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Abstract— Network lifetime is one of the most critical
performance measures for wireless sensor networks. Vari-
ous schemes have been proposed to maximize the network
lifetime. In this paper we consider the lifetime maximiza-
tion problem via a new approach: adaptive power control.
We focus on the sensor networks that consists of a sink
and a set of homogeneous wireless sensor nodes, which are
randomly deployed according to a uniform distribution.
Each node has the same initial energy and the same
data generation rate. We formally analyze the lifetime
maximizing adaptive power control problem by dividing
the network into different layers and then modelling it as a
linear programming problem, where the goal is to find an
optimal way to adjust the transmission power and split the
traffic such that the maximum energy consumption speed
among all layers is minimized, and therefore the network
lifetime is maximized. One surprising observation from
the numerical results is that when every node can reach
the sink directly, the optimal solution for each node is to
send traffic either to its next inner layer or to the sink
directly. This observation has also been justified by the
theoretical analysis. The numerical results also show that
the lifetime elongation can still be significant even when
only those nodes in the innermost few layers are allowed
to adaptively adjust their transmission power. We then
propose a fully distributed algorithm, the Energy-Aware
Push Algorithm (EAPA), and show through simulation that
it can dramatically extend the network lifetime.

. INTRODUCTION

Wireless sensor networks have drawn extensive at-
tention in recent years due to potential applications
that include environmental monitoring, industrial sensing
and diagnostics, battlefield surveillance, target tracking,
search and rescue, and disaster relief. However, owing
to their compact form and extremely low cost, wireless
sensor nodes are usually severely energy constrained.
Furthermore, in a large-scale wireless sensor network
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with thousands of nodes, replacing batteries will be
either extremely difficult or even impossible, especially
in harsh areas such as battlefields. This leads to one
of the most critical performance measures for wireless
sensor networks: network lifetime.

Aiming at maximizing the network lifetime of wireless
sensor networks, various types of techniques have been
proposed in the past few years. One way is to design
energy-aware routing protocols, such as the schemes
proposed in [1]-{3]. Another way is to apply energy-
aware sleep scheduling, such as [4]-{6], which have ad-
dressed how and when to put the sensor nodes into sleep
mode to reduce energy consumption. By performing in-
network data aggregation which exploits the redundancy
among the collected data, the network lifetime can also
be extended, as demonstrated in [7]-{9]. By applying
energy-efficient clustering and hierarchical routing, that
is, dividing the network into multiple clusters and routing
in a hierarchica structure, the network lifetime can also
be extended, as shown in [10]-{12]. Moving the sink
around to collect data from sensors to balance the energy
consumption at sensor nodes is also a possible option
[13]. Another straightforward way to extend the network
lifetime is to allocate more resources into specific areas
to relieve the bottleneck effect, asillustrated in [14]-{16].

In this paper, the lifetime maximization issue in wire-
less sensor networks is attacked by a totally different
approach: adaptive power control. That is, we adaptively
adjust the sensor nodes’ transmission power based on the
traffic pattern. Besides being able to dramatically extend
the network lifetime when working alone, the approach
proposed in this paper can also work together with the
existing network lifetime maximization techniques to
further extend the network lifetime. Although there exists
considerable literature on applying power control in
wireless ad hoc networks and sensor networks [17]-{20],
few of them touch the lifetime maximization problem.

In this work we focus on the following wireless



sensor network model: the network consists of a set of
homogeneous wireless sensor nodes and a sink, where
each node needs to periodically send sensed data to
the sink. Network lifetime is the time elapsing between
network deployment and the moment when the first node
dies[1]. If al sensor nodes have the same initial energy,
which is usually the case, then the nodes around the sink
will usually run out of energy very quickly due to the
fact that they also need to relay packets for the other
nodes. When this happens, nodes away from the sink
may be left with considerable unused energy. Thus, the
energy in the network is not efficiently utilized.

To utilize the network energy in a more efficient way,
in this paper we suggest a new approach: Provided
the network connectivity can be maintained, we will
adaptively adjust the nodes' transmission power such that
the fewer the number of packets a node needs to transmit,
the higher the transmission power it uses. By increasing
its transmission power, such a node reduces the relaying
burden it imposes on other nodes. If the adjustment
can be done in a proper way, the network lifetime
can be significantly extended. One possible drawback
of such adaptive power contral is that it may increase
interference. However, since nodes in a sensor network
usualy have a very low duty-cycle, with appropriate
channel assignment and scheduling, such effects can
usually be avoided or at least minimized.

To formally analyze the lifetime maximizing adaptive
power control problem, we first divide the network into
different layers according to the distance from the sink.
Then the problem can be modeled as a linear program,
where the goal is to find an optimal way for each layer
to adjust its transmission power in order to maximize
the network lifetime. After examining the numerical
results, it is surprising to see that when there is no
maximum transmission range constraint, the traffic of
each node (including both the traffic it generates and
the traffic it relays) only needs to be split into two
parts, one is transmitted to the next layer, and the other
to be directly sent to the sink. This observation has
also been justified by our theoretical analysis. Another
surprising observation is that the lifetime extension can
till be significant even when we only allow nodes in the
innermost layers to adaptively adjust their transmission
power. For example, if we only allow the nodes in the
innermost two layers to adjust their transmission power,
the network lifetime can be extended by at least 50%.

Besides deriving the numerical results for the linear
program model, which yields a centralized solution,
we have aso designed a fully distributed algorithm,

the Energy-Aware Push Algorithm (EAPA), for each
node to dynamically split the traffic and adjust the
transmission power. The simulation results show that
the network lifetime can be dramatically extended by
applying this algorithm. In fact, the results obtained
using the distributed agorithm closely approach the
optimal centralized results.

The rest of this paper is organized as follows. Sec-
tion Il describes the network model and the problem
formulation. Section |1l presents the numerical results.
The theoretical analysis is presented in Section V.
The distributed algorithm description and the simulation
results are given in Section V. Finaly Section VI con-
cludes this paper.

I[I. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper we focus on extending the network
lifetime of wireless sensor networks. We consider the
scenario where a set of homogeneous wireless sensor
nodes are randomly deployed inside a (circular) areawith
asink located in the center of the area. Each sensor node
periodically submits the collected/sensed information to
the sink. Based on the transmission power constraint as
well as other factors, such asresidua energy, each sensor
node can either directly transmit the data to the sink, or
request some other sensor nodes to relay the data.

Since in many situations the deployed sensor nodes
are homogenous, in this paper we assume that all sensor
nodes have the same initial energy, denoted by E. We
assume that the data generation rate is the same for al
sensor nodes. Since the sensors usually have very low-
duty cycles, we will not consider interference, which can
usualy be handled through proper scheduling. In this
paper, as suggested in [1], we refer to network lifetime
as the time elapsing between network deployment and
the moment when the first hode dies.

Due to the rapid signal strength attenuation in wireless
communication, shorter transmission range is usualy
preferred when only transmitting power consumption
is considered. However, to maintain a certain connec-
tivity, the transmission range should also exceed cer-
tain threshold [21]. Furthermore, since receiving power
may also play an important role in energy consump-
tion in short range wireless communication systems,
smaller transmission range may not aways be better
than longer transmission range. By including the effect
of receiving power consumption, there usually exists an
optimal transmission range such that the total energy
consumption can be minimized, as demonstrated in [22].
In this work we assume that a minimum transmission



range rpq, IS assigned to each sensor node. We also
assume that each sensor node can adaptively adjust the
transmission range, but only to integer multiples of 7,,,i1,.
Meanwhile, each sensor node will also have a maximum
transmission range constraint, denoted by 7,4 .

The energy consumption model under consideration
is as follows. Given the path loss exponent «, the
power consumption with the transmission range r,;,, iS
normalized as 1; then for transmission range r, which is
a multiple of r,,:,, the power consumption is given by

P(r) = (m) 1

In this paper we investigate how to extend the life-
time by adaptively adjusting the sensors’ transmission
power. Given that all nodes have the same initial energy,
this is equivalent to minimizing the maximum energy
consumption rate among all sensors by adjusting the
sensors’ transmission power. Then we can model this
problem as a MIN-MAX problem. Given the minimum
transmission range 7, We can divide the sensor nodes
in the network into different layers. for each sensor
node, it belongs to the it layer if its distance to the
sink lies in the range ((i — 1) X Tmin,@ X Timin). TO
simplify the problem formulation, we further abstract
the network model by assuming that the sensors in each
layer are (deterministically) uniformly deployed. The
results presented in Section V justify this assumption
by showing that the lifetime extension obtained based
on this model can be regarded as a (tight) upper-bound
for the general case where nodes are randomly deployed.

We first consider a specia one-dimensional case,
where the sensors are equally spaced deployed along a
line with the sink located at the center of line. We assume
that each sensor will generate/collect ¢ bits of data per
unit time. Let x; ; (¢ > j) denote the amount of data (in
bits) that each sensor in layer i will send to the nodes in
layer j per unit time with transmission range (i —j)rmin,
that is, the transmission power is z; ;(i — j)“. Let N
denote the total number of layers in the network. Then
the lifetime maximizing adaptive power control problem
can be modeled as a linear programming problem:

s.t.

Z xkz+g_le,]7

k= erl

Zl‘i,j x (i—j)* <P,
=0

xz,j 2 07

min P

2
3)

(4)
()

1<i<N, 0<j<i

Here condition (3) is for traffic conservation, that is,
the amount of transmitted traffic should be equa to
the amount of received plus generated traffic. Condition
(4) indicates that the energy consumption rate of all
nodes should be no more than P, where the node with
the maximum energy consumption rate will determine
the network lifetime. Condition (5) is introduced to
guarantee that the solutions are feasible.

Now we study the more genera two-dimensional
situation. In this case, for all the sensorsin the same layer
(e.g., i layer), we assume they are deterministically
uniformly distributed in the region between the circles
of radii (i — 1)7yn and irp,,. The sink is located at the
center of the disk. In the two-dimensional network, the
number of sensors in different layers is different, and it
is readily verified that if nodes are uniformly deployed,
then the ratio between the number of sensors in layer i
and layer j is g;j Due to the symmetry of the network
topology and traffic pattern, we can generally assume
that when each sensor in layer ¢ sends z; ; traffic to layer
j, each sensor in layer j will receive 2; 2iLy, ; traffic from
layer i in average. Similar to the one-dimensional case,
the lifetime maximizing adaptive power control problem
can be modeled as a linear programming problem:

min P s.t. (6)
N i—1
2k —1 .
Z 2 _ 1xkz+g—zxz,]7 1<ZSN (7)
k=i+1 Jj=0
i—1
dwigx(i—H)"<P 1<i<N (8
j=0
1; 20, 1<i<N, 0<j<i (9

[11. NUMERICAL RESULTS

In this section, the numerical results will be presented
for the lifetime maximizing adaptive power control prob-
lem described in section Il. The MIN-MAX consuming
power will be computed through linear programming;
then the network lifetime can be computed. The baseline
network lifetime is the case without power control, that
is, every node always USeS 7.,,;, as transmission range.
We normdize r,,;, = 1; then the network with radius
N has N layers.

Fig. 1 shows the results when there is no maximum
transmission range constraint for al nodes. In the figure,
network radius identifies the network size; extended
lifetime percentage is the lifetime extended ratio by using
adaptive power control, that is, if the extended lifetime
is x%, then the whole lifetime is (1+x%) times the
lifetime without power control. Fig. 1 shows that the
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Fig. 1. Extended lifetime when there is no maximum transmission
range constraint for all nodes

adaptive power control scheme is more effective for the
two-dimensional network than for the one-dimensiona
network. For the two-dimensional network, the nodes
around the sink need to relay more traffic, so they
are more critica than their counterpart in the one-
dimensional network in terms of energy consumption.
Thus, when we smooth the energy consumption rate by
adjusting transmission power, we can get more gain in
the two-dimensional network. The results also show that
the lower the path loss exponent, the greater the extended
lifetime. When the path loss exponent is higher, the
benefit of increased transmission range is reduced since
more power is required to maintain a larger transmission
range. So the proposed power control technique is less
effective when the pass |oss exponent is higher.

Fig. 1 also showsthat in the two-dimensional network,
the network lifetime can be extended about 50% when
the path loss exponent is 3, and around 25% when the
path loss exponent is 4. When the path loss exponent is
2, the larger the network, the more the network lifetime
can be extended, and when the network radius is 15, the
network lifetime can be extended 340%. So far we do not
know if there is an upper bound for the lifetime extension
when path loss exponent is 2 in the two-dimensional
network.

Fig. 2 shows the results for the MIN-MAX problem
with one more constraint: the maximum transmission
range for each node is 2. This can be modelled as
a linear programming problem by adding constraints
x;; =0, i—j > 2 to equations (2-5) and (6-9). Similar
to Fig. 1, Fig. 2 shows that when dimension is higher or
the path loss exponent is lower, the network lifetime can
be extended more. It also shows that when 7,4, = 2
for all nodes, the extended network lifetime percentage
is amost the same for different network sizes in the
two-dimensional case: 75%, 33% and 14% for path loss
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Fig. 2. Maximum transmission range for each node is 2

exponent being 2, 3, and 4 respectively.

We studied this phenomena and found that for the o =
2 case, when the transmission range for the nodes beyond
layer 3 is constrained to be r,,,;,, the lifetime extension
bound of 75% is still achievable. We assume there are k
nodesin the first layer and then (2i — 1)k nodesin the it
layer, each node generates g traffic and there are N layers
in the network. To achieve the bound for the o = 2 case,
the nodes in the 1% layer need to transmit %N%g traffic
to the sink; the nodes in the 274 layer need to transmit
%N 2kg traffic to the sink and transmit none to the 15
layer; the nodesin the 3" layer need to transmit 2 (N2 —
1)kg treffic to the 1% layer and 2(N? — 3)ky traffic to
the 2¢ layer. Similarly, when o = 3, the bound 32.8%
is achievable when only the inner 4 layers are allowed
to increase their transmission range beyond r;,;,; and
when o = 4, the bound 12.8% is achievable when only
the inner 3 layers are considered. This means that when
the maximum transmission range is constrained to 2, the
network lifetime is mainly determined by how the inner
4 layers transmit traffic.

The other interesting observation is that the extended
lifetime decreases when the network size increases for
the one-dimensional case. Through the analysis in the
two-dimensional case, we know that when the maximum
transmission range is 2, only the inner 3 layers count.
On the other hand, in the one-dimensional case, the
larger the network size, the smaller the relative traffic
difference between the inner 4 layers when all nodes
use same transmission range. So the gain by adjusting
the transmission range is smaller when the network size
is larger.

Fig. 3 shows the results for the two-dimensional
network with path loss exponent equal to 2. We set
maximum transmission range to be 2, 3, 4 respectively,
as an additional constraint. The results show that the
higher the maximum transmission range, the higher the
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Fig. 3. Different maximum transmission range for two-dimensional
network with path loss exponent oo = 2

extended network lifetime. This is easy to understand
since the higher the maximum transmission range, the
more flexibility in power control. The other observation
is that the extended lifetime is almost the same for
different network size, 75% for 7, = 2, 125% for
Tmaz = 9 and 160% for r,,.. = 4. Similar to the
explanation for Fig. 2, this is because when there is a
maximum transmission range constraint for all nodes,
the network lifetime is mainly determined by how the
several innermost layers work.

Fig. 4 illustrates one interesting observation for the
numerical result: when there is no constraint on the
maximum transmission range, all nodes in the network
will send traffic either to the sink or to the nodes in
the next inner layer. Fig. 4 shows the results for the
two-dimensionl network with path loss exponent being
2. The traffic splitting ratio for each layer is shown for
three different size networks in subfigures (a), (b), (c)
respectively. Though the splitting ratio is different, all
three subfigures have similar shape: the nodes in the
middle layers send traffic to next inner layer with higher
ratio, the nodes in the layers either near the sink or near
the boundary send traffic to next inner layer with lower

ratio. It can be explained as follows. nodes in layers
near the boundary have less traffic, so they can afford to
send a higher percentage of traffic directly to the sink;
nodes in layers closer to the sink can afford to send a
higher percentage of traffic directly to the sink since their
distance to the sink is small.

Fig. 5 shows the results for the comparison between
the case where power control isonly allowed in the inner
i1 layers-.e., the transmission range for layers beyond
1 is 1-and the case where it is alowed in al layers
but the maximum transmission range is i. The results
show that the normalized lifetime for the case where
only the inner i layers is considered is less than the case
when r,,,.. 1S 7 since the case r,,,.. = 7 IS more flexible
than the case where power control is restricted to the
inner ¢ layers. Although the performance when power
contral is limited to the inner layers is not as good as
that obtained when setting the maximum transmission
range constraint, it is still attractive considering that the
scheme is much simpler to implement. The results show
that the network lifetime can be extended 50%, 91%
and 126% when power control is limited to the inner 2,
3, and 4 layers respectively. The results aso show that
the difference between the two cases is smaller when
the path loss exponent is higher. It is worth pointing
out that when only the inner i layers are considered to
adjust transmission power dynamically, the same traffic
splitting property is observed as in Fig. 4 for the inner 4
layers, that is, each layer sends traffic either to the sink
or the next inner layer.

IV. THEORETICAL ANALYSIS

The results in Section |11 suggest the following con-
jecture: when a sensor node can send traffic to the sink
directly, then it should either send the traffic to the sink
directly, or send to its next inner layer. In this section,
we will formally prove this conjecture.
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Let usfirst consider the one dimensional situation. We
consider the following linear optimization problem.

min P s.t. (20
N i—1
Z xk,i+gizziﬁi,j, 1<i<N (11)
k=i+1 j=0
i—1
Y wigx(i-j)*<P, 1<i<N (12)
§=0
2i; >0, 1<i<N, 0<j<i (13)

The optimization problem described in equations 10-
13 is dlightly more general than the problem described
in equation 2-5 by using g; in equation 11 instead of g.
g; represents the generation rate for the it layer.

Theorem 1: When o > 1, there aways exists an
optimal solution to the optimization problem 10-13 with
the following form: {z;;—1 > 0,2;0 > 0,2;; =0, 1 <
i<N,1<j<i-2}L

Proof: We refer to {.1‘1'71;1 > 0,$i,0 > O,l‘i,j =
0, 1 <i<N,1<j<i—2} asstandard form. We will
show that any optimal solution can be transformed into
a solution in standard form without losing optimality.

Let {z; ;} be an optimal solution. If this optimal so-
lution is not in the standard form, then we can transform
{x;,;} to {Z;;} such that {Z;;} isin the standard form.
The whole procedure is as follows:

We iteratively apply the following procedure: find the
first link z,, ,—, with the following properties:

. {-Ti,ifl > 0,:131"0 > O,I‘Z‘J =00<i<n,1<5<L
i—2}, that is, for al i < n, except ;¢ and z; ;_1,
no other links can have non-zero value.

e FOradlo<j<n-—r, :Iin,jIO.

Next we show how to redistribute z,, ,,—, to the other
links without increasing the MIN-MAX power. Specif-
ically, we will redistribute the traffic on links (n,n —
r),(n,0),(n,n—r+1),(n—r+1,0),(n—r+1,n—r)
in such a way that no traffic will go through the link
(n,n —r) and the MIN-MAX power among all layers
does not increase. For layer n — r, its initial power is:

Py = (n - T)axn—no + Tn—rn—r—1
N
2 Tp—rtlpn—r + Tnn—r + Z Tin—r + Gn—r (14)
i=n+1

where Tn—r+ln—r + Tnn—r + Zﬁn«#l Tin—r + Gn—r =
Ty—r,0 + Tn—rn—r—1 iSthe traffic that layer n —r needs
to transmit.

We split traffic ,, ,,—, into two parts Az, 41 and
Az, o which will be sent to the layer n —r + 1 and
the sink respectively. To conserve traffic and to keep the
layer n. power consumption unchanged, we need to have

A:En,O + Axn,nfrukl = Tnn—r
TLO‘AJJWQ + (7’ — l)ann,n—r—i—l = Tal'n’n_r

re—(r 15
Aan = % n,n—r ( )

N {Amn n—r+l = %mn,n—r
After this traffic rerouting, the power consumed by
layer n does not change. However, the incoming traffic
of layer n—r+1 has been increased. Therefore we need
to adjust layer n — r + 1's traffic too. We intend to keep
the power consumption of layer n — r + 1 the same,
SO we try to increase ©,,—,41n—r BY Azp_pi1pn—r and
decrease zy,—r41,0 by Az, 410. Traffic conservation
and power consumption invariance imply that

Amnfr+1,n7r - A1'7177“+1,0 = Al’n,nfr+1
A'fcn—r—l—l,n—r = (n —-r+ 1)ann—r+1,0



(n—r+41)=
(n—r+1)o—1 App—ri1

Azp i1 =
:»{ N (16)

1
A55n—r+170 = mAl‘n,n—rH

Then there are two possible scenarios:
o Scenario 1: Azyp_r41,0 < Tn—rg1,0
o Scenario 2: Axy—r41,0 > Tn—r41,0
For scenario 1, {x; ;} is updated as follows:

1 _
xn,n—r = 0
1
Lpn—r+l Tpn—rt+1 T Al‘n,nfﬂrl
1
Ln,0 Tno + Afn,o
1
Tp—rtln—r Tn—r+1n—r + Amn—r-i—l,n—r
Lp—r+1,0 Tn—r+1,0 — Axn—r—l—l,()
! . ;,for other 4,5 and i > n —
T = T, i, 7] i>n—r

N
L Xk=it Tpi T i
" ZI]cV:i—i—l Tk + Gi
After updating, the traffic for layers over n — r + 1
keeps same except layer n, so their power consumption

do not change. The power consumption of layers n and
n —r + 1 do not change, and the incoming traffic of

T Tij,t <n—r

layer n — r is changed by Az y1n—r — Tpnr =
n—r+1)= ne—re n—r+1)*
((75—7~+1)a)—1 T me—(r—D)= Dapp—r. If W :

n®—r

e = L the incoming traffic of layer n — r
will not increase. Thus, the power consumption of layer

n — r will not increase. Now, we show w .
(n—r+1)o—1
ne—ro
P (o S

(n—r+1)° n® —r®
(n—r+1)2—1 no—(r— 1) =1
& [(n—r+Dr]*+ (@ —1)%>[(n—r+1)(r—1)]"+n"
1

Noting that (n—r+1)r+r—1 = (n—r+1)(r—1)+n =
C where C is constant, equation (17) is equivalent to

(C—r+1)%+(r—1)*>(C—n)*+n* (18)

Consider the function f(z) = (C — z)® + z®. This
function is convex since f”(z) > 0 when « > 1 and it
is symmetric about z = §. It is easy to verify that the
larger the value of |C —2x|, the larger the value of f(z).
So the inequality (17) is equivalent to

(n—r+1)r—(r—1)]>|(n—r+1)(r—1)—n| (19)

It is easy to check that inequality (19) holds for al 0 <
n<N,0<r<n—ls0 . ontort e <,
and Azy—r 41 n—r < Tpn_r, that is, the incoming traffic
of layer n — r does not increase. We then recursively

update the traffic from layer n — r to layer 1. Since the

incoming traffic for layer n — r does not increase, the
traffic for al layers 1 to n — r do not increase either,
then their power consumption do not increase. Thus the
MIN-MAX power does not increase in scenario 1.

Now let us consider scenario 20 Azy_,110 >
Zn—r+1,0- 1N this scenario, we cannot decrease =110
by the whole amount Ax,,_,41,0. Consequently, {z; ;}
is updated as follows:

x%z,nfr =0
m‘711,n77“+1 Tnmn—r41 + Awn,n—r—‘rl
xi“() = Znpot A-fn,O
xr}z—r—l—l,n—r Tp—r+ln—r + Tn—r4+1,0 + Afbn,nfrJrl
Tppy10 = 0
xj; = w;;forotheri,jandi>n—r
o, = it Ty + 9i i i<n—r

N
Zk:@'+1 Tri+ Gi

After updating, the power consumption of layer n keep
same. The power consumption of layer n —r + 1 is

1
Pn7r+1 = Tpn—r+ln—r + Tn—r+1,0 + Awn,n—r—&—l-

Next wewill show P!_, .| < P,_,. Since Az, 11,0 >
Tn—r+1,0, WE have

Tn—rt+1,0 + Axn,nfrJrl < AxnfrJrl,O + A-Tn,nfrJrl

= Awn—r—&—l,n—’r‘ < Tpp—r (20)
We then have
Py%-7~+1 < Tp—rtin—r + Tpn—r < P, (21)

So the power consumption of layer n —r+1, P_ .,
is smaller than the original MIN-MAX power.

The incoming traffic of layer n — r is changed by
Trn—r+1,0 + AZpp—rt1 — Tnn—r < 0. Thus, the incom-
ing traffic of layer n — r is decreased, so the power
consumption of layer n —r will not increase. The power
consumption of al other layers do not increase either.
Therefore, in scenario 2, after updating, the MIN-MAX
power does not increase either.

Thus, after this procedure, {z; ;} is updated to {xl{j
by redistributing traffic on links (n,n—r), (n,0), (n,n—
r+1),(n—r+1,0),(n —r+1,n—r) to delete the
traffic on (n,n — r), and the MIN-MAX power does
not increase. We keep executing this procedure until the
solution isin the standard form. Since each application of
this procedure does not increase the MIN-MAX power,
the theorem is proved. |



Similarly, we consider two-dimensional case:

min P s.t. (22)
N i—1
2k -1 .
Z 5 1 Lki TG :sz’,g‘, 1<i<N (23)
k=i+1 Jj=0
i—1
iy x(i—)*<P, 1<i<N (24
7=0
xmzo, 1§i§N,0§j<i (25)

Theorem 2: When o > 1, there aways exists an
optimal solution to the optimization problem 22-25 with
the following form: {x;;—1 > 0, x;0 > 0, x;; =
0, 1<i<n, 1<j<i-2}

Proof: Using a similar procedure as in the proof
of Theorem 1, it is easy to show this theorem holds. m

Remarks: based on above analysis we can see that no
matter what kind of traffic generation pattern, Theorem
1 and 2 aways holds.

V. DISTRIBUTED ALGORITHM AND PERFORMANCE

In this section, we propose a fully distributed algo-
rithm, Energy Aware Push Algorithm (EAPA), to adap-
tively adjust the transmission power for each sensor. We
also present simulation results for EAPA.

A. Energy Aware Push Algorithm

From Theorem 2, we know that the optimal solution
for the lifetime maximizing power control problem has
the property that a layer either sends its traffic directly
to the sink or to the next inner layer, provided the
sink is reachable for this layer. Furthermore, the object
is to minimize the maximum energy consumption rate
so that the lifetime is maximized. This suggests that if
the residual energy of a node is more than the residua
energy of the corresponding next hop node(s) in the next
layer toward the sink, it should send its packets directly
to the sink; otherwise, it should send the packets to the
node(s) in the next layer toward the sink.

The proposed agorithm EAPA works as follows:
Suppose the routing table is given according to some
routing scheme that specifies for each node in layer 1,
one or more next hop nodes that are within a distance
rmin Trom the given node. We refer to the next hop
nodes as the parents of the given node. Each node keeps
record of the residual energy of its parent(s). This can be
done by letting the nodes broadcast their residual energy
periodically. When a node wants to send some packets,
it first checks whether its residua energy is higher than
all of its parents; if it is, then it sends the packets to the

sink directly. Otherwise it sends the packets to the parent
with highest residual energy. The formal description is
in Algorithm 1.

Algorithm 1 Energy Aware Push Algorithm

Input: Initial energy FE, transmission power P, for
sending traffic using transmission range 7,5, transmis-
sion power i“Py for sending traffic to the sink and
the routing table, i.e, a list P maintaining its par-
ents

L Eresidual =

2. while (E;esidua; > 0) do

3. Let the total traffic need to be sent is T’

4. if (T - Py > Eresidual) then

5: break

6. endif

7. Find the parent p with maximum residual energy
from P with residual energy E7 ;4.

8 if (BY,jua = Eresiduar) then

9 send traffic T' to p

10: Eresidqual = Eresidual — 1 - Po

11 else if (Fresiquar > T - 1% Py) then

12: send traffic T' to the sink

13: Eresidual = Eresiduat — T - 1% Py

14.  else

15: send traffic T' to p

16: Eresidual = Eresiduat — T Po

17 end if

18: end while

In Algorithm 1, we assume the routing table is fixed,
the residual energy for each parent is updated periodi-
caly and the transmission range can only be adjusted
to integer multiples of r,,;,, that is, when the distance
to the destination isin ((7 — 1)7min, i7min], transmission
range ir.,;, 1S used.

B. Smulation Results

Geographic routing [23] is ssimply forwarding data
packets to the neighbor geographically closest to the
destination. We modify geographic routing slightly and
refer to it as enhanced geographic routing. In enhanced
geographic routing, each node will select two neighbors
(within r,,,;,,) that are geographically closest to the sink
as its parents and forward data packets to the parent
with higher residual energy. In the simulation, we use
enhanced geographic routing to compute the routing
table for each sensor node.

The simulation is set up as follows: Sensor nodes are
randomly deployed in a disk according to 2-D uniform
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distribution; the size of the disk is variable; the sink is
located at the center of the disk; the node density is 25;
path loss exponent « is 2; minimum transmission range
rmin 1S 1; €ach sensor has 1,000,000 units initial energy;
each sensor generates one packet per unit time; transmit-
ting one data packet using minimum transmission range
requires one unit of energy. Each point on the figure
is the average performance of 100 different randomly
generated networks.

We first compare the network lifetime difference be-
tween traditional geographic routing and the enhanced
geographic routing. Fig. 6 shows the comparison be-
tween geographic routing and enhanced geographic rout-
ing. We normalize the lifetime for geographic routing as
1. It shows that the lifetime for enhanced geographic
routing is amost 3 times of that geographic routing.
This is because the nodes positions are asymmetric
due to the randomness, even though the nodes are
deployed according to uniform distribution. Due to the
asymmetry of the nodes' positions, there may exist some
bottleneck nodes that are required to relay packets for
many nodes when traditional geographic routing is used.
When enhanced geographic routing is used, this kind of
bottleneck effect is diminished so the network lifetime
is significantly increased.

Fig. 7 shows the extended network lifetime by using
EAPA in various scenarios. The baseline is the net-
work lifetime using enhanced geographic routing only.
It shows that when there is no maximum transmission
range constraint, the normalized lifetime will increase
when the network size increases, which is consistent with
the numerical results, and the lifetime can be extended
almost 350% when network radius is 10. It also shows
that when only the nodes in the severa inner layers
execute EAPA, the network lifetime still can be extended
significantly: 75% for inner 2 layers case, 130% for inner

350 T T
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250 |- EAPA with inner 2 layers only —<- |

EAPA with inner 3 layers only -&

200 F EAPA with inner 4 layers only ---
- EAPA without other constraint ——

150 + B

Extended Lifetime (%)
*

100 q

50 q

Network Radius

Fig. 7. Normalized lifetime for EAPA in various scenarios

3 layers case and 175% for inner 4 layers. And similar
to numerical result, when the power control is restricted
to several inner layers, the normalized network lifetime
is independent of network size.

By observing Fig. 7 closely, we found that the ex-
tended lifetime by applying EAPA is even higher than the
numerical result obtained by solving the linear program.
On the surface, this seems surprising, since the linear
program yields a centralized algorithm. We use Fig.
8 to explain this phenomena. In each subfigure, there
are 3 lines. We normalize the ratio between network
lifetime with power control and without power control
computed from the numerical result as 1. We use two
different baselines to show the EAPA result: the sim-
ulation baseline which is obtained from simulations on
random networks by using enhanced geographic routing;
the theoretical baseline which is computed theoretically
based on the ideal network which is described in section
[1. 1t turns out the simulation baseline is less than the
theoretical baseline which is easy to understand: due
to asymmetry in the random network, there exist some
bottlenecks that significantly reduce the network lifetime.
Due to the low simulation baseline, when we compute
the extended lifetime based on the simulation baseline,
we get a higher ratio. Had we used traditional geographic
routing (instead of enhanced geographic routing) to
obtain the baseline, the bottlenecks would have been
more severe and the ratios for EAPA correspondingly
higher.

V1. CONCLUSION

Battery powered wireless sensor networks are ex-
tremely energy constrained. To conquer this problem,
various schemes have been proposed. In this paper we
study the lifetime maximization problem through a new
approach: adaptive power control. We formulate this
lifetime maximizing problem as a linear program. The
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numerical results obtained suggest a surprising conjec-
ture, namely that if a node can reach the sink directly,
the optimal way for it to split the traffic is to either send
to the next layer toward the sink (i.e., using the min-
imum transmission range) or send directly to the sink.
We then theoretically analyze this optimization problem
and prove the conjecture. Besides the centralized linear
programming model, we also proposed afully distributed
algorithm: Energy-Aware Push Algorithm. The simula-
tions show that EAPA can extend the network lifetime
dramatically; even when we impose the restriction that
only nodes around the sink can adaptively adjust their
transmission power, the resulting lifetime extension is
still significant.
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