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Global climate models, numerical weather prediction, and flood models rely on 

accurate satellite precipitation products, which are the only datasets that are 

continuous in time and space across the globe. While there are more earth observing 

satellites than ever before, gaps in precipitation retrievals exist due to sensor and 

orbital limitations of low-earth (LEO) satellites, which are overcome by merging data 

from different sensors in satellite precipitation products (SPPs). 

Using cloud tracking at higher resolutions than the spatio-temporal scales of LEO 

satellites, this thesis examines how clouds typically form in the atmosphere, the rate 

that cloud size and temperature evolve over the life cycle, and the time of day that 

cloud development take place. This thesis found that cloud evolution was non-linear, 

which disagrees with the linear interpolation schemes used in SPPs. Longer lasting 



  

clouds tended to achieve their temperature and size maturity milestones at different 

times, while these stages often occurred simultaneously in shorter lasting clouds. 

Over the ocean, longer lasting clouds were found to occur more frequently at night, 

while shorter lasting clouds were more common during the daytime. 

This thesis also examines whether large-scale Saharan dust outbreaks can impact the 

trajectories and intensity of cloud clusters in the tropical Atlantic, which is predicted 

by modeling studies. The presented results show that proximity to Saharan dust 

outbreaks shifts Atlantic cloud development northward and intense storms becoming 

more common, whereas on days with low dust loading small-scale, warmer clouds are 

more common. 

A simplified view of cloud evolution in merged rainfall retrievals is a possible source 

of errors, which can propagate into higher level analysis. This thesis investigates the 

difference in the intensity, duration, and frequency of precipitation in IMERG, a next-

generation satellite precipitation product with ground radar observations over the 

contiguous United States. There was agreement on seasonal totals, but closer 

examination shows that the average intensity and duration of events is too high, and 

too infrequent compared to events detected on the ground. Awareness of the strengths 

and limitations, particularly in context of high-resolution cloud development, can 

enhance SPPs and can complement climate model simulations. 
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Chapter 1. Introduction  

1.1 Background 

NASA’s Earth Observing System currently has 25 satellites in operation and 

development, providing long-term global observations of our planet’s land, ocean, 

and atmosphere. Even in this golden era of Earth data, barriers to uninterrupted 

observation of clouds and rain remain due to coverage gaps between satellite 

overpasses, spatial limitations of instruments, and uncertainty in retrieval algorithms. 

Consequently, the quality of satellite datasets impacts the ability of global climate 

models (GCMs) and numerical weather prediction (NWP) systems to make future 

projections; simulations rely on having an accurate representation of cloud and rain 

characteristics, daily cycles, and climatology [Trenberth, 2003; Ebert et al, 2007; 

Stephens et al., 2010; Maggioni et al., 2016].  

Interpolating observations from passive microwave (PMW) with measurements from 

infrared (IR) enabled satellite platforms drastically improves the spatial and temporal 

sampling between overpasses. Doing so utilizes the high temporal and spatial 

resolution IR observations of geostationary satellites with the less frequent, but more 

accurate, PMW measurements taken from low-earth orbit satellites.  

Unlike fluid-like and Gaussian environmental parameters such as wind speed and 

temperature, clouds and rainfall behave as semi-coherent and distinct events [Skok et 

al., 2009]. As a result, we can characterize how systems grow, mature, and decay over 

their entire lifetime, as well as their structural changes, age, and trajectories.  This 
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allows us to understand their behavior between PMW overpasses using IR 

observations and to quantify their discrepancies with more accurate ground 

observations. Since satellite records are now available for extended time periods, we 

can also composite clouds and precipitation characteristics on daily, seasonal, and 

intra-seasonal timescales. This understanding of event development can then be built 

back into models and algorithms to improve estimates. 

A downside of the PMW-IR interpolation strategy is that, while errors from 

individual sensors can be examined, interpolating the results of the two measurements 

complicates error and uncertainty analysis. Most work has been done on shorter, 

instantaneous time scales (e.g. how does the satellite rain rate compare with the rain 

rate obtained from surface measurements; Ebert et al., 2007; Maggioni et al, 2016). 

However, short time scale errors can propagate into analysis at daily, seasonal, and 

intra-seasonal timescales. 

1.1.1 Combining passive microwave and infrared observations in satellite 

precipitation products increases resolution, but compromises data quality 

Figure 1-1a illustrates the coverage gaps in a typical 30 min interval hourly rain rate 

swath from the Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset, a 

state-of-the-art rainfall retrieval from the Global Precipitation Mission (GPM) core 

observatory satellite [Hou et al., 2014]. IMERG, as the name suggests, integrates 

PMW estimates with IR geostationary observations to “morph” or linearly interpolate 

the movement of the PMW estimate by using the IR-derived cloud motion vectors 

[Joyce et al. 2004; Huffman et al., 2015]. 
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While the morphing technique enables better coverage (Figure 1-1b), non-PMW 

estimate regions are lower quality and some of the assumptions upon reflection are 

simplistic. For instance, the evolution of rainfall and the clouds in which it is 

embedded are modulated by varying larger-scale environmental conditions such as 

sea surface temperature (SST), daytime solar heating, and subsidence from nearby 

storms, which can cause growth or decay to occur rather chaotically. As clouds 

propagate, they may split apart or merge to form larger systems. A linear 

interpolation of PMW with IR may thus be too simplistic an assumption. As shown in 
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Chapter 2, I examined how clouds evolve and found that growth is in fact a non-linear 

process that is both seasonally and regionally varying. These results encourage 

exploration of a more nuanced PMW-IR blending scheme, particularly in the context 

of cloud development. 

1.1.2 Cloud tracking can enable more realistic data combination by answering 

larger scientific questions 

Integrating IR observations in the Lagrangian framework is an effective strategy to 

study cloud development. Treating each cloud as a semi-coherent object across it’s 

lifespan results in a more realistic evolution of cloud systems properties than in the 

Eulerian view, which is essentially a series of snapshots [Machado et al., 1998]. 

While object-based (Lagrangian) cloud tracking has been an area of research for 

nearly three decades [Williams and Houze, 1987], there is renewed interest in cloud 

object-based evolution is partly due to the advancement of satellite-based multi-

sensor high-resolution precipitation estimates [Li et al., 2015] and existence of long-

term, near-global merged geostationary datasets. 

In addition to retrieval algorithm applications, global climate models have difficulties 

reliably identifying and tracking smaller scale convective systems [Stephens et al. 

2010; Westra et al., 2014]. This is in part because many cloud processes occur below 

the temporal and spatial resolutions of climate models. Thus, IR-based Lagrangian 

cloud tracking can be used to evaluate the abilities of models to reproduce both 

climatological cloud scaling features and trajectories, particularly at fine scales [Boer 

and Ramanathan, 1997].  
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Lagrangian cloud tracking also enables studying how large-scale environmental 

phenomena such as dust outbreaks can impact cloud development. During Saharan 

dust outbreaks, coarse aerosols travel deep into the atmosphere and interact with the 

clouds. Observational studies have shown that dust plumes can interact with and 

potentially weaken hurricanes [Dunion and Veldon, 2004; Wu, 2007]. Aerosols may 

also similarly affect smaller scale cloud and rainfall development, but the impact of 

dust outbreaks on cloud life cycles is not well known. 

1.1.3 Event-based evaluation of precipitation datasets can show the downstream 

effects of uncertainty in instantaneous measurements 

Stemming from imperfect understanding of precipitating processes and cloud 

development, error and uncertainty in satellite precipitation products can limit their 

usefulness in modeling applications. However, combining PMW and IR complicates 

quantification of sampling, measurement, and algorithm errors of instantaneous 

rainfall measurements [Maggioni et al., 2014]. The uncertainty and errors of both 

measurements have been individually assessed. PMW provides a more direct 

observation, but also systematically under and overestimates light and heavy rain, 

respectively [Anagnostou et al., 2010; Prakash et al., 2016]. IR-derived atmospheric 

motion vectors can overestimate advection rates and must be regionally corrected 

[Joyce and Xie, 2011]. The source of collective errors on the resulting rainfall 

estimate become difficult to diagnose.  

Collectively, these short-time scale errors propagate into composited analysis on 

hourly, daily, seasonal, and climatological time scales [Tian et al., 2007]. Moving 
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beyond instantaneous or climatological rain totals to a more comprehensive 

examination of the intensity, duration, and frequency (IDF) characteristics of rain 

events can help pinpoint some of the sources of these errors. The IDF framework is 

beneficial because the impact of a single high-intensity storm is more societally 

significant than the same amount of rain spread out over a month. This therefore 

motivates the work described in Chapter 4, which evaluates event-based intensity, 

duration, and frequency of rainfall with surface observations.  

Because radar and rain gauges are only available over a small fraction of the earth, 

satellite observations remain the only viable means of calibrating climate models. 

Models must reproduce present day precipitation for future precipitation and energy 

balance projections to be accurate [Hall and Vander Haar, 1999; Trenberth, 2003; 

Stephens, 2010]. However, models simulate precipitation character by overestimating 

the frequency and intensity, partly due to scaling (such sub-grid processes or 

averaging of intermittent precipitation) and also because of incorrect model physics, 

which create unrealistic vertical profiles in the cloud [Stephens et al., 2010]. In the 

cited studies and elsewhere, satellite observations are used as a reference to check the 

frequency, intensity, and daily timing of results. However, if satellite retrieval errors 

and uncertainty in instantaneous measurements impact composited analysis [Tian et 

al., 2014], observations become an imperfect reference for tuning the models and thus 

require further assessment. 
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1.2 Research objective 

The objective of this thesis is to examine clouds and rainfall as semi-coherent and 

distinct events, to understand how their life cycle evolution unfolds in the time 

periods between overpasses. In carrying out this research objective, I sought to 

answer three principal scientific questions: 

1. How many clouds typically form in the atmosphere, at what rate do cloud 

characteristics such as size and temperature evolve over the life cycle, and at what 

time of day does development take place? 

2. Do large-scale Saharan dust outbreaks impact the trajectories and the intensity of 

cloud clusters in the tropical Atlantic, as predicted by modelling studies? 

3. What are the differences between the intensity, duration, and frequency of 

satellite precipitation products and ground observations, which can inherit 

uncertainty and errors from instantaneous measurements? 

To answer these questions, my goals were to: 

1. Produce a large database of clouds tracks by clustering global IR-derived cold 

clouds and tracking their evolution and daily cycles through time to show how 

cloud size and temperature properties change with time, what the development 

differences are for large-scale storms versus small-scale clouds, and the daily 

timing when events take place. The results offer baseline global statistics to which 

models can be compared. 

2. To use the object-based framework developed for this thesis to examine if coarse 

particles (larger than 1.0 µm) from dust outbreaks have an impact on cloud 
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growth and development. Clouds and rainfall can be both enhanced or inhibited 

by dust aerosols, which can alter the environment through radiative and 

microphysical effects. However, the impact on cloud development due to either 

effect is not well-researched. 

3. To evaluate the quality of satellite rain events in the context of their intensity, 

duration, and frequency so that we, along with members of the community who 

rely on this data, can be aware of their current strengths and weaknesses. 

As more GPM data is collected, precipitation observations are combined with tracked 

cloud clusters, so that in the future we can study how surface rain evolves within the 

cloud and in context of environmental phenomena like dust outbreaks. As retrieval 

measurement techniques mature, globally tracked rainfall becomes feasible and is a 

natural extension of this thesis.  

1.3 Survey of existing literature 

1.3.1 Review for scientific question 1: structural cloud characteristics, cloud life 

cycle evolution, and diurnal cycle of clouds and rainfall 

1.3.1.1 Structural characteristics of cloud clusters 

We show the usefulness of event tracking in Figure 1-3, which shows the differences 

in tracks produced by clustering outgoing longwave radiation from the GEOS-5 

Nature Run (Figure 1-2a) and the tracks produced from cloud brightness temperature 

clusters (Figure 1-2b). Comparing the two Figures, the model has many more 

trajectories than what is observed. The model produces a more zonally extensive 

intertropical convergence zone (ITCZ), a semi-persistent band of heavy rainfall that 
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encircles the Earth. The resulting trajectories are a bit smoother and less chaotic in the 

model than in the observation results. A caveat of this comparison is that the model 

and observation are tracking two related but different environmental variables 

(Outgoing longwave radiation versus brightness temperature; see Appendix). 

a	

b	
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Regardless, it does illustrate some of the disagreement.  

There are also differences in the cluster characteristics. In Figure 1-3a, we can see 

that clusters are smaller in the model compared with observations, especially outside 
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of the ITCZ region. However, model clusters typically last longer (Figure 1-3b) 

across all locations than observed clusters. Finally, Figure 1-3c shows that the model 

produces a surplus of clusters, particularly over the Caribbean and the Southeastern 

United States. 

A final divergence between models and observations can be seen in how they 

reproduce the diurnal cycle (Figure 1-4). Afternoon thunderstorms are common over 

Florida in June, however the model fails to reproduce this afternoon peak. Features of 

the shortest time scales are the most difficult for models to reproduce [Dai et 

al.,1999]. 

To evaluate how well models and algorithms characterize the atmosphere, it is 

necessary to survey past results and answer some basic questions about cloud 

tracking, characteristics, and the diurnal cycle. Some of the earliest studies sought to 

produce a census of cloud clusters using infrared observations to examine the scaling 

and lifetimes [Boer and Ramanathan, 1997]. Primarily focused in the tropics, infrared 

observations show that, while convection is commonly considered a chaotic process, 

there is in fact quite a bit of structure and regularity in terms of its regional size, 

frequency, and the timing of cluster formation. These represent basic features which 

are necessary to evaluate model quality. 

1.3.1.1.1	Size	distribution	
Globally speaking, how large is a typical cloud? While the size of cloud clusters 

varies greatly, the few largest clouds (the 20% that are larger than 2x104 km2), rather 

than the numerous small clouds, are what contribute the most to cloud cover over the 

Western Pacific [Williams and Houze, 1987]. Events such as Mesoscale Convective 
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Systems (MCS) are 60% larger in the Southern Hemisphere, predominantly form over 

land, and are nocturnal; however, those that do form over the ocean tend to become 

tropical cyclones [Velasco and Fritsch, 1987; Machado, 1993]. In fact, clusters tend 

to have a lognormal sizing preference across different regions [Machado et al., 1992; 

Mapes and Houze, 1993; Esmaili et al., 2016]. 

But does rain follow similar scaling? While the presence of a cloud does not 

guarantee rain, the thresholds used in these studies (235-245K) are predominantly 

deep convection in the tropics. Studies that examine rain areas within the cloud 

clusters have shown that they scale similarly [Feng et al., 2013], and clusters can thus 

be used proxies for rain areas. 

1.3.1.1.2	Frequency	
How often do clouds form? Machado [1992] found that, across all size classes of 

clusters, the frequency distribution follows a power law and that there are preferential 

sizes for clusters with very cold cloud top temperatures. The highest concentration of 

clusters was found over land, particularly around high terrain. In the tropics, there 

was a high count of clusters over land in the summer hemisphere across all size scales 

[Machado et al., 1993].  

Previous studies focused on West Africa, the tropical Atlantic [Machado et al. 1992], 

South America [Velasco and Fritsch, 1987; Machado et al. 2004] and the Maritime 

Continent [Mapes and Houze, 1993]. In Chapter 2 we present a global climatology of 

cluster count. We found regional agreement, but globally the highest occurrence of 

clusters took place over the Western Pacific, with high activity also taking place over 

the Amazon and the African Rainforest in the Austral Winter.  
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1.3.1.2 Cloud lifecycle evolution 

The earliest studies examining cloud lifecycle evolution combined infrared satellite-

based cloud cluster tracking with field campaign data, such as the Tropical Ocean 

Global Atmosphere (TOGA) field campaigns, to examine cloud evolution, structure, 

and the atmospheric and environmental conditions leading to development [Williams 

and Houze, 1987; Chen and Houze, 1997].  

Past studies found that clouds underdo regular life cycle stages: initiation, growth, 

maturity, and decay [Williams and Houze, 1987; Chen and Houze, 1997]. The rate 

and timing at which these life cycle stages occur are related to their total lifetime, 

precipitation quantity, and diurnal cycle [Esmaili et al., 2016]. 

Past evolution studies have focused on Mesoscale Convective Systems (MCS) due to 

their ease of detection in radar and satellite images [Maddox, 1980; Laing and 

Fritsch, 1997; Blamey and Reason, 2011]. Because MCS display regularity in their 

life cycles, Machado et al. [2004] was able to develop a statistical life cycle model to 

predict MCS propagation, which was built into the Forecast and Tracking the 

Evolution of Cloud Clusters [ForTrACC; Vila et al., 2001] algorithm. This technique 

is presently in operational use by the Brazilian National Institute for Space Research 

for short-term forecasts of convective cloud systems.  

Sophisticated combinations of infrared, PMW-based precipitation, and environmental 

reanalysis data can show nuanced details of evolution, such as which clouds 

contribute to total rainfall, during what development stage maximum precipitation 

occurs, and how rain features and their vertical reflectivity evolve. Hall and Vonder 
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Haar [1999] found that the coldest clouds were the largest contributors to total 

rainfall. Inoue et al. [2009] collocated PMW measurements and cloud clusters and 

found that rain rates tended to be more intense at earlier stages in their lifecycle, when 

clusters were also optically thicker. Feng et al [2012] took this one step further by 

separating clusters into distinct rain features: the convective core, the stratiform rain 

region, and non-raining anvil. They found that for clouds with lifetimes exceeding 6 

hours, humidity and upper level wind shear were over 50% greater than among short 

duration clouds. The anvil size was well correlated with the convective core, 

stratiform rain area, and strong updraft speeds. In Yuan et al.’s [2011] analysis of the 

vertical profiles of MCS from CloudSat, the horizontal dropoff of reflectivity (and 

thus, internal rain intensity of the clouds) was more abrupt for the strongest 

supercluster events. Looking at environmental parameters as well, Duncan [2014] 

found that deep convective systems are the most easily tracked. While the system 

speed and duration didn’t change significantly across ocean basins, the fastest 

systems caused sea surface temperature to decrease by reflecting solar radiation. By 

combining satellite observations with reanalysis data, we can see how deep 

convection and its local environment feed back into one another. 

1.3.1.3 Lifecycle evolution and theories of cloud cluster development 

Tracking these clusters with time and merging with other local environmental 

datasets enabled scientists to advance competing theories of how cloud clusters 

develop. Hall and Vonder Haar [1999] compare some of the primary theories. The 

“day versus night” subsidence (DNS) theory states that nocturnal development is 

driven by increased longwave cooling that leads to mass and moisture convergence, 
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making conditions prime for development. In the daytime, pressure gradients arise 

from differences in vertical heating in cloudy regions and adjacent clear-sky regions, 

but are more likely disrupted by solar heating. 

Another theory is the direct radiative cloud forcing (DCF), which was promoted by 

Machado et al. [1992, 1993] and can be broken down into three components. First, 

daytime solar absorption leads to upper level heating in cloud tops, stabilizing the 

lapse rate, and discouraging development. However, nocturnal longwave emission is 

not offset by incoming solar radiation, and the net cooling destabilizes the lapse rate. 

At the base of the cloud, absorption of longwave emitted from the surface or lower 

level clouds is further destabilizing. 

Finally, Chen and Houze’s [1996] theory suggests that development is most favorable 

in the afternoon, but the longest lasting systems persist until the early morning, 

causing the peak. They also propose day-to-day variations in development, or 

“diurnal dancing,” which suggest that regions that have strong development shade the 

underlying ocean surface and lower the SSTs. This, along with low humidity 

downdrafts, suppresses development for 1-2 days. However, neighboring “clear sky” 

regions will grow increasingly favorable for development. 

In addition to local environmental influences, many of the above studies address the 

influence of the intraseasonal oscillations, as well as larger scale events like El Nino, 

on the results. Chen and Houze [1997] observed active and suppressed phases over 

the tropics. Velasco and Fritsch [1987] found that twice as many MCS clusters 

formed during the El Nino event in their study period. We similarly found a decrease 
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in cluster formation in South America and the Atlantic, along with other 

teleconnections such as an increase in the Northwestern United States and Indian 

Ocean and a decrease in the Atlantic Basin. 

In spite of its rich history, a few gaps remain in our understanding of cloud cluster 

tracking. Few studies extended beyond the tropics or examined phenomena or target-

specific phenomena such as tropical convection and MCS. Because there are many 

clouds, precipitation systems, and climate regimes, a goal of this thesis is to produce 

the first global study and also to extend analysis to all detectable events, rather than 

focusing on the most extreme. 

1.3.1.4 Diurnal cycle of clouds and rainfall 

When do clouds form? Velasco and Fritsch [1987] found that MCS were typically a 

nocturnal process. The early morning peak of the largest clusters was noted by 

Williams and Houze [1987] and Mapes and Houze [1993]. In the Williams and Houze 

[1987] study, land and ocean clusters frequencies were out of phase, with an early 

morning maximum over the ocean adjacent to the Maritime continent and a morning 

minimum over land. In the Mapes and Houze [1993] study, the early morning peak 

was made up of larger, colder clusters while the afternoon peak consisted of 

moderately cold clouds. Building on this, the work presented in Chapter 2 shows that 

double peak in development over the ocean is composed of long lasting clouds in the 

evening and the short lasting clouds in the morning.  
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1.3.2 Review for scientific question 2: the impact of large-scale Saharan dust 

outbreaks on the trajectories and the intensity of cloud clusters 

Trans-Atlantic Saharan dust outbreaks can reach as far as the Caribbean, South 

America, and Eastern United States [Prospero and Lamb, 2003]. Dust outbreaks can 

be self-sustaining: Dust aerosols absorb shortwave solar radiation and emits in the 

longwave, heating the air but cooling the land and ocean below. This temperature 

gradient leads to the formation of the Saharan Air Layer (SAL) As the SAL rises, it 

creates a land-sea circulation which transports moisture from the Atlantic Ocean to 

the African continent, which then enhances rainfall along the Eastern Atlantic and 

coastal Africa. A walker-type circulation forms in the Atlantic from the increase in 

deep convection closer to the Eastern Atlantic and the subsequent subsidence causes 

less convection in the West Atlantic and the Caribbean [Lau et al., 2009]. 

A northward shift of the intertropical convergence zone (ITCZ) can result from the 

enhance the African Easterly Jet in proximity to the SAL [Wilcox et al. 2010]. A high 

atmospheric loading of aerosols can decrease the sea surface temperatures of the 

underlying ocean, however this does not appear to shut down storm development 

[Wilcox et al., 2010; Lau and Kim, 2007]. Over the ocean, the SAL can enhance 

Easterly African Waves, which are a primary precursor to tropical cyclones. 

The SAL can also enhance or inhibit clouds and rainfall through radiative effects or 

through microphysical effects from transported aerosols. Hurricanes can weaken or 

have intensification diminished when the SAL interacts with hurricanes [Dunion and 

Veldon, 2004; Wu, 2007]. A possible mechanism is that warm, dry air is intruded into 



 

 18 
 

the cloud, which then weakens downdrafts thereby suppressing development. The 

presence of coarse aerosols in the SAL may inhibit development through 

microphysical effects. However, others claim that only a small fraction of dust is 

entrained [Twohy, 2014; Lawson, 2010]. 

The impact of dust outbreaks on cloud life cycles is not well known. The larger scale 

effects of aerosols may not only alter the location of clouds [Wilcox et al. 2010] but 

the induced large-scale circulation [Lau and Kim, 2007] may also affect how the 

lifecycle milestones occur and the local timing in which they take place. Heavy dust 

can cause the ocean surface to cool by absorbing solar radiation, possibly hindering 

the development of intense storms as convection shifts northward. While the indirect 

effects of aerosols are considered secondary, they could lead to some enhance or 

suppress of development in contaminated clouds. 

1.3.3 Review for scientific question 3: rainfall products and validation with 

ground observations 

Water naturally emits microwave radiation, a physical characteristic that enables both 

ground and satellite radar estimation. In the required 10-85 GHz window, 

observations can only be made in the low earth (400 km) polar orbit, at the expense of 

large gaps between satellite overpasses. Observations of far-infrared cloud brightness 

temperature (10.5 µm) from the much further away geostationary satellites (35,800 

km) do not suffer from the same tunnel vision. However, longwave emission can only 

reveal cloud top characteristics and not the underlying rainfall [Sapiano and Arkin, 

2009; Xie and Arkin, 1997]. 
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Due to satellite orbits and sensor limitations, most major TRMM-era satellite 

precipitation products (e.g. TMPA, GSMaP, PERSIANN, CMORPH) relied to an 

extent on IR. Most products’ algorithms operate using the following scheme: when a 

strong enough PMW signal is detected, the reflectivity is converted to a 

corresponding surface rain rate. Because the ocean surface has a more uniform 

temperature and composition than land, lower frequency channels (10-19 GHz) can 

be employed and the conversion can be more consistently and accurately applied. 

Measurements over land are more challenging because the surface is warmer, which 

saturates emission at lower microwave channels. The accuracy of PMW 

measurements are compromised due to the surface’s inhomogeneity in time and 

space, and this inaccuracy can range from false detection of rain from the presence of 

surface snow and ice to overlooking the presence of light, warm rain altogether [Ebert 

et al., 2007; Agnostou et al., 2010]. Various datasets were thus developed during the 

TRMM-era to overcome these and other limitations by implementing a variety of 

innovative strategies.  

Of the list of satellite precipitation datasets, CMORPH is of particular relevance to 

this thesis, in part because the morphing technique has been inherited by IMERG, the 

flagship retrieval algorithm for GPM. IMERG is built on CMORPH’s ability to 

provide global, half hourly estimates by combing PMW scans with geostationary 

infrared observations. After a passive microwave overpass, cloud motion vectors are 

estimated from infrared data and then used to predict where the rainfall is 

propagating. A Kalman filter is used to decide which measurement to use (the PMW, 
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IR, or MORPHED data) to provide a weighted estimate, depending on the timing of 

the overpass [Joyce and Xie, 2011]. 

While improving the temporal resolution, morphing PMW and IR complicates 

sampling, measurement, and algorithm error quantification of instantaneous rainfall 

measurements [Maggioni et al., 2014]. PMW in general has difficulty characterizing 

extreme rainfall, both heavy and light. Convective rainfall in the detection is inhibited 

While improving the temporal resolution, morphing PMW and IR complicates 

sampling, measurement, and algorithm error quantification of instantaneous rainfall 

measurements [Maggioni et al., 2014]. PMW in general has difficulty characterizing 

extreme rainfall, both heavy and light. Convective rainfall in the detection is inhibited 

partly due to rapid changes in rain rates over short periods of time. Lighter rain events 

are also challenging, because clouds are warmer and often lack ice particles and can 

therefore escape detection [Ebert et al., 2007]. However, even motion vectors can 

overestimate propagation in the extratropics and require adjustment [Sears and 

Velden, 2012]. IR can be used to indirectly measure rainfall, but because the highest 

levels of the cloud mask the underlying rainfall, estimates are only statistically 

significant for tropical deep convection [Xie and Arkin, 1997]. For this reason, it is 

referable to use IR to calculate the atmospheric motion vectors in precipitation 

measurements, rather than to estimate rainfall whenever a recent PMW overpass is 

available. 

While combing PMW, IR, and morphing enables the highest temporal and spatial 

sampling, CMORPH has a high bias and strong seasonality, with overestimation in 
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the summer and underestimation in the winter. CMORPH tends to overestimate the 

amplitude of the diurnal cycle in the summer. When examined on different time 

scales, there is a large positive bias in the summer and a small negative bias in the 

winter, resulting in high bias on yearly time scales. However, on shorter event time 

scales (1-5 days), errors were lower than when using other products [Tian et al., 

2014]. Utilizing a Kalman filter to select the most appropriate technique improved the 

quality of estimations [Joyce and Xie, 2011]. Since the morphing technique is seen as 

the way forward into the GPM-era, continued refinement and validation of final 

products are areas of ongoing work [Sorooshian et al., 2011], and motivate the work 

in this thesis. 

1.4 Roadmap 

I provide a roadmap for how the dissertation is organized, which is also summarized 

in Figure 1-5. As I progressed though my research work, atmospheric scaling left a 

great impression on me. On that note, it is appropriate that my thesis starts with a 

global analysis of cold cloud clusters in Chapter 2. There, I show that clouds have 

regular development stages, and detail the local timing of when longer lasting clouds 

typically form.  

In Chapter 3, I will present an early examination of how dust aerosols can modulate 

the location and development of clouds over the Atlantic in 2007. In the future, I will 

extend this work to longer time scales and put it in the context of environmental data 

from reanalysis results.  
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In Chapter 4, I move from planetary to synoptic scales and from clouds to the rainfall 

that they contain. I characterize precipitation events produced by IMERG and 

compare them with ground observations over the contiguous United States. This work 

shows how well IMERG reproduces rainfall event characteristics and the daily cycle. 
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Developing awareness of the strengths and weaknesses of this next-generation 

product forms the basis of my future research, wherein I plan to examine rainfall in 

both time and space by combining IMERG with the cloud cluster data produced in 

Chapter 2.  

By the end of this thesis, we can see how object-based tracking and analysis help us 

understand the paradox of scaling in our planet: even the smallest atmospheric 

constituents (1-2 µm) can impact a much larger cloud (1000 km or more). I will offer 

some closing thoughts as I conclude Chapter 5 and propose my vision for future 

work. 
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Abstract 

Cloud movement and evolution signify the complex water and energy transport in the 

atmosphere-ocean-land system. Detecting, clustering, and tracking clouds as semi-

coherent clusters enables study of their evolution which can complement climate 

model simulations and enhance satellite retrieval algorithms, where there are gaps 

between overpasses. Using a cluster tracking algorithm, in this study we examine the 

trajectories, size, and brightness temperature of millions of cloud clusters over their 

lifespan, from infrared satellite observations at 4 km, 30 min resolution, for a period 

of 11 years. We found that the majority of cold clouds were both small and short-

lived and that their frequency and location are influenced by El Niño. Also, this large 

sample of individually tracked clouds shows their horizontal size and temperature 

evolution. Long-lived clusters tended to achieve their temperature and size maturity 

milestones at different times, while these stages often occurred simultaneously in 

short-lived clusters. On average, clusters with this lag also exhibited a greater rainfall 

contribution than those where minimum temperature and maximum size stages 

occurred simultaneously. Furthermore, by examining the diurnal cycle of cluster 
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development over Africa and the Indian subcontinent, we observed differences in the 

local timing of the maximum occurrence at different life cycle stages. Over land there 

was a strong diurnal peak in the afternoon while over the ocean there was a semi-

diurnal peak composed of longer-lived clusters in the early morning hours and 

shorter-lived clusters in the afternoon. Building on regional specific work, this study 

provides a global long-term survey of object-based cloud characteristics. 

2.1 Introduction 

Clouds are the most visible vital sign of the atmosphere’s dynamic water and energy 

transfer. They are responsible for the latent heat release that drives the atmospheric 

circulation. Their transport of water in the form of moisture and precipitation is 

critical for the Earth’s hydrological cycle. On sub-synoptic scales, the cloud systems’ 

movement, evolution, and spatial and temporal characteristics are remarkably 

turbulent and complex.  

The Lagrangian framework is an effective approach to study cloud clusters. Treating 

each cloud as an object across it’s lifespan produces useful information on the 

evolution of cloud systems’ properties, which is not available from the Eulerian view 

[Machado et al., 1998]. Renewed interest in cloud object-based evolution is partly 

due to the advancement of satellite-based multi-sensor high-resolution precipitation 

estimates [Li et al., 2015]. Currently, these estimates rely heavily on observations 

from passive microwave (PMW) sensors aboard polar-orbiting satellites [Kummerow 

et al., 2000; Joyce et al., 2004; Huffman et al. 2007; Huffman et al. 2013]. These 

PMW-based estimates are relatively accurate, but they do not correlate well with 
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surface observations when precipitation is very light, very heavy, or over saturated 

land surfaces, particularly during winter months [Ebert et al., 2007]. Additionally, 

these data have large spatial and temporal gaps.  

One way to bridge these coverage gaps is to use cloud system advection information 

derived from high-resolution infrared observations to continuously “morph” the 

PMW-based rainfall [Joyce et al., 2004; Kubota et al., 2007; Xie and Xiong, 2011]. 

These approaches have been proven effective and are being incorporated into 

Integrated Multi-satellitE Retrievals for GPM [IMERG; Huffman et al., 2013], the 

next-generation, Global Precipitation Measurement (GPM; Hou et al., 2014) era 

product suite. However, the accuracy of the PMW-based estimates is also influenced 

by the life cycle stage [Tadesse and Agnastou, 2011]. Developing a more detailed 

understanding of evolution can provide additional context. 

Another critical application is the evaluation and diagnosis of global models. 

Currently atmospheric models still unrealistically reproduce observed precipitation 

[Ebert et al., 2007; Stephens et al. 2010]. The conventional Eulerian validation gives 

the spatial and temporal statistics on each individual grid box, which is the 

accumulation of many different cloud systems at various life stages.  A Lagrangian 

comparison of modeled and observed cloud evolution statistics could produce 

additional insight on the modeling of individual cloud-precipitation processes [Boer 

and Ramanathan, 1997]. 

In the past, studies that combined infrared satellite-based cloud cluster tracking with 

Tropical Ocean Global Atmosphere (TOGA) field campaigns to examine cloud 
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evolution, anatomy, and development conditions [Williams and Houze, 1987; Chen 

and Houze, 1997]. On larger scales, Mesoscale Convective Systems (MCS) have in 

particular been studied due to their ease of detection in radar and satellite images and 

destructiveness [Maddox, 1980; Laing and Fritsch, 1997; Blamey and Reason, 2011]. 

MCS display regularity in their life cycles, enabling Machado et al. [2004] to develop 

a statistical life cycle model to predict MCS propagation with good forecasting skill. 

As global, long-term, quality controlled IR data and precipitation data become 

available [e.g., Janowiak et al., 2001; Joyce et al., 2004], it becomes feasible to 

extend IR-based cloud tracking beyond regional scales and expand the scales of 

observed phenomena. By following a large number of cloud clusters on the global 

scale for over 11 years, we will be able to understand more systematically their large-

scale dynamical and statistic characteristics.  

In this paper, we present a near-global (60°S-60°N), high-resolution (4 km, 30 min,), 

long-term (11 year) study of cloud cluster tracks, life cycle evolution, and diurnal 

cycle. The high-resolution data used for the study and the methodology for storm 

tracking are described in Section 2.2 and 2.3, respectively. Section 2.4 presents the 

results, followed by summary and discussions in Section 2.5. 

2.2 Data 

For our study, we use the NCEP/CPC a 4-km, half hourly infrared (IR) brightness 

temperature dataset [Janowiak et al., 2001]. The dataset is merged from all available 

geostationary satellites (GMS, Meteosat-5, Meteosat-7, GOES-8 and GOES-10) to 
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form near-global (60°N-60°S) coverage on a uniform latitude-longitude grid. We 

used 11 years of data from 2002 to 2012 for our study.  

We have performed additional quality control of the IR data. There are gaps in the IR 

data in regions covered by the GMS satellite in the Western Pacific (120°-170°E), so 

we filled the missing data by interpolating the preceding and following 30 min 
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snapshots, to produce more seamless coverage. Our tests show that this interpolation 

helps to prevent early termination of the cloud lifespan due to missing data. 

2.3 Methodology 

The techniques for tracking clouds are mature and largely similar, albeit there are 

many implementations. Most of those techniques involve IR geostationary satellite 

imagery to follow classes of convective events. The primary dissimilarities in 

algorithms involve the detection criteria, such as through the selection of brightness 

temperature or size parameter thresholds [Carvalho and Jones, 2001; Morel and 

Senesi, 2002], usage of more nuanced detection schemes [Lakshmanan, 2009], or the 

treatment of splits and merges [Fiolleau and Roca, 2013].  

Despite a variety of implementations, Machado et al. [1998] found that most of the 

life cycle statistics are not overly sensitive to the tracking method used. For this 

paper, we selected Forecast and Tracking the Evolution of Cloud Clusters 

[ForTrACC; Vila et al., 2001] which has a single temperature and system size 

threshold and merges and splits are treated as special cases for tracking systems (this 

will be explained in the Section 2.3.2). ForTrACC’s simplicity enabled us to capture a 

broader range of cloud species. 

Tracking clouds involves the following two major steps: 

2.3.1 Identification using temperature and morphology 
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Using brightness temperature thresholds to capture clouds has been used in past 

studies and typically empirically derived to satisfy the research goals [e.g. Blamey 

and Reason, 2001; Velasco and Fritch, 1987; Williams and Houze, 1987]. In general, 

brightness temperature detection thresholds vary between 235-255 K and tended to be 

subjectively chosen. However, the cluster areal extent was found to the linearly 
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dependent on cluster threshold and thus not overly sensitive to the exact threshold 

chosen [Machado et al. 1992; Mapes and Houze, 1993].  

To capture a variety of cloud clusters, we used a single 235 K brightness temperature 

threshold, which in the upper atmosphere corresponds to a height of roughly 10 km (9 

km) in the tropics (midlatitudes), which is well into the free atmosphere. 

Additionally, we applied a minimum size threshold of 100 contiguous pixels (1,600 

km2 at the equator) at all time steps, thus limiting the study to events at the upper 

bounds of mesoscale or larger. We excluded smaller scale events because they would 

be more suitable for regional studies. Figure 2-1 shows this selection criteria being 

applied to a typical IR snapshot. A temperature range of 235-245 K has been used in 

the past to detect cloud clusters (e.g. Williams and Houze, 1987; Mapes and Houze, 

1993; Carvalho and Jones, 2001; Machado et al., 2004); the colder threshold is 

utilized to avoid capturing frozen, high altitude surfaces. The size threshold reduces 

the number of tracked clouds by filtering out small-scale events and reducing the 

number of splits and merges. With only a temperature threshold, a single time step 

can yield over 17,000 cloud clusters. Applying the size threshold decreased to the 

number to 800-1000 events.  

2.3.2 Tracking using area overlap 

ForTrACC uses an area overlap technique to track the cloud clusters, both forward 

and backward in time. If two cloud clusters identified in different time steps have any 

shared pixels, they were considered the same system and assigned a family number. If 

more than one match was found, the largest overlaping system was tracked.  
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Using infrared data, we show in Figure 2-2 a schematic of the area-overlap handling 

in ForTrACC. The area overlap technique produces several cloud cluster merge 

scenarios: one-to-one (continuous), one-to-many (split), many-to-one (merge), or no 

match (initialization or dissipation). Most systems undergo merging or splitting in 

their life cycle, the prior occurs before maturation, and the latter more frequently 

towards the end of the life cycle. Only one cluster is followed at each time step to 

keep features well defined. When clusters split, the largest cloud continues to be 

tracked while the smaller split clusters are treated as a new family and the lifetime 

clock is reset. All merging clusters are considered a dissipation and their life cycle 

ends. ForTrACC’s handling of split and merge segments is different from earlier 

work; in other schemes, the segments remain part of the cloud cluster system rather 

than considered a new systems [Mapes and Houze, 1993; Chen and Houze, 1996; 

1997)]. 

A sample output of the resulting cloud cluster tracks are shown in Figure 2-3. In 

addition to showing centroid location, statistics related to the size or areal extent, the 

mean brightness temperature, and travel distance of the cluster are also calculated. 

Colder temperatures indicate higher cloud tops while areal extent shows the relative 

scale of the observed system. All clusters achieve a minimum temperature and 

maximum size, which we use as criteria for developmental maturity in Section 2.4.5. 

We use this information to study the ForTrACC-based cloud clusters’ statistical 

properties, climatology, life cycle, rainfall contribution, and diurnal cycle. 
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2.3.3 Collocation of clusters with passive microwave rainfall estimations 

To examine the rainfall contribution of cloud clusters, we matched PMW 

precipitation estimates from IMERG [Huffman et al., 2013] with spatially and 

temporally collocated cloud clusters.  

While Tropical Rainfall Measuring Mission (TRMM)-based products have a longer 

data record, GPM has global coverage so we selected two months of data to examine 



 

 34 
 

(June and December 2014). Both datasets were scaled to a common grid (0.1° x 0.1°) 

and the available rainfall totals were summed for clusters at various life cycle stages. 

2.4 Results and Discussion 

2.4.1 Mean trajectories and statistical properties of cloud clusters  

Tracking on the global scale builds on regional studies and enables us to document 

many fundamental statistical characteristics of cloud clusters. At any instant, there are 

on average 800 clusters larger than 1,600 km2 in the Earth’s atmosphere between 

60°S and 60°N. Figure 2-4 shows the global distribution of clusters with lifetimes 

between 6 and 9 hours, for both December through February (DJF) and June through 

August (JJA). The mean trajectories are calculated by averaging the endpoints of all 

cluster centroids that initiate at the same 2° x 2° binned latitude and longitude 

coordinates. The colors represent the net zonal direction of the flow. 

Regarding the zonal average distance travelled by 6-9 hour lifetime clusters in Figure 

2-4, we found that cloud clusters travel further in the Northern Hemisphere during 

DJF; the average distance traveled peaks at 644.8 km at 36°N, which is likely due to 

influence of the climatological jet stream on development and propagation. In the 

Southern Hemisphere the maximum occurs near 52°S at a lower 419.8 km. 

Movement in the tropics doesn’t vary drastically from each season, but the peak 

(189.1 km) occurs in JJA at 12°N. This is in part due to the persistence of the 

Intertropical Convergence Zone (ITCZ) and African Easterly Wave activity. 
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Cloud clusters can last from a few hours up to two days, and their sizes range from 

our minimal threshold to more than 106 km2 (Figure 2-5). Most of the clusters are 

short-lived and small (Figure 2-5a), with 90% of the clusters detected having a size 

less than 49,275 km2 and a lifetime less than 5 hours. The cluster lifetime distribution 

follows roughly a log-linear distribution while the cluster size distribution appears to 

be lognormal at certain scales, the latter being consistent with some past findings 

[Machado et al. 1992; Mapes and Houze, 1993] but different from others [Lovejoy 

and Schertzer, 2006]. Figure 2-5b shows the kernel density estimate [Rosenblatt, 
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1956; Parzen, 1962], a non-parametric estimate of the probability density of 

maximum areal extent of each cluster across several lifetime bins.  

Overall, Figure 2-5 shows that the frequency of cluster lifetime and size are 

proportional. This is similar to the results from Chen et al. [1997], who show a linear 

correlation between the count of tropical cloud clusters with respect to maximum size 

and lifetime in the western Pacific. This reinforces that shorter lived events tend to 

remain small in scale while longer-lived ones achieve greater horizontal scales. 

These results can be compared with event tracking based on model data [e.g. 

Bengtsson et al., 2006; Bengtsson et al., 2009; Hoskins and Hodges, 2001; Neu et al., 

2013; Sinclair, 1994]. Modelling studies typically use vorticity or sea level pressure 
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as the defining feature of midlatitude cyclone storm tracks. Coupled with lower 

temporal resolution data, this can result in smoother tracks and are larger and longer-

lived than the ones shown in Figure 2-4. The differences are due to tracking 

definitions but may also be due to the prevalence of lighter rainfall typical in models 

as compared with observations [Stephens et al., 2010].  

2.4.2 Cloud cluster climatology 

On the global scale, the clusters exhibit many systematic spatial and temporal 

characteristics, as seen in the seasonal climatology map of clusters (Figure 2-6). The 

map produced is the frequency of clusters at their maximum areal extent for each 2° x 

2° latitude-longitude bin. During DJF, the intertropical convergence zone (ITCZ) is 

closer to the equator and South Pacific convergence zone is intensified. There is 

increased activity from the midlatitude storm tracks across the North American west 

coast and Europe. In JJA, tracks capture the northward placement of the ITCZ, 

Atlantic coastal storms, and the East Asian monsoon. Less activity is found in 

proximity of the semi-permanent high pressure systems (e.g. Pacific and Bermuda 

highs in JJA). Artifacts in south Pacific (40°-60°S, 120°-160°W) are due to 

calibration differences between geostationary platforms and the interface of the half-

hourly and hourly sampling regions of the Geostationary Meteorological Satellite 

between 120° and 170°E. Note that in Figure 2-6a, we excluded data from DJF 2006 

from 120° to 170°E due to intermittent noisy brightness temperature data in this 

region. 
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The frequency also reveals some regional subtleties in Figure 2-6b. Over the 

Southeast-Asia islands in the western Pacific Ocean, there are roughly twice as many 

clusters along coastlines than the surrounding oceanic areas. This region’s 

combination of topography, land-sea thermal contrast, and available moisture 

generates storms that are both large in scale and deep, making it it is one of the 

rainiest places on Earth in TRMM-based object studies [Houze et al., 2015]. 

Interestingly, a high count of clusters does not necessarily correlate with intense 

rainfall. Outside the ITCZ, the Amazon, the Asian monsoon, and West African 

monsoon are among the most active continental regions in terms of cluster frequency. 

However, TRMM-based studies have shown that objects tend to be moderate in 

strength and larger scale in the Amazon while the latter two regions are composed of 

deep convection [Zipser et al. 2006; Houze et al., 2015]. In the Amazon, rainfall 

features have a lower mean height than those over the Asian and African monsoon 

regions and warm rain tends to be the greatest contributor of rainfall [Liu and Zipser, 

2008]. While not shown, statistically, we found that clusters in our study were 

typically larger, colder, and longer-lived over Western Africa and the Indian 

Subcontinent (JJA), whereas shorter-lived, moderate sized clusters tended to occur 

over the Amazon (DJF). 

Compared to results based on reanalysis-based tracking results, the JJA cluster counts 

shown in Figure 2-6b resemble vorticity-based African Easterly [Thorncroft and 

Hodges, 2001]. In both studies, initiation maxima occur along the West Africa coast 

and Ethiopian highlands as well as over the Pacific, downstream of Central America. 

We visually observed that our IR-based tracks are noisier than reanalysis derived ones 
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and are less exclusive. Tracking with 6-hourly data can skew results towards stronger, 

longer-lived events, and can miss younger events. 

2.4.3 Interannual variability 

There is significant inter-annual variability in cluster occurrence, particularly between 

El Niño and La Niña years. Figure 2-7 shows the composite of frequency difference 

of cluster overpasses at their maximum size during the El Niño phases for 11 years of 

DJF, binned by 2° x 2° latitude-longitude boxes. This was produced by subtracting 

the annual average frequency of cluster occurrence during warm phases from the 

annual average of cool phases. Only seasons with weak, moderate, or strong phases 

based on the NINO3.4 sea surface temperature anomaly index are included. 
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El Niño has an expected effect on the frequency of cloud clusters in the tropics: more 

clusters are observed near the equator during the warm phase in the central pacific 

(160°E-160°W) and in the western pacific (110°-160°E) during the cool phase. 

However, teleconnections can also be observed; there is an increase in occurrence 

over the Northwest United States (25-55°N, 100-120°W) and Indian Ocean (10°S-

10°N, 40°-80°E) and a decrease in the Atlantic basin (10°S-10°N, 60°-10°W) during 

El Niño. Teng et al. [2014] have shown that there are both increases in cloud cluster 

occurrence as well as their likelihood of forming tropical cyclones in the western 

North Pacific during El Niño. 

2.4.4 Life cycle of cloud clusters 

The advantage of continuous Lagrangian tracking is that it allows us to examine 

systematically the clusters’ full life cycle and the associated evolution of their 

characteristics. Figures 2-8 and 2-9 show how the size and brightness temperature of 

clusters evolve throughout their lifespan. Each curve represents the average of the 

aggregated clusters that lived to the same age. For clarity, clusters that merged into or 

split off from existing clusters were not included in Figures 2-8 and 2-9. Shorter 

curves represent brief events while longer lines represent clusters with longer 

lifespans. The observed mean life cycles have well-defined stages of development – 

initial detection, intensification, maturity, and decay. This can be seen in both their 

size evolution (Figure 2-8) and brightness temperature evolution (Figure 2-9). With 

respect to size, clusters initiate, grow, and achieve their areal maximum closer to the 

end of their life cycle (Figure 2-8). At their size maximum, longer-lived clusters can 

double or triple their initial areal extent. Shorter-lived ones undergo rapid decay early 
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in their cycle. In contrast, during their brightness temperature life cycle, clusters cool 

to a minimum and then begin to warm for the rest of the life cycle (Figure 2-9). While 

an individual clusters’ evolution usually appears erratic and unpredictable, 

collectively their mean behavior computed from the ensemble of 10 million clusters 

shows regularity. 
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The minimum brightness temperature is reached at an earlier point in the clusters life 

cycle than the size maximum. This could be due to overshooting tops, which reach 

deep into the troposphere or lower stratosphere first, and then expand to form anvils 

as they cool, and thus attaining their minimum brightness temperature before their 
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maximum areal extent. Additionally, clusters at their maximum areal extent produce 

cirrus shields that can also conceal the true extent of the clusters underneath.  

On the global scale, the life cycle evolution shows substantial differences over 

contrasting seasons and land surfaces. Due to their similarity, in Figures 2-8 and 2-9 

regions are divided into seasons along the ±25° latitude line, where Northern and 

Southern winters (summers) are during DJF and JJA (JJA and DJF), respectively. The 
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tropics use data from both seasons. Generally, growth is more vigorous in summer 

than in winter (e.g., compare Figures 2-8b and 2-8f to Figures 2-9b and 2-9f), over 

land than over ocean (e.g., compare Figures 2-8a and 2-8b to Figures 2-9a and 2-9b). 

In addition, the wintertime clusters are much larger than summertime (e.g., Figures 2-

8a and 2-8e). In the summer, the midlatitude size curves (Figures 2-8a and 2-8b) are 

more similar to the tropics (Figures 2-8c and 2-8d). Regarding brightness 

temperature, there is a larger spread during the summer (Figures 2-9a and 2-9b) and 

in tropics (Figures 2-9c and 2-9d) than during the winter for both land and ocean 

(Figures 2-9e and 2-9f). Clusters in the tropics (Figures 2-9c and 2-9d) are 

significantly cooler than higher latitudes due to deep convection (Figures 2-9a and 2-

9b). 

The peaks in Figures 2-8 and 2-9 were fitted to a quadratic linear regression model to 

show the general trend of size and temperature maturity across different lifetimes. 

Shorter-lived clusters tended to be already at maturity at the time of detection – that 

is, the shortest lines in Figures 2-8 and 2-9 show that these clusters total area 

decreased and temperatures rapidly increased. For longer-lived clusters, the timing of 

the maximum areal extent and minimum temperature was asynchronous and larger 

than that for shorter-lived events. We will examine some of the implications of this in 

the following sections.  

2.4.5 Cloud clusters and rainfall 

In raining cloud clusters, the differences in the timing of the minimum brightness 

temperature and maximum size contribute varying amounts to total precipitation. In 
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Figure 2-10, we identified several distinct life cycle stages (initiation, mixed maturity, 

minimum brightness temperature, maximum size, and dissipation) and the 

instantaneous total volumetric rainfall that is attributed to each rain rate bin. Using the 

procedure detailed in Section 2.3.3, this was determined by collocating the cloud 

clusters with available microwave-only rainfall estimations from IMERG [Huffman 

et al., 2013], for June and December 2014.  

Due to the lower temporal resolution of polar orbiting satellites, most clouds could 

only be sampled once, so results are examined in a statistical sense rather than as 

totals by individual objects. Here we define the minimum temperature (maximum 

size) as the lowest average temperature (largest areal extent) achieved by a clusters. 

We also divide contribution into two mutually exclusive maturity states, synchronous 

and asynchronous occurrence of minimum temperature and maximum areal extent. 

The prior is denoted as mixed maturity, while the latter is broken down into the two 

stages of its variables. Collectively, the Figure shows the rainfall contribution of the 

beginning, mature, and final life cycle stage. 
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Initially, raining clusters are composed of lighter rain and produce less of it. As 

development continues, they produce larger volumes of rain as the areal extent of the 

cloud increases. It is interesting that in all cases, mixed maturity clusters contribute 

less rainfall than those with asynchronous stages. These cases tended to be shorter 

lived on average (1.9 hours) than those with larger differences in timing (2.9 hours).  
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There are seasonal differences in these values. The winter midlatitudes (Figures 2-10b 

and 2-10e) produced more overall rain than their corresponding summer hemisphere 

(Figures 2-10a and 2-10f) and were more heavily skewed towards lighter rainfall. The 

tropics had less seasonal variation in rainfall contribution (Figures 2-10c and 2-10d). 

Precipitation retrieval algorithms may benefit from incorporating information on the 

life cycle stage, season, and hemisphere of the IR cloud cluster. In morphing 

techniques, the shape and intensity of rain clusters is held constant between 

overpasses [Joyce et al., 2004], while in Figures 2-8 and 2-9 we show that both 

horizontal size and temperature growth rates are not constant during cloud cluster 

evolution. Biases in hourly rain volume estimates vary across life cycle stages, 

lifetimes, and precipitation algorithm [Tadesse and Anagnostou, 2009].  Knowing the 

age of the cloud could be useful in devising the next-generation multi-sensor 

algorithms. 

2.4.6 Diurnal cycle of cluster evolution 

By continuously tracking cloud clusters, we can study when and where they reach 

their life cycle milestones. Figure 2-11 shows the local solar time (LST) of the 

maximum in the frequency of cluster initiation. This was calculated from frequency 

maximum at each hourly, 2° x 2° bin for clusters with a lifetime greater than two 

hours. Over land, peak cloud initiation occurs in the afternoon, especially in the 

summer hemisphere. Over the ocean, there is greater prevalence of early morning and 

afternoon clouds, but the timing of peak activity depends on region. This double peak 

was also previously found in the West Pacific warm pool by Chen and Houze (1997). 
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To examine these differences in context of development stage, we examine two 

regions centered over West Africa (0-40°N, 50°W-20°E) and the South Asian 

peninsula (0°-30°N and 60°-90°E).  

In Figure 2-12, we examine the kernel density of the LST by cluster life cycle stage in 

these two regions for both seasons. Over land, there is a strong diurnal cycle and a lag 

in the local timing of initiation, minimum temperature, and maximum size. The 

timing differences are much smaller over the ocean in both regions and there is a 

semi-diurnal cycle over the ocean. The timing of peak initiation over land is earlier in 

the South Asian region (1300 LST) than in the Western Africa region (1500 LST). 
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This is possibly due to the windward side of the Indian subcontinent skewing the the 

population to lower initiation times. Over the ocean, the early morning peaks have 

similar timing (0200 LST), but the afternoon peak in Western Africa is earlier (1100 



 

 50 
 

versus 1300 LST). Kikuchi and Wang [2008] observed this semi-diurnal cycle over 

the Pacific, Indian, and Atlantic Oceans in empirical orthogonal modes of TRMM 

datasets. We can take advantage of the known lifetime and further inspect the 

duration of these cloud clusters at different times of the day. 

In Figure 2-13, we show the kernel density for the LST grouped by the three-hourly 

binned lifetime. Over land, the timing differences were delayed by not more than an 

hour for all lifetime groups. Shorter-lived clusters (those with lifetimes 6 hours or 

less) had a sharper peak than longer-lived events (those with lifetimes greater than 6 

hours). There are trivial differences in the onset of short versus long-lived events in 

the South Asia region than over West Africa. 

However, over the ocean, longer-lived clusters had a greater tendency to occur in the 

early morning hours, peaking between 0300-0400 and 0400-0500 LST in South Asia 

and West Africa, respectively. Shorter-lived events peaked both in the early morning 

and afternoon, but were the primary type in the afternoon between 1200 and 1300 

LST for both regions. In South Asia, the maxima of short-lived clusters precede that 

of long-lived ones by an hour, partly due to rapid growth and decay of isolated 

convective cells which upon visual inspection are more numerous in this region than 

in West Africa.  

These results are interesting considering previous examination of TRMM-based 

precipitation and features, which show that nocturnal storms are more intense over 

the ocean while over land the strongest storms are observed during the day [Zipser, 

2006]. Also using TRMM datasets, Kikuchi and Wang [2008], found three major 
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diurnal regimes in the tropics, with the India and West Africa adjacent ocean regions 

having a mixture of open ocean and coastal regimes. The oceanic coastal regime 

showed significant phase propagation into the following day, which may account for 

secondary peaks in the diurnal cycle in Figures 2-12 and 2-13.  

The causes of the different diurnal cycle regimes are an area of ongoing study. Over 

inland continents, the diurnal cycle is primarily driven by the daily heating cycle 

(Silva Dias et al. 1987). Over open ocean, Sui et al. (1997) connect the daytime peak 

to the daily cycle in SSTs, particularly in subsidence regions, where winds are weak 

and solar heating is strong due to the absence of clouds overhead. The nocturnal peak 

is primarily driven by moisture provided from large-scale convergence, (e.g during 

MJO over the maritime continent region). Convective development takes place both 

in the day and nighttime, whether a region is experiencing subsidence or 

convergence. However, the amplitude of the phase will be dependent on the 

respective large scale atmospheric conditions. 

In tropical coastal continental regions, Kikuchi and Wang [2008] speculate that land-

sea breezes are largely responsible for development. Several studies identify the main 

candidates for coastal oceanic nocturnal development to be monsoonal flow and 

convergence due to gravity waves produced from deep convection and high terrain of 

adjacent continental regions [Yang and Slingo, 2000; Zuidema, 2002; Mapes et al. 

2003]. The resulting oceanic nocturnal storms that develop in this regime then show 

maximum propagation the next day, from noon to late evening. 
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Our results show that results from Chen and Houze (1997), who found that large 

scale, long lived clusters follow a two-day cycle, can extend beyond their West 

Pacific study region to other regions and over longer time periods. The formation of 

long-lived clusters suppresses subsequent development in that area due to dry 

downdrafts from strong storms and the reduction in sea surface temperatures due to 

cloud canopy shading. Examining the development-suppression cycle of cloud 

clusters in other oceanic regions could be an interesting future direction for this work. 

2.5 Summary 

In this study, we tracked cloud clusters on the global scale to study the climatology 

and life cycles across a broad class of clusters using 11 years of the high-resolution, 

satellite-based globally merged cloud brightness temperature data. We examined the 

trajectories, climatology, life cycles, and diurnal cycle of clusters in context of their 

life cycle stage and lifetime.  

We found that the vast majority of clusters are short lived and small, demonstrating 

the need to work with high-resolution data to fill in coverage gaps. Differences in the 

shapes and scales of life cycle curves reflect the variety of clouds captured and show 

that evolution is a complex process. Development over the oceans is less intense 

compared to land, where strong thermal contrast, orography, and aerosols can 

influence evolution. We observe a larger lag in the occurrence of minimum 

temperature and maximum size for longer-lived cloud clusters, particularly over land. 

The diurnal cycle of cloud clusters over the South Asia and West Africa revealed a 

strong diurnal peak over land and a semi-diurnal cycle over the ocean, the latter of 
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which showed greater prevalence of shorter lived cloud clusters in the afternoon and 

dominance of longer lived events in the early morning. 

The capability for infrared data to reliably identify and track smaller scale convective 

systems is an aspect in which global climate models still have difficulties [Stephens et 

al. 2010; Westra et al., 2014]. Thus, IR-based cloud tracking can be used to evaluate 

the effectiveness of the downscaling abilities of models [Boer and Ramanathan, 

1997]. On the other hand, the infrared data can only depict the two-dimensional, 

cloud-top characteristics of the clusters. To address the complex three-dimensional 

hydro-thermo-dynamics of cloud systems, one has to combine observations from 

other satellites, such as CloudSat and CALIPSO, with reanalysis data. 

There are several limitations to this study that represent an area of ongoing work, 

particularly regarding thresholds. Being too selective on size scales can exclude these 

events; being too relaxed produces too many splits, which prematurely terminates the 

cluster. Cold surfaces are a particular challenge, such as the Tibetan Plateau which is 

dry in the northern winter. However, the relatively high frequency over this region in 

Figure 2-6a indicates that mountain glacier surfaces are incorrectly being captured in 

this region. This poses a challenge to other tracking studies, and mountainous areas 

are sometimes removed from analysis [Neu et al., 2013]. As a future improvement, 

we could develop a dynamic threshold criteria rather than a fixed brightness 

temperature value. [Hennon et al., 2011].  

Another challenge lies in the early termination of cloud clusters due to splits and 

mergers. As clouds evolve, they continuously split and merge, each of which resets 
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the lifetime clock to zero. Only the largest, most well defined clusters avoid this in 

their lifetimes. This is a limitation of this specific technique but the tracking 

algorithm could be refined in the future to track features that do not have an easily 

defined shape, such as wintertime midlatitudes storms or the movement of clouds that 

are part of atmospheric rivers. 

Despite such limitations, there are many promising areas of future work. The cluster 

tracking provided in this study can be combined with other event based datasets, such 

as the TRMM precipitation feature (TRMM-PF) dataset developed by Liu et al. 

[2008]. TRMM-PF has been extensively used to study the scale and intensity of 

rainfall events and can infer life cycle stage from the vertical profiles obtained from 

the precipitation radar. By combining TRMM-PF with our IR-based cloud tracks, rain 

features can be studied in context of their entire life cycle and trajectory, overcoming 

the sampling limits of polar orbiting satellites, to further our understanding of 

precipitating cloud systems. 
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Abstract 

Clouds and rainfall can be enhanced or inhibited by dust aerosols, which can alter the 

environment through radiative and microphysical effects. Modeling studies predict 

that during Saharan dust outbreaks, the African Easterly Jet is enhanced, which can 

increase convection to the south of the outbreak region. However, observational 

evidence is limited. Using cloud tracks from brightness temperature observations and 

measurements of aerosol optical depth to create a dust outbreak index, this study 

examines cloud cluster evolution over the Atlantic on during high and low aerosol 

days from June-October, 2006-2009. Early results show that cloud clusters in close 

proximity to dust outbreaks can be shifted northward. One average, there are more 

cloud clusters on low dust days than on high dust days, but longer lived clusters 

become more likely during dust outbreaks days. is an increase in the distribution of 

Additionally, during dust outbreaks, deep convection and intense storms become 

more common, whereas on days with low dust loading small-scale, warmer clouds are 

more likely. 

3.1 Introduction 

Under the right summertime conditions, the Sahara can produce large volumes of 

mineral dust which can travel across the Atlantic all the way to the Caribbean and 
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Southern United States. These Saharan dust plumes can influence both the ocean and 

atmosphere, sometimes with negative societal consequences. Transported dust can 

cause summer air quality to exceed Environmental Protection Agency standards in 

Southern Florida [Prospero, 1999].  The deposition of dust can fertilize the ocean, 

leading to phytoplankton blooms [Walsh and Steidinger, 2001]. Additionally, dust 

suspended in the atmosphere can indirectly impact cloud development as far as 

Southern Florida [Sassen et al., 2003]. Modeling studies suggest that the dust 

outbreaks can influence rainfall and convection in West Africa [Lau et al., 2009; Kim 

et al., 2010; Wilcox et al., 2010], however the actual impact on the cloud life cycles is 

unknown. Greater examination of dust on convection is important because of the 

wide scale circulation effects of the region and because the Sahara is projected to 

experience warming in the future [IPCC 5th report]. Additionally, the timing and 

location of African monsoons can impact rainfall in the Sahel, which is sensitive to 

slight changes in rainfall [Prospero and Lamb, 2003]. 

During dust outbreaks, the thick aerosol layer absorbs shortwave solar radiation and 

emits in the longwave, heating the air but cooling the land and ocean below. The 

warm, dry air is also called the Saharan Air Layer (SAL) and ultimately makes its 

journey across the Atlantic in the course of a week [Prospero and Lamb, 2003]. 

However, at its genesis, the SAL rises and creates a land-sea circulation, which draws 

moisture from the adjacent Atlantic Ocean and enhances rainfall along coastal Africa. 

The increase in deep convection closer to the Eastern Atlantic causes less convection 

in the West Atlantic and the Caribbean due to subsidence, resulting in a Walker-type 

circulation [Lau et al., 2009]. 
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The feedbacks of the Saharan air layer can have a strong regional impact. Wilcox et 

al. 2010 show that advection of the SAL can enhance the African Easterly Jet, which 

can cause 1-4° northward shift of the intertropical convergence zone (ITCZ), a semi-

persistent band of intense equatorial storms. This happens in spite of the cooler 

waters, which is attributed to the net surface cooling of aerosols [Wilcox et al., 2010; 

Lau and Kim, 2007]. Over the ocean, the SAL can enhance Easterly African Waves, a 

major precursor to tropical cyclones. 

Because the dust can propagate deep into the atmosphere, it can also interact with the 

clouds. Observational studies have shown that, when the SAL interacts with 

hurricanes, many weaken or no longer intensify [Dunion and Veldon, 2004; Wu, 

2007]. A possible mechanism is that warm, dry air is intruded into the cloud, which 

then weakens downdrafts thereby suppressing development. The presence of coarse 

aerosols may inhibit development through microphysical effects. However, others 

claim that only a small fraction of dust is entrained [Twohy, 2014; Lawson, 2010], 

and that any effects are likely secondary to direct aerosol effects and other 

environmental factors such as vertical shear, sea surface temperatures, and humidity. 

Regardless, if there is reason to suspect that aerosols can can stunt the growth of large 

scale events such as hurricanes, they may also impact smaller scale cloud and rainfall 

development, which provides needed rainfall to drought-prone regions. 

The impact of dust outbreaks on cloud life cycles is not well known. In cloud tracking 

studies, clouds underdo regular life cycle stages: initiation, growth, maturity, and 

decay [Williams and Houze, 1987; Chen and Houze, 1997]. The rate and timing at 

which these life cycle stages occur are related to their total lifetime, precipitation 
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quantity, and diurnal cycle [Esmaili et al., 2016]. The larger scale effects of aerosols 

may not only alter the location of clouds but also affect how the lifecycle milestones 

occur and the local timing in which they take place. Heavy dust can cool the ocean 

surface, possibly reducing intensity when convection shifts northward. The indirect 

effects of aerosols on cloud development, albeit secondary, could enhance or suppress 

contaminated clouds. 

In this study, we examine how environmental feedbacks caused by dust outbreaks can 

influence the location and the intensity of mature cloud clusters in the tropical 

Atlantic. To do so, we examine four years of cloud track data from Jun 2006-October 

2009 in conjunction with remotely sensed AOD observations. The boreal summer 

months are the peak season for dust outbreak, which is made airborne from 

convective outflows and the morning disruption nocturnal low level jets 

[Engelstaedter and Washington, 2006; Heinold et al., 2013]. 

In Section 4.2, we identify the data and methods used for this study. We use AOD 

observations from MODIS to create an index to detect days where dust outbreaks are 

likely and days that are anomalously clear, in order to examine the impact on cloud 

cluster development detected from cloud brightness temperatures. In Section 4.3, we 

show early results related to the differences in the longevity and cloud characteristics 

during high and low dust index days. In Section 4.4, we summarize early results and 

lay out the future direction of this work. 
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3.2 Data and Methods 

To understand how clouds develop, we must be able to know their age and total 

duration, which is obtained by continuously tracking over their lifetimes. For this 

study, we use a global cloud tracking and development database produced by Esmaili 

et al. 2016 (see Chapter 2). This storm database was generated by using geostationary 

infrared data to cluster clouds with a brightness temperature below a temperature of 

235 K, and to track using cluster area overlap in high resolution (30 min, 4km). This 

database generates a variety of cloud statistics, including temperature, areal extent, 

velocity, and convective fraction. Over our four year study period, this method 

detected 3,483,669 instantaneous cloud clusters which made up 610,425 distinct 

events. 
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Large scale dust 

outbreaks can be easily 

seen in visible satellite 

images (Figure 3-1). 

For this reason, we use 

the Sea-viewing Wide 

Field-Of View Sensor 

(SeaWiFS) Deep Blue 

aerosol product [Hsu et 

al., 2004] to detect 

outbreak days. Deep Blue estimates AOD from retrievals in shorter wavelengths 

because deserts are less reflective in blue bands compared to aerosols. This dataset is 

advantageous because it has retrievals over both land and ocean for a 13 year period. 

After 2010, the SeaStar satellite, which carried SeaWiFS, was retired. SeaStar passed 

the equator once daily at noon local standard time (LST), so clusters that developed 

between 9:00-15:00 LST are considered in this study. 

3.3 Results and Discussion 

3.3.1 Dust outbreak index 

In Figure 3-2, we show the Hovmueller diagrams for AOD and clusters in 2007 

(Figure 3-2). In Figure 3-2a, we can see distinct dust outbreaks of varying strength 

centered around June 12, August 21, and Sept 1. Over a typical season, dust extends 

further to the south and is highest in concentration in June-July and thereafter 
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decreases in concentration and shifts further north. As higher AOD values shift 

northward, cloud development from 0-20°W follows (Figure 3-2b), reaching its 

furthest northward extent in late July and August. The ITCZ is well formed between 

June and August, and becomes less organized and broader from September to 

October. From late June to early October, the monsoon rains begin and AOD 

concentration decreases. Over the ocean region (20-40°W), the ITCZ position is less 

variable.  

Figure 3-3a shows the average AOD for the entire 2006-2009 study period. 

Concentration is heaviest over land, but AOD remains high even as dust is 

transported across the Atlantic. To classify days as having a dust outbreak or not, we 

constructed an index 

(Figure 3-3b) from the 

boxed region in Figure 

3-3a. This was defined 

by the normalized daily 

departure from the 

monthly mean AOD. 

We identified the local 

maximum as potential 

high and low dust days, 

however we only 

considered days with an 

index absolute value 
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greater than one. Using this method, we identified 50 high index, dust outbreak days 

and 88 low index days. 

3.3.2. Cloud tracks and frequency 

The cloud tracks for DJFSO 2006-2009 are shown in Figure 3-4 for high and low 

index days. On high AOD index days, there are fewer clouds in the central Atlantic 

and more coastal storms over southern Senegal and Gambia (10°N, 17°W). The ITCZ 

is broader, whereas it is more defined on lower AOD index days. On low AOD days, 

there are more tracks through the north central Atlantic, centered over 25°N, 15°W. 

Composite maps of low index days subtracted from high index days (Figure 3-5) 

show that the aerosol loading is significantly higher during high index days, 

particularly over ocean waters adjacent to Senegal and Mauritania (near 15°N, 

17°W). There is an overall decrease in the activity south of the central ITCZ axis near 

the West African Coast and a slight increase in the Northern part of the ITCZ. There 

is also decreased activity over parts of the southeast Caribbean and Venezuela (10°N, 



 

 63 
 

60°W).  

Over regions closer to the dust source (0-40°W, 0-20°N), fewer clusters formed on 

high index days (247 clusters/day) than on low index days (265 clusters/day). Figure 

3-6 shows the kernel density estimate of cluster lifetime frequency and maximum 

cluster size frequency on high and low index days. We further divide the study region 

into two parts: one that is predominantly land (0-20°N, 0-20°W) and one that is 
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predominantly ocean (0-20°N, 20-40°W). Figure 3-6a shows that, for lower lifetimes, 

low and high AOD days had roughly the same composition of short-lived events, but 

that there are more moderate length events on low AOD days. The scaling (Figure 3-

6b) is roughly the same for both, although during high AOD days, larger clouds are 

more probable (3.25-3.6, and > 4.0). Figure 3-6c shows that, over the ocean, there are 

more clusters with longer lifetimes on high AOD days ( > 7 h). In terms of size 

(Figure 3-3d), there are a greater number of large sized clusters ( > 3.0 ) on low AOD 

days except at the largest scales. 
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3.3.3. Mature cloud states 

We hypothesize that dust outbreaks can modulate cloud development, either through 

environmental factors or from aerosol interactions. Cloud states for low and high 

AOD index days (Figure 3-7) show that dust outbreaks can affect the minimum 

temperature and maximum size of clouds, which are indicators of maturity and storm 

severity [Esmaili et al., 2016]. In the diagrams, cells in the top left can be interpreted 

as weaker events (warmer cloud tops, small scale) and the lower right as more intense 

(cold cloud tops, large scale). Cells parallel to the x-axis likely deep convection at 

various scales. Shading represents the difference between the probability density of 

high and low AOD days from all days, where blue represents a net decrease in 
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probability of occurrence and red a net increase. 

Over land, the effects are mixed, but with a noticeable shift toward midsized warmer 

clouds and a strong decrease in larger warm clouds on high AOD days. Low AOD 

days have more intense storms but also a shift toward small- to moderate-scale, 

moderate temperature events. 

Over the ocean, there is a pronounced increase in clouds that are larger and colder, 

and a decrease in clouds that are warmer and moderate-scale. On Low AOD days, the 

inverse is observed: there is a shift to more small-scale, warmer cloud clusters. 

Over the ocean region, the behavior is consistent with Wilcox et al. 2010’s modeling 

study. They propose that the African Easterly Jet is enhanced due to the presence of 

dust in the SAL over the ocean, which absorb in the shortwave, cooling the ocean 

below while heating the atmosphere. The resulting vertical temperature gradient leads 

to an anti-cyclonic circulation and strengthens the easterly jet to the south of the SAL, 

which then increases convection and shifts the ITCZ northward [Wu et al., 2009]. 

Thus, convection is expected to be enhanced on high AOD days and less active on 

low AOD days. 

3.4 Summary and Future Work 

In this chapter, we track cloud clusters using satellite observations to examine 

evolution during dust outbreaks over the eastern Atlantic, to see if we can observe 

changes in the location and mature cloud characteristics. 

The early results presented in this chapter show that the East Atlantic ITCZ increased 
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activity in the north, with decreased occurrence in the south during dust outbreaks. 

Overall, there are fewer cloud clusters present during high AOD days. Over land on 

high AOD days, these clusters tended to have a greater share that were larger and had 

lifetimes between 11-16 hours, but fewer that lasted 5-10 hours than on low AOD 

days. On high AOD days over the ocean, there are many more longer-lasting clouds 

than on low AOD days, but these clouds tended to be smaller except for at the largest 

scales. 

Examining the probability differences in mature cloud states, over the ocean there is a 

significant increase in large-scale, cold clouds on high AOD days and an increase in 

warm, smaller-scale clouds on low AOD days.  

Over land the patterns are less pronounced, but there is a shift toward more warm, 

moderate-scale events on high AOD days and towards stronger, more intense events 

on low AOD days. 

Can dust outbreaks influence a shift in mature cloud states? While over land the 

message is more mixed, over the ocean there is evidence of a shift in cloud properties 

to more intense events during dust outbreaks. Utilizing a longer study period and 

examining environmental conditions will likely help elucidate some of the underlying 

causes. A northward shift in the ITCZ leads to cloud development over cooler sea 

surface temperatures, which could suppress deep convection on high AOD days near 

the dust source [Lau and Kim, 2007; Wilcox et al., 2010]. Additionally, examining 

precipitation, relative humidity, vertical motion, zonal wind, vertical shear, and sea 

surface temperatures would put cloud properties in context. 
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In the future, we can examine other development characteristics such as cloud 

fraction and the impact on full life cycle development. Integrating other satellites’ 

observations, such as those from CloudSat, Cloud-Aerosol Lidar, and Infrared 

Pathfinder Satellite Observation (CALIPSO), would enable examination of the 

aerosol loading and vertical rain reflectivity within the cloud. Combined with the 

storm track database of Esmaili et al. [2016], we could put this information in the 

context of the cloud age. 

There are some drawbacks to the current method. First, we solely rely on SeaWiFS, 

whose polar orbit crosses the equator at noon, limiting the number of comparable 

cloud observations to only a few hours before and after its overpass. Combining 

measurements from Aqua and Terra based Deep Blue and Dark Target would 

increase the number of useable observations. While current GOES channel 

differencing can only be examined at night [Dunion and Velden, 2004] when the 

circulation effects of aerosols become secondary to surface longwave cooling, next 

generation geostationary satellites will permit continuous day and night observation. 

GOES-16 data will be available in early 2017, which has the necessary channels to do 

daytime channel differencing to detect aerosols and the SAL, which would enable 

both high resolution cloud tracking and aerosol detection. 
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Abstract 

A simplified view of cloud evolution can lead to errors in merged rainfall retrievals, 

which then propagate into higher level analysis. We investigate the intensity, 

duration, and frequency of precipitation events to see how the Integrated Multi-

satellitE Retrievals for GPM (IMERG) algorithm compares with ground observations 

over the contiguous United States. The results show that while there was agreement 

on seasonal totals, closer examination of event details shows that IMERG 

overestimates rainfall duration and intensity, but underestimates frequency. Over 

Florida, IMERG overestimates the intensity and duration, but underestimates the 

frequency of rainfall in the winter. However, east of the Rocky Mountains, IMERG 

underestimates the intensity distribution and frequency but overestimates the 

duration. The timing of the summertime diurnal cycle is well represented across the 

continental United States, although the amplitude is weaker in the southwest. 

Moderate intensity events, which represent the majority of rain event cases, show 

more agreement than events that have significant amounts of light or heavy rain.  

Satellite-based precipitation datasets are rapidly improving, but awareness of their 
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strengths and limitations, as well as examination of precipitation datasets in a 

developmental context, can enhance satellite retrieval algorithms and can complement 

climate model simulations. 

4.1. Introduction 

While rare, severe weather is scientifically interesting because it indicates upper level 

divergence, moisture transport, and vertical heating rates in the atmosphere. The 

societal impact of heavy rainfall can be significant: on August 11, 2016, heavy 

rainfall led to flooding in Louisiana, which resulted in $10 billion in damages and 13 

deaths. To describe the character of such severe weather and storms, a rain event can 

be broken down into its corresponding intensity, duration, and frequency 

characteristics to provide a more complete description of its character than by 

examination of any of these parameters alone [Westra et al., 2014]. This event-based 

Intensity-Duration-Frequency (IDF) framework is useful for predicting regional 

susceptibility to extreme weather and flooding [Kendon et al., 2014]. Climate models 

predict that there will be shifts in the intensity, duration, frequency, and total 

precipitation due to climate change [Trenberth et al., 2003]. Satellite-based 

precipitation datasets are used to evaluate precipitation features in global climate 

models, which have been found to over predict the frequency of light rainfall 

[Stephens, 2010]. However, existing studies have not assessed satellite precipitation 

products in context of the IDF framework. Measurement uncertainty that results from 

sensor-level errors and algorithm assumptions at instantaneous scales propagates into 

longer, sub-daily timescales [Tian et al., 2014]. 
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Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement [GPM; 

Hou et al., 2014] satellite mission [IMERG] is a state-of-the art satellite precipitation 

dataset that integrates observations from passive microwave and infrared sensors 

across several satellite platforms to have global coverage in high space and time 

resolution (0.1°, 30 min) [Huffman et al., 2015]. Satellite precipitation products such 

as IMERG are evaluated against ground “truth” observations, which are typically 

national radar networks or rain gauges [Hourdin et al., 2016], but can also consist of 

field experiments or observations of surface water flow [Hou et al., 2014]. 

Uncertainty in precipitation measurements are compounded by regional, 

topographical, and seasonal dependencies [Tang, 2016; Tan, 2016; Oliveira et al., 

2016]. Most validation work focused on comparing instantaneous rain rates from 

satellite sources to ground datasets on shorter, instantaneous time scales [Ebert et al., 

2007; Maggioni et al, 2016], and not into IDF, which would more faithful 

characterize the event. 

Models also struggle to simulate the diurnal cycle of rainfall [Dai, 1999], in part 

because storms can occur at temporal and spatial scales below the model resolution. 

The diurnal cycle is typically well-captured in precipitation products, but complex 

terrain and arid or very moist regions can cause rainfall to be missing or 

overestimated, impacting the diurnal cycle. Compared with older PMW-based 

datasets, IMERG was found to better capture the diurnal cycle over China when 

compared with rain gauge networks [Tang, 2016]. However, this study found that the 

timing of the diurnal cycle was out of phase over the arid regions. Similarly, Oliveira 

et al [2016] examined the diurnal cycle over the Amazon during the CHUVA project 
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[Machado et al., 2016] and found that IMERG captures the wet season diurnal cycle, 

albeit with some overestimated rainfall in the morning. However, IMERG does not 

capture the daily cycle during the dry season due to underestimation of heavy rainfall 

(> 10 mm/h) during this season. Machado et al. attribute this to the surface 

characterization of the PMW retrieval algorithm, suggesting that more studies over 

different land surface types and climates are needed. 

The goal of this study is to use the IDF framework to evaluate IMERG’s ability to 

reproduce event-based characteristics and diurnal cycles with ground radar over the 

continental United States (CONUS). This study will permit us to examine how 

uncertainty in the rain estimate on instantaneous scales, which is a function of terrain, 

season, and regional climatology, can impact measurements at time-scales that extend 

to the duration of the event (< 4 days) and the daily cycles of rainfall. These results 

can improve understanding of the strengths and weaknesses of IMERG, a next-

generation multi-satellite, merged satellite precipitation product, which will be 

beneficial to climate and flood modeling research. 

In Section 4.2, we will explain the datasets, and in Section 4.3 we will describe the 

methods. We will present our results on precipitation seasonal mean, IDF analysis 

and statistics, and the diurnal cycle in Section 4.4. The discussion and conclusions 

will also be in Section 5.4. 
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4.2. Data 

4.2.1 IMERG 

IMERG (version 3, final product) is a gridded, 0.1° x 0.1°, half-hourly precipitation 

dataset [Huffman et al., 2015]. The final, research-grade product has been calibrated 

with surface gauges where available. IMERG unifies observations from passive 

microwave (PMW) and infrared (IR) sensors from GPM core and constellation 

satellites, and is calibrated using gauge corrections. We used all available IMERG 

data at the time of writing, which is from March 2014 to December 2015. 

High resolution precipitation datasets are possible through the combined community 

effort to innovate, evaluate, and improve the many datasets from GPM’s predecessor 

satellite, Tropical Rainfall Measurement Mission (TRMM) [Maggioni et al., 2016]. 

Many of the strengths from the TRMM-era datasets were integrated into IMERG, and 

as its acronym implies, most notably by merging passive microwave (PMW) 

measurements from the GPM constellation with infrared IR observations from 

geostationary satellites. PMW observations provide a higher quality rainfall estimate 

but because they are taken from low-earth orbit satellites, measurements have a lower 

temporal sampling rate (every 3 hours). Because IR cannot penetrate cloud tops to 

examine surface precipitation, IR observations provide lower quality rainfall 

estimates but because they come from geostationary satellites they have higher 

temporal sampling (every 30-60 min). The synthesized PMW-IR combination allows 

greater spatial and temporal coverage, although data quality suffers due to IR 

observations being significantly worse rainfall estimators than PMW [Tan et al., 
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2016]. A third estimation method within IMERG is to combine the IR and PMW 

measurements using morphing. 

Morphing is a Lagrangian technique that propagates PMW precipitation estimates 

using cloud motion vectors derived from geostationary infrared observations [Joyce et 

al., 2004]. The PMW estimate is translated both forward and backwards in time 

between PMW overpasses, filling in the gaps (within 90 minutes of an overpass) with 

a combined value of the later and earlier rain rate. The final rain rate is weighted by 

time closer to when the PMW observation was made. 

Utilizing a Kalman filter to select the appropriate estimate (PMW, morphing, or IR) 

improved the quality of estimations [Joyce and Xie, 2011]. The Kalman filter assigns 

weights to minimize error variance in the rain estimate, which results in a blend 

between a PMW-only, morphed, or IR-derived rain estimate. Morphing can improve 

rainfall estimates on daily timescales. Past studies found that the Climate Prediction 

Center (CPC) morphing technique [CMORPH, Joyce et al., 2001] precipitation 

dataset, a TRMM-based dataset that pioneered the morphing technique, had a 10% 

smaller root mean square error than 3B42, a non-morphed precipitation dataset, at 

time scales less than four days. Beyond that errors were approximately 30% greater 

[Tian et al., 2014]. 

4.2.2 MRMS 

As a reference, this study uses ground-based measurements from the Multi-

Radar/Multi-Sensor (MRMS, gridded 1-km, hourly) dataset. MRMS is precipitation 

product produced by integrating base-level radar data with model, gauge, and satellite 
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observations over the continental United States [Zhang et al., 2011a]. There are 

advantages and drawbacks of using a radar-based dataset as a reference, which can be 

reduced through bias correction from gauge calibration and by only using pixels with 

a high radar quality index (RQI) to reduce uncertainty in the measured rain rate. 

MRMS is useful as a reference dataset because ground-based radar observations are 

(1) more accurate than space-based observations, (2) available in high temporal and 

spatial resolution, and (3) quality controlled to reduce detection of non-precipitation 

such as noise, radar clutter, and complex terrain effects. Alternatively, rain gauges 

can be utilized for validation, but may not be representative of a large area and like 

radar, are not available in remote regions [Kidd, 2016]. Gauge calibration can lead to 

improvements in estimates [Zhang et al. 2011a]. 

However, there are some drawbacks to using MRMS as the ground reference. First, 

there are large gaps in the radar network due to beam blockage by topographical 

features. Radar measurements are advantageous in their spatial and temporal 

sampling; however, the reflectivity-rain-rate (Z-R) relationship is used to convert 

radar reflectivity into precipitation rate, and this relationship has a spatial and 

seasonal dependence which can lead to underestimation of rainfall in warm and wet 

conditions [Harrison, 2000; Dinku, 2003; Maggioni, 2016].  

Using the gauge bias-corrected radar product (3B-HHR) can reduce bias and 

uncertainty that is due to inaccurate Z-R relationships, however terrain can introduce 

uncertainty in estimates due to beam blockage [Zhang et al. 2011b]. MRMS has a 

radar quality index (RQI), which ranges from 0 (worst) to 100 (best) to indicate the 
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degree of uncertainty in the measurement. To control for both these data voids and 

non-negligible biases in measurements, we only used radar in regions with an average 

quality index greater than 80%.  

To make the datasets comparable, IMERG observations were averaged hourly and 

MRMS was binned to 0.1° x 0.1° to match the IMERG resolution. We used the entire 

IMERG record that was available at the time of writing, from March 2014 to 

December 2015. 

4.3. Methods 

We define a rain event as the number of hours during which either IMERG or MRMS 

detects rainfall above 0.2mm/hour. This threshold is the minimum rain rate that Ka 

and Ku- band radars on GPM, which are used for PMW calibration, can detect; at 

lower values, the relative standard deviation can exceed 100% and the data are 

unreliable [Tian and Peters-Lidard, 2010]. For the remainder of this paper, we use the 

following definitions for rainfall characteristics of the events: 

• Intensity: The average rain rate for an event. 

• Duration: The number of hours that an event lasts. 

• Frequency: The number of events. 

We examined these events for the entire year and spatial domain, and also divided 

them into seasons: December-February (DJF), March-May (MAM), June-August 

(JJA), and September-November (SON). 

To assess IMERG’s ability to reproduce diurnal variability, we aggregated the 

IMERG and MRMS into a seasonal daily average rain rate and took a Fourier 
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transform of the result following a procedure similar to that of Bell et al., 2008. From 

the phase, we could estimate the local time of day of the daily maximum rain rate, as 

well as the amplitude of the signal. 

4.4. Results 

In this study, we examine the IDF characteristics of rain events detected using 

IMERG, which we evaluate against the MRMS dataset. Using the methods described 

in Section 2 resulted in the detection of over 2 million rain events, which were then 

compared. Additionally, we examine the diurnal cycle to further characterize the 

accuracy of IMERG at sub-daily timescales. 

4.4.1 Seasonal average and event-based IDF characterization 

In terms of seasonal average rain rates for 2014-2015, there is good agreement 

between IMERG and MRMS (Figure 4-1). Some of the spatial details are smoothed 

out in IMERG over the Midwest due to the lower native resolution in IMERG than in 

the MRMS dataset. MRMS has noticeable radar gaps, is caused by an absence of an 

available radar tower or because the measurement did not meet our 80% minimum 

RQI threshold, which is particularly over high terrain regions such as the Rocky 

Mountains.  
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However, on regional scales there are some noticeable differences, particularly in JJA 

and DJF. In DJF, IMERG produces less rain than MRMS over the Pacific Northwest 

(43-49°N, 119-126°W). Over Florida (23-31°N, 80-86°W) during JJA, some of the 

heaviest rainfall (>10 mm/day) present in the MRMS dataset is lighter (7.5 mm/day) 

in IMERG. The region east of the Rocky Mountains (35-40°N, 97-102°W) shows 

reasonable agreement. There is a large density of rain gauges east of the Rockies and 

both MRMS and IMERG are gauge-calibrated products, which could be responsible 

for the good agreement.  
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However, we can examine the characteristics of individual rain events to determine 

how disagreements in Figure 4-1 occur on shorter time scales. In JJA, the average 

event intensity is over or underestimated depending on the region (Figure 4-2a); there 

is underestimation in the Midwest, but overestimation in the north, near the Great 

Lakes region (45°N, 85°W). The duration of events was almost uniformly 

overestimated (Figure 4-2b). Distinguishing rain from land surfaces remains a 

challenge to PMW retrievals [Ferraro et al. 1996], and since rain rate is used as a 

threshold for duration, these values will be impacted as well. 

 

In the wintertime (DJF), IMERG uniformly overestimates the maximum intensity of 
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events (Figure 4-3a). Duration differences are more regionally specific, with 

underestimates of an hour mainly in higher latitudes in DJF. Over the Pacific 

Northwest, MRMS characterizes rain events as light, long lasting, and frequent. 

However, IMERG shows heavier, shorter-lived, and frequent rainfall in this region. 

IMERG underestimates the frequency of rain events across both seasons (Figure 4-2c 

and 4-3c). Radar limitations in the wintertime limit the scope of validations over more 

remote regions in the western United States. Typically, the west coast experiences its 

wet season in the winter and dry season in the summer, and the inverse is true for the 

eastern CONUS, leading to seasonally dependent biases in values.  

Note that while both 2014 and 2015 were combined in these figures, our examination 
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of year-to-year differences in MRMS and IMERG were smaller than differences in 

our comparison of the two datasets. While not shown, the spatial distribution of the 

standard errors of the intensity and duration in JJA (Figure 4-2) and DJF (Figure 4-3) 

were generally smaller than the differences between the two datasets. Errors were 

higher in DJF than JJA, in IMERG than MRMS, and in intensity measurements than 

in duration. 

4.4.2 Probability distribution of event-based characteristics over CONUS 

For the total number of detected events shown in Figure 4-4, we examine probability 

distribution of intensity and duration for all events in Figures 4-5 and 4-6, 

respectively. These figures are normalized by the total frequencies in Figure 4-4, so 

differences may not reflect a large number of events, particularly at the tail end of the 

distribution.  

Overall, IMERG light rain events are less probable than in MRMS (Figure 4-5a). In 
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DJF (Figure 4-5b), we can see that this difference is more pronounced: the 

distribution is shifted toward stronger events than what is observed in IMERG. 

Performance is more consistent with MRMS in JJA (Figure 4-5c), when convective 

rainfall is typically more common over CONUS. However, the distribution shows an 

underestimation of higher intensity events (> 10 mm/h) and an overestimation at 

moderate intensities (1-10 mm/h). Grey shading represents the standard error of the 

plots, however the error ranges are fairly small for intensity. 

Figure 4-6a shows that IMERG detects more moderate length events (2-11 h), and 

underestimates the distribution of short-lasting (1-2 h) and longest-lasting (>11 h) 

events. However, error ranges are larger in duration than in the intensity probabilities 

(Figure 4-5), and there is overlap. In DJF, IMERG almost uniformly underestimates 

event duration, which is significant for the longest lasting rain events (Figure 4-6b). 

In contrast, during JJA there is an overestimation of events longer than an hour 
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(Figure 4-6c), although the standard error is partially overlapping. The sharp drop-off 

in the longest-lived events may be partly due to morphing, which may smooth over 

rainfall and bring it below our detection threshold. 

We also take a closer look at the intensity and duration in three regions, which 

represent regions in the west (Pacific Northwest), central (east of the Rockies), and 

southeastern United States (Florida). Figure 4-7a shows that each region exhibits 

disagreement with MRMS in terms of rain intensity, although it appears that the 

discrepancies are largely driven by winter observations (Figure 4-7b).  

In terms of duration (Figure 4-8a), the disagreement is more evenly split between the 

two seasons. Florida’s distribution is somewhat skewed toward longer events than 

MRMS, particularly during JJA, while the detected events are shorter over the Pacific 

Northwest. Their seasonal distributions are somewhat reversed east of the Rockies, 
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with more underestimation in the winter and more overestimation for moderate 

duration events (Figure 4-8b). However, duration errors east of the Rockies are large 

due to the small sample size (Figure 4-4). As more data become available, this 

distribution can be re-examined.  

4.4.3 The diurnal cycle of rainfall 

In addition to studying the IDF characteristics of rain events, we also examine the 

time when these events take place. Figure 4-9 shows the diurnal cycle of rainfall from 
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the Fourier transform on daily average rainfall in JJA. Other seasons were excluded 

from the analysis because the amplitude of the diurnal cycle was significantly weaker 

in other seasons. In Figure 4-9a, both datasets show that the Rocky Mountains and 

adjacent Great Plains have a nocturnal maximum while an afternoon peak is generally 

found elsewhere, which is consistent with past studies [Dai, 1999]. There is also good 

agreement between IMERG and MRMS over the timing and amplitude over Florida. 

The IMERG amplitude is weaker over southern and southwestern CONUS, although 

the phase is reasonably well-captured when compared with MRMS. 

While there is mostly agreement, IMERG’s probability density in Figure 4-10a shows 
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that the local solar time (LST) of rainfall peaks has a broader distribution in IMERG 

than in MRMS. IMERG has a peak centered at 18:00 LST, while in MRMS the peak 

occurs closer to 16:00 LST. As we saw in Figure 4-6c, IMERG tends to overestimate 

the duration of moderate strength events in JJA.  

Unlike much of the United States, there is a nocturnal peak in rainfall east of the 

Rockies, and the pattern is faithfully captured by IMERG (Figure 4-10b). There is a 

strong diurnal peak in Florida, which occurs roughly an hour earlier in the IMERG 

dataset. Over the Pacific Northwest, there is an almost three-hour lag in the 

occurrence of peak precipitation.  

4.5. Summary and Discussion 

In this Chapter, we show that the IDF framework can be used to evaluate how rain 

characteristics from satellite precipitation datasets compare with ground truth. In 

terms of daily mean precipitation, agreement is good between the two sources, but 

IDF differences are region and season-specific, which we visually summarize in 

Figure 4-10. We show that over Florida, IMERG overestimates the intensity and 

overestimates duration, but underestimates the frequency of rainfall in the winter. 

Although seasonal averages of daily rain rates show good agreement east of the 

Rocky Mountains, when examining the event-based characteristics IMERG 

underestimates the intensity distribution and frequency, however duration is 

inconclusive due to sample size limitations. We found relatively good agreement in 

the diurnal cycle over CONUS, which is promising since Tang et al. [2016] found 



 

 87 
 

IMERG overestimated the diurnal cycle in the afternoon and in the Tibetan Plateau 

and did not capture the cycle over Northwest China.  

Wintertime overestimation (Figure 4-3) of rain intensity, particularly light rainfall, 

can arise from the difficulty of PMW sensors “seeing” warm rain processes above a 

warm land surface. Secondly, IR cannot detect warmer stratiform clouds [Vincente et 

al., 1998], which can lead to cloud motion vectors that follow only the coldest cloud 

features or miss the cloud altogether. Distinguishing rain from land surfaces remains 

a challenge to PMW retrievals [Ferraro et al. 1996]. Since we used a rain rate 
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threshold for duration in this study, inaccurate rain intensity estimates in the source 

data impact the duration and frequency of the event as well. Underestimation of the 

heaviest rain can result from poor Z-R relationships above the melting layer in the 

cloud. Florida had the best agreement, which is likely due to the regions relatively flat 

terrain and mild winters, which were also observed by Tian et al. 2007.  

PMW measurements have the highest skill in measuring rainfall, but in the mid-

latitudes, rain events will only have one or two PMW “best” estimates during their 

lifetimes. The skill of the IMERG precipitation estimate is related to the measurement 

source (passive microwave, morphing, or infrared). Morphing represents 67.5% of 

detected rain cases in the Mid-Atlantic and has a higher occurrence of falsely detected 

rain than in PMW and IR only estimates [Tan et al. 2016]. We speculate that 

morphing may be influencing the duration of events, particularly in the summer, 

when short-lasting convective events can quickly develop and dissipate. A future 

study can explore the impact of the three primary estimation techniques (PMW, 

morphing, IR) on the quality of the IDF estimation.  

The present study cannot isolate the cause and effect of the discrepancies in IMERG 

and MRMS. However, past studies of TRMM-based datasets show that PMW-based 

observations tend to have a positive bias at daily time scales, with overestimation of 

low intensity rainfall (<50 mm/day), underestimation of high intensity rainfall [Jiang 

et al., 2016], and regional and seasonal dependencies of measurement errors were 

observed across the globe [Maggioni et al., 2016].  In CMORPH validation studies, it 

was found that daily precipitation totals were generally underestimated in DJF and 
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overestimated in JJA compared with radar, where the biases could exceed ± 5 

mm/day [Tian et al., 2007].  

There are several challenges related to this study. It is apparent that MRMS coverage 

is limited in the west, particularly in the boreal winter months, and radar artifacts 

mean that we had to limit our study to regions with a quality index of 80% more to 

compare with IMERG. At the time of writing, only two years of IMERG data were 

available due to the recent launch of GPM. Eventually, IMERG will be reprocessed 

back in time to the beginning of the TRMM-era. As with any new data product, 

improvements are being made very quickly and new versions of the dataset will be 

available. 

Past studies on TRMM-based products have shown that precipitation retrieval errors 

can depend on the life cycle stage [Tadesse and Anagnostou, 2009]. Realistically, rain 

develops within clouds, not as fixed points on the ground, so it would be useful to 

track rain features continuously as they evolve, which would facilitate knowledge of 

the age and total lifetime of the system [Esmaili et al., 2016]. In the past object-based 

tracking of rainfall was possible but computationally intensive and complex [Skok et 

al., 2009]. When IMERG is processed back through the TRMM era, the resulting 

long-term, high-resolution satellite precipitation product will enable the more in-

depth evaluation and new applications of precipitation features as objects. 
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Chapter 5.  Conclusion 

5.1 Summary and contribution to the scientific community 

By following the trajectories and properties of individual clouds at short time scales, 

in this thesis I show how cloud life cycle evolution takes place in the time periods 

between low-earth orbit overpasses (Chapter 2). The location and intensity of clouds 

and rainfall can be modulated by dust aerosols, such as in proximity to Saharan dust 

outbreaks in the Atlantic (Chapter 3). Combined, these chapters show the complicated 

nature of cloud development. A simplified view of cloud evolution in merged rainfall 

retrievals is a possible source of errors, which can propagate in composite analysis. In 

Chapter 4, I investigate the intensity, duration, and frequency of precipitation in next-

generation satellite precipitation products with ground observations over the 

contiguous United States. A summary of the questions and findings that resulted from 

this thesis can be found in Figure 5-1. 

While I completed my thesis work under the guidance of my advisors, I took a lead 

role in developing, conducting, and analyzing the research described in this 

dissertation. The primary scientific contributions of this thesis include:  

• Building off prior studies which primarily focused on the tropics, I produced 

the first statistical characterization of the number, size, and lifetime of clouds 

in the atmosphere, which can be useful for model output validation. 
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• I showed that the life cycle evolution of cloud size and temperature is non-

linear. Next-generation satellite precipitation products use infrared-derived 

motion vectors to linearly propagate rainfall, thus these results can be applied 

to improving assumptions in merged precipitation datasets.  
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• I examined the diurnal cycle of cloud life cycle stage and total lifetime both 

globally, and examined the land and ocean differences over India and Western 

Africa. Past studies of the diurnal cycle found that rainfall is more intense for 

oceanic nocturnal storms. Because Lagrangian tracking enables knowledge of 

the clouds and storms’ lifetimes, I could build on past studies to show that 

these systems in addition to having more intense rain rates, also have extended 

lifetimes. 

• I show that large-scale Saharan dust outbreaks shift cloud trajectories closer to 

the dust outbreak source, and evidence that the intensity of cloud clusters in 

the tropical Atlantic is enhanced during outbreaks and reduced during low-

dust conditions. These results provide observational support to prior modeling 

studies. 

• Evaluated event-based characteristics (intensity, duration, and frequency, or 

IDF) of the IMERG satellite precipitation product with ground radar 

observations over the continental United States. These results show that while 

seasonal means might show agreement, the features have discrepancies: 

average rain rate are universally too high in the winter, durations are too high 

in the summer, and frequencies are too low in both seasons. This is the first 

study to evaluate the data quality of in the IDF framework. 

The field of atmospheric science traditionally focuses on the Eulerian framework, 

however this thesis highlights how these two approaches can be complementary. 

Lagrangian methods can provide another means of evaluating global climate models 

(such as those shown in Figure 1-1) and I show how observed development unfolds in 
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high spatio-temporal scales. This research resulted in a publication to the Journal of 

Geophysical Research – Atmospheres and a manuscript submission to the Journal of 

Hydrometeorology. 

5.2 Future Work 

 “Almost everything about science is changing because of the impact of 

information technology. Experimental, theoretical, and computational science are 

all being affected by the data deluge, and a fourth, “data-intensive” science 

paradigm is emerging. The goal is to have a world in which all of the science 

literature is online, all of the science data is online, and they interoperate with 

each other. Lots of new tools are needed to make this happen.”  

–Jim Grey, 2007 

Data and computing resources are a major driver of cutting edge research in the Earth 

sciences, and through data synthesis we can achieve the spatial and temporal scales 

needed to advance climate modeling and weather prediction. The problem highlighted 

in this thesis is that in spite of more earth observing satellite missions than ever 

before, there are still many gaps in our understanding, which then translate into errors 

and uncertainty in satellite precipitation products. As a first order solution, it is 

tempting to apply the newest statistical methods to solve problems, as was done with 

IMERG. Doing so actually was very successful at achieving the scientific 

community’s first-order goal of having high spatial and temporal resolutions which 

are needed to run atmospheric and flood models, but at the expense of data quality. 

To further refine the accuracy of data products, knowing how observed cloud systems 
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initiate, grow, mature, and decay can allow scientific concepts to be built into 

heuristic algorithms. 

One area of improvement in the IMERG and other morphing algorithms is the 

treatment of development: the preceding chapters show how cloud size and 

temperature properties change with time, what the development differences are for 

storms versus small-scale clouds, and the daily timing of when events take place. 

These results can be useful for algorithm development and model evaluation, but can 

also be used to answer broader scientific questions, such as those related to the impact 

of coarse aerosols on cloud cluster development. 

Clouds and rainfall development can be enhanced or inhibited by dust aerosols; large 

scale dust outbreaks can shift ITCZ development northward and potentially cause 

more intense storms to form over adjacent ocean regions. These chapters advance the 

hypothesis that event tracking more realistically depicts how cloud evolution unfolds, 

which is more complex than the statistical assumptions that are currently used in 

PMW-IR morphing schemes in precipitation data products, like IMERG. 

A simplified view of cloud evolution is but one potential error source in merged 

rainfall retrievals, which then propagate into higher level analysis. While much past 

research was dedicated to examining the errors in individual sensors, combining 

satellites makes it difficult to determine the error source [Tan et al., 2016] and also 

how it propagates into analysis at longer time scales [Tian et al., 2007]. To examine 

the collective impact of these uncertainty, I investigate the intensity, duration, and 

frequency of precipitation events to see how IMERG compares with ground 
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observations over the contiguous United States. I show that even though there is 

reasonable agreement at seasonal scales, event-based analysis of IMERG 

demonstrations that IMERG systematically underestimates the number of events, 

overestimates the intensity of rainfall, particularly in the winter, and can under or 

over estimate how long events last and the timing in which they take place. These 

results can be used to provide a more detailed understanding of rainfall 

characteristics, and evaluate the strengths and weaknesses of satellite precipitation 

products as a reference to climate models. It is important to understand that although 

we raised some issues regarding IMERG, it is a relatively young data product. In 

TRMM’s 15-year history, the TMPA dataset was reprocessed seven times to reflect 

new corrections and innovations [Chen et al., 2013]. New versions become rapidly 

become available and past validation studies can become obsolete. Thus, validation is 

not static in time, but rather an ongoing community effort. 

As noted by Jim Grey in the quote opening this chapter, one of our duties as scientists 

in this data-driven era is to enable open access of data and publications. As a scientist, 

my ideas are shaped by a lifetime of experiences and training. The successes of 

satellite precipitation products were enabled by the large, international effort of the 

International Precipitation Working Group (IPWG) and other members of the 

scientific community. One outcome of this thesis is a public storm track database 

(https://stormtracks.umd.edu) to allow our international and interdisciplinary 

community of earth scientists to apply it to their areas of need. 

IMERG will eventually be reprocessed back through the TRMM-era, resulting in the 

longest satellite precipitation dataset to date. By combining rainfall with data from the 
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storm track database, we can examine the cloud-precipitation system as a whole. In 

the past, the TRMM precipitation feature (TRMM-PF) dataset developed by Liu et al. 

[2008]. TRMM-PF has been extensively used to study the size and intensity of strong 

rainfall events. By combining long-term IMERG records with our IR-based cloud 

tracks, rain features can be studied in the context of their entire life cycle and 

trajectory. Additionally, the precipitation radars on the TRMM and GPM satellites 

enable a three-dimensional representation of rainfall structure within the storm. The 

combination of precipitation radar measurements with high-resolution infrared 

observations from geostationary satellites would allow precipitation profiles and 

surface rainfall to be studied in the context of its development stage. This would 

make it possible to answer scientific questions such as: What are the vertical 

precipitation structures within the cloud and how do they evolve over time? How does 

surface rainfall change with other morphologic and thermodynamic characteristics 

during the storm’s life cycle? Answering these questions will deepen our 

understanding of the atmospheric water cycle, which in turn can be used to improve 

climate and meteorological models of such processes. 

There are certainly limitations to the techniques used in this thesis, which can impact 

assessment of rain algorithms and future work. Cloud clusters are not interchangeable 

with rain features within the cloud, clouds do not always contain rain, and warm 

clouds can be indistinguishable from the surface and thereby avoid detection. Cloud 

clusters also do not behave coherently through the entirety of their life cycle, as they 

split and merge or drop below the temperature threshold. Early termination and 

erratic behavior can result. Moving forward, it will be important to address these 
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detection issues, particularly before combining with rainfall observations to study rain 

feature development. 

On November 19, 2016, NASA and NOAA jointly launched GOES-16, a 

geostationary satellite that will produce imagery at twice the spatial resolution (2 km) 

and up to four times the temporal resolution (15 min) of previous GOES satellites 

[Schmit et al., 2005]. The improvements increase the time and spatial sampling, 

permitting a more detailed study of cloud cluster development and diurnal cycle. The 

mission will be centered over the Atlantic, enabling more examination of Saharan Air 

Layer and dust outbreaks on cloud cluster development and hurricanes. Previous 

GOES satellites could difference the 10.9 µm and 12 µm channels to detect SAL but 

this channel did not function on newer satellites. However, in time, it may be possible 

to consistently track large aerosol particles which trigger a variety of environmental 

effects that lead to the suppression of cloud development. 

In closing, event-based analysis would not be possible before this data-driven era of 

earth observing satellites. Now, we can engage in “storm chasing” from the comfort 

of our workspace to test theories, enhance predictive models, and deepen 

understanding of the environment. However, it is through the creative combination of 

data, statistics, and science that we can truly push our boundaries of understanding. 
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Appendix A. Comparing Satellite-based and GEOS-5 Cloud 
Tracks, Characteristics, and Diurnal Cycle over the Atlantic 
Ocean 

A.1 Datasets and methods 

In Section 1.3.1, we show preliminary findings that illustrate some of the 

discrepancies between observations and models by comparing the trajectories 

obtained from observed brightness temperatures from geostationary satellites with 

outgoing longwave radiation (OLR) from the high-resolution nature run (7-km 

horizontal resolution, 30 min dataset) produced from the Goddard Earth Observing 

System Model, Version 5 (GEOS-5) system of Earth observing model. OLR 

measures the radiation emitted by earth, included atmospheric features such as 

clouds, and is important in describing the energy balance of our planet and can also 

indicate the presence of convective activity. 

The trajectories were computing using the methods described in Section 2.3. To track 

systems similarly in both datasets, observed brightness temperature observations were 

rescaled to 7-km to match the spatial resolution of GEOS-5. The two datasets capture 

different variables, brightness temperature (K) and OLR (W/m2), which can be 

related by the Stefan-Boltzman law: 

𝑂𝐿𝑅 = 𝜎𝑇' 

Where s = 5.6693 x 10-8, is the Boltzman constant. Thus, if we use the 235 K 

temperature threshold (see Section 2.3.1 for temperature threshold justification) as the 
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equivalent brightness temperature, the equivalent radiance was 173 W/m2. However, 

Tb is radiance at a specific band (10.9 um) while OLR is radiance across all IR bands.  

A.2 Differences in cluster properties 

Figure 1-2 shows that there are more trajectories in the GEOS-5 OLR than in the 

geostationary brightness temperature. The GEOS-5 produces a broader ITCZ and the 

resulting trajectories are a smoother in the model than in the geostationary 

observation results. While this does highlight some of the disagreement that exists 

between models and observations, a sensitivity study needs to be done to see if 

differences are due to the threshold parameters used in the tracking or due to a 

limitation of the model. 

There are also dissimilarities in the cluster characteristics. In Figure 1-3a, we can see 

that clusters are smaller in the GEOS-5 OLR compared with brightness temperature 

observations, especially outside of the ITCZ region. However, GEOS-5 clusters 

typically last longer (Figure 1-3b) than observed clusters. GEOS-5 produces a surplus 

of clusters, particularly over the Caribbean and the Southeastern United States in 

comparison to (Figure 1-3c). 

A.3 Diurnal cycle 

The diurnal cycle of cloud cluster formation is poorly represented in the GEOS-5 

OLR analysis when compared with observed brightness temperature clusters over the 

southeastern United States (Figure 1-4). Afternoon thunderstorms are common over 

the region in June, which is observed in the brightness temperature clusters, but not in 
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the GEOS-5 clusters. Features of the shortest time scales are the most difficult for 

models to reproduce [Dai et al.,1999]. The GEOS-5 nature run is available for two 

years (2005-2006), so further refinement may elucidate some of the differences 

between models and observations. 
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