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ABSTRACT

The hamiltonian structure of floating, planar four-bar linkages is
discussed. The geometry of configuration space is related to the classical
theory of mechanisms due to Grashof. For generic value of kinematic

parameters, the techniques of symplectic (and Poisson) reduction apply.

1. INTRODUCTION

There has been significant progress in our understanding of the hamiltonian structure

of serial-link (or open chain) multibody systems [2,3,9,11,12,15-18,21-23]. The use of
geometric methods, symmetry principles and reduction has led to deeper knowledge of the
phase portraits of model problems. This insight has been helpful in developing appropriate

control-theoretic tools. The primary source of motivation for these problems has been

* This work was supported in part by the AFOSR University Research Initiative Pro-
gram under grant AFOSR-87-0073 and by the National Science foundation’s Engineering

Research Center Program: NSFD CDR 8803012.
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in aerospace engineering where imaginative designs of multibody spacecraft have been

proposed and on occasion realized [4,5,24].

In contrast, multibody systems with kinematic loops present serious challenges. The
loop constraint may lead to singular configuration spaces. The Dirac theory of constraints
[6,20] applies in the smooth setting. Little or nothing is known about hamiltonian structure
and phase portraits in concrete cases. However, engineering applications suggest that
multibody systems with kinematic loops are of practical importance [10]. Parallel linkage

based robot manipulators are contemplated for space applications.

Here we discuss the geometry and dynamics of floating four-bar linkages. In this
model problem, the classical Grashof criterion [8,10,14] appears through conditions for the
configuration space to be a smooth manifold. The topology of the configuration space is
also related to the Grashof criteria. We explore symmetry properties, hamiltonian structure
and reduction of four bar linkage dynamics. Explicit computation of constrained dynamics
is difficult. Yet in the present setting, using geometric techniques, one can infer qualitative
properties without recourse to explicit analytic representation of the constrained dynamics.

We use a theorem of Smale to determine relative equilibria for four-bar linkage dynamics.

2. NOTATIONS & GEOMETRIC CONSTRAINTS

The structure of a closed floating four-bar linkage is represented in Fig. 1. The bars

are labeled clockwise from 0 to 3 as shown. We define the following quantities.

d;; the vector of hinge point which connects ¢-th bar with j-th bar
relative to a body-fixed frame with origin at the center of mass of

the i-th body;

r; the position vector of the center of mass of ¢-th bar relative to an

inertial observer;

the vector from the system center of mass to the center of mass of

-0

2-th bar;

o



inertial
observer

Fig. 1 The general structure of four-bar linkage

re the position of the system center of mass relative to the reference

point of the inertial observer;

R(6;) the rotation through angle 8; giving the orientation of i-th bar

relative to the inertial space;

70 = (Gie) o)

R(6;;) joint rotation between i-th and j-th bar,
R(8;) = R(6; — 8;) = R(6:)R(-6;);
RF the distance between the joints on z-th bar, (or ”length” of i-th bar);

all 1; > 05 I; = ||dijiv1 — dii-all;
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I; the moment of inertia of ¢-th bar about its center of mass;

m the total mass of the system, i.e.

3
m = Z m;.
=0
With the above notations, any pair of adjacent bodies is connected by the following

relation, so called hinge constraint,
rf+1 =r{+ R(Oi)d,",'.*.l — R(95+1)di+1,i :=0,1,2,3 (mod 4). (2.1)
By eliminating r{ in Eq.(2.1) we find the loop constraint or closure constraint,
3
> R(8:)(diis1 — diji-1) =0, (22)
=0

where we adopt the convention that d; 4 = dio and d4,i = do,i.

3. THE CONFIGURATION SPACE

In this section we investigate the conditions under which the loop constraint, Eq.(2.2),

describes a submanifold with respect to the configuration manifold of an open four-bar

chain.

For a planar floating four-bar open chain, the configuration space is
M=R*xS"xS8'xS"x S,
where M is a 6-dimensional smooth manifold with local coordinates of the form,
q = (o0, Yo, 0o, 01,62, 63).

This corresponds to keeping track of a material point (say center of mass on one of the

bodies) and the four absolute orientations. See [12,21,22] for the hamiltonian mechanics

of such open chains.



For a closed four bar mechanism as considered in this paper, the configuration space

denoted by @ is a subset of M determined by Eq.(2.2), or simply

Q = {a € M|F(q) =) R(6:)(di,i+1 — di,i-1) = 0}. (3.1)
1=0 .

Note that F : M — R?, and from [1] we know that if O is a regular value of F, i.e.
OF /9q has full rank for all q € Q, then Q is a submanifold of M.

From (3.1) we have,

QE_(O 0 —lpsin(By) —lisin(6) —lz2sin(6;) —lgsin(93)>

dq  \0 0 lycos(by) licos(61) lycos(6) Iscos(6s)

Then it is easy to check that all the nontrivial determinants of 2 X 2 submatrices are given

by the set of expressions,

91(q) = lolysin(6, — 6y)
92(q) = lolzsin(62 — o)
93(q) = lolzsin(63 — 6o) (3.2)
gs(q) = Lilasin(8; — 61)
95(q) = lilssin(8; — 6;)
96(q) = Llzsin(6; — 67).

Therefore for each q € @, if there exists an ¢ such that g;(q) # 0, Q is a submanifold of
M.

It is obvious that the above condition depends on the lengths of the links. To find
the condition on the links, we can use an equivalent way, that is, find necessary conditions
on the lengths of the links such that g;(q) =0 for all 7.

From Eqs.(3.2) it can be seen that if

6 —6p=0o0rm (3.3)a

and
93 - 92 =0orm (33)b
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and

63 —6y=0o0rm (3.3)c

then g¢;(q) = 0 for all 7.
Premultiplying Eq.(2.2) by R(6,), we get following equivalent closure constraint

equations
lo + licos(81 — 0o) + l2(cos(83 — 02)cos(f3 — 6) + sin(f3 — 63)sin(63 — b))

+l3cos(b3 — 62) =0 (3.4)a
llsin(ﬁl - 90) + l2(003(93 — 6, )szn(ﬁa - 90) - 8'(57’&(93 - 6, )008(93 —_ 90))
+138in(93 - 92) =0 (34)b
The conditions given in Eq.(3.3) make Eq.(3.4)b trivial. By choosing all the possible value
of 6; — 8y, 63 — 0; and 03 — Gy given in Eq.(3.3), from Eq.(3.4)a, we can find the link
conditions, which are summarized in Table 1.
Theorem 3.1: If [y £, £/, £ 13 #0, @Q is a submanifold of M.

From Table 1, it is easy to observe that case (i) can never happen since I; are assumed
to be positive. In addition, cases (iii), (iv), (v) and (vi) are trivial cases since none of them
can be formed by any general four-bar closed loop. In these cases the configuration spaces
lose one degree of freedom and are three dimensional.

Furthermore, Theorem 3.1 can be simplified by ignoring the labels on the bars. To
do this, we first recall some definitions and results in the classical theory of mechanisms
[8,13,14]. We define following quantities

s = length of shortest bar
I = length of longest bar

p,q¢ = lengths of intermediate bars.

A link which is free to rotate through 27 with respect to a second link is said to
revolve relative to the second bar and is referred to as a crank. Any bar which does not
revolve is called a rocker. If it is possible for all bars to become simultaneously aligned,

such a state is called a change point and the linkage is said to be a change-point mechanism.
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Table 1.

case | 8- 0p 656, 650, link condition structure
i 0 0 0 l0+ll+lz+l3=0 —
0 o 1
Lo+l -1,-1 .=
11 0 0 T O+112130 030 21’)
il o = o Lytl -1 +1,=0 20 02"1 -
1
1V 0 T n lo+ll+l2'l3=0 (@) On 30 20
24 3 A 0
\% U 0 0 lo'll+l2+l3=0 a ; o]
1 2 3
Vi T 0 T lO-ll-l2-l3=0 Q Q 0 - D
(@] 3 o 0 | @& ]
Vil T T O lo'll'lzf'l3=0 50 1
A 3
S—D @
Viii T T T lo’ll+l2"l3=0 or 0 2
3

Theorem 3.2:(Grashof) (1) A four-bar mechanism has at least one revolving link if

and all three will rock if

s+l<p+gq

s+I1>p+aq.

(2) A four-bar mechanism is a change-point mechanism iff

Remark: It is easy to check that the cases (ii), (vii) and (viii) in Table 1. correspond to

s+l=p+yq.

s+ 1 =p+q ie. they correspond to change-point mechanisms.
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Corollary 3.3: f I <s+q+p and s+1#p+ ¢, @ is a submanifold of M.
Remark: Note that if | > s + ¢ + p, the mechanism is not constructible.

In order to find a topological description of the configuration manifold @, we first
introduce following fact.
Proposition 3.4: If s +1<p+q¢ and l; = s, i.e. I = ming<ica(l;), then 65 — 62‘;7.'5 kw
for k € Z.
Proof. The mechanism can be assembled with s adjacent to [ or with s opposite [. And,
[ can be ly, Iy or I3. If 83 — 8, = km, the whole structure attains a triangular shape which
has the property that the sum of two sides is larger than the third one. Then it is easy to
check that all possible cases will lead to

s+1l>p+yq.

This is a contradiction.
|
From Grashof’s theorem and the above proposition we can get a topological descrip-
tion for Q).

Corollary 3.5: For a crank mechanism with s 4+ < p + ¢, each connected component is
diffeomorphic to

Q=R*xS'xS?
with parametrization (zg,y0,80,60:1) if { = s is assumed.
Proof. We just need to prove that 6; and 65 can be uniquely determined by 6 and 0.
The constraints given in Eq.(3.1) give the relations among 6;’s and they have continuous

partial derivatives with respect to 6;. Since

OF .
det(m) - 1213317?,(93 - 92),
it follows from the Implicit Function Theorem that if

03 — 0y # kn forke Z

in some neighborhood of a point (6g, 61, 62, 03), then there exists a unique pair of functions

fi1 and f2 such that
6, = f1(90,91) and 63 = f2(90,91)
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and
F (60,0, f1(60,61), f2(60,6,)) = 0.

Using the result in above proposition, the proof is complete. In addition, as seen from [13],

there exists a pair of function fl and fg such that
02 = 00 + f1(61 — 60) and 63 = 8y + f2(61 — 6o). (3.5)

Remark: Following Gibson and Newstead [7] one can show that if [ +s < p + ¢, then
there are two connected components of @ and if s+ > p + ¢, the space @ is connected
and diffeomorphic to R? x S* x S!.

Since the configuration space under the condition given in Corollary 3.5 has an
explicit parametrization, in the rest of this paper we shall study the system on this space

mainly.

4. KINETIC ENERGY

In this section we shall derive the kinetic energy, or Lagrangian since we assumed
that no potential energy is involved, for the whole system. The basic idea is to write
the kinetic energy for each individual body first and then use the constraint equations to
eliminate extra variables.

The kinetic energy of the i-th bar is
1 1 .
T, = -2-%21:' + §m;|]r,-||2
where w; = 6;. The total kinetic energy is
13 13
— 27,4 = My 12
T = 2Zw,I,+2Zm,[lr,H . (4.1)

1=0 1=0

To describe the kinetic energy relative to the center of mass, we have following useful

equations,

r; =rq+rf t=0,1,2,3 (4.2)
3

Z m;r{ = 0. (4.3)

=0



By applying Eqs.(4.2) and (4.3), Eq.(4.1) becomes,

&

3 3 ;
— 1 27r. 1 «cl12 1 12
T= 5D it g Y il + gl (4.4
Applying Eq.(2.1) and Eq.(4.2), we get
1
r{ = E[R(gi—l)mi—-ldi—l,i
— R(0;)(mi—1dii—1 + (Mmig1 + mig2)d; i41)
+ R(iy1)((mit1 + miga)diga,i — migodips ive)

+ R(0ip2)mitadita it1]
for i =0,1,2,3 (mod 4). Furthermore,
e 1 .
Iy = E[mi—lwi-—lR(ai-—l)di—l,i
— @;R(6;)(mi—1di i1 + (migr + miy2)diit1)
+ @it 1 R(Oi1)((Mig1 + miga)diga,i — migadityiv2)

+ Dip2 R(0iy2)miyadiya iv1] (4.5)

o _ {0 —w
Wi=\, 0 )

By substituting the formula for { into Eq.(4.4), we get a more compact expression for

for ¢ =0,1,2,3 (mod 4), where

the kinetic energy

ot

~ 1 . ’
T = 3 <@,Jo > +—2-m[|rc“2 (4.6)
where & = (wp,w,ws,w3)? and J= (ji,j,‘i,j =0,1,2,3) is a 4 X 4 symmetric matrix,
with elements given as follows.

Let

1
M = ‘T;L‘i‘[mimi-}-l(mi + Mit1)

)

+ mip1(Mmitaimi—1 + mim;y2)

+ mimiy2(Mit1 + miy2)] (4.7a

e
M= —5(miss = mipimioy) (4.7)b
M{I‘I - T—n—%ﬁ(m,’.’.l + mi_]_). (47)0
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Then

Ji=Ii+ MiI“d”?,i+1 + Mz'I—-IHd”?,i-—l

—2M < diigr,diio > (4.8)a
ji,i+1 = —M,'I < di,i+1,R(0i+l,i)di+1,i >

+ M < i1, R(Oi1 ) dig1 i >

+ M < diic1, R(8ig1,:)divr i >

+ MM < diji—1, R(fit1,i)dig1,i42 > (4.8)b
Jiive = =M < d; i1, R(6i42.)dizg,ip1 >

— M < di i1, R(Gig2,i)dit2,im1 >

— M, < diio1,R(0i42,)dit2,i-1 >

— M < d; i1, R(Big2,:)dit2,it1 > (4.8)c

for : =0,1,2,3 (mod 4).

Up to now, we have not applied the condition on the lengths of links of a closed loop.
It is clear that, in Eq.(4.6), 6; and the velocities w;, 1 = 0,1,2,3 are involved. Since the
chain is closed, these variables are not independent. As shown in the proof of Corollary 3.5,
if s+1! < p+q and l; = s, we have an one-to-one map from (6, 6,) to (62,6;3). Therefore
every element of the matrix J can be expressed as a function of 6; — 6y uniquely.

Under the same conditions on links, i.e. s+1 < p + q, the loop gonstraiﬁts (2.2)

yield a relation between (wp,w;) and (wz,ws):

(gj ) =Q (:j‘l’) (4.9)a

where
_Iosin(03—00) _llsin(eg—-el)
— lp8in(03—03) l23in(63—8
Issin(03~92) Iasin(es—ez)

Here, the matrix  is well defined because of the result in Proposition 3.4. Again, since
s+l < p+q and s =1, elements of matrix  are functions of 6; — ;.

We summarize the above discussion in the following theorem.
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Theorem 4.1: If s +1 < p+ ¢ and l; = s, the kinetic energy, or Lagrangian, can be
represented as

1 1 .
T=L= 5 < w,Jw > +§m||rcl|2 (4.10)

where w = (wo,wl)T and
(I
— T
s a3 (l)
for J given in (4.6)-(4.8) and Q given in (4.9). In addition, the elements of J are the
functions of (6; — 6p).
Before ending this section, we give a property of the matrix € which will be used in

section 6.

Proposition 4.2: Under the assumptions of Theorem 4.1,
1 1
(1)-2()
Proof: Premultiplying Eq.(2.2) by R(6;) and R(63), we get
losin(ﬁo - 92) + llsin(Gl - 62) + l3Sin(03 —_ 92) =0

and

losin(eo —_ 93) + llsin(Gl ot 93) + leiTl(Gz - 93) =0

respectively. They immediately imply the claim.

5. SYMMETRY AND INTEGRAL

We shall show here that a floating four-bar linkage is a simple mechanical system

with symmetry in the sense of Smale [1,19].
A simple mechanical system with symmetry is a 4-tuple (@, K, V, G), where,
(i) (@, i) is a Riemannian configuration manifold with metric K;
(i1) G is a Lie group acting on @ on the left,
P:GxQ—Q
(9,0) = B5(0) £ (9, 0)
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such that for each g € G, ®, is an isometry of (Q, K);
(iii) V : @ — R is a G-invariant potential function.
The associated Lagrangian is defined by
L:TQ - R
vy > Lvg) = £ (vg,00) =V 0 7(0) oy
where 7 : TQ — @ is the canonical tangent projection. The Legendre transform FL of L

is given here by the vector bundle isomorphism
K':TQ —T*Q
satisfying
K*(vg) - wg = K(vg,wg) Vv, wy € TyQ.

The hamiltonian H : T*Q — R is defined to be

H(ag) = SK(E) ™ ag), (K) ™ o)) + V 0 7"(ax) (52)

where 7* : T*Q — @ is the canonical cotangent projection. Letting (¢ denote the
canonical symplectic structure [1] on T*Q, the hamiltonian dynamics on T*Q is given by

the unique vector field Xy on T*Q such that
dH(Y) = Qo(XH,Y)

for all vector field Y on T*Q.
Let 77 : G x T*Q — T*Q be the cotangent lift of the action ®. Denoting

@5‘(-) = &7 (g,-), we have
Hodl" =H, (5.3)
i.e. the group G is a symmetry group of the hamiltonian system (T*Q,0,X H).
The modern setting of Nother’s theorem relating symmetry to the existence of
integrals of motion is given by the concept of momentum mapping. Let G denote the

Lie algebra of G and G* its dual. The map
J:T*Q — G*
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given by
J(ag) - E=ay-€o(g) Va, € Tq*Q (5.4)

is Ad*-equivariant, where £ € G and g is the infinitesimal generator of ® on @ associated
to £ (see [1] corollary 4.2.11). J is a momentum mapping and the G-invariance of the
hamiltonian H (Eq.(5.3)) implies that J is an integral, i.e. it is conserved along trajectories
of Xgy.

Returning to four-bar linkages, we restrict attention for the moment to linkages of
Grashof type, i.e. the condition s + ! < p + ¢ holds. To fix the parameterization, we let
l; = s. We also restrict ourselves to a connected component of the configuration space.
Then

Q=R?>xS'"x S

the kinetic energy metric is X defined by

1 1
K((v,w),(ﬁ,zf:))=§m<v,f)>+§<w,Jny> -

(see Eq.(4.10) of the previous section). The group of rigid motions in the plane is the
symmetry group:
G =S'x R%.
Denoting a point in @ by (r.,8,0:), the action ® of G = S* X R? on Q is given
by
®((¢,r), (re,00,061)) = (r +rc, 00 + 6,61 + 6).

For our purposes it is convenient to eliminate the effect of translations altogether by putting
the inertial observer at the center of mass of the system, i.e. r, = 0. In [22] this process is
explained via symplectic reduction by the translation group R?. The effect of taking this

step is that now,

Q=5"x S, G =5 (5.5)

and,

(I)(¢’ (00’91)) = (90 + ¢>91 + ¢) (56)
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The kinetic energy metric on @ is
K(wy,w2) =< wy,Jwy > (5.7)

for wy, wy € T,Q.
The hamiltonian is given by

1
H=3< p, I > ‘ (5.8)

for 4 = K*(w). Using the abstract formula (5.4) and the action (5.6), one can show that

a momentum mapping for the action @ is

J(6, 1) = po + . (5.9)

Of course, v = pg + p; is conserved along trajectories of Xy for the hamiltonian H in
(5.8) and it is simply the net angular momentum of the floating four bar linkage relative
to an observer at the system center of mass.

The dynamical trajectories are confined to level set of the form J~!(v). The group
S! viewed as the isotropy subgroup of the momentum value v, acts freely on J~!(v)
and one gets the symplectically reduces dynamics Xpg, on the reduced phase space

P, =J " }v)/S8' ~ S x R'. We discuss this further in the next section.

6. (REDUCED) DYNAMICS & RELATIVE EQUILIBRIA

As in [22] it is possible to Poisson-reduce the dynamics. We recall that given a

symplectic manifold (M,w), and a smooth, free, proper, symplectic action of Lie group G

on M, the canonical Poisson structure on M defined by
{f,9}m =w(Xys, X,) VY, g€ C¥(M)

descends to a Poisson structure on the quotient P = M/G. The latter is defined by

{f,g}M/G°W={f°7r;§°7r}M (61)
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where f, § € C*®(M/G) and n : M — M/G is the canonical projection. If H : M — R is
a G-invariant hamiltonian, it induces H : M/G — R defined by H o = H. We refer to
the dynamics (vector field) X, defined by

Xa(f)={fH} VfecC>M/G) (6.2)

as the Poisson reduction of the dynamics Xpg.
In the present context, with @, K, H as in (5.5)-(5.8), the space M = T*(S! x $1)

with parameterization (6, 8;, po, 1) carries the Poisson structure,
1
- of 99 Of 9y

for all f, g € C°(T*(S! x S')). The action of G = S! on Q given by (5.6) is free and
proper. The quotient P = T*(S! x §1)/8* ~ S x R? carries a reduced Poisson structure.
Parameterizing P = T*(5* x S)/S* by 610 = (61 — 65, pt0, p11), the Poisson bracket on P
is given by, '

. of .03 o3, 083  8f of
ety /gt = (99 _ — . - 6.4
{f,d}re(s1xs1y/5 8610 (3#1 Opo” 0610 Oy 0,“0) (64)

which is a noncanonical structure. The reduced hamiltonian H is given by

H(610, 10, 1) = H(6y, 01, pio, 1), (6.5)

since the matrix J in (5.8) is a function of the difference 610 = 6; — 6y only. The reduced

dynamics is then immediately given:

(6.6)

Equation (6.6) involves complicated analytic expression resulting from the substitu-

tions for 63 and 6, in terms of 6; and 6; as in [13]. Certain qualitative aspects of the
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reduced dynamics can still be explored, sidestepping analytic difficulties. For instance one
can investigate relative equilibria.

Definition 6.1: z. € M is a relative equilibrium for Xg if
Xg(m(ze)) = 0. (6.7)

Remark: Let Fk,_ be the flow of Xy on M. Then 2. is a relative equilibrium iff F§ (z.)

is a stationary motion, i.e. there exists £ € G such that

Fley () = ewp(t6)(ze).

Theorem 6.2: Let J be an Ad*— equivariant momentum mappingon M. z. € M is a

relative equilibrium of Xy iff there exists a £ € G such that 2, is a critical point of
He=H-J&) (6.8)

where J(£) : M — R:z s J(z)(&).

For proof, see chapter 4 of [1]. This theorem can be applied to a simple mechanical
system with symmetry, (Q, K,V,G) [19].
Theorem 6.3:(Smale) For simple mechanical system with symmetry (Q, K,V,G), define

Ve:@— R:qm V(@) ~ 3K (6a(a),Eal) (69)

for each £ € G. Then ze = (ge,pe) € T*Q is a relative equilibrium iff ¢, is a critical point
of V¢ for some { € G and pe = K*(€o(qe)).
Remark: It can be shown that, for a given £ € G, V¢ has the symmetry,

Ve(®y(2)) = Ve() (6.10)

for all g € G¢ :={g € G|Adys6 =¢}. If G=S5',G¢ =G and action @ is free and proper.
Then Q/G¢ is a smooth manifold and m¢ : @ — Q/G¢ is a submersion. Thus V; induces
a function V; on Q/G¢ such that

VE = V¢o7r5.
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Recalling that V = 0, this theorem can be directly applied to the floating four-bar
linkage system. Rewriting the kinetic energy given in section 4 by setting the origin of

inertial space at the system of center of mass, we have

1
T = '2— <w,Jw> (611)

where w = (wg,w1). It can be shown that the infinitesimal generator on Q = S x $? is
to(g) = (1,1)T [21]. Hence, by theorem 6.3, (6*,1*) is a relative equilibrium point on

T*Q iff 6* is a critical point of function
1
Velto,b) = ~(1,)3 (1)
Applying Proposition 4.2 and the definition of J given in Theorem 4.1, we have
Ve(60,6,) = —eTJe (6.12)

where e = (1 11 1)T. From Eq.(6.12), we observe that the diagonal terms, which include
the inertia of bars, of matrix J do not effect the positions of critical points of function V.
Since the elements of matrix J are only functions of 8; —fy, above V; satisfies (6.10) for all
g € St. It follows that V;(610) = Ve(6b,6:). Then, the critical points of Ve, (65, 67), will
make (67 — 65) to be the critical points of Vg . At relative equilibrium, the relative angles
between bars are fixed and the whole system rotates around the system center of mass
with constant angular velocity. Unlike the planar two-body case, the relative equilibrium
shapes depend on the values of the masses and the lengths of bars. From the expression
of matrices J and the relations between relative angles given in [13], it is very difficult to
find critical points of function ffe analytically. However, numerically searching for critical
points is easy since now f/€ is only a function of one variable. In the following, we give an
example to computing the relative equilibria by applying above theorem.
Example:

An assembly in Fig. 2 is a possible structure of a robot arm. The parameters are

given as follows

mp=3, my=1 my=30, m3=1;
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2-nd bar

-rd bar

o-th bar

Fig. 2
d(0,3) = (~1.5,0), d(0,1) = (1.5,0);
d(1,0) = (=0.5,0),  d(1,2) = (0.5,0);
d(2,1) = (=6,0), d(2,3) = (=3,0);
d(3,2) = (~0.55,0),  d(3,0) = (0.55,0).
Thus, the lengths of links are

lh=3, §L=1, lp =3 §=11

It is clear that s + ! < p+ ¢ and s = [; are satisfied.

The graph of Vs is given in Fig. 3. From this figure we can see two critical points
appear at 619 = 7 deg and 610 = 186 deg. The shape determined by these two angles are
shown in Fig. 4.
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—120 —

Fig. 3

7. CONCLUSIONS

In this paper, we gave sufficient conditions which make the configuration space of

a closed four-bar mechanism be a smooth manifold by applying the classical theory of a
mechanisms due to Grashof. Under one of them, i.e. $+41 < p+ ¢ we derived well defined
expression of kinetic energy, or Lagrangian. This Lagrangian is invariant under the action
of SE(2), the rigid motion group in plane. It turns out that‘ the four-bar mechanism is
a simple mechanical system with symmetry. Applying Poisson reduction we obtained the
reduced dynamics. Furthermore, by using Smale’s theorem on relative equilibria we found
a function whose critical points give the relative equilibria for our system. An example of

its application was given.
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