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Abstract

This paper describes a new admissible tree search algorithm called Iterative Threshold Search
(ITS). ITS can be viewed as a much-simplified version of MA* [2], and a generalized version of
MREC [15]. ITS’s node selection and retraction (pruning) overhead is much less expensive than

MA*’s. We also present the following results:

1. Every node generated by ITS is also generated by IDA* even if ITS is given no more
memory than IDA*. In addition, there are trees on which ITS generates O(N) nodes in
comparison to O(N log N) nodes generated by IDA* | where N is the number of nodes

eligible for generation by A*.

2. Experimental tests show that if the heuristic branching factor is low and the node-
generation time is high (as in most practical problems), then ITS can provide significant

savings in both number of node generations and running time.

3. Our experimental results also suggest that on the Traveling Salesman Problem, both TDA*
and I'TS are asymptotically optimal on the average if the costs between the cities are drawn
from a fixed range. However, if the range of costs grows in proportion to the problem size,
then IDA* is not asymptotically optimal. ITS’s asymptotic complexity in the latter case

depends on the amount of memory available to it.
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1 Introduction

Although A* is usually very efficient in terms of number of node expansions [3], it requires an
exponential amount of memory, and thus runs out of memory even on problem instances of moderate
size. This problem led to the development of algorithm IDA* [8]. IDA*’s memory requirement is
only linear in the depth of the search, enabling it to solve larger problems than A* can solve in
practice. However, when additional memory is available, IDA* does not make use of this memory
to reduce the number of node expansions. This led to the development of several other limited-
memory heuristic search algorithms, including MREC and MA*. In this paper, we present the

following results:!

1. We present a new admissible tree search algorithm called Iterative Threshold Search (ITS).
Like IDA*, ITS maintains a threshold z, expands each path until its cost exceeds z, and then
revises z. But if given additional memory, it keeps track of additional nodes, and backs up
path information at parents when nodes get pruned. ITS can be viewed as a much simplified
version of MA*, and a generalized version of MREC. ITS’s node selection and retraction

(pruning) overhead is much less expensive than MA*’s.

2. We have proved that ITS dominates IDA*; i.e., even if ITS is given no more memory than
IDA*, every node generated by ITS is also generated by IDA*. In addition, we demonstrate
that there are cases in which ITS generates O(N) nodes in comparison to O(N log N) nodes

generated by IDA*, where N is the number of nodes eligible for generation by A*.

3. We present extensive experimental tests on ITS on three problem domains: the flow-shop
scheduling problem, the 15-puzzle, and the traveling salesman problem. Our results show

that if the heuristic branching factor is low and the node-generation time is high (which is

!Some of these results have also been summarized briefly in [5].



the case for most practical problems), I'TS can provide significant savings in both number of

node generations and running time.

4. Our experimental results also suggest that on the Traveling Salesman Problem, both IDA*
and ITS are asymptotically optimal on the average if the costs between the cities are taken
from a fixed range. However, if the range of costs grows in proportion to the problem size
then IDA* is not asymptotically optimal. ITS’s asymptotic complexity in that case depends

on the amount of memory available to it.

2 Background

The objective of many heuristic search algorithms is to find a minimum cost solution path in a
directed graph G. To find such a path, these algorithms use a node evaluation function f(n) =
g(n) + h(n), where g(n) is the cost of a minimum cost path currently known from the start node
s to n, and h(n) > 0, the heuristic value of node n, is an estimate of h*(n). h*(n) is the cost of a
minimum cost path from n to a goal node. In this paper, we assume that the heuristic function h
is admissible, i.e Vo € G, h(n) < h*(n). The cost of an arc (m,n) in G is denoted by ¢(m,n).

Let P be any path from the start node s. Then the function pathmax(P) [1] is defined as

follows:

pathmax(P) = ma]g((c(P, s,m) + h(n)),
ne

where ¢( P, s,n) is the cost of the subpath of P that goes from s to n.

We use L to denote the maximum number of nodes on any path P for which pathmax(P) <



h*(s). Since the number of nodes on any path is one more than the length of the path,?

L =1+ max{length(P) : pathmax(P) < h*(s)}.

2.1 Algorithm A*

The best known admissible algorithm is A* [6, 11]. A* works in a best-first manner. It maintains
two lists: OPEN, which contains nodes that are to be expanded, and CLOSED, which contains
nodes that have already been expanded. At each iteration, A* selects a node n from OPEN with
minimum f-value, generates all of its children, and puts these children into OPEN after setting
their g, h, and f-values. If a child p of n is already present in OPEN and g(p) > g(n) + ¢(n,p),
then g(p) is reset to g(n) 4 ¢(n,p). If a child p of n is already present in CLOSED and a better
path to it is now found, then g(p) is reset to the newly found smaller path cost and p is brought
back to OPEN from CLOSED. The process of node selection and expansion continues until a goal
node is selected for expansion.

One major problem with A* is the amount of memory required to store nodes in OPEN and
CLOSED. As shown in [3], every admissible search algorithm must expand all surely expandable
nodes before finding a solution. The number of such nodes often grows exponentially with some
measure of the problem size—and since A* keeps track of all of these nodes, it needs an exponential

amount of memory in which to store these nodes.

2.2 Algorithm IDA*

To overcome the storage problem, a variant of A* called IDA* (Iterative Deepening A*) was

introduced by Korf [8, 9]. Basically, IDA* performs a depth-first search, backtracking whenever

2The length of a path P is the number of arcs in P.



procedure IDA*:
Let z,z" be global variables.
Set z := h(s), where s is the start node. Set 2’ := oo.
Do the following steps repeatedly:
set P := the path containing only s;
call Depth-First(P);
set 2 := 2.

procedure Depth-First(P):
Set f := cost(P) + h(last(P)).
If f> z, then set 2/ := min(2/, f).
Otherwise, if last(P) is a goal node, then exit from IDA*, returning P.
Otherwise, do the following steps for every child n of last(P):
set P’ := the path formed by appending n to P;
call Depth-First(P’).

Figure 1: Pseudocode for IDA*.

it finds a path whose cost exceeds a threshold value z. It repeats this search for larger and larger
values of z, until it finds a solution. Figure 1 shows a pseudocode version of IDA*.

Unlike A*, IDA* is a tree search algorithm—in other words, it does not keep track of alternate
paths to each node. Because IDA* only keeps track of the nodes on the path it is currently exploring,
it requires O(L) memory. In other words, IDA*’s memory requirement grows only linearly with
the depth of the search. This enables IDA* to solve much larger problems than A* can solve, such

as the 15-puzzle [9]. Thus IDA* has drawn significant attention from the AI research community.

2.3 Other Limited-Memory Algorithms

Following IDA*, several other limited-memory algorithms have been designed to reduce the number
of node generations compared to IDA*. These algorithms can be categorized into two classes:
(1) the first class uses additional memory to store more nodes than IDA*, and thereby reduce
regeneration of some nodes. The algorithms which belong to this class are MREC, MA*, RA* [4],

SMA* [13], and ITS, and (2) the second class of algorithms attempts to reduce node regenerations by



reducing the number of iterations, by increasing the threshold more liberally than IDA*. IDA*_CR
[14], DFS* [12], and MIDA* [16] belong to this class.

Like IDA*, MREC is a recursive search algorithm. The difference between MREC and other
algorithms in its class is that MREC allocates its memory statically, in the order in which nodes
are generated. Algorithm MA* makes use of the available memory in a more intelligent fashion,
by storing the best nodes generated so far. MA* does top-down and bottom-up propagation of
heuristics and generates one successor at a time. RA* and SMA* are simplified versions of MA*,
with some differences.

Although algorithms MA*, RA*, and SMA* are limited-memory algorithms, their formulation
is more similar to A*’s than IDA*’s. They all maintain OPEN and CLOSED, select the best/worst
node from OPEN for expansion and pruning. Therefore, their node generation/pruning overhead
is much higher than IDA*’s. As a result, although they generate fewer nodes than IDA*, they do
not always run faster than IDA*. ITS’s formulation is similar to IDA*’s and therefore has a low
node-generation overhead than any of them.

Algorithms IDA*_CR, MIDA*, and DFS* work similar to IDA* except that they set successive
thresholds to values larger than the minimum value that exceeded the previous threshold. This
reduces the number of iterations and therefore the total number of node generations. However,
unlike IDA*, the first solution found by these algorithms is not necessarily optimal and therefore
to guarantee optimal solution, these algorithms revert to depth-first branch-and-bound in the last
iteration.

It should be noted that the techniques used in the two classes of algorithms can be combined.



3 Algorithm ITS

Most heuristic search algorithms maintain a search tree T containing data about each node n that
has been installed in the tree. Nodes of G are generated one at a time and installed into T, until a
solution path is found in 7" that duplicates the least-cost solution path of G. Usually the branches
of T are represented only as links among the data structures representing the nodes. However, ITS
(see Figure 2) maintains heuristic information not only for each node of its search tree, but also for
each branch of the tree. Thus, rather than considering a branch (p,¢) merely to be a link between
the node p and its child ¢, we consider it as a separate entity in 7.

Conceptually, ITS installs (p, ¢) into T at the same time that it installs p into 7', even though
ITS has not yet generated ¢. It is possible to implement such a scheme without incurring the
overhead of generating all of p’s children, by creating one branch (p, R(p)) for each operator R
applicable to p without actually invoking the operator R. A tip branch of T is a branch (p,q) in T
such that ¢ is not in 7. A tip node of T is a node p of T" such that every branch (p,q) in T is a
tip branch. Such nodes are eligible for retraction by ITS. Retracting p consists of removing from T’
the node p and every branch (p, q).

For each branch (p, ¢)in T' a variable B is maintained, which stores an estimate of the cost of the
minimum cost solution path containing the branch (p, ¢). B(p, ¢) is initialized to f(p) = g(p)+h(p),
when the node p is installed in 7. However, unlike the f value of a node, B(p, ¢) is updated every
time the node ¢ is retracted.

S is the amount of storage (number of nodes) available to ITS.

Remark. For any given S > 0, ITS never stores more than max(L,5) nodes in memory where
L is as defined in Section 2. Thus, if the given memory 5 is more than L nodes, then it uses 5

amount of memory, otherwise it uses I amount of memory as used by IDA*.



Algorithm ITS:

1. Call Install(s, 0).
2. Do the following steps repeatedly:

(a) Set z — min{B(p,q): (p,q)is a tip branch}.
(b) Do the following steps repeatedly, until B(p,q) > z for every tip branch (p, ¢):
i. Select the leftmost tip branch (m,n) such that B(m,n) < z.
ii. If m is a goal node then EXIT, returning g(m).
iii. If n = pumMmY, then set B(m,n) < oco. Otherwise, do the following:

A. If T contains > 5 nodes and has at least two tip nodes, then retract a
node, as follows:
If there is a tip node @ such that B(z,y) > z for every branch (z,y),
then let ¢ be the leftmost such node. Otherwise, let ¢ be the rightmost
tip node of T'. Set B(p,q) < min, B(q,r), where p is ¢’s parent in 7.
Remove ¢ and every branch (¢, r) from T'.

B. Call Install(n, g(m) 4+ c¢(m,n)).

procedure Install(n,¢):
1. Put n into T.

2. If there are no operators applicable to n, then put a dummy branch (n, DuMMY) into
T. Otherwise, for each operator R applicable to n, put a branch (n, R(n)) into 7.

3. Set g(n) — g.

4. For each branch (n,r), set B(n,r) — g(n) + h(n).

Figure 2: Pseudocode for ITS.

Example 1 Consider the search tree ¢ shown in Figure 3. Arc costs are shown beside each arc.
Heuristic value at each node is zero. The doubly circled nodes are the goal nodes. When ITS is run
on this tree with 5 = 3 nodes, the explicit trees after each node generation are shown in Figures
4(a) through (m).

First, ITS generates the root node 1, creates three branches for its three children and initializes
the B-value of each branch to ¢(1)+ h(1)=0, as shown in Figure 4(a). The threshold z is set to
0 (the minimum of the B-values of the three tip branches). It then generates nodes 2 and 3 as

shown in Figures 4(b) and (c). At this stage, ITS already has 3 nodes in memory and wants to



Figure 3: An example search tree.
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Figure 4: ITS on the example search tree. (continued on next page)



Figure 4 (continued): ITS on the example search tree.
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generate node 4. Therefore, it needs to retract a node at this point. It selects the leftmost node
(which is node 2), backs up the minimum B-value (which is 1) of its tip branches and removes node
2 from memory. It then generates node 4. The result is shown in Figure 4(d). At this point all
tip branches have B-values greater than 0 and therefore the threshold z increases to 1. The node
generation and retraction continues as shown in Figures 4(e) through (m). In Figure 4(e), ITS has
regenerated node 2 and retracted the rightmost node (which is node 4). Finally, ITS terminates
with the optimal solution (of cost 7) when it selects the goal node 6 for expansion after it has
reached the stage shown in Figure 4(m).

The node generation sequence for I'TS on this tree is as follows:

z Nodes generated

0 1,2,3,4
1 2.5,6
5 4,9,10
7 2,5,6

On the same tree, the node generation sequence for IDA* is as given below:

z Nodes generated

0 1,2,3,4
1 2,5,6,3,4
5 2,5,6,3,4,9,10
7 2,5,6
As can be seen, on this example ITS does fewer node generations than IDA*, although both
algorithms store at most 3 nodes in memory at any one time. In the next section we will prove

that in fact ITS always does fewer node generations than IDA*.
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4 Properties of ITS

4.1 Definitions

As we will see later, the quantities defined below are useful to prove some properties of ITS and
also for comparison of ITS with IDA*.
If P = (ng,...,ng) is any path, then all-but-last(P) is the path (ng,...,nx_1) and last(P) is

the node ng. For each z > 0, we define

all paths P from s such that cost(P) + h(last(P)) > z,
WY z) = { pathmax(all-but-last(P)) < z, and all-but-last(P) con- p ;

tains no goal nodes

VY z) = {all nodes of all paths in W%(2)};
X%z) = {all non-tip nodes of all paths in W%(2)};
2(z) = X))

N(G) = 2C(h*(s)).

In the terms defined above, we will usually omit G if its identity is clear.

From these definitions, it follows immediately that if we run A* on a tree, then every path
generated by A* will be a subpath of a path in W(h*(s)), every node generated by A* will be in
V(h*(s)), and every node expanded by A* will be in X(h*(s)). Furthermore, in the worst case
(which occurs if A* expands all nodes on OPEN that have f-values < h*(s) before it selects a goal
node), A* will generate all paths in W(h*(s)) and all nodes in V(h*(s)), and will expand all nodes
in X(h*(s)), for a total of 2(h*(s)) node expansions. Thus X (h*(s)) is the set of all nodes eligible
for expansion by A*, and N = z(h*(s)) is the number of nodes eligible for expansion by A*. The

quantity N is known as the number of possibly expandable nodes.
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For 7 =1,..., we inductively define

h(s), where s is G’s start node, ifj=1,
) =

min{cost(P) + h(last(P)) : P is a path in WY(29(j — 1))}, otherwise;
XE(29(1)), if j =1,

Xiewld) =
X9(29)) = X929 — 1)), otherwise;

Thew(d) = [Xgew(9)l;

% = min{j : there is a solution path P such that pathmax(P) < 29(j)};

I
xit = Zx Z|XG

As before, we will usually omit the superscript G if the identity of G is clear.
Suppose we run IDA* on a tree. The definitions of V(2(j)) and z(j) presented above correspond
precisely to the way that IDA* generates nodes and sets thresholds. Thus it follows that IDA*

does [ iterations, and that for j = 1,2,...,1 — 1,

the threshold used during IDA*’s j’th iteration = z(j); (1)
{nodes generated during IDA*’s j’th iteration} = V(2(j)); (2)
{nodes expanded during IDA*’s j’th iteration} = X(z(j)); (3)
{new nodes expanded during IDA*’s j’th iteration} = Xpew(J). (4)

Since IDA* generates each node at most once during each iteration, it follows that

the number of nodes expanded during IDA*’s j’th iteration = (2(j)); (5)

the number of new nodes expanded during IDA*’s j’th iteration = zpew(J). (6)

13



During the final iteration (i.e., 7 = I), IDA* can find a goal node and terminate before every node

of V(z(1)) has been generated. Thus

the threshold used during IDA*’s I’th iteration = z([); (7)

{nodes generated during IDA*’s I'th iteration}

IN
<
S
S
N
—~
~
Sa—’
Sa—’
S
%)
Sa—’

{nodes expanded during IDA*’s ['th iteration} C X (z(1)); (9)

{new nodes expanded during IDA*’s I'th iteration} C Xjew({); (10)

the number of nodes expanded during IDA*’s I'th iteration < a(z([)); (11)

the number of new nodes expanded during IDA*’s I’th iteration < 2pew(]); (12)

with equality in the worst case. Furthermore, from the correctness of IDA*, it follows that

A1) = h*(s). (13)

The heuristic branching factor is defined as the average, over j = 2,..., 1, of the quantity

xneW(j)
xneW(j - 1)'

Intuitively, this is the average ratio of the number of nodes of each f-value (assuming that the

heuristic is monotone) to the the number of nodes at the next smaller f-value [9].

4.2 Basic Properties

Fori=1,2,..., the ¢’th instant in the operation of ITS is the ¢’th time that Step 2(b)i is executed,

i.e., the ¢’th time that I'TS selects a tip branch for expansion. ITS’s j’th iteration is the j’th iteration

14



of the outer loop in Step 2. ITS’s j3’th threshold value is the value of z during this iteration. We
will later prove this is identical to IDA*’s 7’th threshold value.

In Theorem 1 below, we prove that no node is generated more than once by I'TS during iteration
7, and from this it follows that the number of instants in iteration j equals the number of nodes
generated in iteration j. At each instant ¢, ITS either exits at Step 2(b)ii or generates a node n;
at Step 2(b)iiiB. In the latter case, either n; is a new node (i.e., a node that has never before been

generated), or else it is a node that was previously generated and retracted.

Theorem 1 ITS satisfies the following properties:

1. A tip branch (m,n) of T' will be selected during an iteration if and only if B(m,n) < z during

that iteration.

2. The value of ITS’s threshold z increases monotonically after each iteration.

3. For each instant ¢, for each branch (m,n) of T', g(m)+ h(m) < B(m,n) < cost(P), where P

is the least costly solution path containing (m,n).

4. Let 7 be any instant in iteration j, and suppose that at instant i, ITS selects some branch
(m,n) and generates n. Let (n,p) be the leftmost branch from n. Then unless B(n,p) > z,

(n,p) will be selected at instant ¢ + 1.

5. No node is generated more than once during each iteration.

Proof. The proof is by induction. The proof that each property holds at the current inductive
step depends on the induction assumption that all of the first four of the properties hold at the
previous inductive step. Since the proof is fairly straightforward, below we present an outline of

the proof, leaving the details to the reader.
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Property 1. This part of the proof involves what happens to a node ¢ generated in Step 2(b)iiiB. If
g(c)+h(c) < z, then clearly a branch (¢, d) from ¢ will be selected at the next instant. Selection
and generation will continue below d until every tip node e below d has g(e) 4+ h(e) > z. At
this point, another branch (¢, d’) will be selected. This process will continue until all branches

from ¢ have been selected.

Property 2. This follows from the above argument that selection and generation continues to occur

until every tip node has an B-value greater than z.

Property 3. When (m, n) is initially installed in 7', B(m, n) = g(m)+h(m). The only time B(m,n)
is reset is in the case of node retraction—and as explained in the proof of Property 5, this

can never decrease B(m,n). Thus g(m)+ h(m) < B(m,n) at every instant i.

The initial value B(m,n) = g(m)+ h(m) is clearly < cost(P). If ITS subsequently generates
and later retracts n, then it sets B(m,n) < min, B(n, ¢), which by induction is also < cost(P).

Thus B(m,n) < cost(P) at every instant ¢.

Property 4. This follows directly from the selection strategy given in Step 2(b)i.

Property 5. From Step 2(b)i of ITS, it follows that once a branch (m,n) is selected, ITS will keep
selecting branches below n until every tip branch (g, ) below n has B(q,r) > z. Whenever
there is a node ¢ below n such that every branch (¢, 7) from ¢ is a tip branch with B(q,r) > z,
then ITS may retract ¢ in Step 2(b)iiiA, but if it does this, it will set B(p,¢q) > z where p is

¢’s parent, and this guarantees that (p, ¢) will never again be selected during this iteration.

Theorem 2 Every path generated by ITS is a subpath of some path in W(h*(s)).

Proof. Suppose not. Let P = (ny,ng,...,n) be the first path generated by ITS which is not in

16



W(h*(s)). Let P = (n1,n9,...,n5-1). The only way this can happen is if cost(P’) + h(ng_1) >
h*(s). Let ¢ be the instant at which ITS selected the branch (nx_1,nx).

Let P” be a minimum-cost solution path in G. Let (p, ¢) be the tip branch of P” at the instant
i. From Property 3 of Theorem 1, B(p,q) < h*(s). Thus, since ITS selected (ng_1,n;) rather
than (p,q), it must be the case that B(ng_1,n;) < z < h*(s) at the instant ¢, which contradicts

cost(P") 4+ h(nk—1) > h*(s). [ |
Corollary 1 ITS terminates and returns an optimal solution.

Proof. By Theorem 2, every path generated by ITS is in W(h*(s)), which is finite. Since ITS
does not generate any node more than once in an iteration (by Theorem 1 property 5), and there
can be only finitely many iterations (since path cost is additive, minimum arc cost é > 0 and h*(s)
is finite); ITS is bound to terminate after a finite number of node generations.

When ITS terminates, it cannot terminate by expanding any branch (m,n) having B(m,n) >

h*(s), because this would contradict Property 1 of Theorem 1. [ |

5 Comparison of ITS with MA*

Although ITS is in some respects similar to MA*, there are also several significant differences. We

briefly describe some of them below.

1. MA* does top-down propagation of h-values. In particular, if MA* generates a node m as a
child of some other node n, then for each child ¢ of m MA* computes heuristic value with
respect to the heuristic value at node n (see [2], pp. 199). Thus, the f-values of generated
nodes are strictly nondecreasing, regardless of whether the heuristic function h is monotone.

In contrast, ITS does not do downward propagation of h-values.

17



2. When MA* expands a node n, it installs a most promising child m, and computes not only

6.1

the h-value of m, but also the h-value of each child ¢ of m (using the downward propagation
technique stated above). If we assume that the branching factor is uniform, then in a b-ary tree
MA* will make b? heuristic computations for each full expansion of a node. In comparison,

ITS makes only b heuristic computations for full expansion of a node.

When ITS expands a node n, it generates “placeholders” for all of »n’s children nq,...,ng,
but only evaluates one of these children, say, n’. Furthermore, ITS’s evaluation of n’ is much
simpler than MA*’s evaluation of n’, because ITS does not look at the children of n’ in order

to evaluate n'.

. Every time MA* generates a node p such that f(p) exceeds the current threshold z, MA*

recursively propagates the f-values upwards in a manner similar to the upward propagation

done in the AO* algorithm [11].

In contrast, ITS does not do upward propagation of this kind. The closest that it comes to

anything similar to this is a one-level back-up of B-values when it retracts a node.

Comparison of ITS with IDA*

Theoretical Results

In this section we compare ITS with IDA*. In particular, we show two things:

1. ITS never generates a node more times than IDA*. As a consequence, ITS generates every

node generated by IDA*, and that for every node n, ITS generates n no more times than

IDA* does.

2. There are classes of trees on which ITS will have better asymptotic time complexity than

IDA*, even when given no more memory than IDA* (i.e., S = 0). In particular, we show that

18



there are trees on which ITS does only O(N) node expansions. The main reason for this is
that when ITS retracts nodes, it backs up values, which allows it to avoid re-generating many

nodes.

Lemma 1 During each iteration of ITS, every path generated is a subpath of some path in W(z),
every node generated is in V(z), and the number of node generations is < [V(z)|, where z is the

current threshold value.

Proof. Suppose the claim is false. Then there is an iteration in which ITS generates a path
P = (ny,ng,...,ng) that is not a subpath of some path in W(z). The only way this can happen is
if cost(P’) + h(ng—1) > z(j), where P’ = (nq1,ng,...,nk-1). Thus, from Property 3 of Theorem 1,
B(ng_1,n) > cost(P') + h(ng_1) > z(j). But from Step 2(b)i of ITS, we know that every branch
(m,n) selected by ITS during this iteration has the property that B(m,n) < z(j), which is a
contradiction. Thus, every path generated during this iteration is a subpath of a path in W(z), so
every node generated by ITS during this iteration is in V(z). From Property 5 of Theorem 1, each
node is generated at most once during this iteration, so the number of nodes generated during this

iteration is < |V(z)]. |

Lemma 2 Let z be ITS’s threshold during its j’th iteration. Then

{all nodes generated during iterations 1,2,...,5} C V(z),

with equality if j is not ITS’s final iteration.

Proof. Fori=1,...,7, Let z; be the threshold value during I'TS’s ¢’th iteration. From Theorem 1,

21 < 79 < ...< z;, and thus



Thus from Lemma 1,

J
{all nodes generated during iterations 1,2,...,j} = U Vi(zi) CV(z) =V(2).
=1

To prove equality if j is not the final iteration, the proof is by induction on j. For the base case
(i.e., j = 1), the proof is immediate. For the induction step, suppose the theorem holds for the
iterations 1,2,...,7 — 1, and consider iteration j. If ITS has not yet begun to retract nodes, the

proof is immediate. Whenever ITS retracts a node ¢, there are two cases:
1. min, B(q,r) < z;. In this case, during iteration j, ITS regenerates ¢ and continues to generate

nodes below ¢ until it has generated all successors of ¢ in any of the paths in W(z;).

2. min, B(g,r) > z;. In this case, all successors of ¢ in any of the paths in W(z;) are also
successors of ¢ in W(z;_1). Thus by the induction hypothesis, they were generated by ITS

during some iteration prior to j.

Theorem 3 For every j, z(j) is the threshold used by ITS during its j’th iteration.

Proof. The proof is by induction.

Base case: j = 1. Then the threshold is h(s), which is the same as z(1).
Induction step: Let j > 1, and suppose the theorem holds for every iteration < j. We need to
prove that it holds for iteration 7 + 1.
First, we prove that at the end of iteration j, for every tip branch (m,n), B(m,n) =
minp{ f(last(P)): P € W(z(j)) and P contains m}. To prove this, there are two cases:
1. n has never been generated. Then there is only one path P € W(z(j)) that contains m,
namely the path from s to m; and in Step 4 of Install, B(m,n) was set to g(m)+ h(m).
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2. n has been generated and later retracted. From Step 2(b)i of ITS, it follows that once a
branch (m, n) is selected, I'TS will keep selecting branches below n until every tip branch
(q,7) below n has B(q,r) > z(j). At this point, I'TS may retract ¢, but if it does this,
it will set B(p,q)= min, B(q,r) = g(q)+ h(q), so the theorem holds for p. If ITS later
retracts p or any of its ancestors, it follows from an inductive argument that the theorem

holds for them as well.

Thus at the end of iteration j, ITS sets the threshold for its next iteration to min{ f(last(P)) :
P € W(z(j))}. But this is precisely z(j + 1). Thus during iteration j 4 1, the threshold is

2(7+1).

Corollary 2 IDA* and ITS do the same number of iterations, and for every j,

{all nodes generated during IDA*’s j’th iteration}

= {all nodes generated during ITS’s iterations 1,2,...,7}.

Proof. Tor every iteration of IDA* except the final iteration I, this is an immediate consequence
of Lemma 2. Let Py, Ps,..., Py be those paths in W(z([)) generated by IDA* during its final
iteration, with P being the solution path found by IDA*. IDA* generates these paths in left-
to-right order. Within each iteration, ITS uses this same node selection strategy as IDA* and
therefore must generate these same paths in left-to-right order, except for those paths generated
during previous iterations. Thus during this iteration, I'TS will return the same goal path returned

by IDA*, [ |

Theorem 4 Let GG be any state space, and n be any node of G. If IDA* and ITS expands nodes

from G in left-to-right order following the same sequence of operators, then
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1. ITS and IDA* generate exactly the same set of nodes;

2. for every node n, ITS generates n no more times than IDA* does.

Proof.

1. Suppose IDA* generates some node n. Then there is some iteration j of IDA* such that

n € V(2(j)). Thus from Corollary 2 , ITS generates n too.

Suppose ITS generates some node n. Let j be the first iteration in which ITS generates n.

Then n € V(2(4)), so from Corollary 2, IDA* also generates n in its j’th iteration.

2. IDA* has I —j subsequent iterations, and it generates n exactly once in each of these iterations.
From Corollary 2, I'TS als o has I —j subsequent iterations, and from Property 5 of Theorem 1,
ITS generates n at most once in each of these iterations. Thus ITS generates n no more times

than IDA* does.

|

The above theorem shows that ITS’s time complexity is never any worse than IDA*’s. Below,

we show that there are classes of trees on which ITS does only O(N) node expansions compared
to IDA*’s O(N log N) node expansions on the same trees. The same result also holds for node
generations. In the tree in Example 2, it is simpler to count the number of node expansions, and

therefore we present the result in terms of node expansions.

Example 2 In the search tree G shown in Figure 5(a), each non-leaf node has a node-branching
factor b = 2, and each arc has unit cost. G consists of two subtrees G; and G5 where each one is
a full binary tree of height k. G5 is rooted at the right most node of GGy. Every leaf node, except
the one labeled as goal, is a non-terminal. For each node n in G, h(n) = 0.

Clearly G4 and G5 each contain N’ = [N/2] nodes, where N is the number of nodes eligible

for expansion by A*. The cost of the solution path is 2k = 2[logy(N' 4+ 1) — 1]. Let Ny =
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(a) (b)
Figure 5: A tree G on which IDA* is O(Nlog N) and ITS is O(N)

bE + 20F=1 4+ 3bF=2 + ..+ kb. Then the total number of node expansions by IDA* in the worst-case
18

No+kN'+ No > kN + N' =kE(N'+1)=O(Nlog N).

Now we count the total number of node expansions by ITS on G. As in the case of IDA* no
node of G5 will be expanded prior to the expansion of all the nodes of GG1 at least once. Using the
theorem 4, we can infer that the total number of node expansions by ITS on G4 is O(N). Once
ITS begins expanding nodes of G5, the portion of G that will be retained in memory is shown
in Figure 5(b). The branches of Gy which do not lead a goal node (all left branches) will have B
value of oo. Therefore no node of G; will be reexpanded while expanding nodes of G5. Since Gy
and G5 are symmetric, by the same argument as in case of G, ITS will not make more than O(N)
node expansions on G'5. Thus the worst-case time complexity of I'TS on trees like G will always be

O(N).
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6.2 Experimental Results

In the examples above, we have shown that there are classes of trees on which ITS’s asymptotic
complexity is better than IDA*’s. In this section we report results of our experiments on three
problem domains namely 3-machine flow-shop scheduling, traveling salesman and 15-puzzle. These
problems were selected mainly to encompass a wide range of node generation times. While the
node generation time for the 15-puzzle is very small, it is significant for the traveling salesman
problem. The node generation time for 3-machine flow-shop scheduling problem is also small but
higher than that of 15-puzzle. All the programs were run on a SUN sparcstation. We describe our
results in the following subsections.

One purpose of our experiments was to compare ITS with IDA*, and another purpose was
to see how giving ITS additional memory would improve its performance in terms of both node
generation and running time. For the latter purpose, we ran ITS with varying amounts of memory.
The definition of ITS includes a parameter S which gives the total amount of memory available
to ITS for storing nodes. If S = 0, then ITS retracts all nodes except those on the current path.
For each problem instance p, let I'TS(v) be ITS with S = v M, where M is the number of distinct
nodes generated by ITS on p. Thus, v = /M is what fraction ITS gets of the amount of memory
it would need in order to avoid doing any retractions.® For example, ITS(1) is ITS with enough
memory that it doesn’t need to retract any nodes, and 1TS(1/4) is ITS running with 1/4 of the

amount of memory as ITS(1).

*If we had expressed S as an absolute number rather than a fraction of M, this would not have given useful
results, because the number of distinct nodes generated by I'TS on each problem instance varies widely. For example,
with 100,000 nodes, on some problem instances I'TS would have exhausted the available memory very quickly, and
on others, it would not even have used all of the available memory.
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Table 1: IDA* and ITS(0) on the 10-job 3-machine Flow-Shop Scheduling Problem.
algorithm | node generations time (sec)
IDA* 211308.76 3.93

ITS(0) 210842.96 443

Table 2: ITS(v) on the 10-job 3-machine Flow-Shop Scheduling Problem.

v | node generations time (sec)
0 210842.96 23.22
1/4 123764.71 13.64
1/2 61690.79 6.92
3/4 28174.31 3.32
1 17663.28 1.80

6.2.1 Flow-Shop Scheduling Problem

The flow-shop scheduling problem is to schedule a given set of jobs on a set of machines such that
the time to finish all of the jobs is minimized. In our experiments, we selected the number of
machines to be 3. We used a search-space representation and admissible node evaluation function
of Ignall and Schrage [7].

For ITS(0), there is a special case to consider. In the flow-shop scheduling problem, it is very
easy to generate the successor n’ of a node n. Thus, since IDA* and ITS(0) will need to keep track
of only one successor of n at a time, both IDA* and ITS(0) can generate n’ by modifying the record
for n (and undoing this modification later when retracting n’), rather than generating an entirely
new record (this same technique was used by Korf in his implementation of IDA* on the 15-puzzle).
For the 3-machine flow-shop scheduling problem, we used this technique to improve the efficiency
of both IDA* and ITS(0). To distinguish between the normal version of ITS(0) and the improved
version, we call the latter ITS'(0).

We ran IDA* and ITS’(0) on one hundred problem instances with ten jobs in the jobset. The
processing times of the jobs on the three machines were generated randomly from the range [0,100]

using a uniform distribution. Table 1 presents the average node generation and running time figures
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for IDA* and ITS(0) on these problem instances. As can be seen, ITS(0) generated fewer nodes
than IDA*. However, ITS’(0) took slightly more time than IDA*. This is primarily because the
node generation time for this problem is small, and therefore the smaller number of nodes generated
by ITS(0) did not compensate for its slightly higher overhead than IDA* in node selection and
retraction.

We also ran ITS(v) on the same problem instances, with various values of v. The average
node generation and running-time figures for I'TS(v) are given in Table 2. The table shows that
as the amount of available memory increases, I'TS improves its performance in terms of both node

generations and running time.

6.2.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is as follows: given a set of K cities with nonnegative cost
between each pair of cities, find the cheapest tour. A tour is a path that starting at some initial
city visits every city once and only once, and returns to the initial city. We chose the well known
method of Little et al. [10] to represent the search space and the lower bound heuristic for the
Traveling Salesman Problem. The search space in this formulation is a binary tree.

The technique that we used to improve the efficiency of IDA* and ITS(0) in the 3-machine
flow-shop scheduling problem cannot be used in the Traveling Salesman Problem, because in this
problem it is much more difficult to generate the successors of a node. Thus, on those problems
we simply compared IDA* against ITS(v) for various values of v, without making any special-case
modifications.

We generated two sets of data TSP Set 1 and TSP Set 2 and ran both IDA* and ITS on each
set. For both sets we selected the number of cities equal to 5, 10, 15, 20, 25, and 30. For each value

of the number of cities, one hundred cost matrices were generated. For TSP Set 1 the cost values
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Figure 6: Number of node generations versus number of cities for IDA* and ITS on TSP Set 1.
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Figure 7: Number of node generations versus number of cities for IDA* and ITS on TSP Set 2.
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(7, j) were taken at random from the interval [0,100] using a uniform distribution except for ¢ = j,
in which case ¢(1, j) was set to co. For TSP Set 2 the cost values ¢(7, j) were taken at random from
the interval [0,(10 x number of cities?)] using a uniform distribution except for ¢ = j, in which case
c(7,j) was set to co. In general the cost matrices of TSP Set 1 and TSP Set 2 were not symmetric
and did not satisfy the triangle inequality.

The results of our experiments are summarized in Figures 6 through 13, which graph the
performance of IDA*, ITS(0), ITS(1/4), I'TS(1/2), and ITS(1) for TSP Set 1 and TSP Set 2. Each
data point in Figures 6 through 13 is the average over the one hundred problem instances.

From Figures 6 through 9, it can be seen that on this problem, ITS(0) makes fewer node gen-
erations and runs faster than IDA*. This is because the node generation time is large enough that
the extra overhead of ITS over IDA* becomes relatively insignificant, and therefore the reduction
in number of node generations does reduce the running time. Furthermore, the additional memory
used by ITS significantly reduces the number of node generations as well as the running time. By
comparing Figure 6 versus 7 or Figure 8 versus 9, it can be seen that the savings provided by
ITS for any given amount of memory is more for TSP Set 2 than TSP Set 1. This is because the
heuristic branching factor is lower in TSP Set 2 than in TSP Set 1.

In order to study how IDA*’s average-case asymptotic behavior compares to ITS’s, in Figures
10 through 13 we have plotted ratios of node generations and running time of IDA* and ITS for
TSP Set 1 and TSP Set 2. The interesting point to be noted about these graphs is the difference
between TSP Set 1 and TSP Set 2. For TSP Set 1, in each case, the ratio first goes up and then goes
down. If ITS’s asymptotic performance were strictly better than IDA*’s, we would have expected
the ratios to keep going up. Since Theorem 4 shows that ITS’s asymptotic performance is at least
as good as IDA*’s, this suggests that both algorithms have the same asymptotic performance on

this problem on TSP Set 1. Since this behavior also occurs for ITS(1), which is essentially a version
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of A*, our results suggest that both ITS and IDA* are asymptotically optimal on the Traveling
Salesman Problem when the costs between cities are generated uniformly from a fixed range.

For TSP Set 2, the ratios eventually go down for each case except for IDA*/ITS(1). This
suggests that IDA* is not asymptotically optimal in this case. For the reasons explained above,
IDA*, ITS(0), ITS(1/4), and ITS(1/2) have the same asymptotic performance on TSP Set 2. This
suggests an interesting result that ITS with a fraction (less than 1) of memory is not asymptotically

optimal when the range of costs varies in proportion to the number of cities.

6.2.3 15-Puzzle

For the 15-puzzle, we used the manhattan distance heuristic in our experiments.

For this problem, we made the same efficiency-improving modification to IDA* that we made
in the 3-machine flow-shop scheduling problem. We considered making the same modification to
ITS(0), but decided not to run ITS(0) at all on this problem, for the following reason. In the
15-puzzle, with the manhattan distance heuristic, the threshold in every iteration of IDA* and ITS
increases by exactly two. Also, if z is the threshold during the current iteration, every tip branch
(p, q) whose B value exceeds z has B(p, q) = z+2. This makes it useless to back-up B values during
retraction, because every node that is retracted in iteration ¢ must be regenerated in iteration ¢+ 1.
Thus, in order to improve the efficiency of ITS(0) on this this problem, we should not only simplify
the node-generation scheme as described in Section 6.2.1, but should also remove the back-up step.
But these modifications make ITS(0) essentially identical to IDA*.

The same reasoning suggests that on the 15-puzzle, even if S # 0, ITS will not reduce the
number of node generations very much in comparison with IDA*. If IDA* makes I iterations on a
problem, then ITS with 5 amount of memory will save at most S * I number of node generations.

Since [ is usually small for 15-puzzle (between 5 and 10), the actual savings is expected to be
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relatively small. Thus, since ITS has higher overhead than IDA*, we would expect ITS to take
more time than IDA* on this problem.

To confirm these hypotheses, we ran ITS and IDA* with three values of S = 100, 000, 300,000,
and 600,000 on the twenty problem instances on which Chakrabarti et al. ran MA*(0). We could
not run ITS(v) on these problem instances because the number of distinct nodes is so large on some
of the problem instances that they exceed the available memory. Therefore, we had to run ITS
with fixed amounts of 5. The results are summarized in Figures 14 and 15. As expected, I'TS did
not achieve a significant reduction in the number of node generations, and took significantly more

time than IDA*.* Thus, for the 15-puzzle, IDA* is the preferable algorithm.

6.2.4 Discussion of Experimental Results

The experimental results indicate that to what extent this savings of node generations is worthwhile
depends on two problem characteristics: the amount of time required to generate each node, and
the heuristic branching factor (i.e., the average ratio of new nodes generated during consecutive

thresholds). The tradeoffs are as follows:

e When the heuristic branching factor is low, ITS will generate many fewer nodes than IDA*,
in some cases achieving better asymptotic performance than IDA*. If in addition the node
generation time is high, then this reduction in the number of node generations can enable
ITS to take much less time than IDA*. This is why ITS outperformed IDA* in the Traveling

Salesman Problem.

o If the heuristic branching factor is high, then ITS’s reduction in node generations won’t be

as great. If in addition the node generation time is low, then ITS will be hurt by its higher

*Oddly, Figure 15 shows a relative improvement for ITS at the two largest problem sizes. However, we suspect
that these data are spurious, because at these two problem sizes, we exceeded the maximum integer size of some of
our counters and also encountered thrashing.
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node-generation overhead. This is why IDA* outperformed ITS in the 15-puzzle.

Our experimental results also suggest that on the Traveling Salesman Problem, both IDA* and
ITS are asymptotically optimal on the average if the costs between the cities are taken from a fixed
range. However, if the range of costs grows in proportion to the problem size then IDA* is not
asymptotically optimal. ITS’s asymptotic complexity in the latter case depends on the amount of

memory available to it.

Conclusion

We have presented a new algorithm called ITS for tree search in limited memory. Like MA*, ITS
makes better use of the available memory than IDA* does. However, MA* did this at the expense of
having a very high node-generation overhead. I'TS’s node-generation overhead is somewhat higher
than IDA*’s, but is much lower than MA*’s,

Our theoretical analysis shows that ITS never does more node generations than IDA*, and that
in some cases it generates asymptotically fewer nodes than IDA*.

In our experimental studies, ITS always generated fewer nodes than IDA*. However, these
studies also show that to what extent this savings of node generations is worthwhile depends on the
amount of time required to generate each node, and the heuristic branching factor. In problems for
which the node generation time is high and the heuristic branching factor is low, I'TS can provide

significant savings in both number of node generations and running time.
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