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Abstract: In this paper we address the problem of multi-agent optimization for convex functions
expressible as sums of convex functions. Each agent has access to only one function in the sum and
can use only local information to update its current estimate of the optimal solution. We consider
two consensus-based iterative algorithms, based on a combination between a consensus step and a
subgradient decent update. The main difference between the two algorithms is the order in which the
consensus-step and the subgradient descent update are performed. We show that updating first the
current estimate in the direction of a subgradient and then executing the consensus step ensures better
performance than executing the steps in reversed order. In support of our analytical results, we give some
numerical simulations of the algorithms as well.
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1. INTRODUCTION

Multi-agent optimization problems appear naturally in many
distributed processing problems (such as network resource al-
location, collaborative control and estimation, etc.), where the
optimization cost is a convex function which is not necessarily
separable. A distributed subgradient method for multi-agent
optimization of a sum of convex functions was proposed in
Nedic and Ozdalgar (2009), where each agent has only local
knowledge of the optimization cost, that is, it knows only one
term of the sum. The agents exchange information subject to
a communication topology, modeled as a graph; graph that
defines the communication neighborhoods of the agents. The
agents maintain estimates of the optimal decision vector, which
are updated in two steps. In the first step, called so forth,
consensus-step, an agent executes a convex combination be-
tween its current estimate and the estimates received from its
neighbors. In the second step, the result of the consensus step is
updated in the direction of a subgradient of the local knowledge
of the optimization cost.

The consensus step is introduced to deal with the fact that
the agents have incomplete knowledge about the optimization
problem. Consensus problems received a lot of attention in
recent years thanks to their usefulness in modeling many phe-
nomena involving information exchange between agents, such
as cooperative control of vehicles, formation control, flocking,
synchronization, parallel computing, etc. Distributed computa-
tion over networks has a long history in control theory start-
ing with the work of Borkar and Varaya (1982), and Tsitsik-
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lis (1984), Tsitsiklis et al. (1986) on asynchronous agreement
problems and parallel computing. A theoretical framework for
solving consensus problems was introduced in Saber and Mur-
ray (2004), while Jadbabaie et al. (2004) studied alignment
problems for reaching an agreement. Relevant extensions of
the consensus problem were done by Ren and Beard (2005),
Moreau (2005) or, more recently, by Nedic and Ozdaglar
(2010). The analysis of consensus problems was extended to
the case where the communication topology is random, with
relevant results being found in Salehi and Jadbabaie (2010),
Hatano and Mesbahi (2005), Porfiri and Stilwell (2007), or
Matei et al. (2008).

A different version of a consensus-based distributed optimiza-
tion algorithm was proposed in Johansson et al. (2008). In this
version, in the first step the current estimate is updated in the
direction of a subgradient of the local knowledge of the opti-
mization cost. In the second step a consensus-step is executed.
Performance analysis of the aforementioned algorithms and
extensions to the case where the communication topologies are
random were addressed in Duchi et al. (2010), Matei and Baras
(2010), Lobel and Ozdalgar (2008).

In this paper we try to answer the following question: which
version of the distributed subgradient algorithm gives better
performance? We use two performance metrics: the first metric
looks at how close the cost function evaluated at the estimates
gets to the optimal value; the second metric looks at the distance
between the estimates and the minimizer. We obtain error
bounds for the two metrics and rate of convergence for the
second metric. The results of our analysis show that, under
a constant step-size multiplying the subgradient, the second
version of the algorithm guarantees better accuracy, compared
to the first version of the algorithm. The rate of convergence of
the second metric however is not guaranteed to be improved.



Notations: Let X be a subset of Rn and let y be a point in Rn.
By slight abuse of notation, let ∥y−X∥ denote the distance from
the point y to the set X, i.e., ∥y − X∥ , infx∈X ∥y − x∥, where
∥ · ∥ is the standard Euclidean norm. For a twice differentiable
function f (x), we denote by ∇ f (x) and ∇2 f (x) the gradient and
Hessian of f at x, respectively. Given a symmetric matrix A, by
(A ≽ 0) A ≻ 0 we understand A is positive (semi) definite. The
symbol ⊗ represents the Kronecker product.

Let f : Rn → R be a convex function. We denote by ∂ f (x) the
subdifferential of f at x, that is, the set of all subgradients of f
at x:

∂ f (x) = {d ∈ Rn| f (y) ≥ f (x) + d′(y − x), ∀y ∈ Rn}. (1)

Let ϵ ≥ 0 be a nonnegative real number. We denote by
∂ϵ f (x) the ϵ-subdifferential of f at x, that is, the set of all ϵ-
subgradients of f at x:
∂ϵ f (x) = {d ∈ Rn| f (y) ≥ f (x) + d′(y − x) − ϵ, ∀y ∈ Rn}. (2)

The gradient of the differentiable function f (x) on Rn satisfies
a Lipschitz condition with constant L if

∥∇ f (x) − ∇ f (y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn.

The differentiable, convex function f (x) on Rn is strongly
convex with constant l if

f (y) ≥ f (x) + ∇ f (x)′(y − x) +
l
2
∥y − x∥2, ∀x, y ∈ Rn.

We denote by LEM and SLEM the largest and second largest
eigenvalue (in modulus) of a matrix, respectively.

2. PROBLEM FORMULATION

In this section we describe the communication model and the
optimization model used throughout the paper.

2.1 Communication model

We consider a network of N agents, indexed by i = 1, . . . ,N.
The communication topology is modeled by a graph G = (V,E),
where V is the set of N vertices (nodes) and E = (ei j) is the set
of edges. The edges in the set E correspond to communication
links between agents.
Assumption 1. The graph G = (V,E) is undirected, connected
and does not have self-loops.

Let G be a graph with N nodes and no self loops and let
A ∈ RN×N be a row stochastic matrix, with positive diagonal
entries. We say that the matrix A corresponds to the graph G,
or the graph G is induced by A, if any non-zero entry (i,j) of A,
with i , j, implies a link from j to i in G and vice-versa.

2.2 Optimization model

The goal of the N agents is to minimize a convex function
f : Rn → R. The function f is expressed as a sum of N
functions, i.e.,

f (x) =
N∑

i=1

fi(x), (3)

where fi : Rn → R are convex. Formally expressed, the agents’
goal is to cooperatively solve the following optimization prob-
lem

min
x∈Rn

N∑
i=1

fi(x). (4)

The fundamental assumption is that each agent i has access only
to the function fi.

Let f ∗ denote the optimal value of f and let X∗ denote the set of
optimizers of f , i.e., X∗ = {x ∈ Rn| f (x) = f ∗}. Let xi(k) ∈ Rn

designate the estimate of the optimal decision vector of (4),
maintained by agent i, at time k. The agents exchange estimates
among themselves subject to the communication topology de-
scribed by the graph G.

As mentioned in the introductory section, we consider two
versions of a multi-agent subgradient optimization algorithm.
The first version, referred henceforth as Algorithm 1, was
introduced by Nedic and Ozdalgar (2009) and is given by

x(1)
i (k + 1) =

N∑
j=1

ai jx
(1)
j (k) − α(k)d(1)

i (k), (5)

where ai j is the (i, j)th entry of a symmetric, row stochas-
tic matrix A, corresponding to the undirected communication
graph G. The real valued scalar α(k) is the stepsize, while
the vector d(1)

i (k) ∈ Rn is a subgradient of fi at x(1)
i (k), that

is, d(1)
i (k) ∈ ∂ fi(x(1)

i (k)). Obviously, when fi(x) are assumed
differentiable, d(1)

i (k) becomes the gradient of fi at x(1)
i (k), that

is, d(1)
i (k) = ∇ fi(x(1)

i (k)).

The second version of the algorithm, referred henceforth as
Algorithm 2, was introduced by Johansson et al. (2008), and
is expressed as

x(2)
i (k + 1) =

N∑
j=1

ai j

[
x(2)

j (k) − α(k)d(2)
j (k)

]
, (6)

where d(2)
j (k) is the subgradient of f j at x(2)

j (k), and the rest of
the parameters of the algorithm are the same as in Algorithm 1.

In what follows we assume that the step size is constant, that
is, α(k) = α, for all k ≥ 0. Note that we use superscripts to
differentiate between the estimates of the two algorithms. In
addition, we note that the main difference consists of the order
the two steps of the algorithms are executed. In Algorithm 1,
first the consensus-step is executed followed by an updated in
the direction of a subgradient. In Algorithm 2, the estimate
is first updated in the directed of a subgradient of the local
cost function, and the result is shared with the neighboring
agents; agents that use these intermediate updates to generate
new updates at the next time-step, by executing a consensus
step.

The following assumptions, which will not necessarily be used
simultaneously, introduce restrictions on the cost function f (x)
considered in this paper.
Assumption 2. (Non-differentiable functions)

(a) The subgradients of the functions fi(x) are uniformly
bounded, that is, there exists a positive scalar φ such that

∥d∥ ≤ φ,∀d ∈ ∂ fi(x), ∀x ∈ Rn, i = 1, . . . ,N,
(b) The optimal solution set X∗ is nonempty.
Assumption 3. (Differentiable functions)

(a) The functions fi(x) are twice continuously differentiable on
Rn,

(b) There exist positive scalars li, Li such that
liI ≼ ∇2 fi(x) ≼ LiI, ∀x ∈ Rn and ∀i,



(c) The stepsize α satisfies the inequality

0 < α < min
{

1
l
,

1 + λ
L

}
,

where λ is the smallest eigenvalue of A, L = maxi Li and
l = mini li.

If Assumption 3 -(a) holds, Assumption 3 -(b) is satisfied
if the gradient of fi(x) satisfies a Lipschitz condition with
constant Li and if fi(x) is strongly convex with constant li. Also,
under Assumptions 3, X∗ has one element which is the unique
minimizer of f (x), denoted henceforth by x∗.

2.3 Performance metrics

We analyze these algorithms with respect to two performance
metrics. First, we look at how close the cost function evaluated
at the estimates gets to the optimal value f ∗. Let f̄ best,(a)

i (k) =
mins=0...k f (x(a)

i (s)) be the smallest cost value achieved by agent
i at iteration k. The first metric is given by

f̄ best,a
i (k) − f ∗. (7)

The second metric looks at how close the estimates computed
by the agents get to the optimal value, and we can formally
expressed this as

∥x(a)
i (k) − X∗∥, (8)

where X∗ is the set of minimizers of f . In the above, the
scalar a ∈ {1, 2}, to differentiate between the two optimization
algorithms. For both algorithms, our goal is to obtain upper
bounds for these performance metrics and compare them.

3. PRELIMINARY RESULTS

In this section we lay the foundation for our main results.
The preliminary results introduced here revolve around the
idea of providing upper-bounds on a number of quantities
of interest. The first quantity is represented by the distance
between the estimate of the optimal decision vector and the
average of all estimates. The second quantity is described by the
distance between the average of all estimates and the minimizer.
We introduce the average vector of estimates of the optimal
decision vector, denoted by x̄a(k) and defined by

x̄(a)(k) ,
1
N

N∑
i=1

x(a)
i (k). (9)

The dynamic equation for the average vector can be derived
from (5) and (6) and takes the form

x̄(a)(k + 1) = x̄(a)(k) − α

N
h(k), (10)

where h(k) =
∑N

i=1 di(k) and a ∈ {1, 2}. We introduce also
the deviation of the local estimates x(a)

i (k) from the average
estimate x̄(a)(k), which is denoted by z(a)

i (k) and defined by

z(a)
i (k) , x(a)

i (k) − x̄(a)(k), i = 1 . . .N, (11)

and let β be a positive scalar such that

∥z(a)
i (0)∥ ≤ β, i = 1 . . .N.

Let us define the aggregate vectors of estimates, average esti-
mates, deviations and (sub)gradients, respectively:

x(a)(k)′ , [x(a)
1 (k)′, x(a)

2 (k)′, . . . , x(a)
N (k)′] ∈ RNn,

x̄(a)(k)′ , [x̄(a)(k)′, x̄(a)(k)′, . . . , x̄(a)(k)′] ∈ RNn,

z(a)(k)′ , [z(a)
1 (k)′, z(a)

2 (k)′, . . . , z(a)
N (k)′] ∈ RNn

and
d(a)(k)′ , [d(a)

1 (k)′, d(a)
2 (k)′, . . . , d(a)

N (k)′] ∈ RNn.

From (9) we note that the aggregate vector of average estimates
can be expressed as

x̄(a)(k) = Jx(a)(k),
where J = 1

N11
′ ⊗ I, with I the identity matrix in Rn×n and 1

the vector of all ones in RN . Consequently, the aggregate vector
of deviations can be written as

z(a)(k) = (I − J)x(a)(k), (12)

where I is the identity matrix in RnN×nN .

Let us defined the matrices A , A ⊗ I and W , A − J and let
λ be the SLEM of A. By Assumption 1, λ < 1. In addition, it is
not difficult to notice that λ is the SLEM of A and the LEM of
W and W.

In the next lemma we show that, under Assumption 3, for small
enough α the gradients ∇ fi(x(a)

i (k)) remain bounded for all k,
for both optimization algorithms.
Lemma 4. Let Assumption 3 hold and let F : RNn → R be a
function given by F (x) =

∑N
i=1 fi(xi) where x′ = (x′1, . . . , x′N).

There exists a positive scalar φ such that

∥∇ fi(x(a)
i (k))∥ ≤ φ,

∥∇ fi(x̄(a)(k))∥ ≤ φ,
for all k and i, where φ = 3L (∥x(0) − x̃∥ + ∥x̃∥), L = maxi Li, x̃
is the unique minimizer of F (x), x(1)

i (k) and x(2)
i (k) satisfy (5)

and (6), respectively, and x̄(a)(k) satisfies (10).

Proof. We first note that since the matrix A is symmetric, row
stochastic and corresponds to a connected graph, it is aperiodic
and therefore λ ∈ (−1, 1). From Assumption 3 it follows
immediately that F (x) is a convex, twice differentiable function
satisfying

lI ≼ ∇2F (x) ≼ LI, (13)

where l = mini li, L = maxi Li and I is the identity matrix in
RnN×nN . In addition, F (x) has a unique minimizer denoted by
x̃. The dynamics described by (5) can be compactly written as

x(1)(k + 1) = Ax(1)(k) − α∇F (x(1)(k)), x(1)(0) = x0, (14)

with x(1)(k)′ = (x(1)
1 (k)′, . . . , x(1)

N (k)′). Similarly, the dynamics
described by (6) can be compactly written as

x(2)(k + 1) = Ax(2)(k) − αA∇F (x(2)(k)), x(2)(0) = x0. (15)

In what follows we show that the dynamical equations (14) and
(15) are stable.

Using a similar idea as in Theorem 3, page 25 of Polyak (1987),
we have that

∇F (x(a)(k)) = ∇F (x̃)+

+

1∫
0

∇2F (x̃ + τ(x(a)(k) − x̃))(x(a)(k) − x̃)dτ = H(k)(x(a)(k) − x̃),

where lI ≼ H(k) ≼ LI by virtue of (13).

Therefore, in the case of Algorithm 1, we have that
∥x(k + 1)(1) − x̃∥ = ∥Ax(1)(k) − x̃ − α∇F (x(1)(k)) + Ax̃ − Ax̃∥ ≤



≤ ∥A − αH(k)∥ ∥x(1)(k) − x̃∥ + ∥A − I∥ ∥x̃∥.
But since

(λ − αL)I ≼ A −H(k) ≼ (1 − αl)I,
it follows that

∥x(1)(k + 1) − x̃∥ ≤ q(1)∥x(1)(k) − x̃∥ + |λ − 1|∥x̃∥,
where q(1) = max{|λ − αL|, |1 − αl|}. By Assumption 3-(c), we
have that q(1) < 1 and therefore the dynamics (14) is stable and

∥x(1)(k) − x̃∥ ≤
[
q(1)

]k ∥x(0) − x̃∥ + 2
1 − q(1) ∥x̃∥ ≤

≤ ∥x(0) − x̃∥ + 2
1 − q(1) ∥x̃∥, ∀k.

In the case of Algorithm 2, we have
∥x(k+ 1)(2) − x̃∥ = ∥Ax(2)(k)− x̃−αA∇F (x(2)(k))+Ax̃−Ax̃∥ ≤

≤ ∥A∥∥I − αH(k)∥ ∥x(2)(k) − x̃∥ + ∥A − I∥ ∥x̃∥.
Introducing q(2) = max{|1−αL|, |1−αl|} and noting that q(2) < 1
due to Assumption 3-(c), it follows that

∥x(2)(k) − x̃∥ ≤
[
q(2)

]k ∥x(0) − x̃∥ + 2
1 − q(2) ∥x̃∥ ≤

≤ ∥x(0) − x̃∥ + 2
1 − q(2) ∥x̃∥, ∀k.

From Assumption 3 we have that

∥∇ fi(x(a)
i (k))∥ ≤ ∥∇F (x(a)(k))∥ ≤ L∥x(a)(k) − x̃∥ ≤

≤ L∥x(0) − x̃∥ + 2L
1 − q(a) ∥x̃∥ ≤ 2L (∥x(0) − x̃∥ + ∥x̃∥) , (16)

for a ∈ {1, 2}. We also have that
∥x̄(a)(k) − x̃∥ = ∥Jx(a)(k) − Jx̃ + Jx̃ − x̃∥ ≤ ∥x(a)(k) − x̃∥ + ∥x̃∥,

from where it follows that

∥∇ fi(x̄(a)(k))∥ ≤ ∥∇F (x̄(a)(k))∥ ≤ L∥x̄(a)(k) − x̃∥ ≤

≤ L∥x(0) − x̃∥ + L
(

2
1 − q(a) + 1

)
∥x̃∥ ≤

≤ 3L (∥x(0) − x̃∥ + ∥x̃∥) . (17)

Taking the maximum among the right hand side terms of the
inequalities (16) and (17), the result follows.
Remark 5. Throughout the rest of the paper, we are going to
use φ to denote the upper bound on the subgradients of f (x)
(given by Assumption 2) or on the gradients of f (x) (given
by Assumption 3 and Lemma 4), when these quantities are
computed at values given by the two distributed optimization
algorithms discussed above.

The next Proposition characterizes the dynamics of the vector
z(a)(k).
Proposition 6. Let Assumptions 1 and 2 or 1 and 3 hold. Then
the dynamic evolution of the aggregate vector of deviations in
the case of the two optimization algorithms is given by

z(a)(k + 1) =Wz(a)(k) − αH(a)d(a)(k), z(a)(0) = z0, (18)

where

H(a) =

{
I − J, if a = 1,
W, if a = 2,

with norm upper-bound

∥z(a)(k)∥ ≤ λkβ
√

N + αφ
√

Nψ(a)(λ), (19)

where λ is the SLEM of A and

ψ(a)(λ) =


1

1 − λ , if a = 1,
λ

1 − λ , if a = 2.
(20)

Proof. From (5) the dynamics of the aggregate vector of esti-
mates is given by

x(1)(k + 1) = Ax(1)(k) − αd(1)(k). (21)

From (12) together with (21), we can further write
z(1)(k + 1) = (I− J)x(1)(k + 1) = (A− J)x(1)(k)− α(I− J)d(1)(k).
By noting that

(A − J)z(1)(k) = (A − J)(I − J)x(1)(k) = (A − J)x(1)(k),
we obtain (18).

The solution of (18) for a = 1 is given by

z(1)(k) =Wkz(1)(0) − α
k−1∑
s=0

Wk−s−1 (I − J) d(1)(s),

or

z(1)(k) ≤ ∥W∥k∥z(1)(0)∥ + α
k−1∑
s=0

∥W∥k−s−1∥I − J∥ ∥d(1)(s)∥.

Using the facts that ∥z(1)(0)∥ ≤ β
√

N, ∥d(1)(s)∥ ≤ φ
√

N for all s,
∥W∥ = λ < 1, due to Assumption 1, and ∥I − J∥ = 1, inequality
(19) follows.

From (6) the dynamics of the aggregate vector of estimates in
the case of Algorithm 2 is given by

x(2)(k + 1) = Ax(2)(k) − αAd(2)(k). (22)

From (12) together with (22), we can further write
z(2)(k+ 1) = (I− J)x(2)(k+ 1) = (A− J)x(2)(k)−α(A− J)d(2)(k).
By noting that

(A − J)z(2)(k) = (A − J)(I − J)x(2)(k) = (A − J)x(2)(k),
we obtain (18), for a = 2.

The solution of (18) for a = 2 is given by

z(2)(k) =Wkz(2)(0) − α
k−1∑
s=0

Wk−s−1Wd(2)(s),

or

z(2)(k) ≤ ∥W∥k∥z(2)(0)∥ + α
k−1∑
s=0

∥W∥k−s−1∥W∥ ∥d(2)(s)∥.

Using the facts that ∥z(2)(0)∥ ≤ β
√

N, ∥d(2)(s)∥ ≤ φ
√

N for all
s, and ∥W∥ = λ < 1 due to Assumption 1, inequality (19), for
a = 2, follows.

The following lemma allows us to interpret d(a)
i (k) as an ϵ-

subgradient of fi at x̄(a)(k).
Lemma 7. Let Assumptions 2 or 3 hold. Then the vector
d(a)

i (k) is an ϵ(a)(k)-subdifferential of fi at x̄(a)(k), i.e., d(a)
i (k) ∈

∂ϵ(a)(k) fi(x̄(a)(k)) and h(a)(k) =
∑N

i=1 d(a)
i (k) is an Nϵ(a)(k)-

subdifferential of f at x̄(a)(k), i.e., h(a)(k) ∈ ∂Nϵ(a)(k) f (x̄(a)(k)),
for any k ≥ 0, where ϵ(a)(k) = 2φ∥z(a)(k)∥.

Proof. The proof is similar to the proof of Lemma 3.4.5 of
Johansson (2008). For notational simplicity, we omit the su-
perscript (a), referencing the type of algorithm used. Let d̄i(k)



be a subgradient of fi at x̄(k). By the subgradient definition we
have that

fi(xi(k)) ≥ fi(x̄(k)) + d̄i(k)′(xi(k) − x̄(k)) ≥ fi(x̄(k))−
−∥d̄i(k)∥∥(xi(k) − x̄(k))∥,

or
fi(xi(k)) ≥ fi(x̄(k)) − φ∥zi(k)∥.

Furthermore, for any y ∈ Rn we have that
fi(y) ≥ fi(xi(k))+ di(k)′(y− xi(k)) = fi(xi(k))+ di(k)′(y− x̄(k))+
+di(k)′(x̄(k) − xi(k)) ≥ fi(x̄(k)) + di(k)′(y − x̄(k)) − 2φ∥zi(k)∥ ≥

≥ fi(x̄(k)) + di(k)′(y − x̄(k)) − 2φ∥z(k)∥,
or

fi(y) ≥ fi(x̄(k)) + di(k)′(y − x̄(k)) − ϵ(k),
where ϵ(k) = 2φ∥z(k)∥. Using the definition of the ϵ-
subgradient, it follows that di(k) ∈ ∂ϵ(k) fi(x̄(k)). Summing over
all i we get that

∑N
i=1 di(k) ∈ ∂Nϵ(k) f (x̄(k)).

For twice differentiable cost functions with lower and upper
bounded Hessians, the next result gives an upper bound on the
distance between the average vector x̄(a)(k) and the minimizer
of f .
Lemma 8. Let Assumptions 1 and 3 hold and let {x̄(a)(k)}k≥0
be a sequence of vectors defined by iteration (10). Then, the
following inequality holds

∥x̄(a)(k) − x∗∥2 ≤ ∥x̄(0) − x∗∥2γk + 4αφβ
√

N
γk − λk

γ − λ +

+
α2φ2

1 − γ
(
4
√

Nψ(a)(λ) + 1
)
, (23)

where ψ(a)(λ) is defined in (20), γ = 1 − αl, with l = mini li.

Proof. Under Assumption 3, f (x) is a strongly convex function
with constant Nl, where l = mini li and therefore it follows that

f (x) − f ∗ ≥ Nl
2
∥x − x∗∥2. (24)

We use the same idea as in the proof of Proposition 2.4 in Nedic
and Bertsekas (2000). By (10), we obtain

∥x̄(a)(k+1)− x∗∥2 = ∥x̄(a)(k)− x∗− α
N

h(a)(k)∥2 = ∥x̄(a)(k)− x∗∥2−

−2
α

N
h(a)(k)′(x̄(a)(k) − x∗) + α2φ2.

Using the fact that, by Lemma 7, h(a)(k) is a Nϵ(a)(k)-
subdifferential of f at x̄(a)(k), we have

f (x∗) ≥ f (x̄(a)(k)) + h(a)(k)′(x∗ − x̄(a)(k)) − Nϵ(a)(k),
or, from inequality (24),

−h(a)(k)′(x̄(a)(k) − x∗) ≤ −Nl
2
∥x̄(a)(k) − x∗∥2 + Nϵ(a)(k).

Further, we can write
∥x̄(a)(k + 1) − x∗∥2 ≤ (1 − αl) ∥x̄(a)(k) − x∗∥2 + 2αϵ(a)(k) + α2φ2

or
∥x̄(a)(k) − x∗∥2 ≤ (1 − αl)k ∥x̄(0) − x∗∥2+

+

k−1∑
s=0

(
(1 − αl)k−s−1 2αϵ(a)(s) + α2φ2

)
.

Note that from Assumption 3-(c), 0 < α < 1
l and therefore the

quantity γk = (1 − αl)k does not grow unbounded. It follows
that

∥x̄(a)(k) − x∗∥2 ≤ γk∥x̄(0) − x∗∥2+

+

k−1∑
s=0

γk−s−1(2αϵ(a)(s) + α2φ2). (25)

Recalling the expression of ϵ(a)(k) in Lemma 7, we immediately
obtain the following inequalities

ϵ(1)(s) ≤ 2φβ
√

Nλs +
2αφ2

1 − λ , (26)

ϵ(2)(s) ≤ 2φβ
√

Nλs +
2αφ2λ

1 − λ . (27)

The sum
k−1∑
s=0

γk−1−sλs =
γk − λk

γ − λ
yields

k−1∑
s=0

γk−s−1ϵ(1)(s)] ≤ 2φβ
√

N
γk − λk

γ − λ +
2αφ2

√
N

1 − γ
1

1 − λ , (28)

and
k−1∑
s=0

γk−s−1ϵ(2)(s)] ≤ 2φβ
√

N
γk − λk

γ − λ +
2αφ2

√
N

1 − γ
λ

1 − λ . (29)

Combining (28) and (29) with (25), the result follows.

4. MAIN RESULTS - ERROR BOUNDS

In this section we provide upper bounds for the two perfor-
mance metrics introduced in the Problem Formulation section,
for the two distributed optimization algorithms. First, we give
a bound on the difference between the best recorded value of
the cost function f , evaluated at the estimate x(a)

i (k), and the
optimal value f ∗. Second, we focus on the distance between
the estimate x(a)

i (k) and the minimizer of f ∗. For a particular
class of twice differentiable functions, we give an upper bound
on this metric and show how fast the time varying part of this
bound converges to zero. The purpose of this section is to show
the difference in performance between the two algorithms.

The following result shows how close the cost function f
evaluated at the estimate x(a)

i (k) gets to the optimal value f ∗. A
similar result for the standard subgradient method can be found
in Nedic and Bertsekas (2001), for example.
Theorem 9. Let Assumptions 1 and 2 or 1 and 3 hold and
let {x(a)

i (k)}k≥0 be a sequence generated by the two distributed
optimization algorithms, where a ∈ {1, 2}. Let f best,(a)

i (k) =
mins=0...k f (x(a)

i (s)) be the smallest cost value achieved by agent
i, at iteration k. Then

lim
k→∞

f best,(a)
i (k) ≤ f ∗ + 3αφ2N

√
Nψ(a)(λ) +

Nαφ2

2
, (30)

where ψ(a)(λ) is defined in (20).

Proof. For notational simplicity, for most part of the proof we
omit the superscript (a). Using the subgradient definition of fi
at xi(k) we have that

fi(xi(k)) ≤ fi(x̄(k)) + φ∥zi(k)∥, for all i = 1, . . . ,N.
Summing over all i, we get

f (xi(k)) ≤ f (x̄(k)) + Nφ∥z(k)∥.



Subtracting f ∗ from both sides of the above inequality, we
further get

f (xi(k)) − f ∗ ≤ f (x̄(k)) − f ∗ + Nφ∥z(k)∥,
or

f best
i (k) − f ∗ ≤ min

s=0...k
{ f (x̄(s)) − f ∗ + Nφ∥z(s)∥} . (31)

Let x∗ ∈ X∗ be an optimal point of f . By (10), we obtain

∥x̄(k + 1) − x∗∥2 = ∥x̄(k) − x∗ − α

N
h(k)∥2 ≤

≤ ∥x̄(k) − x∗∥2 − 2
α

N
h(k)′(x̄(k) − x∗) + α2φ2,

and since by Lemma 7 h(x̄(k)) is a Nϵ(k)-subdifferential of f at
x̄(k), we have

∥x̄(k+1)−x∗∥2 ≤ ∥x̄(k)−x∗∥2− 2α
N

( f (x̄(k))− f ∗)+2αϵ(k)+α2φ2,

or

∥x̄(k) − x∗∥2 ≤ ∥x̄(0) − x∗∥2 − 2α
N

k−1∑
s=0

( f (x̄(s)) − f ∗)+

+2α
k−1∑
s=0

ϵ(s) + kα2φ2.

Since ∥x̄(k) − x∗∥2 ≥ 0

2α
N

k−1∑
s=0

( f (x̄(s)) − f ∗) ≤ ∥x̄(0) − x∗∥2 + 2α
k−1∑
s=0

ϵ(s) + kα2φ2.

Adding and subtracting Nφ∥z(s)∥ inside the sum of the left-
hand side of the above inequality and recalling from Lemma
7 that ϵ(k) = 2φ∥z(k)∥, we obtain

k−1∑
s=0

( f (x̄(s)) − f ∗ + Nφ∥z(s)∥) ≤

≤ 1
2α
∥x̄(0) − x∗∥2 + 3N

2

k−1∑
s=0

ϵ(s) +
kNαφ2

2
.

Using the fact that
k−1∑
s=0

( f (x̄(s)) − f ∗ + Nφ∥z(s)∥) ≥

≥ k min
s=0,...,k−1

{ f (x̄(s)) − f ∗ + Nφ∥z(s)∥} ,
we get

min
s=0,...,k−1

{ f (x̄(s)) − f ∗ + Nφ∥z(s)∥} ≤

≤ 1
2αk
∥x̄(0) − x∗∥2 + 3N

2k

k−1∑
s=0

ϵ(s) +
Nαφ2

2
.

Using inequalities (26) and (27) from Lemma 7 we obtain
k−1∑
s=0

ϵ(1)(s) ≤ 2φβ
√

N
1

1 − λ + k2αφ2
√

N
1

1 − λ ,

and
k−1∑
s=0

ϵ(2)(s) ≤ 2φβ
√

N
1

1 − λ + k2αφ2
√

N
λ

1 − λ .

It follows that

min
s=0,...,k−1

{
f (x̄(1)(s)) − f ∗ + Nφ∥z(1)(s)∥

}
≤ 1

2αk
∥x̄(0) − x∗∥2+

+
3N
2k

(
2φβ
√

N
1

1 − λ + k2αφ2
√

N
1

1 − λ

)
+

Nαφ2

2
, (32)

and that

min
s=0,...,k−1

{
f (x̄(2)(s)) − f ∗ + Nφ∥z(2)(s)∥

}
≤ 1

2αk
∥x̄(0) − x∗∥2+

+
3N
2k

(
2φβ
√

N
1

1 − λ + k2αφ2
√

N
λ

1 − λ

)
+

Nαφ2

2
. (33)

Combining inequalities (31), (32) and (33), the result follows.
Remark 10. The previous result shows that the asymptotic error
bound of the first metric decreases with both α (the algorithm
step-size) and λ (the connective measure). In addition, it em-
phasizes the difference in performance from the first metric
perspective, in the case of the two optimization algorithms. We
note that the error bound in the case of Algorithm 2 is improved
(diminished) by a factor of 3αφ2N

√
N, compared to Algorithm

1.

In the case of twice differentiable functions, the next result
introduces an error bound for the second metric, in the case of
the two optimization algorithms. We essentially show that the
estimates produced by the two algorithms “converge to within
some guaranteed distance” from the optimal point, distance
which can be made arbitrarily small by decreasing the stepsize
α. In addition, the time varying component of the error bounds
converges to zero at least linearly.
Theorem 11. Let Assumptions 1 and 3 hold. Then, for the
sequence {x(a)

i (k)}k≥0 generated by iteration (5) we have

lim sup
k→∞
∥x(a)

i (k) − x∗∥2] ≤ αφ
[√

Nψ(a)(λ)+

+

√
4
√

Nψ(a)(λ) + 1
1 − γ

 , (34)

and

∥x(a)
i (k) − x∗∥2 ≤ ζ1η(λ, γ)k + ζ(a)

2 , (35)

where ψ(a)(λ) is defined in (20), ζ1 and ζ(a)
2 are positive con-

stants depending on the initial conditions, and the parameters
of the algorithms, and

η(λ, γ) =
{
λ, λ ≥ γ,√
γ, λ < γ,

(36)

where γ = 1 − αl, with l = mini li.

Proof. By the triangle inequality we have

∥x(a)
i (k) − x∗∥ ≤ ∥x(a)

i (k) − x̄(a)(k)∥ + ∥x̄(a)(k) − x∗∥].
For the first term in the right hand side of the above inequality,
we have that

∥x(a)
i (k) − x̄(a)(k)∥ = ∥z(a)

i (k)∥ ≤ ∥z(a)(k)∥,
and from Proposition 6 it follows that

lim sup
k→∞
∥x(a)

i (k) − x∗∥ ≤ αφ
√

Nψ(a)(λ). (37)

For the second term, from Lemma 8 it follows that

lim sup
k→∞
∥x̄(a)(k) − x∗∥] ≤ αφ

√
4
√

Nψ(a)(λ) + 1
1 − γ . (38)

Combining (37) and (38), we obtain (34).



Using again Proposition 6, we have that there exit positive
scalars C1 and C(a)

2 , such that

∥x(a)
i (k) − x∗∥ ≤ C1λ

k +C(a)
2 , ∀k. (39)

Similarly, from Lemma 8, we have that there exit positive
scalars C3 and C(a)

4 such that

∥x̄(a)(k) − x∗∥]2 ≤ C3 max{λ, γ}k +C(a)
4 , ∀k,

or

∥x̄(a)(k) − x∗∥] ≤ C̄3

( √
max{λ, γ}

)k
+ C̄(a)

4 , ∀k, (40)

where C̄(a)
4 =

√
C(a)

4 and C̄3 =

√
C3 +C(a)

4 −
√

C(a)
4 . Using (39),

(40) and the triangle inequality, we obtain

∥x(a)
i (k) − x∗∥2 ≤ ζ1 max{λ,

√
max{λ, γ}}k + ζ(a)

2 ,

where ζ1 = max{C1, C̄3} and ζ(a)
2 = max{C2, C̄

(a)
4 }. We note that

max{λ,
√

max{λ, γ}} equals λ for λ ≥ γ, and
√
γ for λ < γ.

Hence, we obtained that the time varying component of the
error bound converges linearly to zero with a factor η(λ, γ), and
the result follows.
Remark 12. The previous result shows that the algorithms en-
sures convergence of the estimates within some distance of the
optimal solution; distance that depends on the parameters of the
problem, and on the connectivity of the network, parameterized
by λ. This distance decreases with α and λ. However, as in
the case of the standard subgradient algorithm, decreasing α
induces a slower convergence rate. We also note that as long
α < 1−λ

l , according to our analysis the rate of convergence
(of the error bound) is dictated by γ. As in the case of the
first metric, Algorithm 2 guarantees better precision, since the
aforementioned distance is smaller compared to Algorithm 1.
However, the error bounds rate of convergence in the case of
the two algorithms are the same, and therefore our analysis can
not guarantee that Algorithm 2 converges faster.

5. NUMERICAL EXAMPLE

In this section we put to test our theoretical results. That is, for a
particular cost function, we want to show that indeed Algorithm
2 performs better than Algorithm 1. To this end we consider a
network of ten agents organized in a star topology, where node
1 is connected to the rest of the nine nodes (Figure 1). The
collaboration matrix A is chosen as A = I + 0.101Lp, where
Lp is the Laplacian of the undirected graph shown in Figure 1.
The smallest eigenvalue of A is given by λ = −0.0101, while
the SLEM of A is λ = 0.8990.

Fig. 1. Star network topology with ten nodes

The function to be collaboratively minimized is given by f (x) =∑10
i=1 fi(x1, x2), where

fi(x1, x2) =
1
i2

x2
1 +

1
i

x2
2 −

1
i

x1 −
1
i2

x2.

We note that fi’s are convex, twice continuously differentiable
and

2
i2

I ≼ ∇2 fi(x1, x2) ≼ 2
i

I, i ∈ {1, . . . , 10}.
Therefore, L = maxi Li = 2, l = mini li = 0.02 and by choosing

α ∈
(
0,min

{
1
l
,

1 + λ
L

})
= (0, 0.495) ,

we satisfy Assumption 3. The function f (x1, x2) admits an
unique minimizer given by x∗1 = 0.2645 and x∗2 = 0.9450.
Figures 2, 3 and 4 show the evolution of the second perfor-
mance metric for the two algorithms, for different values α, as
the algorithms iterate. We note that our analysis is verified by
the numerical simulations, since in all cases Algorithm 2 per-
forms better than Algorithm 1. In addition, we observe that as
expected, as we decrease α the accuracy of the two algorithms
improve, but at a cost of decreased rate of convergence.

Fig. 2. Decay of maxi ∥xi(k) − x∗∥ for α = 0.2

Fig. 3. Decay of maxi ∥xi(k) − x∗∥ for α = 0.1

Tables 1 and 2 summarize the asymptotic behavior of the two
performance metrics, in the case of the graph presented in
Figure 1. As shown analytically, for both performance metrics,
Algorithm 2 fairs better than Algorithm 1.



Fig. 4. Decay of maxi ∥xi(k) − x∗∥ for α = 0.05

lim supk→∞maxi ∥xi(k) − x∗∥ for Figure 1 graph
α Algorithm 1 Algorithm 2

0.2 0.1785 0.0701
0.1 0.0980 0.0454

0.05 0.0517 0.0266
Table 1.

limk→∞maxi f (xi(k)) − f ∗ for Figure 1 graph
α Algorithm 1 Algorithm 2

0.2 52.1 × 10−3 8.5 × 10−3

0.1 15.9 × 10−3 3.4 × 10−3

0.05 4.48 × 10−3 1.27 × 10−3

Table 2.

We repeated the numerical simulationsl for a graph with im-
proved connectivity; graph shown in Figure 5. As before, we

Fig. 5. Ten nodes graph with improved connectivity

choose as collaboration matrix A = I + 0.101Lp, where Lp
is the Laplacian of the undirected graph shown in Figure 5.
It can be checked that the smallest eigenvalue in this case is
λ = −0.0101 and the SLEM is given by λ = 0.8868, which
shows the improved connectivity.

The asymptotic behavior of the two metrics for the new graph is
shown in Tables 3 and 4. As proved by our analysis, improved
connectivity improves the performance metrics for the two
optimization algorithms, phenomenon observed in numerical
simulations as well.

lim supk→∞maxi ∥xi(k) − x∗∥ for Figure 5 graph
α Algorithm 1 Algorithm 2

0.2 0.1634 0.0369
0.1 0.0860 0.0209

0.05 0.0504 0.0138
Table 3.

limk→∞maxi f (xi(k)) − f ∗ for Figure 5 graph
α Algorithm 1 Algorithm 2

0.2 43.8 × 10−3 2.4 × 10−3

0.1 12.3 × 10−3 7.81 × 10−4

0.05 4.2 × 10−3 3.19 × 10−4

Table 4.
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