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ABSTRACT

In this paper we describe a shell which has been developed to allow an integration
of neural network and expert systems technology. The system, SCRuFFYy, is based
on an analysis of the different abilities and time courses of NN and Al systems.
Critical to the processing of this system is a temporal pattern matcher which
is used to mediate between the two subsystems, providing a “signal to symbol”
mapping. This mapping allows the expert system to reason about the time course
of signals which are classified by a connectionist network which is trained via
classical back-propagation of error during a separate training phase. An example
of the simulated control of the temperature of an underwater welding robot is
presented to demonstrate these capabilities.

INTRODUCTION

Steels (1989) has pointed out that connectionist networks can perform heuristic
classification tasks in a matter different than, but comparable to, the heuristic
classification used in many expert systems. He argues that the distinction of
which to use should be based on an analysis of features of the domain, rather
than based on pre-theoretical biases. In addition he outlines a set of criteria
to determine those situations in which a statistically-based classification method
(such as the connectionist back-propagation algorithm) can be used: the cost of
observation should be low, the features of the class may or may not all be present,
the set of classes is known prior to classification time, the categorizations are
based on statistical criteria, and hierarchical structure of the classes is either not
necessary or used in only a limited manner. -

One type of operation fitting these criteria is the categorization of sensor sig-
nals into classes. Typically, sensor data is obtained cheaply at a high rate of speed,
features of the class may be underdetermined (necessitating a learning algorithm),
classification of the signals is desired to match known categories, classification is
based on high-order statistical correlations between features in the signal, and
no hierarchical categorization of the signals is typically performed. Thus, it is
no surprise that one of the greatest successes of connectionist models is in the
classification of sensor signals.

.Making intelligent decisions based on signals received from sensors,however,
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Figure 1: Flow of Control in SCRuFFy

of the flow of control in the system is shown in Figure 1. A sensor signal feeds
through a digital signal processing program which converts it into a vector of
discrete values. A set of known signals is gathered, and these are used to train
a back propagation network to perform the signal classification task. Once the
network is trained, the flow of control is for a new signal to be received, to be
sampled, and to be classified using the connectionist network. The output of this
process is then fed into a symbolic analysis program - a program which tracks
the changes in signal classification over time and produces symbolic information
describing the time course of the signal. This symbolic information is put onto a
blackboard (or working memory) and thus a traditional blackboard-based expert
reasoning system can make control decisions based on this information.

The heart of the SCRuFFy system is a “temporal pattern matcher”, which
provides an interface between the continuous signal sampling and classification,
provided by the analog connectionist system, and the expert system used in mak-
ing the control decisions. The pattern matcher is based on the observation that
the particular activation patterns from the connectionist component for a given
signal will usually be less interesting to the expert system-based reasoning than
will the pattern of a set of signals over time. For example, in a simple application,
we might have 10 outputs coming from the connectionist system. Two of these
might be indicators of normal operation, while the 8 others represent different
kinds of errors. If a controller takes no action until one of the error signals is the



not yet been attempted, instead, diagnostic messages describing what is occuring
and what actions are suggested are the outputs of the system.

The following is an example of SCRuFFy running on acoustic data. Comments
are indicated in italics, output from the expert system component (i.e. system
control decisions) are indicated by SMALL UPPERCASE text. The example uses
signals from a simulator designed to show particular behaviors. In this case, we
see SCRuFFy taking actions to control “streaming,” a particular error condition
arising in the welding.

; The expert system is initialized

* kX kkxkk* INITIALIZING EXPERT SYSTEM

*kxwakxxxx INPUT WATER TEMPERATURE: 021

*aok¥kkwxxx INPUT WATER DEPTH: 030
; the contert information provided by water depth and temperature
; is used by the SCRuFFy’s ezxpert system component.

; the first signal is sampled
Signal (after DSP) is:

0.727 0.672 0.508 0.738 0.56 0.633 0.144 0.429 0.196 0.554 0.658 0.483
0.602 0.41 0.371 0.955 0.225 0.796 0.021 0.922 0.447 0.255 0.549 0.855
0.97 0.807 0.77 6 0.641 0.834 0.674 0.581 0.726 0.005 0.716 0.073
0.664 0.69 0.191 0.905 0.367 0.427 0.844 0.783 0.078 0.403 0.453 0.775
0.989 0.292 0.726 0.355 0.335 0.61 0.12 0.723 0.629 0.857 0.889 0.864
0.63 0.369 0.406 0.246 0.617 0.552 0.014 0.09 3 0.633 0.704 0.682
0.592 0.615 0.769 0.945 0.893 0.512 0.68 0.587 0.473 0.681 0.732 0.475
0.956 0.142 0.986 0.947 0.827 0.82 0.602 0.764 0.209 0.884 0.788 0.208
0.301 0.036 0.304 0.351 0.347 0.249 0.124 0.352 0.922 0.272 0.618
0.768 0.92 7 0.554 0.925 0.057 0.321 0.09 0.171 0.527 0.86 0.231

0.768 0.111 0.798 0.78 0.891 0.786 0.905 0.678 0.751 0.981 0.957 0.732
; This signal is input lo the pre-irained connectionist network

Output from Connectionist network is:

.9296 .0145 .0759 .0465

; And the output is recorded for use by the temporal patiern matcher

The temporal patlern maicher finds any patlerns that maich
Output from temporal pattern matcher:

Normal operation.

A is highest, and no increasing minors
; Control is then transferred 1o the ezpert systems
Transferring control to Expert System:

¥HEEXEAXEYX NORMAL OPERATION OF WELDER
; and diagnostic or control messages are produced

; another signal is sampled
Signal (after DSP) is:
. ; signals are deleted 1o save space
Output from Connectionist network is:
.9405 .0323 0.005 .2729
Output from temporal pattern matcher:
Normal operation.



sidered to be quite a limitation. The overall system is a “loosely-coupled” hybrid
model® and cannot take self-modifying actions.

The current system provides a mapping from signals through to “control”
actions proposed by the expert system reasoning component. There is no reason
that these control actions could not be self-modifying, that is, changing the various
parameters and rules used by the system itself. Thus, in addition to control of an
external system, the current model can be extended for self control. The major
forms of self-modification we are currently examining include:

¢ Changing the temporal patterns: Upon the receipt of external information
(or via internal decisions), the system can modify the set of temporal pat-
terns of interest.

¢ Changing network parameters and/or output multipliers: Neural networks
are governed by a set of parameters (learning rate, momentum, etc.). Con-
trolling these parameters dynamically is an area just starting to be explored.
As control models are developed, “intelligent” control (using the expert sys-
tem) can be implemented, and experimented with, in this framework.

e Changing network configuration: Certain sorts of network models (such
as Hopfield networks for minimal cost paths) have structural constraints
depending on external information (path cost between nodes, etc.) When
information is discovered during processing, it may reflect a change in this
information, and thus necessitate dynamic reconfiguration of the network.

In addition, the current model provides for a single network reporting to a
single temporal pattern-matcher. However, the blackboard architecture on which
SCRuFFy is based provides a natural mechanism for the integration of multiple
knowledge sources. A hierarchical model of the temporal patterns (in which pat-
terns found for a given network can be compared with other patterns for other
networks) can provide for a merging of the data from various sensors. By -explor-
ing the use of such patterns, coupled with the parameter changes described above,
we believe this framework will allow for experimentation with varying models of
multi-sensor systems.

CONCLUSIONS

In this paper we have described a shell which was developed to allow an inte-
gration of neural network and expert systems technology. The system, SCRuFFy,
is based on an analysis of the different abilities and time courses of neural network
and Al systems. Critical to the processing of this system is a temporal pattern
matcher which is used to mediate between the two subsystems, providing a “sig-
nal to symbol” mapping. This mapping allows the expert system to reason about
the time course of signals which are classified by a connectionist network which is
trained via classical back-propagation of error during a separate training phase.
An example of the simulated control of the temperature of an underwater welding
robot was presented to demonstrate these capabilities.

6See (Hendler, 1989b) for a discussion of loosely and tightly coupled hybrid models.






