
A Combined Gate Replacement and Input Vector Control Approach

for Leakage Current Reduction∗

Lin Yuan and Gang Qu

Electrical and Computer Engineering Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742, USA

Abstract

Due to the increasing role of leakage power in CMOS circuit’stotal power dissipation, leakage reduction has

attracted a lot of attention recently. Input vector control(IVC) takes advantage of the transistor stack effect to

apply the minimum leakage vector (MLV) to the primary inputsof the circuit during the standby mode. However,

IVC techniques become less effective for circuits of large logic depth because the MLV at primary inputs has little

impact on internal gates at high logic level. In this paper, we propose a technique to overcome this limitation by

directly controlling the inputs to the internal gates that are in their worst leakage states. Specifically, we propose a

gate replacement technique that replaces such gates by other library gates while maintaining the circuit’s correct

functionality at the active mode. This modification of the circuit does not require changes of the design flow,

but it opens the door for further leakage reduction, when theMLV is not effective. We then describe a divide-

and-conquer approach that combines the gate replacement and input vector control techniques. It integrates an

algorithm that finds the optimal MLV for tree circuits, a fastgate replacement heuristic, and a genetic algorithm

that connects the tree circuits. We have conducted experiments on all the MCNC91 benchmark circuits. The

results reveal that 1) the gate replacement technique itself can provide 10% more leakage current reduction over

the best known IVC methods with no delay penalty and little area increase; 2) the divide-and-conquer approach

outperforms the best pure IVC method by 24% and the existing control point insertion method by 12%; 3) when

we obtain the optimal MLV for small circuits from exhaustivesearch, the proposed gate replacement alone can

still reduce leakage current by 13% while the divide-and-conquer approach reduces 17%.

∗Parts of this manuscript will appear in the 42nd ACM/IEEE Design Automation Conference.

1

1 Introduction

As the VLSI technology and supply/threshold voltage continue scaling down, leakage power has become more

and more significant in the power dissipation of today’s CMOScircuits. For example, it is projected that sub-

threshold leakage power can contribute as much as 42% of the total power in the 90nm process generation [15].

Many techniques thus have been proposed recently to reduce the leakage power consumption. Dual threshold

voltage process uses devices with higher threshold voltagealong non-critical paths to reduce leakage current

while maintaining the performance [22]. Multiple-threshold CMOS (MTCMOS) technique places a highVth

device in series with lowVth circuitry, creating a sleep transistor [17, 4]. Calhoun et al. proposed a methodology

to insert sleep transistors in MTCMOS [8]. In dynamic threshold MOS (DTMOS) [5], the gate and body are

tied together and the threshold voltage is altered dynamically to suit the operating state of the circuit. Another

technique to dynamically adjust threshold voltages is the variable threshold CMOS(VTCMOS) [19]. Control-

ling the body bias voltage to minimize leakage is discussed in [18]. All of these approaches require the process

technology support.

(a)

INPUT Leakage(nA)

0 best:100.3

1 worst:227.2

(b)

INPUT Leakage(nA)

00 best: 37.84

01 2nd worst: 100.30

10 95.17

11 worst: 454.50

(c)

INPUT Leakage (nA)

000 best: 22.84

001 37.84

010 37.84

011 2nd worst: 100.30

100 37.01

101 95.17

110 94.87

111 worst: 852.40

Figure 1: Leakage current of (a)INVERTER, (b)NAND2 and (c)NAND3. Data obtained by simulation in Ca-

dence Spectre using 0.18µm process.

The input vector control (IVC) technique is applied to reduce leakage current at circuit level with little or no

performance overhead [11]. It is based on the well-known transistor stack effect: a CMOS gate’s subthreshold

leakage current varies dramatically with the input vector applied to the gate [14]. Recently, Lee et al. made the

similar observations on gate oxide leakage that it is also dependent on the input vectors to a CMOS gate [16].

In our study, we use Cadence Spectre to measure the overall leakage current in a CMOS gate that includes both

subthreshold leakage and gate leakage. Figure 1 lists the overall leakage current in INVERTER, NAND2 and

2

NAND3 gates under all the possible input combinations. We see that the worst case leakage (marked in bold) is

much higher than the other cases. The idea of IVC technique isto manipulate the input vector with the help of a

sleep signal to reduce the leakage when the circuit is at the standby mode [13]. The associated minimum leakage

vector (MLV) problem seeks to find a primary input vector thatminimizes the total leakage current in a given

circuit. [1, 6, 8, 10, 12, 13, 14, 20]. The MLV problem is NP-complete1 and both exact and heuristic approaches

have been proposed to search for the MLV. A detailed survey isgiven in Section 2.

In this paper, we consider how to enhance IVC technique with little or no re-design effort. In particular, we

study theMLV+ problem that seeks to modify a given circuit and determine an input vector such that the circuit’s

functionality is maintained at the active mode and the circuit leakage is minimized when the circuit is at standby

mode. Our solution to this problem is based on the concept of gate replacement that is motivated by the large

discrepancy between the worst leakage and the other cases (see Figure 1). The essence of gate replacement is to

replace a logic gate that is at its worst leakage state by another library gate. This is illustrated by the following

example.

1

0

0

1

100.3nA

95.17nA

37.84nA

0

1

1

37.84nA

454.5nA

1

0

0

95.17nA

1

G

G G

G

3

4

5

6

G1

G2

(a) Original MCNC benchmark circuit C17 with total

leakage831.08nA under the optimal MLV.

SLEEP

SLEEP

SLEEP

94.87nA

1

1

37.84nA

37.84nA

1

1

0

0

94.87nA

95.17nA

94.87nA

0

0

11

1

G

G2

G4

1G
5

~
G

3

~
G

6

~

(b) New circuit C17 with three gates replaced and total

leakage476.88nA under the same MLV.

Figure 2: A motivation example for gate replacement.

Consider circuit C17 from the MCNC91 benchmark suite [26] (Figure 2(a)). An exhaustive search finds the

MLV {0,0,0,1,0}, with the corresponding minimum total leakage current of831.08nA. Note that gateG3 has its

worst leakage current (454.5nA) with input{1,1}, which contributes more than half of the total leakage. In fact,
1The NP-completeness of the MLV problem has been mentioned byseveral research groups [14, 10, 12]; however, none of them gave

a proof. In Section 4, we give one to make it complete.

3

we have observed that a significant portion of the total leakage is often caused by the gates that are in their worst

leakage state (see Table 2 in Section 5).

Instead of controlling the primary inputs, we consider replacing these leakage-intensive gates. In particular,

we replace the NAND2 gateG3 by a NAND3 G̃3 where the third inputSLEEP is the complement of the

SLEEP signal (Figure 2(b)). At active mode,SLEEP = 1 andG̃3 produces the same output asG3. But at the

standby mode,SLEEP = 0 andG̃3 has a leakage of94.87nA (Figure 1(b)), which is much smaller thanG3’s

454.5nA.

However, this replacement also changes the output of this gate at the sleep mode and affects the leakage on

gatesG5 andG6. In this case, we replace them in a similar fashion. As a result, the new circuit’s total leakage

becomes476.88nA, a 43% reduction from the original831.08nA in Figure 2(a).

The proposed gate replacement technique is conceptually different from the existing input vector control

methods. These two methods are complementary to each other.Specifically, IVC method considers the entire

circuit and searches for an appropriate input vector in favor of small leakage. The gate replacement technique

targets directly at the logic gates that are in their worst leakage state (WLS) under a specific input vector and

replace them to reduce leakage. This paper has the followingcontributions:

1. Examination of the pure IVC methods2: For all the 69 MCNC91 benchmarks, we obtain the optimal

MLV in small circuits with 22 or fewer primary inputs by exhaustive search; and the best over 10,000

random input vectors for large circuits. The number of gatesin their WLS are on average 15% and 17%

respectively, but they contribute more than 40% of the circuit’s total leakage.

2. Gate replacement for leakage reduction: Our work is motivated by the above observation. The basic idea is

to replace gates that are in their WLS by other library gates that will generate less leakage current at those

states. Unlike other leakage reduction techniques such as MTCMOS and DTMOS, this modification of the

circuit does not require changes of process technology in the design flow. Therefore, it will not increase

the design complexity or the leakage sensitivity.

3. A fast gate replacement technique: We implement a simple gate replacement technique that gives an av-

erage of 10% leakage reduction for a fixed input vector. If we apply it to the optimal/sub-optimal MLV

mentioned above in 1, the number of gates in their WLS is reduced to 8% and 11%, respectively. This al-

gorithm’s run time complexity is linear to the number of gates in the circuit in average cases and quadratic

in the worst case.
2IVC-based approaches such as internal control point insertion [1] will be discussed in Section 2

4

4. Solving the MLV+ problem: We develop a divide-and-conquer approach to combine gate replacement and

IVC. It reduces the leakage by 17% and 24% over the optimal/sub-optimal MLV mentioned in 1) with little

area and delay overhead. The number of gates in their WLS is dropped to 4% and 9% respectively.

The rest of the paper is organized as follows: in the next section, we review the IVC leakage reduction

techniques. In Section 3, we describe the proposed gate replacement technique. In Section 4, we elaborate the

proposed divide-and-conquer approach. Detailed experiment results on all 69 MCNC91 benchmarks are reported

in Section 5 before we conclude in Section 6.

2 Input Vector Control for Leakage Current Reduction

Reducing the off-state leakage power/current has become a primary concern for low power circuit design recently.

We have already mentioned a number of techniques proposed toreduce leakage in the introduction. More detailed

review and survey can be found in [4, 7, 11]. In this section, we survey the efforts on the input vector control

(IVC) techniques proposed for finding the minimum leakage vector.

VG1=0V

VG2=0V

VG3=0V

VG4=0V

1.5V

VDS1=1.411V

VDS2=55mV

VDS3=20mV

VDS4=14mV

model: Vq1=89mV

model: Vq2=34mV

model: Vq3=14mV

Diffusion
Polysilicon

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

Figure 3: Schematic layout and typical quiescent voltages of four transistor stack[14]

The effect of circuit input logic values on leakage current was observed by Halter and Najm [13]. The

underlying reason of this effect was explained by Johnson etal. [14]. They built a model to calculate leakage

current in a stack of transistors as shown in Figure 3. In thismodel, transistors which have a gate voltage equal

to VDD are treated as short circuits and voltage drop across transistors that are off is calculated. Their model

infers that, the more transistors being turned off in a stackof transistors, the larger the effective resistance these

5

transistors will have, and the less leakage currents pass through them. This effect is called transistor stack effect.

Hence, the IVC technique is essentially to control the number of off transistors in the circuit. Authors in [13, 23]

proposed a technique to insert a set of latches with MLV stored in to the primary inputs of a circuit, forcing the

combinational logic into a low-leakage state when the circuit is idle. In [10], the authors also discussed the trade

off between the optimality of the minimum leakage state and the switching cost of entering and exiting this state.

Apparently, IVC method provides the maximal leakage reduction when the input vector gives the minimal

total leakage. Besides, it does not require process technology modification and can be applied at runtime. Many

algorithms have been proposed to find such minimum leakage vectors (MLV). Based on the nature of these

algorithms, we classify them into three groups:heuristics, exact algorithms, andinternal point control.

2.1 Heuristic Algorithms

In [13], Halter and Najm developed a random sampling-based heuristic to find the MLV. They started with a set

of identically and independently distributed random vectors. These vectors are applied to the circuit as primary

inputs and the one that gives the least leakage current is selected. They further calculatederror tolerance: the

probability that another random vector results in leakage less than the selected. Their experiments showed that

the MLV selected from 100,000 random vectors can realize an error tolerance of 1% or smaller with a 54%

leakage reduction over the vector that generates the largest leakage.

Chen et al. [9] proposed a genetic algorithm to tackle the MLVproblem, which has a solution space exponen-

tial to the number of primary inputs. In their genetic algorithm, an input vector is represented as a chromosome

and the circuit’s total leakage is calculated and used as thefitness of the chromosome. They select a random pop-

ulation and produce the nextgeneration by standard genetic algorithm operations such asselection, crossover,

andmutation. When the stopping criterion is satisfied, the best overall solution is reported as the MLV. In addi-

tional to the minimal leakage, their method can also find the maximal leakage vector. The results show that the

ratio of maximal leakage to minimal leakage can be as large as5, which indicates that the IVC technique have

great potentials in reducing leakage power.

Johnson et al. [14] explained the transistor stack effect inCMOS circuits and developed analytical models to

estimate the steady-state leakage and the duration of leakage transients in series connections of MOS transistors.

Based on these models, they definedleakage observabilityas the degree to which the value of a particular circuit

input is observable in the magnitude of leakage from the power supply. The leakage observability of each primary

input is evaluated and the primary inputs are put into a priority queue with their leakage observability as the

priority metric. For the primary input on top of the priorityqueue, assign it a value 0 or 1 based on which one

6

gives a smaller leakage; the circuit state and leakage observability are updated under this new input value; the

priority queue is then updated and the next primary input on top of the queue will be assigned a value until the

queue becomes empty. The input combination constructed in this greedy fashion is taken as the MLV.

In [20], Rao et al. proposed a fast heuristic algorithm basedon the concept of controllability that is widely-

used for fault detection in automatic test pattern generation. The controllability of each node in the circuit is

defined as the minimum number of inputs that need to be assigned to particular states in order to force the given

node to a specific state. A cost function for each node is also defined as the difference between the node’s best

case (smallest) leakage and worst case (largest) leakage. In their heuristic, the controllability is first computed

for each internal node (gate) in the circuit. The node with the least cost function and satisfies its input constraint

is then removed. The controllability list is updated and this process is repeated until all the nodes are removed

from the list. If there exist input undefined at the end, the value that results in smaller leakage is assigned. Their

experimental results showed a leakage within 5% of the best vector obtained from 100,000 random vectors, but

with a large run time saving.

2.2 Exact Algorithms

Several exact algorithms have been proposed to find the MLV recently. These include a graph-based Boolean

enumeration method [10], a pseudo Boolean Satisfiability formulation [1, 2], and an integer linear programming

formulation [12]. They transform the MLV problem into otherwell-studied problems (such as ILP) and solve

them by the existing solvers.

The MLV problem is modeled as a pseudo Boolean Satisfiability(PBS) problem in [1, 2]. There are two sets

of constraints in the PBS problem formulation: the constraints that represent the circuit’s functionality and those

that represent the leakage objective. As an example, consider a 2-input NAND gate. Given the leakage power

values listed in Figure 1, the leakage objective constraints will be expressed as:

37.84X̄1X̄2 + 100.3X̄1X2 + 95.17X1X̄2 + 454.5X1X2 ≤ k

whereX1,X2 are inputs to the gate;k is the desired leakage bound. A minimal leakage can by found by

iteratively reducingk until the formula is unsatisfiable.

In order to have the product-of-sum format,X1X2 term is replaced by a variableS with the help of logic

constraints:

(X̄1 + X̄2 + S) · (X1 + S̄) · (X2 + S̄)

The SAT formula of a circuit is theAND of all the constraints associated with each gate. Once this PBS

7

problem is established, advanced solver PBS [3] can be used to find the MLV for leakage reduction. In [2], they

can improve the leakage by up to 12%. However, as the circuit size increases, the runtime of this approach rises

dramatically. In large circuits such as C1355 and C6288, their approach took more than 5000 seconds CPU time

and didn’t complete for this reason.

Gao and Hayes [12] formulate the MLV problem as an integer linear programming(ILP) problem. They first

use pseudo-Boolean functions to represent leakage currentin different types of cells with the general sum-of-

products form:

F (i0, i1, ..., in−1) =
∑

C∈ℜ

C
∏

0≤j≤n−1

ij

For example, the leakage in a two-input NAND gateG can be expressed as

F (i0, i1) = L00ī0 ī1 + L10i0 ī1 + L01 ī0i1 + L11i0i1

whereF (i0, i1) is the leakage current inG with input vectori0i1 andLab denotesG’s leakage current with input

vectori0i1 = {a, b}. Applying the well-known Boole-Shannon expansion [25], this equation can be transformed

to

F (i0, i1) = F (0, 0) + C0i0 + C1i1 + C2i0i1

whereC0 = F (1, 0)−F (0, 0) andC1 = F (0, 1)−F (0, 0) are the coefficients for terms with one input variable.

Similarly, the coefficients of the two-variable term isC2 = F (1, 1) − F (1, 0) − F (0, 1) + F (0, 0). Then the

authors use an extra variableX for termi0i1, the new function is then linear ini0, i1 andX. This transformation

can be generalized to linearize the leakage function for an arbitrary gate withn inputs:

F (i0, i1, ..., in−1) =
∑

S

C(S)X(S)

whereS, an auxiliary variable, is a subset of input variables;X(S) is the logicAND of all variables inS; C(S)

is the coefficients defined as:

C(S) =
∑

All subsets T of S

(−1)|S|−|T |F (T).

Additional constraints are also formed using linear equations or inequations to guarantee the correct logic rela-

tions in the circuit. For example, the functionality of ann-input NAND gate is represented by:

f ≤ 2 − (i1 + i2 + ... + in + 1)/n

f ≥ 1 − (i1 + i2 + ... + in)/n

wherei1, i2...in are inputs to NAND gate;f is the output.

8

After the ILP model is built, an off-the-shelf ILP solver is used to obtain the MLV. For large circuits, the

size of the ILP formula could be too large for a solver. The authors proposed a simplified mixed-integer linear

programming formulation that uses selective variable-type relaxation to reduce the runtime. Their experiments

on a set of benchmark circuits showed that the latter relaxation can speedup the ILP approach by 13.64X with

4% error.

Based on the pseudo Boolean function formulation of the leakage in CMOS gates, two implicit pseudo

boolean enumeration algorithms are presented in [10]. The input space enumeration method leverages integer

valued decision diagrams and works well for small circuits.The hypergraph partitioning based recursive algo-

rithm represents a given circuit as a hypergraph where the vertices of the hypergraph are gates and the hyperedges

are nets. It partitions a large circuit into subgraphs usingMin-Cut algorithm and solves independently for each

subgraph. Their algorithms can find the optimal MLV much faster than other exact algorithms. The authors also

discussed how to reduce the number of primary inputs that must have a specific value in the MLV in order to save

the switching power for the circuit to enter the MLV state.

2.3 Internal Point Control

When a circuit has many logic levels, the IVC technique becomes less effective because the internal gates at a

deep level are less affected by the primary input vectors. For this reason, Abdollahi et al. proposed a technique

to control the value of internal pins to reduce leakage [1]. Their first approach inserts multiplexers at the input

pins of each gate. TheSLEEP signal selects the correct input in active mode and chooses the input values that

produce low leakage current in standby mode. This approach can reduce leakage in the CMOS gates significantly;

however, the inserted multiplexers will also generate leakage current and introduce extra delay and area. To

compensate this overhead, the authors formulate the insertion of multiplexers using pseudo boolean SAT. Again,

since the solution place to insert multiplexer is enormous,the runtime of PBS becomes unmanageable for large

circuits.

In their second approach, they modify the library gates by adding SLEEP signal-controlled transistors in

the gate to select the low-leakage inputs for its fanout gates. They reported an average leakage reduction of

25% within 5% delay penalty and no more than 15% area increase. However, since the structure of the gates is

changed, a new set of library gates are needed.

Our gate replacement technique belongs to the class of internal point control, but is conceptually different

from [1] in the following aspects: 1) They treat each input pin of the gates as potential place to insert multiplexers,

while we consider only roots of each tree. The search space isreduced substantially. 2) Their purpose of

9

modifying a gate G is to produce the low-leakage input for G’sfanout gate while we aim to reduce leakage

current at G itself. 3) They modify gates whenever necessarywhile we restrict our algorithm to replace gates

only by the available gates in the library, and hence do not require gate structure modification. However, these

two approaches can be combined as we will discuss in more details in Sections 3 and 4.

3 Leakage Reduction by Gate Replacement

A logic gate is at its worst leakage state (WLS) when its inputyields the largest leakage current. Regardless

of the primary input vector, a large number of gates are at WLS, particularly when the circuit has high logic

depth. Take the 69 MCNC91 benchmarks for example. For each ofthe 69 circuits, when we apply the optimal

(or sub-optimal) MLVs to these circuits, 16% of the gates on average remain at WLS, producing more than 40%

of the circuit’s total leakage. A detailed report can be found in Section 5. In this section, we describe the gate

replacement technique that targets directly the leakage reduction in WLS gates.

3.1 Basic Gate Replacement Technique

As we have shown in the motivation example in Section 1, the proposed gate replacement technique replaces a

gateG(~x) by another library gatẽG(~x, SLEEP), where~x is the input vector at G, such that

1. G̃(~x, 0) = G(~x) when the circuit is active (SLEEP = 0);

2. G̃(~x, 1) has smaller leakage thanG(~x) when the circuit is in standby (SLEEP = 1).

The first condition guarantees the correct functionality ofthe circuit at active mode. The second condition reduces

the leakage on gateG at the standby mode, but it may change the output of this gate.Note that, although we do

not need to maintain the circuit’s functionality at the standby mode, this change may affect the leakage of other

gates and should be carefully considered.

Figure 4(a) shows that the replacement ofG by G̃ changes the output from 0 to 1. For simplicity, we assume

thatG’s fanout only goes to gateH which can be either a NAND or a NOR or an INVERTER. In Figure 4(b)

and (d), we see that such change does not affect the output of gateH and therefore it won’t affect any other gates

in the circuit. LetL(G(11)) be the leakage of gateG with input 11, we can conveniently compute the leakage

reduction by this replacement, which isL(G(11)) + L(H(00)) − L(G̃(110)) − L(H(10)) in the case of (b) for

example.

10

1

1

1

1

1

10

10

10

1

1

10

SLEEP

(a)

1

1

SLEEP

SLEEP

1

1

1

SLEEP

(e)

(d)

(c)

SLEEP

SLEEP

1

1

1

SLEEP

SLEEP

10

1

1

1

1

1

1

1

0

0

0

0

(b)

1

0

0

0

0

0

1

1

1

0

1

1

1

1

1

1

(f)

0

1

1

1

0

0

0

1

1

~

H
~

G
~

G
~

G
~

G

G H

G

G

G

G

H

H

H

H

H

H

H

G
~

G
~

G
~

H

Figure 4: Gate replacement and the consequence to its fanoutgate.

In Figure 4(c), the replacement at gateG not only changes the output of gateH, it also putsH at its WLS.

Our solution is to replace the NAND2 gateH by an NAND3H̃. This preserves the output ofH and the leakage

change will beL(G(11)) + L(H(01)) − L(G̃(110)) − L(H̃(110)). Similarly, in Figure 4(f), we replace the

INVERTER by a NAND2 gate. Finally, in Figure 4(e), the replacement ofG moves both gatesG andH away

from their WLS. It also changes the output of the NOR gateH, which we can conduct similar analysis.

Remarks:

General Fanout. The above analysis is applicable toG’s fanout gateH of any type. The change ofG’s output

either does not affectH ’s output (Figure 4 (b) and (d)) or changesH ’s output. In the latter case, we either

changeH ’s output back (Figure 4 (c) and (f)) or continue the analysisstarting fromH (Figure 4 (e)).

Beyond library gates. If the library does not have a replacement forG, we can add one transistor into the N

or P sections ofG to meet conditions 1 and 2. This is similar to the gate modification method proposed in

[1]. However, they attempt to control the output of the modified gate in order to reduce the leakage in its

fanout gate by producing the desirable signal. Our gate replacement targets directly the leakage reduction

11

of the current gate.

Multiple fanouts. When gateG has multiple fanouts, we analyze each of them and then consider their total

leakage when we compute the leakage change due to the replacement of gateG.

Compatibility. The gate replacement technique does not change the primary input vector of the circuit. This

implies that we can combine it with existing MLV searching strategies to further reduce leakage. The

MLV+ problem is based on this observation and is discussed indetails in next section.

Power overhead. There is not much dynamic power overhead because the SLEEP signal remains constant at

active mode and will not cause any additional switching activities. The leakage in gates̃G andG may be

different at active mode. Such difference becomes negligible when the circuit stays at standby mode long

enough [1].

Other overhead. Gate replacement may introduce delay and area overhead. This overhead can be controlled

by restricting the replacement off critical path and transistor resizing. Gate replacement does not add new

logic gates and thus requires little or no effort to redo the place-and-route.

3.2 A Fast Gate Replacement Algorithm

Based on the above gate replacement technique, we propose a fast algorithm that selectively replaces gates to

reduce the circuit’s total leakage for a given input vector.Figure 5 gives the pseudo-code of this algorithm.

We visit the gates in the circuit by the topological order. Weskip all the gates that are not at WLS and the

gates that have already been visited or marked (line 16) until we find a new gateGi at WLS (line 2). Lines 3-9

find a subset of gatesS and temporarily replace them.S includes all the unmarked gates whose leakage and/or

output is affected by the replacement we attempt to do on gateGi and other gates inS. We then compute the

total leakage change caused by the replacement of gates inS (line 10) and adopt these replacements if there is a

leakage reduction (lines 11-13). Otherwise, we simply markgateGi as visited and do not make any replacement

(line 14). We then look for the next unmarked gate at WLS and this procedure stops when all the gates in the

circuits are marked.

Correctness: The topological order guarantees that when we find a gate at its WLS, all its predecessors have

already been considered. The replacement at line 7 ensures that the functionality will not change at the active

mode. The subsetS constructed in thewhile loop (lines 3-9) is thetransitive closureof gates that are affected

by the replacement action at gateGi. Therefore, we only need to compute the leakage change on gates withinS

12

Input: {G1, G2, · · ·}: gates in a circuit sorted topologically,

{x1, x2, · · ·}: an input vector,

SLEEP : the sleep signal.

Output: a circuit of the same functionality whenSLEEP = 0 and

with less leakage whenSLEEP = 1.

Gate Replacement Algorithm:

1. for each gateGi ∈ {G1, G2, · · ·}

2. if (Gi is at WLS and not marked)

3. includeGi in the selectionS;

4. while (there is new addition toS)

5. for each newly selected gateG in S

6. if (there exists library gatẽG meets the conditions in Section 3.1)

7. temporarily replaceG by G̃;

8. if (output ofG is changed due to this replacement)

9. includeG’s unmarked fanout gateGj in S;

10. compute the total leakage change of gates inS;

11. if (there is leakage reduction)

12. mark all gatesGj in the selectionS;

13. make the replacements in lines 7,9,or 10 permanent;

14. else mark gateGi only;

15. empty the selectionS;

16. else markGi if it has not been marked yet;

Figure 5: Pseudo-code of the gate replacement algorithm.

(line 10). We make the replacement only when this leakage change is in favor of us, so the new circuit will have

less leakage in standby mode.

Complexity: Let n be the number of gates in the circuit. Thefor loop is linear ton. Inside the for loop, the

computation of leakage change and the marking of all gates inS (line 10-15) is linear to|S|, the number of gates

in S. Thewhile loop (lines 3-9) stops when there is no new addition toS and this will be executed no more than

|S| times. As we have discussed in section 3.1 (see Figure 4), in most cases,S includes onlyG and its fanout

gates. However, it may include all the gates of the circuit incases similar to Figure 4 (e) and so|S| cannot be

bounded by any constant. That is,|S| is O(n) in the worst case andO(k) on average, wherek is the maximal

fanout of the gates in the circuit. Consequently, the complexity of this gate replacement algorithm isO(n2) in

13

the worst case andO(kn) on average.

Improvement: There are several ways to improve the leakage reduction performance of the above gate replace-

ment heuristic. The tradeoff will be either increased design complexity, or reduced circuit performance, or both.

First, one can consider gates that are not in the library as wehave commented in the remarks in Section 3.1 (line

6). However, this requires the measurement of leakage current, area and delay in these new gates as they are not

available in the library. A second alternative is to insert control point at one ofG’s fanins. For example, one

can find the faniny such that replacingy by its complementy′ givesG the largest leakage reduction. Ify = 0,

replace it byOR(y, SLEEP); if y = 1, replace it byAND(y, SLEEP). However, the addition of new gates

may require the repeat of placement and routing and will incur more area and delay penalty in general. Third,

one may also consider both the library gate replacement and control point insertion at the same time and choose

the one that gives more leakage reduction. Finally, whenever we replace gateGi, we also make the replacement

for all the other gates in the selectionS permanent (line 13). We have tested a couple of alternativesand they

give limited improvement in leakage reduction at very high cost of run time complexity.

The incentive to keep the run time complexity of this gate replacement algorithm low is that it will be com-

bined with IVC technique under the following divide-and-conquer approach to solve the MLV+ problem.

4 The MLV+ Problem and the Divide-and-Conquer Approach

Recall that the minimum leakage vector (MLV) problem seeks for the input vector that minimizes the circuit’s

total leakage. It has been claimed that this problem is NP-complete for general circuits [1, 10, 14, 20]. But no

formal proof has been given to our knowledge. In this section, we first give a brief proof of the NP-completeness

of the MLV problem and then define the MLV+ problem, an extension of the MLV problem. Our main focus will

be on the divide-and-conquer approach that solves the MLV+ problem.

4.0 NP-Completeness of the MLV Problem

The MLV problem could be stated as follows: given a combinational circuit consisting of primary inputs (PIs),

primary outputs(POs), internal logic gates connected by nets/wires, and the leakage current of each gate under

different input combinations, determine an input vector atthe PIs such that the total leakage current of all the

gates in the circuit is minimized.

Theorem: The MLV problem is NP-complete.

14

X2X2

Xn

X1

(b) Reducing the satisfiability test to MLV.(a) A circuit for satisfiability test.

Xn

X1

Figure 6: Illustration for the proof of the NP-completenessof the MLV problem.

Proof. On one side, we have already mentioned a couple of exact algorithms that solve the MLV problem by

reducing it to NP-complete problems such as pseudo Boolean satisfiability and integer linear programming.

On the other side, we show that the NP-complete CIRCUIT-SAT problem [24] can be reduced to the MLV

problem. Consider an arbitrary circuit shown in Figure 6(a), to test whether the circuit is satisfiable (i.e., produc-

ing a logic ‘1’ at its output), we construct a new circuit by adding a big inverter at its output (Figure 6(b)). The

inverter is big in the sense that it has a huge leakage valueL when its input is ‘0’ and a small leakageǫ when its

input is ‘1’. Actually, we can setL to be the sum ofǫ and the leakage of each gate in the circuit when it is in its

WLS. Now we solve the MLV problem for this modified circuit. Ifthe total leakage is less thanL, clearly the

original circuit is satisfiable and the MLV is one input vector that makes the circuit output logic ‘1’. Otherwise,

because that the only way for the total leakage to be larger thanL is when the input to the big inverter is ‘0’, the

original circuit is not satisfiable.

4.1 The MLV+ Problem and Outline of the Divide-and-Conquer Approach

Note that the MLV problem seeks for the input vector to a circuit that minimizes the circuit’s total leakage. In

the previous section, we have seen that leakage current can be further reduced by the proposed gate replacement

technique. We have also mentioned that this technique is independent of the input vector and can be combined

with the MLV method. We hence formulate the followingMLV+ problem:

Given a combinational circuit with PIs, POs, the internal logic gates that implement the PI-PO func-

tionality, and the leakage current of each library gate under its different input patterns, determine

a gate level implementation of the same PI-PO functionalitywithout changing the place-and-route

and an input vector at the PIs that minimizes the total leakage.

Apparently , this is an extension of the MLV problem with the relaxation of modifying circuit by gate re-

placement. It enlarges the search space of MLV and provides us with the opportunity of finding better solution.

15

For a circuit ofk PIs andn internal logic gates, the search space for the original MLV problem is the2k different

input combinations. Under the above MLV+ formulation, the search space becomes2k · Πn
i=1

li, whereli is the

number of library gates that can replace gatei, including gatei itself. Assuming that half of the gates have one

replacement, then the solution space for MLV+ problem will be2n/2 times larger than the solution space for the

MLV problem. Even when we restrict the gate replacement technique only to gates that are at their WLS, this

will be significant because (1) a circuit normally has more gates than PIs (n >> k) and (2) the percentage of

gates in WLS is considerably high (16% on the MCNC91 benchmark when MLV is applied, and will be higher

as the logic depth of the circuit increases).

As we have analyzed in the previous section, the MLV+ problemnot only enlarges the solution space for

the IVC method, it also has the great potential in improving the solution quality (in terms of leakage reduction)

because of the stack effect. However, one challenge is how toexplore such enormous solution space for better

solutions. Given the NP-completeness of the MLV problem, weconsider special circuits where the MLV+ can

be solved optimally and develop heuristics for the general case. In the rest of this section, we describe details of

our proposed divide-and-conquer approach that consists ofthe following phases:

1. decompose a general circuit into tree circuits.

2. find the MLV for each tree circuit optimally by dynamic programming.

3. apply the gate replacement technique to the MLV for each tree to further reduce leakage.

4. connect the tree circuits by a genetic algorithm.

4.2 Finding the Optimal MLV for Tree Circuits

A tree circuit is a single output circuit in which each gate, except the primary output, feeds exactly one other

gate. A general combinational circuit can be trivially decomposed into non-overlapping tree circuits [25]. This

is illustrated in Figure 9. The circuit in (a) is not a tree because gateG3 has two fan-out gatesG5 andG6. By

splitting at the fanout ofG3, we get three trees withG3, G5 andG6 being the root of each tree respectively.

We consider a tree circuit with gates{G1, G2, · · · , Gn} sorted in the topological order, which is preserved by

the tree decomposition.

Let L(Gi(~x)) be the leakage current in the gateGi when vector~x is applied atGi’s fanins. Each gateGi

can be treated as the root of a sub-tree circuit. LetLK(i, z) be the minimum total leakage of the tree circuit

when it outputs logic valuez at rootGi and~V (i, z) be the input vector to the tree circuit that achievesLK(i, z).

We develop a dynamic programming approach to compute the pairs (LK(i, 0), ~V (i, 0)) and(LK(i, 1), ~V (i, 1))

16

a

b

c

d

LK(1,0) = L(G1("11")) = 454.5 V(1, 0) = "11"
LK(1,1) = min(L(G1("11")), L(G1("10")), L(G1("00")))

LK(2, 0) = L(G2("1")) = 227.2 V(2, 0) = "1"
LK(2, 1) = L(G2("0")) = 100.3 V(2, 1) = "0"

LK(3, 0) = L(G3("1")) = 227.2 V(3, 0) = "1"
LK(3, 1) = L(G3("0")) = 100.3 V(3, 1) = "0"

LK(4, 0) = L(G4("11")) + LK(1, 1) + LK(2,1)=592.6
V(4, 0) = "000"
LK(4, 1) = min{ L(G4("10"))+LK(1,1)+LK(2,0), L(G4("01"))+LK(1,0)+LK(2,1),

V(4, 1) = "001"

LK(5, 0) = L(G5("11"))+LK(4,1)+LK(3,1) = 915

LK(5, 1) = min{ L(G5("10"))+LK(4,1)+LK(3,0), L(G5("01"))+LK(4,0)+LK(3,1),

V(5, 1) = "0011"

 = L(G1("00")) = 37.8
V(1, 1) = "00"

 L(G4("00"))+LK(1,0)+LK(2,0)} = L(G4("10"))+LK(1,1)+LK(2,0)=360.2

 L(G5("00"))+LK(4,0)+LK(3,0)} = L(G5("10"))+LK(4,1)+LK(3,0) = 682.6

V(5, 0) = "0010"

LK(1,0)=454.5
LK(4,0)=592.6

V(5,0)="0010"

V(2,1)="0"

Total leakage: 682.6nA

MLV: "0011"

V(1,0)="11"

LK(1,1)=37.8

V(1,1)="00"

V(4,0)="000"

LK(4,1)=360.2

LK(2,0)=227.2

V(2,0)="1"

LK(2,1)=100.3

LK(5,0)=915

LK(5,1)=682.6

V(5,1)="0011"

LK(3,0)=227.2

V(3,0)="1"

LK(3,1)=100.3

V(3,1)="0"

V(4,1)="001"

G4
G5

G3

G1

G2

Figure 7: Dynamic programming to find optimal MLV in a tree circuit.

for each gateGi. The MLV for the tree circuit rooted at gateGn, with gates{G1, G2, · · · , Gn} sorted in the

topological order, can then be determined conveniently.

1. For each input signal to the tree, define

LK(0, z) = 0, ~V (0, z) = z (1)

2. For each gateGi(i = 1, 2, ..., n), let

LK(i, z) = min
∀~x, s.t.Gi outputsz

(L(Gi(~x)) +
t∑

j=1

LK(ij, xij)) (2)

~V (i, z) = ∪t
j=1

~V (ij , x
0

ij) (3)

where{xi1 , xi2 , · · · , xit} are the fanins ofGi from gates{Gi1 , Gi2 , · · · , Git} respectively and the input

combination{x0

i1 , · · · , x
0

it} achievesLK(i, z).

3. The minimum leakage of the tree circuit with gates{G1, · · · , Gn} is given by

min{LK(n, 0), LK(n, 1)} (4)

and the MLV will be either~V (n, 0) or ~V (n, 1) accordingly.

Figure 7 gives a step-by-step illustration of the dynamic programming on a small circuit.

Correctness: We show the correctness of the recursive formula in Equation(2) and (3). To computeLK(i, z),

we need to consider all the possible combination of fanins{xi1 , · · · , xit} that produces outputz at gateGi. For

17

each such combination, the minimum leakage in the subtree rooted atGi is the sum of leakage at gateGi and

the minimum leakage at each of its fan-in gateGij with outputxij , LK(ij , xij). Equation (2) takes the overall

minimum leakage and gives the correctLK(i, z). Assume that this minimum leakage is achieved whenGi has

faninsxi1 = x0

i1, ..., xit = x0

it . Note that~V (ij , x
0

ij
) is the input vector for the subtree circuit rooted atGj to

producex0

ij
with the minimum leakageLK(ij , xij). The tree structure of the circuit guarantees that the subtrees

rooted at{Gi1 , ..., Git} will not share any common inputs. Therefore,~V (i, z) is the simple concatenation of

~V (ij , x
0

ij
) as given in Equation (3).

Complexity: Equations (1) and (4) take constant time. For each gateGi, we need to compute(LK(i, 0), ~V (i, 0))

and(LK(i, 1), ~V (i, 1)) by equations (2) and (3). This requires the enumeration of all the 2t different combina-

tions ofGi’s t fanins. For the first time, we need to performt additions in equation (2). If we enumerate the rest

2t − 1 cases following a Gray code, we only need to updateL(Gi(~x))(two operations), replace oneLK(ij , xij)

(two operations) and compare the result with the current minimum leakage, a total of five operations. Therefore,

we needt + 5 · (2t − 1) operations for eachGi and this gives a complexity ofO(K · n), whereK is a constant

depending on the largest number of fanins in the circuit.

After obtaining the MLV for the tree circuit, we perform the gate replacement algorithm proposed in Section

3 to further reduce leakage. Note that, although the MLV is optimal, this does not guarantee us an optimal

solution for the MLV+ problem on the tree circuit. For example, consider the circuit in Figure 8, the algorithm

finds the optimal MLV{a=0, b=1} with leakage 422nA. Gate 2 is at its WLS and the gate replacement algorithm

does not give any improvement. The input vector{0,0} gives the maximum leakage 654nA; however, when we

apply gate replacement technique and replaceG3, the leakage is reduced to 295nA. In fact,{0,0} is the optimal

solution for the MLV+ problem.3.

4.3 Connecting the Tree Circuits

In the previous phase, we have determined the output and required input for each individual tree circuit to yield

the minimum leakage. The goal of this phase is to combine all the tree circuits to solve the MLV+ problem for

the original circuit. The root of each tree circuit may have multiple fanouts that go to other tree circuits as input.

Since we treat the tree circuits independently, conflict occurs if the output of a tree circuit and the value required

by its fanout gates are not consistent. For example, in Figure 9 (a), the circuit is decomposed into three tree
3We conjecture that the MLV+ problem remains NP-hard for treecircuit. Because we have already lost the optimality when wedo the

tree decomposition, we will not discuss in details on how to find better solutions to MLV+ on tree circuits. For the same reason, we did

not focus on how to improve the fast gate replacement algorithm in Section 3.2

18

0

1

minimum leakage = LK(3,1)=422.6nA

1

b=0

a=0

MLV = "00"

SLEEP

minimum leakage = LK(3,1)=295.5nA

1

1

MLV = "01"

a=0

b=1

1

G3

G2

G1 G1

G2

G3

Figure 8: MLV in a circuit before and after gate replacement

circuitsT1, T2 andT3. T1 outputs ’1’ when its MLV is applied, whileT2 andT3 require ’0’ and ’1’ fromT1 in

their respective MLVs. So we have a conflict.

T1

0

1 0

0

T3

T1

T2

1

0 1

1

0
0

0
0
0

0
0

T2

T1

T3

1

0

1

(a) (e)

(b)

(c)

(d)

T2
SLEEP

T3

1

1

0

T1

T3

T2

1

0

0

SLEEP
T3

T1

T2

1

1

G4

2

G

G
G3

G6

5
G

Figure 9: Resolving the conflict in connecting tree circuits.

There are basically three ways to resolve this conflict:

(I) enforcingT1’s output at all the fanout gates (Figure 9 (b));

(II) changingT1’s output and enforcing this new value at all the fanout gates(Figure 9 (c));

(III) inserting an AND gate to allow them to be inconsistent (Figure 9 (d)). Similarly, ifT1 output ’0’ and some

of its fanouts require ’1’, we can add an OR gate as shown in Figure 9 (e)).

To decide which one we should use to resolve the conflict, we apply each of them and re-evaluate the circuit’s

total leakage. In (I), this requires the re-computing of theminimum leakage and the MLV for tree circuitT2

under the condition that its input fromT1 is logic ’1’. The dynamic programming algorithm in Section 4.2 can

be trivially modified for this purpose. In (II), we need to do the same procedure for tree circuitT3. Besides, we

have to replace the pair{LK(n, 1), ~V (n, 1)} for tree circuitT1 by {LK(n, 0), ~V (n, 0)}.

19

Both (I) and (II) resolve the conflict by sacrificing the minimum leakage of tree circuits under the provably

optimal MLV. In (III), we successfully connect the tree circuits while preserving the minimum leakage and MLV

for each tree with the help of theSLEEP signal-controlled AND or OR gates. The cost is that we have to

add the leakage of the inserted AND or OR gate into the total leakage. We mention that this gate addition also

preserves the correctness of the circuit at active mode whenSLEEP=0.

It is now easy to make a decision on which method to adopt to resolve a single conflict: use the one that gives

the minimum leakage. However, the decision at one conflict may affect the existence of conflict at other places in

the circuit. For example, method (I) in Figure 9 (b) could change the output of treeT2 and directly affect whether

there is a conflict at the root ofT2.

We use a genetic algorithm (GA) to resolve the conflicts and connect all the tree circuits. A solution by the

GA is in the form of a binary bit stream, each bit indicates whether there is a conflict at the root of a tree and

which method to use to resolve it. In particular, a ’1’ means there is a conflict and method (III) should be used;

a ’0’ means that there is either no conflict or we should use thebetter one of methods (I) and (II) to resolve the

conflict.

The GA follows a standard routine where we start with a population of N random bit streams (referred to

aschromosomes). Based on each bit stream, we resolve the conflict, apply thedynamic programming algorithm

in Section 4.2 to re-compute the minimum leakage of a tree circuit when methods (I) and (II) are used, run

the gate replacement algorithm in Figure 5 on the entire circuit, and compute the circuit’s total leakage. The

fitnessfor a bit stream is calculated from the leakage value. The smaller the leakage, the larger thefitness. We

sort all the chromosomes according to their fitness and create the next generation by theroulette wheelmethod.

In this method, the probability that achromosomeis selected as one of the two parents is proportional to its

fitness.Crossover, which refers to the exchange of substrings in two chromosomes, is performed among parents

to produce children. A simplemutationoperation, which flips a bit in the chromosome at thebit mutation rate, is

also used. The GA continues to generate a total ofN new chromosomes and starts for the next generation. This

process repeats for certain number of times (50 in our simulation) and the best chromosome is returned as the

optimal solution.

4.4 Overhead Analysis

As the control gates are introduced in the tree-connecting stage of the algorithm, they also require sleep signal to

control. Hence, we need to consider the extra power these control gates and sleep signal may consume, and their

effect on the overall power saving. In this subsection, we will discuss the power overheads.

20

1) Control gates: The control gates will consume extra dynamic power and leakage power. In this paper,

we only consider the leakage power overhead of the inserted gates and ignore their dynamic power due to the

following reasons. First, the number of inserted control gates only accounts for 5% to 6% of the total number of

gates in the circuit. Second, they are simple 2-input AND andOR gates, which have a relatively small intrinsic

capacitance at the node compared to other gates. Third, the switching activities in these control gates are very

limited because one of the two inputs is the sleep signal, which changes only at the moment when the circuit

switches between active mode and sleep mode. As dynamic power is dependent on physical capacitance and

switching activities, we consider this dynamic power overhead is negligible.

As for leakage power, we measured the average leakage current in control gates over all possible inputs. In

our algorithm, we add this extra leakage current to the objective function, i.e., the overall leakage current to be

minimized. Therefore, the leakage saving achieved in our algorithm has already considered this overhead.

2) Sleep signal: Both the gate replacement and the control gates require the sleep signal to drive them during

active and sleep mode. The generation of the sleep signal mayconsume extra power. However, due to the fact

that our experiment was conducted at the logic synthesis level before placement and routing, it is not practical

to obtain such power data quantitatively. On the other hand,the sleep signal is required by many other leakage

minimization techniques, such as [1], [4], [5], [8] and [17]. Hence, in this paper, we expect the generation of the

sleep signal to be similar to those approaches and we believethis problem can be better solved at the physical

level of circuit design.

5 Experimental Results

We implemented the gate replacement and divide-and-conquer techniques in SIS environment [27] and applied

them on 69 MCNC91 benchmark circuits. Each circuit is synthesized and mapped to a 0.18µm technology

library. We use Cadence Spectre to simulate the leakage current for all the library gates under every possible

input vector. The supply voltage and threshold voltage are 1.5V and 0.2V, respectively. The measured leakage

current includes both subthreshold and gate leakage. The simulations are conducted on a Ultra SPARC SUN

workstation.

Our results are compared with traditional input vector control methods in terms of leakage saving, run time,

area and delay penalty. The 69 benchmarks including 26 smallcircuits with 22 or fewer primary inputs (Table 1)

and 43 large circuits (Table 2). For each small circuit, we find the optimal MLV by exhaustive search. For each

large circuit, we choose the best MLV from 10,000 distinct random input vectors. It is reported that this will give

21

us a 99% confidence that the vectors with less leakage is less than 0.5% of the entire vector population [13, 20].

To have a fair comparison with [1], we also collect the average leakage of 1,000 random input vectors for each

large circuit.

Table 1 reports the results for the 26 small circuits. Column4 lists the leakage current for each circuit when

the best MLV is applied. Even in this case, an average of 15% ofthe gates are at WLS as shown in column 5.

The fast gate replacement algorithm is able to move about half of these gates from their WLS (column 7). This

results in a 13% leakage reduction with only 4% area increase(columns 6 and 8). We mention that we restrict

ourselves to replace only gates off critical paths. This leaves 8% of the gates in the circuits at their WLS, but it

also guarantees us that there is no delay overhead.

The last four columns show that the divide-and-conquer algorithm gives a 17% leakage reduction over the

best MLV at the cost of 9% more area. We incorporate delay constraints in the genetic algorithm to ensure that

the delay overhead to be within 5%. The two columns in the middle are the number of tree circuits in each case

and the number of control gates we have used to connect these trees. Only in three cases, we have inserted more

than five control gates. Note that the addition of control gates may decrease the delay because it reduces the

fanouts of the gate. The area increase comes from the addition of control gates and the replacement of “smaller”

gates by “bigger” library gates.

Figure 10 reports the leakage and wls gates reduction in the 43 large circuits (x-axis) with 22 PIs or more. We

replace the infeasible exhaustive search by the best solution from a random search of 10K input vectors. The fast

gate replacement algorithm are restricted only on gates offcritical paths; for the divide-and-conquer approach,

we set the maximal delay increase to be 5%.

The benchmarks are sorted by the total leakage achieved by the divide-and-conquer method normalized to

the best over 10K random search, which is shown one of the two curves at the top part of the figure. The average

leakage reductions are 10% by gate replacement only (leakage G.R.) and 24% by divide-and-conquer method

(leakage D.C.). The maximal leakage reductions are 46.4% and 60% respectively. The three curves at the bottom

give the ratio of WLS gates. On average, the 10K random searchhas 17% gates at WLS(orig, wls); the proposed

fast gate replacement and divide-and-conquer techniques reduce this ratio to 11%(G.R. wls) and 9%(D.C. wls),

respectively.

More detailed results for these 43 circuits are shown in Table 2. Columns 4-6 list the leakage current, runtime,

and percentage of gates at WLS when the best MLV from 10,000 random vectors is applied to each circuit. The

next four columns show the results when the fast gate replacement algorithm is applied to such best MLV. The

average run time is only 0.05s and increases linearly to the number of gates in the circuit. There is no delay

22

��

���

���

���

���

����

����

�	
��
���
����
���
�������
�������
����
�������
����

Figure 10: Leakage and WLS percentage on 43 large circuits with 22 PIs or more.

overhead and the area increase is only 2%.

The next seven columns show results by the divide-and-conquer approach where we set a 5% maximum

delay constraint. In the genetic algorithm, we start with a population size ofN = 150 and it converges after

50 generations. We are able to achieve, over the best MLV from10,000 random vectors, 24% leakage saving

with 7% area penalty on average. Although the average run time is 6X of the random search, we mention that

this is mainly caused by the two circuits,i8 anddes. They have a couple of large tree circuits and therefore the

frequently called dynamic programming takes considerablylong time. Excluding these two circuits, the average

run time for random search and the divide-and-conquer algorithm drop to 64.7s and 143s, respectively. More

importantly, we see clearly the run time for random search increases exponentially to the number of primary

input and linearly to the number of gates (columns 2,3,5). However, the run time for the divide-and-conquer

approach grows at a much slower pace (column 12).

Finally, the last two columns compare our results with thosereported in [1]. Because their detailed results are

not available, we can only compare the average performance.In their experimental setup, the leakage reduction

is compared with the average value among 1,000 random vectors. For a fair comparison, we also report in the last

two columns the improvement of our approaches over the same baseline. Table 3 summarizes the performance

23

improvement in the control point insertion approach [1], our gate replacement algorithm, and the divide-and-

conquer approach.

6 Conclusions

We study the MLV+ problem which seeks to modify a given circuit and determine an input vector such that the

correct functionality is maintained when the circuit is active and the leakage is minimized under the determined

input vector when the circuit is at stand-by mode. The relaxation of circuit modification with changing its

functionality enlarges the solution space of the IVC method. We show that MLV (and hence MLV+) problem is

a hard problem and propose low-complexity heuristics to solve the MLV+ problem. The proposed algorithms are

practical and effective in the sense that we do not need to change the design flow and re-do place-and-route. The

experimental results show that this technique improves significantly the performance of IVC in leakage reduction

at gate level with little area and delay overhead.

References

[1] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage CurrentReduction in CMOS VLSI Circuits by Input

Vector Control”,IEEE Trans. on VLSI, Vol. 12, pp. 140-154, Feb. 2004.

[2] F. Aloul, S. Hassoun, K. Sakallah, D. Blaauw, “Robust SAT-Based Search Algorithm for Leakage Power

Reduction”,International Workshop on Integrated Circuit Design, pp. 167-177, 2002.

[3] F. Aloul, A. Ramani, I. Markov and K. Sakallah, “PBS: A Backtrack-Search Pseudo-Boolean Solver and

Optimizer”,Symposium on the Theory and Applications of Satisfiability Testing, pp. 346-353, 2002.

[4] Mohab Anis, Mohamed Elmasry “Multi-Threshold CMOS Digital Circuits : Managing Leakage Power”,

Springer, October 2003.

[5] F. Assaderaghi, D. Sinitsky, S.A. Parke, J. Bokor, P.K. Ko, and C. Hu, “Dynamic Threshold-Voltage MOS-

FET(DTMOS) for ultra-low voltage VLSI”,IEEE Transaction on Electron Devices, Vol. 44, pp. 414-422,

1997.

[6] S. Bobba and I.N. Hajj, “Maximum Leakage Power Estimation for CMOS Circuits”,IEEE Alessandro Volta

Memorial Workshop on Low Power Design, pp. 116, 1999.

[7] D. Blaauw, S. Martin, T.N. Mudge, Krisztia’n Flautner, “Leakage Current Reduction in VLSI Systems”,

Journal of Circuits, Systems, and Computers11(6): 621-636 (2002)

24

[8] B.H. Calhoun, F.A. Honore, and A. Chandrakasan, “DesignMethodology for Fine-Grained Leakage Con-

trol in MTCMOS”, International Symposium on Low Power Electronics and Design, pp. 104-109, 2003.

[9] Z. Chen, M. Johnson, L. Wei, and K. Roy, “Estimation of Standby Leakage Power in CMOS Circuits

Considering Accurate Modeling of Transistor Stacks”,International Symposium on Low Power Electronics

and Design, pp. 239-244, 1998.

[10] K. Chopra and S.B.K. Vrudhula, “Implicit Pseudo Boolean Enumeration Algorithms for Input Vector Con-

trol”, ACM/IEEE Design Automation Conference, pp. 767-772, 2004.

[11] D. Duarte, Y. Tsai, N. Vijaykrishnan, and M. Irwin, “Evaluating Run-Time Techniques for Leakage Power

Reduction”,IEEE International Conference on VLSI Design, pp. 31-38, 2002.

[12] F. Gao and J.P. Hayes, “Exact and Heuristic Approaches to Input Vector Control for Leakage Power Reduc-

tion”, Proceedings of ICCADpp. 527-532, 2004.

[13] J. Halter, and F. Najm, “A Gate-Level Leakage Power Reduction Method for Ultra Low Power CMOS

Circuits”, IEEE Custom Integrated Circuits Conference, pp 475-478, 1997.

[14] M.C. Johnson, D. Somasekhar, and K. Roy, “Models and Algorithms for Bounds on Leakage in CMOS

Circuits”, IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, pp.

714-725, 1999.

[15] J. Kao, S. Narendra, A. Chandrakasan, “Subthreshold Leakage Modeling and Reduction Techniques”,Pro-

ceedings of ICCAD, pp. 141-148, 2002

[16] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester, “Analysisand Minimization Techniques for Total Leakage

Considering Gate Oxide Leakage”,ACM/IEEE Design Automation Conference, pp. 175-180, June 2003.

[17] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-V Power Supply High-Speed

Digital Circuit Technology with Multi-threshold Voltage CMOS”, IEEE Journal of Solid-State Circuits, pp.

847-854, Aug. 1995.

[18] C. Neau and K. Roy, “Optimal Body Bias Selection for Leakage Improvement and Process Compensation

over Different Technology Generations”,International Symposium on Low Power Electronics and Design,

pp. 116-121, 2003.

[19] T. Kuroda, et al, “A 0.9V 150MHz 10mW 4mm2 2-D Discrete Cosine Transform Core Processor with

Variable Threshold-Voltage(VT) Schemen”,IEEE Journal of Solid-State Circuits, pp. 1770-1779, Nov.

1996.

25

[20] R.M. Rao, F. Liu, J.L. Burns, and R.B. Brown, “A Heuristic to Determine Low Leakage Sleep State Vectors

for CMOS Combinational Circuits”,IEEE International Conference on Computer-Aided Design, November

2003.

[21] H. Rahman and C. Chakrabarti, “A LEAKAGE ESTIMATION ANDREDUCTION TECHNIQUE FOR

SCALED CMOS LOGIC CIRCUITS CONSIDERING GATE-LEAKAGE”,ISCAS, 2004.

[22] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design andOptimization of Low Voltage High Perfor-

mance Dual Threshold CMOS Circuits”,Proceedings of DAC, pp. 489-494, 98.

[23] Y. Ye, S. Borker, and V. De, “A New Technique for Standby Leakage Reduction in High-Performance

Circuits”, Symposium on VLSI Circuits, pp. 40-41.9, 1998.

[24] M.R. Garey and D.S. Johnson, “Computers and Intractability, A Guide to the Theory of NP-Completeness”,

Freeman Company, 2001.

[25] G.D. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms”,Kluwer Academic Publishers,

1996.

[26] Saeyang Yang, “Synthesis and Optimization BenchmarksUser Guide”, 2002, ftp://mcnc.mcnc.org.

[27] E. Sentovich, et al., “SIS: A System for Sequential Circuit Synthesis,”Electronics Research Laboratory

Memorandum, U.C.Berkeley,No. UCB/ERL M92/41.

26

Table 1: Results on 26 small circuits with 22 or less primary inputs.

pi gate exhaustive gate replace divide-and-conquer
circuit

leak(nA) wls imprv wls ar inc imprv wls # tr # cg ar inc

b1 3 13 2195 23% 2% 15% 5% 2% 10% 5 0% 5%

cm42a 4 25 2941 0% 0% 0% 0% 8% 0% 18 4% 8%

C17 5 6 831 17% 43% 0% 17% 43% 0% 4 0% 17%

cm82a 5 28 5017 21% 29% 4% 12% 40% 1% 10 4% 18%

decod 5 22 1921 0% 0% 0% 0% 8% 0% 21 5% 3%

cm138a 6 19 1760 0% 0% 0% 0% 1% 0% 12 5% 5%

z4ml 7 66 12246 24% 25% 11% 11% 37% 4% 20 5% 17%

f51m 8 136 26038 26% 37% 7% 12% 48% 4% 25 3% 14%

9symml 9 166 34018 26% 20% 17% 5% 38% 8% 18 8% 14%

alu2 10 356 64153 21% 2% 20% 0% 21% 5% 89 7% 11%

x2 10 44 6159 9% 15% 2% 3% 12% 2% 18 9% 10%

cm85a 11 38 4925 8% 14% 3% 3% 13% 3% 16 0% 3%

cm151a 12 34 5745 24% 9% 18% 4% 3% 18% 5 3% 5%

alu4 14 728 133127 25% 1% 21% 1% 15% 4% 166 7% 10%

cm162a 14 45 6947 18% 2% 9% 3% 0% 9% 13 4% 12%

cu 14 49 6182 12% 16% 6% 2% 9% 5% 21 6% 7%

cm163a 16 43 6376 19% 2% 9% 3% 1% 9% 11 5% 13%

cmb 16 42 5405 10% 11% 5% 2% 4% 4% 8 2% 6%

parity 16 75 12764 20% 11% 15% 5% 15% 7% 15 7% 20%

pm1 16 39 3474 3% 0% 0% 1% -2% 0% 16 3% 3%

t481 16 1945 251184 2% 1% 1% 0% 26% 0% 17 2% 1%

tcon 17 41 6491 20% 43% 0% 14% 41% 0% 9 2% 17%

pcle 19 74 12594 20% 32% 4% 6% 32% 4% 22 0% 6%

sct 19 92 11811 18% 14% 9% 4% 10% 6% 24 4% 6%

cc 21 48 5823 13% 6% 10% 1% 6% 9% 22 0% 1%

cm150a 21 72 12270 15% 4% 14% 1% 1% 10% 9 7% 10%

Average 15% 13% 8% 4% 17% 4% 4% 9%

27

Table 2: Results on 43 large circuits with primary inputs more than 22.

pi gate random search (10k) gate replacement (G.R.) divide-and-conquer (D.C.) over 1K average
circuit

leak(nA) time(s) wls(%) imprv(%) time(s) wls(%) area(%) imprv(%) time(s) wls(%) #tree #gates/tree # cg area(%) G.R.(%) D.C.(%)

cordic 23 102 18434.0 9.9 21.6 15.1 0.01 11.8 5.7 27.4 10.1 7.8% 52 3.1 7% 9.3 28.4 38.8

ttt2 24 207 33801.5 22.7 18.4 9.5 0.02 17.4 4.4 18.4 72.6 14.5% 43 4.7 6% 9.6 30.9 37.7

i1 25 39 5250.6 5.4 7.7 27.7 0 0.0 4.3 26.3 6.0 0.0% 16 2.1 3% 5.1 45.5 44.4

pcler8 27 90 14670.1 10.0 16.7 11.1 0.01 11.1 4.0 27.0 14.9 10.3% 31 2.4 0% 4.0 35.2 46.8

c8 28 164 26083.0 17.4 19.5 19.0 0.01 4.3 8.4 14.4 21.5 0.0% 38 5.9 8% 6.9 31.7 27.8

C6288 32 2400 480084.2 222.0 29.0 2.9 0.11 27.7 1.9 8.8 398.7 11.7% 1424 1.7 29% 27.3 7.0 12.6

comp 32 163 28322.3 15.2 22.1 5.6 0.01 11.7 2.4 13.2 85.4 9.7% 77 3.4 2% 5.4 34.1 39.4

C1908 33 615 117029.6 57.2 20.5 2.5 0.02 17.1 0.9 31.0 66.0 13.4% 218 2.9 10% 10.1 6.4 33.7

my adder 33 225 40842.1 21.0 22.2 2.0 0.02 20.0 1.5 31.1 32.1 18.2% 95 2.8 7% 6.4 8.9 36.0

term1 34 363 60460.5 37.3 18.5 11.7 0.02 9.6 4.0 15.4 160.0 8.8% 75 6.8 5% 8.8 23.9 27.0

count 35 144 22445.4 15.2 17.4 0.0 0.01 17.4 0.0 3.4 14.2 16.7% 37 4.2 2% 2.4 0.0 15.4

C432 36 200 38101.4 20.1 15.0 11.2 0.01 9.0 3.3 37.5 24.7 8.0% 79 4.1 6% 8.9 21.6 44.8

unreg 36 113 18188.4 12.7 19.5 4.6 0.01 5.3 3.1 17.3 84.4 5.3% 18 6.3 2% 4.9 20.1 30.7

too large 38 582 107888.1 61.4 17.4 12.5 0.05 9.6 2.2 37.1 80.1 9.6% 113 5.2 7% 10.9 24.5 45.7

b9 41 111 16100.3 12.8 11.7 8.6 0.01 8.1 2.0 19.7 68.0 7.9% 34 3.3 4% 8.7 30.1 38.5

C1355 41 517 91739.0 50.7 22.1 4.5 0.02 13.0 1.4 19.1 95.0 6.9% 265 2.0 15% 13.1 12.1 25.4

C499 41 532 95292.0 48.3 20.3 5.0 0.05 13.3 2.2 18.2 84.5 8.8% 197 2.7 7% 5.8 16.8 28.4

cht 47 232 38560.8 25.3 16.8 4.5 0.02 11.6 3.7 14.7 22.8 10.1% 66 3.5 2% 3.3 18.4 27.1

apex7 49 239 41955.1 26.0 20.1 19.3 0.02 8.4 5.8 30.3 25.6 7.4% 82 2.9 3% 11.1 26.9 36.9

C3540 50 1136 218977.1 115.0 18.2 2.9 0.08 15.3 1.3 21.3 133.8 7.7% 381 3.0 15% 2.1 11.5 28.2

x1 51 295 45351.2 32.8 16.3 17.7 0.02 4.7 4.8 25.0 105.9 4.0% 61 4.8 7% 11.9 32.1 38.2

C880 60 354 61978.8 35.8 18.9 12.6 0.04 11.6 4.1 25.8 39.9 11.6% 115 3.1 13% 10.8 21.7 33.5

dalu 75 1865 349299.8 187.5 25.6 3.8 0.15 23.2 1.4 23.2 194.9 17.9% 321 5.8 8% 14.2 29.1 43.5

example2 85 286 51036.6 32.6 17.5 4.3 0.02 15.0 1.4 41.5 28.9 13.2% 110 2.6 2% 9.8 11.3 45.7

i9 88 510 88469.6 63.9 1.0 0.0 0.04 1.0 0.0 17.3 156.0 1.0% 113 4.5 3% 2.1 0.0 50.1

x4 94 378 61336.3 46.4 18.3 28.2 0.03 4.5 5.3 33.6 206.5 4.5% 110 3.4 11% 8.6 40.1 44.7

i3 132 92 16166.9 14.9 21.7 0.0 0.00 21.7 0.0 18.5 0.0 20.7% 6 15.3 0% 0.0 0.0 27.2

i5 133 269 44848.1 34.3 12.6 19.9 0.02 4.8 2.9 42.0 45.6 4.0% 68 4.0 2% 7.8 35.8 53.5

i8 133 1898 305924.5 224.4 14.2 9.1 0.15 11.4 0.8 39.4 7591.3 4.0% 259 7.3 6% 6.3 43.5 62.3

apex6 135 710 126523.6 86.1 20.8 3.9 0.06 5.9 2.1 26.8 399.5 3.0% 215 3.3 10% 5.7 11.4 32.6

rot 135 601 109944.1 67.1 20.0 17.5 0.06 13.8 5.5 23.1 403.3 12.0% 208 2.9 10% 12.7 23.5 28.7

x3 135 742 116641.0 89.5 14.3 15.6 0.07 9.0 3.2 20.4 384.4 5.6% 192 3.9 8% 10.0 29.7 33.7

i6 138 340 47021.1 47.3 9.1 46.4 0.03 0.6 2.1 59.0 89.8 0.0% 71 4.8 1% 3.0 68.9 76.2

frg2 143 1030 165090.4 136.0 16.1 12.9 0.11 7.4 3.2 28.4 176.5 6.8% 244 4.2 5% 7.4 28.0 40.8

pair 173 1538 270729.8 160.9 18.9 7.6 0.14 13.2 2.4 17.5 366.0 5.4% 434 3.5 12% 12.0 14.9 24.0

C5315 178 1777 343295.9 188.3 18.7 6.0 0.15 15.0 2.0 11.5 534.5 9.9% 532 3.3 12% 15.1 11.6 16.8

i4 192 136 22699.8 22.8 8.8 3.1 0.01 8.8 0.4 27.8 34.6 8.8% 6 22.7 0% 4.6 28.3 46.6

i7 199 405 58431.5 58.4 6.2 1.2 0.04 5.7 0.2 13.5 117.9 5.7% 76 5.3 2% 1.1 37.7 45.5

i2 201 109 13174.8 22.1 4.6 19.7 0.01 0.0 2.2 36.8 36.1 0.0% 12 9.1 4% 3.6 36.1 49.7

C7552 207 2801 515320.2 293.3 20.8 0.6 0.18 15.3 0.3 5.9 726.0 6.9% 908 3.1 15% 16.1 20.6 24.8

C2670 233 807 155992.3 94.5 18.1 0.8 0.09 17.8 0.2 11.9 98.6 14.6% 235 3.4 11% 9.9 5.4 16.0

des 256 3995 931447.4 471.2 23.6 7.2 0.24 18.5 2.5 45.7 8502.6 7.3% 847 4.7 11% 14.2 17.6 51.8

i10 257 2281 440552.2 261.6 20.4 6.7 0.2 19.2 1.9 14.3 162.8 4.5% 695 3.3 14% 6.1 11.7 18.8

Average 80.9 17% 10% 0.05 11% 2% 24% 510.2 9% 6% 7% 23% 37%

28

Table 3: Average performance comparison with [1] algorithm.

algorithm in [1] gate replacementdivide-and-conquer

leakage reduction 25% 23% 37%

delay penalty ≤ 5% 0% ≤ 5%

area penalty ≤ 15% 2% 7%

29

