ2β

)− 1
β

(Cφ(λ)− λ(γ + ω))

]
.

6.3.3 Estimation Results

We take our data from the CRSP indices daily data of S&P500 from Jan. 4th,

1993 to Dec. 31st, 2004. The GMM experiment is carried out in Matlab using a

package written by Dr. Michael T. Chiff from Krannert Graduate School of Man-

agement. In the “just-identified” case, where there are as many moment conditions

as parameters, we use λ = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 as the seven values to

account for the variation of function f and only the constant as the instrument. In

this situation the choice of weighting matrix is irrelevant and so we simply use the

identity matrix, since the moments will all be perfectly matched and the objective
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function JT in (6.9) will have a value of zero. In fact, the weighting matrix is set to

be (IN ⊗ Z′Z)−1 to incorporate the magnitudes of the instruments, in order to deal

with the issue of estimation being sensitive to scaling of the data when using iden-

tity matrix as the weighting matrix. The weights attached to moments are shown

in Table 6.1. The result of parameter estimation is shown in Table 6.2.

Table 6.1: Weights Attached to Moments When W = (IN ⊗ Z′Z)−1 in the Just-

identified Case

Moment 1 2 3 4 5 6 7

C 0.0310 0.0657 0.1025 0.1407 0.1798 0.2197 0.2606

G 0.0305 0.0649 0.1016 0.1400 0.1797 0.2206 0.2627

M 0.0315 0.0665 0.1034 0.1413 0.1798 0.2189 0.2586

Y 0.0310 0.0657 0.1025 0.1407 0.1798 0.2197 0.2606

µ 0.0353 0.0755 0.1150 0.1511 0.1825 0.2092 0.2313

σ 0.0310 0.0657 0.1025 0.1407 0.1798 0.2197 0.2606

β 0.0452 0.0877 0.1248 0.1553 0.1793 0.1974 0.2103

Table 6.2: GMM Estimation of Parameters in Just-identified Case

C G M Y µ σ β

Estimates 20.0417 36.3878 36.8605 1.1987 0.0299 0.6747 1.0042

S.E. 0.1090 0.0477 0.0498 0.0121 0.0010 0.0080 0.0066

In the “over-identified” situation, where there are more moment conditions
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than parameters, we use eight equations setting λ = 0.25, 0.5, 0.75, 1.0, 1.25,

1.5, 1.75, 2.0, and the instruments Zt are taken to be constant C, St, St − St−1,

(St − St−1)
2, St − 2St−1 + St−2, (St − 2St−1 + St−2)

2. Hence there are 48 moment

conditions and 7 parameters. The weighting matrix of initial iteration is set to be

W0 = (IN ⊗ Z′Z)−1. In the following iterations the “Newey-West” method ([53]) is

used to calculate the spectral density matrix. The final minimized objective function

has value of 0.0141. The estimation result is summarized in Table 6.3 and other

output is as following.

We gladly observe that in both cases the estimates β show leverage effect as

we expect. In the just-identified case, β = 1.0042 implies α = −0.4979 while in

the over-identified case, β = 3.5047 which implies α = −0.1427. Both values are

negative hence admits a negative relation between local volatility and spot price.

===============================================================

GMM ESTIMATION PROGRAM

===============================================================

7 Parameters, 48 Moment Conditions

8 Equation Model, 6 Instruments

3021 Observations

2 Passes, Max., 100 Iterations/Pass

Search Direction: Marquardt (lambda >= 0.01)
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Derivatives: Numerical

Initial Weighting Matrix: inv(Z’Z)

Weighting Matrix: Optimal

Spectral Density Matrix: Newey-West (12 lags)

==============================================================

------------------- GMM MOMENT CONDITIONS ------------------

Moment Std Err t-stat p-val

Moment 1 0.000041 0.000038 1.06 0.2892

Moment 2 0.059542 0.039329 1.51 0.1300

Moment 3 0.000276 0.000476 0.58 0.5618

Moment 4 -0.035500 0.024291 -1.46 0.1439

Moment 5 -0.000421 0.000763 -0.55 0.5814

Moment 6 -0.011596 0.048000 -0.24 0.8091

Moment 7 0.000060 0.000063 0.95 0.3441

Moment 8 0.087927 0.062781 1.40 0.1614

Moment 9 0.000430 0.000768 0.56 0.5750

Moment 10 -0.056959 0.038882 -1.46 0.1429

Moment 11 -0.000624 0.001217 -0.51 0.6080

Moment 12 -0.018815 0.073939 -0.25 0.7991

Moment 13 0.000066 0.000078 0.84 0.4029
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Moment 14 0.097007 0.075440 1.29 0.1985

Moment 15 0.000499 0.000933 0.53 0.5930

Moment 16 -0.068758 0.046892 -1.47 0.1426

Moment 17 -0.000694 0.001462 -0.47 0.6349

Moment 18 -0.023223 0.085789 -0.27 0.7866

Moment 19 0.000064 0.000087 0.73 0.4645

Moment 20 0.094686 0.080877 1.17 0.2417

Moment 21 0.000508 0.001013 0.50 0.6163

Moment 22 -0.074010 0.050487 -1.47 0.1427

Moment 23 -0.000687 0.001571 -0.44 0.6618

Moment 24 -0.025804 0.088897 -0.29 0.7716

Moment 25 0.000058 0.000091 0.63 0.5277

Moment 26 0.086141 0.081590 1.06 0.2911

Moment 27 0.000477 0.001035 0.46 0.6451

Moment 28 -0.074914 0.051164 -1.46 0.1431

Moment 29 -0.000638 0.001590 -0.40 0.6883

Moment 30 -0.027174 0.086798 -0.31 0.7542

Moment 31 0.000050 0.000093 0.54 0.5911

Moment 32 0.074685 0.079331 0.94 0.3465

Moment 33 0.000421 0.001021 0.41 0.6800

Moment 34 -0.073018 0.049961 -1.46 0.1439

Moment 35 -0.000569 0.001554 -0.37 0.7141

Moment 36 -0.027719 0.081798 -0.34 0.7347
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Moment 37 0.000042 0.000093 0.45 0.6538

Moment 38 0.062365 0.075338 0.83 0.4078

Moment 39 0.000351 0.000983 0.36 0.7214

Moment 40 -0.069399 0.047590 -1.46 0.1448

Moment 41 -0.000495 0.001486 -0.33 0.7391

Moment 42 -0.027686 0.075365 -0.37 0.7133

Moment 43 0.000034 0.000092 0.37 0.7146

Moment 44 0.050385 0.070499 0.71 0.4748

Moment 45 0.000273 0.000932 0.29 0.7696

Moment 46 -0.064804 0.044539 -1.45 0.1457

Moment 47 -0.000422 0.001400 -0.30 0.7631

Moment 48 -0.027235 0.068411 -0.40 0.6906

J-stat = 42.8662 Prob[Chi-sq.(41) > J] = 0.3911

==============================================================

Table 6.3: GMM Estimation of Parameters in Over-identified Case

C G M Y µ σ β

Estimates 20.0372 36.5764 36.6558 0.4810 0.0626 0.4953 3.5047

S.E. 0.3840 0.0308 0.0306 0.0016 0.0100 0.0035 0.0051
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Figure 6.1:

Figure 6.2:
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Figure 6.3:
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6.4 Backward Partial Integro-Differential Equations for Option Prices

Under the Risk-Neutral probability Q, µ = r, the interest rate, and the value

of a European option is defined as the discounted conditional expectation of its

terminal payoff H(ST )

Ct = E[e−r(T−t)H(ST )|Ft].

From Markov property and set Ct = C(S, t) we have

C(S, t) = E[e−r(T−t)H(ST )|St = S].

Define Yt = rt+ β lnLt, hence St = S0σ
2βeYt . We switch to the log space and time

to maturity by letting τ = T − t and y = ln(S/S0)− 2β lnσ, then

erτC(S0σ
2βey, T − τ) = E[H(S0σ

2βey+Yτ )].

Let c(y, τ) = erτC(S0σ
2βey, T − τ) and g(y) = H(S0σ

2βey), then

c(y, τ) = E[g(y + Yτ )].

By the definition of infinitesimal generator of a Markov process ([3])( notice

here Lamperti Lt is Markovian, so that Yt is also Markovian), if we denote the

generator of Yt by IY , we would have

IY f(x) = lim
t→0

E[f(Yt + y)]− f(y)

t
.

So, if g is in the domain of IY , and then we can differentiate with respect to

τ , hence obtain the integro-differential equation

∂c

∂τ
= IY g
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on R× (0, T ], c(y, 0) = g(y), y ∈ R. Similarly, if c is smooth then using a change of

variable we obtain a similar equation for C(S, t)

∂C

∂t
(S, t) + IS

(
C(S, t)

)
(S, t)− rC(S, t) = 0 with C(S, T ) = H(S). (6.16)

This equation is similar to the Black-Scholes partial differential equation, except that

the second-order differential operator is replaced by the integro-differential operator

IS.

The characterization of option prices in terms of solutions of partial integro-

differential equations allows us to use efficient numerical methods for pricing options

on a single asset in presence of jumps. However, the above reasoning is heuristic:

the payoff function g is usually not in the domain of IY and in fact it is usually

not even differentiable. For example g(y) = (K − S0σ
2βey)

+
for a put option. This

lack of smoothness prevents the value function from being a classical solution of the

pricing PIDE: we are led to use a notion of viscosity solution. Refer to Rama and

Voltchkova 2004 ([18]) for a more detailed discussion.

Since the relation in

c(y, τ) = erτC(S0σ
2βey, T − τ),

we have

∂c

∂τ
= rCerτ − erτ

∂C

∂t
,

∂c

∂y
= erτ

∂C

∂S
S0e

yσ2β = erτS
∂C

∂S
,
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so we have from (6.16) that

erτ
∂C

∂t
(S, t) + erτIS

(
C(S, t)

)
(S, t)− rerτC(S, t) = 0,

or

∂c

∂τ
= erτIS

(
C(S, t)

)
(S, t) = erτIS

(
e−rτc(y, τ)

)
(S, t).

We use the expression of the generator IS in (6.8) and write

∂c

∂τ
=

[
(r − q) + aβe−y/β+(r−q)(T−τ)/β

]
∂c

∂y

+ e
−y+(r−q)(T−τ)

β

∫
R−{0}

[
c(y + βη, τ)− c(y, τ)− β

∂c

∂y
h(η)

]
kξ(η) dη. (6.17)

This is a partial integro-differential equation (PIDE) of c in y and τ . It is

usually referred to as the backward equation as opposed to the forward equation of

C in K and T , strikes and maturities. The forward PIDE once derived is practically

more attractive since it allows us, in the numerical calculation of the discretized

solution, to calculate the option prices of all maturities and all strikes in relatively

less calculation. In the next section we detail the forward PIDE.

6.5 Forward Partial Integro-Differential Equations

In this section we derive the forward PIDE for models of Markov processes in a

general setup. We have a real valued Markov process (X(t), t > 0) with infinitesimal

generator IX acting on functions f given by

IX(f) = a(x, t)
∂

∂x
f +

1

2
b(x, t)

∂2

∂x2
f +

∫ ∞

−∞
[f(x+ ν)− f(x)− ν

∂

∂x
f ]k(x, t, ν) dν.
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We suppose that one may take the truncation function h(ν) to be the identity

function h(ν) = ν. This merely requires that we have a special semimartingale

structure for the jump and the integrability condition

E

[∫ t

0

∫ ∞

−∞
(ν2 ∧ |ν|)k(X(u), u, ν) dν du

]
<∞.

This condition is satisfied for a large class of models that we shall work with. In fact

we shall consider locally square integrable semimartingales that satisfy the stronger

condition

E

[∫ t

0

∫ ∞

−∞
ν2k(X(u), u, ν) dν du

]
<∞.

Let q(t, x, T, y) be the transition density for the process at level y at time

T > t, given it is at level x at time t. We are interested in first developing the

forward equation for q in the arguments T , y and shall suppress the dependence on

t, x. We then apply this result to European options values and develop the forward

equation for option price values.

We shall also make use in our derivation of the double tail of the Lévy system

defined by

˜̃k(x, t, ν) =

{ ∫ ν
−∞

∫ u
−∞ k(x, t, w) dw du ν < 0,∫∞

ν

∫∞
u
k(x, t, w) dw du ν > 0.

The double tail integrates the tail of the Lévy measure in both directions twice and

hence we refer it to as the double tail. It is important as it measures quadratic

variation, which may be observed by applying integration by parts two times to get

∫ ∞

−∞

˜̃k(x, t, ν) dν =
1

2

∫ ∞

−∞
ν2k(x, t, ν) dν <∞ (6.18)
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for locally square integrable semimartingales. In particular the double tail is itself

well defined at all points of space x and times t.

For a test function f(y) we begin by defining

Vf (T ) = E[f(X(T ))|X(t) = a]

=

∫ ∞

−∞
q(y, T )f(y) dy.

Via differentiation with respect to T we get

∂

∂T
Vf (T ) =

∫ ∞

−∞
qT (y, T )f(y) dy. (6.19)

In terms of the generator we have that

Vf (T ) = E[f(X(T ))|X(t) = a]

= f(a) + E

[∫ T

t

IX(f)(X(u), u) du|X(t) = a

]
= f(a) +

∫ T

t

du

∫ ∞

−∞
dw q(w, u)IX(f)(w, u)

= f(a) +

∫ T

t

du

∫ ∞

−∞
dw q(w, u)

[
a(w, u)

∂

∂w
f +

1

2
b(w, u)

∂2

∂w2
f

+

∫ ∞

−∞
[f(w + ν)− f(w)− ν

∂

∂w
f ]k(w, u, ν) dν

]
.

Taking the partials with respect to T we obtain

∂

∂T
Vf (T ) =

∫ ∞

−∞
dw q(w, T )

[
a(w, T )

∂

∂w
f +

1

2
b(w, T )

∂2

∂w2
f

+

∫ ∞

−∞
[f(w + ν)− f(w)− ν

∂

∂w
f ]k(w, T, ν) dν

]
. (6.20)

We now employ integration by parts one and two times to rewrite the first two

components as∫ ∞

−∞
dw q(w, T )a(w, T )

∂

∂w
f(w) = −

∫ ∞

−∞
dy f(y)

∂

∂y
[q(y, T )a(y, T )], (6.21)
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∫ ∞

−∞
dw q(w, T )

1

2
b(w, T )

∂2

∂w2
f(w) =

∫ ∞

−∞
dy f(y)

1

2

∂2

∂y2
[q(y, T )b(y, T )], (6.22)

For the analysis of the jump integral we proceed as follows

∫ ∞

−∞
dw q(w, T )

∫ ∞

−∞
[f(w + ν)− f(w)− ν

∂

∂w
f ]k(w, T, ν) dν

=

∫ ∞

−∞
dw q(w, T )

∫ ∞

−∞

˜̃k(w, T, ν)
∂2

∂ν2
f(w + ν) dν

=

∫ ∞

−∞
dy

∂2

∂y2
[f(y)]

∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

=

∫ ∞

−∞
dy f(y)

∂2

∂y2

[∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

]
. (6.23)

Substituting equations (6.21,6.22,6.23) back into equation (6.20) we obtain

∂

∂T
Vf (T ) =

∫ ∞

−∞
dy f(y)

[
− ∂

∂y
[q(y, T )a(y, T )] +

1

2

∂2

∂y2
[q(y, T )b(y, T )]

+
∂2

∂y2

∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

]
. (6.24)

Comparing equations (6.19) and (6.24) for all test functions f we deduce

qT (y, T ) = − ∂

∂y
[q(y, T )a(y, T )] +

1

2

∂2

∂y2
[q(y, T )b(y, T )]

+
∂2

∂y2

∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν). (6.25)

Applying this result we derive a forward equation for the prices of European

options in the strike and maturity arguments. For our Markov process we take the

logarithm of the stock price

X(t) = ln(S(t)).
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For the risk neutral process we have the generator for X given by

IX(f)(x, u) =
(
r − l − σ2

2
+ ω(x, u)

) ∂
∂x
f +

σ2

2

∂2

∂x2
f

+

∫ ∞

−∞
[f(x+ ν)− f(x)− ν

∂

∂x
f ]k(x, u, ν) dν,

where r is the interest rate and l is the dividend yield. We allow for a general

space time dependent Lévy system that permits processes of infinite variation while

the diffusion component is relatively simplistic and uninteresting and will in most

applications be in face assumed to be null. The risk neutral drift is r − l. The

exponential compensation of the jump component in the log price process is

ω(x, u) = −
∫ ∞

−∞
(eν − 1− ν)k(x, u, ν) dν.

In this particular case, we may write

qT (y, T ) = − ∂

∂y

[(
r − l − σ2

2
+ ω(y, T )

)
q(y, T )

]
+
σ2

2

∂2

∂y2
q(y, T )

+
∂2

∂y2

∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν). (6.26)

We now consider the price of a European call option which is given by C(K,T ) =

e−rT
∫∞

lnK
q(y, T )(ey −K) dy. It follows that

CT = −rC + e−rT
∫ ∞

lnK

qT (y, T )(ey −K) dy,

and

CK = −e−rT
∫ ∞

lnK

q(y, T ) dy,

e−rT
∫ ∞

lnK

eyq(y, T ) dy = C −KCK ,

KCKK(K,T ) = e−rT q(lnK,T ).
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Substituting from equation (6.26) for qT we get

CT = −rC + e−rT
∫ ∞

lnK

dy(ey −K)

[
− ∂

∂y

[(
r − l − σ2

2
+ ω(y, T )

)
q(y, T )

]
+

+
σ2

2

∂2

∂y2
q(y, T ) +

∂2

∂y2

∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

]
= −rC + e−rT

∫ ∞

lnK

dy eyq(y, T )
(
r − l − σ2

2
+ ω(y, T )

)
+
σ2

2
e−rT

∫ ∞

lnK

dy eyq(y, T ) +
σ2

2
e−rTKq(lnK,T )

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

+e−rTK

∫ ∞

−∞
dν q(lnK − ν, T )˜̃k(lnK − ν, T, ν)

= −rC + (r − l)(C −KCK) + e−rT
∫ ∞

lnK

dy eyq(y, T )ω(y, T ) +
σ2

2
K2CKK

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

+K2

∫ ∞

−∞
e−νCKK(Ke−ν , T )˜̃k(lnK − ν, T, ν) dν

= −lC − (r − l)KCK +
σ2

2
K2CKK + e−rT

∫ ∞

lnK

dy eyq(y, T )ω(y, T )

+K2

∫ ∞

−∞
e−νCKK(Ke−ν , T )˜̃k(lnK − ν, T, ν) dν

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν).
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We analyze the final two integrals as follows,

e−rT
∫ ∞

lnK

dy eyq(y, T )ω(y, T )

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

= −e−rT
∫ ∞

lnK

dy eyq(y, T )

∫ ∞

−∞
(eν − 1− ν)k(y, T, ν) dν

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

= −e−rT
∫ ∞

lnK

dy eyq(y, T )

∫ ∞

−∞
eν ˜̃k(y, T, ν) dν

+e−rT
∫ ∞

lnK

dy ey
∫ ∞

−∞
dν q(y − ν, T )˜̃k(y − ν, T, ν)

= −e−rT
∫ ∞

−∞
dν

∫ ∞

lnK+ν

dwewq(w − ν, T )˜̃k(w − ν, T, ν)

+e−rT
∫ ∞

−∞
dν

∫ ∞

lnK

dw ew q(w − ν, T )˜̃k(w − ν, T, ν)

= e−rT
∫ ∞

0

dν

∫ lnK+ν

lnK

dwewq(w − ν, T )˜̃k(w − ν, T, ν)

−e−rT
∫ 0

−∞
dν

∫ lnK

lnK+ν

dw ew q(w − ν, T )˜̃k(w − ν, T, ν)

= e−rT
∫ ∞

lnK

dw

∫ ∞

w−lnK

dνewq(w − ν, T )˜̃k(w − ν, T, ν)

−e−rT
∫ lnK

−∞
dw

∫ w−lnK

−∞
dw ew q(w − ν, T )˜̃k(w − ν, T, ν)

=

∫ ∞

K

dU

∫ ∞

ln U
K

dν e−rT q(lnU − ν, T )˜̃k(lnU − ν, T, ν)

−
∫ K

0

dU

∫ ln U
K

−∞
dν e−rT q(lnU − ν, T )˜̃k(lnU − ν, T, ν)

=

∫ ∞

K

dU

∫ ∞

ln U
K

dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν)

−
∫ K

0

dU

∫ ln U
K

−∞
dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν).

Hence we may write the final partial integral-differential equation in the call price

as

135



CT = −lC − (r − l)KCK +
σ2

2
K2CKK

+K2

∫ ∞

−∞
e−νCKK(Ke−ν , T )˜̃k(lnK − ν, T, ν) dν

+

∫ ∞

K

dU

∫ ∞

ln U
K

dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν)

−
∫ K

0

dU

∫ ln U
K

−∞
dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν), (6.27)

where the final three integrals may be seen as the costs of jumps to the strike, plus

the costs of downcrossing and the costs of upcrossing.

The at, down and upcrossing costs are all measured by the likelihood times

the level of the post jump double tail.

6.6 Using CGMY process as the underlying Lévy

In Section 6.1, our proposed model in (6.1), Ste
−µt is taken to be an exponential

Lévy process which is a Martingale. We now consider CGMY pure jump process as

the initial Lévy process Z(t), denoted as ZCGMY (t). Since introduced in [11] as a

generalization of V G processes, many researchers have studied the CGMY processes

and have used CGMY pure jump processes in securities modeling. The Lévy triplet

of CGMY process Z(t) is (γ, 0, kCGMY (x)dx), where

kCGMY (x) =
CeAx−B|x|

|x|1+Y

is the Lévy density of ZCGMY and A = G−M
2
, B = G+M

2
. C > 0, G ≥ 0, M ≥ 0,

and Y < 2. The condition Y < 2 is induced by the requirement that Lévy densities
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integrate x2 in the neighborhood of 0. The characteristic exponent is

ω(u) = iuγ +

∫
R−{0}

(eiux − 1− iuh(x))kCGMY (x) dx.

The value of γ is dependent on the choice of the truncation function h(x) and

particularly

γ =

∫
R−{0}

h(x)kCGMY (x) dx.

We know that exp(Z(t)− tω(−i)) is a Martingale, in fact we define

ω = −ω(−i) = −
∫
R−{0}

(ex − 1)kCGMY (x) dx,

hence exp(Z(t) + ωt) is a Martingale, which is exactly what we need.

According to (6.4), our specific Lévy process which is related to the Lamperti

Lξ
(β)(t)(t) becomes ξ(β)(t) = 1

β
(ZCGMY (t)+ωt). It is easy to see that the Lévy triplet

for ξ(β)(t) is (a, 0, kξ(x)dx), where a and kξ(x) are now related to CGMY process by

a =
γ + ω

β
= − 1

β

∫
R−{0}

(ex − 1− h(x))kCGMY (x) dx,

and

kξ(x)dx = βkCGMY (βx)dx. (6.28)

The infinitesimal generator of ξ(β)(t) is

Ag(ξ) = ag′(ξ) +

∫
R−{0}

[g(ξ + η)− g(ξ)− g′(ξ)h(η)]kξ(η) dη.

Again, we use the relation between the generators of the Lévy and the associated

Lamperti to see that the generator of L(ξ(β)(t))(t) is given by

Bg(x) =
1

x

[
axg′(x) +

∫
R−{0}

[g(xeη)− g(x)− xg′(x)h(η)]kξ(η) dη
]
.
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From (6.8), the generator of St is

IS(f)(x, u)

=

[
(µ− q) +

(
x

S0e(µ−q)uσ2β

)−1/β

aβ

]
xf ′(x)

+

(
x

S0e(µ−q)uσ2β

)−1/β ∫
R−{0}

[
f(xeβη)− f(x)− βxf ′(x)h(η)

]
kξ(η) dη.

We may take the truncation function to be the identity function, h(η) = η, and by

(6.28) and a simple variable change, the generator of St can be written in terms of

kCGMY (x)

IS(f)(x, u)

=

[
(µ− q) +

(
x

S0e(µ−q)uσ2β

)−1/β

aβ

]
xf ′(x)

+

(
x

S0e(µ−q)uσ2β

)−1/β ∫
R−{0}

[
f(xeη)− f(x)− xf ′(x)η

]
kCGMY (η) dη.

6.6.1 Backward PIDE

In this particular case, (6.17) is equivalent to

∂c

∂τ
=

[
(r − q) + aβe−y/β+(r−q)(T−τ)/β

]
∂c

∂y

+ e
−y+(r−q)(T−τ)

β

∫
R−{0}

[
c(y + η, τ)− c(y, τ)− ∂c

∂y
η

]
kCGMY (η) dη,

138



where a = γ+ω
β

. Please refer to the Appendix about the detail evaluation of γ + ω,

γ + ω =

C
[
Γ(1− Y )(MY−1 −GY−1)− Γ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ]

]
,

Y < 0;

CΓ(1− Y )

[
MY−1 −GY−1 + (M−1)Y

Y
− MY

Y
+ (G+1)Y

Y
− GY

Y

]
,

0 < Y < 1;

C Γ(2−Y )
Y (1−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY + YMY−1 − Y GY−1

]
,

1 < Y < 2.

6.6.2 Forward PIDE

We derive the Forward PIDE in order to more efficiently calculate the op-

tion prices of all maturities and all strikes on a fixed asset. We follow the general

derivation of Section 6.5

In the Risk-Neutral world µ = r, the interest rate. For our Markov process

we take the logarithm of the stock price X(t) = lnS(t). Since the infinitesimal

generator of S(t) has been derived earlier to be

IS(f)(x, u) =

[
(r − l)x+ aβx

(
x

S0e(r−l)uσ2β

)− 1
β
]
∂

∂x
f

+

(
x

S0e(r−l)uσ2β

)− 1
β
∫
R−{0}

[
f(xeη)− f(x)− xη

∂

∂x
f

]
kCGMY (η) dη,

where the truncation function has been taken to be identity function, and l denotes

the dividend yield to avoid confusion with density q.
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It is easy to derive the generator for X(t)

IX(g)(x, u) = a(x, u)
∂

∂x
g +

∫
R−{0}

[
g(x+ η)− g(x)− η

∂

∂x
g

]
k(x, u, η) dη,

where

a(x, u) = (r − l) + aβ
( ex

S0e(r−l)uσ2β

)− 1
β

,

k(x, u, ν) =

(
ex

S0e(r−l)uσ2β

)− 1
β

kCGMY (ν). (6.29)

Recall that a = γ+ω
β

, and γ + ω = −
∫
R−{0}(e

ν − 1− ν)kCGMY (ν) dν, so now

a(x, u) = (r − l) + w(x, u),

where

w(x, u) = −
∫
R−{0}

(eν − 1− ν)k(x, u, ν) dν.

Here, we have b(x, u) = 0, which implies no diffusion part. Hence by the result in (

6.26), we have

qT (y, T ) = − ∂

∂y
[(r − l + w(y, T ))q(y, T )]

+
∂2

∂y2

∫
R−{0}

˜̃k(y − ν, T, ν)q(y − ν, T ) dν.

For European Call option, we know that

C(K,T ) = e−rT
∫ ∞

lnK

q(y, T )(ey −K) dy.
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Again q(t, x, T, y) denote the transition density for the process X(t) to be at level y

at time T > t give it is at level x at time t. We keep the dependence of q on y and

T , and suppress the dependence on x and t.

It is easy to see that

CK = −e−rT
∫ ∞

lnK

q(y, T ) dy,

e−rT
∫ ∞

lnK

eyq(y, T ) dy = C −KCK ,

KCKK(K,T ) = e−rT q(lnK,T ),

and

CT = −rC + e−rT
∫ ∞

lnK

qT (y, T )(ey −K) dy. (6.30)

Putting qT (y, T ) into (6.30), we obtain an equation analogous to what we have

in (6.27) except that the diffusion part is no longer present

CT = − lC − (r − l)KCK

+ K2

∫
R−{0}

e−νCKK(Ke−ν , T )˜̃k(lnK − ν, T, ν) dν part1

+

∫ ∞

K

dU

∫ ∞

ln( U
K

)

dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν) part2

−
∫ K

0

dU

∫ ln( U
K

)

−∞
dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν). part3

We now introduce the density function of CGMY process into the system, we

obtain from (6.29)

k(x, u, ν) =

(
ex

S0e(r−l)uσ2β

)− 1
β CeAν−B|ν|

|ν|1+Y
,
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where A = G−M
2

, B = G+M
2

, and C > 0, G,M ≥ 0 and Y < 2.

By setting

D = (S0σ
2β)

1
β ,

then,

k(x, u, ν) = CDe−
x
β e

r−l
β
u+Aν−B|ν||ν|−(1+Y ),

Recall that the double tail ˜̃k is defined by

˜̃k(x, t, ν) =

{ ∫ ν
−∞

∫ u
−∞ k(x, t, w) dw du ν < 0,∫∞

ν

∫∞
u
k(x, t, w) dw du ν > 0.

We now take care of the three integral parts one by one.

part1 = K2

∫
R−{0}

e−νCKK(Ke−ν , T )˜̃k(lnK − ν, T, ν) dν

= K2

∫ 0

−∞
dν e−νCKK(Ke−ν , T )

(∫ ν

−∞

∫ u

−∞
k(lnK − ν, T, w) dw du

)
+K2

∫ ∞

0

dν e−νCKK(Ke−ν , T )
(∫ ∞

ν

∫ ∞

u

k(lnK − ν, T, w) dw du
)

= K2CDe
r−l
β
T

∫ 0

−∞
e−νCKK(Ke−ν , T )(e−νK)

− 1
β f1(ν), dν

+K2CDe
r−l
β
T

∫ ∞

0

e−νCKK(Ke−ν , T )(e−νK)
− 1

β f2(ν) dν,

where

f1(ν) =

∫ ν

−∞

∫ u

−∞
eGw(−w)−(1+Y ) dw du,

f2(ν) =

∫ ∞

ν

∫ ∞

u

e−Mw(w)−(1+Y ) dw du.
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after change of variable by setting U = e−νK, we have then

part1 = KCDe
r−l
β
T

∫ ∞

K

CKK(U, T )U− 1
β f1(ln

K

U
) dU

+KCDe
r−l
β
T

∫ K

0

CKK(U, T )U− 1
β f2(ln

K

U
) dU.

Now let us take care of part2 and part3 together,

part2 + part3

=

∫ ∞

K

dU

∫ ∞

ln( U
K

)

dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν)

−
∫ K

0

dU

∫ ln( U
K

)

−∞
dν Ue−νCKK(Ue−ν , T )˜̃k(lnU − ν, T, ν)

= CDe
r−l
β
T

∫ ∞

K

dU

∫ ∞

ln( U
K

)

dν
(
Ue−νCKK(Ue−ν , T )(e−νU)

− 1
β f2(ν)

)
−CDe

r−l
β
T

∫ K

0

dU

∫ ln( U
K

)

−∞
dν
(
Ue−νCKK(Ue−ν , T )(e−νU)

− 1
β f1(ν)

)
W=e−νU

= CDe
r−l
β
T

∫ ∞

K

dU

∫ K

0

CKK(W,T )W− 1
β f2(ln

U

W
)dW

−CDe
r−l
β
T

∫ K

0

dU

∫ ∞

K

CKK(W,T )W− 1
β f1(ln

U

W
)dW.

Finally, our forward PIDE in K and T is

CT = −lC − (r − l)KCK

+ KCDe
r−l
β
T

∫ ∞

K

CKK(U, T )U− 1
β f1(ln

K

U
) dU

+KCDe
r−l
β
T

∫ K

0

CKK(U, T )U− 1
β f2(ln

K

U
) dU part1

+ CDe
r−l
β
T

∫ ∞

K

dU

∫ K

0

CKK(W,T )W− 1
β f2(ln

U

W
)dW part2

− CDe
r−l
β
T

∫ K

0

dU

∫ ∞

K

CKK(W,T )W− 1
β f1(ln

U

W
)dW. part3 (6.31)

We switch to the log strike space by defining
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k = lnK.

This transform will benefit the discretization of the system. Strike prices are often

times sparsely distributed in a large range, which brings difficulty to the discretiza-

tion of the system when we always require the spacing of K be small enough to

achieve convergence. Because of the large range of strike prices, small spacing will

lead to too many points which will substantially slow down the calculation, although

most of these points are not even traded strikes of our interest. By the transform

from strike space to log strike space, we achieve small spacing without making the

system huge. We define

c(k, T ) = C(ek, T ) = C(K,T ),

so that

KCK(K,T ) = ck(k, T ), CKK(K,T ) = e−2k[ckk(k, T )− ck(k, T )].
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then, the forward PIDE becomes

cT

= −lc(k, T )− (r − l)ck(k, T )

+ KCDe
r−l
β
T

[∫ ∞

K

[ckk(lnU, T )− ck(lnU, T )]U− 1
β
−2f1(ln

K

U
) dU

+

∫ K

0

[ckk(lnU, T )− ck(lnU, T )]U− 1
β
−2f2(ln

K

U
) dU

]
part1

+ CDe
r−l
β
T

∫ ∞

K

dU

∫ K

0

[ckk(lnW,T )− ck(lnW,T )]W− 1
β
−2f2(ln

U

W
)dW part2

− CDe
r−l
β
T

∫ K

0

dU

∫ ∞

K

[ckk(lnW,T )− ck(lnW,T )]W− 1
β
−2f1(ln

U

W
)dW. part3

(6.32)

6.6.3 Discretization

We discretize this system with N + 1 mesh points in k-direction and M + 1

mesh points in T -direction. So:

∆k =
kmax − kmin

N
, ∆T =

Tmax − Tmin
M

.

Hence T1 = Tmin, TM+1 = Tmax, Tj = T1 + (j − 1)∆T for all j = 1, . . . ,M + 1,

and k1 = kmin = lnKmin, kN+1 = kmax = lnKmax, ki = k1 + (i − 1)∆k for all

i = 1, . . . , N + 1. We notice that the values in k and values in K (from real data)

do not necessarily form a one to one correspondance, but we can always recover the

prices at desired strike prices by performing numerical interpolation.

Using

ci,j ≈ c(ki, Tj),

we approximate the derivatives by:
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cT (ki, Tj) ≈
ci,j+1 − ci,j

∆T
,

ck(ki, Tj) ≈
ci+1,j − ci−1,j

2∆k
,

ckk(ki, Tj) ≈
ci+1,j + ci−1,j − 2ci,j

(∆k)2 .

Initial condition

c(ki, T1) = [ST1 − eki ]
+
for all i = 1, . . . , N + 1.

Boundary conditions

c(k1, Tj) = ST1e
−lTj − ek1e−rTj for all j = 1, . . . ,M + 1,

c(kN+1, Tj) = 0 for all j = 1, . . . ,M + 1.

Using these notations, now we discretize equation (6.32). Here we adopt a

mixed approach. For the jump terms, we use an explicit approach so that the

matrix to be inverted at each time step is tri-diagonal. On the rest of the PIDE, a

fully implicit approach is used.

ci,j+1 − ci,j
∆T

= −lci,j+1 − (r − l)
ci+1,j+1 − ci−1,j+1

2∆k
+ part1 + part2 + part3,

or setting λ = ∆T
2∆k

, we have

ci,j+1 − ci,j = −lci,j+1∆T − (r − l)λ(ci+1,j+1 − ci−1,j+1)

+(part1 + part2 + part3)∆T. (6.33)
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The discretization of part1 and part2+part3 are taken care of as following, denoting

Ki = eki .

part1

= KiCDe
r−l
β
Tj

[∫ ∞

Ki

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f1(ln

Ki

U
) dU

+

∫ Ki

0

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f2(ln

Ki

U
) dU

]
= KiCDe

r−l
β
Tj

[∫ KN+1

Ki

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f1(ln

Ki

U
) dU

+

∫ Ki

K1

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f2(ln

Ki

U
) dU

]
= KiCDe

r−l
β
Tj

[ N∑
m=i+1

∫ Km+1

Km

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f1(ln

Ki

U
) dU

+
i−1∑
m=2

∫ Km

Km−1

[ckk(lnU, Tj)− ck(lnU, Tj)]U
− 1

β
−2f2(ln

Ki

U
) dU

]
= KiCDe

r−l
β
Tj

[
N∑

m=i+1

∫ Km+1

Km

[
cm+1,j + cm−1,j − 2cm,j

(∆k)2 − cm+1,j − cm−1,j

2∆k

]
U− 1

β
−2f1(ln

Ki

U
) dU

+
i−1∑
m=2

∫ Km

Km−1

[
cm+1,j + cm−1,j − 2cm,j

(∆k)2 − cm+1,j − cm−1,j

2∆k

]
U− 1

β
−2f2(ln

Ki

U
) dU

]

=
KiCDe

r−l
β
Tj

2(∆k)2

[
N∑

m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

] ∫ Km+1

Km

U− 1
β
−2f1(ln

Ki

U
) dU

+
i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

] ∫ Km

Km−1

U− 1
β
−2f2(ln

Ki

U
) dU

]
.
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Similarly,

part2 + part3

= CDe
r−l
β
Tj

[∫ ∞

Ki

dU

∫ Ki

0

[ckk(lnW,Tj)− ck(lnW,Tj)]W
− 1

β
−2f2(ln

U

W
)dW

−
∫ Ki

0

dU

∫ ∞

Ki

[ckk(lnW,Tj)− ck(lnW,Tj)]W
− 1

β
−2f1(ln

U

W
)dW

]
= CDe

r−l
β
Tj

[∫ KN+1

Ki

dU

∫ Ki

K1

[ckk(lnW,Tj)− ck(lnW,Tj)]W
− 1

β
−2f2(ln

U

W
)dW

−
∫ Ki

K1

dU

∫ KN+1

Ki

[ckk(lnW,Tj)− ck(lnW,Tj)]W
− 1

β
−2f1(ln

U

W
)dW

]
= CDe

r−l
β
Tj

[∫ KN+1

Ki

dU
i−1∑
m=2

∫ Km

Km−1

(
cm+1,j + cm−1,j − 2cm,j

(∆k)2

−cm+1,j − cm−1,j

2∆k

)
W− 1

β
−2f2(ln

U

W
)dW

−
∫ Ki

K1

dU
N∑

m=i+1

∫ Km+1

Km

(
cm+1,j + cm−1,j − 2cm,j

(∆k)2

−cm+1,j − cm−1,j

2∆k

)
W− 1

β
−2f1(ln

U

W
)dW

]
=

CDe
r−l
β
Tj

2(∆k)2

[ i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j

+(2 + ∆k)cm−1,j

] ∫ KN+1

Ki

dU

∫ Km

Km−1

W− 1
β
−2f2(ln

U

W
)dW

−
N∑

m=i+1

[
(2−∆k)cm+1,j − 4cm,j

+(2 + ∆k)cm−1,j

] ∫ Ki

K1

dU

∫ Km+1

Km

W− 1
β
−2f1(ln

U

W
)dW

]
.

Rearranging (6.33), we have

(l − r)λci−1,j+1 + (1 + l∆T )ci,j+1 + (r − l)λci+1,j+1

= ci,j + (part1 + part2 + part3)∆T.

In fact, putting similar summations together in part1, part2 and part3, we eventually
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obtain the discretized system

(l − r)λci−1,j+1 + (1 + l∆T )ci,j+1 + (r − l)λci+1,j+1

= ci,j +
∆TCDe

r−l
β
Tj

2(∆k)2

(
I + II

)
, (6.34)

where

I =
i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

][
Ki

∫ Km

Km−1

U− 1
β
−2f2(ln

Ki

U
) dU

+

∫ KN+1

Ki

dU

∫ Km

Km−1

W− 1
β
−2f2(ln

U

W
) dW

]
, (6.35)

and

II =
N∑

m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

][
Ki

∫ Km+1

Km

U− 1
β
−2f1(ln

Ki

U
) dU

−
∫ Ki

K1

dU

∫ Km+1

Km

W− 1
β
−2f1(ln

U

W
) dW

]
. (6.36)

We see that at each time step, we will solve a tridiagonal matrix system.

In the calculation of I and II, we would come to the calculation of four partic-

ular integrals, which are

∫ Km+1

Km

U− 1
β
−2f1(ln

Ki

U
) dU, (6.37)∫ Km

Km−1

U− 1
β
−2f2(ln

Ki

U
) dU, (6.38)∫ KN+1

Ki

dU

∫ Km

Km−1

W− 1
β
−2f2(ln

U

W
)dW, (6.39)∫ Ki

K1

dU

∫ Km+1

Km

W− 1
β
−2f1(ln

U

W
)dW, (6.40)
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where recall that

f1(ν) =

∫ ν

−∞

∫ u

−∞
eGw(−w)−(1+Y ) dw du for ν < 0,

f2(ν) =

∫ ∞

ν

∫ ∞

u

e−Mw(w)−(1+Y ) dw du for ν > 0.

To simplify, we set β̂ = β
1+2β

. Hence, we need to calculate the integrals

∫ Km+1

Km

U
− 1

β̂ f1(ln
Ki

U
) dU, (6.41)∫ Km

Km−1

U
− 1

β̂ f2(ln
Ki

U
) dU, (6.42)∫ KN+1

Ki

dU

∫ Km

Km−1

W
− 1

β̂ f2(ln
U

W
)dW, (6.43)∫ Ki

K1

dU

∫ Km+1

Km

W
− 1

β̂ f1(ln
U

W
)dW. (6.44)

The evaluation of these integrals is included in the Appendix B considering

the lengthy integral manipulation. Section 6.6.4 contains the evaluation of f1 and

f2 employing the numerical Fast Fourier Transformation. Section 6.6.5 concludes

the discretized system by putting all the results together.

6.6.4 The Evaluation of f1(a) and f2(a)

We define

f(ν) = I{ν<0}f1(ν) + I{ν>0}f2(ν),

where

f1 =

∫ ν

−∞

∫ u

−∞
eGw(−w)−(1+Y ) dw du,

f2 =

∫ ∞

ν

∫ ∞

u

e−Mww−(1+Y ) dw du.
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We can see that function f(ν) is actually the double tail which was introduced in

section (6.5) of the CGMY density. It is well defined and square integrable.

The Fourier Transform of f(ν) is:

f̂(ξ) =

∫ ∞

−∞
eiξνf(ν) dν

=

∫ 0

−∞
eiξν dν

(∫ ν

−∞

∫ u

−∞
eGw(−w)−(1+Y ) dw du

)
+

∫ ∞

0

eiξν dν

(∫ ∞

ν

∫ ∞

u

e−Mww−(1+Y ) dw du

)
=

1

iξ

[∫ 0

−∞

∫ u

−∞
eGw(−w)−(1+Y ) dw du−

∫ 0

−∞
eiξν

∫ ν

−∞
eGw(−w)−(1+Y ) dw dν

]
− 1

iξ

∫ ∞

0

∫ ∞

u

e−Mww−(1+Y ) dw du+
1

iξ

∫ ∞

0

eiξν
∫ ∞

ν

e−Mww−(1+Y ) dw dν

=
1

iξ

[
−
∫ 0

−∞
ueGu(−u)−(1+Y ) du− 1

iξ

∫ 0

−∞
eGw(−w)−(1+Y ) dw

+
1

iξ

∫ 0

−∞
eiξ+G(−ν)−(1+Y ) dν

]
− 1

iξ

∫ ∞

0

ue−Muu−(1+Y ) du

− 1

ξ2

(
−
∫ ∞

0

e−Mww−(1+Y ) dw +

∫ ∞

0

eiξνe−Mνν−(1+Y ) dν

)
=

1

iξ

∫ 0

−∞
eGu(−u)−Y du+

1

ξ2

∫ 0

−∞
eGw(−w)−(1+Y ) dw

− 1

ξ2

∫ 0

−∞
e(G+iξ)ν(−ν)−(1+Y ) dν − 1

iξ

∫ ∞

0

e−Muu−Y du

+
1

ξ2

∫ ∞

0

e−Mww−(1+Y ) dw − 1

ξ2

∫ ∞

0

e−(M−iξ)νν−(1+Y ) dν

=
GY−1Γ(1− Y )

iξ
+
GY Γ(−Y )

ξ2
− (G+ iξ)Y Γ(−Y )

ξ2
− MY−1Γ(1− Y )

iξ

+
MY Γ(−Y )

ξ2
− (M − iξ)Y Γ(−Y )

ξ2
.

So that, when ξ 6= 0, we have the Fourier Transform of f as

f̂(ξ) =
GY−1 −MY−1

iξ
Γ(1− Y )− (G+ iξ)Y + (M − iξ)Y −GY −MY

ξ2
Γ(−Y ).

When ξ = 0, f̂(0) is just the quadratic variation, we simply refer to (6.18) to see we
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have

f̂(0) =
1

2

∫ 0

−∞
ν2eGν(−ν)−(1+Y ) dν +

1

2

∫ ∞

0

ν2e−Mνν−(1+Y ) dν

=
1

2

∫ ∞

0

e−Gνν1−Y dν +
1

2

∫ ∞

0

e−Mνν1−Y dν

=
1

2
(GY−2 +MY−2)Γ(2− Y ).

Putting these results together

f̂(ξ) =

{
GY−1−MY−1

iξ
Γ(1− Y )− (G+iξ)Y +(M−iξ)Y −GY −MY

ξ2
Γ(−Y ) ξ 6= 0,

1
2
(GY−2 +MY−2)Γ(2− Y ) ξ = 0

Conversely, we should have

f(ν) =
1

2π

∫ +∞

−∞
e−iξν f̂(ξ) dξ.

This is carried out using the FFT function in Matlab. The value of ν, or actually

the sign of ν will automatically decide which function we are calculating, f1 or f2.

Specifically, when ν < 0, we have f1(ν); and when ν > 0, we have f2(ν).

Since f(ν) is a real function, f̂(ξ) is even in its real part and odd in its

imaginary part, we thus have

f(ν) = real part of

(
1

π

∫ +∞

0

e−iξν f̂(ξ) dξ

)
.

When calculating the integral, we follow the same technique as in [14], using

Simpson’s Rule and choosing η as the spacing for ξ, so that ξj = η(j − 1) for

j = 1, . . . ,N ; and νu = −b+λ ∗ (u− 1) for u = 1, . . . ,N , where λ is the spacing for

ν and the range of νu is from −b to b. The choice of λ and η must also satisfy the

restriction λη = 2π
N . N is usually chosen to be a power of 2. Now, the discretized
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problem is

f(νu) =
1

π

N∑
j=1

e−i
2π
N (j−1)(u−1)eibξj f̂(ξj)

η

3
(3 + (−1)j − δj−1). (6.45)

where δn is the Kroneker delta function that is unity for n = 0 and zero otherwise.

The effective upper limit for the integration is a = N η. The summation in (6.45) is

an exact application of the FFT.

We take N = 213, η = 0.15 and hence λ ≈ 0.005113. Then calculate b since

b = λ(N − 1)/2. In our case b ≈ 20.9414. Figure 6.4 is an illustration of (truncated)

calculated f versus ν with a specification of G = 10, M = 10 and Y = 0.5.
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Figure 6.4: Calculated values of f versus ν using FFT in Matlab with G = 10,

M = 10 and Y = 0.5

6.6.5 The System

We put all the results in section (B.0.8), (B.0.9), (B.0.10) and (B.0.11) to-

gether, after careful rearranging and cancellations, in system (6.34), (6.35) and

(6.36), we see that during each time step j, j from 2 to M + 1, we solve a tridiago-
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nal system

(l − r)λCi−1,j+1 + (1 + l∆T )Ci,j+1 + (r − l)λCi+1,j+1

= Ci,j +
∆TCDe

r−l
β
Tj

2(∆k)2

(
I + II

)
. (6.46)

Function myint is defined as

myint(G, x, Y )

=

∫ ∞

x

e−Gww−(1+Y ) dw

=

{
GY Γ(−Y,Gx), Y ≤ 0;

x−Y e−Gx

Y
− Ge−Gxx1−Y

Y (Y−1)
+ GY

Y (Y−1)
Γ(2− Y,Gx), 0 < Y < 2, Y 6= 1.

or

=

{ GY gammainc(Gx,−Y, TAIL),

Y ≤ 0,

x−Y e−Gx

Y
− Ge−Gxx1−Y

Y (Y−1)
+ GY

Y (Y−1)
gammainc(Gx, 2− Y, TAIL).

0 < Y < 2, Y 6= 1.

We have two cases depending on different β̂ (β̂ = β
1+2β

) values. Ki = eki for all i.
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When β̂ 6= 1 or 1
2

I =

i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{
β̂KN+1

β̂ − 1

[
(Km)

1− 1

β̂ f2(ln
KN+1

Km

)− (Km−1)
1− 1

β̂ f2(ln
KN+1

Km−1

)

]
+

β̂KN+1

(β̂ − 1)
2

[
(Km−1)

1− 1

β̂myint

(
M, ln

KN+1

Km−1

, Y

)
−(Km)

1− 1

β̂myint

(
M, ln

KN+1

Km

, Y

)]
+

β̂

2β̂ − 1

[
(Km−1)

2− 1

β̂myint

(
M − 1, ln

KN+1

Km−1

, Y

)
−(Km)

2− 1

β̂myint

(
M − 1, ln

KN+1

Km

, Y

)]
+

β̂3KN+1
2− 1

β̂

(β̂ − 1)
2
(2β̂ − 1)

[
myint

(
M +

β̂ − 1

β̂
, ln

KN+1

Km

, Y

)
−myint

(
M +

β̂ − 1

β̂
, ln

KN+1

Km−1

, Y

)]
+

β̂Ki

β̂ − 1

[
(Km−1)

1− 1

β̂myint

(
M, ln

Ki

Km−1

, Y

)
−(Km)

1− 1

β̂myint

(
M, ln

Ki

Km

, Y

)]
+

(Ki)
2− 1

β̂ β̂2

(2β̂ − 1)(β̂ − 1)

[
myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km

, Y

)
−myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km−1

, Y

)]
+

β̂

2β̂ − 1

[
(Km)

2− 1

β̂myint

(
M − 1, ln

Ki

Km

, Y

)
−(Km−1)

2− 1

β̂myint

(
M − 1, ln

Ki

Km−1

, Y

)]}
, (6.47)
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and

II =

N∑
m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{
β̂K1

β̂ − 1

[
(Km+1)

1− 1

β̂ f1(ln
K1

Km+1

)− (Km)
1− 1

β̂ f1(ln
K1

Km

)

]
+

β̂K1

(β̂ − 1)
2

[
(Km+1)

1− 1

β̂myint

(
G, ln

Km+1

K1

, Y

)
−(Km)

1− 1

β̂myint

(
G, ln

Km

K1

, Y

)]
+

β̂

2β̂ − 1

[
(Km+1)

2− 1

β̂myint

(
G+ 1, ln

Km+1

K1

, Y

)
−(Km)

2− 1

β̂myint

(
G+ 1, ln

Km

K1

, Y

)]
+

β̂3K1
2− 1

β̂

(2β̂ − 1)(β̂ − 1)
2

[
myint

(
G− β̂ − 1

β̂
, ln

Km

K1

, Y

)
−myint

(
G− β̂ − 1

β̂
, ln

Km+1

K1

, Y

)]
+

β̂Ki

β̂ − 1

[
(Km+1)

1− 1

β̂myint

(
G, ln

Km+1

Ki

, Y

)
−(Km)

1− 1

β̂myint

(
G, ln

Km

Ki

, Y

)]
+

(Ki)
2− 1

β̂ β̂2

(2β̂ − 1)(β̂ − 1)

[
myint

(
G− β̂ − 1

β̂
, ln

Km

Ki

, Y

)
−myint

(
G− β̂ − 1

β̂
, ln

Km+1

Ki

, Y

)]
+

β̂

2β̂ − 1

[
(Km)

2− 1

β̂myint

(
G+ 1, ln

Km

Ki

, Y

)
−(Km+1)

2− 1

β̂myint

(
G+ 1, ln

Km+1

Ki

, Y

)]}
. (6.48)
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When β̂ = 1

I =

i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{
KN+1(1 + lnKm)f2(ln

KN+1

Km

)−KN+1(1 + lnKm−1)f2(ln
KN+1

Km−1

)

+ Ki

[
f2(ln

Ki

Km−1

)− f2(ln
Ki

Km

)

]
+ KN+1

[
1 +

1

2
(lnKN+1)

2 − 1

2
(lnKm)2

]
myint

(
M, ln

KN+1

Km

, Y

)
− KN+1

[
1 +

1

2
(lnKN+1)

2 − 1

2
(lnKm−1)

2

]
myint

(
M, ln

KN+1

Km−1

, Y

)
+ Ki

[
myint

(
M, ln

Ki

Km−1

, Y

)
−myint

(
M, ln

Ki

Km

, Y

)]
+ Km

[
myint

(
M − 1, ln

Ki

Km

, Y

)
−myint

(
M − 1, ln

KN+1

Km

, Y

)]
+ Km−1

[
myint

(
M − 1, ln

KN+1

Km−1

, Y

)
−myint

(
M − 1, ln

Ki

Km−1

, Y

)]
+ KN+1 lnKN+1

[
myint

(
M, ln

KN+1

Km−1

, Y − 1

)
−myint

(
M, ln

KN+1

Km

, Y − 1

)]
− 1

2
KN+1

[
myint

(
M, ln

KN+1

Km−1

, Y − 2

)
−myint

(
M, ln

KN+1

Km

, Y − 2

)]}
, (6.49)
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and

II =

N∑
m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{

K1(1 + lnKm+1)f1(ln
K1

Km+1

)−K1(1 + lnKm)f1(ln
K1

Km

)

+ Ki

[
f1(ln

Ki

Km

)− f1(ln
Ki

Km+1

)

]
+ K1

[
1 +

1

2
(lnK1)

2 − 1

2
(lnKm)2

]
myint

(
G, ln

Km

K1

, Y

)
− K1

[
1 +

1

2
(lnK1)

2 − 1

2
(lnKm+1)

2

]
myint

(
G, ln

Km+1

K1

, Y

)
+ Ki

[
myint

(
G, ln

Km+1

Ki

, Y

)
−myint

(
G, ln

Km

Ki

, Y

)]
+ Km+1

[
myint

(
G+ 1, ln

Km+1

K1

, Y

)
−myint

(
G+ 1, ln

Km+1

Ki

, Y

)]
+ Km

[
myint

(
G+ 1, ln

Km

Ki

, Y

)
−myint

(
G+ 1, ln

Km

K1

, Y

)]
− K1 lnK1

[
myint

(
G, ln

Km+1

K1

, Y − 1

)
−myint

(
G, ln

Km

K1

, Y − 1

)]
− 1

2
K1

[
myint

(
G, ln

Km+1

K1

, Y − 2

)
−myint

(
G, ln

Km

K1

, Y − 2

)]}
. (6.50)
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6.6.6 An Alternative Scheme for Faster Computations

The evaluation of gamma function is time consuming especially when we have

several of them in each loop and many loops during each time step. On top of

solving of the PIDE, we are also performing optimization, this makes the program

very slow. Hence an alternative faster resolution is needed. We turn back to our

discretized system in (6.34):

(l − r)λci−1,j+1 + (1 + l∆T )ci,j+1 + (r − l)λci+1,j+1

= ci,j +
∆TCDe

r−l
β
Tj

2(∆k)2

(
I + II

)
, (6.51)

where

I =
i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

][
(6.52)

Ki

∫ Km

Km−1

U− 1
β
−2f2(ln

Ki

U
) dU +

∫ KN+1

Ki

dU

∫ Km

Km−1

W− 1
β
−2f2(ln

U

W
) dW

]
,

and

II =
N∑

m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

][
(6.53)

Ki

∫ Km+1

Km

U− 1
β
−2f1(ln

Ki

U
) dU −

∫ Ki

K1

dU

∫ Km+1

Km

W− 1
β
−2f1(ln

U

W
) dW

]
.

All the heavy calculation is focused on the evaluation of the integrals. In

previous sections we try our best to find the analytical values for these integrals.

In practice, these values (the big second term on the right hand side of (6.51)) are

normally of much smaller magnitude relative to the values of c (the first term on the

right hand side), and yet we spend so much time calculating them, which seem to be
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unnecessary. Now instead we seek to numerically calculate the integrals. Realizing

that once we have the grid in strike k direction ready, we can refine our grid and

calculate all the f values (as in section(6.6.4 )) using FFT at all the refined grid

points. f1 or f2 is automatically distinguished by the sign of the input value for

receiving f . Once all the possible f values are ready, we use a simple trapezoidal

rule to calculate the integrals. This numerical approximation is much more efficient

and it acquires reasonable accuracy as long as our grid is fine, in fact we have the

step size of the refined grid set to be a magnitude less than 10−6. Most importantly,

notice that all the calculation can be done beforehand (before the iteration in the

time direction) and all we need is to store the values of these integrals and use them

when needed.

We define notation

(i,m)
4
=

∫ Km+1

Km

U− 1
β
−2f(ln

Ki

U
) dU =

∫ km+1

km

e−
1+β

β
yf(ki − y) dy,

where

f(ν) = I{ν<0}f1(ν) + I{ν>0}f2(ν).

This integral value is calculated numerically by using refined grid of k (we use the

original step size divided by 1000 to be the new step size). We then store the values

of all the integrals in the following matrix

161



IntV al =



(1, 1) (1, 2) . . . (1, N)

(2, 1) (2, 2) . . . (2, N)

. . .

(N + 1, 1) (N + 2, 2) . . . (N + 1, N)


Again, this can all be done before the time iteration begins, which allows us to

even use a fully implicit scheme. Using implicit scheme for the first few time steps

will also solve the issue of discontinuities in the initial conditions.

Classical convergence results typically rely on smoothness assumptions for the

underlying data. However, many financial contracts have discontinuities in the pay-

off conditions or their derivatives. For the European options we are considering, the

initial condition is naturally non-smooth which causes discontinuous first deriva-

tives in the payoffs. Methods for handling discontinuities involves smoothing out

the initial condition. Other methods for dealing with initial discontinuities have also

been proposed. In Heston and Zhou (2000, [36]), and averaging method discussed

in Thomée and Wahlbin (1974, [67]) was used to improve convergence. In Tavella

and Randall (2000, [65]), it was suggested that shifting the grid such that disconti-

nuities occur midway between grid points can increase accuracy. Note that this idea

is similar to placing nodes equidistantly from a discretely observed barrier (Cheuk

and Vorst, 1996, [16]). Perhaps the most general method for handling discontinu-

ities was given in Wahlbin (1980, [68]). Under this method, the initial conditions

undergo an L2 projection onto the space spanned by a given set of basis functions.

To effectively smooth out our initial data, we let the strike prices of interest occur
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not at the mesh nodes but in between them. This method, called shifting the mesh

was proposed by Pooley, Forsyth and Vetzal (2003, [55]) together with two other

methods.

A fully implicit scheme used for the first few time steps could also avoid the

problem of discontinuities. Using fully implicit schemes, one only refers to T = 0 for

the time derivatives, so that no derivatives in the k direction are calculated. This

is also what Pooley, Forsyth and Vetzal suggest. One may get explicit after a few

time steps and this takes care of the issue at the boundary. In fact, we consistently

use fully implicit scheme across time since it is a fairly fast computation.

To transform from explicit to implicit, in (6.51) for call options, time index

is changed from j to j + 1 in the far right term, leaving only the value from the

previous time step in the equation coming from the time discretization. Hence, we

no longer have a tri-diagonal system in each time step.

6.6.7 Numerical Experiments

The parameters employed in our study are obtained by calibrating our lever-

aged Lévy model prices to market data. The forward PIDE formulation allows us to

receive option prices for all maturities and all strikes after one execution of the PDE

solver. The prices used in the calibration are those of all exchange traded strikes

lying within 20% of the forward price on either side. The data is drawn from CRSP

daily option data on S&P500 for December 31, 2003. The criterion for selection

of the parameters is the minimization over the parameter space, (β, σ, C,G,M, Y ),
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of the root mean squared error on an equally weighted basis between market prices

and model prices, specifically:

min
β,σ,C,G,M,Y

z =

√√√√ 1

n

n∑
i=1

(marketpricei −modelpricei(β, σ, C,G,M, Y ))2.

The S&P500 spot price on December 31, 2003 was 1110.595285. Market

prices used in parameter estimation are for out-of-money options on account of

their relative liquidity. More exactly, for strikes below the forward price we use put

prices and for strikes above the forward price we use call prices. In total there are

32 calls and 66 puts of 5 maturities. The summary of detail can be found in Table

6.4.

Table 6.4: Summary of T , r and q for S&P500 on December 31, 2003

S0 T r q

1110.595285 0.139350188 0.010861433 0.01615076

1110.595285 0.215852921 0.011020496 0.016844507

1110.595285 0.464372957 0.011821679 0.01599182

1110.595285 0.713006837 0.012776774 0.015944081

1110.595285 0.96175456 0.014074942 0.01647996

The model prices are calculated on a fine mesh of both maturities and strikes

and the ones that correspond to the strikes and maturities of the market prices

are calculated using cubic spline interpolation. The fully implicit scheme was used
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to solve the forward PIDE as discussed in Section 6.6.6. Table 6.5 contains the

calibrated parameters. The fitted data plot is shown in Figure 6.5.

Table 6.5: Calibrated Parameters for S&P500 on December 31, 2003

β σ C G M Y z

0.1705 0.01721 14.9970 27.7224 36.9222 1.9505 0.3333

The calibrated value for parameter β is 0.1705, which implies that α = −2.9325

(β = − 1
2α

), negative α value indicates the leverage effect. We argue that since

Lévy processes can internally explain both long-tailedness and skewness without

the addition of leverage, the estimation of a significant leverage effect is likely just

that and not a proxy for other well known and stylized features of the return density.

Comparing the values of z, the minimized root mean squared error, which

indicates how well the actual data is fitted by prices calculated from our calibrated

model, we see that z = 0.3333 is much smaller than z = 1.4203 in the BESQ case

(Chapter 5). The minimized root mean squared error of all 98 option values is only

about thirty three cents, whereas the error in leveraged diffusion with BESQ is one

dollar. Again we empirically show that pure jump processes (with infinite activity)

generally describe the stock prices’ stochastic movement much better compared to

the continuous case where Brownian motion is the only driving uncertainty.
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Figure 6.5: Data Fitting For Calls of All Strikes and Maturities on 12-31-2003.

Strikes vs. Option prices, ? - Model prices, o - Market prices
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Chapter 7

CONCLUSION

It has been observed in Konikov and Madan (2002) that these homogeneous

Lévy processes (e.g. NIG, VG, CGMY models) impose strict conditions on the

term structure of the risk-neutral variance, skewness, and kurtosis. Specifically, the

variance rate is constant over the term. It may be desirable to incorporate a richer

behavior by introducing a leverage consideration.

The basic intuition underlying our approach to incorporate leverage in the

form of time change arises from the scaling property of semi-stable Markov pro-

cesses and their one-to-one correspondence to Lévy processes. The scaling property

relates changes in scale to changes in time and thus random changes in volatility

can alternatively be captured by random changes in time.

The leverage effect is modeled in the context of diffusion by allowing the volatil-

ity to be a deterministic function of the spot price and has led to the development

of the constant elasticity of variance models and the local volatility models. The

analogs in the context of Lévy processes are absent. Stochastic volatility models

in the context of Lévy processes have introduced correlation terms to capture this

leverage effect but such an approach is relatively indirect. Recently, Carr, Geman,

Madan and Yor (2003) have extended the local volatility models to allow for local

Lévy models. In this thesis we address leverage directly in the context of a Lévy
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process.

In our study, we build in the leverage effect by introducing a time change

dependent on the level of asset and hence affect the expected local volatility in an

explicit manner. This is a fairly direct approach in the context of Lévy processes.

The continuous case in our study coincides with the development of the constant

elasticity of variance models. We however, conduct our investigation in the con-

tinuous case through our incorporation of BESQ process as the semi-stable Markov

process. The estimated parameters on S&P500 daily index data show leverage effect

with the power being −0.5. This is the same as many others have documented as

for the leverage relation in S&P500 market. In the pure jump case with underlying

time changed Lévy process being specified as CGMY process, we hope to engage the

leverage effect as well as the ability of explaining long-tailedness and skewness as

already being provided by using such pure jump Lévy process with infinite activity.

We show how to implement Generalized Method of Moments in this case to estimate

parameters without the assumption of knowing the law of the process.

The development of forward Partial Integro-Differential Equations is under

a general setup and shows great advantage over the backward ones. In both the

continuous case and the pure jump case, we show how to calibrate our model pa-

rameters by solving such forward PIDEs and compare model prices to the market

data. Although the numerical approach used in the pure jump case is discussed in

the context of CGMY process, it is evident that the approach can be extended to a

general frame work indifferent of the choice of Lévy process and shall be similarly

carried out where other Lévy processes are specified in our model.
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We expect the subsequent developments will allow for both stochastic volatility

and leverage by incorporating stochastic volatility into Lamperti processes. Our

method of calibration in the context of such leverage Lévy model and its results

shall be then followed by simulation of these models with leverage consideration. It

will eventually enable an assessment of the impact of leverage on the valuation of

claims otherwise analyzed in a zero leverage context.
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Appendix A

Evaluation of γ + ω

We want to evaluate γ + ω = −
∫
R−{0}(e

x − 1− x)kCGMY (x) dx, where

kCGMY (x) =
CeAx−B|x|

|x|1+Y

is the Lévy density of XCGMY and A = G−M
2
, B = G+M

2
. C > 0, G ≥ 0, M ≥ 0,

and Y < 2. The condition Y < 2 is induced by the requirement that Lévy densities

integrate x2 in the neighborhood of 0. Let us now begin the evaluation of γ + ω:

γ + ω

= −
∫
R−{0}

(ex − 1− x)kCGMY (x) dx

= −C
[∫ ∞

0

(ex − 1− x)
e−Mx

x1+Y
dx+

∫ 0

−∞
(ex − 1− x)

eGx

(−x)1+Y
dx

]
= C

[
−
∫ ∞

0

e−(M−1)x

x1+Y
dx+

∫ ∞

0

e−Mx

x1+Y
dx+

∫ ∞

0

e−Mx

xY
dx

−
∫ 0

−∞

e(G+1)x

(−x)1+Y
dx+

∫ 0

−∞

eGx

(−x)1+Y
dx−

∫ 0

−∞

eGx

(−x)Y
dx

]
= C

[
−
∫ ∞

0

e−(M−1)x

x1+Y
dx+

∫ ∞

0

e−Mx

x1+Y
dx+

∫ ∞

0

e−Mx

xY
dx

−
∫ ∞

0

e−(G+1)x

x1+Y
dx+

∫ ∞

0

e−Gx

x1+Y
dx−

∫ ∞

0

e−Gx

xY
dx

]
= C

[
−(M − 1)Y

∫ ∞

0

e−uu−(1+Y ) du+MY

∫ ∞

0

e−uu−(1+Y ) du

+MY−1

∫ ∞

0

e−uu−Y du− (G+ 1)Y
∫ ∞

0

e−uu−(1+Y ) du

+GY

∫ ∞

0

e−uu−(1+Y ) du−GY−1

∫ ∞

0

e−uu−Y du

]
.
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When Y < 0, all the integrals are finite and we have

γ + ω

= CΓ(1− Y )(MY−1 −GY−1)− CΓ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ].

For 0 < Y < 1, we evaluate the value of γ + ω as follows.

γ + ω

= C lim
ε→0

[
−
∫ ∞

ε

e−(M−1)x

x1+Y
dx+

∫ ∞

ε

e−Mx

x1+Y
dx+

∫ ∞

ε

e−Mx

xY
dx

−
∫ ∞

ε

e−(G+1)x

x1+Y
dx+

∫ ∞

ε

e−Gx

x1+Y
dx−

∫ ∞

ε

e−Gx

xY
dx

]
= C lim

ε→0

[
−(M − 1)Y

∫ ∞

(M−1)ε

e−uu−(1+Y ) du+MY

∫ ∞

Mε

e−uu−(1+Y ) du

−(G+ 1)Y
∫ ∞

(G+1)ε

e−uu−(1+Y ) du+GY

∫ ∞

Gε

e−uu−(1+Y ) du

+MY−1

∫ ∞

Mε

e−uu−Y du−GY−1

∫ ∞

Gε

e−uu−Y du

]
(A.1)

= C lim
ε→0

[
(M − 1)Y

Y
e−uu−Y

∣∣∣∣∞
(M−1)ε

+
(M − 1)Y

Y

∫ ∞

(M−1)ε

e−uu−Y du

+
MY

−Y
e−uu−Y

∣∣∣∣∞
Mε

+
MY

−Y

∫ ∞

Mε

e−uu−Y du

+
(G+ 1)Y

Y
e−uu−Y

∣∣∣∣∞
(G+1)ε

+
(G+ 1)Y

Y

∫ ∞

(G+1)ε

e−uu−Y du

+
GY

−Y
e−uu−Y

∣∣∣∣∞
Gε

+
GY

−Y

∫ ∞

Gε

e−uu−Y du

]
+ CΓ(−Y )(MY−1 −GY−1)

= C lim
ε→0

[
e−(M−1)εε−Y

−Y
+
e−Mεε−Y

Y
+
e−(G+1)εε−Y

−Y
+
e−Gεε−Y

Y

]
+

Γ(1− Y )

Y
[(M − 1)Y −MY + (G+ 1)Y −GY ]

+CΓ(1− Y )(MY−1 −GY−1).

In the last line, the quantity in the parenthesis is zero after taking limit and cancel-

lation, so for 0 < Y < 1,
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γ + ω = CΓ(1− Y )

[
MY−1 −GY−1 +

(M − 1)Y

Y
− MY

Y
+

(G+ 1)Y

Y
− GY

Y

]
,

At last, let us consider the case where 1 < Y < 2. We evaluate γ+ω from following

line (A.1):
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γ + ω = (A.1)

= C lim
ε→0

[
(M − 1)Y

Y

∫ ∞

(M−1)ε

e−uu−Y du+
MY

−Y

∫ ∞

Mε

e−uu−Y du

+
(G+ 1)Y

Y

∫ ∞

(G+1)ε

e−uu−Y du+
GY

−Y

∫ ∞

Gε

e−uu−Y du

+
MY−1

1− Y

(
e−uu1−Y

∣∣∣∣∞
Mε

+

∫ ∞

Mε

e−uu1−Y du
)

−GY−1

1− Y

(
e−uu1−Y

∣∣∣∣∞
Gε

+

∫ ∞

Gε

e−uu1−Y du
)]

= C lim
ε→0

[
(M − 1)Y

Y (1− Y )

(
e−uu1−Y

∣∣∣∣∞
(M−1)ε

+

∫ ∞

(M−1)ε

e−uu1−Y du
)

+
MY

−Y (1− Y )

(
e−uu1−Y

∣∣∣∣∞
Mε

+

∫ ∞

Mε

e−uu1−Y du
)

+
(G+ 1)Y

Y (1− Y )

(
e−uu1−Y

∣∣∣∣∞
(G+1)ε

+

∫ ∞

(G+1)ε

e−uu1−Y du
)

+
GY

−Y (1− Y )

(
e−uu1−Y

∣∣∣∣∞
Gε

+

∫ ∞

Gε

e−uu1−Y du
)

+
MY−1

1− Y

(
e−uu1−Y

∣∣∣∣∞
Mε

+

∫ ∞

Mε

e−uu1−Y du
)

−GY−1

1− Y

(
e−uu1−Y

∣∣∣∣∞
Gε

+

∫ ∞

Gε

e−uu1−Y du
)]

= C lim
ε→0

[
ε1−Y e−(M−1)ε − ε1−Y e−Mε + ε1−Y e−(G+1)ε − ε1−Y e−Gε

−Y (1− Y )

+
−ε1−Y e−Mε + ε1−Y e−Gε

1− Y

+
(M − 1)Y

Y (1− Y )
Γ(2− Y ) +

MY

−Y (1− Y )
Γ(2− Y ) +

(G+ 1)Y

Y (1− Y )
Γ(2− Y )

− GY

−Y (1− Y )
Γ(2− Y ) +

MY−1

1− Y
Γ(2− Y )− GY−1

1− Y
Γ(2− Y )

]
= C

Γ(2− Y )

Y (1− Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY + YMY−1 − Y GY−1

]
.
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Putting the results together, we have

γ + ω

=



C
[
Γ(1− Y )(MY−1 −GY−1)− Γ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ]

]
,

Y < 0;

CΓ(1− Y )

[
MY−1 −GY−1 + (M−1)Y

Y
− MY

Y
+ (G+1)Y

Y
− GY

Y

]
,

0 < Y < 1;

C Γ(2−Y )
Y (1−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY + YMY−1 − Y GY−1

]
,

1 < Y < 2.
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Appendix B

Integral Evaluation in the CGMY Case

In fact when β̂ = 1 the evaluation will be different from the evaluation when

β̂ 6= 1. We leave this special case to later in section (B.0.12) and let us now calculate

these integrals when β̂ 6= 1 one by one in the following sections.

B.0.8 Evaluation of Integral (6.41), when β̂ 6= 1

In each time step , we need to evaluate for m = i+ 1, . . . , N∫ Km+1

Km

U
− 1

β̂ f1(ln
Ki

U
) dU.

Consider a variable change y = lnU , we have∫ Km+1

Km

U
− 1

β̂ f1(ln
Ki

U
) dU

=

∫ lnKm+1

lnKm

e
β̂−1

β̂
y
f1(lnKi − y) dy

=
β̂

β̂ − 1

[
(Km+1)

β̂−1

β̂ f1(ln
Ki

Km+1

)− (Km)
β̂−1

β̂ f1(ln
Ki

Km

)

+

∫ lnKm+1

lnKm

e
β̂−1

β̂
y

(∫ lnKi−y

−∞
eGw(−w)−(1+Y ) dw

)
dy

]
=

β̂

β̂ − 1

[
(Km+1)

β̂−1

β̂ f1(ln
Ki

Km+1

)− (Km)
β̂−1

β̂ f1(ln
Ki

Km

)

]
+

β̂

β̂ − 1

∫ ln
Ki
Km

−∞
dw eGw(−w)−(1+Y )

∫ (lnKi−w)∧lnKm+1

lnKm

e
β̂−1

β̂
y
dy. (B.1)

To evaluate f1(a), where a is a constant, we first analytically calculate the

Fourier Transform of

f(ν) = I{ν<0}f1(ν) + I{ν>0}f2(ν),
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and then get f1 by Fourier Inversion numerically. The evaluation of f1 or f2 will

be determined by the sign of the constant a that we put in function f . The detail

of the analytical Fourier Transform and how to carry out the inversion numerically

will be discussed in section (6.6.4).

We now come to the integral in (B.1). We can achieve the evaluation by using

the incomplete gamma function. Specifically, we can first separate the integral into

two parts,

β̂

β̂ − 1

∫ lnKi−lnKm

−∞
dw eGw(−w)−(1+Y )

∫ (lnKi−w)∧lnKm+1

lnKm

e
β̂−1

β̂
y
dy

=
β̂

β̂ − 1

∫ lnKi−lnKm+1

−∞
dw eGw(−w)−(1+Y )

∫ lnKm+1

lnKm

e
β̂−1

β̂
y
dy

+
β̂

β̂ − 1

∫ lnKi−lnKm

lnKi−lnKm+1

dw eGw(−w)−(1+Y )

∫ lnKi−w

lnKm

e
β̂−1

β̂
y
dy

=

(
β̂

β̂ − 1

)2 ∫ lnKi−lnKm+1

−∞
dw eGw(−w)−(1+Y )[(Km+1)

β̂−1

β̂ − (Km)
β̂−1

β̂
]

+

(
β̂

β̂ − 1

)2 ∫ lnKi−lnKm

lnKi−lnKm+1

dw eGw(−w)−(1+Y )[(Ki)
β̂−1

β̂ e
− β̂−1

β̂
w − (Km)

β̂−1

β̂
]

=

(
β̂

β̂ − 1

)2[
(Km+1)

β̂−1

β̂ − (Km)
β̂−1

β̂
] ∫ +∞

ln
Km+1

Ki

e−Gw(w)−(1+Y ) dw

+

(
β̂

β̂ − 1

)2[
(Ki)

β̂−1

β̂

∫ lnKi−lnKm

lnKi−lnKm+1

e
(G− β̂−1

β̂
)w

(−w)−(1+Y ) dw

−(Km)
β̂−1

β̂

∫ lnKi−lnKm

lnKi−lnKm+1

eGw(−w)−(1+Y ) dw

]
=

(
β̂

β̂ − 1

)2[
(Km+1)

β̂−1

β̂ − (Km)
β̂−1

β̂
]
integral1

+

(
β̂

β̂ − 1

)2[
integral2− integral3

]
.

It is easily seen that these integral can be expressed by using the upper tail incom-

plete gamma function, since
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Γ(a, x) =

∫ ∞

x

e−tta−1 dt,

and it is a Matlab function implemented as gammainc(X,A, TAIL). However, here

since the power −Y is not necessarily always positive, we need to be a little more

careful. Let us in general work with integral

∫ ∞

x

e−Gww−(1+Y ) dw, (B.2)

or after a variable change

GY

∫ ∞

Gx

e−tt−(1+Y ) dt.

When Y ≤ 0, this is equal to GY Γ(−Y,Gx), while 0 < Y < 2, Y 6= 1,

GY

∫ ∞

Gx

e−tt−(1+Y ) dt

=
−GY

Y

∫ ∞

Gx

e−t d(t−Y )

=
−GY

Y

[
−e−Gx(Gx)−Y +

∫ ∞

Gx

t−Y e−t dt

]
=

−GY

Y

[
−e−Gx(Gx)−Y +

1

1− Y

∫ ∞

Gx

e−t d(t1−Y )

]
=

x−Y e−Gx

Y
+

GY

(Y − 1)Y

[
−e−Gx(Gx)1−Y +

∫ ∞

Gx

t1−Y e−t dt

]
=

x−Y e−Gx

Y
− Ge−Gxx1−Y

Y (Y − 1)
+

GY

Y (Y − 1)
Γ(2− Y,Gx).

For the sake of convenience for later use, I will denote the integral (B.2) as function
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myint(G, x, a) and

myint(G, x, Y )

=

∫ ∞

x

e−Gww−(1+Y ) dw

=

{
GY Γ(−Y,Gx), Y ≤ 0,

x−Y e−Gx

Y
− Ge−Gxx1−Y

Y (Y−1)
+ GY

Y (Y−1)
Γ(2− Y,Gx). 0 < Y < 2, Y 6= 1.

or =

{ GY gammainc(Gx,−Y, TAIL), Y ≤ 0,

x−Y e−Gx

Y
− Ge−Gxx1−Y

Y (Y−1)
+ GY

Y (Y−1)
gammainc(Gx, 2− Y, TAIL).

0 < Y < 2, Y 6= 1.

Now, we have

integral1 = myint

(
G, ln

Km+1

Ki

, Y

)
,
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integral2

= (Ki)
β̂−1

β̂

∫ lnKi−lnKm

lnKi−lnKm+1

e
(G− β̂−1

β̂
)w

(−w)−(1+Y ) dw

= (Ki)
β̂−1

β̂

∫ ln
Ki
Km

−∞
e
(G− β̂−1

β̂
)w

(−w)−(1+Y ) dw

−(Ki)
β̂−1

β̂

∫ ln
Ki

Km+1

−∞
e
(G− β̂−1

β̂
)w

(−w)−(1+Y ) dw

= (Ki)
β̂−1

β̂

∫ +∞

ln Km
Ki

e
−(G− β̂−1

β̂
)w
w−(1+Y ) dw

−(Ki)
β̂−1

β̂

∫ +∞

ln
Km+1

Ki

e
−(G− β̂−1

β̂
)w
w−(1+Y ) dw

= (Ki)
β̂−1

β̂ myint

(
G− β̂ − 1

β̂
, ln

Km

Ki

, Y

)
−(Ki)

β̂−1

β̂ myint

(
G− β̂ − 1

β̂
, ln

Km+1

Ki

, Y

)
= (Ki)

β̂−1

β̂

[
myint

(
G− β̂ − 1

β̂
, ln

Km

Ki

, Y

)
−myint

(
G− β̂ − 1

β̂
, ln

Km+1

Ki

, Y

)]
,

and

integral3

= (Km)
β̂−1

β̂

∫ lnKi−lnKm

lnKi−lnKm+1

eGw(−w)−(1+Y ) dw

= (Km)
β̂−1

β̂

∫ ln
Ki
Km

−∞
eGw(−w)−(1+Y ) dw

−(Km)
β̂−1

β̂

∫ ln
Ki

Km+1

−∞
eGw(−w)−(1+Y ) dw

= (Km)
β̂−1

β̂

∫ +∞

ln Km
Ki

e−Gww−(1+Y ) dw − (Km)
β̂−1

β̂

∫ +∞

ln
Km+1

Ki

e−Gww−(1+Y ) dw

= (Km)
β̂−1

β̂

[
myint

(
G, ln

Km

Ki

, Y

)
−myint

(
G, ln

Km+1

Ki

, Y

)]
.
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So putting things together, we have

∫ Km+1

Km

U
− 1

β̂ f1(ln
Ki

U
) dU

=
β̂

β̂ − 1

[
(Km+1)

β̂−1

β̂ f1(ln
Ki

Km+1

)− (Km)
β̂−1

β̂ f1(ln
Ki

Km

)

]
+

(
β̂

β̂ − 1

)2
{

(Km+1)
β̂−1

β̂ myint

(
G, ln

Km+1

Ki

, Y

)
−(Km)

β̂−1

β̂ myint

(
G, ln

Km

Ki

, Y

)
+(Ki)

β̂−1

β̂

[
myint

(
G− β̂ − 1

β̂
, ln

Km

Ki

, Y

)
−myint

(
G− β̂ − 1

β̂
, ln

Km+1

Ki

, Y

)]}
.

B.0.9 Evaluation of Integral (6.42), when β̂ 6= 1

In each time step , we need to evaluate for m = 2, . . . , i− 1

∫ Km

Km−1

U
− 1

β̂ f2(ln
Ki

U
) dU.

Similarly as the evaluation in the last section

∫ Km

Km−1

U
− 1

β̂ f2(ln
Ki

U
) dU

=

∫ lnKm

lnKm−1

e
β̂−1

β̂
y
f2(lnKi − y) dy

=
β̂

β̂ − 1

[
(Km)

β̂−1

β̂ f2(ln
Ki

Km

)− (Km−1)
β̂−1

β̂ f2(ln
Ki

Km−1

)

−
∫ lnKm

lnKm−1

e
β̂−1

β̂
y

(∫ ∞

lnKi−y
e−Mww−(1+Y ) dw

)
dy

]
=

β̂

β̂ − 1

[
(Km)

β̂−1

β̂ f2(ln
Ki

Km

)− (Km−1)
β̂−1

β̂ f2(ln
Ki

Km−1

)

]
− β̂

β̂ − 1

∫ ∞

lnKi−lnKm

dw e−Mww−(1+Y )

∫ lnKm

(lnKi−w)∨lnKm−1

e
β̂−1

β̂
y
dy. (B.3)
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The evaluation f2(a) when a is a constant, is the same as the evaluation of

f1(a). We analytically derive the Fourier Transform of function f(ν) = I{ν<0}f1(ν)+

I{ν>0}f2(ν), and then calculate either f1 or f2 evaluated at certain point by numerical

Fourier Inversion. Section (6.6.4) talks about the detail.

We now come to the integral in (B.3). We can achieve the evaluation by using

the incomplete gamma function. Specifically, we can first separate the integral into

two parts,

− β̂

β̂ − 1

∫ ∞

lnKi−lnKm

dw e−Mww−(1+Y )

∫ lnKm

(lnKi−w)∨lnKm−1

e
β̂−1

β̂
y
dy

= − β̂

β̂ − 1

[∫ ln
Ki

Km−1

ln
Ki
Km

dw e−Mww−(1+Y )

∫ lnKm

lnKi−w
e

β̂−1

β̂
y
dy

+

∫ +∞

ln
Ki

Km−1

dw e−Mww−(1+Y )

∫ lnKm

lnKm−1

e
β̂−1

β̂
y
dy

]

= −
(

β̂

β̂ − 1

)2[∫ ln
Ki

Km−1

ln
Ki
Km

dw e−Mww−(1+Y )
[
(Km)

β̂−1

β̂ − (Ki)
β̂−1

β̂ e
− β̂−1

β̂
w]

+

∫ +∞

ln
Ki

Km−1

dw e−Mww−(1+Y )
[
(Km)

β̂−1

β̂ − (Km−1)
β̂−1

β̂
]]

= −
(

β̂

β̂ − 1

)2[[
(Km)

β̂−1

β̂ − (Km−1)
β̂−1

β̂
]
myint

(
M, ln

Ki

Km−1

, Y

)
+(Km)

β̂−1

β̂

∫ ln
Ki

Km−1

ln
Ki
Km

e−Mww−(1+Y ) dw

−(Ki)
β̂−1

β̂

∫ ln
Ki

Km−1

ln
Ki
Km

e
−(M+ β̂−1

β̂
)w
w−(1+Y ) dw

]
,

where ∫ ln
Ki

Km−1

ln
Ki
Km

e−Mww−(1+Y ) dw

=

∫ +∞

ln
Ki
Km

e−Mww−(1+Y ) dw −
∫ +∞

ln
Ki

Km−1

e−Mww−(1+Y ) dw

= myint

(
M, ln

Ki

Km

, Y

)
−myint

(
M, ln

Ki

Km−1

, Y

)
,

181



and

∫ ln
Ki

Km−1

ln
Ki
Km

e
−(M+ β̂−1

β̂
)w
w−(1+Y ) dw

=

∫ +∞

ln
Ki
Km

e
−(M+ β̂−1

β̂
)w
w−(1+Y ) dw −

∫ +∞

ln
Ki

Km−1

e
−(M+ β̂−1

β̂
)w
w−(1+Y ) dw

= myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km

, Y

)
−myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km−1

, Y

)
.

So putting things together, we have

∫ Km

Km−1

U
− 1

β̂ f2(ln
Ki

U
) dU

=
β̂

β̂ − 1

[
(Km)

β̂−1

β̂ f2(ln
Ki

Km

)− (Km−1)
β̂−1

β̂ f2(ln
Ki

Km−1

)

]
−
(

β̂

β̂ − 1

)2
{

(Km)
β̂−1

β̂ myint

(
M, ln

Ki

Km

, Y

)
−(Km−1)

β̂−1

β̂ myint

(
M, ln

Ki

Km−1

, Y

)
−(Ki)

β̂−1

β̂

[
myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km

, Y

)
−myint

(
M +

β̂ − 1

β̂
, ln

Ki

Km−1

, Y

)]}
.

B.0.10 Evaluation of Integral (6.43), when β̂ 6= 1

In each time step , we need to evaluate for m = 2, . . . , i− 1

∫ KN+1

Ki

dU

∫ Km

Km−1

W
− 1

β̂ f2(ln
U

W
)dW.
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Rearrange the integral, we have

∫ KN+1

Ki

dU

∫ Km

Km−1

W
− 1

β̂ f2(ln
U

W
)dW

=

∫ Km

Km−1

W
− 1

β̂ dW

∫ KN+1

Ki

f2(ln
U

W
) dU

ln U
W

=t
=

∫ Km

Km−1

W
− 1

β̂ dW

∫ ln
KN+1

W

ln
Ki
W

f2(t)Wet dt

=

∫ Km

Km−1

W
1− 1

β̂ dW

∫ ln
KN+1

W

ln
Ki
W

f2(t)e
t dt

=
1

2− 1

β̂

[
(Km)

2− 1

β̂

∫ ln
KN+1

Km

ln
Ki
Km

f2(t)e
t dt− (Km−1)

2− 1

β̂

∫ ln
KN+1
Km−1

ln
Ki

Km−1

f2(t)e
t dt

+

∫ Km

Km−1

W
2− 1

β̂ f2(ln
Ki

W
)
Ki

W

W

Ki

Ki(−
1

W 2
) dW

−
∫ Km

Km−1

W
2− 1

β̂ f2(ln
KN+1

W
)
KN+1

W

W

KN+1

KN+1(−
1

W 2
) dW

]

=
1

2− 1

β̂

[
(Km)

2− 1

β̂

∫ ln
KN+1

Km

ln
Ki
Km

f2(t)e
t dt− (Km−1)

2− 1

β̂

∫ ln
KN+1
Km−1

ln
Ki

Km−1

f2(t)e
t dt

−Ki

∫ Km

Km−1

W
− 1

β̂ f2(ln
Ki

W
) dW +KN+1

∫ Km

Km−1

W
− 1

β̂ f2(ln
KN+1

W
) dW

]
.

Here β̂ 6= 1
2
, this is true since β̂ is in fact β

1+2β
. Noticing that integral

∫ Km+1

Km

W
− 1

β̂ f2(ln
Ki

W
) dW

has been evaluated in section (B.0.9), we only need to evaluate two other integrals,
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which are

∫ ln
KN+1

Km

ln
Ki
Km

f2(t)e
t dt

=
KN+1

Km

f2(ln
KN+1

Km

)− Ki

Km

f2(ln
Ki

Km

) +

∫ ln
KN+1

Km

ln
Ki
Km

et(

∫ ∞

t

e−Mww−(1+Y ) dw) dt

=
KN+1

Km

f2(ln
KN+1

Km

)− Ki

Km

f2(ln
Ki

Km

) +
KN+1

Km

∫ ∞

ln
KN+1

Km

e−Mww−(1+Y ) dw

− Ki

Km

∫ ∞

ln
Ki
Km

e−Mww−(1+Y ) dw +

∫ ln
KN+1

Km

ln
Ki
Km

ete−Mtt−(1+Y ) dt

=
KN+1

Km

f2(ln
KN+1

Km

)− Ki

Km

f2(ln
Ki

Km

)

+
KN+1

Km

myint

(
M, ln

KN+1

Km

, Y

)
− Ki

Km

myint

(
M, ln

Ki

Km

, Y

)
+myint

(
M − 1, ln

Ki

Km

, Y

)
−myint

(
M − 1, ln

KN+1

Km

, Y

)
, (B.4)

and

∫ ln
KN+1
Km−1

ln
Ki

Km−1

f2(t)e
t dt

=
KN+1

Km−1

f2(ln
KN+1

Km−1

)− Ki

Km−1

f2(ln
Ki

Km−1

)

+
KN+1

Km−1

myint

(
M, ln

KN+1

Km−1

, Y

)
− Ki

Km−1

myint

(
M, ln

Ki

Km−1

, Y

)
+myint

(
M − 1, ln

Ki

Km−1

, Y

)
−myint

(
M − 1, ln

KN+1

Km−1

, Y

)
. (B.5)

B.0.11 Evaluation of Integral (6.44), when β̂ 6= 1

In each time step , we need to evaluate for m = i+ 1, . . . , N

∫ Ki

K1

dU

∫ Km+1

Km

W
− 1

β̂ f1(ln
U

W
)dW.
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Rearrange the integral, we have

∫ Ki

K1

dU

∫ Km+1

Km

W
− 1

β̂ f1(ln
U

W
)dW

=

∫ Km+1

Km

W
− 1

β̂ dW

∫ Ki

K1

f1(ln
U

W
) dU

ln U
W

=t
=

∫ Km+1

Km

W
− 1

β̂ dW

∫ ln
Ki
W

ln
K1
W

f1(t)Wet dt

=

∫ Km+1

Km

W
1− 1

β̂ dW

∫ ln
Ki
W

ln
K1
W

f1(t)e
t dt

=
1

2− 1

β̂

[
(Km+1)

2− 1

β̂

∫ ln
Ki

Km+1

ln
K1

Km+1

f1(t)e
t dt− (Km)

2− 1

β̂

∫ ln
Ki
Km

ln
K1
Km

f1(t)e
t dt

−
∫ Km+1

Km

W
2− 1

β̂ f1(ln
Ki

W
)
Ki

W

W

Ki

Ki(−
1

W 2
) dW

+

∫ Km+1

Km

W
2− 1

β̂ f1(ln
K1

W
)
K1

W

W

K1

K1(−
1

W 2
) dW

]
=

1

2− 1

β̂

[
(Km+1)

2− 1

β̂

∫ ln
Ki

Km+1

ln
K1

Km+1

f1(t)e
t dt− (Km)

2− 1

β̂

∫ ln
Ki
Km

ln
K1
Km

f1(t)e
t dt

+Ki

∫ Km+1

Km

W
− 1

β̂ f1(ln
Ki

W
) dW −K1

∫ Km+1

Km

W
− 1

β̂ f1(ln
K1

W
) dW

]
.

Here again β̂ 6= 1
2
. Noticing that integral

∫ Km+1

Km
W

− 1

β̂ f1(ln
Ki

W
) dW has been evalu-
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ated in section (B.0.8), we only need to evaluate two other integrals, which are

∫ ln
Ki

Km+1

ln
K1

Km+1

f1(t)e
t dt

=
Ki

Km+1

f1(ln
Ki

Km+1

)− K1

Km+1

f1(ln
K1

Km+1

)

−
∫ ln

Ki
Km+1

ln
K1

Km+1

et(

∫ t

−∞
eGw(−w)−(1+Y ) dw) dt

=
Ki

Km+1

f1(ln
Ki

Km+1

)− K1

Km+1

f1(ln
K1

Km+1

)− Ki

Km+1

∫ ln
Ki

Km+1

−∞
eGw(−w)−(1+Y ) dw

+
K1

Km+1

∫ ln
K1

Km+1

−∞
eGw(−w)−(1+Y ) dw +

∫ ln
Ki

Km+1

ln
K1

Km+1

e(1+G)t(−t)−(1+Y ) dt

=
Ki

Km+1

f1(ln
Ki

Km+1

)− K1

Km+1

f1(ln
K1

Km+1

)

− Ki

Km+1

myint

(
G, ln

Km+1

Ki

, Y

)
+

K1

Km+1

myint

(
G, ln

Km+1

K1

, Y

)
+myint

(
G+ 1, ln

Km+1

Ki

, Y

)
−myint

(
G+ 1, ln

Km+1

K1

, Y

)
, (B.6)

and

∫ ln
Ki
Km

ln
K1
Km

f1(t)e
t dt

=
Ki

Km

f1(ln
Ki

Km

)− K1

Km

f1(ln
K1

Km

)

− Ki

Km

myint

(
G, ln

Km

Ki

, Y

)
+
K1

Km

myint

(
G, ln

Km

K1

, Y

)
+myint

(
G+ 1, ln

Km

Ki

, Y

)
−myint

(
G+ 1, ln

Km

K1

, Y

)
. (B.7)
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B.0.12 Evaluation of Integrals (6.41-6.44) when β̂ = 1

∫ Km+1

Km

U−1f1(ln
Ki

U
) dU

=

∫ lnKm+1

lnKm

dy f1(lnKi − y)

= lnKm+1f1(ln
Ki

Km+1

)− lnKmf1(ln
Ki

Km

)

+

∫ lnKm+1

lnKm

y

(∫ lnKi−y

−∞
eGw(−w)−(1+Y ) dw

)
dy

= lnKm+1f1(ln
Ki

Km+1

)− lnKmf1(ln
Ki

Km

)

+
1

2
(lnKm+1)

2

∫ ln
Ki

Km+1

−∞
eGw(−w)−(1+Y ) dw

−1

2
(lnKm)2

∫ ln
Ki
Km

−∞
eGw(−w)−(1+Y ) dw

+
1

2

∫ lnKm+1

lnKm

y2eG(lnKi−y)(y − lnKi)
−(1+Y ) dy

= lnKm+1f1(ln
Ki

Km+1

)− lnKmf1(ln
Ki

Km

) +
1

2
(lnKm+1)

2myint
(
G, ln

Km+1

Ki

, Y
)

−1

2
(lnKm)2myint

(
G, ln

Km

Ki

, Y
)

−1

2

∫ ln
Ki

Km+1

ln
Ki
Km

[(lnKi)
2 − 2t lnKi + t2]eGt(−t)−(1+Y ) dt

= lnKm+1f1(ln
Ki

Km+1

)− lnKmf1(ln
Ki

Km

) +
1

2
(lnKm+1)

2myint
(
G, ln

Km+1

Ki

, Y
)

−1

2
(lnKm)2myint

(
G, ln

Km

Ki

, Y
)
− 1

2
(lnKi)

2

[
myint

(
G, ln

Km+1

Ki

, Y
)

−myint
(
G, ln

Km

Ki

, Y
)]
− lnKi

[
myint

(
G, ln

Km+1

Ki

, Y − 1
)

−myint
(
G, ln

Km

Ki

, Y − 1
)]

−1

2

[
myint

(
G, ln

Km+1

Ki

, Y − 2
)
−myint

(
G, ln

Km

Ki

, Y − 2
)]
,
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∫ Km+1

Km

U−1f1(ln
Ki

U
) dU

= lnKm+1f1(ln
Ki

Km+1

)− lnKmf1(ln
Ki

Km

)

+
1

2

[
(lnKm+1)

2 − (lnKi)
2]myint(G, ln Km+1

Ki

, Y
)

+
1

2

[
(lnKi)

2 − (lnKm)2]myint(G, ln Km

Ki

, Y
)

− lnKi

[
myint

(
G, ln

Km+1

Ki

, Y − 1
)
−myint

(
G, ln

Km

Ki

, Y − 1
)]

−1

2

[
myint

(
G, ln

Km+1

Ki

, Y − 2
)
−myint

(
G, ln

Km

Ki

, Y − 2
)]
,

and

∫ Km

Km−1

U−1f2(ln
Ki

U
) dU

=

∫ lnKm

lnKm−1

dy f2(lnKi − y)

= lnKmf2(ln
Ki

Km

)− lnKm−1f2(ln
Ki

Km−1

)

−
∫ lnKm

lnKm−1

y

(∫ ∞

lnKi−y
e−Mww−(1+Y ) dw

)
dy

= lnKmf2(ln
Ki

Km

)− lnKm−1f2(ln
Ki

Km−1

)− 1

2
(lnKm)2

∫ ∞

ln
Ki
Km

e−Mww−(1+Y ) dw

+
1

2
(lnKm−1)

2

∫ ∞

ln
Ki

Km−1

e−Mww−(1+Y ) dw

+
1

2

∫ lnKm

lnKm−1

y2e−M(lnKi−y)(lnKi − y)−(1+Y ) dy

= lnKmf2(ln
Ki

Km

)− lnKm−1f2(ln
Ki

Km−1

)− 1

2
(lnKm)2myint

(
M, ln

Ki

Km

, Y
)

+
1

2
(lnKm−1)

2myint
(
M, ln

Ki

Km−1

, Y
)

−1

2

∫ ln
Ki
Km

ln
Ki

Km−1

[(lnKi)
2 − 2t lnKi + t2]e−Mtt−(1+Y ) dt.
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Next we have

∫ Km

Km−1

U−1f2(ln
Ki

U
) dU

= lnKmf2(ln
Ki

Km

)− lnKm−1f2(ln
Ki

Km−1

)− 1

2
(lnKm)2myint

(
M, ln

Ki

Km

, Y
)

+
1

2
(lnKm−1)

2myint
(
M, ln

Ki

Km−1

, Y
)

−1

2
(lnKi)

2

[
myint

(
M, ln

Ki

Km−1

, Y
)
−myint

(
M, ln

Ki

Km

, Y
)]

+ lnKi

[
myint

(
M, ln

Ki

Km−1

, Y − 1
)
−myint

(
M, ln

Ki

Km

, Y − 1
)]

−1

2

[
myint

(
M, ln

Ki

Km−1

, Y − 2
)
−myint

(
M, ln

Ki

Km

, Y − 2
)]

= lnKmf2(ln
Ki

Km

)− lnKm−1f2(ln
Ki

Km−1

)

+
1

2

[
(lnKi)

2 − (lnKm)2]myint(M, ln
Ki

Km

, Y
)

+
1

2

[
(lnKm−1)

2 − (lnKi)
2]myint(M, ln

Ki

Km−1

, Y
)

+ lnKi

[
myint

(
M, ln

Ki

Km−1

, Y − 1
)
−myint

(
M, ln

Ki

Km

, Y − 1
)]

−1

2

[
myint

(
M, ln

Ki

Km−1

, Y − 2
)
−myint

(
M, ln

Ki

Km

, Y − 2
)]
,
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∫ KN+1

Ki

dU

∫ Km

Km−1

W−1f2(ln
U

W
)dW

ln U
W

=t
=

∫ Km

Km−1

dW

∫ ln
KN+1

W

ln
Ki
W

f2(t)e
t dt

= Km

∫ ln
KN+1

Km

ln
Ki
Km

f2(t)e
t dt−Km−1

∫ ln
KN+1
Km−1

ln
Ki

Km−1

f2(t)e
t dt

−
∫ Km

Km−1

Wf2(ln
Ki

W
)
Ki

W

W

Ki

Ki

W 2
dW

+

∫ Km

Km−1

Wf2(ln
KN+1

W
)
KN+1

W

W

KN+1

KN+1

W 2
dW

= Km

∫ ln
KN+1

Km

ln
Ki
Km

f2(t)e
t dt−Km−1

∫ ln
KN+1
Km−1

ln
Ki

Km−1

f2(t)e
t dt

−Ki

∫ Km

Km−1

W−1f2(ln
Ki

W
) dW +KN+1

∫ Km

Km−1

W−1f2(ln
KN+1

W
) dW,

and

∫ Ki

K1

dU

∫ Km+1

Km

W−1f1(ln
U

W
)dW

ln U
W

=t
=

∫ Km+1

Km

dW

∫ ln
Ki
W

ln
K1
W

f1(t)e
t dt

= Km+1

∫ ln
Ki

Km+1

ln
K1

Km+1

f1(t)e
t dt−Km

∫ ln
Ki
Km

ln
K1
Km

f1(t)e
t dt

+

∫ Km+1

Km

Wf1(ln
Ki

W
)
Ki

W

W

Ki

Ki

W 2
dW

−
∫ Km+1

Km

Wf1(ln
K1

W
)
K1

W

W

K1

Ki

W 2
dW

= Km+1

∫ ln
Ki

Km+1

ln
K1

Km+1

f1(t)e
t dt−Km

∫ ln
Ki
Km

ln
K1
Km

f1(t)e
t dt

+Ki

∫ Km+1

Km

W−1f1(ln
Ki

W
) dW −K1

∫ Km+1

Km

W−1f1(ln
K1

W
) dW.
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Putting them together, we have

I =
i−1∑
m=2

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{
KN+1(1 + lnKm)f2(ln

KN+1

Km

)−KN+1(1 + lnKm−1)f2(ln
KN+1

Km−1

)

+ Ki

[
f2(ln

Ki

Km−1

)− f2(ln
Ki

Km

)

]
+ KN+1

[
1 +

1

2
(lnKN+1)

2 − 1

2
(lnKm)2

]
myint

(
M, ln

KN+1

Km

, Y

)
− KN+1

[
1 +

1

2
(lnKN+1)

2 − 1

2
(lnKm−1)

2

]
myint

(
M, ln

KN+1

Km−1

, Y

)
+ Ki

[
myint

(
M, ln

Ki

Km−1

, Y

)
−myint

(
M, ln

Ki

Km

, Y

)]
+ Km

[
myint

(
M − 1, ln

Ki

Km

, Y

)
−myint

(
M − 1, ln

KN+1

Km

, Y

)]
+ Km−1

[
myint

(
M − 1, ln

KN+1

Km−1

, Y

)
−myint

(
M − 1, ln

Ki

Km−1

, Y

)]
+ KN+1 lnKN+1

[
myint

(
M, ln

KN+1

Km−1

, Y − 1

)
−myint

(
M, ln

KN+1

Km

, Y − 1

)]
− 1

2
KN+1

[
myint

(
M, ln

KN+1

Km−1

, Y − 2

)
−myint

(
M, ln

KN+1

Km

, Y − 2

)]}
,
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and

II =
N∑

m=i+1

[
(2−∆k)cm+1,j − 4cm,j + (2 + ∆k)cm−1,j

]{

K1(1 + lnKm+1)f1(ln
K1

Km+1

)−K1(1 + lnKm)f1(ln
K1

Km

)

+ Ki

[
f1(ln

Ki

Km

)− f1(ln
Ki

Km+1

)

]
+ K1

[
1 +

1

2
(lnK1)

2 − 1

2
(lnKm)2

]
myint

(
G, ln

Km

K1

, Y

)
− K1

[
1 +

1

2
(lnK1)

2 − 1

2
(lnKm+1)

2

]
myint

(
G, ln

Km+1

K1

, Y

)
+ Ki
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[61] K. Sato. Lévy Processes on the Euclidean Spaces. University of Zurich, 1995.
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