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AbstractThis paper describes a new admissible tree search algorithm called Iterative Threshold Search(ITS). ITS can be viewed as a much-simpli�ed version of MA* [2], and a generalized version ofMREC [15]. ITS's node selection and retraction (pruning) overhead is much less expensive thanMA*'s. We also present the following results:1. Every node generated by ITS is also generated by IDA*, even if ITS is given no morememory than IDA*. In addition, there are trees on which ITS generates O(N ) nodes incomparison to O(N logN ) nodes generated by IDA*, where N is the number of nodeseligible for generation by A*.2. Experimental tests show that if the heuristic branching factor is low and the node-generation time is high (as in most practical problems), then ITS can provide signi�cantsavings in both number of node generations and running time.3. Our experimental results also suggest that on the Traveling Salesman Problem, both IDA*and ITS are asymptotically optimal on the average if the costs between the cities are drawnfrom a �xed range. However, if the range of costs grows in proportion to the problem size,then IDA* is not asymptotically optimal. ITS's asymptotic complexity in the latter casedepends on the amount of memory available to it.Key words: heuristic search, node generation, pruning, memory bound
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1 IntroductionAlthough A* is usually very e�cient in terms of number of node expansions [3], it requires anexponential amount of memory, and thus runs out of memory even on problem instances of moderatesize. This problem led to the development of algorithm IDA* [8]. IDA*'s memory requirement isonly linear in the depth of the search, enabling it to solve larger problems than A* can solve inpractice. However, when additional memory is available, IDA* does not make use of this memoryto reduce the number of node expansions. This led to the development of several other limited-memory heuristic search algorithms, including MREC and MA*. In this paper, we present thefollowing results:11. We present a new admissible tree search algorithm called Iterative Threshold Search (ITS).Like IDA*, ITS maintains a threshold z, expands each path until its cost exceeds z, and thenrevises z. But if given additional memory, it keeps track of additional nodes, and backs uppath information at parents when nodes get pruned. ITS can be viewed as a much simpli�edversion of MA*, and a generalized version of MREC. ITS's node selection and retraction(pruning) overhead is much less expensive than MA*'s.2. We have proved that ITS dominates IDA*; i.e., even if ITS is given no more memory thanIDA*, every node generated by ITS is also generated by IDA*. In addition, we demonstratethat there are cases in which ITS generates O(N) nodes in comparison to O(N logN) nodesgenerated by IDA*, where N is the number of nodes eligible for generation by A*.3. We present extensive experimental tests on ITS on three problem domains: the 
ow-shopscheduling problem, the 15-puzzle, and the traveling salesman problem. Our results showthat if the heuristic branching factor is low and the node-generation time is high (which is1Some of these results have also been summarized brie
y in [5].2



the case for most practical problems), ITS can provide signi�cant savings in both number ofnode generations and running time.4. Our experimental results also suggest that on the Traveling Salesman Problem, both IDA*and ITS are asymptotically optimal on the average if the costs between the cities are takenfrom a �xed range. However, if the range of costs grows in proportion to the problem sizethen IDA* is not asymptotically optimal. ITS's asymptotic complexity in that case dependson the amount of memory available to it.2 BackgroundThe objective of many heuristic search algorithms is to �nd a minimum cost solution path in adirected graph G. To �nd such a path, these algorithms use a node evaluation function f(n) =g(n) + h(n), where g(n) is the cost of a minimum cost path currently known from the start nodes to n, and h(n) � 0, the heuristic value of node n, is an estimate of h�(n). h�(n) is the cost of aminimum cost path from n to a goal node. In this paper, we assume that the heuristic function his admissible, i.e 8n 2 G, h(n) � h�(n). The cost of an arc (m;n) in G is denoted by c(m;n).Let P be any path from the start node s. Then the function pathmax(P ) [1] is de�ned asfollows: pathmax(P ) = maxn2P (c(P; s; n) + h(n));where c(P; s; n) is the cost of the subpath of P that goes from s to n.We use L to denote the maximum number of nodes on any path P for which pathmax(P ) �
3



h�(s). Since the number of nodes on any path is one more than the length of the path,2L = 1 +maxflength(P ) : pathmax(P ) � h�(s)g:2.1 Algorithm A*The best known admissible algorithm is A* [6, 11]. A* works in a best-�rst manner. It maintainstwo lists: OPEN, which contains nodes that are to be expanded, and CLOSED, which containsnodes that have already been expanded. At each iteration, A* selects a node n from OPEN withminimum f -value, generates all of its children, and puts these children into OPEN after settingtheir g; h; and f -values. If a child p of n is already present in OPEN and g(p) > g(n) + c(n; p);then g(p) is reset to g(n) + c(n; p). If a child p of n is already present in CLOSED and a betterpath to it is now found, then g(p) is reset to the newly found smaller path cost and p is broughtback to OPEN from CLOSED. The process of node selection and expansion continues until a goalnode is selected for expansion.One major problem with A* is the amount of memory required to store nodes in OPEN andCLOSED. As shown in [3], every admissible search algorithm must expand all surely expandablenodes before �nding a solution. The number of such nodes often grows exponentially with somemeasure of the problem size|and since A* keeps track of all of these nodes, it needs an exponentialamount of memory in which to store these nodes.2.2 Algorithm IDA*To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) wasintroduced by Korf [8, 9]. Basically, IDA* performs a depth-�rst search, backtracking whenever2The length of a path P is the number of arcs in P . 4



procedure IDA*:Let z; z0 be global variables.Set z := h(s), where s is the start node. Set z0 :=1.Do the following steps repeatedly:set P := the path containing only s;call Depth-First(P );set z := z0.procedure Depth-First(P ):Set f := cost(P ) + h(last(P )).If f > z, then set z0 := min(z0; f).Otherwise, if last(P) is a goal node, then exit from IDA*, returning P .Otherwise, do the following steps for every child n of last(P):set P 0 := the path formed by appending n to P ;call Depth-First(P 0).Figure 1: Pseudocode for IDA*.it �nds a path whose cost exceeds a threshold value z. It repeats this search for larger and largervalues of z, until it �nds a solution. Figure 1 shows a pseudocode version of IDA*.Unlike A*, IDA* is a tree search algorithm|in other words, it does not keep track of alternatepaths to each node. Because IDA* only keeps track of the nodes on the path it is currently exploring,it requires O(L) memory. In other words, IDA*'s memory requirement grows only linearly withthe depth of the search. This enables IDA* to solve much larger problems than A* can solve, suchas the 15-puzzle [9]. Thus IDA* has drawn signi�cant attention from the AI research community.2.3 Other Limited-Memory AlgorithmsFollowing IDA*, several other limited-memory algorithms have been designed to reduce the numberof node generations compared to IDA*. These algorithms can be categorized into two classes:(1) the �rst class uses additional memory to store more nodes than IDA*, and thereby reduceregeneration of some nodes. The algorithms which belong to this class are MREC, MA*, RA* [4],SMA* [13], and ITS, and (2) the second class of algorithms attempts to reduce node regenerations by5



reducing the number of iterations, by increasing the threshold more liberally than IDA*. IDA* CR[14], DFS* [12], and MIDA* [16] belong to this class.Like IDA*, MREC is a recursive search algorithm. The di�erence between MREC and otheralgorithms in its class is that MREC allocates its memory statically, in the order in which nodesare generated. Algorithm MA* makes use of the available memory in a more intelligent fashion,by storing the best nodes generated so far. MA* does top-down and bottom-up propagation ofheuristics and generates one successor at a time. RA* and SMA* are simpli�ed versions of MA*,with some di�erences.Although algorithms MA*, RA*, and SMA* are limited-memory algorithms, their formulationis more similar to A*'s than IDA*'s. They all maintain OPEN and CLOSED, select the best/worstnode from OPEN for expansion and pruning. Therefore, their node generation/pruning overheadis much higher than IDA*'s. As a result, although they generate fewer nodes than IDA*, they donot always run faster than IDA*. ITS's formulation is similar to IDA*'s and therefore has a lownode-generation overhead than any of them.Algorithms IDA* CR, MIDA*, and DFS* work similar to IDA* except that they set successivethresholds to values larger than the minimum value that exceeded the previous threshold. Thisreduces the number of iterations and therefore the total number of node generations. However,unlike IDA*, the �rst solution found by these algorithms is not necessarily optimal and thereforeto guarantee optimal solution, these algorithms revert to depth-�rst branch-and-bound in the lastiteration.It should be noted that the techniques used in the two classes of algorithms can be combined.
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3 Algorithm ITSMost heuristic search algorithms maintain a search tree T containing data about each node n thathas been installed in the tree. Nodes of G are generated one at a time and installed into T , until asolution path is found in T that duplicates the least-cost solution path of G. Usually the branchesof T are represented only as links among the data structures representing the nodes. However, ITS(see Figure 2) maintains heuristic information not only for each node of its search tree, but also foreach branch of the tree. Thus, rather than considering a branch (p; q) merely to be a link betweenthe node p and its child q, we consider it as a separate entity in T .Conceptually, ITS installs (p; q) into T at the same time that it installs p into T , even thoughITS has not yet generated q. It is possible to implement such a scheme without incurring theoverhead of generating all of p's children, by creating one branch (p; R(p)) for each operator Rapplicable to p without actually invoking the operator R. A tip branch of T is a branch (p; q) in Tsuch that q is not in T . A tip node of T is a node p of T such that every branch (p; q) in T is atip branch. Such nodes are eligible for retraction by ITS. Retracting p consists of removing from Tthe node p and every branch (p; q).For each branch (p; q) in T a variable B is maintained, which stores an estimate of the cost of theminimum cost solution path containing the branch (p; q). B(p; q) is initialized to f(p) = g(p)+h(p),when the node p is installed in T . However, unlike the f value of a node, B(p; q) is updated everytime the node q is retracted.S is the amount of storage (number of nodes) available to ITS.Remark. For any given S � 0, ITS never stores more than max(L; S) nodes in memory whereL is as de�ned in Section 2. Thus, if the given memory S is more than L nodes, then it uses Samount of memory, otherwise it uses L amount of memory as used by IDA*.7



Algorithm ITS:1. Call Install(s; 0).2. Do the following steps repeatedly:(a) Set z  minfB(p; q) : (p; q) is a tip branchg.(b) Do the following steps repeatedly, until B(p; q)> z for every tip branch (p; q):i. Select the leftmost tip branch (m;n) such that B(m;n) � z.ii. If m is a goal node then EXIT, returning g(m).iii. If n = dummy, then set B(m;n) 1. Otherwise, do the following:A. If T contains � S nodes and has at least two tip nodes, then retract anode, as follows:If there is a tip node x such that B(x; y) > z for every branch (x; y),then let q be the leftmost such node. Otherwise, let q be the rightmosttip node of T . Set B(p; q) minrB(q; r), where p is q's parent in T .Remove q and every branch (q; r) from T .B. Call Install(n; g(m) + c(m;n)).procedure Install(n; g):1. Put n into T .2. If there are no operators applicable to n, then put a dummy branch (n;dummy) intoT . Otherwise, for each operator R applicable to n, put a branch (n;R(n)) into T .3. Set g(n) g.4. For each branch (n; r), set B(n; r) g(n) + h(n).Figure 2: Pseudocode for ITS.Example 1 Consider the search tree G shown in Figure 3. Arc costs are shown beside each arc.Heuristic value at each node is zero. The doubly circled nodes are the goal nodes. When ITS is runon this tree with S = 3 nodes, the explicit trees after each node generation are shown in Figures4(a) through (m).First, ITS generates the root node 1, creates three branches for its three children and initializesthe B-value of each branch to g(1) + h(1)=0, as shown in Figure 4(a). The threshold z is set to0 (the minimum of the B-values of the three tip branches). It then generates nodes 2 and 3 asshown in Figures 4(b) and (c). At this stage, ITS already has 3 nodes in memory and wants to8
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generate node 4. Therefore, it needs to retract a node at this point. It selects the leftmost node(which is node 2), backs up the minimum B-value (which is 1) of its tip branches and removes node2 from memory. It then generates node 4. The result is shown in Figure 4(d). At this point alltip branches have B-values greater than 0 and therefore the threshold z increases to 1. The nodegeneration and retraction continues as shown in Figures 4(e) through (m). In Figure 4(e), ITS hasregenerated node 2 and retracted the rightmost node (which is node 4). Finally, ITS terminateswith the optimal solution (of cost 7) when it selects the goal node 6 for expansion after it hasreached the stage shown in Figure 4(m).The node generation sequence for ITS on this tree is as follows:z Nodes generated0 1, 2, 3, 41 2, 5, 65 4, 9, 107 2, 5, 6On the same tree, the node generation sequence for IDA* is as given below:z Nodes generated0 1, 2, 3, 41 2, 5, 6, 3, 45 2, 5, 6, 3, 4, 9, 107 2, 5, 6As can be seen, on this example ITS does fewer node generations than IDA*, although bothalgorithms store at most 3 nodes in memory at any one time. In the next section we will provethat in fact ITS always does fewer node generations than IDA*.11



4 Properties of ITS4.1 De�nitionsAs we will see later, the quantities de�ned below are useful to prove some properties of ITS andalso for comparison of ITS with IDA*.If P = (n0; : : : ; nk) is any path, then all-but-last(P ) is the path (n0; : : : ; nk�1) and last(P ) isthe node nk . For each z � 0, we de�neWG(z) = 8>>>><>>>>:all paths P from s such that cost(P ) + h(last(P )) > z,pathmax(all-but-last(P )) � z, and all-but-last(P ) con-tains no goal nodes 9>>>>=>>>>; ;V G(z) = fall nodes of all paths in WG(z)g;XG(z) = fall non-tip nodes of all paths in WG(z)g;xG(z) = jXG(z)j;N(G) = xG(h�(s)):In the terms de�ned above, we will usually omit G if its identity is clear.From these de�nitions, it follows immediately that if we run A* on a tree, then every pathgenerated by A* will be a subpath of a path in W (h�(s)), every node generated by A* will be inV (h�(s)), and every node expanded by A* will be in X(h�(s)). Furthermore, in the worst case(which occurs if A* expands all nodes on OPEN that have f -values � h�(s) before it selects a goalnode), A* will generate all paths in W (h�(s)) and all nodes in V (h�(s)), and will expand all nodesin X(h�(s)), for a total of x(h�(s)) node expansions. Thus X(h�(s)) is the set of all nodes eligiblefor expansion by A*, and N = x(h�(s)) is the number of nodes eligible for expansion by A*. Thequantity N is known as the number of possibly expandable nodes.12



For j = 1; : : : ; we inductively de�nezG(j) = 8>>><>>>: h(s), where s is G's start node; if j = 1;minfcost(P ) + h(last(P )) : P is a path in WG(zG(j � 1))g; otherwise;XGnew(j) = 8>>><>>>: XG(zG(1)); if j = 1;XG(zG(j))�XG(zG(j � 1)); otherwise;xGnew(j) = jXGnew(j)j;IG = minfj : there is a solution path P such that pathmax(P ) � zG(j)g;xGtot = IGXj=1 xG(zG(j)) = IXj=1 jXG(zG(j))j:As before, we will usually omit the superscript G if the identity of G is clear.Suppose we run IDA* on a tree. The de�nitions of V (z(j)) and z(j) presented above correspondprecisely to the way that IDA* generates nodes and sets thresholds. Thus it follows that IDA*does I iterations, and that for j = 1; 2; : : : ; I � 1,the threshold used during IDA*'s j'th iteration = z(j); (1)fnodes generated during IDA*'s j'th iterationg = V (z(j)); (2)fnodes expanded during IDA*'s j'th iterationg = X(z(j)); (3)fnew nodes expanded during IDA*'s j'th iterationg = Xnew(j): (4)Since IDA* generates each node at most once during each iteration, it follows thatthe number of nodes expanded during IDA*'s j'th iteration = x(z(j)); (5)the number of new nodes expanded during IDA*'s j'th iteration = xnew(j): (6)13



During the �nal iteration (i.e., j = I), IDA* can �nd a goal node and terminate before every nodeof V (z(I)) has been generated. Thusthe threshold used during IDA*'s I 'th iteration = z(I); (7)fnodes generated during IDA*'s I 'th iterationg � V ((z(I)); (8)fnodes expanded during IDA*'s I 'th iterationg � X(z(I)); (9)fnew nodes expanded during IDA*'s I 'th iterationg � Xnew(I); (10)the number of nodes expanded during IDA*'s I 'th iteration � x(z(I)); (11)the number of new nodes expanded during IDA*'s I 'th iteration � xnew(I); (12)with equality in the worst case. Furthermore, from the correctness of IDA*, it follows thatz(I) = h�(s): (13)The heuristic branching factor is de�ned as the average, over j = 2; : : : ; I , of the quantityxnew(j)xnew(j � 1) :Intuitively, this is the average ratio of the number of nodes of each f -value (assuming that theheuristic is monotone) to the the number of nodes at the next smaller f -value [9].4.2 Basic PropertiesFor i = 1; 2; : : :, the i'th instant in the operation of ITS is the i'th time that Step 2(b)i is executed,i.e., the i'th time that ITS selects a tip branch for expansion. ITS's j'th iteration is the j'th iteration14



of the outer loop in Step 2. ITS's j'th threshold value is the value of z during this iteration. Wewill later prove this is identical to IDA*'s j'th threshold value.In Theorem 1 below, we prove that no node is generated more than once by ITS during iterationj, and from this it follows that the number of instants in iteration j equals the number of nodesgenerated in iteration j. At each instant i, ITS either exits at Step 2(b)ii or generates a node niat Step 2(b)iiiB. In the latter case, either ni is a new node (i.e., a node that has never before beengenerated), or else it is a node that was previously generated and retracted.Theorem 1 ITS satis�es the following properties:1. A tip branch (m;n) of T will be selected during an iteration if and only if B(m;n) � z duringthat iteration.2. The value of ITS's threshold z increases monotonically after each iteration.3. For each instant i, for each branch (m;n) of T , g(m) + h(m) � B(m;n) � cost(P ), where Pis the least costly solution path containing (m;n).4. Let i be any instant in iteration j, and suppose that at instant i, ITS selects some branch(m;n) and generates n. Let (n; p) be the leftmost branch from n. Then unless B(n; p) > z,(n; p) will be selected at instant i+ 1.5. No node is generated more than once during each iteration.Proof. The proof is by induction. The proof that each property holds at the current inductivestep depends on the induction assumption that all of the �rst four of the properties hold at theprevious inductive step. Since the proof is fairly straightforward, below we present an outline ofthe proof, leaving the details to the reader. 15



Property 1. This part of the proof involves what happens to a node c generated in Step 2(b)iiiB. Ifg(c)+h(c)� z, then clearly a branch (c; d) from c will be selected at the next instant. Selectionand generation will continue below d until every tip node e below d has g(e) + h(e) > z. Atthis point, another branch (c; d0) will be selected. This process will continue until all branchesfrom c have been selected.Property 2. This follows from the above argument that selection and generation continues to occuruntil every tip node has an B-value greater than z.Property 3. When (m;n) is initially installed in T , B(m;n) = g(m)+h(m). The only time B(m;n)is reset is in the case of node retraction|and as explained in the proof of Property 5, thiscan never decrease B(m;n). Thus g(m) + h(m) � B(m;n) at every instant i.The initial value B(m;n) = g(m) + h(m) is clearly � cost(P ). If ITS subsequently generatesand later retracts n, then it setsB(m;n) minqB(n; q), which by induction is also� cost(P ).Thus B(m;n) � cost(P ) at every instant i.Property 4. This follows directly from the selection strategy given in Step 2(b)i.Property 5. From Step 2(b)i of ITS, it follows that once a branch (m;n) is selected, ITS will keepselecting branches below n until every tip branch (q; r) below n has B(q; r) > z. Wheneverthere is a node q below n such that every branch (q; r) from q is a tip branch with B(q; r)> z,then ITS may retract q in Step 2(b)iiiA, but if it does this, it will set B(p; q) > z where p isq's parent, and this guarantees that (p; q) will never again be selected during this iteration.Theorem 2 Every path generated by ITS is a subpath of some path in W (h�(s)).Proof. Suppose not. Let P = (n1; n2; : : : ; nk) be the �rst path generated by ITS which is not in16



W (h�(s)). Let P 0 = (n1; n2; : : : ; nk�1). The only way this can happen is if cost(P 0) + h(nk�1) >h�(s). Let i be the instant at which ITS selected the branch (nk�1; nk).Let P 00 be a minimum-cost solution path in G. Let (p; q) be the tip branch of P 00 at the instanti. From Property 3 of Theorem 1, B(p; q) � h�(s). Thus, since ITS selected (nk�1; nk) ratherthan (p; q), it must be the case that B(nk�1; nk) � z � h�(s) at the instant i, which contradictscost(P 0) + h(nk�1) > h�(s).Corollary 1 ITS terminates and returns an optimal solution.Proof. By Theorem 2, every path generated by ITS is in W (h�(s)), which is �nite. Since ITSdoes not generate any node more than once in an iteration (by Theorem 1 property 5), and therecan be only �nitely many iterations (since path cost is additive, minimum arc cost � > 0 and h�(s)is �nite); ITS is bound to terminate after a �nite number of node generations.When ITS terminates, it cannot terminate by expanding any branch (m;n) having B(m;n) >h�(s), because this would contradict Property 1 of Theorem 1.5 Comparison of ITS with MA*Although ITS is in some respects similar to MA*, there are also several signi�cant di�erences. Webrie
y describe some of them below.1. MA* does top-down propagation of h-values. In particular, if MA* generates a node m as achild of some other node n, then for each child q of m MA* computes heuristic value withrespect to the heuristic value at node n (see [2], pp. 199). Thus, the f -values of generatednodes are strictly nondecreasing, regardless of whether the heuristic function h is monotone.In contrast, ITS does not do downward propagation of h-values.17



2. When MA* expands a node n, it installs a most promising child m, and computes not onlythe h-value of m, but also the h-value of each child q of m (using the downward propagationtechnique stated above). If we assume that the branching factor is uniform, then in a b-ary treeMA* will make b2 heuristic computations for each full expansion of a node. In comparison,ITS makes only b heuristic computations for full expansion of a node.When ITS expands a node n, it generates \placeholders" for all of n's children n1; : : : ; nk,but only evaluates one of these children, say, n0. Furthermore, ITS's evaluation of n0 is muchsimpler than MA*'s evaluation of n0, because ITS does not look at the children of n0 in orderto evaluate n0.3. Every time MA* generates a node p such that f(p) exceeds the current threshold z, MA*recursively propagates the f -values upwards in a manner similar to the upward propagationdone in the AO* algorithm [11].In contrast, ITS does not do upward propagation of this kind. The closest that it comes toanything similar to this is a one-level back-up of B-values when it retracts a node.6 Comparison of ITS with IDA*6.1 Theoretical ResultsIn this section we compare ITS with IDA*. In particular, we show two things:1. ITS never generates a node more times than IDA*. As a consequence, ITS generates everynode generated by IDA*, and that for every node n, ITS generates n no more times thanIDA* does.2. There are classes of trees on which ITS will have better asymptotic time complexity thanIDA*, even when given no more memory than IDA* (i.e., S = 0). In particular, we show that18



there are trees on which ITS does only O(N) node expansions. The main reason for this isthat when ITS retracts nodes, it backs up values, which allows it to avoid re-generating manynodes.Lemma 1 During each iteration of ITS, every path generated is a subpath of some path in W (z),every node generated is in V (z), and the number of node generations is � jV (z)j, where z is thecurrent threshold value.Proof. Suppose the claim is false. Then there is an iteration in which ITS generates a pathP = (n1; n2; : : : ; nk) that is not a subpath of some path in W (z). The only way this can happen isif cost(P 0) + h(nk�1) > z(j), where P 0 = (n1; n2; : : : ; nk�1). Thus, from Property 3 of Theorem 1,B(nk�1; nk) � cost(P 0) + h(nk�1) > z(j). But from Step 2(b)i of ITS, we know that every branch(m;n) selected by ITS during this iteration has the property that B(m;n) � z(j), which is acontradiction. Thus, every path generated during this iteration is a subpath of a path in W (z), soevery node generated by ITS during this iteration is in V (z). From Property 5 of Theorem 1, eachnode is generated at most once during this iteration, so the number of nodes generated during thisiteration is � jV (z)j.Lemma 2 Let z be ITS's threshold during its j'th iteration. Thenfall nodes generated during iterations 1; 2; : : : ; jg � V (z);with equality if j is not ITS's �nal iteration.Proof. For i = 1; : : : ; j, Let zi be the threshold value during ITS's i'th iteration. From Theorem 1,z1 < z2 < : : : < zj , and thus V (z1) � V (z2) � : : :� V (zj):19



Thus from Lemma 1,fall nodes generated during iterations 1; 2; : : : ; jg = j[i=1V (zi) � V (zj) = V (z):To prove equality if j is not the �nal iteration, the proof is by induction on j. For the base case(i.e., j = 1), the proof is immediate. For the induction step, suppose the theorem holds for theiterations 1; 2; : : : ; j � 1, and consider iteration j. If ITS has not yet begun to retract nodes, theproof is immediate. Whenever ITS retracts a node q, there are two cases:1. minr B(q; r) � zj . In this case, during iteration j, ITS regenerates q and continues to generatenodes below q until it has generated all successors of q in any of the paths in W (zj).2. minr B(q; r) > zj . In this case, all successors of q in any of the paths in W (zj) are alsosuccessors of q in W (zj�1). Thus by the induction hypothesis, they were generated by ITSduring some iteration prior to j.Theorem 3 For every j, z(j) is the threshold used by ITS during its j'th iteration.Proof. The proof is by induction.Base case: j = 1. Then the threshold is h(s), which is the same as z(1).Induction step: Let j > 1, and suppose the theorem holds for every iteration � j. We need toprove that it holds for iteration j + 1.First, we prove that at the end of iteration j, for every tip branch (m;n), B(m;n) =minP ff(last(P )) : P 2 W (z(j)) and P contains mg. To prove this, there are two cases:1. n has never been generated. Then there is only one path P 2W (z(j)) that contains m,namely the path from s to m; and in Step 4 of Install, B(m;n) was set to g(m)+ h(m).20



2. n has been generated and later retracted. From Step 2(b)i of ITS, it follows that once abranch (m;n) is selected, ITS will keep selecting branches below n until every tip branch(q; r) below n has B(q; r) > z(j). At this point, ITS may retract q, but if it does this,it will set B(p; q) = minrB(q; r) = g(q) + h(q), so the theorem holds for p. If ITS laterretracts p or any of its ancestors, it follows from an inductive argument that the theoremholds for them as well.Thus at the end of iteration j, ITS sets the threshold for its next iteration to minff(last(P )) :P 2 W (z(j))g. But this is precisely z(j + 1). Thus during iteration j + 1, the threshold isz(j + 1).Corollary 2 IDA* and ITS do the same number of iterations, and for every j,fall nodes generated during IDA*'s j'th iterationg= fall nodes generated during ITS's iterations 1; 2; : : : ; jg:Proof. For every iteration of IDA* except the �nal iteration I , this is an immediate consequenceof Lemma 2. Let P1; P2; : : : ; Pk be those paths in W (z(I)) generated by IDA* during its �naliteration, with Pk being the solution path found by IDA*. IDA* generates these paths in left-to-right order. Within each iteration, ITS uses this same node selection strategy as IDA*, andtherefore must generate these same paths in left-to-right order, except for those paths generatedduring previous iterations. Thus during this iteration, ITS will return the same goal path returnedby IDA*.Theorem 4 Let G be any state space, and n be any node of G. If IDA* and ITS expands nodesfrom G in left-to-right order following the same sequence of operators, then21



1. ITS and IDA* generate exactly the same set of nodes;2. for every node n, ITS generates n no more times than IDA* does.Proof.1. Suppose IDA* generates some node n. Then there is some iteration j of IDA* such thatn 2 V (z(j)). Thus from Corollary 2 , ITS generates n too.Suppose ITS generates some node n. Let j be the �rst iteration in which ITS generates n.Then n 2 V (z(j)), so from Corollary 2, IDA* also generates n in its j'th iteration.2. IDA* has I�j subsequent iterations, and it generates n exactly once in each of these iterations.From Corollary 2, ITS als o has I�j subsequent iterations, and from Property 5 of Theorem 1,ITS generates n at most once in each of these iterations. Thus ITS generates n no more timesthan IDA* does.The above theorem shows that ITS's time complexity is never any worse than IDA*'s. Below,we show that there are classes of trees on which ITS does only O(N) node expansions comparedto IDA*'s O(N logN) node expansions on the same trees. The same result also holds for nodegenerations. In the tree in Example 2, it is simpler to count the number of node expansions, andtherefore we present the result in terms of node expansions.Example 2 In the search tree G shown in Figure 5(a), each non-leaf node has a node-branchingfactor b = 2, and each arc has unit cost. G consists of two subtrees G1 and G2 where each one isa full binary tree of height k. G2 is rooted at the right most node of G1. Every leaf node, exceptthe one labeled as goal, is a non-terminal. For each node n in G, h(n) = 0.Clearly G1 and G2 each contain N 0 = dN=2e nodes, where N is the number of nodes eligiblefor expansion by A*. The cost of the solution path is 2k = 2[log2(N 0 + 1) � 1]. Let N0 =22



goal1 111 1 11 1 11nk+1nk+2n2k�1n2k
G1nk�11 111 1 11 1 11s = n0 n1 n2 nk 11 1 11s = n0 n1 n2 nk1

(a) (b)G2 G
Figure 5: A tree G on which IDA* is O(N logN) and ITS is O(N)bk+2bk�1+3bk�2+ : : :+kb: Then the total number of node expansions by IDA* in the worst-caseis N0 + kN 0 +N0 � kN 0 +N 0 = k(N 0 + 1) = O(N logN):Now we count the total number of node expansions by ITS on G. As in the case of IDA* nonode of G2 will be expanded prior to the expansion of all the nodes of G1 at least once. Using thetheorem 4, we can infer that the total number of node expansions by ITS on G1 is O(N). OnceITS begins expanding nodes of G2, the portion of G1 that will be retained in memory is shownin Figure 5(b). The branches of G1 which do not lead a goal node (all left branches) will have Bvalue of 1. Therefore no node of G1 will be reexpanded while expanding nodes of G2. Since G1and G2 are symmetric, by the same argument as in case of G1, ITS will not make more than O(N)node expansions on G2. Thus the worst-case time complexity of ITS on trees like G will always beO(N). 23



6.2 Experimental ResultsIn the examples above, we have shown that there are classes of trees on which ITS's asymptoticcomplexity is better than IDA*'s. In this section we report results of our experiments on threeproblem domains namely 3-machine 
ow-shop scheduling, traveling salesman and 15-puzzle. Theseproblems were selected mainly to encompass a wide range of node generation times. While thenode generation time for the 15-puzzle is very small, it is signi�cant for the traveling salesmanproblem. The node generation time for 3-machine 
ow-shop scheduling problem is also small buthigher than that of 15-puzzle. All the programs were run on a SUN sparcstation. We describe ourresults in the following subsections.One purpose of our experiments was to compare ITS with IDA*, and another purpose wasto see how giving ITS additional memory would improve its performance in terms of both nodegeneration and running time. For the latter purpose, we ran ITS with varying amounts of memory.The de�nition of ITS includes a parameter S which gives the total amount of memory availableto ITS for storing nodes. If S = 0, then ITS retracts all nodes except those on the current path.For each problem instance p, let ITS(v) be ITS with S = vM , where M is the number of distinctnodes generated by ITS on p. Thus, v = S=M is what fraction ITS gets of the amount of memoryit would need in order to avoid doing any retractions.3 For example, ITS(1) is ITS with enoughmemory that it doesn't need to retract any nodes, and ITS(1/4) is ITS running with 1/4 of theamount of memory as ITS(1).3If we had expressed S as an absolute number rather than a fraction of M , this would not have given usefulresults, because the number of distinct nodes generated by ITS on each problem instance varies widely. For example,with 100,000 nodes, on some problem instances ITS would have exhausted the available memory very quickly, andon others, it would not even have used all of the available memory.24



Table 1: IDA* and ITS0(0) on the 10-job 3-machine Flow-Shop Scheduling Problem.algorithm node generations time (sec)IDA* 211308.76 3.93ITS0(0) 210842.96 4.43Table 2: ITS(v) on the 10-job 3-machine Flow-Shop Scheduling Problem.v node generations time (sec)0 210842.96 23.221/4 123764.71 13.641/2 61690.79 6.923/4 28174.31 3.321 17663.28 1.806.2.1 Flow-Shop Scheduling ProblemThe 
ow-shop scheduling problem is to schedule a given set of jobs on a set of machines such thatthe time to �nish all of the jobs is minimized. In our experiments, we selected the number ofmachines to be 3. We used a search-space representation and admissible node evaluation functionof Ignall and Schrage [7].For ITS(0), there is a special case to consider. In the 
ow-shop scheduling problem, it is veryeasy to generate the successor n0 of a node n. Thus, since IDA* and ITS(0) will need to keep trackof only one successor of n at a time, both IDA* and ITS(0) can generate n0 by modifying the recordfor n (and undoing this modi�cation later when retracting n0), rather than generating an entirelynew record (this same technique was used by Korf in his implementation of IDA* on the 15-puzzle).For the 3-machine 
ow-shop scheduling problem, we used this technique to improve the e�ciencyof both IDA* and ITS(0). To distinguish between the normal version of ITS(0) and the improvedversion, we call the latter ITS0(0).We ran IDA* and ITS0(0) on one hundred problem instances with ten jobs in the jobset. Theprocessing times of the jobs on the three machines were generated randomly from the range [0,100]using a uniform distribution. Table 1 presents the average node generation and running time �gures25



for IDA* and ITS0(0) on these problem instances. As can be seen, ITS0(0) generated fewer nodesthan IDA*. However, ITS0(0) took slightly more time than IDA*. This is primarily because thenode generation time for this problem is small, and therefore the smaller number of nodes generatedby ITS0(0) did not compensate for its slightly higher overhead than IDA* in node selection andretraction.We also ran ITS(v) on the same problem instances, with various values of v. The averagenode generation and running-time �gures for ITS(v) are given in Table 2. The table shows thatas the amount of available memory increases, ITS improves its performance in terms of both nodegenerations and running time.6.2.2 Traveling Salesman ProblemThe Traveling Salesman Problem (TSP) is as follows: given a set of K cities with nonnegative costbetween each pair of cities, �nd the cheapest tour. A tour is a path that starting at some initialcity visits every city once and only once, and returns to the initial city. We chose the well knownmethod of Little et al. [10] to represent the search space and the lower bound heuristic for theTraveling Salesman Problem. The search space in this formulation is a binary tree.The technique that we used to improve the e�ciency of IDA* and ITS(0) in the 3-machine
ow-shop scheduling problem cannot be used in the Traveling Salesman Problem, because in thisproblem it is much more di�cult to generate the successors of a node. Thus, on those problemswe simply compared IDA* against ITS(v) for various values of v, without making any special-casemodi�cations.We generated two sets of data TSP Set 1 and TSP Set 2 and ran both IDA* and ITS on eachset. For both sets we selected the number of cities equal to 5, 10, 15, 20, 25, and 30. For each valueof the number of cities, one hundred cost matrices were generated. For TSP Set 1 the cost values26
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Figure 6: Number of node generations versus number of cities for IDA* and ITS on TSP Set 1.
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Figure 7: Number of node generations versus number of cities for IDA* and ITS on TSP Set 2.27
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Figure 8: Running time versus number of cities for IDA* and ITS on TSP Set 1.
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Figure 9: Running time versus number of cities for IDA* and ITS on TSP Set 2.28
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Figure 10: Ratio of IDA* node generations to ITS node generations, versus number of cities onTSP Set 1.
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Figure 11: Ratio of IDA* node generations to ITS node generations, versus number of cities onTSP Set 2. 29
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Figure 12: Ratio of IDA* running time to ITS running time, versus number of cities on TSP Set 1.
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Figure 13: Ratio of IDA* running time to ITS running time, versus number of cities on TSP Set 2.30



c(i; j) were taken at random from the interval [0,100] using a uniform distribution except for i = j,in which case c(i; j) was set to1. For TSP Set 2 the cost values c(i; j) were taken at random fromthe interval [0,(10� number of cities2)] using a uniform distribution except for i = j, in which casec(i; j) was set to 1. In general the cost matrices of TSP Set 1 and TSP Set 2 were not symmetricand did not satisfy the triangle inequality.The results of our experiments are summarized in Figures 6 through 13, which graph theperformance of IDA*, ITS(0), ITS(1/4), ITS(1/2), and ITS(1) for TSP Set 1 and TSP Set 2. Eachdata point in Figures 6 through 13 is the average over the one hundred problem instances.From Figures 6 through 9, it can be seen that on this problem, ITS(0) makes fewer node gen-erations and runs faster than IDA*. This is because the node generation time is large enough thatthe extra overhead of ITS over IDA* becomes relatively insigni�cant, and therefore the reductionin number of node generations does reduce the running time. Furthermore, the additional memoryused by ITS signi�cantly reduces the number of node generations as well as the running time. Bycomparing Figure 6 versus 7 or Figure 8 versus 9, it can be seen that the savings provided byITS for any given amount of memory is more for TSP Set 2 than TSP Set 1. This is because theheuristic branching factor is lower in TSP Set 2 than in TSP Set 1.In order to study how IDA*'s average-case asymptotic behavior compares to ITS's, in Figures10 through 13 we have plotted ratios of node generations and running time of IDA* and ITS forTSP Set 1 and TSP Set 2. The interesting point to be noted about these graphs is the di�erencebetween TSP Set 1 and TSP Set 2. For TSP Set 1, in each case, the ratio �rst goes up and then goesdown. If ITS's asymptotic performance were strictly better than IDA*'s, we would have expectedthe ratios to keep going up. Since Theorem 4 shows that ITS's asymptotic performance is at leastas good as IDA*'s, this suggests that both algorithms have the same asymptotic performance onthis problem on TSP Set 1. Since this behavior also occurs for ITS(1), which is essentially a version31



of A*, our results suggest that both ITS and IDA* are asymptotically optimal on the TravelingSalesman Problem when the costs between cities are generated uniformly from a �xed range.For TSP Set 2, the ratios eventually go down for each case except for IDA*/ITS(1). Thissuggests that IDA* is not asymptotically optimal in this case. For the reasons explained above,IDA*, ITS(0), ITS(1/4), and ITS(1/2) have the same asymptotic performance on TSP Set 2. Thissuggests an interesting result that ITS with a fraction (less than 1) of memory is not asymptoticallyoptimal when the range of costs varies in proportion to the number of cities.6.2.3 15-PuzzleFor the 15-puzzle, we used the manhattan distance heuristic in our experiments.For this problem, we made the same e�ciency-improving modi�cation to IDA* that we madein the 3-machine 
ow-shop scheduling problem. We considered making the same modi�cation toITS(0), but decided not to run ITS(0) at all on this problem, for the following reason. In the15-puzzle, with the manhattan distance heuristic, the threshold in every iteration of IDA* and ITSincreases by exactly two. Also, if z is the threshold during the current iteration, every tip branch(p; q) whose B value exceeds z has B(p; q) = z+2. This makes it useless to back-up B values duringretraction, because every node that is retracted in iteration i must be regenerated in iteration i+1.Thus, in order to improve the e�ciency of ITS(0) on this this problem, we should not only simplifythe node-generation scheme as described in Section 6.2.1, but should also remove the back-up step.But these modi�cations make ITS(0) essentially identical to IDA*.The same reasoning suggests that on the 15-puzzle, even if S 6= 0, ITS will not reduce thenumber of node generations very much in comparison with IDA*. If IDA* makes I iterations on aproblem, then ITS with S amount of memory will save at most S � I number of node generations.Since I is usually small for 15-puzzle (between 5 and 10), the actual savings is expected to be32



relatively small. Thus, since ITS has higher overhead than IDA*, we would expect ITS to takemore time than IDA* on this problem.To con�rm these hypotheses, we ran ITS and IDA* with three values of S = 100; 000, 300,000,and 600,000 on the twenty problem instances on which Chakrabarti et al. ran MA*(0). We couldnot run ITS(v) on these problem instances because the number of distinct nodes is so large on someof the problem instances that they exceed the available memory. Therefore, we had to run ITSwith �xed amounts of S. The results are summarized in Figures 14 and 15. As expected, ITS didnot achieve a signi�cant reduction in the number of node generations, and took signi�cantly moretime than IDA*.4 Thus, for the 15-puzzle, IDA* is the preferable algorithm.6.2.4 Discussion of Experimental ResultsThe experimental results indicate that to what extent this savings of node generations is worthwhiledepends on two problem characteristics: the amount of time required to generate each node, andthe heuristic branching factor (i.e., the average ratio of new nodes generated during consecutivethresholds). The tradeo�s are as follows:� When the heuristic branching factor is low, ITS will generate many fewer nodes than IDA*,in some cases achieving better asymptotic performance than IDA*. If in addition the nodegeneration time is high, then this reduction in the number of node generations can enableITS to take much less time than IDA*. This is why ITS outperformed IDA* in the TravelingSalesman Problem.� If the heuristic branching factor is high, then ITS's reduction in node generations won't beas great. If in addition the node generation time is low, then ITS will be hurt by its higher4Oddly, Figure 15 shows a relative improvement for ITS at the two largest problem sizes. However, we suspectthat these data are spurious, because at these two problem sizes, we exceeded the maximum integer size of some ofour counters and also encountered thrashing. 33
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node-generation overhead. This is why IDA* outperformed ITS in the 15-puzzle.Our experimental results also suggest that on the Traveling Salesman Problem, both IDA* andITS are asymptotically optimal on the average if the costs between the cities are taken from a �xedrange. However, if the range of costs grows in proportion to the problem size then IDA* is notasymptotically optimal. ITS's asymptotic complexity in the latter case depends on the amount ofmemory available to it.ConclusionWe have presented a new algorithm called ITS for tree search in limited memory. Like MA*, ITSmakes better use of the available memory than IDA* does. However, MA* did this at the expense ofhaving a very high node-generation overhead. ITS's node-generation overhead is somewhat higherthan IDA*'s, but is much lower than MA*'s.Our theoretical analysis shows that ITS never does more node generations than IDA*, and thatin some cases it generates asymptotically fewer nodes than IDA*.In our experimental studies, ITS always generated fewer nodes than IDA*. However, thesestudies also show that to what extent this savings of node generations is worthwhile depends on theamount of time required to generate each node, and the heuristic branching factor. In problems forwhich the node generation time is high and the heuristic branching factor is low, ITS can providesigni�cant savings in both number of node generations and running time.References[1] A. Bagchi and A. Mahanti. Search algorithms under di�erent kinds of heuristics-a comparativestudy. JACM, 30(1):1{21, 1983. 35
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