A Combined Gate Replacement and Input Vector Control Apgroa

for Leakage Current Reduction

Lin Yuan and Gang Qu
Electrical and Computer Engineering Department and Lristiior Advanced Computer Studies
University of Maryland, College Park, MD 20742, USA

Abstract

Due to the increasing role of leakage power in CMOS circudtal power dissipation, leakage reduction has
attracted a lot of attention recently. Input vector con{t®IC) takes advantage of the transistor stack effect to
apply the minimum leakage vector (MLV) to the primary inpoatshe circuit during the standby mode. However,
IVC techniques become less effective for circuits of lamgd depth because the MLV at primary inputs has little
impact on internal gates at high logic level. In this pape¥,pfopose a technique to overcome this limitation by
directly controlling the inputs to the internal gates thatia their worst leakage states. Specifically, we propose a
gate replacement technique that replaces such gates bylibthey gates while maintaining the circuit's correct
functionality at the active mode. This modification of thecait does not require changes of the design flow,
but it opens the door for further leakage reduction, whenMh¥ is not effective. We then describe a divide-
and-conquer approach that combines the gate replacemampaut vector control techniques. It integrates an
algorithm that finds the optimal MLV for tree circuits, a fagtte replacement heuristic, and a genetic algorithm
that connects the tree circuits. We have conducted expetamon all the MCNC91 benchmark circuits. The
results reveal that 1) the gate replacement techniqué daelprovide 10% more leakage current reduction over
the best known IVC methods with no delay penalty and littlaaincrease; 2) the divide-and-conquer approach
outperforms the best pure IVC method by 24% and the existaimiral point insertion method by 12%; 3) when
we obtain the optimal MLV for small circuits from exhaustigearch, the proposed gate replacement alone can

still reduce leakage current by 13% while the divide-andegeer approach reduces 17%.

*Parts of this manuscript will appear in the 42nd ACM/IEEE iDasAutomation Conference.

1 Introduction

As the VLSI technology and supply/threshold voltage camgiscaling down, leakage power has become more
and more significant in the power dissipation of today’s CM&8uits. For example, it is projected that sub-
threshold leakage power can contribute as much as 42% aobtdlgoower in the 90nm process generation [15].
Many techniques thus have been proposed recently to retledeakage power consumption. Dual threshold
voltage process uses devices with higher threshold volidmeg non-critical paths to reduce leakage current
while maintaining the performance [22]. Multiple-threkh@€MOS (MTCMOS) technique places a hidfy,
device in series with low},, circuitry, creating a sleep transistor [17, 4]. Calhounlepeoposed a methodology
to insert sleep transistors in MTCMOS [8]. In dynamic tha@ddhMOS (DTMOS) [5], the gate and body are
tied together and the threshold voltage is altered dyndinit@asuit the operating state of the circuit. Another
technique to dynamically adjust threshold voltages is tmgable threshold CMOS(VTCMOS) [19]. Control-
ling the body bias voltage to minimize leakage is discusagd8]. All of these approaches require the process

technology support.

INPUT Leakage (nA

000 best: 22.84

INPUT Leakage(nA 001 37.84

INPUT | Leakage(nA 00 best: 37.84 010 37.84
@ o best:100.3 (b)| 01 |[2ndworst: 100.30 (C)| 011 |2nd worst: 100.30
1 worst227.2 10 95.17 100 37.01

11 worst: 454.50 101 95.17

110 94.87

111 worst: 852.40

Figure 1. Leakage current of (a)INVERTER, (b)NAND2 and (&WD3. Data obtained by simulation in Ca-

dence Spectre using 0.18n process.

The input vector control (IVC) technique is applied to reglleakage current at circuit level with little or no
performance overhead [11]. It is based on the well-knownsistor stack effect: a CMOS gate’s subthreshold
leakage current varies dramatically with the input vecfupli®d to the gate [14]. Recently, Lee et al. made the
similar observations on gate oxide leakage that it is alg®ddent on the input vectors to a CMOS gate [16].
In our study, we use Cadence Spectre to measure the oveataige current in a CMOS gate that includes both

subthreshold leakage and gate leakage. Figure 1 lists #malbleakage current in INVERTER, NAND2 and

NAND3 gates under all the possible input combinations. Véeteat the worst case leakage (marked in bold) is
much higher than the other cases. The idea of IVC technigteensnipulate the input vector with the help of a
sleep signal to reduce the leakage when the circuit is atéimelsy mode [13]. The associated minimum leakage
vector (MLV) problem seeks to find a primary input vector thahimizes the total leakage current in a given
circuit. [1, 6, 8, 10, 12, 13, 14, 20]. The MLV problem is NPraplete! and both exact and heuristic approaches
have been proposed to search for the MLV. A detailed survgiven in Section 2.

In this paper, we consider how to enhance IVC technique it br no re-design effort. In particular, we
study theM LV + problem that seeks to modify a given circuit and determine an inpatoresuch that the circuit’s
functionality is maintained at the active mode and the dileakage is minimized when the circuit is at standby
mode. Our solution to this problem is based on the concepataf geplacement that is motivated by the large
discrepancy between the worst leakage and the other caseBifgire 1). The essence of gate replacement is to
replace a logic gate that is at its worst leakage state byhantibrary gate. This is illustrated by the following

example.

o | 1 95.17nA 37.84nA 94.87nA

5 1 ~ 1

0 { 37:84nA 0 37.84nA Gs
0o— | G, 1 ssasna @ 1 94.87nA [

0 0 | SLEEP

G, G, pt
1 L 1003na 1 — 3 94.87nA
1 o 1 _— 1 ~
o ol Gp 1 ol G s
95.17nA 95.17nA SLEEP |

(a) Original MCNC benchmark circuit C17 with total (b) New circuit C17 with three gates replaced and total
leakage31.08nA under the optimal MLV. leakagel76.88n A under the same MLV.

Figure 2: A motivation example for gate replacement.

Consider circuit C17 from the MCNC91 benchmark suite [26(Fe 2(a)). An exhaustive search finds the
MLV {0,0,0,1,Q, with the corresponding minimum total leakage currert3if.08n A. Note that gaté&+; has its

worst leakage current (454.5nA) with inp{tt,1}, which contributes more than half of the total leakage. tt,fa

1The NP-completeness of the MLV problem has been mentioneg¥sral research groups [14, 10, 12]; however, none of tkeam g

a proof. In Section 4, we give one to make it complete.

we have observed that a significant portion of the total Igaka often caused by the gates that are in their worst
leakage state (see Table 2 in Section 5).

Instead of controlling the primary inputs, we consider agpig these leakage-intensive gates. In particular,
we replace the NAND2 gaté&'; by a NAND3 G5 where the third inpuSLEEP is the complement of the
SLEEP signal (Figure 2(b)). At active modS,LEEP = 1 andG3 produces the same output@s. But at the
standby modeSLEEP = 0 andG5 has a leakage ¢f4.87nA (Figure 1(b)), which is much smaller th&’s
454.5n A.

However, this replacement also changes the output of tisajdhe sleep mode and affects the leakage on
gatesGs andGg. In this case, we replace them in a similar fashion. As a tethé new circuit’s total leakage
becomesl76.88n A, a 43% reduction from the origindB1.08n A in Figure 2(a).

The proposed gate replacement technique is conceptudiiyratit from the existing input vector control
methods. These two methods are complementary to each @pecifically, IVC method considers the entire
circuit and searches for an appropriate input vector inffafesmall leakage. The gate replacement technigue
targets directly at the logic gates that are in their worakdge state (WLS) under a specific input vector and

replace them to reduce leakage. This paper has the followangibutions:

1. Examination of the pure IVC methddsFor all the 69 MCNC91 benchmarks, we obtain the optimal
MLV in small circuits with 22 or fewer primary inputs by exhstive search; and the best over 10,000
random input vectors for large circuits. The number of gatakeir WLS are on average 15% and 17%

respectively, but they contribute more than 40% of the disctotal leakage.

2. Gate replacement for leakage reduction: Our work is ratgiy by the above observation. The basic idea is
to replace gates that are in their WLS by other library gdiaswill generate less leakage current at those
states. Unlike other leakage reduction techniques suchf@&@\MDS and DTMOS, this modification of the
circuit does not require changes of process technologyerdésign flow. Therefore, it will not increase

the design complexity or the leakage sensitivity.

3. A fast gate replacement technique: We implement a simgiie iggplacement technique that gives an av-
erage of 10% leakage reduction for a fixed input vector. If welait to the optimal/sub-optimal MLV
mentioned above in 1, the number of gates in their WLS is reduc 8% and 11%, respectively. This al-
gorithm’s run time complexity is linear to the number of gaite the circuit in average cases and quadratic

in the worst case.

2|vC-based approaches such as internal control point ioselt] will be discussed in Section 2

4. Solving the MLV+ problem: We develop a divide-and-conmagproach to combine gate replacement and
IVC. It reduces the leakage by 17% and 24% over the optimaigmtimal MLV mentioned in 1) with little

area and delay overhead. The number of gates in their WL®ppdd to 4% and 9% respectively.

The rest of the paper is organized as follows: in the nexti@gctve review the IVC leakage reduction
techniques. In Section 3, we describe the proposed gatecespknt technique. In Section 4, we elaborate the
proposed divide-and-conquer approach. Detailed expatinesults on all 69 MCNC91 benchmarks are reported

in Section 5 before we conclude in Section 6.

2 Input Vector Control for Leakage Current Reduction

Reducing the off-state leakage power/current has becommarny concern for low power circuit design recently.
We have already mentioned a number of techniques proposeduoe leakage in the introduction. More detailed
review and survey can be found in [4, 7, 11]. In this section,survey the efforts on the input vector control

(IVC) techniques proposed for finding the minimum leakagetae

Diffusion
1.5V Polysilicon |

] AN

VG1=0V —r— VDS1=1.411V
- model: Vq1=89mV—>=

VG2=0V — VDS2=55mV
< model: Vg2=34mV__,.

o

VG3=0V VDS3=20mV
- model: Vq3=14mV__,
VG4=0V 4;: VDS4=14mV
NS

Figure 3: Schematic layout and typical quiescent voltadgdsur transistor stack[14]

The effect of circuit input logic values on leakage currermswobserved by Halter and Najm [13]. The
underlying reason of this effect was explained by Johnsai. €tL4]. They built a model to calculate leakage
current in a stack of transistors as shown in Figure 3. Inrtigglel, transistors which have a gate voltage equal
to Vpp are treated as short circuits and voltage drop across starsithat are off is calculated. Their model

infers that, the more transistors being turned off in a stddkansistors, the larger the effective resistance these

transistors will have, and the less leakage currents pessgh them. This effect is called transistor stack effect.
Hence, the IVC technique is essentially to control the nunabeff transistors in the circuit. Authors in [13, 23]
proposed a technique to insert a set of latches with MLV dtargo the primary inputs of a circuit, forcing the
combinational logic into a low-leakage state when the dirsudle. In [10], the authors also discussed the trade
off between the optimality of the minimum leakage state &edstwvitching cost of entering and exiting this state.
Apparently, IVC method provides the maximal leakage reidacivhen the input vector gives the minimal
total leakage. Besides, it does not require process teatppohodification and can be applied at runtime. Many
algorithms have been proposed to find such minimum leakagmrge(MLV). Based on the nature of these

algorithms, we classify them into three groupsuristics, exact algorithms, andinternal point control.

2.1 Heuristic Algorithms

In [13], Halter and Najm developed a random sampling-baseudtistic to find the MLV. They started with a set
of identically and independently distributed random vextd hese vectors are applied to the circuit as primary
inputs and the one that gives the least leakage currentastedl They further calculatesfror tolerance the
probability that another random vector results in leak&gs than the selected. Their experiments showed that
the MLV selected from 100,000 random vectors can realizereor éolerance of 1% or smaller with a 54%
leakage reduction over the vector that generates the tdeggsage.

Chen et al. [9] proposed a genetic algorithm to tackle the Mtablem, which has a solution space exponen-
tial to the number of primary inputs. In their genetic alg¢fum, an input vector is represented as a chromosome
and the circuit’s total leakage is calculated and used afitttess of the chromosome. They select a random pop-
ulation and produce the neyéneration by standard genetic algorithm operations suckedsction, crossover,
andmutation. When the stopping criterion is satisfied, the best oveddlit®n is reported as the MLV. In addi-
tional to the minimal leakage, their method can also find tlagimal leakage vector. The results show that the
ratio of maximal leakage to minimal leakage can be as lardg adich indicates that the IVC technique have
great potentials in reducing leakage powetr.

Johnson et al. [14] explained the transistor stack effe@NtOS circuits and developed analytical models to
estimate the steady-state leakage and the duration ofgedkansients in series connections of MOS transistors.
Based on these models, they defitemkage observabilitas the degree to which the value of a particular circuit
input is observable in the magnitude of leakage from the peweply. The leakage observability of each primary
input is evaluated and the primary inputs are put into a fyi@rueue with their leakage observability as the

priority metric. For the primary input on top of the priorigueue, assign it a value 0 or 1 based on which one

gives a smaller leakage; the circuit state and leakage \adsbty are updated under this new input value; the
priority queue is then updated and the next primary inputopnaf the queue will be assigned a value until the
gueue becomes empty. The input combination constructddsigteedy fashion is taken as the MLV.

In [20], Rao et al. proposed a fast heuristic algorithm basethe concept of controllability that is widely-
used for fault detection in automatic test pattern geramatiThe controllability of each node in the circuit is
defined as the minimum number of inputs that need to be askigrgarticular states in order to force the given
node to a specific state. A cost function for each node is afoetl as the difference between the node’s best
case (smallest) leakage and worst case (largest) leakadbeit heuristic, the controllability is first computed
for each internal node (gate) in the circuit. The node withldast cost function and satisfies its input constraint
is then removed. The controllability list is updated and §hiocess is repeated until all the nodes are removed
from the list. If there exist input undefined at the end, thieieahat results in smaller leakage is assigned. Their
experimental results showed a leakage within 5% of the lextbw obtained from 100,000 random vectors, but

with a large run time saving.

2.2 Exact Algorithms

Several exact algorithms have been proposed to find the Mt¥ntéy. These include a graph-based Boolean
enumeration method [10], a pseudo Boolean Satisfiabilityédation [1, 2], and an integer linear programming
formulation [12]. They transform the MLV problem into otheell-studied problems (such as ILP) and solve
them by the existing solvers.

The MLV problem is modeled as a pseudo Boolean SatisfialfiBS) problem in [1, 2]. There are two sets
of constraints in the PBS problem formulation: the conetsathat represent the circuit’s functionality and those
that represent the leakage objective. As an example, amai@-input NAND gate. Given the leakage power

values listed in Figure 1, the leakage objective constsainll be expressed as:
37.84X1 X5 + 100.3X1 X5 + 95.17X1 X2 + 454.5X1 Xo < k

where X1, X5 are inputs to the gate; is the desired leakage bound. A minimal leakage can by foynd b
iteratively reducingt until the formula is unsatisfiable.

In order to have the product-of-sum forma; X, term is replaced by a variable with the help of logic
constraints:

(X1+X2+S)’(X1+5')'(X2+5')
The SAT formula of a circuit is thel N D of all the constraints associated with each gate. Once 8% P

7

problem is established, advanced solver PBS [3] can be odaatitthe MLV for leakage reduction. In [2], they
can improve the leakage by up to 12%. However, as the ciriagitiscreases, the runtime of this approach rises
dramatically. In large circuits such as C1355 and C6288; #pproach took more than 5000 seconds CPU time
and didn’t complete for this reason.

Gao and Hayes [12] formulate the MLV problem as an integealirprogramming(ILP) problem. They first
use pseudo-Boolean functions to represent leakage currelifferent types of cells with the general sum-of-

products form:

Fig,in,vin1) = . C [i

CeR 0<j<n—1

For example, the leakage in a two-input NAND gétean be expressed as
F(ig,i1) = Lootot1 + Lioiot1 + Loitoir + Liiiot

whereF (ig, 1) is the leakage current i@ with input vectorigi; and L, denotes ’s leakage current with input
vectorigi; = {a, b}. Applying the well-known Boole-Shannon expansion [25is #quation can be transformed
to

F(’io, il) = F(O, 0) + Coig + Chi1 + Caigiq

whereCy = F(1,0) — F(0,0) andC; = F'(0,1) — F'(0,0) are the coefficients for terms with one input variable.
Similarly, the coefficients of the two-variable termds = F(1,1) — F(1,0) — F(0,1) 4+ F(0,0). Then the
authors use an extra variablefor termigiq, the new function is then linear i3, i; and X. This transformation

can be generalized to linearize the leakage function forhbitrary gate withn inputs:
F(i07 il7 ey in—l) = Z C(S)X(S)
S

whereS, an auxiliary variable, is a subset of input variabl&g;S) is the logicAN D of all variables inS; C(S)
is the coefficients defined as:

C(S) = > (=)= p(T).
All subsets T of S

Additional constraints are also formed using linear equmtior inequations to guarantee the correct logic rela-

tions in the circuit. For example, the functionality of aninput NAND gate is represented by:

f
f = 1=(i1+ia+..+1i,)/n

IN

2— (i1 +ie+...+in+1)/n

whereiq, is...i, are inputs to NAND gatef is the output.

8

After the ILP model is built, an off-the-shelf ILP solver ised to obtain the MLV. For large circuits, the
size of the ILP formula could be too large for a solver. Théhatg proposed a simplified mixed-integer linear
programming formulation that uses selective variabletygdaxation to reduce the runtime. Their experiments
on a set of benchmark circuits showed that the latter ralaxatan speedup the ILP approach by 13.64X with
4% error.

Based on the pseudo Boolean function formulation of thedgakin CMOS gates, two implicit pseudo
boolean enumeration algorithms are presented in [10]. Mpetispace enumeration method leverages integer
valued decision diagrams and works well for small circuitée hypergraph partitioning based recursive algo-
rithm represents a given circuit as a hypergraph where thie®s of the hypergraph are gates and the hyperedges
are nets. It partitions a large circuit into subgraphs udiiig-Cut algorithm and solves independently for each
subgraph. Their algorithms can find the optimal MLV muchdasthan other exact algorithms. The authors also
discussed how to reduce the number of primary inputs that hawe a specific value in the MLV in order to save

the switching power for the circuit to enter the MLV state.

2.3 Internal Point Control

When a circuit has many logic levels, the IVC technique bexmirss effective because the internal gates at a
deep level are less affected by the primary input vectors.tiie reason, Abdollahi et al. proposed a technique
to control the value of internal pins to reduce leakage [1jeill first approach inserts multiplexers at the input
pins of each gate. Th& L F FE P signal selects the correct input in active mode and chobsemput values that
produce low leakage current in standby mode. This appraachetuce leakage in the CMOS gates significantly;
however, the inserted multiplexers will also generate dgakcurrent and introduce extra delay and area. To
compensate this overhead, the authors formulate theimseftmultiplexers using pseudo boolean SAT. Again,
since the solution place to insert multiplexer is enormdiis,runtime of PBS becomes unmanageable for large
circuits.

In their second approach, they modify the library gates WiragylS L E'F P signal-controlled transistors in
the gate to select the low-leakage inputs for its fanoutggaféhey reported an average leakage reduction of
25% within 5% delay penalty and no more than 15% area incrddseever, since the structure of the gates is
changed, a new set of library gates are needed.

Our gate replacement technique belongs to the class ohaitpoint control, but is conceptually different
from [1] in the following aspects: 1) They treat each inputt pf the gates as potential place to insert multiplexers,

while we consider only roots of each tree. The search spacedisced substantially. 2) Their purpose of

modifying a gate G is to produce the low-leakage input for faisout gate while we aim to reduce leakage
current at G itself. 3) They modify gates whenever necesadile we restrict our algorithm to replace gates
only by the available gates in the library, and hence do rmiire gate structure modification. However, these

two approaches can be combined as we will discuss in morésdet&ections 3 and 4.

3 Leakage Reduction by Gate Replacement

A logic gate is at its worst leakage state (WLS) when its ingatds the largest leakage current. Regardless
of the primary input vector, a large number of gates are at Wig@ticularly when the circuit has high logic
depth. Take the 69 MCNC91 benchmarks for example. For eatired9 circuits, when we apply the optimal
(or sub-optimal) MLVs to these circuits, 16% of the gates werage remain at WLS, producing more than 40%
of the circuit’s total leakage. A detailed report can be fum Section 5. In this section, we describe the gate

replacement technique that targets directly the leakafyection in WLS gates.

3.1 Basic Gate Replacement Technique

As we have shown in the motivation example in Section 1, tlpgsed gate replacement technique replaces a

gateG(Z) by another library gaté&'(#, SLEEP), whereZ is the input vector at G, such that

o

1. G(Z,0) = G(Z) when the circuit is active{LEEP = 0);

2. G(&,1) has smaller leakage tha&i(') when the circuit is in standoySCEEP = 1).

The first condition guarantees the correct functionalitthefcircuit at active mode. The second condition reduces
the leakage on gat@ at the standby mode, but it may change the output of this g&dte that, although we do
not need to maintain the circuit’s functionality at the sty mode, this change may affect the leakage of other
gates and should be carefully considered.

Figure 4(a) shows that the replacementGoby G changes the output from 0 to 1. For simplicity, we assume
that G’s fanout only goes to gat& which can be either a NAND or a NOR or an INVERTER. In Figure)4(b
and (d), we see that such change does not affect the outpatefigand therefore it won't affect any other gates
in the circuit. LetZL(G(11)) be the leakage of gat@ with input 11, we can conveniently compute the leakage
reduction by this replacement, whichligG(11)) + L(H(00)) — L(G(110)) — L(H(10)) in the case of (b) for

example.

10

1]
(a) 1:@% 0 1— G 01
SLEEP —
1] 0 1— 0—1
o on’ -
! 00— H ! SLEEP — G 0— H !
1] 0 1— 0o—1
(c) 11 G bﬁ} 1 e -~
1— SLEEP —| 1— H 1
SLEEP —
1] 0 1— _ 0—1
@ 6P e 200 ;
1 SLEEP — 1
1] 0 1— 0—1
(e) 1— G 1 1 G 1—0
0 SLEEP — 0
1] o 1— 0—1
4] G K>—‘:><>—1 1 G @ . .
SLEEP — _
SLEEP

Figure 4: Gate replacement and the consequence to its fgatat

In Figure 4(c), the replacement at gatenot only changes the output of gafg it also putsH at its WLS.
Our solution is to replace the NAND2 gaf& by an NAND3H. This preserves the output &f and the leakage
change will beL(G(11)) + L(H(01)) — L(G(110)) — L(H(110)). Similarly, in Figure 4(f), we replace the
INVERTER by a NAND2 gate. Finally, in Figure 4(e), the re@atent ofG moves both gate§ and H away

from their WLS. It also changes the output of the NOR gdtavhich we can conduct similar analysis.

Remarks:

General Fanout. The above analysis is applicabl@'scofanout gateH of any type. The change @éf’'s output
either does not affedt’s output (Figure 4 (b) and (d)) or chang#ss output. In the latter case, we either
changeH''s output back (Figure 4 (c) and (f)) or continue the analgsisting fromH (Figure 4 (e)).

Beyond library gates. If the library does not have a replam@nfor G, we can add one transistor into the N
or P sections of+ to meet conditions 1 and 2. This is similar to the gate modificamethod proposed in
[1]. However, they attempt to control the output of the madifgate in order to reduce the leakage in its

fanout gate by producing the desirable signal. Our gat@acephent targets directly the leakage reduction

11

of the current gate.

Multiple fanouts. When gaté&' has multiple fanouts, we analyze each of them and then cemgidir total

leakage when we compute the leakage change due to the raglacef gate’.

Compatibility. The gate replacement technique does natgdnahe primary input vector of the circuit. This
implies that we can combine it with existing MLV searchingaggies to further reduce leakage. The

MLV+ problem is based on this observation and is discussekiails in next section.

Power overhead. There is not much dynamic power overheaalbedhe SLEEP signal remains constant at
active mode and will not cause any additional switchingvitis. The leakage in gat&s andG may be
different at active mode. Such difference becomes nedgigillhhen the circuit stays at standby mode long

enough [1].

Other overhead. Gate replacement may introduce delay aadoaerhead. This overhead can be controlled
by restricting the replacement off critical path and tratwgiresizing. Gate replacement does not add new

logic gates and thus requires little or no effort to redo tlaeg@-and-route.

3.2 A Fast Gate Replacement Algorithm

Based on the above gate replacement technique, we propase adorithm that selectively replaces gates to
reduce the circuit’s total leakage for a given input veckégure 5 gives the pseudo-code of this algorithm.

We visit the gates in the circuit by the topological order. ¥ all the gates that are not at WLS and the
gates that have already been visited or marked (line 16) watfind a new gate&~; at WLS (line 2). Lines 3-9
find a subset of gateS and temporarily replace then®. includes all the unmarked gates whose leakage and/or
output is affected by the replacement we attempt to do on @atnd other gates i¥. We then compute the
total leakage change caused by the replacement of gafedlime 10) and adopt these replacements if there is a
leakage reduction (lines 11-13). Otherwise, we simply ngateGG; as visited and do not make any replacement
(line 14). We then look for the next unmarked gate at WLS aigl glocedure stops when all the gates in the

circuits are marked.

Correctness: The topological order guarantees that when we find a gats &YIitS, all its predecessors have
already been considered. The replacement at line 7 endwaethe functionality will not change at the active
mode. The subse§ constructed in thevhile loop (lines 3-9) is theransitive closureof gates that are affected

by the replacement action at gate. Therefore, we only need to compute the leakage change en g@hinS

12

Input: {G1,Gs,---}: gates in a circuit sorted topologically,

{x1,x2,---}: an input vector,

SLEEP: the sleep signal.

Output: a circuit of the same functionality whef. EEP = 0 and

with less leakage whefiLEEP = 1.

Gate Replacement Algorithm:
1. for each gat&7; € {G1,Ga, -}

2.

© © N o 0o &~ w

10.
11.
12.
13.
14.
15.
16.

(line 10). We make the replacement only when this leakagegsha in favor of us, so the new circuit will have

if (G, is at WLS and not marked)
includeG; in the selectiors;
while (there is new addition t&)
for each newly selected gatéin S
if (there exists library gaté' meets the conditions in Section 3.1)
temporarily replacé& by G;
if (output of G is changed due to this replacement)
includeG’'s unmarked fanout gat@; in S;
compute the total leakage change of gates;in
if (there is leakage reduction)
mark all gates/; in the selectiors;
make the replacements in lines 7,9,0or 10 permanent;
else mark gatez; only;
empty the selectiaf;

else markG; if it has not been marked yet;

Figure 5: Pseudo-code of the gate replacement algorithm.

less leakage in standby mode.

Complexity: Letn be the number of gates in the circuit. The loop is linear ton. Inside the for loop, the
computation of leakage change and the marking of all gat&gime 10-15) is linear taS|, the number of gates
in S. Thewhileloop (lines 3-9) stops when there is no new additiots tand this will be executed no more than
|S| times. As we have discussed in section 3.1 (see Figure 4)pst oasessS includes onlyG and its fanout
gates. However, it may include all the gates of the circuitases similar to Figure 4 (e) and g%} cannot be
bounded by any constant. That j§| is O(n) in the worst case an@(k) on average, wherg is the maximal

fanout of the gates in the circuit. Consequently, the coriylef this gate replacement algorithm @(n?) in

13

the worst case an@(kn) on average.

Improvement: There are several ways to improve the leakage reductionnpeaince of the above gate replace-
ment heuristic. The tradeoff will be either increased desigmplexity, or reduced circuit performance, or both.
First, one can consider gates that are not in the library asawve commented in the remarks in Section 3.1 (line
6). However, this requires the measurement of leakagertyaeea and delay in these new gates as they are not
available in the library. A second alternative is to insemhtrol point at one of>’s fanins. For example, one
can find the faniny such that replacing by its complemeny/’ givesG the largest leakage reduction.yf= 0,
replace it byOR(y, SLEEP); if y = 1, replace it byAN D(y, SLEEP). However, the addition of new gates
may require the repeat of placement and routing and willimeare area and delay penalty in general. Third,
one may also consider both the library gate replacement amlat point insertion at the same time and choose
the one that gives more leakage reduction. Finally, whenseaeplace gatér;, we also make the replacement
for all the other gates in the selectishpermanent (line 13). We have tested a couple of alternasimesthey
give limited improvement in leakage reduction at very higktof run time complexity.

The incentive to keep the run time complexity of this gatdaegment algorithm low is that it will be com-

bined with IVC technique under the following divide-andagoier approach to solve the MLV+ problem.

4 The MLV+ Problem and the Divide-and-Conquer Approach

Recall that the minimum leakage vector (MLV) problem seekstiie input vector that minimizes the circuit’s

total leakage. It has been claimed that this problem is NRpdete for general circuits [1, 10, 14, 20]. But no
formal proof has been given to our knowledge. In this sectimnfirst give a brief proof of the NP-completeness
of the MLV problem and then define the MLV+ problem, an extengf the MLV problem. Our main focus will

be on the divide-and-conquer approach that solves the Mltglblem.

4.0 NP-Completeness of the MLV Problem

The MLV problem could be stated as follows: given a comboral circuit consisting of primary inputs (Pls),
primary outputs(POs), internal logic gates connected hy/w&es, and the leakage current of each gate under
different input combinations, determine an input vectothat Pls such that the total leakage current of all the
gates in the circuit is minimized.

Theorem: The MLV problem is NP-complete.

14

- —_ — — = = - -

X1 X1
X2 X2

(a) A circuit for satisfiability test. (b) Reducing the satisfiability test to MLV.

Figure 6: lllustration for the proof of the NP-completenesthe MLV problem.

Proof. On one side, we have already mentioned a couple of exactithlgsrthat solve the MLV problem by
reducing it to NP-complete problems such as pseudo Bookbggsiiability and integer linear programming.

On the other side, we show that the NP-complete CIRCUIT-Srablem [24] can be reduced to the MLV
problem. Consider an arbitrary circuit shown in Figure g{@)est whether the circuit is satisfiable (i.e., produc-
ing a logic ‘1’ at its output), we construct a new circuit bydaty a big inverter at its output (Figure 6(b)). The
inverter is big in the sense that it has a huge leakage Valwben its input is ‘0’ and a small leakagevhen its
input is ‘1’. Actually, we can seL to be the sum of and the leakage of each gate in the circuit when it is in its
WLS. Now we solve the MLV problem for this modified circuit. tHie total leakage is less thdn clearly the
original circuit is satisfiable and the MLV is one input vectibat makes the circuit output logic ‘1. Otherwise,
because that the only way for the total leakage to be largarilis when the input to the big inverter is ‘0’, the

original circuit is not satisfiable. O

4.1 TheMLV+ Problem and Outline of the Divide-and-Conquer Approach

Note that the MLV problem seeks for the input vector to a dtrthat minimizes the circuit’s total leakage. In
the previous section, we have seen that leakage currentecfamtber reduced by the proposed gate replacement
technique. We have also mentioned that this technique epieratdent of the input vector and can be combined

with the MLV method. We hence formulate the followiMyLV + problem:

Given a combinational circuit with Pls, POs, the internagio gates that implement the PI-PO func-
tionality, and the leakage current of each library gate unde different input patterns, determine
a gate level implementation of the same PI-PO functionalithout changing the place-and-route

and an input vector at the Pls that minimizes the total leakag

Apparently , this is an extension of the MLV problem with tleaxation of modifying circuit by gate re-

placement. It enlarges the search space of MLV and provigdesth the opportunity of finding better solution.

15

For a circuit ofk Pls andr internal logic gates, the search space for the original Mtabfem is the2” different
input combinations. Under the above MLV+ formulation, tlearch space becomes - I17_,1;, wherel; is the
number of library gates that can replace gat@cluding gate itself. Assuming that half of the gates have one
replacement, then the solution space for MLV+ problem weélRB/2 times larger than the solution space for the
MLV problem. Even when we restrict the gate replacementriggte only to gates that are at their WLS, this
will be significant because (1) a circuit normally has moreegdhan Pls«®{ >> k) and (2) the percentage of
gates in WLS is considerably high (16% on the MCNC91 benckméren MLV is applied, and will be higher
as the logic depth of the circuit increases).

As we have analyzed in the previous section, the MLV+ probienonly enlarges the solution space for
the IVC method, it also has the great potential in improvimg $olution quality (in terms of leakage reduction)
because of the stack effect. However, one challenge is haxpmre such enormous solution space for better
solutions. Given the NP-completeness of the MLV problem comsider special circuits where the MLV+ can
be solved optimally and develop heuristics for the geneasécIn the rest of this section, we describe details of

our proposed divide-and-conquer approach that consistedbllowing phases:

decompose a general circuit into tree circuits.
find the MLV for each tree circuit optimally by dynamic pragiming.

apply the gate replacement technique to the MLV for eaadtiv further reduce leakage.

A

connect the tree circuits by a genetic algorithm.

4.2 Findingthe Optimal MLV for Tree Circuits

A tree circuit is a single output circuit in which each gatecept the primary output, feeds exactly one other
gate. A general combinational circuit can be trivially degased into non-overlapping tree circuits [25]. This
is illustrated in Figure 9. The circuit in (a) is not a tree dese gat&ss has two fan-out gate§'s andGg. By
splitting at the fanout of73, we get three trees witt¥'s, G5 andGg being the root of each tree respectively.

We consider a tree circuit with gat¢&';, Go, - - -, G, } sorted in the topological order, which is preserved by
the tree decomposition.

Let L(G;(%)) be the leakage current in the gaie when vector? is applied atG;’s fanins. Each gaté;
can be treated as the root of a sub-tree circuit. LA&t(i, z) be the minimum total leakage of the tree circuit
when it outputs logic value at rootG; andV (i, z) be the input vector to the tree circuit that achiedds (i, z).

— —

We develop a dynamic programming approach to compute the [@ak (i, 0), V' (i,0)) and(LK (i, 1), V (i, 1))

16

LK(L0)=454.5 LK(1,0) = L(G1("11") = 4545 V(1,0) = "11"

V0= LK(4,0)=502.6 LK(1,1) = min(L(G1("11"), L(G1("10"), L(G1("00")) = L(G1("00") = 37.8
V(4,0)="000" V(1, 1) ="00"

LK(1,1)=37.8

V(1,1)="00" LK(4,1)=360.2 LK(2, 0) = L(G2("1")) = 227.2 V(2,0)="1"
V(4,1)="001" LK(2, 1) = L(G2("0")) = 100.3 V(2, 1) ="0"

LK(3,0)=L(G3("1")) =227.2 V(3,0)="1"
LK(3, 1) = L(G3("0") =100.3 V(3,1)="0"

LK(5,0)=915 LK(4, 0) = L(G4("11") + LK(1, 1) + LK(2,1)=592.6

LK(2,0)=227.2 V(5,0)="0010" V(4, 0) ="000"
V201 LK(5,1)=682.6 LK(4, 1) = min{ L(G4("10")+LK(L,1)+LK(2,0), L(GA("01"))+LK(1,0)+LK(2,1),
LK(2.1)-100.3 V(5,1)="0011" L(GA("00")+LK(1,0)+LK(2,0)} = L(GA("L0")+LK(1,1)+LK(2,0)=360.2

83 oo V(4, 1) ="001"

d LK(5, 0) = L(G5("11")+LK(4,1)+LK(3,1) = 915

LK(3,0)=227.2 V(5, 0) ="0010"
V(E0)="1" . LK(5, 1) = min{ L(G5("10")+LK(4,1)+LK(3,0), L(G5("01"))+LK(4,0)+LK(3,1),
LK(3,1)=100.3 MLV:"0011 L(G5("00")+LK(4,0)+LK(3,0)} = L(G5("10"))+LK(4,1)+LK(3,0) = 682.6
V(3,1)="0" Total leakage: 682.6nA V(5, 1) = "0011"

Figure 7: Dynamic programming to find optimal MLV in a treectiit.

for each gates;. The MLV for the tree circuit rooted at gat&,, with gates{G1,Gs,---, G} sorted in the

topological order, can then be determined conveniently.

1. For each input signal to the tree, define

LK(0,2) =0, V(0,2)=z 1)
2. Foreach gat&/;(i = 1,2,...,n), let
t
LK(i,z) = ' L(G;(% LK (i, x;. 2
(2) = s (U (%))Jrjg1 (ij,zi;)) ©)
‘7(17 Z) = U§:1‘7(ij7$?j))

where{z;, ,z;,, -, x; } are the fanins ots; from gates{G,,,G,,,- - -, G, } respectively and the input

combination{z? .- - -, 2? } achievesL K (i, z).
3. The minimum leakage of the tree circuit with gafés,, - - -, G,, } is given by
min{LK (n,0), LK(n,1)} 4)
and the MLV will be eithert/ (n, 0) or V' (n, 1) accordingly.
Figure 7 gives a step-by-step illustration of the dynamagpamming on a small circuit.

Correctness: We show the correctness of the recursive formula in Equdfpand (3). To computé K (i, z),

we need to consider all the possible combination of fatins, - - -, z;, } that produces output at gateG,. For

17

each such combination, the minimum leakage in the subt@edatG; is the sum of leakage at gate and
the minimum leakage at each of its fan-in gatg with outputz;,, LK (i;, z;;). Equation (2) takes the overall
minimum leakage and gives the corrdeK (i, z). Assume that this minimum leakage is achieved wigmas

.z, = a). Note thatV’(z‘j,xO) is the input vector for the subtree circuit rooted(at to

ij

faninsz;, = a? , ..
producecc?j with the minimum leakagé K (i;, z;,). The tree structure of the circuit guarantees that the sebtr
rooted at{G;, , ..., Gy, } will not share any common inputs. Therefollé(s, z) is the simple concatenation of

V (i, «,) as given in Equation (3),

—

Complexity: Equations (1) and (4) take constant time. For each@ateve need to compute. K (¢,0), V' (i, 0))
and (LK (i,1), V(z‘, 1)) by equations (2) and (3). This requires the enumerationl thap’ different combina-
tions of G;’s t fanins. For the first time, we need to perfotradditions in equation (2). If we enumerate the rest
2! — 1 cases following a Gray code, we only need to updaté; (Z))(two operations), replace orek (i;, 7))
(two operations) and compare the result with the currentirmim leakage, a total of five operations. Therefore,
we need: + 5 - (2 — 1) operations for eacty’; and this gives a complexity @ (K - n), whereK is a constant
depending on the largest number of fanins in the circuit.

After obtaining the MLV for the tree circuit, we perform thatg replacement algorithm proposed in Section
3 to further reduce leakage. Note that, although the MLV isnogl, this does not guarantee us an optimal
solution for the MLV+ problem on the tree circuit. For examptonsider the circuit in Figure 8, the algorithm
finds the optimal MLV{a=0, b=1 with leakage 422 A. Gate 2 is at its WLS and the gate replacement algorithm
does not give any improvement. The input vedtdr0} gives the maximum leakage 654; however, when we
apply gate replacement technique and replagethe leakage is reduced to 288. In fact, {0,0} is the optimal

solution for the MLV+ problem3.

4.3 Connecting the Tree Circuits

In the previous phase, we have determined the output andteddaoput for each individual tree circuit to yield
the minimum leakage. The goal of this phase is to combinéaltree circuits to solve the MLV+ problem for
the original circuit. The root of each tree circuit may haveltiple fanouts that go to other tree circuits as input.
Since we treat the tree circuits independently, conflicuegd the output of a tree circuit and the value required

by its fanout gates are not consistent. For example, in Ei§u), the circuit is decomposed into three tree

3We conjecture that the MLV+ problem remains NP-hard for tieguit. Because we have already lost the optimality whemlwéhe
tree decomposition, we will not discuss in details on hownd fietter solutions to MLV+ on tree circuits. For the sameoaawe did

not focus on how to improve the fast gate replacement algarih Section 3.2

18

SLEEP
minimum leakage = LK(3,1)=422.6nA minimum leakage = LK(3,1)=295.5n/
MLV = "01" MLV = "00"

Figure 8: MLV in a circuit before and after gate replacement

circuits Ty, To, andT3. Ty outputs "1’ when its MLV is applied, whild; andT5 require 0’ and "1’ fromT7 in

their respective MLVs. So we have a conflict.

() (c) (e)

Figure 9: Resolving the conflict in connecting tree circuits

There are basically three ways to resolve this conflict:
() enforcingT}’s output at all the fanout gates (Figure 9 (b));
(I changingTy’s output and enforcing this new value at all the fanout gé&ggure 9 (c));

(1) inserting an AND gate to allow them to be inconsistelRigure 9 (d)). Similarly, if7; output ’0’ and some

of its fanouts require '1’, we can add an OR gate as shown iarEi§ (e)).

To decide which one we should use to resolve the conflict, yatyagach of them and re-evaluate the circuit’s
total leakage. In (I), this requires the re-computing of thi@imum leakage and the MLV for tree circuit,
under the condition that its input froffi, is logic '1’. The dynamic programming algorithm in Sectior2 £an
be trivially modified for this purpose. In (ll), we need to detsame procedure for tree circilif. Besides, we

have to replace the paji. K (n, 1),V (n,1)} for tree circuitT} by {LK (n,0),V (n,0)}.

19

Both (1) and (I1) resolve the conflict by sacrificing the minim leakage of tree circuits under the provably
optimal MLV. In (I11), we successfully connect the tree diits while preserving the minimum leakage and MLV
for each tree with the help of th€ LEE P signal-controlled AND or OR gates. The cost is that we have to
add the leakage of the inserted AND or OR gate into the totddge. We mention that this gate addition also
preserves the correctness of the circuit at active mode WhidnE P=0.

It is now easy to make a decision on which method to adopt tWwes single conflict: use the one that gives
the minimum leakage. However, the decision at one confligt aff@ct the existence of conflict at other places in
the circuit. For example, method (1) in Figure 9 (b) couldrdpathe output of tre@&, and directly affect whether
there is a conflict at the root af,.

We use a genetic algorithm (GA) to resolve the conflicts antheot all the tree circuits. A solution by the
GA is in the form of a binary bit stream, each bit indicates thibe there is a conflict at the root of a tree and
which method to use to resolve it. In particular, a '1’ medrex¢ is a conflict and method (l1l) should be used;
a '0’ means that there is either no conflict or we should uséb#iter one of methods (1) and (II) to resolve the
conflict.

The GA follows a standard routine where we start with a pdpraof N random bit streams (referred to
aschromosomes Based on each bit stream, we resolve the conflict, applgyhamic programming algorithm
in Section 4.2 to re-compute the minimum leakage of a tremuitivhen methods (I) and (ll) are used, run
the gate replacement algorithm in Figure 5 on the entirauitjrand compute the circuit’s total leakage. The
fitnessfor a bit stream is calculated from the leakage value. Thdlenmthe leakage, the larger tligness We
sort all the chromosomes according to their fithess andetaatnext generation by thmeulette wheemethod.

In this method, the probability that @iromosomas selected as one of the two parents is proportional to its
fitness.Crossover which refers to the exchange of substrings in two chromesoms performed among parents
to produce children. A simplmutationoperation, which flips a bit in the chromosome atlitenutation rateis

also used. The GA continues to generate a totaV afew chromosomes and starts for the next generation. This
process repeats for certain number of times (50 in our siioalgand the best chromosome is returned as the

optimal solution.

4.4 Overhead Analysis

As the control gates are introduced in the tree-connectigesof the algorithm, they also require sleep signal to
control. Hence, we need to consider the extra power thedeotgates and sleep signal may consume, and their

effect on the overall power saving. In this subsection, wiediscuss the power overheads.

20

1) Control gates: The control gates will consume extra dyogrower and leakage power. In this paper,
we only consider the leakage power overhead of the insed&gb @nd ignore their dynamic power due to the
following reasons. First, the number of inserted contraéganly accounts for 5% to 6% of the total number of
gates in the circuit. Second, they are simple 2-input AND @Rligates, which have a relatively small intrinsic
capacitance at the node compared to other gates. Thirdwitehig activities in these control gates are very
limited because one of the two inputs is the sleep signalclivbhanges only at the moment when the circuit
switches between active mode and sleep mode. As dynamicrpswlependent on physical capacitance and
switching activities, we consider this dynamic power oeexthis negligible.

As for leakage power, we measured the average leakage timremntrol gates over all possible inputs. In
our algorithm, we add this extra leakage current to the olgéunction, i.e., the overall leakage current to be
minimized. Therefore, the leakage saving achieved in @ordhm has already considered this overhead.

2) Sleep signal: Both the gate replacement and the conttes gaquire the sleep signal to drive them during
active and sleep mode. The generation of the sleep signacoresume extra power. However, due to the fact
that our experiment was conducted at the logic synthesed mfore placement and routing, it is not practical
to obtain such power data quantitatively. On the other htr@sleep signal is required by many other leakage
minimization techniques, such as [1], [4], [5], [8] and [1Hence, in this paper, we expect the generation of the
sleep signal to be similar to those approaches and we behé&v@roblem can be better solved at the physical

level of circuit design.

5 Experimental Results

We implemented the gate replacement and divide-and-corigakniques in SIS environment [27] and applied
them on 69 MCNC91 benchmark circuits. Each circuit is sysitesd and mapped to a 0.18n technology
library. We use Cadence Spectre to simulate the leakagentuor all the library gates under every possible
input vector. The supply voltage and threshold voltage &% And 0.2V, respectively. The measured leakage
current includes both subthreshold and gate leakage. Tinéations are conducted on a Ultra SPARC SUN
workstation.

Our results are compared with traditional input vector mannhethods in terms of leakage saving, run time,
area and delay penalty. The 69 benchmarks including 26 sineiits with 22 or fewer primary inputs (Table 1)
and 43 large circuits (Table 2). For each small circuit, wd fime optimal MLV by exhaustive search. For each

large circuit, we choose the best MLV from 10,000 distinctd@am input vectors. It is reported that this will give

21

us a 99% confidence that the vectors with less leakage isHas0t5% of the entire vector population [13, 20].
To have a fair comparison with [1], we also collect the averlegkage of 1,000 random input vectors for each
large circuit.

Table 1 reports the results for the 26 small circuits. Coluhtists the leakage current for each circuit when
the best MLV is applied. Even in this case, an average of 15%efates are at WLS as shown in column 5.
The fast gate replacement algorithm is able to move abotibh#tiese gates from their WLS (column 7). This
results in a 13% leakage reduction with only 4% area incréedemns 6 and 8). We mention that we restrict
ourselves to replace only gates off critical paths. Thigdea8% of the gates in the circuits at their WLS, but it
also guarantees us that there is no delay overhead.

The last four columns show that the divide-and-conquerrilgn gives a 17% leakage reduction over the
best MLV at the cost of 9% more area. We incorporate delaytraings in the genetic algorithm to ensure that
the delay overhead to be within 5%. The two columns in the taidde the number of tree circuits in each case
and the number of control gates we have used to connect tleese Only in three cases, we have inserted more
than five control gates. Note that the addition of controeganhay decrease the delay because it reduces the
fanouts of the gate. The area increase comes from the additicontrol gates and the replacement of “smaller”
gates by “bigger” library gates.

Figure 10 reports the leakage and wls gates reduction interde circuits (x-axis) with 22 Pls or more. We
replace the infeasible exhaustive search by the best@olirom a random search of 10K input vectors. The fast
gate replacement algorithm are restricted only on gatesribifal paths; for the divide-and-conquer approach,
we set the maximal delay increase to be 5%.

The benchmarks are sorted by the total leakage achievedehgitlie-and-conquer method normalized to
the best over 10K random search, which is shown one of the ines at the top part of the figure. The average
leakage reductions are 10% by gate replacement only (lea®aB.) and 24% by divide-and-conquer method
(leakage D.C.). The maximal leakage reductions are 46.4%6@% respectively. The three curves at the bottom
give the ratio of WLS gates. On average, the 10K random sdwrsll 7% gates at WLS(orig, wis); the proposed
fast gate replacement and divide-and-conquer technigqkge this ratio to 11%(G.R. wls) and 9%(D.C. wls),
respectively.

More detailed results for these 43 circuits are shown indablColumns 4-6 list the leakage current, runtime,
and percentage of gates at WLS when the best MLV from 10,08fora vectors is applied to each circuit. The
next four columns show the results when the fast gate replactalgorithm is applied to such best MLV. The

average run time is only 0.05s and increases linearly to timber of gates in the circuit. There is no delay

22

120%

100%
80% A
60‘%) —e—orig. wis L
—a—GR. wis
—4—D.C.wis
40% S atagenc, \
(o}
20% -
0%

Figure 10: Leakage and WLS percentage on 43 large circuits2&i PIs or more.

overhead and the area increase is only 2%.

The next seven columns show results by the divide-and-@angpproach where we set a 5% maximum
delay constraint. In the genetic algorithm, we start withopuation size ofV = 150 and it converges after
50 generations. We are able to achieve, over the best MLV &0/800 random vectors, 24% leakage saving
with 7% area penalty on average. Although the average rum 86X of the random search, we mention that
this is mainly caused by the two circuii§, anddes They have a couple of large tree circuits and therefore the
frequently called dynamic programming takes considerfdstg time. Excluding these two circuits, the average
run time for random search and the divide-and-conquer idfgordrop to 64.7s and 143s, respectively. More
importantly, we see clearly the run time for random seardneimses exponentially to the number of primary
input and linearly to the number of gates (columns 2,3,5)weler, the run time for the divide-and-conquer
approach grows at a much slower pace (column 12).

Finally, the last two columns compare our results with theperted in [1]. Because their detailed results are
not available, we can only compare the average performdndfeir experimental setup, the leakage reduction
is compared with the average value among 1,000 random gedtor a fair comparison, we also report in the last

two columns the improvement of our approaches over the saseibe. Table 3 summarizes the performance

23

improvement in the control point insertion approach [1]r gate replacement algorithm, and the divide-and-

conquer approach.

6 Conclusions

We study the MLV+ problem which seeks to modify a given cit@nd determine an input vector such that the
correct functionality is maintained when the circuit isizetand the leakage is minimized under the determined
input vector when the circuit is at stand-by mode. The rdlaraof circuit modification with changing its
functionality enlarges the solution space of the IVC methéi show that MLV (and hence MLV+) problem is

a hard problem and propose low-complexity heuristics teestiie MLV+ problem. The proposed algorithms are
practical and effective in the sense that we do not need togehtne design flow and re-do place-and-route. The
experimental results show that this technique improvesfsigntly the performance of IVC in leakage reduction

at gate level with little area and delay overhead.

References

[1] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage Curr&duction in CMOS VLSI Circuits by Input
Vector Control”,IEEE Trans. on VLSMol. 12, pp. 140-154, Feb. 2004.

[2] F. Aloul, S. Hassoun, K. Sakallah, D. Blaauw, “Robust SBdsed Search Algorithm for Leakage Power
Reduction”,International Workshop on Integrated Circuit Desjgp. 167-177, 2002.

[3] F. Aloul, A. Ramani, I. Markov and K. Sakallah, “PBS: A Bdrack-Search Pseudo-Boolean Solver and
Optimizer”, Symposium on the Theory and Applications of Satisfiabiéisting pp. 346-353, 2002.

[4] Mohab Anis, Mohamed Elmasry “Multi-Threshold CMOS Dtigi Circuits : Managing Leakage Power”,
Springer October 2003.

[5] F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.l§, End C. Hu, “Dynamic Threshold-Voltage MOS-
FET(DTMOS) for ultra-low voltage VLSI"JEEE Transaction on Electron Devicegol. 44, pp. 414-422,
1997.

[6] S.Bobba and I.N. Hajj, “Maximum Leakage Power Estimatior CMOS Circuits”,|EEE Alessandro Volta
Memorial Workshop on Low Power Desjgp. 116, 1999.

[7] D. Blaauw, S. Martin, T.N. Mudge, Krisztia'’n Flautnei_éakage Current Reduction in VLSI Systems”,
Journal of Circuits, Systems, and Computéig6): 621-636 (2002)

24

[8] B.H. Calhoun, F.A. Honore, and A. Chandrakasan, “Dedigihodology for Fine-Grained Leakage Con-
trol in MTCMOS”, International Symposium on Low Power Electronics and Degg. 104-109, 2003.

[9] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of 8ty Leakage Power in CMOS Circuits
Considering Accurate Modeling of Transistor Stackaternational Symposium on Low Power Electronics

and Designpp. 239-244, 1998.

[10] K. Chopra and S.B.K. Vrudhula, “Implicit Pseudo Boaleanumeration Algorithms for Input Vector Con-
trol”, ACM/IEEE Design Automation Conferenggp. 767-772, 2004.

[11] D. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Eke&ating Run-Time Techniques for Leakage Power
Reduction”,IEEE International Conference on VLSI Desjgmp. 31-38, 2002.

[12] F. Gao and J.P. Hayes, “Exact and Heuristic Approaahégaut Vector Control for Leakage Power Reduc-
tion”, Proceedings of ICCAPp. 527-532, 2004.

[13] J. Halter, and F. Najm, “A Gate-Level Leakage Power R#idn Method for Ultra Low Power CMOS
Circuits”, IEEE Custom Integrated Circuits Conferengg 475-478, 1997.

[14] M.C. Johnson, D. Somasekhar, and K. Roy, “Models andoAllgms for Bounds on Leakage in CMOS
Circuits”, IEEE Transactions On Computer-Aided Design of Integrateéduits and Systems/ol. 18, pp.
714-725, 1999.

[15] J. Kao, S. Narendra, A. Chandrakasan, “Subthresholdkége Modeling and Reduction Techniqud2fo-
ceedings of ICCADpp. 141-148, 2002

[16] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester, “Analyaisd Minimization Techniques for Total Leakage
Considering Gate Oxide Leakag®CM/IEEE Design Automation Conferenggp. 175-180, June 2003.

[17] S. Mutoh, T. Douskel, Y. Matsuya, T. Aoki, S. Shigematsnd J. Yamada, “1-V Power Supply High-Speed
Digital Circuit Technology with Multi-threshold VoltageMOS”, IEEE Journal of Solid-State Circuitpp.
847-854, Aug. 1995.

[18] C. Neau and K. Roy, “Optimal Body Bias Selection for Lagk Improvement and Process Compensation
over Different Technology Generationghternational Symposium on Low Power Electronics and Dgsig
pp. 116-121, 2003.

[19] T. Kuroda, et al, “A 0.9V 150MHz 10mW 4mm2 2-D Discrete $dwe Transform Core Processor with
Variable Threshold-Voltage(VT) SchemenEEE Journal of Solid-State Circuitgpp. 1770-1779, Nov.
1996.

25

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R.M. Rao, F. Liu, J.L. Burns, and R.B. Brown, “A Heuristo Determine Low Leakage Sleep State Vectors
for CMOS Combinational Circuits'lEEE International Conference on Computer-Aided Deslgovember
2003.

H. Rahman and C. Chakrabarti, “A LEAKAGE ESTIMATION ANBEDUCTION TECHNIQUE FOR
SCALED CMOS LOGIC CIRCUITS CONSIDERING GATE-LEAKAGE'ISCAS 2004.

L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design d@pptimization of Low Voltage High Perfor-
mance Dual Threshold CMOS Circuit$?yoceedings of DAQop. 489-494, 98.

Y. Ye, S. Borker, and V. De, “A New Technique for Standbgakage Reduction in High-Performance
Circuits”, Symposium on VLSI Circujtpp. 40-41.9, 1998.

M.R. Garey and D.S. Johnson, “Computers and Intralitbh Guide to the Theory of NP-Completeness”,
Freeman Company2001.

G.D. Hachtel and F. Somenazi, “Logic Synthesis and \eaifon Algorithms” Kluwer Academic Publishers
1996.

Saeyang Yang, “Synthesis and Optimization Benchmbédex Guide”, 2002, ftp://mcnc.mcnc.org.

E. Sentovich, et al., “SIS: A System for Sequential GirSynthesis,’Electronics Research Laboratory

Memorandum, U.C.Berkelefo. UCB/ERL M92/41.

26

Table 1: Results on 26 small circuits with 22 or less primagpuis.

o pi | gate| exhaustive gate replace divide-and-conquer
cireutt # | # |leak(nA)| wis|imprv| wis|arinc|imprv| wis| #tr|# cg|arinc
bl 3| 13 219523%| 2%|15%| 5%| 2%|10%| 5| 0%| 5%
cm42a| 4 | 25 2941 0%| 0%| 0%| 0%| 8%| 0%| 18| 4%| 8%
Cl7 | 5| 6 831|17%| 43%| 0%| 17%| 43%| 0%| 4| 0%| 17%
cm82a| 5| 28 5017|21%| 29%| 4%]| 12%| 40%| 1%| 10| 4%| 18%
decod | 5| 22 1921| 0%| 0%| 0%| 0%| 8%| 0%| 21| 5%| 3%
cm138g 6 | 19 1760| 0%| 0%| 0%| 0%| 1%| 0%| 12| 5%| 5%
z4ml | 7| 66 12246| 24%| 25%|11%| 11%| 37%| 4%| 20| 5%| 17%
f51m | 8 | 136 26038 26%| 37%)| 7%| 12%| 48%| 4%)| 25| 3%| 14%
9symml| 9 | 166 34018| 26%| 20%|17%| 5%| 38%| 8%| 18| 8%| 14%
alu2 | 10| 356 64153|21%| 2%|20%| 0%| 21%| 5%| 89| 7%| 11%
x2 |10| 44 6159 9%| 15%| 2%| 3%| 12%| 2%| 18| 9%| 10%
cm85a|11| 38 4925 8%| 14%| 3%| 3%| 13%| 3%| 16| 0%| 3%
cmi151a 12| 34 5745|24%| 9%|18%| 4%| 3%]|18%| 5| 3%| 5%
alu4 | 14| 728 | 133127/ 25%| 1%]|21%| 1%]| 15%| 4%|166| 7%| 10%
cml162a 14| 45 6947|18%| 2%| 9%| 3%| 0%]| 9%| 13| 4%| 12%
cu |14| 49 6182|12%| 16%| 6%| 2%| 9%| 5%| 21| 6%| 7%
cm163a 16| 43 6376/19%| 2%| 9%| 3%| 1%| 9%| 11| 5%| 13%
cmb [16| 42 5405/10%| 11%| 5%| 2%| 4%| 4%| 8| 2%| 6%
parity (16| 75 12764|20%| 11%)|15%| 5%]| 15%| 7%| 15| 7%| 20%
pml (16| 39 3474| 3%| 0%| 0%| 1%| -2%| 0%| 16| 3%| 3%
t481 |16|1945| 251184 2%| 1%| 1%| 0%| 26%| 0%| 17| 2%| 1%
tcon |17| 41 6491 20%| 43%| 0%| 14%| 41%| 0%| 9| 2%| 17%
pcle |19| 74 12594 20%| 32%| 4%| 6%| 32%| 4%| 22| 0%| 6%
sct 19| 92 11811 18%| 14%| 9%| 4%| 10%| 6%| 24| 4%| 6%
cc 21| 48 5823|13%| 6%]|10%| 1%| 6%]| 9%| 22| 0%| 1%
cm150q 21| 72 12270|15%| 4%|14%| 1%| 1%|10%| 9| 7%| 10%
Average 15%| 13%| 8%| 4%| 17%| 4% 4%| 9%

27

Table 2: Results on 43 large circuits with primary inputs entbran 22.

o pi | gate random search (10k) gate replacement (G.R.) divide-and-conquer (D.C.) over 1K ave
cireuit # # |leak@A) |time(s) | wis(%) | imprv(%) | time(s) | wis(%) | area(%) imprv(%) | time(s) | wis(%) | #tree| #gatesl/tre¢ # cg| area(%) G.R.(%)| D.(
cordic | 23 | 102 | 18434.0 99| 216 151 0.01| 118 5.7 27.4| 10.1| 7.8%| 52 31 7% 9.3 28.4| 3
ttt2 24| 207 | 33801.5 22.7| 184 95| 0.02| 174 4.4 18.4| 72.6| 14.5%| 43 4.7 6% 9.6 30.9| 3
i1 25| 39 5250.6 5.4 7.7 27.7 0 0.0 4.3 26.3 6.0] 0.0%| 16 2.1 3% 51 455| 4
pcler8 | 27 | 90 | 14670.1 10.0{ 16.7 11.1] 0.01] 111 4.0 27.0 14.9| 10.3%| 31 2.4 0% 4.0 35.2| 4
c8 28 | 164 | 26083.00 17.4| 195 19.0f 0.01 4.3 8.4 14.4| 21.5| 0.0%| 38 5.9 8% 6.9 317 2
C6288 | 32 |2400|480084.2 222.0| 29.0 29| o011 277 1.9 8.8| 398.7| 11.7%| 1424 17 29% 27.3 7.0| 1
comp | 32| 163| 28322.3 15.2| 221 56| 0.01| 117 24 13.2| 85.4| 9.7%| 77 34 2% 5.4 341 3
C1908 | 33| 615(117029.4 57.2| 20.5 2.5 0.02] 17.1 0.9 31.0 66.0| 13.4%| 218 29 10% 10.1 6.4 3
my_adder| 33 | 225 | 40842.1] 21.0f 22.2 2.0 0.02| 20.0 1.5 31.1] 32.1| 18.2%| 95 2.8 7% 6.4 89| 3
terml | 34| 363 | 60460.5 37.3| 185 11.7{ 0.02 9.6 4.0 15.4| 160.0 8.8%| 75 6.8 5% 8.8 23.9| 2
count | 35| 144 | 224454 152 174 0.0 0.01f 174 0.0 3.4 14.2| 16.7%| 37 4.2 2% 2.4 0.0 1
C432 | 36| 200 | 38101.4 20.1| 15.0 11.2| 0.01 9.0 3.3 37.5| 247 8.0%| 79 4.1 6% 8.9 21.6| 4
unreg | 36 | 113 | 18188.4 12.7| 19.5 4.6/ 0.01 5.3 3.1 17.3| 84.4| 53%| 18 6.3 2% 4.9 20.1| 3
toolarge| 38 | 582 | 107888.1] 61.4| 17.4 12.5| 0.05 9.6 2.2 37.1) 80.1| 9.6%| 113 5.2 7% 10.9 245 4
b9 41| 111 | 16100.3 12.8 11.7 8.6 0.01 8.1 2.0 19.7 68.0) 7.9%| 34 3.3 4% 8.7 30.1] 3
C1355 | 41| 517 | 91739.00 50.7| 22.1 45| 0.02] 13.0 14 19.1| 95.0/ 6.9%| 265 2.0 15% 13.1 12.1| 2
C499 | 41| 532 | 95292.00 48.3] 20.3 5.0 0.05| 133 2.2 18.2| 84.5| 8.8%| 197 2.7 7% 5.8 16.8| 2
cht 47 | 232| 38560.8 25.3| 16.8 45 0.02| 11.6 3.7 14.7| 22.8| 10.1%| 66 35 2% 3.3 18.4| 2
apex7 | 49| 239 | 41955.1] 26.0{ 20.1 19.3] 0.02 8.4 5.8 30.3 25.6| 7.4%| 82 29 3% 111 26.9| 3
C3540 | 50 |1136|218977.1 115.0f 18.2 29 0.08] 15.3 1.3 21.3| 133.8| 7.7%| 381 3.0 15% 2.1 115 2
x1 51| 295| 45351.21 32.8| 16.3 17.7| 0.02 4.7 4.8 25.0| 105.9] 4.0%| 61 4.8 7% 11.9 32.1] 3
C880 | 60| 354 | 61978.8 35.8/ 18.9 12,6/ 0.04| 116 4.1 25.8| 39.9| 11.6%| 115 31 13% 10.8 21.7| 3
dalu | 75|1865|349299.4 187.5| 25.6 3.8/ 0.15/ 232 14 23.2| 194.9| 17.9%| 321 5.8 8% 14.2 29.1| 4
example? 85| 286 | 51036.60 32.6| 17.5 4.3 0.02| 15.0 1.4 41.5 28.9| 13.2%| 110 2.6 2% 9.8 11.3| 4
i9 88 | 510 | 88469.6 63.9 1.0 0.0 0.04 1.0 0.0 17.3| 156.0] 1.0%| 113 4.5 3% 2.1 0.0 5
x4 94 | 378 | 61336.3] 46.4| 183 28.2| 0.03 4.5 53 33.6/ 206.5| 4.5%| 110 3.4 11% 8.6 40.1| 4
i3 132| 92 | 16166.9) 14.9| 21.7 0.0/ 0.00{ 21.7 0.0 185 0.0| 20.7% 6 15.3 0% 0.0 0.0| 2
i5 133| 269 | 44848.1 34.3| 12.6 19.9] 0.02 4.8 2.9 42.0) 456 4.0%| 68 4.0 2% 7.8 35.8| &
i8 133|1898|305924.5 224.4| 14.2 9.1 0.15| 114 0.8 39.4| 7591.3] 4.0%| 259 7.3 6% 6.3 435| 6
apex6 |135| 710 |126523.4 86.1| 20.8 3.9 0.06 5.9 2.1 26.8| 399.5| 3.0%| 215 3.3 10% 5.7 11.4| 3
rot 135| 601 | 109944.1f 67.1 20.0 17.5| 0.06| 13.8 55 23.1| 403.3| 12.0%| 208 29 10% 12.7 23.5| 2
x3 135| 742 |116641. 89.5| 14.3 15.6| 0.07 9.0 3.2 20.4| 384.4| 5.6%| 192 3.9 8% 10.0 29.7| 3
i6 138| 340 | 47021.1f 47.3 9.1 46.4| 0.03 0.6 21 59.0f 89.8| 0.0%| 71 4.8 1% 3.0 68.9| 7
frg2 | 143|1030|165090.4 136.0 16.1 12.9] 0.11 7.4 3.2 28.4| 176.5| 6.8%| 244 4.2 5% 7.4 28.0| 4
pair 173|1538|270729.8 160.9| 18.9 7.6 0.14| 13.2 2.4 17.5| 366.0] 5.4%| 434 3.5 12% 12.0 149 2
C5315 |178|1777|343295.9 188.3] 18.7 6.0 0.15| 15.0 2.0 11.5| 534.5| 9.9%| 532 3.3 12% 15.1 116/ 1
i4 192| 136 | 22699.8f 22.8 8.8 3.1 0.01 8.8 0.4 27.8| 34.6| 8.8% 6 22.7 0% 4.6 28.3| 4
i7 199(405 | 58431.5 58.4 6.2 1.2 0.04 5.7 0.2 13.5| 1179 57%| 76 5.3 2% 1.1 37.7| 4
i2 201| 109 | 13174.8 22.1 4.6 19.7] 0.01 0.0 2.2 36.8)| 36.1] 0.0%| 12 9.1 4% 3.6 36.1| 4
C7552 |207|2801|515320.2 293.3] 20.8 0.6 0.18| 15.3 0.3 59| 726.0] 6.9%| 908 3.1 15% 16.1 20.6| 2
C2670 |233| 807 [155992.3 94.5| 181 0.8 0.09| 287.8 0.2 11.9 98.6| 14.6%| 235 34 11% 9.9 54| 1
des 256|3995|931447.4 471.2| 23.6 7.2 0.24| 18.5 2.5 45.7| 8502.6| 7.3%| 847 4.7 11% 14.2 17.6| 5
i10 257|2281|440552.2 261.6| 20.4 6.7 0.2| 19.2 1.9 14.3| 162.8| 4.5%| 695 3.3 14% 6.1 11.7) 1
Average 80.9| 17% 10%| 0.05| 11% 2% 24%| 510.2 9% 6% 7% 23%| 3

Table 3: Average performance comparison with [1] algorithm

algorithm in [1]

gate replaceme

ntlivide-and-conque

leakage reduction 25% 23% 37%
delay penalty <5% 0% <5%
area penalty < 15% 2% 7%

29

=

