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In this thesis we study the response of two systems to short, intense laser

pulses. The first system is a gas of diatomic molecules whose ensemble-averaged

alignment features rotational revivals. We analyze the effect of a background plasma

on the revival peaks. Both the revivals and the plasma are the result of a laser

pulse passing through the gas. The second system is a density-modulated plasma

channel. We study the generation of electromagnetic radiation by a laser pulse

passing through this structure.

The molecules in the gas are modeled as rigid rotors that interact first with

the cycle-averaged electric field of the laser pulse, and second with the fluctuating

electric field of the background plasma. The laser pulse generates a broad super-

position of angular momentum eigenstates, resulting in the transient alignment of

the molecules. Because of the time evolution properties of the angular momentum

states, the alignment re-occurs periodically in field-free conditions. The alignment

is calculated using a density matrix, and the background plasma is modeled using



dressed particles. The result is decoherence between the phases of the basis states

of the wavefunction, which causes decay of subsequent alignment peaks. We find

that field-induced decoherence is competitive with collisional decoherence for small

ionization fractions.

The corrugated plasma channel is modeled using linear plasma theory, and

the laser pulse is non-evolving. Corrugated channels support EM modes that have

a Floquet dispersion relation, and thus consist of many spatial harmonics with

subluminal phase velocities. This allows phase matching between the pulse and

the EM modes. Since the pulse bandwidth includes THz frequencies, significant

THz generation is possible. Here we consider realistic density profiles to obtain

predictions of the THz power output and mode structure. We then estimate pulse

depletion effects. The fraction of laser energy converted to THz is independent of

laser pulse energy in the linear regime, and we find it to be around one percent.

Extrapolating to a pulse energy of 0.5 J gives a THz power output of 6 mJ, with a

pulse depletion length of less than 20 cm.
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Chapter 1

Introduction

The availability of compact short-pulse laser systems have made the interaction

of short, intense laser pulses with various forms of matter a common occurrence in

university-scale laboratories. This thesis is an assemblage of two publications in

which we explore the effects of the passage of such a laser pulse through a molecular

gas and through a density-modulated plasma channel.

In Chapter 2 the system under study is a gas of diatomic molecules in which a

set of rotational revivals has been created. When a short laser pulse interacts with a

gas of molecules, it excites a broad superposition of angular momentum states in the

wavefunctions of each molecule. Assuming that the laser frequency doesn’t match

the frequencies of any of the rotational transitions, this excitation occurs through

the two-photon Raman process. This results in a transient increase in the average

molecular alignment, whose peak typically occurs after the pulse peak because the

rotational timescale is longer than the laser pulse length. The so-called rotational

revivals, in which one observes periodic molecular alignment at later times under

field free conditions, occur because the energy dependence of the basis states in the

wavefunction leads to their subsequent phase-realignment.

We consider the effect that the background electric field has on the amplitudes

of the molecular alignment peaks. Such a background field may be produced by a
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plasma that is created by the same laser pulse that sets up the rotational revivals.

This affects the evolution of the off-diagonal elements of the density matrix, which

evolve in both amplitude and phase. The expectation is that the revival structure

will decay primarily due to the phase change, since it is phase alignment and de-

alignment that creates and destroys a revival peak over a very short timescale.

We perform simulations of the density matrix evolution, using the dressed

particle technique to model the fluctuating electric field. We study how the ampli-

tude of the revival peaks changes with time when the molecule interacts through

a specific multipole moment. We find revival decay rates from the results of these

simulations for various plasma temperatures and densities, and compare the results

with decay time estimates made using a simple model to estimate the phase change

in the molecular wavefunction. The estimates match the simulation results remark-

ably well. In addition, we compare the expected decay rate with the rate measured

for revival decay due to molecular collisions, and find that they are similar for small

plasma ionization fractions.

In Chapter 3 we investigate the production of THz radiation in a corrugated

plasma waveguide, which consists of a plasma channel in which there are periodic

axial density variations. Such a channel is created in the laboratory using a laser

pulse that is line-focused onto a cluster jet with an axicon (a conical lens). To

produce a corrugated plasma channel, one needs either a cluster jet with periodic

density variations or a transmissive ring grating placed before the axicon to produce

radial intensity modulations in the pulse.

We study the structure of electromagnetic modes in a corrugated plasma chan-
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nel, and their excitation by a laser pulse. We estimate the expected frequencies of

generated radiation using an analytic approach based on the assumption that the

plasma density increases radially without bound, and we discuss the leakage of gen-

erated modes from the sides of a more-realistic channel in the context of WKB

theory.

We discuss the details of a code written to model the response of the plasma

channel to a non-evolving laser pulse. We then use this code to perform simulations

of a laser pulse passing through a corrugated plasma channel that possesses realistic

features, namely a maximum density at some radius, and a cutoff radius beyond

which no plasma is present. We study Poynting fluxes using Fourier techniques to

obtain the frequency and amount of generated radiation, and we also study field

quantities in order to obtain the spatial structure of the generated modes. Finally

we use a simple laser evolution model and the result of our simulations to estimate

the amount of energy that can be converted to THz radiation.

This thesis is based on the following publications:

• Chapter 2: A. J. Pearson and T. M. Antonsen, Effect of electric-field fluctua-

tions on rotational revival amplitudes, Phys. Rev. A. 80 053411 (2009)

• Chapter 3: A. J. Pearson, T. M. Antonsen and J. Palastro, Simulation of

terahertz generation in corrugated plasma waveguides, accepted for publication

in Phys. Rev. E. (April 2011)
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Chapter 2

The Effect of Electric Field Fluctuations on Rotational Revival

Amplitudes

2.1 Introduction

There has been intense study of laser-induced molecular alignment in recent

years [1, 2], because of the availability of relatively small, high-power short-pulse

lasers. Here we are interested in non-resonant, non-adiabatic alignment [3, 4]. In

this case, a laser pulse with a duration much less than the inverse of the frequency as-

sociated with the first excited rotational state of the molecule, and with a frequency

that does not match any rotational transitions, excites a phase-coherent broad su-

perposition of angular momentum states through a two-photon Raman process.

The result is an increase in the ensemble-averaged molecular alignment, which

occurs slightly after the peak of the laser pulse because of the difference in timescales

between the pulse length and the molecular rotation [5]. Because of the energy

dependence of the basis states of a rigid rotor however, the phase alignment of

the molecular wavefunction is periodic in time. Accordingly, the ensemble average

alignment exhibits a series of sharp peaks that occur long after the laser pulse has

passed [6]. These peaks are referred to as ‘rotational revivals’. Experimentally, this

effect can be observed by measuring the variation in the refractive index of the gas
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[7], or by Coulomb explosion imaging [8].

In an ideal system, the rotational revivals would continue indefinitely, however

in real systems, dissipative effects cause a loss of coherence between the phases of

the various basis states [9]. If the change in phase is small on the timescale of the

revivals, the amplitudes of successive alignment peaks reduce until the revival struc-

ture disappears. Conversely, if the change in phase is large, the revival structure will

be absent. A major contribution to this dissipation comes from molecular collisions

[10]. In this chapter we investigate an additional mechanism for the disappearance

of the revival structure, involving the electric field of a background plasma and its

coupling to the various multipole moments of the molecules.

The chapter is organized as follows: In Section 2.2, we consider the different

parameters involved in our system, and provide some justifying remarks to establish

the relevance of the effect under consideration. In Section 3.2, we discuss the use

of the density matrix to model an ensemble of molecules and its evolution, the

ways in which the molecules couple to electric fields and a method for modeling the

fluctuating field at a point due to the presence of a background plasma. In Section

3.4 we discuss the numerical techniques used, present the results of the numerical

simulations for a variety of system parameters, and compare the results to scaling

laws produced by a toy model.
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2.2 Decoherence due to electric field fluctuations

We begin by establishing the conditions of relevance of the proposed effect.

Specifically, we wish to show that the effect is observable for a reasonable choice

of plasma parameters. As previously noted, rotational revivals occur because of a

periodic phase alignment of the time evolution factors in the wavefunction. Over

time, decoherence occurs because of time dependent alterations of each phase factor

by either collisions or, as proposed in this chapter, a fluctuating electric field. The

effect of the decoherence is the decay of the rotational revivals.

In this work we quantify the alignment using the ensemble-averaged quantity

〈cos 2θ〉. Here, θ is the angle between the molecular axis and the polarization vector

of the linearly polarized laser pulse that creates the revivals. The alignment takes

the general form

〈cos2 θ〉 =
∞∑
l=0

∞∑
j=0

clj(t) exp [i(El − Ej)/~] , (2.1)

where the quantities El are eigenvalues of the field-free Hamiltonian and the co-

efficients clj(t) are time-independent in field-free conditions. In this work we will

consider simple linear molecules modeled as rigid rotors. The field-free Hamilto-

nian is therefore proportional to the total angular momentum operator L̂2, and its

eigenstates are |l,m〉.

To estimate the revival decay time, we consider the phase change that occurs

in Eq. (2.1) because of the rotational energy level shift for a molecule that interacts

6



with a static electric field. This energy shift is calculated using time-independent

perturbation theory. For a molecule with a permanent dipole moment, the phase

shift in Eq. (2.1) is proportional to

∆El −∆Ej ∼
µ2E2

I

B

(
1

(l + 1)(l + 2)− l(l + 1)
− 1

(j + 1)(j + 2)− j(j + 1)

)
, (2.2)

where µ is the permanent dipole moment of the molecule, B = ~2/2I is the ro-

tational constant and EI is the magnitude of the electric field. This result is from

second order in perturbation theory, which is necessary because of the selection rules

associated with the matrix elements of the permanent dipole moment. The various

factors of l and j come from the term 1/(El − Ej) that occurs in each term in the

sum over states.

The decay time τD is given by τD ∼ ~/(∆El −∆El+2). The use of j = l + 2

here comes from the selection rules for an induced dipole moment. The induced

dipole is the means by which a laser pulse creates a set of rotational revivals, and so

it is these terms that will be present in the alignment sum before the decoherence

begins.

For a numerical value of the decay time, we must choose values for the electric

field EI and for l. We choose an electric field strength of EI = e/r2
I . This is the field

associated with a stationary ion at a distance corresponding to the typical molecular

spacing rI ∼ n−1/3. To choose l, we note that for a thermally distributed gas of rigid

rotors, the maximally populated l state is lmax '
√
kBT/2B. For HCN at room

temperature, this gives lmax ' 8. The resulting decay time estimate for a plasma
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density of n = 1018 cm−3 is τD ∼ 10 ps.

We wish to compare the decay time estimated using this method to the decay

time due to collisional decoherence. We consider the measurements made by Chen

et. al. [7] for N2O at different pressures. These measurements give collisional decay

times of 10−25 ps at room temperature for pressures in the range 2−7 atmospheres.

This corresponds to gas densities of 5 × 1019 to 1.5 × 1020 cm−3. The implication

is that for a relatively small ionization fraction of a gas, the decay times due to a

background plasma are comparable to those due to molecular collisions.

The decay time estimate made using Eq. (2.2) assumes that the ions are sta-

tionary, however we compare the result to a collisional decay time in a room tem-

perature gas. This is permissible, since we expect the decay time due to a cold

plasma to be longer than that due to a warm plasma. The reason is that in a warm

plasma, decay will occur due to several ion encounters per molecule, and there is a

probability that some of these will have impact parameters less than rI , resulting

in a large phase shift and thus a shorter decay time.

We expect permanent dipoles to interact much more strongly with the back-

ground field than permanent quadrupoles and induced dipoles. The energy level

shift estimated in Eq. (2.2) is from second order time-independent perturbation

theory, because the selection rules for a permanent dipole don’t allow a first-order

term. This is not the case for the permanent quadrupole and induced dipole inter-

actions, and these have energy level shifts ∆E(Q) ∼ ∆QEI/rI and ∆E(I) ∼ ∆αE2
I

respectively. For the HCN molecule, these imply decay times several times larger

for the quadrupole, and three orders of magnitude larger for the induced dipole.
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We conclude from these heuristic investigations that it is quite possible to

observe this effect in an appropriately designed experiment. A foreseeable difficulty

is generating the rotational revivals with the desired amplitude and ionizing the

gas to the desired degree, all using a single laser pulse. To alleviate this problem,

one may imagine a molecular gas that is partially ionized to create a plasma of

the correct density and temperature, by choosing the pulse length, intensity, gas

temperature and gas mixture appropriately. If this plasma is left a sufficiently long

time, then any rotational revivals generated by the first pulse will decay due to

collisional decoherence and the plasma will have time to thermalize. A second laser

pulse (weaker, so as not to change the state of ionization) may then be introduced,

and will generate another set of coherences. The effects of the background plasma

on these coherences may then be measured.

2.3 Modeling a gas of diatomic molecules

2.3.1 Density matrix formalism

Our goal in this chapter is to calculate the ensemble average alignment in a gas

of diatomic molecules after the passage of a laser pulse, and to demonstrate that a

fluctuating electric field results in the decay of the rotational revival amplitudes. To

quantify the alignment, we choose to calculate the ensemble average of cos2 θ, where

θ is the angle between the symmetry axis of a molecule and a fixed, but arbitrarily

chosen, measurement axis.

To model a molecule, we note that for molecules at room temperature, the

9



energy of the first excited vibrational level and the first excited electronic level are

small compared to the thermal energy. For example, an N2 molecule has vibrational

energies in spectroscopic units of order 103 cm−1 and electronic energies of order 105

cm−1. For comparison, the rotational energy of ground state hydrogen is 2 cm−1 and

the thermal energy in a gas at 300 Kelvin is approximately 200 cm−1. We conclude

that it is appropriate to restrict our attention to rotational excitations.

Given the above considerations, we model the molecule as a rigid rotor, which

has energy levels

El = Bl(l + 1)−Dl2(l + 1)2 , (2.3)

where l is the total angular momentum quantum number, B = ~2/2I is the rota-

tional constant and D is the energy modification due to centrifugal stretching.

In the density matrix formalism, the ensemble average alignment is given by

〈cos2 θ〉 = Tr(ρ̂ cos2 θ) =
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
n=−j

ρlmjn〈jn| cos2 θ|lm〉 , (2.4)

where ρ̂ is the density operator. On the right hand side of Eq. 2.4, we have written

the trace using the eigenstates of the Hamiltonian Ĥ0 = (B/~2)L̂2. These are the

standard angular momentum eigenkets that satisfy 〈θφ|lm〉 = Ylm(θ, φ). Note that

that in Eq. 2.3 D � B , and so while the centrifugal distortion constitutes an

O(D/B) correction to the eigenvalues of Ĥ0, the eigenstates remain unaffected.

Continuing in the |lm〉 basis, the evolution of the density matrix is governed
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by

d

dt
ρlmjn = −iωljρlmjn +

i

~

∞∑
k=0

k∑
o=−k

(
ρlmkoVkojn − Vlmkoρkojn

)
, (2.5)

where Vlmjn is an interaction matrix element and ωlj = (El−Ej)/~. The interaction

matrices we consider take the form

Vlmjn = −〈lm|µ̂ ·E|jn〉 (2.6)

Vlmjn = −1

2
〈lm|E · α̂ ·E|jn〉 (2.7)

Vlmjn = −1

6
〈lm|Q̂ : ∇E|jn〉 (2.8)

where µ̂ is the permanent dipole moment operator, α̂ is the polarizability operator,

Q̂ is the (traceless) permanent quadrupole moment operator and E is the electric

field vector.

2.3.2 Molecular alignment by a linearly polarized laser pulse

Here we consider two qualitatively distinct electric fields. The first is the elec-

tric field of a short laser pulse, which is used to create a rotational revival structure

in a molecular gas. We are interested in pulse lengths that are long compared to

the optical period, but short compared to the typical rotational timescale of a small

diatomic molecule (on the order of picoseconds), and laser frequencies that are large

compared to the inverse rotational timescale. This places us in the regime of non-

adiabatic, non-resonant molecular alignment. Assuming there are many cycles over

the duration of the pulse, we cycle-average the interaction matrices. A consequence
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of this is that interaction terms with odd powers in the field strength are negligible

compared to those with even powers. We conclude that only the induced dipole

term is relevant for the laser pulse.

In the body-fixed frame of a molecule with the molecular axis chosen as the

z-axis, the polarizability tensor may be written as a diagonal matrix with entries

αxx, αyy and αzz. In a coordinate system in which the molecular axis is defined by

a unit vector n̂, the polarizability tensor takes the form

α = α⊥1 + ∆αn̂n̂ , (2.9)

where α⊥ = αxx = αyy and ∆α = αzz − α⊥.

Assuming that the laser pulse is linearly polarized, we choose the polarization

vector, the z-axis of our coordinate system, and the measurement axis for the angular

momentum to coincide. The laser field is written as

E(t) = Re{ẑE0(t) exp (−iωt)} . (2.10)

Substituting this into Eq. (2.7) and cycle averaging, we obtain

V
(L)
lmjn = −1

4
E2

0(t)
(
α⊥δljδmn + ∆α〈lm| cos2 θ|jn〉

)
, (2.11)

where we have used n̂ · ẑ = cos θ. The second term in Eq. (2.11) may be calculated

by conversion to an integral over a solid angle of a product of spherical harmonics.

We note that the density matrix elements do not depend on α⊥, since the total

12
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Figure 2.1: Ensemble average alignment vs. time calculated in the zero-pulse-length
limit. Plot domain includes the laser pulse at t = 0 and the first full revival at t = τR.
Note that the first peak of the alignment occurs after the laser pulse, due to the
characteristic response time of the molecules. This feature is preserved in short,
finite-length pulses.

contribution to the density matrix evolution equation (Eq. (2.5)) from the first term

in Eq. (2.11) vanishes identically.

The evolution of the density matrix elements for the molecule subjected to a

laser pulse may now be found using either perturbation theory, the zero-pulse-length

limit (E2
0(t) ∼ δ(t − t0)), or numerical techniques. For the zero pulse length limit,

one revival period of the ensemble average alignment is displayed in Fig. 2.1.

2.3.3 Interaction matrix for a fluctuating background electric field

The other type of electric field considered is the fluctuating background field

due to the presence of a plasma. Unlike the case of a linearly polarized laser pulse,

we cannot choose to align the electric field vector and the angular momentum mea-

surement axis. Thus, the angular dependence of the interaction terms are of greater

complexity. Keeping the z-axis as the angular momentum measurement axis, we

13



define the function

W = n̂ ·E = Ex sin θ cosφ+ Ey sin θ sinφ+ Ez cos θ . (2.12)

The interaction terms for each type of coupling are given by

V
(P)
lmjn =− |µ|〈lm|W |jn〉 (2.13)

V
(Q)
lmjn =− 1

6

(
Q⊥∇ ·Eδljδmn + ∆Q〈lm|n̂ ·∇W |jn〉

)
(2.14)

V
(I)
lmjn =− 1

2

(
α⊥|E|2δljδmn + ∆α〈lm|W 2|jn〉

)
, (2.15)

where we have written the quadrupole tensor elements in analogy to Eq. (2.9). Note

that the quadrupole coefficients are related because of the traceless nature of the

quadrupole tensor. By convention, we have Q⊥ = −1
2
Qzz and ∆Q = 3

2
Qzz where z

is the symmetry axis of the molecule. Note also that as in Eq (2.11), the Q⊥ and

α⊥ terms will not contribute to the density matrix evolution.

We wish to study the effect of a fluctuating background field on the revival

structure created by the laser pulse. In general, this problem cannot be solved

analytically, and so we resort to a numerical solution. We proceed by modeling

the plasma as a collection of dressed particles [11]. In this method, we consider a

test particle moving in a straight line through a plasma at some velocity v. Such

a particle will acquire a shielding cloud from the plasma, and this will alter its

potential. For a test particle at rest, this is the familiar Debye shielding effect, but

for a moving particle the shielding is modified in an anisotropic way. We refer to

14



the combination of the test particle and its shielding cloud as a dressed particle.

Following the formulation of Krall and Trivelpiece [12], we calculate the po-

tential for a dressed particle by solving the coupled Poisson and linearized Vlasov

equations. By doing so we assume that the dressed particle is non-relativistic and

moving at uniform velocity, and that the plasma is only slightly perturbed by its

presence. The solution proceeds by Fourier-transforming in space and Laplace-

transforming in time. The time-asymptotic solution neglects both transients from

the initial perturbation and excited normal modes of the plasma that vanish due to

Landau damping, and is given by

φ(xob,x,v, t) = 4πq

∫
d 3k

(2π)3

exp (ik · (xob − x− vt))
k2D(k,k · v)

, (2.16)

where x is the initial position of the dressed particle xob is the point of observation

of the potential . D(k,k · v) is the dielectric function of the plasma, given by

D(k,k · v) = 1−
∑
α

ω2
pα

k2

∫
d 3v′

(2π)3

k ·∇v′f0α

k · (v′ − v)− i0+
, (2.17)

where α refers to the plasma species and f0α is the unperturbed plasma distribution

function.

We note that in the current approach we take the test particle velocities to be

constant and unaffected by the molecule’s electric field. The result is that over time

there will be continuous energy transfer from the plasma particles to the molecule.

In reality, the energy gain of the molecule is limited, and the molecule will come
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into thermal equilibrium with the plasma. We assume that this process occurs over

a longer period of time than the destruction of the recurrences.

The plasma will be created by the partial ionization of the molecular gas by

the laser pulse. Since this is very short, we expect the molecular ions to be thermally

distributed at the same temperature as the unionized molecules. The electrons will

in general be much faster than the ions. We therefore use a dressed particle model

with molecule-mass test particles, shielded by fast electrons and stationary ions. We

choose to exclude electrons as test particles because we expect the ions to remain in

proximity to a molecule for much longer than the electrons, and so the ions will have

the dominant effect. In this case, we are interested in the low speed approximation

for the potential. This calculation may be found in Ref. [13], and the result is

φ(r,v) ' q

r

(
exp (−rkD) +

v

uth
g(r, r̂ · v̂) + · · ·

)
, (2.18)

where r = xob − x − vt, v is the test particle velocity, uth is the electron thermal

velocity, and kD is the Debye wavenumber. The function g(r, r · v) is given by

g(r, r̂ · v̂) =
1√
2π

(r̂ · v̂)

[
rkD

2

(
1− 1

rkD
+

1

(rkD)2

)
exp (rkD)E1(rkD)

+
rkD

2

(
1 +

1

rkD
+

1

(rkD)2

)
exp (−rkD)Ei(rkD)− 1

]
, (2.19)

where E1 and Ei are exponential integral functions.

Once we calculate the electric field for a collection of test particles, we may

compute the density matrix and thus the ensemble average molecular alignment over
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the various rotational states available, as per Eq. (2.4). We then repeat this proce-

dure for a number of different test particle configurations to generate an ensemble

average of the molecular alignment.

2.4 Numerical Simulation Results

In this section we present the results of the numerical simulations. As previ-

ously stated, the goal is to calculate the time-dependent expectation value 〈cos2 θ〉

for a fluctuating background field. We simulate the background field by calculating

the electric field components at the center of a spherical region containing a number

of test particles. These test particles move in straight lines from random initial po-

sitions and with random velocities, all generated from the appropriate distribution

functions. Test particles that leave this region are replaced by re-generating their

initial conditions to place them somewhere on the system boundary with an ingoing

velocity. The number of test particles present in the system at any one time is

chosen to correspond to a certain plasma density.

To calculate the density matrix elements, we use the Cash-Karp embedded

Runge-Kutta method [14]. This allows for an efficient adaptive stepsize calculation.

We begin with a thermal distribution of rotational states, and calculate the effect of

the laser pulse strike on the density matrix. We will consider a laser pulse with an

intensity of 1012 W/cm2, which is large enough to create a revival structure while

avoiding complications introduced when the populations of the angular momentum

states change significantly. This intensity is not sufficient to cause the appropriate
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level of ionization, and so our simulations correspond to an experiment of the type

described in the last paragraph of Section 2.2. We choose the pulse length to be 100

fs and the optical frequency to be 1015 Hz, both typical of a short-pulse laser. This

optical frequency will be sufficiently large compared to the characteristic molecule

rotational frequency as to allow the cycle averaging discussed in the derivation of

Eq. (2.11).

The density matrix calculated for the laser pulse is then used as an initial con-

dition for the calculation of the evolution of the density matrix with the fluctuating

background field present. We use this result to calculate the amount of alignment

of a single molecule in the gas, and then repeat this procedure for a large number

of test particle configurations, so as to obtain an average over many molecules.

In these simulations, we will consider the molecules Hydrogen Cyanide (HCN)

and Nitrogen (N2). HCN is an example of a linear molecule with a strong permanent

dipole moment, while N2 is a common dipole. We will consider the different mul-

tipole interactions separately, since we expect their sizes to differ significantly from

one another. This may be seen by estimating in each case the size of the interaction

term for a Coulomb field at distance n−1/3. The free parameters in these simulations

are the electron and ion temperatures, and the plasma density.

The first set of results are for HCN with the background ions at room tempera-

ture. The parameters for HCN associated with the molecular dynamics are B = 1.48

cm−1 and D = 3.33×10−6 cm−1, and multipole moments are |µ| = 2.96×10−18 esu

cm [15], ∆Q = 7.68× 10−26 esu cm2 and ∆α = 2.0× 10−24 cm3 [16]. We considered

electron temperatures of 1 and 10 eV, and for the permanent dipole case, we chose a
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plasma density of 1018 cm−3. For higher order moments, we chose higher densities,

since we expect the decay time to be longer. This choice reduces computation time

and avoids large-time effects associated the the centrifugal stretching.

Fig. 2.2 demonstrates the revival structure and the decay. In Figures 2.2(a)

and 2.2(b) only the permanent dipole interaction is allowed, in Fig. 2.2(c) only the

permanent quadrupole interaction is allowed, and in 2.2(d) only the induced dipole

interaction is allowed. As the permanent dipole interaction is strongest, followed

by the quadrupole and induced dipole interaction, similar decay times occur at

lower densities in Figures 2.2(a) and 2.2(b). To understand the revival structure,

we consider the form of the average alignment, as seen in Eq. (2.4). This may be

rewritten

〈cos2 θ〉 =
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
n=−j

αlmjn〈jn| cos2 θ|lm〉 exp (−iωljt) , (2.20)

where αlmjn = ρlmjn exp (iωljt). This was seen originally in Eq. (2.1). In field-free

conditions αlmjn is a constant, and revival peaks occur because the phase factors in

Eq. (2.20) align periodically. Comparing Eq. (2.3) and (2.20), the revival period is

seen to be τ = π~/B. For HCN, the revival period is calculated to be τ = 11.3 ps,

which is consistent with our results. At the halfway point between revival peaks,

there exist sharp decreases in the alignment. This is because at half revival times,

half of the complex exponentials in Eq. (2.20) are phase aligned with value 1 and the

other half are aligned with value -1. The terms in the sum thus interfere destructively

leading to a decrease in the alignment.
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Figure 2.2: Ensemble-averaged alignment as a function of time for HCN molecules
in a plasma with room temperature ions. In (a) the interaction considered is the
permanent dipole, the plasma density is n = 1018 cm−3 and the electron temperature
is Te =1 eV. In (b), the electron temperature has been increased to Te =10 eV. In
(c) the interaction considered is the permanent quadrupole, the plasma density has
increased n = 1019 cm−3 and the electron temperature is once again Te =1 eV,
while in (d) the interaction considered is the induced dipole, the plasma density is
n = 1020 cm−3 and the electron temperature is Te =1 eV.
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There is a second set of peaks due to the second term in Eq. (2.3). Because

the constant D is much smaller than B however, these peaks are much wider than

the revival peaks, and their recurrence period is much larger. If we were to observe a

revival structure in the absence of decoherence for a sufficiently long time, we would

observe the revival peaks reducing in size until they vanish, and then periodically

reappear at times τD = π~/D. We tend not to observe this effect since regardless

of mechanism, there is always sufficient decoherence to destroy the revival structure

before time τD.

In the presence of a background plasma, the coefficients αlmjn are no longer

constant, but are time dependent complex functions. For each set of test particles,

the complex exponential part of each term in the sum in Eq. (2.20) is modified by

the phase of the coefficient. If the phase change in the coefficient is small between

the laser strike and the first revival time, then the amplitude of each revival peak

is reduced. At later times, the phase change is greater than at earlier times, and so

the amplitude reduction is also larger. Eventually, the revival peaks are destroyed

completely. If the phase change becomes large on a timescale smaller than the

recurrence time, then the revival structure is destroyed before the first peak appears.

The next set of results is for N2, again with the ions at room temperature. The

molecular parameters for N2 are B = 1.99 cm−1 and D = 5.76×10−6 cm−1 [17]. The

quadrupole moment for N2 is ∆Q = 1.49 × 10−26 esu cm2, and the induced dipole

moment is ∆α = 9.3 × 10−25 cm3 [16]. As before, the density for the quadrupole

case is n = 1019 cm−3 and for the induced dipole case is n = 1020 cm−3.

The graphs in Fig. 2.3 once more demonstrate the revival structure. We note
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Figure 2.3: Ensemble-averaged alignment as a function of time for N2 molecules
in a plasma with room temperature ions. In (a) the interaction considered is the
permanent quadrupole, the plasma density is n = 1019 cm−3 and the electron tem-
perature is Te =1 eV. In (b), the electron temperature has been increased to Te =10
eV. In (c) the interaction considered is the induced dipole, the plasma density has
increased n = 1020 cm−3 and the electron temperature is once again Te =1 eV.
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that the decay time is much greater for N2 than for HCN (in the case where only the

quadrupole moment of HCN is considered). This is because the quadrupole coupling

constant for HCN is ∼5 times greater than that for N2, and so the background field

is much more effective in exciting different rotational states of the molecules and

disrupting the phase coherence of the revivals. In the N2 graph, the additional

peaks at τ/4 and 3τ/4 are due to the requirement that the wavefunction of N2

must be symmetric under exchange of the nuclei, since Nitrogen atoms are spin-1

bosons. This means, for example, that if the rotational part of the wavefunction for

the molecule is even, then only even two-nucleus wavefunctions are allowed, thus

creating a symmetric total wavefunction. For combinations of two spin-1 particles

there are 6 symmetric states and 3 antisymmetric states. Thus, the populations

of even rotational states are weighted by a factor of two, and the sum of all the

phase factors in Eq. (2.20) no longer cancel exactly at the quarter and three-quarter

points.

The final set of results consist of a detailed study of the decay time as a function

of the ion thermal velocity and the plasma density. These results are obtained

by generating alignment vs. time graphs and fitting an exponential curve to the

recurrence peaks. In Fig. 2.4(a), the decay times were obtained for a plasma density

of 1018 cm−3, while in Fig. 2.4(b), the results were obtained for ions with a thermal

velocity corresponding to room temperature. While we varied the ion temperature in

Fig. 2.4(a), the temperature associated with the distribution of angular momentum

state population was fixed at room temperature. In both cases, we considered only

the permanent dipole interaction for HCN, and the electron temperature was held
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Figure 2.4: Variation of decay time with system parameters. In (a), we show the
decay time as a function of ion velocity, with fixed density n = 1018 cm−3. The
temperature associated with the angular momentum population distribution was
fixed at 300 K. In (b), we show the decay time as a function of density, with room
temperature ions. In both cases, the electron temperature is fixed at 10 eV.

constant at 1 eV.

To explain these results, we consider the quantum mechanical description of a

single molecule subject to the electric field of a passing ion. To begin, we note that

for a constant electric field, the energy of the state |l,m〉 shifts by an amount

∆E
(2)
lm =

∑
|jn〉6=|lm〉

|〈lm|µ ·E|jn〉|2

El − Ej
∼ µ2E2

I

2B
∆lm , (2.21)

c.f. Eq. (2.2). This term comes from second order time-independent perturbation

theory. The first order term is ∆E
(1)
lm = 〈lm|µ ·E|lm〉, which vanishes.

Decoherence will occur even if all ions are stationary due to the fact that

each molecule experiences a different electric field depending on its proximity to

neighboring ions. The typical electric field strength a molecule experiences is EI '

e/r2
I , where rI = n−1/3 is the inter-ion spacing. The fluctuations in the electric field
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strength are comparable to this value. Thus, there will be variations in ∆Elm.

The functional form of the decay in time is determined by the distribution

of electric field values, and is probably not exponential. Since the fluctuations in

electric field magnitude are as large as the typical value we estimate that decoherence

will occur in a time

τs ∼
π~

∆Elm −∆El+2m

=
2π~Br4

I

µ2e2

1

∆lm −∆l+2m

∼ n−4/3 . (2.22)

Previously we posited that the phase shift that leads to decoherence was given by

differences in the second order energy shift between l and l+2, and we have done so

here also. This is motivated by the selection rules associated with the induced dipole

coupling between the laser pulse and a molecule. For a sufficiently weak pulse, the

non-zero off diagonal density matrix elements will have l − j = 2.

In Section 2.2 we ignored the angular dependence of Eq. (2.21) and chose l

by finding the maximally populated state for a given temperature. This led to an

estimate of τ ∼ 10 ps. Now we attempt to improve the decay time estimate by

averaging over all possible electric field angles (relative to the angular momentum

measurement axis), and by performing a weighted average over angular momentum

state populations. This yields a decay time estimate of τ ∼ 62 ps, which is in good

agreement with Fig. 2.4(a).

If the ions are moving the decoherence time can be shorter than τ . This is

because with time an ion is likely to come much closer to a molecule than the typical

ion spacing rI . The strong electric field occurring during such an encounter gives
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a phase change much bigger than calculated for static ions. For this regime to be

of interest, the static decoherence time must be much longer than the typical time

it takes an ion to move a distance equal to the inter-ion spacing, i.e. τ >> rI/vth,

where vth is the typical ion velocity.

For the case of ions moving at a low speed such that their transit time (i.e. time

spent in proximity to molecule) is large compared to the characteristic evolution

time of the eigenstates, we may use the adiabatic approximation to estimate the

phase change. Which states satisfy the adiabatic approximation will be discussed

subsequently. For the moment we assume that all do. Here, we assume that the ion

moves in a straight line with velocity v and impact parameter b and causes a time

dependent energy shift

∆E ' µ2e2

B

1

(b2 + v2t2)2
. (2.23)

The total phase shift in the molecular wavefunction caused by a single ion is then

∆φ =

∫
dt

∆E(t)

~
=
πµ2e2

2~B
1

b3v
. (2.24)

If we now suppose that each phase shift happens instantaneously (which is equivalent

to assuming that the decay time we will calculate is long compared to the ion transit

time), and further assume that the phase shifts due to different ions are independent

events, we can evaluate the rate of decoherence.

To do this, we break time into N intervals of duration ∆t = t/N . We assume

that during each time interval, there is a probability of a random phase change ∆φ
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due to a close encounter with an ion. The net phase change to the wavefunction

is the sum of all random phase changes. The average of the wavefunctions of an

ensemble of molecules will evolve in time according to

〈exp(i
∑

∆t∆φ)〉 =

(∫
dP exp(i∆φ)

)N
, (2.25)

where dP is the probability of a phase change ∆φ in the interval d(∆φ), and we have

assumed that the phase changes in the N different time intervals are independent.

As time t = N∆t goes to infinity the average phase factor will decay.

We evaluate this decay by assuming that the amount of decay in a single time

interval is small. Thus, we write in the N →∞ limit

〈exp(i
∑

∆t∆φ)〉 =

(
1 +

t

N

∫
dP

∆t

(
exp(i∆φ)− 1

))N
' exp (−νt) , (2.26)

where

ν = −
∫
dP

∆t

(
exp(i∆φ)− 1

)
. (2.27)

We note the ν has both a real an an imaginary part. To evaluate the probability

per unit time that there will be a phase change ∆φ we note that in the time interval

∆t the number of ions with speed v in the range dv entering a sphere of radius b

surrounding the molecule is

dN = 4πb2n
1√
2vth

exp (−v2/v2
th)vdv∆t . (2.28)

27



All of these ions will have an impact parameter less than b. Thus, the number of

ions with impact parameter b in the interval db passing per unit time is obtained by

differentiating with respect to b:

dP

∆t
=
dN

db

db

∆t
=

8π1/2n

vth
v exp (−v2/v2

th)dvbdb . (2.29)

We may now substitute Eq. (2.24) for ∆φ, and change variables of integration to

ξ = v/vth and b = bcβ, where

b3
c =

πµ2e2

2~Bv
, (2.30)

to obtain for the decoherence time

τ−1
d = ν = −nv1/3

th

(
πµ2e2

2~B

)2/3

Λ , (2.31)

where

Λ = 8π1/2

∫ ∞
0

dξξ1/3 exp (−ξ2)

∫ ∞
0

βdβ
(

exp (i/β3)− 1
)
. (2.32)

Numerical evaluation gives Λ = −6.43 + 11.14i. Comparing the static decoherence

time τs given by Eq. (2.22) and the dynamic decoherence time τd given by Eq. (2.31),

we note that τ−1
d ∼ τ

−2/3
s (vth/rI)

1/3. Since at the boundary separating the static

and dynamic cases vth ∼ rI/τs, the two results are in agreement.

There is some evidence of the density and temperature dependences implied

by Eq. (2.31) in Fig. 2.4. Fig. 2.4(a) shows the dependence of the decoherence time

on ion thermal velocity at fixed density. As the thermal velocity tends to zero the
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decoherence time tends to a fixed value, which is similar to our estimated static

decay time of τs = 62 ps. As the thermal velocity is increased the decoherence time

decreases. The solid line in Fig. 2.4(a) shows the estimated decay time τd calculated

using τs and Eq. (2.31).

The vertical dashed line indicates the velocity of an ion with a transit time

corresponding to the period of the l = 1 eigenstate. For larger ion velocities, we

expect the adiabatic approximation to fail for l = 1. For large values of angular

momentum quantum number however, a failure point will occur at a correspondingly

larger ion velocity. For l = 8, the adiabatic approximation holds over the entire ion

velocity range considered.

We expect the adiabatic result to apply for the density dependence of the

decay time, as shown in Fig. 2.4(b). This is because the l = 1 adiabatic boundary

remains above the ion thermal velocity for all densities considered. The solid line

indicates the calculated decay time τd found from combining the room temperature

result in Fig. 2.4(a) and the n−1 scaling law.

2.5 Conclusion

To summarize, we studied the effect of a fluctuating electric field on the co-

herence of a set of rotational revivals in a molecular gas. We do so by simulating

the interaction of a molecular gas with a laser pulse, and then with a set of charged

test particles. We have found that the amplitudes of the revival peaks do indeed

decrease with time. The reasons for this is that the background field generated by
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the test particles, through the multipole moments of the molecule, generate changes

in the coherent superpositions in the molecular wavefunction. Equivalently, this

changes the off-diagonal elements of the density matrix.

We compare the results of our simulations to analytic estimates of the decay

time. To make these estimates, we assume that the phase changes in the off-diagonal

elements are of far greater importance in causing decoherence than the amplitude

changes, since almost-perfect phase alignment is required to generate a revival peak,

which is a very narrow structure in time. Using the adiabatic approximation and

time-independent perturbation theory, we estimate the typical phase change that

occurs as a function of ion temperature and density. From this, we estimate the

revival decay time and compare it to decay times extracted from the simulations.

The results are surprisingly good, given the complexities of the decoherence process

and the simplicity of our model.

Both the numerical and analytic results follow the expect trends. These include

decreased decay time with increasing plasma density and increasing ion velocity,

and increased decay time with higher-order multipole interactions. We found that

for plasma densities of around 1018 cm−3 and ion temperatures of around room

temperature, the decay time is of the order of a few tens of picoseconds. This makes

the decay process discussed in this work comparable in effectiveness to collision-

induced decoherence in gases with densities one-to-two orders of magnitude greater.

This implies that for molecules with a sufficiently large permanent dipole moment,

this effect may be observed in systems with relatively small ionization fractions.
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Chapter 3

Simulation of THz Generation in Corrugated Plasma Waveguides

3.1 Introduction

Terahertz radiation lies between microwaves and infra-red in the frequency

spectrum. The wide variety of possible applications utilizing THz radiation, from

spectroscopy and biological imaging to national security, medicine and industry,

make the development of small scale THz devices critical. Today there exists a

variety of THz sources, many of which are available commercially. Small scale

sources include far-infrared [18] and quantum cascade lasers [19], laser driven THz

antennae [20, 21] and crystals [22], and backwards wave oscillators [23]. In general,

bright THz sources are based on free electron devices, for example gyrotrons [24]

and free-electron lasers [25, 26, 27]. These can be large and relatively expensive to

operate, and research into new THz sources continues [28].

THz radiation generation by laser pulses in plasmas was first demonstrated

by Hamster et. al. [29]. The source of this radiation is the current driven by the

ponderomotive force of a laser pulse or electron beam. In order for this current

to couple to one or more electromagnetic modes of the plasma, the plasma density

must be inhomogeneous, or there must be a strong background magnetic field [30].

The transfer of energy from a driver to THz radiation is limited by the fact that

EM modes in a plasma couple poorly to pulse-driven currents and in general have
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Figure 3.1: (a) Diagram of experimental setup for producing a corrugated plasma
channel. As an alternative to a spatially modulated formation pulse, a modulated
cluster density may be used in conjunction with a uniform formation pulse. (b)
Dispersion plot of EM modes in the delta function corrugated channel (considered
by Antonsen et. al.) which consists of a channel with a density profile that has
a train of delta functions, thus creating a period system while allowing the use
of analytic results from the axially uniform case. Here, d is the distance between
consecutive delta functions, while ω and kc are the frequency and wavenumber.

superluminal phase velocities. These modes will quickly fall out of phase with the

generated current, which travels with the driver at its group velocity. THz generation

has also been demonstrated by Leemans et. al. [31] in the form of transition radiation

from electrons exiting a laser wakefield accelerator stage.

In this chapter we report the results of simulations that model the generation

of THz radiation in corrugated plasma channels. Corrugated plasma channels are

plasma channels that possess an axially periodic density profile. These channels

may be produced reliably in the laboratory [32] by line-focusing a laser pulse onto

a cluster jet, as shown in Fig. 3.1(a). The periodic density structure is produced

by either axial modulation of the cluster density or radial modulation of the laser

intensity before focusing.
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Antonsen et. al. have suggested that a corrugated channel may be used to

generate THz radiation, using either a laser pulse [33] or an electron beam [34]

as the driver. This is possible because EM modes in a corrugated channel have

a Floquet-type dispersion relation, as shown in Fig. 3.1(b). This means that an

EM mode in the channel, defined by a specfic frequency, consists of a sum over

spatial harmonics, many of which have subluminal phase velocities. Thus, the group

velocity of the ponderomotively driven current will match the phase velocity of a

spatial harmonic for a discrete set of modes. This leads to efficient coupling between

the driver and modes in this set. Given the correct choice of channel parameters,

strong THz production is possible.

Here we perform simulations to model THz production in corrugated plasma

channels with realistic density profiles. In Section 3.2 we discuss the excitation and

structure of electromagnetic modes in a corrugated channel. In Section 3.3 we give

details of the code used to simulate the plasma response of the channel and present

test results that verify correct operation of the code. In Section 3.4 we present and

discuss results obtained for various system parameters. In Section 3.5 we present

our conclusions.

3.2 Excitation of Modes in a Corrugated Channel

3.2.1 Requirements for Excitation

Our goal is to generate THz radiation by passing a laser pulse through a

corrugated plasma channel. Since the central frequency of the pump pulse will be
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significantly larger than the THz frequencies, we can consider the cycle-averaged

current generated by the ponderomotive force of the pulse as the source of the

THz. Because of the periodicity of the channel, a component of this current will be

associated with one or more electromagnetic modes. The frequency of these modes

will be determined by the plasma frequency and other channel parameters.

There are two requirements that must be met in order to successfully generate

electromagnetic radiation in a plasma using a laser pulse. Foremost is the require-

ment that energy must be transferred from the laser pulse to the plasma. The work

done by the ponderomotive force on a current is

P =
1

e

∫
d3x∇Vp · J = −

∫
d3xVp

∂n

∂t
, (3.1)

where Vp is the ponderomotive potential, J is the current, e is the charge on an

electron and n is the number density of electrons. For power to be transferred from

the laser pulse to a mode of the plasma, this mode must have a density perturbation

associated with it, i.e. the mode must have non-zero electric field divergence. For

electromagnetic modes in a cold, linear fluid plasma, the divergence is of order

∇ ·E ∼ O
(

ω2
p

ω2 − ω2
p

|E|
L

)
, (3.2)

where ω is the mode frequency, ωp is the plasma frequency and L is the characteristic

scale length of the non-uniformity of the plasma. For L→∞, the plasma becomes

uniform and we recover the familiar result, ∇ ·E = 0.
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The second requirement is that the group velocity of the laser pulse is phase

matched with the phase velocity of the excited modes. This is required for sig-

nificant excitation to occur, and is achieved in a corrugated channel because the

electromagnetic modes of the channel are Floquet-type modes. Each mode of the

channel consists of a sum over spatial harmonics, with the wavenumber of each

harmonic separated by the wavenumber associated with the density modulations.

Thus, a plot of the dispersion relation (See Fig. 3.1(b)) demonstrates the periodicity

in k-space characteristic of waves in periodic systems, and the presence of frequency

band gaps, in which no mode may propagate. The laser pulse, represented in the

figure by a light-line, is phase matched to the mode at several different frequencies,

and this allows the excitation of modes at these frequencies.

3.2.2 Parabolic Plasma Channels

In this study we consider cylindrically symmetric corrugated waveguides with

densities of the form

n(r, z)

n0

=



1 + δ sin (kmz) +
1

2

r2

r2
ch

r ≤ rc

n(rc, z)

n0

r0 − r
r0 − rc

rc < r < r0

0 r ≥ r0

(3.3)

Here, n0 is the on-axis average density, δ is the density modulation amplitude,

km is the wavenumber of the density modulations, rch is the channel ‘width’ that

characterizes the density increase with radius, rc is the radius at which the linear
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‘cutoff function’ in the second line begins and r0 is the radius at which the density

is zero.

In Section 3.3 we will present numerical solutions to Maxwell’s equations and

the linear fluid equations for TM modes in plasma channels of this form. Before

doing so, we use a number of approximations to explore this system analytically.

In a cold, non-relativistic and linearly-responding plasma, an electromagnetic mode

with small but non-zero electric field divergence and field components (Er, Bθ, Ez)

satisfies the approximate wave equation

(
− 1

c2

∂2

∂t2
+

∂2

∂z2
+

1

r

∂

∂r
r
∂

∂r
− 1

r2

)
Er =

ω2
p0

c2

n(r, z)

n0

Er , (3.4)

where ωp0 is the plasma frequency evaluated for the density n0.

In the case rc → ∞, only the first part of Eq. (3.3) is relevant and we have

a so-called parabolic plasma channel, albeit with axial density modulations. The r

and z dependence in this density profile are separable, allowing an analytic solution.

In axially uniform channels (δ = 0), we recover the wave equation for modes in a

regular parabolic plasma channel. The solution is harmonic in z, and consists of a

linear combination of radial eigenmodes, of which there are an infinite number. The

solution to Eq. (3.4) for the fundamental radial eigenmode is

Er(r, z, t) = E0e
i(kzz−ωt) r

wch
e−r

2/w2
ch

Here, wch is the mode width given by 8/w4
ch = (ω2

p0/r
2
chc

2). The dispersion relation
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is

ω2 = ω2
p0 + k2

zc
2 +

8c2

w2
ch

When we include axial modulations (δ 6= 0), applying separation of variables

to Eq. (3.4) yields the same ODE in r as for the axially uniform case, and so the

ansatz for Er becomes

Er(r, z, t) = E0e
−iωtf(z)

r

wch
e−r

2/w2
ch . (3.5)

The dispersion relation is now

ω2 = ω2
p0 + k2

0c
2 +

8c2

w2
ch

, (3.6)

where k0 is the separation-of-variables parameter. This features in the ODE for

f(z):

d2f

dz2
+ k2

0f =
ω2
p0

c2
δ sin (kmz)f . (3.7)

This is the Mathieu equation, and as such cannot be solved analytically. We know

from Floquet’s theorem however that the solution must be of the form

f(z) = eikzz

∞∑
α=−∞

Aαe
−iαkmz . (3.8)

This solution implies a relation kz = kz(k0), and by inversion ω = ω(kz). In general,

all coefficients Aα are non-zero, and cannot be found except by infinite recursion.
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Substituting Eq. (3.8) into Eq. (3.7), we recover

[
k2

0 − (kz − αkm)2
]
Aα =

ω2
p0

c2

δ

2i

[
Aα−1 − Aα+1

]
. (3.9)

In the limit δ → 0, we have k0 = kz −αkm for the harmonic with Fourier coefficient

Aα. This is reconciled with the axially uniform solution k0 = kz by noting that in

this case, Aα = 0 for all α 6= 0. We construct an approximate dispersion relation for

small δ by using the δ → 0 solution and superimposing on an ω-kz plot an infinite

set of functions of the form

ω =
√
ω2
c + (kz − αkm)2c2 α ∈ Z , (3.10)

where ω2
c = ω2

p0 + 8c2γ/w2
ch (γ is the radial eigenmode number). This set of curves

deviates from the true dispersion relation near the intersections. At these points, the

true dispersion relation will exhibit band gaps in which no propagating wave solution

exists. Away from these points, and depending on system parameters, Eq. (3.10)

will be a good approximation to the true dispersion relation. A discussion of this,

including more accurate calculations of the dispersion relation, is found in Appendix

A.

An excited mode in this channel will consist of a sum of spatial harmonics,

each harmonic corresponding to a different value of α. The laser pulse traveling

at group velocity vg ' c will phase match to one of these harmonics, which will

result in the excitation of a mode. As seen in Fig. 3.1(b), this excitation occurs at
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frequencies given by the intersection points between the light-line of the laser pulse

and the dispersion curves. Replacing kz with ω/c in Eq. (3.10) gives us the following

estimate for the frequencies of the excited modes:

ω =
1

2αkmc
(ω2

c + α2k2
mc

2) α = 1, 2, . . . . (3.11)

We refer to modes excited in this way as Floquet modes. Thus, for each radial

eigenmode there is a spectrum of Floquet modes generated with frequencies given

by Eq. (3.11). We reinforce here that Eq. (3.11) is only strictly valid in the small-δ

limit, and the calculated frequencies are only accurate away from the intersections,

which indicate the positions of bandgaps in the exact dispersion relation. We note

that depending on the choice of modulation period, α = 1 does not necessarily label

the lowest excited frequency, but this is just a peculiarity of the notation.

3.2.3 Finite Radius Plasma Channels

In this work we do not consider true parabolic plasma channels (i.e. with

n → ∞ as r → ∞) beyond the discussion in this section, because the corrugated

plasma channels produced in the lab have a density maximum at a finite radius

followed by a decrease to zero density (as described by Eq. (3.3). We conclude

this section with a brief discussion of two relevant differences between finite-radius

channels and parabolic plasma channels.

The first difference is the fact that finite radius channels support a finite num-

ber of modes, unlike parabolic plasma channels which support a denumerably infi-
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nite number of radial eigenmodes. To estimate the number of modes a channel will

support, we consider the local dispersion relation for an axially smooth parabolic

channel:

ω2 = ω2
p0

(
1 +

r2

2r2
ch

)
+ k2

zc
2 + k2

⊥c
2 . (3.12)

If the finite channel supports Γ modes, then we assume that the dispersion relation

for these modes is similar to that for the first Γ modes of the parabolic channel, i.e.

ω2 = ω2
p0 + k2

zc
2 +

8γc2

w2
ch

γ = 1 . . .Γ . (3.13)

Combining these two equations and using the relationship between rch and wch de-

scribed in this section, we obtain a simple expression for the perpendicular wavenum-

ber:

k2
⊥ =

4

w2
ch

(
2γ − r2

w2
ch

)
. (3.14)

A mode is bound if the perpendicular wavenumber passes through zero at some

radius, and so if the density maximum in the channel exists at radius rc, modes for

which
√

2γ < rc/wch will be bound. Alternatively, the number of bound modes is

Γ = int(r2
c/2w

2
ch) . (3.15)

The second difference between finite-radius channels and parabolic plasma channels

is that in the finite case, the energy in an EM mode may ‘leak’ through the channel

wall and couple to vacuum electromagnetic modes. Thus, an excitation propagating
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down the channel will deplete in a finite distance. Of course, this is true for both a

laser pulse propagating down a channel (and thus losing energy that may otherwise

be converted to plasma waves or THz) and THz modes excited by the pulse. A

WKB treatment of laser depletion in a smooth channel may be found in [35]. The

rate at which depletion occurs is governed by the transmission coefficient, which

in general depends on the height and thickness of the wall of the channel. In the

following sections we will study numerically the emission of THz radiation from the

sides of a channel described by Eq. (3.3). This emission corresponds to THz modes

leaking from the channel in the manner described here.

3.3 Code Details and Verification

3.3.1 Model and Assumptions

The main purpose of this chapter is to describe a series of simulations carried

out to determine the characteristics of the THz radiation emission from of a cor-

rugated plasma channel. The THz radiation is the result of currents generated by

the ponderomotive force of the laser pulse. For both linearly and radially polarized

pulses, the ponderomotive force is cylindrically symmetric, and so we expect the

THz modes to be TM modes consisting of components Er, Bθ and Ez, which satisfy
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Maxwell’s equations:

1

c

∂Er
∂t

= −4πJr
c
− ∂Bθ

∂z

1

c

∂Ez
∂t

= −4πJz
c

+
1

r

∂

∂r
(rBθ)

1

c

∂Bθ

∂t
=
∂Ez
∂r
− ∂Er

∂z
. (3.16)

The current components Jr and Jz must be calculated by determining the

plasma response to the the ponderomotive force of the laser pulse and the field

components determined by the above equations. We do so by modeling the plasma

as a linear, non-relativistic, cold electron fluid with a fixed ion background. The

evolution of the current J = −en0(r, z)v, where the density n0(r, z) is given by

Eq. (3.3), is determined by solving the momentum equation

me
∂v

∂t
' −eE −∇Vp − νmev , (3.17)

where ν is a collisional damping factor and Vp is the ponderomotive potential of the

laser pulse. This is typically written as

Vp(r, z, t) =
mec

2

2
|a(r, z, t)|2 , (3.18)

where a(r, z, t) is the normalized vector potential of the laser pulse. In this work,

we consider the laser pulse to be propagating but non-evolving, and so the pondero-

motive potential is simply a known function of r and z− vgt that is substituted into

42



Eq. (3.17). We use a potential of the form

Vp(r, z − ct) = Vp0e
−2r2/w2

ch cos4

(
π
z − ct
cτ

)
− cτ

2
≤ z − ct ≤ cτ

2
, (3.19)

where τ is the laser pulse duration.

There are conditions that must be satisfied if the system is to be modeled

accurately in the manner described above. To begin, the ponderomotive potential

must be sufficiently small that both the quiver velocity of the electrons and their

cycle averaged motion is non-relativistic. While we do not simulate behavior on

the optical timescale, the size of the ponderomotive potential is related to the laser

frequency and electric field amplitude, hence the relevance of this condition. The

inequality that must hold for both of these conditions to be satisfied is

Vp0
mec2

=
1

2
|a0|2 � 1 , (3.20)

where a subscript zero indicates a peak value.

Next, we consider the cold fluid limit. For the plasma to be considered cold,

there must be insufficient time for the fluid to thermalize on the timescale of the

electron oscillations. This is expressed simply through the inequality

kvth � ω , (3.21)

where vth ∼
√
kBT/me is the thermal electron velocity and ω and k are a typical

frequency and wavenumber of THz radiation. Since the THz is generated by a pulse
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moving at vg ' c we expect ω/k ∼ vg, and Eq. (3.21) should be satisfied.

To determine whether we may treat the ions as a fixed, neutralizing back-

ground, we must compare the time scale of the laser pulse to the inverse of the

ion plasma frequency. Since we are interested in generating radiation in the THz

regime, our laser pulse must be short enough that the bandwidth of its envelope en-

compasses the desired THz frequencies. Moreover, the amplitude of the pulse shape

in frequency space must be large at the desired frequencies. In order to generate

radiation in the range 1 to 10 THz, our laser bandwidth must be of the order of

hundreds of THz, which means we must consider pulse durations of less than 100

fs. By comparison, the inverse ion plasma frequency is 750 fs at n0 ∼ 1× 1018 cm−3

and 7.5 ps at n0 ∼ 1× 1016 cm−3. Since the inverse ion plasma frequency represents

the shortest timescale of ion motion, we conclude that if we restrict ourselves to

sufficiently short pulses and sufficiently low densities, we may consider the ions as

being stationary.

Finally we consider the validity of the assumption that the laser pulse is non-

evolving. This is potentially a stringent approximation, and importantly, we must

consider two regimes of validity in dealing with the simulation results. In the first

regime, the approximation is valid if the pulse doesn’t change shape or amplitude

significantly over the length of the simulation window, which will be on the order of

tens of density modulations, or a few millimeters. In this case, quantities measured

over this distance for a non-evolving laser pulse will match those that would be

measured for an evolving laser pulse. We may then estimate the pulse depletion
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length by writing down the following energy-conservation expression:

1

U2
L

dUL
dt

=
P

U2
L

' 〈PT 〉
U2

0

. (3.22)

Here, UL(t) is the energy in an evolving pulse, P (t) is the power transferred to

plasma currents by an evolving pulse, U0 = UL(0) is both the initial energy of an

evolving pulse and the energy of a non-evolving pulse in our simulation, and 〈PT 〉 is

the average power transferred to the plasma by a non-evolving pulse of energy U0.

In the linear regime, the pulse energy UL(t) scales as Vp, and power P (t) lost

from the pulse scales as V 2
p . If we assume that the pulse shape doesn’t change signifi-

cantly over the depletion length, then the middle part of Eq. (3.22) is approximately

constant. If we are within the first regime of validity, we may estimate the value of

this constant using the right-hand-side. The solution to Eq. (3.22) is

UL(t)

U0

=

(
1 +
〈PT 〉t
U0

)−1

. (3.23)

Here we identify the depletion length of the pulse LD = cU0/〈PT 〉.

The second regime of validity concerns whether or not the above depletion esti-

mate is accurate, because of pulse evolution effects that occur on scale lengths longer

than the simulation length, but shorter than the estimated depletion length. These

can be both linear shape evolution effects, such as group velocity dispersion, and

non-linear evolution effects such as pulse compression due to density-perturbation-

induced group velocity variation, and redshifting due to phase velocity variation
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[36]. We note that within our model, LD scales inversely with pulse energy, and

results for different pulse energies can be found by rescaling the result of a single

run with a reference pulse energy. Therefore, we must consider the validity of the

approximation for both the depletion length obtained from our simulation results,

and for depletion lengths obtained through rescaling our results. Conflicts in this

area will be discussed when we present rescaled depletion estimates in Section 3.4.

Returning to the first regime of validity, there are several pulse evolution effects

to consider. First we consider pulse depletion due to plasma wake excitation. In

an axially uniform plasma, this is maximized when the pulse length matches the

wavelength of the plasma oscillations. For plasma densities of 5× 1017 to 2.5× 1018

cm−3, this occurs for pulse lengths 160 to 70 fs respectively. The depletion length

for a pulse initially at linear resonance in the weakly relativistic regime (a2
0 � 1) is

given by[36, 37]

kpLdp '
17.4

a2
0

(
k0

kp

)2

, (3.24)

where k0 is the central wavenumber of the laser pulse and kp = ωp0/c. For a laser

energy of 0.01 J, wavelength of 800 nm and pulse width of 15 µm (a0 ' 0.1), the

depletion lengths for the given density range go from about 3300 to 300 cm. For a

laser energy of 0.5 J (a0 ' 0.8), which is the energy to which we intend to rescale

our results, the depletion lengths range from around 70 to 6 cm. We note that this is

the depletion length for a pulse with initial length equal to the plasma wavelength.

Our pulse is somewhat shorter than the ambient plasma wavelength, and since the

plasma wavelength in our simulation changes because of the density modulations,
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the pulse spends some time even further away from resonance. Hence, we expect

the pulse depletion length in a modulated channel to be larger than that predicted

by Eq. (3.24).

Another effect to consider is group velocity dispersion (GVD). This effect

may be estimated by considering the range of group velocities in a pulse of length

cτ in configuration space and its corresponding length in Fourier space [38]. The

propagation distance over which the pulse doubles in length is given by

LGVD ' k0c
2τ 2

(
k0

kp

)2

. (3.25)

For our given density range, LGVD ranges from about 600 to 100 cm, which is

significantly longer than the simulation length.

Although GVD happens relatively slowly, the pulse may still disperse due to

the Floquet structure of the EM modes in our system. The laser pulse is composed of

Floquet modes, meaning that each mode consists of a set of spatial harmonics. For

any given mode the group velocity of each spatial harmonic is the same, however

if the bandwidth of the pulse overlaps a band gap, some of the modes will have

significantly different group velocities than they would in a pulse traveling in a

uniform channel, leading to rapid pulse deformation.

This, however, is not an issue in our system. The pulse bandwidth extends

over several bandgaps, which at high frequency are separated by ω ' kmc/2. The

bandgaps themselves however, have essentially zero-width in the high frequency

regime. This may be seen by referring to the calculation performed in the Appendix,
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Figure 3.2: Plot of normalized bandgap size as a function of normalized central
bandgap frequency, obtained from the numerical calculation of the dispersion rela-
tion, performed in the Appendix. Note that the bandgap size vanishes rapidly with
increasing frequency, at a point far below the typical frequencies associated with an
optical pulse.

the relevant results of which are displayed in Fig. 3.2. Note that the frequency

at which the bandgap size vanishes is significantly lower than the laser frequency,

hence the approximate dispersion relation in Eq. (3.10) becomes exact in the high-

frequency limit. Our conclusion therefore is that although an optical-frequency

pulse in a corrugated system will be composed modes consisting of several spatial

harmonics, the dispersion structure of each of the harmonics in a mode will be the

same (up to a k offset) as those of the corresponding mode from a pulse in an axially

uniform channel.

In order to reinforce the validity of the non-evolving pulse approximation, we

perform simulations with the code WAKE [39] using our channel parameters over

many Rayleigh lengths. Plots (a) to (c) of Fig. 3.3 show the Fourier transforms of the

pulse envelope from such a simulation, conducted for a modulated plasma channel

with central density n0 = 1018 cm−3, modulation amplitude δ = 0.9 and modulation

wavelength 50 µm for a pulse of length 50 fs, width 15 µm, wavelength 800 nm
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and normalized vector potential amplitudes of a0 = 0.2, a0 = 0.4 and a0 = 0.8.

As can be seen from the plots, the frequency content of the weakest pulse changes

little over a length of 40 Rayleigh lengths, which corresponds to about 15 cm for

a 15 µm-width pulse. Such a pulse is consistent with the first regime of validity.

Over this length, the frequency content of a stronger pulse changes significantly.

In Fig. 3.3(b), there appears to be some pulse broadening, whereas in Fig. 3.3(c),

significant pulse depletion has occurred. In Fig. 3.3(d), we see that the frequency

content of even a strong pulse changes little over one Rayleigh length, and so it is

marginally consistent with the first regime of validity.

From the preceding discussion, we conclude that we can obtain useful results

from our model. In particular, the first regime of validity of the non-evolving ap-

proximation holds over a wide range of parameters. Care must be taken when using

the results to obtain estimates of the depletion length, since violations of the second

regime of validity may occur. In the case of low energy pulses, the depletion length

LD often exceeds the group velocity dispersion length LGVD, while in the case of

high energy pulses, significant changes in pulse shape occur despite the the deple-

tion length being much shorter. In this discussion we have neglected instabilities

(such as the Raman instability) that cause the pulse shape to change. These can

be ignored for a 50 fs laser pulse, and we consider any effect they may have as a

subject for future study.
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Figure 3.3: Plots of the Fourier transforms of 50 fs laser pulses with wavelength
800 nm and spot size 15 µm, recorded initially (blue) and after propagation for 40
Rayleigh lengths for normalized vector potential amplitudes of (a) a0 = 0.2, (b)
a0 = 0.4 and (c) a0 = 0.8. These potentials correspond to pulse energies of 0.03,
0.1 and 0.5 J respectively. Plot (d) is for a0 = 0.8 for a pulse propagating over one
Rayleigh length. These plots were generated using the simulation WAKE.
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3.3.2 Algorithm

The fact that the plasma responds in a linear fashion allows us to use a simple

algorithm to simulate the time evolution of the fields and currents. The electric and

magnetic field components are solved on a two-dimensional Yee grid [40] as follows:
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. (3.26)

Here, n in the time index, i is the radial index and j is the axial index. The magnetic

field resides at gridpoints labeled by integers, while the r and z components of the

remaining quantities are offset by one-half step in z and r respectively. The electric

field components are evaluated at half-integer timesteps while the magnetic field

and the current is evaluated at integer timesteps. The current can be treated in this

way because of the absence of the convective term in the momentum equation, and

because the ponderomotive force is a known function Vp(r, z − vgt) and so can be

evaluated at any point in space and time.

The damping term in Eq. (3.17) requires a manipulation to allow the evaluation

of the current. Writing vn+ 1
2 = 1

2
(vn + vn+1) and approximating the derivative as a

central difference centered around n+ 1
2
, we have

(
1 +

ν∆t

2

)
mev

n+1 =

(
1− ν∆t

2

)
mev

n −∆t
(
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2 + ∇V
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2
p

)
. (3.27)
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From this, it is a simple matter to calculate the current components [Jr]
n
i,j+ 1

2

and

[Jz]
n
i+ 1

2
,j

via J = −en0(r, z)v.

The Yee algorithm is known for having lenient stability requirements compared

to algorithms of similar complexity defined using a common grid for all field com-

ponents. A necessary condition for stability is the Courant-Friedrichs-Lewy (CFL)

condition. Informally, this states that a timestep must be smaller than the time

taken for a disturbance to propagate from one gridpoint to the next. For Maxwell’s

equations in vacuum on a two dimensional Cartesian mesh with step sizes ∆x and

∆z, this condition is

1

c

1

∆t
≥
√

1

∆x2
+

1

∆z2
. (3.28)

The CFL condition is necessary but not sufficient for stability, and to study

the stability our algorithm we resort to a Von-Neumann analysis of Maxwell-fluid

equations, again in a two-dimensional Cartesian system, and without considering

the damping term or ponderomotive force of Eq. (3.27). This analysis involves

performing a spatial Fourier transform on Eq. (3.26) and Eq. (3.27), and finding a

solution of the form Un+1 = G ·Un, where Un = (E
n− 1

2
x , Bn

θ , E
n− 1

2
z , vnx , v

n
z )T. G is

the amplification matrix for the algorithm, and the condition for stability is that

the magnitude of the eigenvalues of this matrix are less than or equal to unity.

This problem is not tractable analytically. We resort to finding the eigenvalues

numerically and displaying them as stability curves. For timesteps marginally satis-

fying the CFL condition most eigenvalues have magnitude unity, indicating neutral

stability. The exception is for the eigenvalue associated with E
n− 1

2
x , where an un-
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Figure 3.4: Stability surface cross sections evaluated at kz∆z = π for the eigen-

value associated with E
n− 1

2
x of the amplification matrix for a Cartesian two-

dimensional Maxwell-Fluid system without damping. We have (a) dt = dtCFL,
(b) dt = 0.95 dtCFL and (c) dt = 0.9 dtCFL.

stable region is present. This is most easily viewed by looking at a cross section of

the stability surface for this eigenvalue, evaluated at kz∆z = π. The results for this

are found in Fig. 3.4. We note that only a small safety factor of ∼ 0.9 is required

to bring the algorithm to a state of neutral stability.

The stability analysis performed here ignores various aspects of our simulation

that will affect stability, including boundary conditions, curvilinear effects and the

inclusion of a damping term. Nonetheless, our code performs in a stable manner

with a safety factor of 0.95 over a sufficiently long period as to obtain meaningful

results.

3.3.3 Implementation

We implement this algorithm using the relatively new NVidia Tesla General

Purpose Graphical Processing Units [41] designed for use in desktop-scale parallel

computation. We choose a spatial step size by identifying the various length scales in

the system (the plasma wavelength, the modulation wavelength, etc) and choosing
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a grid size that resolves the smallest of these. Then, we use the CFL condition with

our safety factor of 0.95 to calculate the required timestep.

The radial boundary conditions for a cylindrical coordinate system at the

origin are Er = Bθ = Jr = 0 and ∂Ez/∂r = ∂Jz/∂r = 0. Noting that the structure of

a Yee cell means that we only need to specify Ez and Jz at the radial boundaries, we

choose the inner simulation boundary to be at r = −∆r/2 and set [Ez]
n+ 1

2

− 1
2
,j

= [Ez]
n+ 1

2

+ 1
2
,j

and [Jz]
n
− 1

2
,j

= [Jz]
n
+ 1

2
,j

.

For the outer radial boundary, we use a Perfectly Matched Layer (PML) [42].

The purpose of this is to ensure that any THz radiation that escapes radially from

the channel will not be reflected from the boundary. For simplicity, we implement a

Cartesian PML and choose the radial system size to be large enough that curvilinear

effects are minimized in the region where the PML is present. This means that we

replace the radial derivatives in our equations with

∂

∂r
→ 1

1 + iσ(r)/ω

∂

∂r
, (3.29)

where σ(r) is the PML strength factor that vanishes for some r < rPML. This leads

to plane wave modes that develop complex wavenumbers in the region r > rPML:

exp [i(kr − ωt)]→ exp [i(kr − ωt)] exp [−σ(r)r/c ] . (3.30)

We choose a parabolic strength factor σ(r) ∝ (r−rPML)2. This is to avoid numerical

reflections generated by a sudden change from vacuum to PML. The width of the
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PML is chosen to be two plasma wavelengths, since the plasma frequency is similar

to the frequencies of the THz modes we expect to generate. This, along with setting

the maximum value of σ(r) to several times the plasma frequency, will allow sufficient

space for the outward propagating modes to decrease to negligible amplitude.

For the axial boundary, we use periodic boundary conditions. This allows the

laser pulse to pass through the system several times, giving time for transients to die

away before any THz measurements are made. This process is aided by ramping the

ponderomotive potential amplitude Vp0 from zero to full strength over the course

of one pass of the pulse. The collisional damping term in Eq. (3.17) is set so as

to reduce the laser wake significantly after one laser pass, thus preventing overlap

of the pulse with its wake from the previous pass. For these simulations, we use

ν = 8c/LS, where LS is the chosen system length. For a density of n = 1018 cm−3

and a system length of .32 cm (both typical values), this is 1.3 percent of the plasma

frequency.

3.3.4 Post-Processing

Once the laser pulse has passed through the system several times, we must

determine the amount of THz radiation emitted. On the last pass of the laser

pulse, we store various field quantities for this purpose. We store for all z and t

the r-integral of the product of the radial part of the ponderomotive potential and

the current divergence for the purpose of calculating the power transferred to the

plasma by the laser pulse. We also store for all z and t the z-component of the
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electric field and the magnetic field at a fixed radius R outside the channel for the

purpose of calculating the radial Poynting flux, and for all r and t the r-component

of the electric field and the magnetic field at a fixed axial position Z for the purpose

of calculating the radial Poynting flux.

Storing information about individual timesteps allows us to calculate time-

averaged quantities as sums in frequency space. Writing the ponderomotive poten-

tial as Vp(r, z − ct) = Vp0g(z, t)h(r), we have

〈PT 〉 =

∫
dω

2π
pT =

∫
dω

2π
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− 2πVp0

eT

∫
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)
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2π
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∫
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2π

(
− c

2T
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c

2T
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)
, (3.31)

where tilde indicates a Fourier transform in time and the lower case letters/quantities

in parentheses are power densities in frequency space. For the simulation, integrals

are replaced by the appropriate sums and T is the duration of one laser pulse pass.

Studying the power densities will reveal the frequencies of the excited modes. In

addition to calculating these quantities, we may gain information about the spatial

structure of the modes by looking at the k-z Fourier transform of the stored field

quantities.
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Figure 3.5: Plots from a simulation of a laser pulse passing through a uniform plasma
showing (a) density perturbation δn/n0 calculated analytically (blue line) and nu-
merically (red circles) for a uniform plasma and (b) difference between power input

and output as a function of normalized stepsize squared. Plots of Ẽz(kz, ω) from
a simulation of a laser pulse passing through a parabolic plasma channel evaluated
for (c) vg = c at r = 0 and (d) for vg = 2c at r > r0.

3.3.5 Code Verification

Before using the code to generate results, we must ensure correct operation.

We do this by comparing numerical results to analytic results, and by verifying

energy conservation in the small-stepsize limit. Various plots associated with the

first stage of code verification are shown in Fig. 3.5.

Fig. 3.5(a) shows the linear density perturbation as a function of axial distance

calculated analytically (blue line) and numerically (red circles). In the simulation,
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the laser pulse is allowed to pass through the system several times before the density

perturbation is recorded, and the small oscillations leading the pulse are the damped

wake from the previous laser pass. Fig. 3.5(b) shows the quantity ∆P = 〈PT 〉−〈PL〉

as a function of the square of the normalized timestep, where 〈PL〉 is the power

extracted from the system due to the collisional damping term. The power difference

∆P varies linearly, as expected from the second-order numerical error associated

with the chosen algorithm. It converges in the limit dt→ 0 to a value six orders of

magnitude less than the individual power measurements, hence we conclude that in

this case, our code displays the appropriate energy conservation properties.

In Figures 3.5(c) and 3.5(d) we see Fourier transforms of Ez generated by a

laser pulse in an axially uniform parabolic plasma channel. In both plots the hor-

izontal line indicates the plasma frequency on axis, while the curved lines are the

dispersion curves for the first three radial eigenmodes. In 3.5(c), the transform is

taken on axis. There is a strong excitation at the plasma frequency, as evidenced

by the peaks of Ẽz(kz, ω) at the intersection of the light line and the plasma fre-

quency, which is consistent with the expectation that strong excitation requires

phase matching.

In 3.5(d), the transform is taken at a radius outside the plasma channel and

with the laser pulse group velocity set to vg = 2c. While not physically realistic, this

is possible in the code because the pulse is modeled as a force that depends on z−vgt,

where vg is a free parameter. Here there are several excitations, corresponding to

the lowest frequency EM modes in the channel. There is no plasma wave excitation,

since the density at the point of measurement is zero. While we match the laser
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Figure 3.6: Axial and radial power flow density in frequency space for (a) uniform
plasma, (b) δ = 0.05 axial corrugations but no radial density dependence, (c) a finite
radius plasma channel with no axial corrugations and (d) a finite radius plasma
channel with δ = 0.05 axial corrugations.

pulse spot size to the fundamental mode width (which is a requirement if our non-

evolving laser pulse assumption is to be valid), the ponderomotive force consists

of a broad spectrum of radial eigenmodes. Since this is responsible for driving the

current, we expect to see excitations above the fundamental.

Now we look at axial and radial average power outputs recorded for the cases

of δ = 0 and δ = 0.05 in both radially uniform plasmas and finite radius plasma

channels. We choose a density of n0 = 1018 cm−3, 16 corrugations of length 50 µm

and a laser pulse mode width of wch = 15 µm. In the radially uniform case, the

mode width doesn’t carry its usual physical interpretation, and is to be thought of
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as just a length scale. In all cases, we use a laser pulse with an energy of UL = 0.01

J and we choose cutoff parameters rc = 2wch and r0 = 3wch.

In 3.6(a), we see a very small excitation at around the plasma frequency (which

for our chosen density is 9.0 THz). This is to be expected, since in a uniform plasma

we expect no EM excitation, and plasma waves have no Poynting flux. In 3.6(b),

we see much larger excitations. The radial Poynting flux is an EM mode, since

the plasma density is zero at the point of measurement. The nature of the axial

excitations is not clear, since in a channel with non-uniform density, the magnetic

fields generated by the plasma wave currents don’t sum to zero. In these simulations

however, the axial Poynting flux is of less importance than the radial Poynting flux.

This is because the periodic boundary conditions make our channel infinite in length,

and so even if we could isolate the contribution to the axial flux from EM modes,

the recorded value would not be an accurate representation of the amount of THz

exiting the end of a finite-length waveguide.

In 3.6(c), we again see an excitation in the axial power flow plot. There is

no significant excitation in the radial plot, consistent with δ = 0. In 3.6(d), we see

excitations between 10 and 20 THz in the radial power flow plot. For comparison,

the first seven predicted Floquet frequencies for the fundamental radial eigenmode

are 12.7, 13.5, 15.4, 16.4, 17.7, 20.2 and 22.9 THz. We note that a much smaller

amount of radiation escapes radially than in the case of 3.6(b). This is because the

generated modes are unbound, and have a Rayleigh length much shorter than the

simulation length.

Finally, we study the power balance in the four scenarios in Fig. 3.6. The
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Figure lim
∆t→0

∆P (W) lim
∆t→0
〈Pr〉 (W)

3.6(a) 0.117 0.000164
3.6(b) 306 305
3.6(c) 0.0930 0.000276
3.6(d) 1.47 0.404
δ = 0.9 475 472

Table 3.1: Values of the difference between power input and output ∆P , and the
radial power flow 〈Pr〉, for the different scenarios in Fig. 3.6. For comparison, the
result for a full-strength (δ = 0.9) channel is listed.

results are listed in Table 3.1. In the case of Figures 3.6(a), 3.6(c) and 3.6(d), we

see that the different measures produce somewhat different results. This is of no

concern however, since the ∆P results are six orders of magnitude less than their

respective values of 〈PT 〉 and 〈PL〉, and are probably influenced by floating point

error. Accordingly, the result for 3.6(b) is much more accurate. A similar level of

accuracy is demonstrated in the last row of the table, in which we record the results

for a ‘full-strength’ corrugated channel of the type that will be studied in the next

section.

3.4 Simulation Results

We begin by presenting results for the total power output calculated from the

simulation for various densities and laser spot sizes. Fig. 3.7 contains the average

radial power exiting the side of the waveguide as well as the average axial power flow,

the percentage of laser energy converted to THz and the average angle of emission.

These results are recorded for a range of densities and mode widths, for a laser pulse

energy U0 = 0.01 J, modulation amplitude δ = 0.9 and density cutoff parameters
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Figure 3.7: Plots involving various quantities as a function of density for channel
widths wch = 15 µm (blue, solid), wch = 25 µm (red, dashed), wch = 50 µm (green,
dash-dot) and wch = 75 µm (magenta, dotted). The quantities are (a) average
power flow in the radial direction, (b) average power flow in the axial direction, (c)
percentage of laser energy converted to THz and (d) angle between the Poynting
vector measured outside the channel and the axis.

rc = 2wch and r0 = 3wch. The pulse length is 50 fs and the optical wavelength (which

is used in conjunction with U0 to determine the peak ponderomotive potential) is

800 nm. The density modulation period is 50 µm and the total system length is .32

cm.

In Fig. 3.7(a) we see the radial power flow as a function of average on-axis

density, measured for several different mode widths. We see that the largest THz

generation occurs for small mode widths. In general, this occurs because we have

kept the energy content of the pulse fixed, and so the peak ponderomotive potential
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is larger in the case of smaller mode width. The amount of THz produced increases

with density, because the work done on the plasma by the laser pulse is larger for

larger density.

In Fig. 3.7(b) we see the axial power flow as a function of average on-axis

density, measured for several different mode widths. This quantity may take a neg-

ative value since the mode may propagate either way along the channel. Backwards

propagating waves come from lightline intersections with the dispersion function

when its gradient is negative. We see that the axial flow is typically several times

smaller than the radial flow, which is a desirable property because of the difficulties

in calculating accurately the THz output from the end of a real channel.

In Fig. 3.7(c) we plot the ratio of 〈Pr〉 to 〈PT 〉 as a percentage, which serves as

an estimate of the fraction f of laser energy that is converted to THz. This can be

seen by writing f ∼ 〈Pr〉τD/U0 and replacing the expression for the depletion time

τD with that calculated in Section 3.3. Importantly, both 〈Pr〉 and 〈PT 〉 scale like

V 2
p in the linear regime, which means that the fraction of laser energy converted to

THz is independent of the pulse energy.

We may now estimate the amount of THz generated. The peak value of f in

Fig. 3.7(c) is less than one percent. We note however that these results are from

a system with artificially high collisional damping, which in these simulations is

ν = 8c/LS, and so we expect the recorded conversion fraction is lower than that

for a real channel. Extrapolation from a study of the variation of f with damping

rate, along with crude estimates of the effect of damping (for example multiplying

f by exp (νr0)) suggest that at most, the presence of damping reduces f by a factor
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U0 = 0.01 J U0 = 0.5 J
wch (µm) ETHz (mJ) LD (cm) ETHz (mJ) LD (cm)

15 0.12 1000 6.1 22
25 0.15 3700 7.8 76
50 0.054 16000 2.7 340
75 0.0034 37000 0.17 780

Table 3.2: Values of energy emitted in THz radiation and laser pulse depletion length
for two different values of pulse energy and various mode widths. These quantities
are calculated for a density of 1.3×1018 cm−3, corresponding to peaks in Fig. 3.7(c).

of two. Using a conversion fraction of 2f , the values of the pulse depletion length

are displayed in Table 3.2 for different mode widths. The depletion length was

calculated for a U0 = 0.01 J pulse and rescaled for a U0 = 0.5 J pulse at a density

of 1.3 × 1018 cm−3, which corresponds to a peak in Fig. 3.7(c) for both small and

large mode widths. The rescaling was accomplished using the fact that LD scales

like V −1
p .

The results in Table 3.2 must be discussed in the context of the non-evolving

pulse approximation, details of which are found in Section 3.3. The depletion lengths

calculated for the low energy pulse are longer than the group velocity dispersion

lengths, although the amount of THz produced in so low that this case is of little

interest. The high energy pulse produced sufficient THz to be of interest, although

for small mode widths the plasma response is weakly relativistic (a0 = 0.8 for the 15

µm case), and so the pulse evolution will not be represented accurately by Eq. (3.23).

During non-linear pulse evolution in an axially uniform channel however, the

pulse initially compresses due to the reduction in plasma density behind the pulse.

During this phase, the depletion rate increases. At later times the pulse lengthens
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and the depletion rate is reduced. Let us assume that the qualitative features of

non-linear pulse evolution in a corrugated channel are similar to those in an axially

uniform channel. Then, since most of the pulse energy is depleted during the first

phase of pulse evolution and the THz production rate is larger for stronger pulses,

the values of LD for the 0.5 J pulse serve as an upper bound for an effective depletion

length, defined to be the length over which significant THz production occurs in a

real channel. We note that linear features of pulse evolution in a corrugated channel,

such as the fact that the depletion length is longer than that given in Eq. (3.24) due

to variation of plasma wavelength with density modulations, are already accounted

for in the depletion estimates given in Table 3.2.

An interesting feature of Fig. 3.7(c) is the presence of peaks in the value of

f at different densities. There are two possible reasons for this density-dependent

enhancement of THz output. The first reason is that the angle of the Poynting

vector outside the channel is not always perpendicular, as seen in Fig. 3.7(d). The

reason for this will be discussed later in this section. The result is that 〈Pr〉 is

enhanced when the measured angle is close to 90 degrees. Multiplying the data in

Fig. 3.7(c) by the sine of the angles in Fig. 3.7(d) reveals however, that this effect

in minimal.

The second reason is related to enhanced coupling of the laser to THz modes

at the so-called π and 2π points. These are the points on the dispersion curves

at which k/km = n and k/km = 2n respectively. Antonsen et. al. [33] discuss the

importance of these special points in their treatment of the delta-function periodic

profile. Of central importance in their calculation is a coupling constant that is
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proportional to the z-average of the electric field divergence, i.e.

I =
1

d

∫ d

0

dz∇ ·E , (3.32)

where d = 2π/km.

We may evaluate this for our density profile by assuming that the electric field

divergence takes the form of a Floquet solution, as is found in Eq. (3.8). Adding

this to its complex conjugate and integrating over one period of the structure yields

I =
∞∑

γ=−∞

(
2 Im{Bγ}

cos (kd)− 1

(k − γkm)d
+ 2 Re{Bγ}

sin (kd)

(k − γkm)d

)
. (3.33)

The π (2π) points occur when kd = nπ for odd (even) n. The second term in this sum

is a maximum when n = 2γ, which only occurs at a particular 2π point, and is zero

for all other 2π points and all π points. Conversely, the first term is an extremum for

all π points and vanishes for all 2π points. Because the dispersion curves, and hence

the lightline intersections, shift with changing density, there are special densities at

which the lightline intersects a dispersion curve at a π or 2π point. We can estimate

the densities at which the coupling is maximum by combining the trigonometric

functions in Eq. (3.33) with Eq. (3.11), which predicts the frequencies of generated

THz modes. The results depend on the lightline intersection number, which must

be determined by a frequency-space analysis of the system, and on the Fourier

coefficients Bγ, which are not known. This makes it impossible to determine exactly

the coupling as a function of density, however for the first lightline intersection in
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a 50µm channel (this choice is justified later), the 2π points occur at densities of

1.3×1018 and 2.2×1018 cm−3, while the π points occur at densities of 8.5×1017 and

1.7× 1018 cm−3. Comparing these number to Fig. 3.7(c), we see that the enhanced

THz output occurs at densities corresponding to 2π point intersections.

The results presented thus far have been for a fixed pulse length of 50 fs.

For the purpose of optimizing THz production, it is useful to study the effects of

pulse length on power output. Fig. 3.8 contains the results of a study conducted

for pulse lengths ranging from 6 to 150 fs, again for a pulse energy of U0 = 0.01 J,

modulation amplitude δ = 0.9, density cutoff parameters rc = 2wch and r0 = 3wch,

optical wavelength 800 nm, density modulation period is 50 µm and total system

length is .16 cm. The smaller system length is necessary because a larger resolution

is required to resolve the shorter pulse lengths considered. Since we choose the

damping to vary with inverse simulation length, the result of this change is to

reduce the amount of THz radiation that escapes from the channel. Note that this

reduction would not appear in an experimental result, in which the damping rate

would be independent of simulation length.

The prominent feature of Fig. 3.8(a) is the decrease in power output with

increasing pulse length over much of the domain, with a maximum at τ ' 12

ps. The decrease occurs since the ponderomotive force is stronger for smaller pulse

lengths, both because the gradient of Vp scales like 1/τ and because the pulse energy

is fixed, leading to a variable peak ponderomotive potential. In Fig. 3.8(b) we see

the average power transferred from the laser pulse to the plasma. This is linear in

the range 25 to 100 fs, with some deviation outside this range. This quantity varies
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Figure 3.8: Plots involving various quantities as a function of pulse duration for
density n0 = 1.25× 1018 cm−3 and channel width wch = 25 µm. The quantities are
(a) average power flow in the radial direction, (b) average power transferred from
the laser pulse to the plasma, (c) percentage of laser energy converted to THz and
(d) average power transferred from the laser pulse to the plasma rescaled for fixed
peak ponderomotive potential. Note that at τ = 50 fs, these quantities do not match
the results in Fig. 3.7 because the simulation length was shorter, and the damping
rate ν was necessarily larger.
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with τ for the same reason as 〈Pr〉 >. The increase in the gradient of 〈PT 〉 > at

small pulse lengths occurs because the bandwidth of plasma excitations increases

rapidly as τ → 0, and so more energy is transferred to plasma waves. The increase

in energy going into plasma waves means that less is available for THz radiation,

which explains the peak seen in (a).

In Fig. 3.8(c) we see the ratio of 〈Pr〉 to 〈PT 〉, which we again interpret as

the fraction of pulse energy that can be converted to THz radiation. As before,

the combination of these two quantities result in a maximum, although this now

occurs at τ ' 25 ps. Thus, our previous choice of a 50 fs pulse did not result in

the maximum THz generation. Fig. 3.8(d) contains the same results as (b), but

rescaled so that the ponderomotive potential is fixed. The pulse energy is no longer

constant, but its value for a 6 fs pulse is U0 = 0.01 J. The purpose of this last plot

is to verify that the results presented here are consistent with the fact that for fixed

a0, the maximum density perturbation occurs when the pulse duration matches the

plasma period, which in this case is ∼ 100 fs.

Now we present recorded values of the average radial power flow per unit

frequency. We begin by studying the effect of different cutoff radii on the THz

output, and then study the power spectrum as a function of density. The first set

of results, seen in Fig. 3.9, are for channels with mode widths of wch = 15 µm

and wch = 50 µm, both with an on-axis mean density is n0 = 1018 cm−3. The

cutoff function is found in Eq. (3.3), and we consider 1.5wch ≤ rc ≤ 3.5wch and

r0 − rc = wch. According to the discussion in Section 3.2, different values of rc will

result in different numbers of quasi-bound modes in the channel. The pulse length
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Figure 3.9: Average radial power spectral density for different cutoff radii and for
corrugated channels with mode width (a) wch = 15 µm and (b) wch = 50 µm. The
topmost plots have rc = 1.5wch, and the cutoff radius increases by .5wch for each
successive plot. The subfigure to the right of each power plot displays a z-averaged
radial density profile.

is once more 50 fs, and remaining parameters are the same as for previous results.

In Fig. 3.9(a) we see several different excitations. For rc = 1.5wch (top),

there should only be one bound mode in the system, and so the visible excitations

correspond to several different Floquet modes of the fundamental radial eigenmode.

These excitations are somewhat broader than those for larger cutoff radius because

for small rc, the mode loses energy through the channel wall more rapidly. There

is therefore a damping rate associated with the measured modes, and broadening

occurs. For larger values of rc we see higher frequency excitations. We will show later

that the excitation at about 23 THz that appears for rc > 2.5wch is a second order

radial eigenmode. The appearance of second order radial eigenmodes is consistent
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with the number of modes we expect the channel the support, as calculated from

Eq. (3.15).

Fig. 3.9(b) shows a single peak at about 12 THz for small values of rc, and

two peaks for larger cutoff radii. In this case, the frequency difference between

successive Floquet modes is at most 3 THz, while the frequency difference between

(the same Floquet excitation of) successive radial eigenmodes is at most 0.6 THz.

These frequency differences are less than in the case of a smaller channel, and so

while the excitations occur at around the expected frequency, we cannot claim them

to be modes of a particular type and index.

We may study the excitations we see here in more detail by looking at the

z-t Fourier transform of a field quantity measured outside the channel. This result

is shown for the case rc = 2wch in Fig. 3.10, along with the lightline and a set of

dispersion curves. We make this choice since this channel has one quasibound mode,

but may still leak a significant amount of radiation. We can easily identify in these

plots the modes seen in Fig. 3.9. We see at each excited frequency several different

axial wavenumbers. These different wavenumbers come from the different spatial

harmonics that comprise the Floquet modes, and as such they are separated by km.

In vacuum these correspond to EM waves with wavevectors that are oblique to the

z axis. The angle of propagation may be calculated using ω = |k|c. We note that

for kzc > ω, there are no modes present. This is easily explained by considering the

perpendicular wavenumber k⊥, which outside the channel is given by

ck⊥ =
√
ω2 − k2

zc
2 . (3.34)
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Figure 3.10: Two-dimensional Fourier transforms of Ez taken at fixed radius outside
the channel for (a) wch = 15 µm and (b) wch = 50 µm. The red (solid) line is
the lightline of the laser pulse, and the blue (dotted) curves are the functions in
Eq. (3.10) that constitute the approximate dispersion relation.

The perpendicular wavenumber is imaginary for |kzc| > ω, and so these spatial

harmonics are evanescent outside the channel boundary. Modes outside the channel

boundary that have |kzc| ≤ ω have a real perpendicular wavenumber, and must

therefore propagate away from the channel at an angle θ given by cos (θ) = kzc/ω.

Since there are multiple spatial harmonics that satisfy the inequality for real k⊥, we

conclude that there will be a set of ‘scattering’ angles associated with each channel,

and that the number of angles in this set will increase with density, increase with

lightline-intersection number and decrease with mode width. These angles are given

by

θ = arccos

(
1− βkmc

ω

)
β = 0, 1, . . . , int(2ω/kmc) . (3.35)

The next set of results once again consists of values of the average radial power

flow per unit frequency, this time recorded for a fixed value of rch = 2wch. This is

done for mode widths of 15, 25, 50 and 75 µm, and densities ranging from 5× 1017

cm−3 to 2.5 × 1018 cm−3. The remaining parameters are the same as those used
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Figure 3.11: Plots of power density in frequency space as a function of density for
channel widths (a) wch = 15 µm, (b) wch = 25 µm, (c) wch = 50 µm and (d)
wch = 75 µm. The blue (solid) lines indicate the first five Floquet modes of the
fundamental radial eigenmode, while the red (dot-dash) lines indicate the same for
the second radial eigenmode, as predicted by the small δ theory.

previously to generate Fig. 3.9.

In Fig. 3.11 we see the variation of frequency of side-coupled radiation with

density. For comparison, we plot the frequencies predicted by the small δ theory

for the first five Floquet modes associated with the fundamental and second radial

eigenmodes of the channel.

The fit is surprisingly good given our choice of δ = 0.9. We explain this by

considering the perturbative ‘solution’ to the Matthieu equation (i.e. assuming that

coefficients Aα in Eq. (3.8) vanish for sufficiently large α). This solution yields a

73



finite number of dispersion curves with approximate bandgaps that range up to some

maximum frequency and that are periodic in k out to some integer multiple of km.

As we increase the perturbative order, the number of dispersion curves increases

(increasing the range in ω), as does the number of periods in k over which they

extend. Thus, since the excitations we observe come from the first few intersections

of the lightline with the dispersion curves, which occur within the first few periods

in k, a low order perturbative approximation should give an accurate result, with

predictions far from the bandgaps being more accurate than those close to the

bandgaps.

The gradient (dn/df) of the line corresponding to the lowest-numbered Floquet

mode is significantly different than other Floquet modes. We see in Fig. 3.11(a) that

this follows the excitation corresponding to the 17 THz peak in the second plot of

Fig. 3.9(a) (this figure corresponds to a lineout of Fig. 3.11(a) at density n = 1018

cm−3.) Furthermore, the same line plotted for the second radial eigenmode is shifted

to significantly higher frequency. Comparing this to the third figure in Fig. 3.9(a)

suggests that the 23 THz excitation here is a second order radial eigenmode.

The general trend seen in Fig. 3.11(a) is for the power output to increase

with density, which is consistent with the total power output results presented at

the beginning of this section. The behavior is somewhat different for larger mode

widths however. For Fig. 3.11(b), the peak output occurs at 15 THz at a density

of about 1.4 × 1018 cm−3, and at higher densities remains at a roughly constant

level, albeit with a larger number of excitations. For Figures 3.11(c) and 3.11(d)

the peak output occurs at 18 THz at a density of about 2×1018 cm−3 in both cases,
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and is sufficiently pronounced that it is difficult to see any other excitations. Other

excitations are present at a much lower level, as may be demonstrated with a plot

of the logarithmic power output, seen in Fig. 3.12.

In many cases the peak excitations in Fig. 3.11 occur at or near an intersection

of two frequency prediction lines generated by Eq. (3.11). We explain this by noting

that an intersection in Fig. 3.11 corresponds to an intersection of the lightline in

a dispersion plot constructed with functions of the form given in Eq. (3.10) at a

point where two of these functions themselves intersect. An intersection in Fig. 3.11

therefore corresponds to a π or a 2π point, and we therefore expect to see strong

excitations at some of them.

The presence of a dominant excitation from a single light line intersection for

large mode widths, as opposed to many excitations for small mode widths, explains

the features seen in Fig. 3.7(c) seen at the beginning of this section. For large mode

widths, there are densities at which the conversion fraction f is a maximum, and

it was shown that for an α = 1 lightline intersection, these densities correspond to

2π points. We now see, upon examination of Figures 3.11(c) and 3.11(d), that this

choice was justified. For smaller channels, we see many excitations corresponding

to different lightline intersection numbers, and each will have a different 2π point

density. Hence we expect that this will reduce the variation with density of the

coupling, and so there won’t be large variation with density in the conversion factor

f . This is consistent with what is observed.
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Figure 3.12: Log plots of power density in frequency space as a function of density
for channel widths (a) wch = 50 µm and (b) wch = 75 µm. These demonstrate that
the predicted frequencies are accurate for large channel widths also.

3.5 Conclusion

In conclusion, we have studied numerically the generation of THz radiation in a

corrugated plasma channel. We have found that Terahertz modes are indeed excited,

the reason being that the laser pulse can phase-match with the slow wave spatial

harmonics supported by the channel. Some of these harmonics can then couple to

free-space radiation modes on the side of the channel, with the angle of propagation

being determined by the period in kz in which the spatial harmonic wavenumber

corresponding to the free space mode resides. Our results suggest that a significant

fraction of the THz radiation power flow is radial, which is advantageous since these

modes don’t have to travel the length of the channel in order to escape. We haven’t

completely discounted the possibility of axial THz extraction however. We have

also found that a small-density-modulation-amplitude approximation predicts THz

radiation at frequencies similar to those observed in simulation results, despite the

fact that the simulations were run with large modulation amplitudes.
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We have found that the total radial power output is larger for smaller mode

widths and for higher densities. The variation with mode width occurs because

smaller mode widths lead to larger gradients of the ponderomotive potential, and

because for fixed pulse energy, the peak ponderomotive potential increases with

decreasing wch. The power output is larger for higher densities because the laser

pulse drives larger currents and so does more work. We have found that THz

is strongly emitted at certain angles corresponding to the axial wavenumbers of

the different spatial harmonics, and we have found variation in power output with

density due to the presence of π and 2π points in the dispersion relation. An

experiment should therefore target the ‘special’ densities at which enhanced coupling

occurs.

Finally, we have estimated the total fraction of laser pulse energy that is

converted into THz to be around 1 percent for the densities and mode widths we

considered. We have also shown for one set of channel parameters that the 50 fs

pulse length is not optimum for generating THz, and that the ideal pulse is somewhat

shorter. It appears, however, that this will not increase the pulse energy conversion

fraction significantly. Extrapolating our results into the nonlinear regime, we obtain

6 mJ of THz from a .5 J pulse, with a linear depletion length of approximately

twenty centimeters. This depletion length is for a 15 µm matched spot, and it

increases significantly with spot size. Given experimental constraints, and the fact

that the estimated THz power output assumes total pump depletion, we find that

THz production requires small spot sizes.

A .5 J, 15 µm pulse has a normalized amplitude of a0 = 0.8, and so pump
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depletion will proceed in the weakly relativistic regime. Therefore, we treat the

estimated depletion length as the upper bound to an effective depletion length over

which most of the THz would be produced in a real system. The general conclusion is

that a small spot, short pump pulse containing a significant fraction of a Joule, and a

corrugated channel of several centimeters, is required to produce mJ-level amounts

of THz radiation. Simulating such a system require a non-linear and relativistic

analysis of pulse evolution in a corrugated plasma channel.
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Appendix A

Calculating the Approximate Dispersion Relation

In calculating the mode structure in a corrugated plasma waveguide in Sec-

tion 3.2, we encounter a one-dimensional ODE (Eq. (3.7)) which is related to the

Matthieu equation. We construct a dispersion relation in the δ → 0 limit superim-

posing the dispersion curves for all of the different spatial harmonics of the solution,

found in Eq. (3.8). This dispersion relation possesses the correct periodicity, but

is somewhat inaccurate near the bandgaps. We note however that the results ob-

tained from simulations in the δ → 1 limit match to some degree the approximate

dispersion relation. The purpose of this appendix is to understand this result, and

to quantify the differences between our dispersion relation and the exact result.

We begin by writing Eq. (3.9) in matrix form. The result is a vanishing product

of a tridiagonal matrix and a vector of Fourier coefficients, i.e. M ·A = 0. Defining

for brevity Ω2
α = k2

0c
2−(kz−αkm)2c2, the dispersion relation (which is the condition

for the existence of a non-trivial solution) is given by

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. . . . . . 0

. . . 2Ω2
α−1 −iω2

p0δ

iω2
p0δ 2Ω2

α −iω2
p0δ

iω2
p0δ 2Ω2

α+1
. . .

0
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (A.1)
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We proceed by considering the strength of the coupling between Fourier coef-

ficients Aα. For neighboring coefficients, we write this schematically as Aα ∼ εAα±1,

and thus Aα ∼ εNAα±N . If ε is small, we may choose to keep terms only to order

εN , hence a particular Fourier coefficient will only be coupled to 2N of its neighbors,

after which it will be decoupled. Because of this decoupling, our product M ·A of an

infinitely extended matrix and vector will reduce to an infinite number of products

of a (2N + 1)× (2N + 1) matrix with a vector.

We need only evaluate the determinant of one of these matrices, since the

dispersion curves resulting from the determinant centered around α will be related

to those from the determinant centered around α + 1 by a translation of km. We

note that this is exactly the procedure used to calculate the dispersion relation in

Section 3.2, where we kept terms to order ε0 and thus evaluated a 1×1 determinant.

In general, the small parameter ε depends on both δ, the modulation wavenum-

ber km, and the frequency and wavenumber associated with the region of interest in

the dispersion relation. Since we are interested in the region surrounding the first

few lightline intersections, we have ε ∼ ω2
p0δ/ω

2
c . We may estimate the required size

of the determinant using 2N + 1 ∼ 2 ln (τ)/ ln (ε) + 1, where τ is the desired frac-

tional contribution of the most distantly coupled Fourier coefficient. For τ = 0.01,

we have for a δ = 0.9, n = 1018 cm−3, wch = 15 µm channel a required determinant

size of 2N + 1 ∼ 13.

In Fig. A.1 we see dispersion curves plotted for n = 1018 cm−3, δ = 0.9 and

wch = 15 µm for various determinant sizes, including N = 1. In the N = 1 graph,

we plot multiple dispersion curves to show a full dispersion relation, however for
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Figure A.1: Dispersion plots generated by evaluating a finite-sized version of the
determinant shown in Eq. (A.1). Fig. (a) contains the dispersion construction dis-
cussed in Section 3.2, which is the dispersion relation from a single-element deter-
minant reproduced many times. The remaining Figures contain dispersion curves
calculated for (b) 3, (c) 9 and (d) 15 non-zero Fourier coefficients.
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Figure A.2: Frequencies of lightline intersections with the dispersion curves in
Fig. A.1(a) (blue, solid) and Fig. A.1(d) (red, dots) for (a) δ = 0.05 and (b) δ = 0.9.
Note that the blue curves correspond to the solution presented in Eq. (3.11).

larger sizes, we plot only the solutions from a single determinant centered around

α = 0. We observe that as the number of non-zero Fourier coefficients increases,

the number of individual curves increases, as does their extent in kz space. We note

however that the curve structure and bandgap size for small ω and kz is accurate

for much smaller truncation values than are necessary for correct curve structure at

large ω and kz.

We also note that the curve structure at large frequency very closely matches

the piecewise dispersion relation, which explains why our simulation results conform

so closely. For the case δ = 0.05 (not shown), the large bandgaps that appear at low

frequencies in the above plots reduce significantly, and the dispersion curves match

the piecewise dispersion relation at low frequencies also.

Finally, we compare the frequencies generated by calculating the lightline in-

tersections for the same density range as used in the simulations. These results are

seen in Fig. A.2, and should be compared to the simulation results in Fig. 3.11(a).
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