
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Statistical Parameter Learning for Belief Networks with
Fixed Structure

by Hongjun Li

CSHCN T.R. 99-32
(ISR T.R. 99-59)

Sponsored by: NASA

Statistical parameter learning for Belief networks with fixed

structure ∗

Hongjun Li
Institute for Systems Research and

Center for Satellite and Hybrid Communication Networks
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742

December 2, 1998

Abstract

In this report, we address the problem of parameter learning for belief networks with fixed
structure based on empirical observations. Both complete and incomplete (data) observations are
included. Given complete data, we describe the simple problem of single parameter learning for
intuition and then expand to belief networks under appropriate system decomposition. If the
observations are incomplete, we first estimate the “missing” observations and treat them as though
they are “real” observations, based on which the parameter learning can be executed as in complete
data case. We derive a uniform algorithm based on this idea for incomplete data case and present
the convergence and optimality properties. Such algorithm is suitable trivially under complete
observations.

∗This work was supported by the Center for Satellite and Hybrid Communication Networks, under NASA coop-
erative agreement NCC3-528.

1

1 Introduction

As discussed in [1][13], both the network structure and the associated CPTs can be provided
by human experts as the prior information. In many applications, however, such information
is not available. In addition, different experts may treat the systems in various ways and thus
give different and sometimes conflicting assessments. In such cases, the network structure and
corresponding CPTs can be estimated using empirical data and we refer to this process as learning
[6][10][11][12] . Even if such prior information does exist, it is still desirable to validate and improve
the model using data.

Learning belief networks consists of both structural learning (deriving the dependency struc-
ture G) and parametric learning (estimating P). The structure of the network may be known or
unknown, and the variables in the network may be observable or hidden. Usually, human experts
would rather give for a problem domain the dependence relationships between random variables
than the corresponding numerical values, especially when not all of the variables are observable.
Therefore we can say that finding the topology of the network is often the relatively easy part and
thus the known structure, hidden variable learning problem is of great importance.

In this report, we address the problem of parameter learning under fixed structure. Both
complete and incomplete (data) observations are included. Given complete data, we describe
the simple problem of single parameter learning for intuition and then expand to belief networks
under appropriate system decomposition. If the observations are incomplete, we first estimate the
“missing” observations and treat them as though they are “real” observations, based on which the
parameter learning can be executed as in complete data case. We derive a uniform algorithm based
on this idea for incomplete data case and present the convergence and optimality properties. Such
algorithm is suitable trivially under complete observations.

Before we proceed to the learning problems, we give the following definitions which are used
throughout.

Definition 1.1 A belief network is a Directed Acyclic Graph (DAG) G = (X,E,P)in which: The
nodes X represent variables of interest (propositions); The set of directed links or arrows E represent
the causal influence among the variables and the parents of a node are all those nodes with arrows
pointing to it; The strength of an influence is represented by conditional probabilities attached to
each cluster of parent-child nodes in the network.

We let X = [X1, . . . ,Xn], with n as the number of nodes in the graph. Each random variable
Xi assumes discrete values from finite alphabet Ai, whose cardinality is |Ai|. We use capital letters
to denote random variables and lower case letters to denote values. For example, Xi = xi means
random variable Xi assumes the value xi. If we know that Xi assumes its jth value from Ai, we
write Xi = xji .

Definition 1.2 An observation is an instantiation x = [x1, . . . , xn] of X, with x ∈ Rn and assume

values in A
4
= A1×, . . . ,×An.

2

Definition 1.3 If every node in X is instantiated (observed), we call x a complete (full) observa-
tion, or a complete data set. Each such an x is called a configuration.

Definition 1.4 If there are some random variables in X that are not instantiated, such an obser-
vation is called an incomplete data.

Definition 1.5 The instantiated set of nodes S ⊆ X forms the evidence set, while N = X\S is
called the non-evidential set.

In cases of full observation, S = X; but in practice, mostly S ⊂ X, which means incomplete
data.

Definition 1.6 If we mark the nodes in X that belongs to S with ∗ and those in N with ?, then
we form the observation schema S+. Each instantiation of the schema is called an evidence under
schema S+.

For example, in a 5 node belief network which takes only binary values, such a schema is
S = (∗, ?, ?, ∗, ∗) and one possible instantiation is (0, ?, ?, 1, 0)T .

Definition 1.7 Suppose we have a batch of observations D = [D1, . . . ,DL] with each Di ∈ Rn

complying with schema S+
i . If S+

i ≡ S+
j , ∀i, j = 1, . . . , L, we say D is a uniform batch of obser-

vations. If, on the other hand, S+
i may or may not be the same as S+

j for i 6= j, we say D is a
hybrid-schema observation set.

The rest of this report is organized as follows: We first introduce the problem of parameter
learning under complete data in section 2, which includes the simple parameter learning in section
2.1 for intuition and the system decomposition mechanisms used in belief network parameter learn-
ing in section 2.2. Then based on this, the incomplete data case is studied in section 3, where the
algorithm and corresponding convergence and optimality analysis is stated.

2 Parameter Learning under complete data

In this section, we begin with the simple one-parameter learning case, then we move to multi-
variable parameter learning in belief networks.

2.1 Simple parameter learning

Imagine we have a (not necessarily fair) coin, and we conduct an experiment whereby we flip the
coin in the air, and it comes to land as either head or tail. We assume that different tosses are

3

independent and that, in each toss, the probability of the coin landing heads is some underlying
unknown real number θ. Our goal here is to estimate θ based on the outcomes of the experiment.

Define the likelihood function as Pθ(D) = θh(1− θ)t, which is the probability with which we get
a particular data set D with h heads and t tails given that the probability θ has a certain value.
It is straightforward to verify that the value of θ which maximizes Pθ(D) is h

h+t . This is called
maximum likelihood (ML) estimate for θ.

In Bayesian analysis, however, we put a distribution over anything about which we have uncer-
tainty. In this case, since we are uncertain about θ, we define a prior distribution P (θ). Then we
have a joint distribution of both the tosses and the parameter θ:

P (x1, · · · , xn, θ) = P (x1, · · · , xn|θ)P (θ)

= P (θ)θh(1− θ)t, (1)

where P (x1, · · · , xn|θ) = Pθ(D) is just the likelihood function. Now as we see more data, the
posteriori distribution over the parameter changes. In particular, using Bayes rule, we have

P (θ|D) =
P (θ)Pθ(D)

P (D)
=

P (θ)Pθ(D)∫ 1
0 P (θ)Pθ(D)dθ

. (2)

An appropriate such distribution for a parameter is the Beta distribution. A Beta function
distribution is parameterized by two numbers αh, αt. Intuitively, these correspond to the number
of imaginary heads and tails that have been seen. The Beta function function with these parameters
has the following form,

P (θ) = Beta(θ|αh, αt) ∝ θ
αh−1(1− θ)αt−1 (3)

and some of the Beta distributions are shown in figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Beta(1,1)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Beta(2,2)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Beta(3,2)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Beta(15,10)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Beta(10,10)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Beta(19,39)

Figure 1: An Illustration of some Beta Distributions

Beta distributions have properties that make them particularly useful for parameter estimation.

4

• First, for Beta(θ|αh, αt), the probability of next coin toss coming out head is:

P (X = h|θ) =

∫ 1

0
P (θ)P (X = h|θ)dθ

=

∫ 1

0
P (θ)θdθ

=
αh

αh + αt
. (4)

which is just the result of ML estimate. This supports our intuition that the Beta distribution
corresponds to having seen αh heads and αt tails (imaginary or real).

• Second , as we get more data, specifically we get a data set D with h heads and t tails, we
have

P (θ|D) = Beta(θ|αh + h, αt + t). (5)

This property that the posteriori distribution belongs to the same family as the prior dis-
tribution is called conjugacy under the observation data. Such priors are called conjugate
priors. Using conjugate priors will allow us focus on the hyper-parameters αh, αt and the
observations only, without having to worry about the form of posteriori distribution and the
usually non-trivial integration steps.

Extending multinomial (for example m-ary) case, such a conjugate prior is Dirichlet distribution:

P (θ) = Dirichlet(θ|α1, . . . , αm), (6)

and based on a multinomial sampling distribution Pθ(D), the posteriori distribution is

P (θ|D) = Dirichlet(θ|α1 +N1, . . . , αm +Nm), (7)

where Ni, 1 ≤ i ≤ m is the number of times that the outcome is i, given the data set D.

Staring from a rather uniform (“flat”) distribution, the Beta distribution will become more and
more focused around some certain value. The use of an entire distribution rather than a single
number to model the parameter θ has the advantage that if reflects not only our current estimate
for the value of θ, but also our degree of confidence about that.

Note that: 1. ML estimate is the expectation of Bayesian estimate; 2. ML estimate approaches
to Bayesian estimate when sample size becomes unboundedly large (which means prior belief be-
comes less and less important as the data accumulate); 3. Given ML estimate, it is straightforward
to obtain the hyper-parameters for Dirichlet distribution. So in this report, we focus on ML esti-
mate.

The usefulness of the coin flipping here lies in the fact that: 1. It is simple and intuitive; 2.
If, by some decomposition mechanism, we can break a complex problem into multiple independent
single parameter learning problems, we can use the flip coin techniques here for each of them; And,
such computations would be possibly done in a distributed manner, as we will see next.

5

2.2 Parameter learning for a belief network

2.2.1 System decomposition

For a discrete-valued belief network G = (V,E,P) with fixed structure, the joint probability dis-
tribution (JPD) can be represented as

p(x1, ..., xn) =
n∏
i=1

p(xi|Πi). (8)

If we order the nodes in such a way that the order of a node is larger than those of its parents
and smaller than those of its children (the so-called topological ordering), we have

p(xi|x1, ..., xi−1) = p(xi|Πi), (9)

which means given its parent set Πi ⊆ {x1, ..., xi−1}, the set of variables that render xi, each
variable xi is conditionally independent of all its other predecessors {x1, ..., xi−1}\Πi.

Suppose dataD = [D1, . . . ,DL] are generated independently from some underlying distribution,
with each Di = [x1[i], . . . , xn[i]]

T . The problem here is to find the CPT parameters θ that best
model the data. The parameter θ is actually a 3-dimensional matrix, with its element θijk defined
as the probability that variable Xi takes on its jth possible value assignment given its parents Πi

takes on their kth possible value assignment, or

θijk = P (Xi = xji |Πi = πki). (10)

We assume in this report that θijk > 0, ∀ i, j, k, and Pθ(D) continuous with θ. If we define
L(θ;D) = Pθ(D) as the likelihood function given some parameter θ, the Maximum Log-Likelihood
formulation for this problem is:


maxθ logL(θ;D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]
(11)

Moreover, we have:

L(θ;D) =
L∏
l=1

Pθ(x1[l], . . . , xn[l])

=
L∏
l=1

n∏
i=1

Pθi(xi[l]|Πi[l])

=
n∏
i=1

L∏
l=1

Pθi(xi[l]|Πi[l])

=
n∏
i=1

Li(θi;D), (12)

6

where Li(θi;D)
4
=
∏L
l=1 Pθi(xi[l]|Πi[l]). The first equality comes from the fact that D consists of

independent observations and the second equality follows (8). θi is a 2-dimensional matrix, with
rows occupied by its possible values and columns defined according to its parents’ status. From
(12) we get

logL(θ;D) =
n∑
i=1

logLi(θi;D). (13)

The above derivation gives us a decomposition of the belief networks learning problem based
on independent observations. Namely, the maximum likelihood solutions of (11) are just those
achieved by the sum of the solutions from the following independent estimation problems:

For each Xi ∈ X: 
maxθi logLi(θi;D)
s.t.

∑
j θijk = 1, and

θijk ∈ [0, 1]
(14)

For each Li(θi;D), we make further decomposition as follows.

Definition 2.1 The set of nodes Si = (Xi,Πi) forms the extracted schema for node Xi. Xi assumes
values from Ai. Πi takes values from

∏
Xj∈Πi Aj. Let K = |

∏
Xj∈Πi Aj |.

There are all together L samples, for which we define the groups as:

Definition 2.2 Group Gik is the set of instantiations of Si in D with Πi = πki . The number of
elements in Gik is Nik = |Gik| =

∑L
l=1 I{πki |Dl}

, where I{πki |Dl}
is the indicator function defined as:

I{z|Dl} =

{
1 if z occurs in Dl

0 otherwise
(15)

and
∑
kNik = L.

Further, we can sub-divide Gik according to the value of Xi:

Definition 2.3 In Gik, Gijk is the set of instantiations where Xi = xji , and Nijk = |Gijk| =∑L
l=1 I{xji ,π

k
i |Dl}

, number of elements in group Gijk with
∑Ai
j=1Nijk = Nik.

So the decomposition is:

Li(θi;D) =
L∏
l=1

Pθi(xi[l]|Πi[l])

7

=
K∏

k=1,{Πi=πki }

|Ai|∏
j=1,{Xi=x

j
i |Πi=π

k
i }

θ
Nijk
ijk

=
K∏

k=1,{Πi=πki }

Lki (θi;D), (16)

or

logLi(θi;D) =
K∑

k=1,{Πi=πki }

logLki (θi;D), (17)

where Lki (θi;D) =
∏|Ai|
j=1,{Xi=x

j
i |Πi=π

k
i }
θ
Nijk
ijk is just the likelihood function of multinomial distribu-

tion under parameter θ.

Then the ML solutions of (14) are again those achieved by the sum of the solutions from the
following independent estimation problems:

For each Πi = πki , 
maxθi logL

k
i (θi;D)

s.t.
∑
j θijk = 1, and

θijk ∈ [0, 1]
(18)

Or equivalently, by defining rj = θijk, yj = Nijk, and L̃(r;D) =
∏|Ai|
j=1 r

yj
j , we consider the

maximum log-likelihood problem,

For each Πi = πki , 
maxr log L̃(r;D)
s.t.

∑
j rj = 1, and

rj ∈ [0, 1]

(19)

which is just a generalization of the simple parameter learning problem discussed in section 2.1.

The decomposition logL(θ;D) =
∑n
i=1

∑K
k=1,{Πi=πki }

logLki (θi;D) first exploits the conditional

independence structure embedded in belief networks and helps to reduce the problem to n inde-
pendent ML estimate problems; then, each such problem is further decomposed as shown in (16).
We can thus do the learning in a “local” and distributed manner.

2.2.2 Parameter estimation

In this section, we derive the ML estimates for problem (19) and provide the optimality results.
For some concepts of estimation theory, we refer to [23].

8

Lemma 2.4 Given complete data set D, log L̃(r;D) is negative and strictly concave in r = [r1, . . . , r|Ai|].

Proof. Without loss of generality, L̃(r;D) can be rewritten as

L̃(r;D) = (

|Ai|−1∏
j=1

r
yj
j)(1−

|Ai|−1∑
j=1

)y|Ai| . (20)

Define J = |Ai| for simplicity, and define function f : RJ → R1 as

f(r) = log L̃(r;D)

=
J−1∑
j=1

yj log rj + yJ log(1−
J−1∑
j=1

rj). (21)

Obviously, L̃(r;D) <
∑
y∈Y L̃(r; y) = 1, where Y is the set of all possible combinations of D, so

log L̃(r;D) < 0.

Let r = λα + (1 − λ)β, where α and β satisfy the constraints in (19) and 0 < λ < 1. Since
log(x) is strictly concave in x, we have

J−1∑
j=1

yj log(λαj + (1− λ)βj) > λ
J−1∑
j=1

yj logαj + (1− λ)
J−1∑
j=1

yj log βj . (22)

Also note that

1−
J−1∑
j=1

(λαj + (1− λ)βj) = λ(1 −
J−1∑
j=1

αj) + (1− λ)(1−
J−1∑
j=1

βj). (23)

From (22) and (23), we have

f(λα+ (1− λ)β) > λ
J−1∑
j=1

yj logαj + (1− λ)
J−1∑
j=1

yj log βj

+λyJ log(1−
J−1∑
j=1

αj) + (1− λ)yJ log(1−
J−1∑
j=1

βj)

= λf(α) + (1 − α)f(β). (24)

⇒ Strictly concave.

Lemma 2.5 Given complete data set D, logL(θ;D) is negative and strictly concave in θ = {θijk}.

9

Proof. From last section we know that

L(θ;D) =
n∏
i=1

K∏
k=1,{Πi=πki }

Lki (θi;D) ⇒

logL(θ;D) =
n∑
i=1

K∑
k=1,{Πi=πki }

logLki (θi;D), (25)

where by lemma 2.4, each logLki (θi;D) is negative and strictly concave in θijk. We conclude that
the sum of those negative (and thus non-cancelling), strictly concave functions is also negative and
strictly concave in θijk, ∀ i, j, k, or, concave in θ.

Lemma 2.6 The maximum likelihood solution for problem (19) is

rj = yj/
J∑
j=1

yj, (26)

where yj = Nijk, as defined in definition 2.3.

Proof. Use the f notation as above and obtain the Likelihood Equations

∂f

∂rj
= 0, j = 1, . . . , J. (27)

From (21) it is straightforward to get J − 1 independent equations:

yj
rj

=
yJ

1−
∑J−1
i=1 ri

, ∀j = 1, . . . , J − 1, (28)

from which it is easy to obtain that rj = yj/
∑J
j=1 yj, and we can check that rj ∈ [0, 1] and∑J

j rj = 1.

By lemma 2.4, we know such stationary points are global maxima (because log L̃(r;D) is
strictly concave).

Lemma 2.7 The ML estimates for problem (19) are minimum variance unbiased estimators (MVUE).

Proof. Given data set D, suppose the number of occurrence of Xi’s J possible values are
[y1, . . . , yJ]

T , if we look at node Xi under Πi = πki . The multinomial distribution is

pψ(y) =
(
∑J
i=1 yi)!∏J
i=1 yi!

J∏
i=1

ψyii (29)

10

Then for an underlying set of parameters ψ, we have for estimator ψ̂j(y) = yj/
∑J
i=1 yi the expec-

tation

Eψ{ψ̂j(y)} = Eψ{yj/N} (N
4
=

J∑
i=1

yi)

=
N∑

yj=0

yj
N

N !

yj!
ψ
yj
j

∑
yi

(
∑

i6=j
yi)=N−yj

1∏
i6=j yi!

∏
i6=j

ψyii

=
N∑

yj=0

yj
N

N !

yj!(N − yj)!
ψ
yj
j (1− ψj)

N−yj
∑
yi

(
∑

i6=j
yi)=N−yj

(N − yj)!∏
i6=j yi!

∏
i6=j

(
ψi

1− ψj
)yi

︸ ︷︷ ︸
1

=
1

N

N∑
yj=0

yj

(
N

yj

)
ψ
yj
j (1− ψj)

N−yj

=
1

N
Nψj = ψj . (30)

⇒ unbiased.

From (29), we have

∂ log pψ(y)

∂ψj
=
yj
ψj
−
N − yj
1− ψj

. (31)

Then the Fisher information is,

Iψ = −Eψ{
∂2 log pψ(y)

∂2ψj
}

= Eψ{
yj

ψ2
j

+
N − yj

(1− ψj)2
}

= N/ψj(1− ψj), (32)

while the variance is

V arψ{yj/N} =
1

N2
Eψ{y

2
j } −E

2{yj/N}

=
1

N2
{Nψj(1− ψj) + (Nψj)

2} − ψ2
j

= ψj(1− ψj)/N = 1/Iψ. (33)

⇒ MVUE (achieves Cramer Rao Lower Bound, CRLB).

11

3 Parameter learning under incomplete data using EM algorithm

In this section, we first brief the idea of EM algorithm, followed by the derivation for belief networks,
and then in section 3.3, we discuss the convergence and optimality properties.

3.1 A brief description of EM algorithm

EM algorithm is broadly applicable for computing maximum likelihood estimates from incomplete
data. Each iteration consists of an expectation step followed by a maximization step, and hence
the name [8][17].

Suppose we have two sample spaces X and Y with many-to-one mapping X → Y, where x
can not be observed directly, but instead, only through y. Let the family of sampling densities
depending on Φ for X and Y are fΦ(x) and gΦ(y), respectively. We call fΦ(x) as the complete
data specification and gΦ(y) as the incomplete data specification, with the following relation:

gΦ(y) =

∫
X (y)

fΦ(x)dx, (34)

where X (y) is the set of x ∈ X that corresponds to y. EM algorithm aims to find a value of Φ that
maximizes gΦ(y) given an observed y, but does so by making essential use of fΦ(x). When fΦ(x)
belongs to an exponential family, we have the EM algorithm:

Let Φ(p) denotes the current value of Φ after p cycles, then for the next cycle:

E-step: Estimate the complete-data sufficient statistics t(x) by

t(p) = EΦ(p){t(x)|y} (35)

M-step: Determine Φ(p+1) as the solution of the equations

EΦ{t(x)} = t(p) (36)

3.2 EM algorithm derivation

Suppose we have a batch of observations D = [D1, . . . ,DL] with each Di ∈ Rn complying with
schema S+

i . D may or may not be uniform. The objective is to find the most likely underlying
parameter θ that can best model the incomplete observations, namely

maxθ logPθ(D)
s.t.

∑
j θijk = 1, and

θijk ∈ [0, 1]
(37)

and we wish to do this via the maximization of an associated complete data problem. The idea
is that we first estimate and “fill” the missing values based on the evidence and current guess of

12

the parameters, after which we treat them as the real data and apply the ML principle to do the
parameter learning. The estimation of the missing values are called Expectation-step (or E-step)
and the parameter learning step is called Maximization-step (or M-step). It is straightforward to

see that a multinomial distribution pψ(y) =
(
∑J

j=1
yj)!∏J

j=1
yj !

∏J
j=1 ψ

yj
j belongs to the exponential family

and the sufficient statistics is just the set {yj}, j = 1, . . . , J .

E-step: For each sample Dl, we want to estimate the values for those nodes corresponding
to “?” mark in schema S+

l and thus get the augmented data set C(Dl). Let Nl be the set of
nodes marked as “?” in schema S+

l , then given Dl, there are all together
∏
m∈Nl |Am| cases in the

augmented data set C(Dl). For any entry D+
l (q) ∈ C(Dl), q = 1, . . . ,

∏
m∈Nl |Am|, the evidential

nodes are “clamped” as in observation Dl, while the non-evidential nodes take the qth combination
from the

∏
m∈Nl |Am| choices. Then under the current guess θ̃ of parameter θ, Pθ̃(D

+
l (q)) can be

computed using (8), and the probability of D+
l (q) given Dl is

Pθ̃(D
+
l (q)|Dl) =

Pθ̃(D
+
l (q))∑

q Pθ̃(D
+
l (q))

. (38)

M-step: For augmented data set C(Dl) where each entry is a complete observation, we can
either average over those entries or find the most-probable entry to serve as the complete data set
for the ML estimator. At this time, we consider the averaging method, by which we weigh each
D+
l (q) according to (38) within each Dl.

So the associated problem is: for complete data set C(D) = [C(D1), . . . , C(DL)],
maxθ log P̄θ(C(D))
s.t.

∑
j θijk = 1, and

θijk ∈ [0, 1]
(39)

where

log P̄θ(C(D)) =
L∑
l=1

log P̄θ(C(Dl))

=
L∑
l=1

∏
m∈Nl

|Am|∑
q=1

Pθ̃(D
+
l (q)|Dl) logPθ(D

+
l (q))

=
n∑
i=1

L∑
l=1

∏
m∈Nl

|Am|∑
q=1

Pθ̃(D
+
l (q)|Dl) logPθi(Xi(D

+
l (q))|Πi(D

+
l (q))). (40)

Compare (40) with (13), we can take similar decompositions and by lemma 2.6 we have for
node Xi under Πi = πki ,

θ̂ijk =
Ñijk

Ñik

, (41)

where Ñijk and Ñik can be obtained as in definition 2.2 and 2.3, except that the complete data
D+
l (q) is weighed by Pθ̃(D

+
l (q)|Dl). So

13

θ̂ijk =

∑L
l=1

∑∏m∈Nl
|Am|

q=1 I{xji ,π
k
i |D

+
l

(q)}Pθ̃(D
+
l (q)|Dl)∑L

l=1

∑∏m∈Nl
|Am|

q=1 I{πki |D
+
l

(q)}Pθ̃(D
+
l (q)|Dl)

, (42)

where θ̃ is the current set of parameters and I{z|D+
l

(q)} is the indicator function defined as

I{z|D+
l

(q)} =

{
1 if z occurs in D+

l (q)
0 otherwise

(43)

One may easily observe that such augmentation is of combinatorial complexity, and even when
Ai = {0, 1},∀i , the entries for C(Dl) would be 2|Nl|, which makes the computation in (42) in-
tractable in most cases.

However, notice that

Pθ̃(x
j
i , π

k
i |Dl) =

∏
m∈Nl

|Am|∑
q=1

I{xji ,π
k
i |D

+
l

(q)}Pθ̃(D
+
l (q)|Dl), (44)

and

Pθ̃(π
k
i |Dl) =

∏
m∈Nl

|Am|∑
q=1

I{πki |D
+
l

(q)}Pθ̃(D
+
l (q)|Dl), (45)

we can simplify (42) as

θ̂ijk =

∑L
l=1 Pθ̃(x

j
i , π

k
i |Dl)∑L

l=1 Pθ̃(π
k
i |Dl)

, (46)

where Pθ̃(x
j
i , π

k
i |Dl) and Pθ̃(π

k
i |Dl) can be calculated using standard inference algorithm given D

[5][20][21]. So we don’t need to do the augmentation explicitly and hence avoid the combinatorial
complexity. Compare (46) with (26), we can see that we just replace the “hard” counting measures
yj, ∀j ∈ J in (26) with the “soft” estimation Pθ̃(x

j
i , π

k
i |Dl) for yj , ∀j ∈ J . By lemma 2.7, (46) is

the MVUE estimator for the complete data augmented using θ̃.

Now we got the ML estimates for problem (39). Recall that our goal is to find the ML estimates
that best model the incomplete data set D, we treat the estimates θ̂ as the current guess of true
parameter θ and do the E-step and M-step again. Repeat such process and we get the EM algorithm
for discrete-valued belief network. If we define operator H(ψ) as

H(ψ)(ijk) =

∑L
l=1 Pψ(xji , π

k
i |Dl)∑L

l=1 Pψ(πki |Dl)
, (47)

then the EM process can be summarized as the iteration

θ̃(p+1) = H(θ̃(p)), (48)

for some initial θ̃(0). The EM algorithm can be thought of finding the fixed point of operator H,
and such fixed point θ̃∗ is just the best set of parameters that model the data set D.

14

More generally, we can extend (48) to the small-step size version of iteration, which falls within
the stochastic approximation framework [2][9][14][25], as shown below:

θ̃(p+1) = (1− γp)θ̃
(p) + γpH(θ̃(p)), (49)

where γp ∈ [0, 1]. Obviously, if γp = 0, θ̃(p+1) = θ̃(p) and we ignores the influence from data; if
γp = 1, however, we get (48) as a special case. We assume from now on the nontrivial case where
γp > 0.

If we define operator M(ψ) as

M(ψ) = (1− γ)ψ + γH(ψ), (50)

with ψ appropriately chosen, then the EM algorithm can be summarized as the iteration

θ̃(p+1) = M(θ̃(p)), (51)

and the goal here is to find the fixed point θ̃∗ of operator M .

3.3 Optimality and Convergence

Lemma 3.1 For one sample D = [D1], the algorithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D) non-
decrease for each iteration.

Proof. The following proof resembles that in [17]. Let Y denote the observed nodes and Z

denote the non-observed nodes. So logL(θ;D) = logL(θ;Y = y), and X = [Y,Z]. Given those
nodes in Y “clamped” as indicated in D1, we can obtain by using θ̃(p) the augmented complete
data set X = X(y), where X(y) denotes the multiple cases of X that contains Y = y. Such X(y)
may be governed by some unknown parameter set θ, which we want to estimate using ML principle
at M-step. For notation simplicity, we use Y to denote the fact that Y = y.

Since
Pθ(X(y)|Y) = Pθ(X(y), Y)/Pθ(Y) = Pθ(X(y))/Pθ(Y), (52)

we have
logL(θ;Y) = logPθ(Y) = logPθ(X(y)) − logPθ(X(y)|Y). (53)

Take expectation with respect to the conditional probability density of X given Y under current
parameter set θ̃(p), we get

Eθ̃(p){logPθ(Y)} = logPθ(Y)

= Eθ̃(p){logPθ(X(y))} −Eθ̃(p){logPθ(X(y)|Y)}

= Q(θ, θ̃(p))− T (θ, θ̃(p)), (54)

where Q(θ, θ̃(p)) = Eθ̃(p){logPθ(X(y))}, T (θ, θ̃(p)) = Eθ̃(p){log Pθ(X(y)|Y)}.

15

At M-step, as described in section 3.2, we use the ML principle to find the most probable
parameter based on the complete data set X(y), each entry of which is appropriately weighed
according to its conditional density under θ̃(p). So,

θ̃(p+1) = arg max
θ
Q(θ, θ̃(p))

= arg max
θ

∑
x∈X(y)

pθ̃(p)(x|y) log Pθ(x). (55)

and therefore,
Q(θ̃(p+1), θ̃(p)) ≥ Q(θ̃(p), θ̃(p)). (56)

Also for any θ,

T (θ, θ̃(p))− T (θ̃(p), θ̃(p)) = Eθ̃(p){log
Pθ(X|Y)

Pθ̃(p)(X|Y)
}

= −D(θ̃(p)||θ)

≤ 0, (57)

where D(θ̃(p)||θ) ≥ 0 is the relative entropy between Pθ̃(p)(X|Y) and Pθ(X|Y), see [7]. By (56) and
(57), we conclude that

logL(θ̃(p+1);D)− logL(θ̃(p);D) = Q(θ̃(p+1), θ̃(p))−Q(θ̃(p), θ̃(p))

−[T (θ̃(p+1), θ̃(p))− T (θ̃(p), θ̃(p))]

≥ 0, (58)

or logL(θ̃(p+1);D) ≥ logL(θ̃(p);D).

Lemma 3.2 For independent uniform D = [D1, . . . ,DL] with each Di ∈ Rn complying with the
same schema S+ ,the algorithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D) non-decrease for each iteration.

Proof. For uniform data D, the actual observed values of the corresponding evidential nodes
may differ between different observations. At E-step, we can obtain for each Dl the augmentation
and thus the complete data set C(D) under θ̃(p). For notation simplicity, we let D+ = C(D).

Observing that D1, . . . ,DL are independent observations and also, each D+
l is obtained inde-

pendently of Dm, m 6= l, we have

Pθ(Dl) = Pθ(D
+
l)/Pθ(D

+
l |Dl), (59)

and
logPθ(Dl) = logPθ(D

+
l)− logPθ(D

+
l |Dl). (60)

Take expectation with respect to the conditional probability density of D+
l given Dl under θ̃(p),

we get

logPθ(Dl) = Eθ̃(p){logPθ(D
+
l)} −Eθ̃(p){logPθ(D

+
l |Dl)}

= Ql(θ, θ̃
(p))− Tl(θ, θ̃

(p)), (61)

16

where Ql(θ, θ̃
(p)) = Eθ̃(p){logPθ(D

+
l)} and Tl(θ, θ̃

(p)) = Eθ̃(p){logPθ(D
+
l |Dl)}.

Then for each Dl under θ̃(p), we have

logL(θ;D) =
∑
l

logPθ(Dl)

=
∑
l

Ql(θ, θ̃
(p))−

∑
l

Tl(θ, θ̃
(p)), (62)

where

Ql(θ, θ̃
(p)) = Eθ̃(p){logPθ(D

+
l)}

=
∑
q

Pθ̃(p)(D
+
l (q)|Dl) logPθ(D

+
l (q)). (63)

Like in Lemma 3.1, Tl(θ, θ̃
(p)) ≤ Tl(θ̃

(p), θ̃(p)), for any θ 6= θ̃(p), so we have∑
l

Tl(θ, θ̃
(p)) ≤

∑
l

Tl(θ̃
(p), θ̃(p)). (64)

At M-step, we find the ML estimate of θ based on D+ as a whole, each entry of which is weighed
appropriately. The algorithm is θ̃(p+1) = arg maxθ Eθ̃(p){logPθ(D

+)}, where

Eθ̃(p){logPθ(D
+)} =

∑
l

∑
q

Pθ̃(p)(D
+
l (q)|Dl) logPθ(D

+
l (q))

=
∑
l

Ql(θ, θ̃
(p)). (65)

Thus we can conclude that∑
l

Ql(θ̃
(p+1), θ̃(p)) ≥

∑
l

Ql(θ̃
(p), θ̃(p)). (66)

Combine (62), (64) and (66) we see that logL(θ̃(p+1);D) ≥ logL(θ̃(p);D).

Lemma 3.3 For independent nonuniform D = [D1, . . . ,DL] with each Di ∈ Rn complying with
schema S+

i ,the algorithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D) non-decrease for each iteration.

Proof. Let D+
l be the complete data set augmented from Dl using θ̃(p) and under observation

schema S+
l . Such D+

l is independent of Dm, ∀m 6= l and let the underlying parameter is θ, as
usual. Unlike with uniform data, the augmentation here differs not only in the observed values,
but also in the observation schemas. Once we finish the augmentation, however, we can average
the entries in D+ as before. So in this sense we see that the only difference between nonuniform
and uniform data cases lies in the way of how the augmentation is achieved. Note that for formulae
(59)–(66), we didn’t use the assumption of uniform data, the proof above can be adapted here and
we get logL(θ̃(p+1);D) ≥ logL(θ̃(p);D).

From Lemma 3.1, 3.2 and 3.3 we can immediately have the following result.

17

Proposition 3.1 Given independent (but not necessarily uniform) D = [D1, . . . ,DL], the algo-
rithm θ̃(p+1) = H(θ̃(p)) makes logL(θ;D) non-decrease for each iteration, or logL(H(θ̃(p));D) ≥
logL(θ̃(p);D).

Proposition 3.2 Given independent (but not necessarily uniform) D = [D1, . . . ,DL], the algo-
rithm θ̃(p+1) = M(θ̃(p)) makes L(θ;D) non-decrease for each iteration.

Proof. We rewrite (62) as

logL(θ;D) = Q(θ, θ̃(p))− T (θ, θ̃(p)) (67)

where Q(θ, θ̃(p)) =
∑
lQl(θ, θ̃

(p)), T (θ, θ̃(p)) =
∑
l Tl(θ, θ̃

(p)).

We have as usual for any θ 6= θ̃(p),

T (θ, θ̃(p)) ≤ T (θ̃(p), θ̃(p)). (68)

For Q(θ, θ̃(p)), we have

Q(θ, θ̃(p)) =
∑
l

Ql(θ, θ̃
(p))

=
∑
l

∑
q

Pθ̃(p)(D
+
l (q)|Dl) logPθ(D

+
l (q)). (69)

Since D+
l (q) is a complete observation, by lemma 2.5 we see that each log Pθ(D

+
l (q)), negative,

is strictly concave in θ. It is easy to check that

gl(z) negative and strictly concave ∀ l ⇒

g(z) =
∑
l

ξl gl(z) ξl > 0, ∀l also negative and strictly concave.

We conclude that Q(θ, θ̃(p)) is such a linear combination and thus negative and strictly concave.
So for operator M with γp ∈ (0, 1],

Q(M(θ̃(p)), θ̃(p)) = Q((1− γp)θ̃
(p) + γpH(θ̃(p)), θ̃(p))

≥ (1− γp)Q(θ̃(p), θ̃(p)) + γpQ(H(θ̃(p)), θ̃(p)) by concavity

≥ (1− γp)Q(θ̃(p), θ̃(p)) + γpQ(θ̃(p), θ̃(p)) by proposition 3.1

= Q(θ̃(p), θ̃(p)). (70)

Combine (68) and (70) we see that logL(M(θ̃(p));D) ≥ logL(θ̃(p);D)

Proposition 3.3 The algorithm θ̃(p+1) = M(θ̃(p)) will make logL(θ;D) converge to logL(θ∗;D),
where θ∗ is the the fixed point of operator M , and further, θ∗ is the global maxima.

18

Proof. From proposition 3.2 we see that logL(θ;D) is non-decreasing under operator M ; also
from lemma 2.5, we know that logL(θ;D) < 0, bounded above. So the sequence {logL(θ;D)}
under M converges to the limit, say logL∗(θ;D). For continuous (and thus measurable) func-
tion logL(θ;D), let θ∗ be the set of parameters corresponding to logL∗(θ;D), or logL(θ∗;D) =
logL∗(θ;D). From logL(θ(p+1);D)− logL(θ(p);D) −→ 0 and logL(θ(p+1);D) ≥ logL(θ(p);D), we
see that ∇ logL(θ(p);D) −→ 0 and so θ∗ is a stationary point.

Now we turn to prove that θ∗ is the fixed point of operator M .

For the constrained optimization problem (37), we exploit the Lagrange Multiplier method [16]
and define the Lagrangian as

L = logPθ(D)− λ(
∑
j′

θij′k − 1), (71)

which implies that ∂L/∂θijk = ∂logPθ(D)/∂θijk − λ.

The gradient ∂logPθ(D)/∂θijk can be computed locally by using information that is available
in the normal course of belief network calculations, as shown below [4][27].

∂ logPθ(D)

∂θijk
=

∂ log
∏L
l=1 Pθ(Dl)

∂θijk

=
L∑
l=1

∂ logPθ(Dl)

∂θijk

=
L∑
l=1

∂Pθ(Dl)/∂θijk
Pθ(Dl)

. (72)

In order to get an expression in terms of information local to the parameter θijk, we introduce
Xi and Πi by averaging over their possible values:

∂Pθ(Dl)/∂θijk
Pθ(Dl)

=

∂
∂θijk

(∑
j′,k′ Pθ(Dl|x

j′

i , π
k′
i)Pθ(x

j′

i , π
k′
i)
)

Pθ(Dl)

=

∂
∂θijk

(∑
j′,k′ Pθ(Dl|x

j′

i , π
k′
i)Pθ(x

j′

i |π
k′
i)Pθ(π

k′
i)
)

Pθ(Dl)
. (73)

Observe that the important property of this expression is that θijk appears only in one term in

the summation: the term for j′ = j, k′ = k . For this term, Pθ(x
j′

i |π
k′

i) is just θijk, so we have

∂Pθ(Dl)/∂θijk
Pθ(Dl)

=
Pθ(Dl|x

j
i , π

k
i)Pθ(π

k
i)

Pθ(Dl)

=
Pθ(x

j
i , π

k
i |Dl)Pθ(Dl)Pθ(π

k
i)

Pθ(x
j
i , π

k
i)Pθ(Dl)

=
Pθ(x

j
i , π

k
i |Dl)

Pθ(x
j
i |π

k
i)

=
Pθ(x

j
i , π

k
i |Dl)

θijk
. (74)

19

Since θ∗ is the stationary point, we have [∂logPθ(D)/∂θijk − λ] θ=θ∗ = 0, or

L∑
l

Pθ∗(x
j
i , π

k
i |Dl)

θ∗ijk
− λ = 0, (75)

and by which

λθ∗ijk =
L∑
l

Pθ∗(x
j
i , π

k
i |Dl) ⇒

λ
∑
j

θ∗ijk =
L∑
l

∑
j

Pθ∗(x
j
i , π

k
i |Dl) ⇒

λ =
L∑
l=1

Pθ∗(π
k
i |Dl). (76)

so we have θ∗ijk = Pθ∗(x
j
i , π

k
i |Dl)/λ = Pθ∗(x

j
i , π

k
i |Dl)/Pθ∗(π

k
i |Dl), or θ∗ is the fixed point for operator

H. It is straightforward to check that θ∗ = M(θ∗).

Since logL(θ;D) is strictly concave, θ∗ is the global maxima.

Based on the above lemmas and propositions, we sum up and get the following proposition:

Proposition 3.4 For any given data set D and let sequence {γp} ∈ (0, 1], ∀p, the small step size
EM algorithm according to operator M converges to the global maxima of the likelihood function
L(θ;D), starting from any guess of initial parameter set θ(0).

Note that as long as sequence {γp} ∈ (0, 1], ∀p the proposition holds; the choice of step size,
however, only affects the rate of convergence, as discussed in section 3.4. For Bayesian analysis,

θMAP
ijk =

θ∗ijk+αijk
θ∗
ik

+αik
, where αijk and αik are the hyper-parameters for Dirichlet distribution.

Proposition 3.5 After convergence, θ∗ is the MVUE for augmented complete data C(D) and
henceforth.

Proof. By lemma 2.7, we see that after every iteration, θ̃(p+1) is MVUE for C(D) obtained
under θ̃(p). θ∗ is the fixed point and thus MVUE henceforth.

But is this θ∗ also the MVUE for the original incomplete data D? The following is such a
proposition which is yet to be proved (or disproved).

Proposition 3.6 The algorithm θ̃(p+1) = M(θ̃(p)) achieves MVUE for original problem under D.

20

3.4 Convergence rate and choice of step size

For the 3-dimensional matrix θ, we define ψ = θik, which is a J × 1 vector with ψj = θijk as the
jth component. We study the convergence rate problem of matrix θ by looking at each such ψ. It
can be shown that at the neighborhood of ψ∗,

ψ(p+1) − ψ∗ ≈ J(ψ∗)(ψ(p) − ψ∗), (77)

where J(ψ∗) is the Jacobian matrix and the rate of convergence is defined as

ν = lim
p→∞

‖ ψ(p+1) − ψ∗ ‖

‖ ψ(p) − ψ∗ ‖
. (78)

Usually, under some regularity conditions, the rate of convergence is

ν = λmax(J(ψ∗)) the largest eigenvalue of J(ψ∗). (79)

Let JH(ψ) and JM (ψ) denote the Jacobian matrices under operator H and M , respectively. To
obtain JH(ψ) and JM (ψ) under ψ = ψ∗, we make the following definitions first.

Definition 3.4 The gradient vector of logL(θ;D) with respect to ψ is

S(D;ψ) = ∂ logL(θ;D)/∂ψ. (80)

We can see from (74) that
S(D;ψ)(j) =

∑
l

Pθ(x
j
i , π

k
i |Dl)/θijk. (81)

Definition 3.5 The gradient vector of logLc(θ;D
+) with respect to ψ is

Sc(D
+;ψ) = ∂ logLc(θ;D

+)/∂ψ. (82)

Similarly we have

Sc(D
+;ψ)(j) =

∑
l

∑
q

Pθ(x
j
i , π

k
i |D

+
l (q))/θijk

=
∑
l

∑
q

Iθ(x
j
i , π

k
i |D

+
l (q))/θijk

=
∑
l

∑
q

Sc(D
+
l (q);ψ)(j), (83)

where Iθ(x
j
i , π

k
i |D

+
l (q)) is the indicator function.

Lemma 3.6 S(D;ψ) = Eθ{Sc(D
+;ψ)|D}

21

Proof. ∑
l

Pθ(x
j
i , π

k
i |Dl) =

∑
l

∑
q

Pθ(x
j
i , π

k
i ,D

+
l (q)|Dl)

=
∑
l

∑
q

Pθ(D
+
l (q)|Dl)Pθ(x

j
i , π

k
i |Dl,D

+
l (q))

=
∑
l

∑
q

Pθ(D
+
l (q)|Dl)Iθ(x

j
i , π

k
i |D

+
l (q)). (84)

⇒ S(D;ψ) = Eθ{Sc(D
+;ψ)|D}.

Definition 3.7 The negative of Hessian matrix under complete data is I(ψ;D) = −∂2 logL(θ;D)/∂ψ∂ψT .

Definition 3.8 The negative of Hessian matrix under incomplete data is Ic(ψ;D+) = −∂2 logLc(θ;D
+)/∂ψ∂ψT .

Lemma 3.9 I(ψ;D) = Ic(ψ;D)− Im(ψ;D), where Ic(ψ;D)
def
= Eθ{Ic(ψ;D+)|D} and Im(ψ;D)

def
=

Eθ{∂
2 logPθ(D

+|D)/∂ψ∂ψT }.

Proof. This lemma is called the missing information principle, firstly originated by Orchard in
1972 [19]. It is straightforward to see that

I(ψ;D) = Eθ{I(ψ;D)|D}

= −
∑
l

∑
q

Pθ(D
+
l (q)|Dl)∂

2 logLc(θ;D
+
l (q))/∂ψ∂ψT

+
∑
l

∑
q

Pθ(D
+
l (q)|Dl)∂

2 logPθ(D
+
l (q)|Dl)/∂ψ∂ψ

T

= Eθ{Ic(ψ;D+)|D}+Eθ{∂
2 logPθ(D

+|D)/∂ψ∂ψT }. (85)

⇒ I(ψ;D) = Ic(ψ;D)− Im(ψ;D).

Lemma 3.10 For operator H, JH(ψ∗) = Ic
−1(ψ∗;D)Im(ψ∗;D).

Proof. This lemma is adapted from [8]. By proposition 3.3 we know that S(D;ψ∗) = 0 and at
the neighborhood of ψ∗,

S(D;ψ∗) ≈ S(D;ψ(p))− I(ψ(p);D)(ψ∗ − ψ(p)) ⇒

ψ∗ ≈ ψ(p) + I−1(ψ(p);D)S(D;ψ(p)) (86)

At M-step, for Q(ψ,ψ(p)) =
∑
l

∑
q Pθ(p)(D+

l (q)|Dl) logPθ(D
+
l (q)) we have

0 = [∂Q(ψ,ψ(p))/∂ψ]ψ=ψ(p+1)

22

≈ [∂Q(ψ,ψ(p))/∂ψ]ψ=ψ(p)︸ ︷︷ ︸
S(D;ψ(p))by lemma 3.6

+ [∂2Q(ψ,ψ(p))/∂ψ∂ψT]ψ=ψ(p) (ψ(p+1) − ψ(p))

= S(D;ψ(p))− Ic(ψ
(p); D)(ψ(p+1) − ψ(p)) ⇒

S(D;ψ(p)) ≈ Ic(ψ
(p); D)(ψ(p+1) − ψ(p)). (87)

From (86) and (87) we have

ψ∗ − ψ(p) ≈ I−1(ψ(p);D)Ic(ψ
(p); D)(ψ(p+1) − ψ(p)) ⇒

ψ(p+1) − ψ∗ ≈ [IJ − I
−1
c (ψ(p); D)I(ψ(p); D)](ψ(p+1) − ψ∗)

≈ [IJ − I
−1
c (ψ∗; D)I(ψ∗; D)](ψ(p+1) − ψ∗)

≈ I−1
c (ψ∗; D)Im(ψ∗; D)(ψ(p+1) − ψ∗). by lemma 3.9 (88)

⇒ JH(ψ∗) = I−1
c (ψ∗; D)Im(ψ∗; D).

Lemma 3.11 Im(ψ∗; D) =
∑

l

∑
q Pθ(D

+
l (q)|Dl) Sc(D

+
l (q);ψ) ST

c (D+
l (q);ψ)−

∑
l S(Dl;ψ) ST(Dl;ψ)

Proof. This lemma is similar to and adapted from that proposed by Louis in 1982 [15].

I(ψ;D) = −∂S(D;ψ)/∂ψ

= = −
∑
l

∂S(Dl;ψ)/∂ψ = −
∑
l

∂[
∂L(θ;Dl)/∂ψ

L(θ;Dl)
] /∂ψ

= −
∑
l

∂[

∑
q ∂Lc(θ;D

+
l (q))/∂ψ

L(θ;Dl)
] /∂ψ

= −
∑
l

∑
q

∂2Lc(θ;D
+
l (q))/∂ψ∂ψT

L(θ;Dl)

+
∑
l

[∑
q ∂Lc(θ;D

+
l (q)) /∂ψ

L(θ;Dl)

] [∑
q ∂Lc(θ;D

+
l (q)) /∂ψ

L(θ;Dl)

]T

= −
∑
l

∑
q

∂2Lc(θ;D
+
l (q)) /∂ψ∂ψT

L(θ;Dl)
+
∑
l

S(Dl;ψ)ST (Dl;ψ)

= −
∑
l

∑
q

[
∂2 logLc(θ;D

+
l (q)) /∂ψ∂ψT

] L(θ;D+
l (q))

L(θ;Dl)

−
∑
l

∑
q

[
∂Lc(θ;D

+
l (q)) /∂ψ

Lc(θ;D
+
l (q))

] [
∂Lc(θ;D

+
l (q)) /∂ψ

Lc(θ;D
+
l (q))

]T
+
∑
l

S(Dl;ψ)ST (Dl;ψ)

=
∑
l

∑
q

Ic(ψ;D+
l (q))Pθ(D

+
l (q)|Dl)

−
∑
l

∑
q

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ)Pθ(D
+
l (q)|Dl) +

∑
l

S(Dl;ψ)ST (Dl;ψ). (89)

Since
∑
l

∑
q Ic(ψ;D+

l (q))Pθ(D
+
l (q)|Dl) = I(ψ;D), and by lemma 3.9 we finish the proof.

23

So at the neighborhood of θ∗, we can now compute the Jacobian matrix by using lemma 3.10
and 3.11, as shown below:

• Computation of I−1
c (ψ∗; D):

Obviously, Ic(ψ;D+
l (q)) = −∂Sc(D

+
l (q);ψ) /∂ψ, where Sc(D

+
l (q);ψ)(j) = Iθ(x

j
i , π

k
i |D

+
l (q)) /θijk.

So it is easy to check that for j 6= j′, ∂Sc(D
+
l (q);ψ)(j)/∂ψj′ = 0 and so

Ic(ψ;D) =
∑
l

∑
q

Pθ(D
+
l (q)|Dl) Ic(ψ;D+

l (q))

=
∑
l

∑
q

Pθ(D
+
l (q)|Dl) diag{Iθ(x

j
i , π

k
i |D

+
l (q)) /θ2

ijk}

= diag

{∑
l

∑
q

Pθ(D
+
l (q)|Dl) Iθ(x

j
i , π

k
i |D

+
l (q)) / θ2

ijk

}

= diag

{∑
l

Pθ(x
j
i , π

k
i |Dl)/θ

2
ijk

}
= diag {aj} , (90)

where aj
4
=
∑
l Pθ(x

j
i , π

k
i |Dl)/θ

2
ijk j = 1, . . . , J.

• Computation of
∑
l

∑
q Sc(D

+
l (q);ψ)STc (D+

l (q);ψ)Pθ(D
+
l (q)|Dl):

From Sc(D
+
l (q);ψ)(j) = Iθ(x

j
i , π

k
i |D

+
l (q)) /θijk, we get Iθ(x

j
i , π

k
i |D

+
l (q)) Iθ(x

j′

i , π
k
i |D

+
l (q)) =

0 ∀j′ 6= j and thus

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ) = diag{Iθ(x
j
i , π

k
i |D

+
l (q)) / θ2

ijk}, (91)

and similarly we have∑
l

∑
q

Sc(D
+
l (q);ψ)STc (D+

l (q);ψ)Pθ(D
+
l (q)|Dl) = diag {aj} j = 1, . . . , J. (92)

• Computation of
∑
l S(Dl;ψ)ST (Dl;ψ):

Let V =
∑
l S(Dl;ψ)ST (Dl;ψ), and since S(Dl;ψ)(j) = Pθ(x

j
i , π

k
i |Dl), we have for matrix

V = {vms}:

vms =


∑

l
Pθ(x

m
i ,π

k
i |Dl)Pθ(xsi ,π

k
i |Dl)

θimk θisk
if m 6= s

∑
l
P 2
θ

(xmi ,π
k
i |Dl)

θ2
imk

if m = s

(93)

And then we can see that

JH(ψ∗) = I−1
c (ψ∗; D)Im(ψ∗; D)

= diag{1/aj} [diag{aj} − V]

= IJ − W̄ , (94)

24

where W̄ = diag{1/aj}V. For each of its element,

w̄mm =
θ2
imk∑

l Pθ(x
m
i , π

k
i |Dl)

∑
l P

2
θ (xmi , π

k
i |Dl)

θ2
imk

=

∑
l P

2
θ (xmi , π

k
i |Dl)∑

l Pθ(x
m
i , π

k
i |Dl)

(95)

w̄ms =
θ2
imk∑

l Pθ(x
m
i , π

k
i |Dl)

∑
l Pθ(x

m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)

θimk θisk

=
θimk

θisk
∑
l Pθ(x

m
i , π

k
i |Dl)

∑
l

Pθ(x
m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)

=

∑
l Pθ(x

m
i , π

k
i |Dl)Pθ(x

s
i , π

k
i |Dl)∑

l Pθ(x
s
i , π

k
i |Dl)

, (96)

based on the fact that if θ = θ∗, θimk =
∑
l Pθ(x

m
i , π

k
i |Dl) /

∑
l Pθ(π

k
i |Dl) under operator H. If we

define wjl = Pθ(x
j
i , π

k
i |Dl) at θ = θ∗, it is easy to see that W̄ = W Λ, where Λ = diag {1/

∑
l wjl}

and

W =


∑
l w

2
1l

∑
l w1lw2l . . .

∑
l w1lwJl∑

l w1lw2l
∑
l w

2
2l . . .

∑
l w1lwJl

...
...

. . .
...∑

l w1lwJl
∑
l w1lw2l . . .

∑
l w

2
Jl

 (97)

Obviously, W =
∑
l wlw

T
l where wTl = [w1l, . . . , wJl].

For operator M , we have

JM (ψ∗) = (1− γ)IJ + γJH(ψ∗)

= IJ − γW Λ. (98)

To study the eigenvalues of JM (ψ∗), we first look at those of W Λ. It is straightforward to see
that for any non-zero vector ξ ∈ RJ ,

λmax(W̄) = max
ξ

(ξ,
∑
l wlw

T
l Λ ξ)

(ξ, ξ)

= max
ξ

∑
l

(ξ,wlw
T
l Λ ξ)

(ξ, ξ)︸ ︷︷ ︸
≤λmax(wlw

T
l

Λ)

≤
∑
l

λmax(wlw
T
l Λ) and, (99)

λmin(W̄) = min
ξ

(ξ,
∑
l wlw

T
l Λ ξ)

(ξ, ξ)

= min
ξ

∑
l

(ξ,wlw
T
l Λ ξ)

(ξ, ξ)︸ ︷︷ ︸
≥λmin(wlw

T
l

Λ)

≥
∑
l

λmin(wlw
T
l Λ), (100)

25

and so we have the following lemmas.

Lemma 3.12 λmax(wlw
T
l Λ) =

∑
j w

2
jl/
∑
l wjl, λmin(wlw

T
l Λ) = 0

Proof. If we let Λ = diag {ρj} with ρj > 0 (this condition stands true if data sample size L is
large enough), then for any non-zero ξ ∈ RJ , we have∑

l

ξTwlw
T
l Λξ =

∑
l

(ξ1w1l + . . .+ ξJwJl) (ρ1ξ1w1l + . . . + ρJξJwJl)

≥ (
√
ρ1ξ1w1l + . . .+

√
ρJξjwjl)

2 ≥ 0. (101)

So matrix wlw
T
l Λ is positive semi-definite, with all of its eigenvalues non-negative. Note also

that in wlw
T
l Λ, each row is of a constant factor of any other row, we see that

det (wlw
T
l Λ) =

∏
j

λj(wlw
T
l Λ) = 0 (102)

and λmin(wlw
T
l Λ) = 0.

Let Υ = (wlw
T
l Λ)(wlw

T
l Λ)T , and we know that λmax(wlw

T
l Λ) = ‖wlw

T
l Λ‖ = [tr(Υ)]1/2. It is

easy to check that

υjj =
w2
jl∑
l wjl

[
w2

1l∑
l w1l

+ . . .+
w2
Jl∑
l wJl

]
⇒ (103)

λmax(wlw
T
l Λ) =

(∑j w
2
jl∑

l wjl

)2
1/2

(104)

wlw
T
l Λ positive semi-definite ⇒ λmax(wlw

T
l Λ) =

∑
j w

2
jl/
∑
l wjl

Lemma 3.13 λmax(J
M (ψ∗)) ≤ 1, λmin(JM (ψ∗)) ≥ 0

Proof.

λmax(W̄) ≤
∑
l

λmax(wlw
T
l Λ)

=
∑
l

∑
j

w2
jl/
∑
m

wjm


=

∑
j

(∑
l

w2
jl/
∑
m

wjm

)

≤
∑
j

[
(
∑
l

wjl)
2/
∑
m

wjm

]

26

=
∑
l

∑
j

Pθ∗(x
j
i , π

j
i |Dl)

=
∑
l

Pθ∗(π
j
i |Dl) ≤ 1 (105)

λmin(W̄) ≥
∑
l

λmin(wlw
T
l Λ) = 0 (106)

Then for operatorM with γ ∈ (0, 1], we have λmax(J
M (ψ∗)) = 1−γλmin(W̄) ≤ 1 and λmin(JM (ψ∗)) =

1− γλmax(W̄) ≥ 0.

From lemma 3.13 we see that the rate of convergence ν = λmax(J
M (ψ∗)) ≤ 1, which states also

that at the neighborhood of θ∗, operator M will make the parameter sequence converge to the local
maxima θ∗. To let the algorithm behaves well, we discuss the choice of step size next.

If we consider vector ψ ∈ RJ , for every component j we choose γp(j) as follows [3]:

γp(j) > 0 (107)
∞∑
p=0

γp(j) = ∞ with probability 1 (108)

∞∑
p=0

γ2
p(j) < ∞ with probability 1 (109)

References

[1] J. S. Baras, H. Li and G. Mykoniatis, “Integrated, Distributed Fault Management for Com-
munication Networks”, Technical Report, CSHCN TR 98-10, University of Maryland, 1998

[2] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Approxima-
tions, Springer-Verlag, 1987

[3] D. P. Bertsekas, and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996

[4] J. Binder, D. Koller, S. Russell, K. Kanazawa, “ Adaptive Probabilistic Networks with Hidden
Variables.” Machine Learning, in press, 1997.

[5] E. Castillo, J. M. gutierrez, and A. S. Hadi, Expert Systems and Probabilistic Network Models,
Springer, 1997

[6] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Probabilistic Net-
works from Data”, Machine Learning, 9, 309-347, 1992

[7] T. Cover, Elements of Information Theory , John Wiley and Sons, Inc., 1991

[8] A. P. Dempster, N. M. Laird and D. B. Rubin “Maximum Likelihood from Incomplete Data
via the EM Algorithm (with discussion)” Journal of the Royal Statistics Society B, 39, pp.
1-38, 1977.

27

[9] V. Fabian, “Asymptotically Efficient Stochastic Approximation; The RM Case”, The Annals
of Statistics, vol. 1, No. 3, pp. 486-495, 1973

[10] N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell, “Challenge: Where is the Impact
of Bayesian Networks in Learning?”, Technical Report, 1997

[11] N. Friedman and M. Goldszmidt, “AAAI-98 Tutorial on learning Bayesian networks from
Data”, 1998

[12] D. Heckerman, “A tutorial on learning with Bayesian networks”, Microsoft Research Technical
Report MSR-TR-94-09, 1996

[13] H. Li, “An Introduction to Belief Networks”, Technical Report, CHSCN, University of Mary-
land, 1998

[14] L. Ljung, G. Pflug, and H. Walk, Stochastic Approximation and Optimization of Random
Systems, Birkhäuser, 1992

[15] T. A. Louis, “Finding the observed information matrix when using the EM algorithm”, Journal
of the Royal Statistical Society B, 44, pp. 226-233, 1982

[16] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1984

[17] G. J. McLachlan and T. Krishnan, The EM Algorithm ad Extensions, Wiley Interscience, 1997

[18] R. M. Neal, “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, Technical
Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993

[19] T. Orchard and M. A. Woodbury, “A missing information principle: theory and applications”,
In Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, vol.
1, Berkeley, California: University of California Press, pp. 697-715, 1972

[20] J. Pearl, “Fusion, Propagation, and Structuring in Belief Networks”, Artificial Intelligence,
vol. 29, pp. 241-288, 1986

[21] J. Pearl, Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference, Mor-
gan Kaufmann, 1988

[22] B. T. Polyak and A. B. Juditsky,“Acceleration of stochastic approximation by averaging”,
SIAM J. Contr. Opt. vol. 30, pp. 838-855, July 1992

[23] H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, 1994

[24] L. R. Rabiner and B. H. Juang, “An Introduction to Hidden Markov Models”, IEEE ASSP
Magazine, 4-16, 1986

[25] H. Robbins and S. Monro, “A stochastic approximation method”, The Annals of Mathematical
Statistics, vol. 22, pp. 400-407, 1951

[26] R. Y. Rubinstein, Simulation and the Monte Carlo Method, Wiley, 1981

[27] S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, Prentice-Hall, 1995

28

