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This thesis proposes two sub-components in MSTM to incorporate more advanced 

methods in four-step models. The first addresses travel time reliability by proposing a 

method to measure the value, to forecast, and to incorporate reliability in the 

transportation planning process. Empirically observed travel time data from INRIX 

are used in an introduced method to measure OD-based reliability. The measured 

reliability is utilized to find the value of reliability for a specific mode choice problem 

and to establish the relationship between travel time and reliability. Findings are 

combined with MSTM to find the economic benefits of improving the network in a 

case study. The second addresses the peak spreading. Discrete choice models are 

combined with MSTM to model departure time choice. A method is introduced to 

estimate preferred arrival time of travelers based on skim values. Two iterative 

frameworks are proposed to estimate the model and predict the demand distribution.  
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Introduction 

The Maryland Statewide Transportation Model (MSTM) is a transportation model 

developed by the Maryland State Highway Administration (MSHA) to perform a 

robust, consistent, and reliable assessment of the effects of future developments on 

key measures of transportation performance. The architecture of MSTM consists of 

traditional four steps including trip generation, destination choice, mode choice, and 

trip assignment. MSTM is used as an evaluation tool to assess the effects of future 

investments and corresponding changes in travel patterns in MD. A first version of 

MSTM (MSTM Version 1.0) is now available which is well calibrated and validated 

with 2007 and 2030 as the base and future years. MSTM is a reliable tool for 

designing, analyzing, and assisting the implementation of various land use, 

transportation planning, demand management, and other transportation-related 

policies in Maryland. This thesis proposes two sub-components in MSTM to 

incorporate state-of-the art practices and recent developments in travel demand 

modeling. Each subcomponent is described in a separate chapter. 

The first sub-component described in chapter one addresses travel time reliability in 

MSTM. Reliability can affect various steps of a traditional travel model, such as 

mode choice and trip assignment. Reliability plays a crucial role in economic 

evaluation of projects, and describes the performance of a transportation network. 

When the existing condition of the network is being monitored, reliability should be 

among performance measures, because travelers consider value of reliability in travel 

choices. In addition, when benefits and costs of future or existing projects are being 
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evaluated, reliability should be considered, since the value of reliability savings can 

affect the results.  

The reliability chapter proposes a method to measure the value, to forecast, and to 

incorporate reliability in the transportation planning process. This study uses 

empirically observed reliability that is obtained from INRIX (Global company which 

provides a variety of internet services and mobile applications pertaining to road 

traffic and driver services) to find the origin-destination-based reliability. OD-based 

reliability can be easily incorporated in travel models, because most of travel models 

are based on zone systems. Previous studies are mainly focused on reliability of a 

specific link or corridor, and introducing OD-based reliability is novel in the field. 

The OD-based reliability is combined with a household travel survey to find the value 

of reliability by estimating a random utility model. This value is based on empirically 

observed travel time data and revealed preference choices; which makes it unique and 

important, because most previous studies are based on stated preference surveys. 

Thereafter the reliability data are combined with travel time data to establish the 

relationship between travel time and travel time reliability based on observed data. 

This relationship is based on OD travel time and reliability, which makes it easily 

compatible with MSTM or any other travel model. It is used to forecast reliability 

when travel time is available. These findings are combined with MSTM in four 

different scenarios of a case study to find the value of reliability savings in state, 

county, zone and corridor levels. The results of this chapter can be considered as a 

guideline on how reliability can be considered in planning and decision making by 
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using readily available data sources such as household travel survey and historical 

travel time data. 

The second sub-component addresses the spread of peak travels because of changes 

in supply and demand. Currently, four pre-defined hourly factors are being used in 

MSTM to account for time of day. The current method is not sensitive to congestion, 

any policy, or geographical and temporal changes. A more appropriate model should 

be more disaggregated to demonstrate shifts of demand between shorter time periods. 

The appropriate method is expected to be sensitive to congestion, policies, and 

changes in behavior to more realistically demonstrate the distribution of demand in a 

typically modeled 24 hours. Such a model will predict demand shifts from peak hours 

to shoulders of the peak when roadways become more congested. The phenomenon is 

known as peak spreading, and it is addressed in the second chapter of the thesis. 

Most of trip-based four step models use hourly factors similar to MSTM. This study 

proposes a framework that uses skim matrices and household travel survey to account 

for time of day with a discrete choice model. Such integration cannot be found in the 

previous literature. One major difficulty in departure time choice models is 

unavailability of data on preferred times. Here, a method to estimate preferred 

departure time is proposed and used, which was previously lacking in the literature. 

The results of chapter one are also used in the second chapter to make the models 

sensitive to reliability. Two iterative frameworks are proposed to estimate the 

departure time choice model and to predict demand distribution of any given 

scenario. The proposed framework does not require any new data collection, and it 
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can be incorporated with most trip based four step models by using readily available 

data. 
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Chapter 1: Reliability 

Section 1: Introduction 

An appropriate travel demand model should be able to predict travelers’ choices with 

adequate accuracy. These choices mainly consist of departure time choice, mode 

choice, route choice and en-route diversion choice. Unpredictable variation in travel 

times of a specific mode, route, or time is one of the most important attributes 

considered by travelers. The concept of travel time reliability (TTR) has been raised 

and employed in different studies to define and measure this unpredictable variation 

of travel time. According to Bhat and Sardesai (Bhat and Sardesai 2006), travelers 

consider reliability for two main reasons. Firstly, commuters may be faced with 

timing requirements and there are consequences associated with early or late arrival. 

Secondly, they inherently feel uncomfortable with unreliability because it brings 

worry and pressure. This behavioral consideration has been noted in many studies 

where they observed that some travelers accept longer travel times in order to make 

their trip more reliable  (Jackson and Jucker 1982).  

A reliability related term has become a significant part of travel models since early 

studies (Gaver Jr 1968) (Prashker 1979), and during the time many theoretical and 

experimental studies have considered reliability in their departure time choice, route 

choice or mode choice models, using stated preference (SP) or reveled preference 

(RP) surveys. While SP surveys describe a hypothetical situation for respondents, RP 

surveys ask about their actual choice, and do not contain usual perception errors 



 

 6 

 

found in SP surveys. While there are a large number of reliability studies using SP 

surveys, there are few studies that utilize RP surveys due to the lack of experimental 

settings that have significant difference among alternatives, and hardships in planning 

and deploying these surveys and gathering the data (Carrion and Levinson 2012a). 

Bates et al. (Bates et al. 2001) claimed it was virtually impossible to find RP 

situations with sufficient perceived variation in reliability and other appropriately 

compensating components of journey utility. Although there are some good examples 

of departure time choice and route choice research using RP surveys (Small 1982) 

(Lam and Small 2001) (Carrion and Levinson 2010) (Carrion and Levinson 2012b), 

they all analyze  TTR in link-level or path-level. There is no previous study about 

OD-level TTR. Since trip based and activity based travel demand analysis and 

modeling are usually conducted at the zone level, OD-level TTR measure would be of 

great value in incorporating reliability into current planning process. 

Value of Travel Time (VoT) and Value of Travel Time Reliability (VoTR) are two 

most important parameters used in transportation planning and travel demand studies. 

VoT refers to the monetary value travelers place on reducing their travel time. 

Similarly, VoTR denotes the monetary value travelers place on reducing the 

variability of their travel time or improving the predictability. Over the years VoT has 

a long established history through the formulation of time allocation models from a 

consumer theory background (Jara-Díaz 2007) (Small and Verhoef 2007). Various 

models and their review in the mainstream of travel demand modeling are thoroughly 

discussed in the literature (Abrantes and Wardman 2011) (Shires and De Jong 2009) 

(Zamparini and Reggiani 2007). In contrast, VoTR has been gaining significant 
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attention in the field. However, despite of increased attention, the procedures for 

quantifying it are still a topic of debate, and number of researchers and practitioners 

have proposed numerous aspects such as: experimental design (e.g. presentation of 

reliability to the public in stated preference (SP) investigations); theoretical 

framework (e.g. scheduling vs. centrality-dispersion); variability (unreliability) 

measures (e.g. interquartile range, standard deviation; a requirement in the centrality-

dispersion framework); data source (e.g. revealed preference(RP) vs. (SP)); and 

others (Carrion and Levinson 2012a) (Koppelman 2013) (Mahmassani et al. 2013). 

As a consequence, VoTR estimates exhibit a significant variation across studies.  

It is clear that reliability is an important measure of the health of the transportation 

system in a region, as state Departments of Transportation (DOTs) and Metropolitan 

Planning Organizations (MPOs) prepare to manage, operate and plan for future 

improvements. Travel time reliability, depicted in the form of descriptive statistics 

derived from the distribution of travel times is a critical indication of the operating 

conditions of any road. Considering its importance, transportation planners are 

inclined to include reliability as a performance measure to alleviate congestion. To 

investigate the use of travel time reliability in transportation planning, Lyman and 

Bertini (Lyman and Bertini 2008) analyzed twenty Regional Transportation Plans 

(RTPs) of metropolitan planning organizations (MPOs) in the U.S. None of the RTPs 

used reliability in a comprehensive way, though a few mentioned goals of improving 

regional travel time reliability. Even though many studies have tried to measure 

behavioral response to reliability, their application to a transportation planning 

context is limited. Studies were done for understanding reliability of specific routes 
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(Chen et al. 2000) (Levinson 2003) (Liu et al. 2004) (Tilahun and Levinson 2010). 

Specifically, reliability measures are studied for freeway corridors through empirical 

analysis and simulation approaches (Chen et al. 2000) (Levinson et al. 2004) (Rakha 

et al. 2006) (Sumalee and Watling 2008) (Zhang 2012). However, freeway corridors 

only encompass portion of a real life multimodal transportation network. A planning 

agency trying to evaluate the effect of various policies (other than freeways) may not 

be able to fully utilize such information to estimate value of travel time reliability 

savings on overall network level. In the planning stage, agencies often are not ready 

to collect new data but would like to utilize available resources to estimate travel time 

reliability using existing tools such as using the travel demand model; Hence, a 

framework to measure OD-based reliability to calculate network-wide reliability 

savings using available data will be very useful, and is currently lacking in the 

literature. 

The main contribution of this study is introducing OD reliability based on empirically 

observed data to be used in planning process. OD reliability is important because it 

can easily be incorporated in planning processes or travel models. Besides, reliability 

and its value are measured and estimated using empirically observed travel times and 

household travel survey, which are easily available. This is very valuable since 

conducting new SP surveys for reliability is costly, and estimates based on SP surveys 

contain perception errors. The objective of this chapter is to develop a framework to 

(1) measure travel time reliability, (2) determine value of reliability, (3) incorporate 

reliability in transportation planning models, and (4) estimate changes in reliability 

because of new or proposed transportation infrastructure investments. The study 
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discusses various steps on how to consider reliability as a performance measure in 

planning and decision making process by making the best utilization of available data 

sources and planning models, and its application is demonstrated in a real world case 

study.  

The next section is literature review. The following section explains the methodology 

and the data used in detail. Section 4 discusses the details of estimating value of 

reliability through a mode choice model based on utility maximization theory. Section 

5 explains how origin-destination reliability data is obtained, and how this data is 

used to estimate reliability based on congestion measures by a regression model for 

forecasting reliability situation in any given scenario. The case study section 

describes application of the proposed methodology in a real world planning model 

and discusses the importance of considering VoTR in the planning process. The 

conclusion section summarizes the proposed research and discusses future directions. 

Section 2: Literature Review 

Reliability was introduced to travel models in early studies. (Gaver Jr 1968) proposed 

a departure time choice model and mentioned that travelers predict variance of their 

travel time and depart with a safety margin, which he called “Head start time”. (Polak 

1987) stated that reliability should be an explicit term in the models, and added a 

reliability variable to a mode choice model, which showed statistically significant 

improvement. The route choice model developed by Jackson and Juker (Jackson and 

Jucker 1982) can be considered as the first study that utilized expected utility theory 

and concept of reliability together. Jackson and Juker stated that travel time 
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unreliability is a source of disutility in addition to travel time, and used a SP survey to 

assess the respondents’ tradeoffs between travel time and reliability, and also 

calculated user’s degree of risk aversion. Same method is used in other studies but 

with a different form of utility function (Polak 1987) (Senna 1994). Reliability has 

also gone through network traffic equilibrium models  where (Mirchandani and 

Soroush 1987) incorporated travel time variance in the utility function, and showed 

how users shifted their route to more reliable ones. 

Data for reliability studies are usually obtained from surveys. Qualitative 

questionnaires were the first surveys that were used in reliability studies where 

respondents were asked to rank the foremost reasons of their route choice, including 

some reasons that were related to reliability (Prashker 1979) (Chang and Stopher 

1981) (Vaziri and Lam 1983). Then gradually quantitative SP surveys became 

dominant in the field and were utilized in numerous studies (Jackson and Jucker 

1982). (Abdel-Aty et al. 1997) is one example. In a route choice study, Abdel-Aty et 

al. offered two routes to the respondents; one with fixed travel time every day, and 

the other with a possibility that the travel time increases on some day(s). The results 

showed that males are more willing to choose uncertain routes. In the scheduling 

study of (Small 1999), respondents were given two options with different travel time 

distributions and travel costs based on their preferred arrival time. Small found that 

unreliability had higher disutility for respondents with children and respondents with 

higher income. Some other studies such as (Small et al. 1995) (Koskenoja 1996) 

added nonlinearities in the scheduling models. SP surveys evolved later when (Cook 

et al. 1999) and (Bates et al. 2001) showed how presentation of travel time variability 
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can have significant impact on the estimation, and their work was followed in 

different reliability studies (Hensher 2001) (Copley and Murphy 2002) (Hollander 

2006) (Asensio and Matas 2008) (Tilahun and Levinson 2010). 

While there are many examples of reliability studies using SP data in the literature, 

RP studies are limited. (Carrion and Levinson 2012a) related this scarcity to lack of 

experimental setting showing significant difference among alternatives and costs 

associated with planning, deploying and gathering data from these surveys. (Bates et 

al. 2001) claimed the scarcity of real examples with sufficient level of details for 

reliability studies as a reason. In addition to the scarcity of RP studies, the main focus 

of the few available literatures is on departure time and route choice, and they mainly 

consider link or path level data. Small used RP data on trip timing with travel time 

data gathered from the road network to develop a scheduling model (Small 1982). He 

showed that late arrival has more disutility than additional travel time, and early 

arrival is preferred to both of them. (Lam and Small 2001) collected RP data from 

users of State Route 91 in Los Angeles with both tolled and un-tolled lanes for their 

lane choice model (type of route choice models). Lam and Small gathered traffic data 

from the loop detectors for travel time and reliability measures, and considered both 

the standard deviation and 90th percentile minus median as measures of reliability. 

Another set of similar route choice studies used State Route 91 (Small et al. 2005) 

(Small et al. 2006). These studies combined RP and SP surveys to enrich their 

estimation, and they calculated value of time and value of reliability. (Ghosh 2001) 

used RP data from another route with High Occupancy Toll (HOT) lanes in Interstate 

15, San Diego. The study surveyed the respondents about the ramps they used to enter 
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and exit the lanes, and used speeds from loop detectors to calculate travel times. The 

study also estimated a mode choice model with the choice set of subscriber, non-

subscriber, carpooler and other similar alternatives and estimated value of time and 

value of reliability. (Bhat and Sardesai 2006) also incorporated reliability in their 

mode choice model. Although the travel times in their model were from a RP survey, 

travel reliability data was based on a SP survey. A more recent study (Carrion and 

Levinson 2010) used GPS data for travel time and reliability, and incorporated a RP 

survey for socio-demographics to observe travelers’ route choice between an un-

tolled lane, a tolled lane and a signalized arterial parallel to them in Minneapolis. 

Carrion and Levinson estimated a mixed logit model, and calculated value of time 

and value of reliability, but unfortunately their data suffered from high attrition and 

some data loss due to the GPS devices. They also estimated a bridge choice model 

(Carrion and Levinson 2012b) where they used another set of GPS data for Interstate 

35W bridge to explore how travelers shifted from other available alternatives to using 

the bridge, and calculated the reliability ratio (marginal rate of substitution between 

travel time and travel reliability). 

In terms of the reliability measure Some of the initial performance measures of 

reliability were percent variation, misery index and buffer time index (Lomax et al. 

2003).  In subsequent studies by Federal Highway Administration (FHWA) and in the 

National Cooperative Highway Research Program (NCHRP), 90th or 95th percentile 

travel time, buffer index, planning time index, percent variation, percent on-time 

arrival and misery index are recommended as travel time reliability measures (FHA 

2010) (Systematics 2013). Recent Strategic Highway Research Program (SHRP2) 
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research  recommended a list of five reliability measures similar to those found in the 

NCHRP report, with skew statistic replacing the percent variation (Systematics 2013).  

Even though many studies have focused on reliability and its value in different 

contexts, their application in planning is very limited. To investigate the use of travel 

time reliability in transportation planning, (Lyman and Bertini 2008) analyzed twenty 

Regional Transportation Plans (RTPs) of metropolitan planning organizations 

(MPOs) in the U.S. None of the RTPs used reliability in a comprehensive way, 

though a few mentioned goals of improving regional travel time reliability. Studies 

were done for understanding reliability of specific routes (Chen et al. 2000) 

(Levinson 2003) (Liu et al. 2004) (Tilahun and Levinson 2010). Specifically, 

reliability measures are studied for freeway corridors through empirical analysis and 

simulation approaches (Chen et al. 2000) (Levinson et al. 2004) (Rakha et al. 2006) 

(Sumalee and Watling 2008) (Zhang 2012). However, freeway corridors only 

encompass portion of a real life multimodal transportation network. A planning 

agency trying to evaluate the effect of various policies (other than freeways) may not 

be able to fully utilize such information to estimate value of travel time reliability 

savings on overall network level. In the planning stage, agencies often are not ready 

to collect new data but would like to utilize available resources to estimate travel time 

reliability using existing tools such as using the travel demand model. 

In reviewing the previous literature, it is evident that a model using a reliable source 

of travel time measurement data supplementing a RP survey (e.g. household travel 

survey) for TTR that can be utilized in planning process is not available in the 

literature. Besides, none of the studies have considered OD-level TTR. In this thesis, 
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empirically observed travel time data from INRIX are used to estimate OD level TTR 

measures. The OD level TTR measures are combined with the 2007-2008 TPB-BMC 

household travel survey to provide a comprehensive RP dataset, which is used to 

develop discrete choice models to find the value of reliability. The reliability data are 

also combined with INRIX travel time data to explore the relationship between travel 

time and travel time reliability in order to forecast the reliability. All these findings 

are combined with MSTM to demonstrate how OD-Based reliability can be 

incorporated in planning and decision making. 

Section 3: Methodology 

3-1 Framework 

A step by step process to integrate reliability in a transportation planning model is 

shown in the Figure 1. The methodology is categorized into three parts. The first part 

contains development of a random utility model (an example could be mode choice) 

with travel time reliability as an independent variables among others. This model will 

be used to calculate VoTR. VoTR can be estimated using any random utility model 

with a variable indicating reliability and travel time or travel cost. In this study mode 

choice model is used as an example. From the mode choice estimation VoTR can be 

determined as the ratio of coefficient of reliability and travel cost. The VoTR 

obtained in this study is unique because it is based on empirically observed travel 

times from INRIX, and it is OD-based. Details of calculating VoTR can be found in 

section 4. The second part of the figure contains calculating OD-based travel time 

reliability measure and developing relationship between reliability and travel time. 
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The INRIX data are in TMC (Traffic Message Channel) format. A step by step 

framework is introduced in this part to obtain OD-based reliability from INRIX data. 

OD specific travel time reliability data is not available readily and the second step 

helps obtaining it. OD specific reliability data are used in a random utility model 

estimation. They are also used in estimating the relationship between congestion and 

reliability to forecast future reliabilities. In a planning model the path travel times are 

static, so in order to capture variation and to obtain reliability of each route a 

relationship between reliability and travel time is useful. For each O-D pair, reliability 

measure can be determined using the regression relationship between mean travel 

time and reliability. Section 5 discusses OD-based travel time reliability and 

reliability forecasting in detail. The third part of flowchart shows how one can obtain 

travel time reliability savings in a transportation planning or travel demand model.  

Once the reliability of the OD is known for before and after improvement, then the 

savings in reliability can be computed by the value of reliability as the demand is 

known for before and after scenario. The improvement due to travel time reliability 

can be captured at system, county, zone, and corridor level as desired by the user. 

These are all demonstrated in section 6. 
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Figure 1: Proposed methodology for VoTR estimation and integration in planning models 

3-2 Data 

The following datasets are used in this framework: 

2007-2008 TPB-BMC Household Travel Survey 

2007-2008 Household Travel Survey data conducted by Metropolitan Washington 

Council of Governments (MWCOG) and Baltimore Metropolitan Council (BMC) is 

used in the thesis to capture changes in daily travel patterns, and gather information 

on demographics, socio-economics, and trip making characteristics of residents. This 

survey contains four main parts which include Person characteristics, Household 

Characteristics, Trip Characteristics and Vehicle characteristics. This dataset contains 
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108,111 trips and their details. In this study, trips reported in the dataset are used in 

mode choice model estimation. Trip start time, trip distance, experienced travel time 

of the trip, and reported mode, along with socio-economic and demographics are 

attributes extracted from the dataset. Start time is used for getting the reliability of the 

trip.  

INRIX historical travel time data 

INRIX provides real-time and historical travel time data to users. INRIX collects 

traffic data from more than 100 million vehicles in more than 32 countries. The data 

is obtained from different sources such as sensors on the network, local transport 

authorities, delivery vans, trucks, taxis and also users of INRIX traffic App. INRIX 

gathers these raw sets of data and converts them to easy-to-understand real-time and 

historical data. Travel time data for various paths are obtained from INRIX. TMCs 

(Traffic Message Channels) are the spatial units of INRIX data. In this study, INRIX 

historical data is obtained for a whole year in five minute increments, for specific 

paths and aggregated together for every hour. Different reliability measures such as 

standard deviation and coefficient of variation between the values of travel time for 

each hour of the day are calculated from one year data using between day variations. 

After being processed, this data is used in both mode choice model estimation and 

reliability regression. INRIX does not cover all the functional classes of roadways, 

but it contains most of the major and minor arterials, along with full representation of 

freeways, interstates, and expressways.  

MSTM outputs 
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Maryland Statewide Transportation Model (MSTM) is considered as the travel 

demand model to demonstrate the benefits from new infrastructure investment. 

MSTM is the first statewide travel demand model developed for the Washington-

Baltimore region and its primary development has occurred through the course of 

2009-2014. MSTM is a traditional four step travel demand model which is well 

calibrated and validated, and currently being used for various policy and planning 

applications. The novelty of the MSTM is the use of a three-layer structure. The first 

layer includes macro scale travel patterns from the entire U.S. and the third layer 

includes travel patterns at a finer urban level detail. The second layer is statewide in 

scope and is an amalgamation of the first and third layer. The trip-based model 

consists of eighteen trip purposes that are cross-classified by five income categories, 

eleven modes of travel, and four time-of-day periods. Details of the model structure 

are presented in the literature (Mishra et al. 2011) (Mishra et al. 2013). 

Figure 2 shows the full study area including the state of Maryland, Delaware, 

Washington DC., and portions of Pennsylvania, Virginia, West Virginia. The base 

year network consists of more than 167,000 links, and contains sixteen functional 

classifications including all highway, transit, walk access, and transfer links. For 

external travels all the freeways are included outside the modeling region. The toll 

roads and Highway Occupancy Vehicle (HOV) lanes are coded in the network with 

the current user charges.  

Outputs of the MSTM for predefined scenarios are used in case study chapter to 

calculate travel time savings. In addition, the estimated reliability-travel time 
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relationship is used with skim values to estimate the OD-based reliability matrices to 

calculate reliability savings. 

 

Figure 2: Topological map showing zone system and network of MSTM study area 

MWCOG travel model outputs 

MWCOG model is a model developed by Washington DC metropolitan area planning 

organization to model travels inside Washington DC metropolitan area, and it 

includes parts of Maryland and Virginia. Cost information such as transit fares 

between zones, parking costs, and vehicle maintenance cost are available in the 

MWCOG model and they are used for cost variable. The MWCOG model is 

consistent with the TPB HHTS and they have the same zoning structure.  
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Section 4: Value of Reliability 

Drivers tend to dislike high travel time variations because of various reasons, such as 

accidents, bad weather, roadwork, fluctuation in demand, etc. On the other hand, rail 

usually has much more reliable travel times since it operates following a fixed 

schedule. So it would be very interesting to explore how this difference in TTR would 

affect traveler’s choice between these two modes. In this study, OD pairs that have 

both rail and driving trips recorded in 2007-2008 TPB-BMC travel survey in 

Washington DC area are selected and studied since in these OD pairs both travel 

modes are available and are competing with each other. In total, there are 161 OD 

pairs with both rail and driving trip records. For two of these OD pairs, INRIX data 

are not available. The remaining 159 OD pairs form a major component of this study. 

In these 159 OD pairs, 261 rail trips, 291 driving trips, and only 2 trips of other travel 

modes can be observed, as shown in Table 1. Thus, in these OD pairs, it would be 

appropriate to assume that rail and driving are the only available alternatives. 

Table 1: Trips records in the 159 OD pairs in HHTS 

Travel Mode Rail Driving Other Sum 

Number of Trips 261 291 2 554 

Percent 47.1% 52.5% 0.4% 100.0% 

 

In order to explore the impact of TTR on mode choice between rail and driving, both 

socio-demographic information and alternative-specific variables are needed. TPB-

BMC household survey data provides a number of socio-demographic information 

such as income, gender, age, driver license, car ownership and so on. Alternative-

specific variables in this study include travel time, cost and TTR measures. Similar to 
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other RP surveys, the TPB-BMC household survey does record travel time for the 

actual taken mode, but travel time for the other alternative will remain unknown. In 

this thesis, since all studied OD pairs have both rail and driving trips reported, the 

travel time of the alternative mode is estimated by averaging the reported travel time 

of all the trips in the same OD pair using that mode. Travel cost information can be 

calculated from the MWCOG travel demand forecasting model. For the travel time 

reliability of driving trips, the estimated TTR between the origin and destination 

zones by INRIX data is used. The details of calculating OD-based reliability are 

described in section 5. Rail is assumed to be highly reliable and has no variation in 

travel time. Since the origin and destination TAZ numbers and trip start time are 

recorded for each trip in HHTS data, OD-level TTR can be easily linked with each 

trip. Trip start time is used to link reliability with each trip because TTR is calculated 

for different hours of the day. Thus, by incorporating HHTS data, MWCOG model 

travel cost information and estimated OD-level TTR, a comprehensive dataset is 

generated which includes both demographic information and alternative-specific 

variables such as travel time, cost and TTR. Some of the explanatory variables in the 

dataset are summarized in Table 2. 

Table 2: Explanatory variables 

Variable Definition Values 

Veh 
Number of household vehicles 

From HHTS 

0 = 0; 1 = 1; 2 = 2; 3 = 

3+ 

Lic 
Have driver license?(Persons 16+) 

From HHTS 

1 = YES; 2 = NO; 

-9 = Not Applicable 

Age 
Age in years 

From HHTS 
Continuous (years) 

Disc 
Is the trip a discretionary trip or not (Trips 

with trip purpose other than home, work and 
1 = YES; 2 = NO 



 

 22 

 

school are considered discretionary trips) 

From HHTS 

TT 
Travel time 

From HHTS 
Continuous (min) 

Cost 
Travel cost 

From MWCOG 
Continuous (cent) 

TTR Travel time reliability Continuous (min) 

 

OD-level TTR can help to explore the impact of TTR in different choice dimensions, 

such as mode choice, departure time choice, etc. In this study, OD-level TTR will be 

incorporated with a traditional household travel survey to explore how TTR affects 

traveler’s mode choice. A discrete choice model consistent with Random Utility 

theory is used in this study, where linear utility functions are assumed: 

𝑈𝑚 =  𝛽0,𝑚 + ∑ 𝛽𝑖,𝑚 + 𝑥𝑖,𝑚
𝑛
𝑖=1 +  𝜀𝑚 (Equation 1) 

where Um is the utility of mode m. β0,m denotes a mode-specific constant. βi,m is the 

coefficient of the ith explanatory variable in the utility function of mode m. xi,m is the 

ith explanatory variable of mode m. εm represents the random component of the utility 

which is assumed as an independently distributed random variable with a Gumbel 

distribution (with location 0 and scale parameter 1). Explanatory variables include 

alternative-specific variables such as travel time (TT), travel cost (Cost) and travel 

time reliability (TTR), as well as other variables such as age (Age), number of 

vehicles (Veh) and trip purpose (Disc). 

After trying different model specifications, the model specification adopted in this 

thesis is shown in Equation 2: 

𝑈𝑑 = 𝛽0 + 𝛽𝑣𝑒ℎ ∗ 𝑉𝑒ℎ + 𝛽𝑎𝑔𝑒 ∗ 𝐴𝑔𝑒 + 𝛽𝑑𝑖𝑠𝑐 ∗ 𝐷𝑖𝑠𝑐 + 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑑 + 𝛽𝑐𝑜𝑠𝑡 ∗ 𝐶𝑜𝑠𝑡𝑑 + 𝛽𝑇𝑇𝑅 ∗ 𝑇𝑇𝑅 + 𝜀𝑑 

𝑈𝑟 = 𝛽𝑇𝑇 ∗ 𝑇𝑇𝑟 + 𝛽𝑐𝑜𝑠𝑡 ∗ 𝐶𝑜𝑠𝑡𝑟 + 𝜀𝑟 (Equation 2) 
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where Ud is the utility of driving and Ur is the utility of rail. Veh, Age and Disc are 

explained in Table 2. TTd and TTr denote travel time for driving and rail. Costd and 

Costr represent travel cost for driving and rail. TTR is the TTR for driving. β0 denotes 

mode-specific constant. βVeh, βAge, βTT, βCost, βTTR are coefficients for corresponding 

explanatory variables.  

Based on the model specification, value of reliability (VOR) can be calculated: 

𝑉𝑜𝑅 =  
𝛽𝑇𝑇𝑅

𝛽𝑐𝑜𝑠𝑡
 (Equation 3) 

Reliability ratio (RR) can be calculated by using VOR divided by value of time 

(VOT): 

𝑅𝑅 =
𝑉𝑂𝑅

𝑉𝑂𝑇
 (Equation 4) 

Model results are shown in Table 3. Since driving is not a possible choice for people 

without a driver license, those trips are not included in the model. This consideration 

excludes 32 trips.  

Table 3: Model estimation results 

Variable 
Standard Deviation 

Coefficient t-Stat 

Constant (driving) -1.660 -3.54 

Veh 0.757 5.63 

Age 0.203 2.90 

Disc 0.869 3.98 

TT -0.007 -1.57 

Cost -0.001 -4.94 

TTR -0.122 -2.48 

Number of obs 521 

Likelihood Ratio Test 125.51 

Final log-likelihood -298.37 

Rho-square 0.174 

AIC 610.75 

Correlation between T and TTR 0.37 
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P-value of the correlation 9.37 

VOR 56.31$/h 

95% CI of VOR (54.14$/h, 58.51$/h) 

 Estimated RR 17.42 

 

The coefficients of the variables Veh, Age, Disc are significant with positive sign, 

which means that older people owning more cars tend to drive more. Besides, people 

will drive more for discretionary trips. The coefficients of TT and Cost are negative 

which shows that people will drive less if driving will take longer or cost more 

compared to rail. TT is not significant, which may be caused by the method how 

travel time is calculated. As described earlier, travel time of the alternative mode is 

estimated by averaging the reported travel time of all the trips in the same OD pair 

using that mode. However, there is a gap between the calculated travel time and the 

real travel time, which may lead to the insignificance of travel time in the model.  

The coefficient of the TTR variables is significantly negative, which shows that 

people tend to drive less when travel time variation of driving increases. 

The value of travel time reliability (VOR) and its 95% confidence interval (CI) are 

also calculated and shown in Table 3. Reliability ratio is 17.42. It is larger than RRs 

in the previous literature which usually vary from 0.10~ 2.51 (Carrion and Levinson 

2012a) This may be caused by several reasons. First of all, reported travel times in the 

survey do not show significant difference between rail and auto. But in reality, rail 

has longer travel time with higher reliability. This is the reason why the model relates 

auto travels to lower cost of auto, and relates rail travels to higher reliability of rail; 

but it cannot find a significant effect of travel time, because travel time is not 

significantly different between alternatives. As a result, travel time becomes 
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insignificant, and value of time is estimated very low. Second, the mode choice model 

in this study only considers rail and driving, while other modes exist in reality, such 

as bus, carpool, bike, etc. Thirdly, TTR in this study is calculated by user experienced 

data in Washington DC area. Instead, most of previous studies used SP survey to 

collect reliability information. Use of SP and RP data often cause different 

estimations (Ghosh 2001). Moreover use of different time intervals will lead to 

different travel time variations. Since a 1 hour time interval is used in this study for 

reliability, the TTR measures estimated will be much lower than using smaller time 

intervals, thus leads to a higher estimation of reliability ratio. Finally, different 

reliability measures will lead to different RR estimations. For these reasons, the RR 

value may vary a lot when using different reliability measures or different estimation 

methods. 

Section 5: Measuring and Forecasting OD-based Reliability 

5-1 Measuring OD-based Reliability 

This section describes how OD travel time reliability can be obtained from INRIX 

travel time data and how these data are used to explore the relationship between travel 

time and travel time reliability. The proposed approach to estimate OD-level TTR 

measures for a given OD pair is shown in Figure 3. The five steps in the proposed 

methodology are discussed next. 
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Figure 3: Proposed OD level TTR estimation method 

Step 1: Identify the shortest path between OD centroids.  

In order to estimate travel time and reliability for a given OD pair, the first task is to 

determine possible routes that people may take between this OD pair. For this 

purpose, two assumptions are made: 1) Trips between OD centroids are representative 

of all the trips between the OD pair. 2) The traffic condition of the shortest path is 

representative of all possible routes between the same origin and destination. The 

second assumption is valid under the assumption of the user equilibrium condition. 

Since this thesis is not focused on route choice, user equilibrium condition is 

assumed, meaning all the used paths between a given OD pair have equal generalized 

cost, and path selection does not affect the results. Since the INRIX network is based 

on TMCs and is not routable, the shortest path was identified using other routable 

networks, such as planning network models or Google Maps. Two shortest paths were 

selected for each OD pair representing the trips from origin to destination and from 

destination to origin, respectively.  

Given OD pair 

Identify the shortest path between OD centroids 

Obtain TMC based INRIX data for the shortest path  
 

Calculate path travel times based on available data 

Extend travel time to cover full path 

Calculate reliability measure using between day variations 

OD-level travel time reliability 
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Step 2: Obtain TMC based INRIX data for the shortest path  

After specifying the shortest path, all the segments on the path available in INRIX 

network were selected and data for a specific time period was requested.  Average 

travel time for each hour of the day (24 values) for one year (365 days) was collected. 

Weekend data were deleted at this point since the respondents were required to record 

activities on a weekday in the TPB-BMC household survey. Between-day variations 

will be used to calculate travel time reliability for each alternative. 

Step 3: Calculate path travel times based on available data 

All available TMC based travel time data along the shortest path were added to form 

path travel times for each hour of the year.  

Step 4: Extend travel time to cover full path 

INRIX data does not cover all the road segments.  Generally speaking, INRIX has 

better coverage for freeways than for local roads. Also, missing observations were 

observed in INRIX data, for instance the travel time for some time periods were 

missing for some specific road segments. Therefore, an estimation method is 

proposed by the author to use the available INRIX data in order to estimate the 

average travel time of the whole path. The method starts by dividing the paths into 

two groups: freeway and non-freeway.  This is mainly because these two types have 

different speeds, and since available average speed is used to estimate missing data, 

paths were divided into these two categories. In this way, each missing data point was 

estimated using its similar available data. Figure 4 shows the Gaussian kernel density 

function of the speed, with the optimal bandwidth computed from the variance of the 

data, for one selected OD pair. In this graph two peaks can be observed, one 
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representing non-freeway segments with lower speed, and the other representing 

freeway segments with higher speed. Other OD pairs show similar peaks. 

 

Figure 4: Kernel density function of speed for one OD pair 

The length of available freeway and available non-freeway data were calculated and 

combined with the full length of the freeway segments and the full length of the non-

freeway segments in the path to estimate the whole paths travel time. The extended 

travel times are based on the assumption that freeway segments with missing data are 

driven with the average speed of freeway segments with available data, and non-

freeway segments with missing data are driven with the average speed of non-

freeway segments with available data.  Using these assumptions, extended travel 

times can be calculated with Equation 5: 

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑓𝑤 𝑡𝑡 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑤 𝑡𝑡 ∗
𝑟𝑒𝑎𝑙 𝑓𝑤 𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑤 𝑙𝑒𝑛𝑔𝑡ℎ⁄  
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𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑛𝑓𝑤 𝑡𝑡 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑛𝑓𝑤 𝑡𝑡 ∗
𝑟𝑒𝑎𝑙 𝑛𝑓𝑤 𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑓𝑤 𝑙𝑒𝑛𝑔𝑡ℎ⁄  

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑡𝑜𝑡𝑎𝑙 𝑡𝑡 = 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑓𝑤 𝑡𝑡 + 𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑛𝑓𝑤 𝑡𝑡 (Equation 5) 

Step 5: Calculate reliability measure using between day variations for each hour 

At this part all travel time data for 24 hours during a year were available. Between 

day travel time variation was used for reliability measure of each hour. The 

distribution of the travel time data using daily observations for each hour was used to 

calculate the reliability measures for the intervals to reflect the day-to-day travel time 

variation. It should be noted that weekends were excluded. Also, travel time 

observations that were 10 times greater than the average travel time for each segment 

were considered outliers, and thus excluded as well. 

5-2 Forecasting Reliability 

Typical planning models report static travel times at each time of day. They do not 

report the variation of travel times. The estimated OD level travel times and travel 

time reliabilities were used to establish the relationship between travel time and travel 

time reliability. This relationship is useful, because it can be incorporated with OD 

travel time matrices to find out the OD reliability matrices. Network-wide value of 

reliability savings can be easily calculated using OD reliability matrices. 

To establish this relationship various types of regression using different reliability 

measures as dependent variable, different travel time and congestion measures as 

independent variable, and different forms of regression were tried. Finally standard 

deviation per mile is regressed with percent deviation of congested travel time from 

free flow travel time. The result is shown in Figure 5. A number of outliers were 
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removed from the regression estimation. The Logarithmic relationship was found to 

provide the best goodness of fit. The resulting r-square is 0.7675. This relationship 

will be used to find the change in reliability for any two given scenarios to calculate 

reliability savings. 

 

Figure 5: Regression of standard deviation per mile on a percent deviation from free flow time 

travel time 

Section 6: Case Study 

This section demonstrate how OD reliability and VoTR can be utilized to find the value of 

reliability savings by an investment. To estimate reliability savings due to recent network 

investment the Inter County Connector (ICC) is considered as a part of the case study. For the 

base year, reliability saving is analyzed by considering scenarios with and without ICC.  

Figure 6 shows a detailed view of ICC along with other major facilities in the southern 

Y = 0.996337 * ln(X + 1.048117)

R-squared = 0.7675
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Maryland. ICC is one of the most significant and high-profile highway projects in Maryland 

since the completion of the existing Interstate freeway system several decades ago. The ICC 

connects existing and proposed development areas between the I-270/I-370 and I-95/US-1 

corridors within central and eastern Montgomery County and northwestern Prince George's 

County (two most populous counties in Maryland). The ICC opened to traffic in the year 

2011. One of the goals of the thesis is to evaluate the reliability savings on other major 

facilities due to the ICC. 

To demonstrate the value of reliability savings, four scenarios are defined in MSTM: 

Base year build, base year no build, future year build, and future year no build. The 

base year build and no-build scenarios are different in ICC and minor other network 

improvements between 2007 and 2013. The future year build scenario consists of 

improvements as reported in the constrained long range plan. In the future year build 

scenario a number of improvements are considered such as the I-270 expansion, the I-

695 expansion, the network of toll roads, the purple line and the red line. The future 

year no-build scenario includes the base year network with future year demand 

(socioeconomic and demographic). The base and future years are 2010 and 2030, 

respectively. 
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Figure 6 ICC and I270 

The first task was to prepare necessary input files to run MSTM. Input files for four 

scenarios were created. The four scenarios constructed are: Base year build, base year 

no build, future year build, and future year no build. The next task was to complete 

the model run and summarize the results. In the model summary, congested skim 

matrix needed to be developed to represent congested travel times for each O-D pair. 

Similarly, corresponding trip matrices had to be obtained. Reliability matrices were 

obtained using the relationship described in section 5. Travel time savings and travel 

time reliability savings were computed for base year and future year using the 

reliability ratio equal to 0.75 as suggested by State Highway Administration. In 

section 4 it was explained in detail how this value can be obtained using local data by 

a simple random utility model to obtain localized VoTR.  
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For comparison purposes, average travel times by OD pair and by time of day before 

and after system enhancement were captured. Then the system benefits were 

estimated resulting from improved travel reliability. The base year comparison shows 

benefits because of ICC, and the future year comparison shows benefits resulted from 

the projects included in constrained long range plan. The findings are summarized at 

varying geographic levels: statewide, county, zone and corridor.   Both travel time 

savings and travel time reliability savings were computed at these geographic levels. 

Analysis is conducted for AM peak period only and by considering all the trips as 

medium income group. However, the results can be summarized for other peak 

periods and by considering five income classes in MSTM. 

6-1 Statewide Findings 

Statewide findings were estimated by taking travel time improvements for all O-D 

pairs when multiplied by corresponding trips. Findings suggest that both base and 

future year cases receive savings when compared to their no-build counterparts. 

Future year savings are higher than base year as expected. At the statewide level 

travel time reliability savings are approximately ten percent of that of travel time for 

base year. Table 4 shows statewide travel time and travel time reliability savings for a 

typical AM peak hour. It is expected that the future year will have larger savings 

because greater number of new projects are introduced in the CLRP.  

Table 4: Statewide peak hour savings for base and future years 

Year Total Savings 
Travel Time Savings 

(Minutes) 

Travel Time 

Savings ($) 

Base Year 
Travel Time 1,434,002 334,552 

Travel Time Reliability 144,255 33,774 
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Future Year 
Travel Time 4,512,147 1,052,682 

Travel Time Reliability 454,639 106,214 

 

6-2 County Level Findings 

Travel time savings for the base and future years are shown in Figure 7, and travel 

time reliability savings are plotted at county level in Figure 8. County level savings 

are shown for a typical day in AM peak period. In the base year, Montgomery and 

Prince George’s county received higher savings. These savings are due to the ICC in 

the base year- build scenario. In the future year, Ann Arundel and Baltimore counties 

will receive higher savings, as justified by constrained long range plan projects in 

these counties.  

 

Figure 7: County level travel time savings comparing build and no-build scenarios 
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Figure 8 County level travel time reliability savings comparing build and no-build scenarios 

6-3 TAZ Level Findings 

TAZ level findings are shown in Figures 9 through 12. Base year findings suggest 

that zones cloze to ICC have higher travel time and travel time reliability savings. 

Future year findings suggest that the savings are spread over major urban and 

suburban areas. Figures 9 and 11 represent travel time savings in minutes for zones in 

three categories:  less than one minute, between one to five minutes, and more than 

five minutes. Figures 10 and 12 represent travel time reliability savings in dollars for 

zones in three categories:  less than $0.25, between $0.25 and $1, and more than $1.  
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Figure 9: Travel time saving per trip comparing base year build with base year no-build 

 

Figure 10: Travel time reliability savings per trip comparing base year build with base year no-

build 
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Figure 11: Travel time savings per trip comparing future year build with future year no-build 

 

Figure 12: Travel time reliability savings per trip comparing future year build with future year 

no-build 

6-4 Corridor Level Findings 

Travel time and travel time reliability savings are estimated for the I-270 corridor 

using link level congested travel times for each scenario. Table 5 shows that for I-270 
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corridor travel time savings are achieved for both base and future case when 

compared with their respective no build scenarios. Similarly future year’s reliability 

savings per traveler for other major interstates in the states are shown in Figure 13.  

Among all corridors, interstate I-270 shows higher reliability savings. When 

reliability savings are computed for all the travelers using these corridors for all time 

periods of the day and for a planning period of 20 to 30 years such savings should not 

be neglected in the decision making process.  

Table 5: I-270 travel time and travel time reliability savings results for different scenarios 

 

Scenario 

I-270 Travel Time (Min) 
I-270 TT Savings 

(min/ Traveler) 

I-270 TTR Savings 

($ / Traveler) 

NB SB NB SB NB SB 

Base-No Build 20.2 23.8  

1.6 

 

1.9 

 

0.19 

 

0.21 Base-Build 18.6 21.8 

Future-No Build 21.6 25.7  

1.8 

 

2.0 

 

0.22 

 

0.20 Future-Build 19.8 23.7 

 

 

Figure 13: Travel time reliability savings for sample interstate corridors comparing future year 

build and future year no-build 
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Section 7: Summary and Conclusions 

Reliability is one of the major parameters that describe the performance of 

transportation network. When the current condition of the network is being 

monitored, reliability should be among performance measures, because travelers 

value reliability, and consider it in their choices. In addition, when benefits and costs 

of proposed or current projects are being evaluated, reliability should not be 

neglected, since the value of reliability savings can affect the results. In this chapter a 

framework was proposed to measure the value, to forecast, and to incorporate 

reliability in the transportation planning process. Measuring reliability of trips 

between origin destination pairs was done using empirically observed historical data. 

Some assumptions made it possible to convert link travel times into OD travel times, 

and standard deviation of travel time was calculated using between day variations of 

the data as a reliability measure. Origin-Destination reliability introduced in the thesis 

is very useful and important, because it can be easily incorporated in travel models. 

Afterward, these data were used to estimate a mode choice model between two 

competing alternatives with reliability as an independent variable. The estimated 

coefficient of reliability made it possible to find reliability ratio and value of travel 

time reliability (RR and VoTR). This value is unique, since it is based on empirically 

observed OD-based reliability in mode choice context. The reliability data were also 

combined with travel time data to probe the relationship between travel time and 

travel time reliability. A nonlinear regression was used to regress travel time 

reliability on travel time. This regression was useful for obtaining reliability matrices 

when travel time matrices are available. These findings were combined with MSTM 
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in four different scenarios to find the economic benefits of building ICC in the base 

year, and some more extensive network improvements in the future year. Value of 

reliability savings by these improvements was calculated and presented in four 

different levels; State, County, Zone, and corridor level. 

This thesis explained how observed travel time data can be used to measure reliability 

at the OD level. It showed how OD-based reliability can be easily calculated and 

incorporated in transportation planning process. It also presented how value of 

reliability can be estimated using the data, and why the estimated reliability ratio is 

not comparable with previous studies. The case study findings showed considerable 

amount of reliability savings that should not be neglected. State level findings 

illustrated that reliability savings were about 10 percent of travel time savings. It also 

displayed that more comprehensive improvements in year 2030 will result in larger 

value of reliability savings. County level results demonstrated that counties that 

benefit from network improvements also have higher reliability savings. Counties 

having the highest reliability savings showed to be different between base year and 

future year due to the geographical pattern of network improvements. Zone level 

results displayed that future savings are more spread out in the state. Corridor level 

findings demonstrated considerable value of reliability savings per traveler for some 

major corridors.  

The results in different levels suggested that reliability should not be neglected in 

planning process because it can have significant effect on a vast geographical area. 

The framework used in this study can help any planning agency to incorporate 

reliability in their planning process by using available local data. 
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This work can be improved in many aspects for future. The mode choice model can 

be substituted with any other type of choice models based on utility maximization. 

Results from different choice models can be compared, to see how value of reliability 

differs in different choices. Another interesting comparison is comparing the model 

estimated with reported travel times versus the model with MWCOG travel times. 

Besides, other reliability measures can be used instead of standard deviation to 

analyze how it affects the results. One hour intervals for reliability data can also be 

changed with smaller intervals to see the effect. The reliability forecasting part can be 

improved by adding weather or crash data to the regression. The mode choice model 

itself has many aspects to be improved. Reliability of rail can be added if required 

data become available. Other modes such as bus may also be added in the future by 

collecting bus reliability data. By adding more modes, other types of discrete choice 

models such as mixed logit or nested logit should be tried to consider correlation 

between modes. 

Regarding incorporation with planning process, this study used value of reliability as 

a post processor of MSTM to calculate reliability savings. One major future work is 

to incorporate reliability inside MSTM by making some of the four steps sensitive to 

reliability. For instance, mode choice model of MSTM can consider reliability. This 

requires huge amount of reliability data for model estimation and calibration, but 

eventually it can improve the models significantly. 
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Chapter 2: Peak Spreading 

Section 1: Introduction 

Peak spreading is defined as expansion of peak period traffic from the traditional 

height of the peak outward to the shoulders of the peak. It happens when the number 

of travelers and the level of congestion increase on a roadway. It affects average daily 

peak period traffic profile by making it wider and flatter. In definition, same amount 

of traffic spread over larger period of time, which results in lower peak, but in reality 

peak spreading is a result of growth in traffic, and lower peak would never be 

observed. 

Two primary reasons mentioned in the literature for peak spreading phenomenon are, 

active and passive peak spreading. In active peak spreading travelers purposely retime 

their journey to avoid all or part of the peak period. They might do it by beginning 

their trips earlier to arrive at the same time, or might retime their trips completely. 

Active peak spreading has behavioral basis, and models that are not sensitive to travel 

behavior cannot capture it. Passive peak spreading occurs when journeys extend 

beyond the height of the peak as a result of increased delay due to the congestion, 

with no change in demand profile. As congestion increases, so do travel times; thus 

the peak period becomes more spread out because travelers are spending more time 

on the network. Passive peak spreading can be modeled through traffic assignment. 

Any transportation model should be able to capture peak spreading, because failure to 

do so may result in overestimation of traffic volumes in peak hour, and accordingly 
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underestimation of traffic volumes in the shoulders of the peak. In addition, polices 

such as variable road pricing (and other pricing mechanisms) that stimulate effective 

use of the existing network and becoming increasingly popular are often aimed at 

changing temporal distribution of traffic. Therefore any model aiming to work with 

such policy measures should be able to produce temporal distribution of demand, and 

be sensitive to travel behavior changes. Understanding the factors affecting travelers’ 

departure time choice (to model peak spreading) is a necessary pre-requisite to 

examine the potential effectiveness of policy measures aimed at alleviating traffic 

congestion, reducing emission, and achieving other transportation system measures. 

Unfortunately, there is no step for time of day choice inside four step models with 

static traffic assignment. Many of the four step models lack temporal component, or 

suffer from weak temporal modeling. A temporal component is usually modeled by 

one of the following methods (Barnes 1998): 

1. Post processing technique applying hourly factors 

2. Link based or trip based adjustments which address the problem of projected 

demand exceeding capacity 

3. Equilibrium scheduling theory 

4. Discrete or continuous choice models 

5. Rule based models 

These methods are all explained and reviewed in the literature review section. One 

major weakness of four step models is that they usually suffer from elementary time 

of day components such as hourly factors or link and trip based adjustments. Discrete 
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choice models are usually utilized in more advanced travel models such as tour or 

activity based models. Data on preferred arrival times are usually unavailable for trip 

based four step models, and these models are limited to use post processing 

techniques. Besides, most of four step models have static traffic assignment which 

does not have a time component.  

This chapter of thesis introduces a framework that can be used with a typical trip-

based four-step model to incorporate time of day modeling using discrete choice 

models.  This framework is unique in terms of data requirement. It only requires a 

household travel survey, four step model outputs such as skim matrices and trip 

tables, and traffic count data. All these data are readily available for modelers and 

practitioners. Two iterative frameworks are proposed that can estimate departure time 

choice model, and predict future demand distribution using aforementioned data for 

any trip based four step model. 

 One major research gap in this area is estimation of preferred time. Preferred time is 

not recorded in most RP surveys. Besides SP surveys including preferred times are 

not always available. Estimating demand distribution for future scenarios also require 

preferred time information which is not available in any survey. This thesis proposes 

a method to estimate preferred departure time by assuming rational behavior of 

travelers. This method is unique in the literature, and it can fill a very important 

research gap.  

Another contribution of this chapter is related to OD-based reliability which was 

discussed in the previous chapter. The models that will be explained in this chapter 

are estimated with OD-based reliability as an independent variable to explore the 
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effect of reliability on departure time choice. To the best of author’s knowledge, this 

is the first study that uses reliability in four step models. The advantage of introduced 

OD-based reliability is in its compatibility with travel models such as MSTM. This 

advantage is again demonstrated in this chapter, where OD-based reliability is 

estimated from skim matrices, and used in model estimation and prediction. 

In this study discrete choice models are selected as the best approach to model time of 

day. In the next section the previous literatures on time of day models are reviewed. 

The following section discusses the methodology in detail. Section 4 explains how 

MSTM is used to obtain alternative specific skims. Section 5 discusses how preferred 

departure time is estimated using skim matrices, and Section 6 presents departure 

time choice model estimation results separated by trip purpose. In Section 7, 

estimated models are used to predict the demand distribution of the base and future 

year to show how peak spreading occurs. The peak spreading chapter finishes with 

summary and concluding remarks. 

Section 2: Literature review 

A temporal component is usually modeled with one of the following methods (Barnes 

1998): 

1. Post processing technique applying hourly factors 

2. Link based or trip based adjustments which address the problem of projected 

demand exceeding capacity 

3. Equilibrium scheduling theory 

4. Discrete or continuous choice models 
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5. Rule-based models 

Hourly factors are the most basic approach to estimate volumes for hourly analysis. 

These factors can be varied by facility or area type. They can be applied after mode 

choice, which allows different peaking characteristics for different purposes. This 

method is widely used because of its simplicity, and is able to provide a rough 

estimate of peak hour traffic volume; however, it is only a static process, so it is not 

able to allow any type of temporal or geographical changes. Besides, it is not 

sensitive to policy changes, congestion level or capacity constraints. Maryland State-

wide Transportation Model (MSTM), similar to many other four-step models, 

currently uses this method (Costinett et al. 2009) with four time periods; namely 

morning peak, midday, afternoon peak, and night.  

Link based, or trip based methods are other ways of considering peak spreading. They 

use the capacity of the links, and do not allow the demand to exceed the capacity 

during the peak hour by shifting the demand to the shoulders of the peak. Link-based 

methods mainly use a function of some congestion measures to calculate V/C ratio, 

and try to keep it below 1. An example can be seen in Arizona DOT model (Loudon 

et al. 1988). This model assumes that while trips may shift outside the peak hour, they 

will occur in a 3 hour peak period, and formulates the relationship between the peak 

hour and peak period volumes as a function of peak period V/C ratio and facility type. 

Link-based methods are more realistic than hourly factors, and they are sensitive to 

congestion; however they lack behavioral assumption. Continuity of flow is not 

guaranteed. Besides, they fail to consider spreading resulted from somewhere else in 

the network or shifts outside the peak period. Trips-based methods are preferred to 
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link-based, since they can keep the continuity of flow. They revise trip tables in order 

to reduce trips on the links in which demand exceeds capacity. An example is Tri-

valley model in California (Cambridge Systematics). In this model hourly factors are 

used at the beginning to calculate peak hour demand matrices, and then this demand 

is assigned to the network to calculate V/C ratio. For links where demand exceeds 

capacity, a mathematical approach is used to adjust trip tables to make V/C ratio 

equal to 1. Revised trip tables are assigned to the network again, and then V/C ratio is 

checked. The process is repeated till a close match between desired and obtained 

volume is met. 

Equilibrium scheduling theory (EST) (Hyman 1997) uses direct equilibration of 

simple models of demand and network. These models are based on Vickrey’s 

bottleneck model (Vickrey 1969) in which homogeneous users traveling from one 

origin to one destination using one link are assumed. Vickery argues that a system of 

a simple utility function for demand and a simple queue function for network leads to 

an equilibrium such that no traveler can reduce their cost by changing departure time.  

𝑉( 𝑡 ) =  𝛼 𝐶(𝑡) +  𝛽 𝑀𝑎𝑥(0, (𝑃𝐴𝑇 − 𝑡 − 𝐶(𝑡))) +  𝛾 𝑀𝑎𝑥(0, (𝑡 + 𝐶(𝑡) − 𝑃𝐴𝑇)) (Equation 6) 

𝐿(𝑡) = ∫ 𝑞(𝑤)𝑑𝑤 − ℎ ∗ (𝑡 − 𝑡1)  
𝑡

𝑡1
 (Equation 7) 

In equilibrium scheduling theory Vickrey’s model is extended in number of aspects 

such as considering heterogeneous users. It can be generalized to transportation 

networks or even dynamic traffic assignment. One major issue with EST is modelling 

preferred arrival time. The positive aspect of EST is modeling in continuous time, and 

the biggest negative feature is being deterministic. It has the strong assumption that 

there is no unmeasured interpersonal variation. The other negative issue is that effect 
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of socio-economics and demographics can only be seen in Preferred Arrival Time 

(PAT) estimation. One example of EST is HADES (Heterogeneous Arrival and 

Departure time based on Equilibrium Scheduling theory) discussed by van-Vuren 

(van Vuren et al. 1999) . In this study PAT is modeled by regression on socio-

economic and journey related variables. SATURN and CONTRAM are used as 

assignment models to implement EST. The conclusion of this study states that 

HADES is the final stage of EST development, and further research should be toward 

discrete choice models. 

Discrete choice models are followed by (Small 1982), and they are based on random 

utility theory. Such models categorize the time span into discrete intervals, and 

usually assume a similar specification to Vickrey’s utility with an added error term. 

Socio-economics, or demographics, effects can be easily included in the utility 

function. Many types of discrete choice models are introduced by researchers for a 

variety of purposes. The primary difference of these models is their assumption about 

the error term. Some of the widely used models are multinomial logit, nested or cross 

nested logit, ordered generalized extreme values, multinomial probit, and mixed logit. 

Correlation among unobserved factors is one of the issues that different types of 

models try to solve by assuming specific structure for the error term. Except 

multinomial logit, all mentioned discrete choice models consider error correlation to 

some extent. Both observed and unobserved heterogeneity can be considered in 

discrete choice models by adding person-specific terms to deterministic or 

probabilistic part of the utility function. 
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Many types of discrete choice models can be categorized under a class of random 

utility models known as  Generalized Extreme Value (GEV) models introduced by 

(McFadden 1978). For instance multinomial logit (MNL) is a simple type of GEV 

model that assumes error terms are IID Gumbel, which results in no correlation 

between error terms. An example can be seen in (Zeid et al. 2006). Abu-Zeid et al. 

followed FHWA research project which designed a procedure to be applied within 

activity or tour-based models, and they used household travel survey data from San 

Francisco bay area to estimate and test a MNL model for time of day with 36 

alternatives. Capturing scheduling delays by using continuous time functions and 

predicting travel times based on regression using travel times in the survey are among 

some interesting ideas they used in their work. Nested logit is another type of GEV 

model, which is usually used when two choices are being modeled together. Nests 

may represent different choice dimensions, or they may refer to different categories 

on just one choice. Error terms of alternatives in the same nest have correlation 

among each other, while alternatives in different nests have independent error terms. 

Another GEV model similar to nested logit is Ordered Generalized Extreme Value 

model introduced by (Small 1987) which is used with ordered alternatives. Nests 

have overlap that provides more flexibility to the correlation pattern. Covariance 

between any two alternatives receives a contribution from each subset they share 

together. Correlation in OGEV model depends on distance, while correlation between 

distant alternatives is sometimes needed. One example of OGEV is in (Bhat 1998b) 

where he estimated joint choice of mode and departure time in a nested structure with 

mode choice at the higher level of hierarchy, using MNL for mode choice and OGEV 
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for time of day choice. The model is used to estimate shopping trips, and is applied to 

data from 1990 San Francisco travel survey. Results show that the model performs 

better than MNL and NL models. 

Another widely used type of discrete choice models is multinomial probit, which 

assumes normal distribution for error terms. It is able to compute complete variance 

covariance matrix and correlation between each two alternatives, but at the expense 

of evaluating very high dimensional multivariate normal integral for the choice 

probabilities. Another impediment is having large number of parameters to estimate. 

Methodological developments suggest approximating these high-dimensional 

integrals with smooth, unbiased and efficient simulators. MNP has been used to some 

extent in the literature, for instance work by (Liu and Mahmassani 1998), by exposing 

constraints on covariance matrix, but it still needs powerful computers. 

The last aforementioned type of discrete choice models is mixed logit, which has 

been known since (Cardell and Dunbar 1980) and (Bolduc and Ben-Akiva 1991) as a 

highly flexible yet practical model type. It is not less general than MNP, and it is able 

to estimate complete variance covariance matrix.  In the literature, mixed logit models 

are in two forms, error components (ECL) and random coefficient (RCL). According 

to (McFadden and Train 2000) ECL can approximate as closely as one pleases, any 

type of discrete choice model based on random utility maximization. In mixed logit 

models, the choice probabilities of alternatives conditional on error components or 

random coefficients take the familiar multinomial logit form. The unconditional 

probabilities are obtained by integrating the MNL form over the distribution of 

random parameters. In terms of estimation, the log-likelihood function cannot be 
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evaluated analytically, because it does not have a closed form solution, simulation 

techniques are used to approximate the choice probabilities in the log-likelihood 

function. One example of mixed logit is (Bhat 1998a) that uses an error component 

mixed multinomial logit for the analysis of travel mode and departure time choice for 

home based social-recreational trips using 1990 data from San Francisco Bay area. 

Another example is an error component logit model for the joint choice of mode and 

time of day, using stated preference data in Netherland for LMS tour based model by 

(De Jong et al. 2003).  General form of error component considered is 

∑ ∑ 𝜼𝒔𝒘𝒔𝒕Ƹ𝒕𝒕𝒔 +  𝜺 where Ƹ𝒕 is the error component vector distributed 𝒇 (𝟎, 𝟏), 𝜼𝒔 is vector 

of parameters to be estimated, and 𝒘𝒔𝒕 is a general weighting matrix based on data or 

fixed by the analyst. They tested different component, proportional to shift in 

departure time, change in cost, change in travel time, and component for mode shift, 

and estimated different models for different tours and trip purposes. One RCL mixed 

logit model example is (Börjesson 2008) that estimated a mixed logit model by 

random coefficient, using both RP and SP data for Stockholm area morning peak 

hour. Mode choice is jointly considered by modeling the propensity of shift from 

driving.  Reliability is also considered in the utility function. In the SP data, reliability 

is presented by intervals, whereas it is obtained from traffic cameras in RP data. 

Travel times are simulated with CONTRAM. 

Some of the more recent works treat time as a continuous variable. (Bhat and Steed 

2002) states the following disadvantages for discrete modeling of time: (1) setting 

interval boundaries is arbitrary, and different boundary assumption can change the 

model. (2) Points close to each other but in different intervals are perceived similarly 
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by the traveler, but the model considers them in different intervals. (3) Loss of 

temporal resolution. Usual approach in treating departure time as a continuous 

variable involves hazard functions such as works by (Wang 1996) (Bhat and Steed 

2002). The primary limitation of hazard models is that they are not based on random 

utility theory. (Lemp and Kockelman 2010) used a continuous logit model that is 

based on random utility theory. They estimated their model with Bayesian estimation 

technique on work tour data from 2000 San Francisco bay area travel survey. 

Modeling time as a continuous variable requires having travel time and travel time 

variation as continuous functions of time during the day, which is done through OLS 

regression. 

Most of the aforementioned choice models are based on rational behavior, assuming 

travelers are able to identify all their feasible alternatives, measure all their attributes, 

and choose accordingly to maximize their utility. Rule-based models avoid this 

assumption of rationality, and try to model how travelers actually make decisions 

through learning, knowledge, searching, etc. One good example is the positive model 

(Zhang 2007) of departure time choice by (Xiong and Zhang 2013) that uses search 

cost and search gain concepts to model Bayesian learning of travelers, and tries to 

find some rules by which travelers actually choose their departure time. 

After reviewing all these models, an advanced model compatible with trip based four 

step model without extensive data requirement could not be found. Discrete choice 

models are used in this study as an initial step toward integration of trip based four 

step models and time of day models. Future steps can be toward continuous choice 

models. 
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Section 3: Methodology 

Peak spreading is the result of travelers’ departure time choice, when they try to 

choose a different time interval for their trips, considering conditions of network such 

as congestion and reliability in additions to scheduling preference. The need of a 

departure time choice model to model peak spreading appears pragmatic to 

realistically model travelers’ preferences. Peak spreading can be observed by 

comparing distribution of travel demand for any two scenarios. This thesis chapter 

compares travel demand distribution for base year (2007) and future year (2030) in 

the study area; which is Montgomery County, Maryland. Travel demand distributions 

are obtained by an estimated departure time choice model. Further, the model is 

validated to illustrate consistency and reasonableness.  The departure time choice 

model predicts choice of travelers among the following 12 alternatives (proposed for 

this study): 

1- 5 a.m. to 6 a.m. 

2- 6 a.m. to 7 a.m. 

3- 7 a.m. to 8 a.m. 

4- 8 a.m. to 9 a.m. 

5- 9 a.m. to 10 a.m. 

6- Mid-day 10 a.m. to 3 p.m. 

7- 3 p.m. to 4 p.m. 

8- 4 p.m. to 5 p.m. 

9- 5 p.m. to 6 p.m. 

10- 6 p.m. to 7 p.m. 
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11- 7 p.m. to 8 p.m. 

12- Night 8 p.m. to 5 a.m. 

These alternatives are selected based on observed departure time choice of travelers 

in the study area. Most of the travels are made during the morning peak (5 a.m. to 10 

a.m.) which is divided to 5 one hour periods, and the afternoon peak (3 p.m. to 8 

p.m.) which is again divided to 5 one hour periods. The rest of the day is separated 

into mid-day and night periods.  

One of the principal characteristics of a trip is its purpose. Trips with different 

purposes may be different in terms of being discretionary or non-discretionary, 

having fixed or flexible schedule etc. Accordingly this study uses separate models for 

different trip purposes. The six purposes utilized in this study are as follows: 

1- Home-Based Work 

2- Home-Based Shopping 

3- Home-Based School 

4- Home-Based Other 

5- Non- Home-Based Work 

6- Non-Home-Based Other   

The data used in the model estimation and the steps of the framework are explained in 

the following sections. 

3-1 Data 

The dataset used in this study contains household travel survey which forms the basis 

of analyzing underlying behavior of various trips. Planning model skim matrices is 

combined with this dataset in order to form the attributes of alternatives. When the 
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estimated model is used for forecasting, trip matrices from the planning model are 

used as a basis for number of trips between each origin and destination. These 

datasets are described here: 

2007-2008 TPB-BMC Household Travel Survey 

 The Transportation Planning Board (TPB) from February 2007 to April 2008 

conducted this survey in order to gather information about demographics, 

socioeconomics and trip making characteristics of residents in Washington and 

Baltimore metropolitan areas. 14,000 households (about 31,000 persons) participated 

in this survey, and the data is geocoded at the Traffic Analysis Zone (TAZ) level. The 

data contains four major components: household data, person data, vehicle data and 

trip data. This dataset is used to obtain information about trip origin, trip destination, 

trip purpose, trip distance and travelers’ departure time choice for model estimation. 

This dataset contains 15956 trips related to Montgomery County. 

MSTM skim matrices 

Maryland Statewide Transportation Model is developed by Maryland State Highway 

Administration (MSHA) to consistently, and reliably assess the effects of future 

developments on key measures of transportation performance. It can also be used as 

an evaluation tool to address effects of investments on development patterns. This 

model is a 4 step transportation model that includes, trip generation, trip distribution, 

mode choice and assignment. MSTM includes base year model (2007) and future 

year model (2030). Both demand and network parameters are different for these two 

scenarios. 



 

 56 

 

Among the principal outputs of MSTM are skim matrices. Skim values describe the 

general cost of travel between OD pairs, which may include travel time, travel cost, 

tolls and etc. Each origin or destination is a SMZ (Statewide Model Zone), and 

MSTM has 1607 SMZs which include all Maryland and some selected counties in 

adjacent states. In departure time choice model estimation of this chapter, it is 

assumed that skim values are among the utility parameters that formulate travelers’ 

choice; therefore these skim values are combined with HHTS trip data to complement 

required trip information for model estimation. In addition, when estimated models 

are used for daily travel demand distribution prediction, trips are generated by their 

corresponding OD skims.  

One main challenge of using MSTM skim values for this study is that MSTM 

currently has only 4 time periods; namely, morning peak, afternoon peak, midday and 

night. The current method to divide trips in these time periods is constant hourly 

factors. In order to model departure time choice among 12 previously described 

alternatives, having skim values for each of the alternatives is required. Section 4 

describes the method used to obtain skim values corresponding to alternatives. 

MSTM trip tables 

Trip matrices are the other main outputs of MSTM. Trip matrices contain information 

about number of trips between OD pairs. When departure time choice model is used 

for prediction, trips are generated between OD pairs based on trip matrices. MSTM 

trip matrices are divided by trip purpose. These trip purposes are the same as 

described earlier for the model estimation.  
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3-2 Framework 

The framework for obtaining a travel demand distribution for any given scenario 

contains two key parts. The first part is model estimation based on the base year data. 

The estimated model will be used afterward in the second part which is model 

prediction. Model prediction forecasts travel demand distribution of any given 

scenario.  

Model estimation framework 

A departure time choice model is estimated using the available trip data in the 

Household travel survey. This dataset contains information about the departure time 

choice of the travelers, and lacks the generalized cost information of the other 

alternatives they could choose. MSTM skim matrices are used as a source for 

information about the other alternatives. The way MSTM’s alternative specific skim 

matrices obtained will be explained in Section 4. The estimation process is 

summarized in Figure 14. 
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Figure 14: Departure time choice estimation framework 

The process starts by dividing MSTM’s four standard trip matrices into 12 trip 

matrices. These initial trip matrices are used in the first iteration, and they will be 

updated in each iteration. Twelve matrices represent the twelve alternatives 

previously described. By doing so, MSTM can provide alternative specific skim 

matrices. This process will be explained in greater details in Section 4. In subsection 

5-2 of the reliability part, regression of reliability based on the travel time was 

explained. Using the same method, reliability data can be derived from the skim 

matrices for each alternative. Other important data type for model estimation is 

information about travelers’ preferred times. Such data are not available in the 

household travel survey, and it is required to calculate scheduling terms of the 

departure time choice model. Skim matrices are used to estimate preferred departure 

time information by a method which is proposed and used in this study for the first 

time. This is a very critical part which is described in section 5. Afterward, 

generalized cost information, reliability information, and preferred time information 
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are combined with household travel survey data to form the complete dataset required 

for model estimation. 

The departure time choice model is a discrete choice and follows random utility 

theory. The form of the utility function is similar to the standard form introduced by 

(Small 1982). 

𝑈𝑖 =  𝐴𝑆𝐶 𝑖 +  𝛽𝑠𝑘𝑖𝑚  ∗  𝑠𝑘𝑖𝑚𝑖  +  𝛽𝑙𝑎𝑡𝑒  ∗  𝐿𝑎𝑖  +  𝛽𝑒𝑎𝑟𝑙𝑦  ∗  𝐸𝑖  +  𝛽𝑑𝑖𝑠𝑡−𝑠𝑘𝑖𝑚  ∗  𝑑𝑖𝑠𝑡 ∗  𝑠𝑘𝑖𝑚𝑖  +

 𝛽𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  ∗  𝑅𝑖 + 𝜀𝑖 (Equation 8) 

Ui: Utility of alternative i 

ASCi: alternative specific constant of alternative i 

Skimi: generalized cost of travel for alternative i 

Lai: lateness penalty for alternative i 

Ei: earliness penalty for alternative i 

Disti: distance between origin and destination 

Ri: travel time reliability of alternative i 

βskim: coefficient of the generalized cost 

βlate: coefficient of the lateness penalty 

βearly: coefficient of the earliness penalty 

βdist-skim: coefficient of the combination of distance and skim 

βreliability: coefficient of the reliability 

εi : error term 

The form described is the general form of the utility function that is tried for different 

trip purposes. Specific terms may show insignificant effect on some purposes and be 
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removed from their corresponding model. Scheduling disutility is usually modeled by 

shifts from the most preferred time; either preferred departure or preferred arrival 

time. Lateness penalty and earliness penalty in the model capture this disutility. They 

are formulated as shown in Equations 9 and 10. 

𝐸𝑖 = 𝑀𝑎𝑥[ 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑖 − 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑖, 0 ] (Equation 9) 

𝐿𝑎𝑖 = 𝑀𝑎𝑥[𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑖 − 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒𝑖 , 𝑜]  (Equation 10) 

Different types of discrete choice models such as Multinomial Logit, Nested Logit, 

and Mixed logit are estimated for each trip purpose and the best model in terms of 

performance is chosen. The main difference between these types of model is their 

assumption on random error term, which describes the correlation between 

alternatives. 

The result of the model estimation is based on the initially divided trip tables. The 

model itself can be used to simulate the trips and distribute them between alternatives. 

This gives better estimation of the demand distribution; thus the trips are divided 

based on the estimated model to get the new divided trip tables. New divided trip 

tables are used as the input of MSTM and another round of the loop is executed 

again. This process continues until the divided trip tables resulting from estimated 

model match the previous step’s divided trips by some convergence criteria. When 

convergence reached, the final model can describe the behavior of travelers, and it 

should be used to predict travelers’ behavior in the future scenarios. In this step, only 

one iteration of the loop is performed, and continuing the same steps in additional 

iterations may lead to better results. More iterations will be conducted in the future to 

improve the model estimation part. 
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Model prediction framework 

After estimating the departure time choice model using the local data, the model is 

used to predict the distribution of travel demand. In this study, departure time choice 

model is used to compare base year 2007 demand with future year 2030 demand. 

Each scenario is defined with its total demand and network inside MSTM. This study 

uses total trip tables and divides them into 12 separate trip matrices for 12 intervals. 

The prediction process is summarized in Figure 15. 

 

Figure 15: Framework to forecast demand distribution for any given scenario using estimated 

departure time choice model 

In order to predict the demand distribution of any given scenario, initial trip tables 

and skim matrices are needed. Section 4 describes how traffic counts data is utilized 

to obtain initial trip tables and skim matrices for 12 intervals. Trip data should be 

generated for the scenario based on the trip tables and skim matrices. Trip tables 

include number of trips between origins and destinations, and skim matrices 

complement this data by adding generalized cost data for each interval. In this 
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modeling framework, each trip has a preferred deaparture time, which should be 

generated. This is done by generating a random number from preferred departure time 

distribution of each trip purpose. 

It is assumed that the distribution of preferred departure times stays the same for any 

scenario. This distribution is obtained from the model estimation data for which 

preferred departure time of each trip was previously estimated. The estimation of 

preferred departure time is explained in detail in Section 5. It is assumed that the 

same distribution applies to any other scenario, and preferred departure time of trips 

are generated by generating random numbers from this distribution. This distribution 

varies by trip purpose. The same reliability model explained earlier is used again to 

obtain reliability of alternatives for all trips. Origin and destination of the trips from 

trip tables, generalized cost of alternatives from skim matrices, scheduling disutility 

from generated preferred departure times, and reliability data are all combined to 

form the dataset used for calculating probability of choosing each alternative. This 

dataset is inputted into the previously estimated departure time choice model, and the 

choices are simulated. The result of this simulation is the demand distribution and 

divided trip tables.  

Divided trip tables are compared with the initial trip tables to check if they match by 

some convergence criteria. If the convergence criterion is not met, another iteration of 

the loop is run again until the input and output of the iteration match. Similar to the 

estimation, only one iteration of the loop is done at this step. Further iterations will be 

run in the future to improve the final distribution of the demand. 
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Section 4: Alternative Specific Skims 

Figure 16 shows the step-by-step procedure of the data preparation for the peak 

spreading model development 

 

Figure 16: Step by step procedure to obtain trip tables and skim matrices for 12 alternatives 

The first step in the data preparation is the extraction of sub-area network of 

Montgomery County from the Maryland Statewide Transportation Model (MSTM). 

MSTM is designed as a multi-layer model working at both statewide and regional 

levels. The model contains 1,739 traffic analysis zones, including 1,607 state model 

zones (SMZ) and 132 regional model zones (RMZ) (Mishra et al. 2011). MSTM 

executes the traditional four step travel demand model in the network: cross-classified 

model for trip generation, gravity model for trip distribution, nested-logit model for 
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mode choice and time of day allocation model for traffic assignment. In this model, 

Frank Wolfe algorithm is employed for multi-class user equilibrium assignment. The 

algorithm repeatedly executes three major steps: shortest path generation, AON 

assignment and volume adjustment until the convergence criteria is satisfied.  

The extraction of the sub-area of the Montgomery County was performed with the 

help of “Drawing Layer” tools in CUBE software using the shape-file of Montgomery 

County network and the MSTM. The shape-file was used as a layer on the full 

MSTM network and then the portion of the network consisting of Montgomery 

County was extracted and then saved. Once completed, the newly created sub area 

network could be opened in CUBE which confirmed that the extraction was 

successful. Figure 17 shows the extracted sub-area network of Montgomery County. 

The second step was to extract the trip matrices from MSTM using the Montgomery 

County sub-area network over four daily time periods (i.e. AM peak, PM peak, 

Midday and Night). The trip matrices were extracted for 19 trip purposes which were 

later consolidated to 6 trip purposes over the 4 daily time periods, AM peak (5:00 am 

– 10:00 am), Midday (10:00 am – 3:00 pm), PM peak (3:00 pm – 8:00 pm) and Night 

(8:00 pm – 5:00 am). The trip matrices were extracted for the base scenario by 

running highway assignment using the extracted sub-area network as input. The 

outputs of this process are the 6 trip matrices for each of the 4 time-periods. In this 

process, Equation 11 is formulated to calculate the generalized link cost for all user 

classes: 

cost = t + (toll/vot) + π×distance (Equation 11) 

where 
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t: link travel time (minutes), which is a function with respect to traffic volume assigned onto the 

link; 

toll: toll charge in cents which differ in peak and off-peak period. 

vot: value of time (cents/minutes), converting toll charge in cents into time in minutes. 

distance: link distance in miles; the coefficient π converts distance in miles into time in minutes 

(taken as 0.25 in this study). 

 

Figure 17: Extracted Montgomery County network from MSTM 

The facilities, user class and restrictions are suitably coded and the standard BPR 

function is formulated for the link-cost function as: 

t = t0 [1 + α (v/c) β] (Equation 12) 

where 
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α and β are two coefficients which differ across link classes; 

t0 = 60 × distance (mile) / speed (mph); 

v: the sum of total assigned traffic volumes of 20 user classes; 

c: lane capacity (vehicles/hour) × the number of lanes / ConFac; 

ConFac = 0.39 for AM peak period (3 hours), equivalent to expanding capacity by 2.56; 

ConFac = 0.21 for Midday peak period (6 hours), equivalent to expanding capacity by 4.76; 

ConFac = 0.34 for PM peak period (3 hours), equivalent to expanding capacity by 2.94; 

ConFac = 0.22 for Night period (12 hours), equivalent to expanding capacity by 4.55 

For running the script, a specific file has been used which contains various parameters 

required for model execution. This file contains various zone ranges, general 

parameters, highway skim parameters, trip generation parameters, trip distribution 

parameters, mode choice parameters, assignment parameters and other parameters 

needed to run all steps of the model. Finally, the volumes are added in the assigned 

matrices and the final trip matrices for the four time periods are formed. 

The next step is to convert the four time-period matrices into 12-time period matrices. 

The 12 time periods include the hourly trip matrices for the 5 hours AM and PM peak 

period respectively and for the Mid-day and Night, the whole period was considered 

as one time-period for each of them. In order to get the 12 time-period matrices, the 

trip matrices for the four periods, AM, MD, PM and NT were combined to form daily 

O-D trip matrices based on the respective trip purposes. Then alternative specific trip 

matrices were obtained by multiplying the daily O-D trip matrices with the 12 time 

period factors obtained from traffic counts data. 

After the creation of the 12 time-period trip matrices, 12 Montgomery sub-area 

network files consisting of the congested speed of the links are created using the 

CUBE script for Highway Assignment of sub-area analysis. For this process, ConFac 
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values of 1 are used for AM and PM peak periods, 0.21 for MD period and 0.22 for 

NT period. The input data for this process are the 12 time period trip matrices for the 

6 trip purposes and the sub-area network of Montgomery County that was extracted 

in step one. The output of this process are the network files for the 12 time periods 

containing the congested speed of the links which, in turn, works as the input file for 

the generation of travel time matrices or Skims as explained in the next step. 

The final step of the data preparation is the creation of travel time matrices for the 

links of the sub-area network. This process is also done using CUBE script in which 

the sub-area network for the 12 time periods containing the congested speeds works 

as the input file and the output is the 12 time period travel time matrices or skims. In 

this process the travel time is calculated using Equation 13: 

TT = 60*Distance/ (CSPD) (Equation 13) 

where, 

TT = Travel time in Minutes 

Distance = Distance or Length of the links in miles 

CSPD = Congested speed of the links in miles/hr.  

Section 5: Preferred Departure Time (PDT) Estimation 

The departure time choice model used in this thesis is a type of discrete choice 

models which has scheduling delay penalties in its utility function. These penalties 

are formulated as the shift from preferred arrival or preferred departure time. As a 

result, information about preferred time is needed to estimate the model and using the 

model for forecasting. 
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Most revealed preference surveys such as household travel surveys lack preferred 

time information. 2007-2008 TPB-BMC HHTS which is used as the primary data 

source in this study has the same deficiency; thus preferred time of the recorded 

travels need to be estimated. Previous preferred time estimations are based on 

regression on traveler and trip characteristics which needs huge amount of data. 

These data are not always available in four step modeling context. Estimating 

preferred times based on skim values has not been done before to the best of author’s 

knowledge. 

Any assumption on preferred times, strongly affects model estimation result. For 

instance, it can be assumed that preferred departure time is equal to actual departure 

time for the base case that is used for model estimation. This assumption results in 

estimating skim coefficient equal to zero, since it means travelers choose the 

alternative that makes their scheduling delay penalty equal to zero. Any assumption 

on preferred times should be considered carefully because it may completely change 

the model estimation results. 

This thesis introduces a method to estimate PDT based on skim values. It assumes 

rational behavior of users who are trying to maximize their utility. This approach 

estimates preferred departure time based on actual departure time. It is assumed that 

the actual departure time is the result of travelers’ choice which maximizes their 

utility function. Travelers may choose less congested intervals instead of their 

preferred interval, if utility gained by smaller generalized cost dominates disutility of 

earliness or lateness. Therefore choice of any interval is based on the tradeoff 

between smaller generalized cost utility, and scheduling delay disutility. When actual 
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departure interval j is observed, the preferred departure time may be any of the more 

congested periods that by shifting from there, the gained utility of smaller cost has 

dominated the disutility of earliness or lateness. Equations 14 and 15 assumed to 

calculate the probability that observed trip at interval j has PDT at interval i: 

𝑃(𝑃𝐷𝑇 = 𝑖|𝐴𝐷𝑇 = 𝑗) = 𝛼/𝑘 ∗
𝑆𝑖−𝑆𝑗

|𝑖−𝑗|
  If  𝑆𝑖  > 𝑆𝑗  (Equation 14) 

       𝑃(𝑃𝐷𝑇 = 𝑖|𝐴𝐷𝑇 = 𝑗) = 0                 If  𝑆𝑖  <=  𝑆𝑗  (Equation 15) 

Si: skim value at interval i 

 α: Parameter to be estimated or assumed 

k: scaling factor 

This formulation states that travelers do not shift from their preferred time to a more 

congested interval. For less congested intervals, the probability of shift increases by 

the utility gain (Si-Sj), and decreases by the utility loss (i-j). P indicates probability of 

shift from i to j, so sum of the P values over all intervals should be 1. Or: 

0 ≤ ∑ 𝑃(𝑃𝐴𝑇 = 𝑖 | 𝐴𝐴𝑇 = 𝑗)𝑖≠𝑗 ≤ 1 (Equation 16) 

Sigma in Equation 16 represents probability of the observed trip at j being shifted 

from any other preferred interval i. For instance, this sigma is 0 for the peak hour, 

because nobody shifts from their non-peak preferred interval to peak interval as doing 

so forces more congestion and more deviation from the preferred time. k is a scaling 

factor that corrects the probability values to make the above sigma between 0 and 1, 

and is calculated as: 

𝑘 =
𝑪𝑫𝑭(∑ 𝜶∗

𝑺𝒊−𝑺𝒋
|𝒊−𝒋|𝒊≠𝒋 )

∑ 𝜶∗
𝑺𝒊−𝑺𝒋
|𝒊−𝒋|𝒊≠𝒋

 (Equation 17) 
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Cumulative density functions give a value between zero and 1, and they can be used 

to scale the shift probabilities. The chosen CDF should keep the small values nearly 

the same, but decrease the larger values into [0, 1] scale. Exponential CDF with =1 

is used here to scale the probabilities.  

The other parameter of the model, α is estimated using Home-Based Work dataset. 

For HBW trips PDT can be obtained using work start time and work end time, by 

assuming that work start time is the preferred arrival time of home to work trips, and 

work end time is the preferred departure time of work to home trips. Knowing the 

probability of PDT being in each interval as a function of α, and actual preferred 

interval, α can be estimated using maximum likelihood estimation. Doing so, α is 

estimated to be equal to 5.56, with standard deviation equal to 0.181, and t-value 

equal to 30.659. Alpha is assumed to be the same for other trip purposes. 

The method described can estimate the PDT for model estimation dataset without 

requiring any further data collection. The distribution of PDTs for each trip purpose 

can be obtained from the results of this estimation. When applying the departure time 

choice model for other scenarios for forecasting, this distribution is assumed to be 

fixed, and PDT of travels are randomly drawn from the PDT distribution. It is a fairly 

good assumption, because PDTs are dependent on traveler’s schedules and 

preferences, not necessarily on network conditions. 

Section 6: Departure Time Choice Model Estimation 

Model estimation is done separately for each of the six trip purposes. Biogeme 

software (Bierlaire 2003) is used to estimate different types of discrete choice models. 
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The initial purpose of this study was to estimate random coefficient mixed logit 

models, but the results showed that the variances of random coefficients were not 

significant; meaning that the coefficients did not vary significantly among the sample, 

so assuming mixed logit structure did not improve the models. The reason can be the 

combination of the assumed alternatives. The mixed logit structure is designed to 

capture the correlation of the alternatives, and it seems that one hour intervals do not 

show that much correlations. It is possible that by decreasing the length of each 

alternative from one hour to 15 minutes or smaller, mixed logit structure shows better 

performance.  

The models described in this chapter are either multinomial logit or nested logit. If 

nested logit shows better performance than multinomial logit in terms of likelihood, 

and nest coefficients are significant, nested logit structure is preferred to multinomial 

logit.  

One major difficulty in discrete choice models for departure time choice is to 

represent intervals by a single time-point. Usually, the midpoint is selected to 

represent the interval, but for midday and night intervals of this study, which are 5 

and 9 hours, the midpoint is not a good choice. Therefore, these intervals are divided 

into one hour intervals with the same skim value and alternative specific constant for 

modeling purposes. 

6-1 Home-Based Work (HBW) Trips  

For this trip purpose nested logit structure showed better performance than 

multinomial logit and it is preferred. The nests are morning peak containing 

alternatives 1 to 5, afternoon peak containing alternatives 7 to 11, midday containing 
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5 hours of alternative 6, and night containing 9 hours of alternative 12. Tables 6 to 8 

summarize the results of model estimation: 

Table 6: HBW model performance 

Model: Nested Logit 

Number of estimated parameters: 18 

Number of observations: 2928 

Number of individuals: 2928 

Null log-likelihood: -9305.342 

Constant log-likelihood: -7655.392 

Initial log-likelihood: -9984.788 

Final log-likelihood: -2442.420 

Likelihood ratio test: 13725.843 

Rho-square: 0.738 

Adjusted rho-square: 0.736 

 

Table 7: HBW model parameter estimation results 

Name Value Std err t-test 
p-

value 

Robust Std 

err 

Robust t-

test 

p-

value 

ASC_1 0.554 0.308 1.80 0.07 0.315 1.76 0.08 

ASC_10 0.732 0.243 3.01 0.00 0.264 2.77 0.01 

ASC_11 0.637 0.250 2.54 0.01 0.268 2.37 0.02 

ASC_12 0.00 fixed 
     

ASC_2 1.26 0.295 4.26 0.00 0.295 4.26 0.00 

ASC_3 1.29 0.277 4.67 0.00 0.278 4.66 0.00 

ASC_4 1.04 0.267 3.89 0.00 0.263 3.94 0.00 

ASC_5 0.115 0.276 0.42 0.68 0.273 0.42 0.67 

ASC_6 -1.07 0.271 -3.93 0.00 0.283 -3.77 0.00 

ASC_7 -0.184 0.275 -0.67 0.50 0.280 -0.66 0.51 

ASC_8 0.443 0.256 1.73 0.08 0.268 1.65 0.10 

ASC_9 0.532 0.245 2.17 0.03 0.262 2.03 0.04 

B_early -0.0636 0.00206 -30.88 0.00 0.00197 -32.22 0.00 

B_late -0.0544 0.00176 -30.88 0.00 0.00171 -31.73 0.00 

B_skim -0.0458 0.00877 -5.22 0.00 0.0103 -4.45 0.00 

 

Table 8: HBW model nest coefficients estimation results 

Name ▾ Value Std err t-test p-value Robust Std Robust t- p-
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err test value 

afternoon_peak 0.915 0.0438 20.87 0.00 0.0402 22.74 0.00 

mid_day 0.935 0.0752 12.43 0.00 0.0683 13.69 0.00 

morning_peak 0.899 0.0418 21.52 0.00 0.0372 24.16 0.00 

non_peak 1.28 0.140 9.14 0.00 0.134 9.58 0.00 

 

The results show the correct sign for skim and scheduling delays, because they are all 

disutility, and they should have negative sign. The Rho-square is relatively large 

because of preferred departure time estimation.  

The model is estimated on 70 percent of the data, and the remaining 30 percent is 

used for validation purpose. The estimated share should be compared with real share 

for validation. Figure 18 shows the result of model validation: 

 

Figure 18: HBW model validation using 30 percent of data 

Normalized root mean square error of this validation is 0.102 which is satisfying. It 

can be seen that work trips are primarily concentrated in morning peak and afternoon 

peak hours. 
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6-2 Home-Based Shopping (HBS) Trips 

Similar by HBW model, the nested logit structure showed better performance than 

multinomial logit. The nests are morning peak containing alternatives 1 to 5, 

afternoon peak containing alternatives 7 to 11, midday containing 5 hours of 

alternative 6, and night containing 9 hours of alternative 12. Tables 9 to 11 

summarize the results of model estimation: 

Table 9: HBS model performance 

Model: Nested Logit 

Number of estimated parameters: 19 

Number of observations: 2260 

Number of individuals: 2260 

Null log-likelihood: -7182.402 

Constant log-likelihood: -6147.558 

Initial log-likelihood: -7615.467 

Final log-likelihood: -1573.795 

Likelihood ratio test: 11217.213 

Rho-square: 0.781 

Adjusted rho-square: 0.778 

 

Table 10: HBS mode parameter estimation results 

Name Value Std err t-test 
p-

value 

Robust 

Std err 

Robust t-

test 

p-

value 

ASC_1 -1.48 0.628 -2.36 0.02 0.447 -3.32 0.00 

ASC_10 0.531 0.212 2.51 0.01 0.220 2.41 0.02 

ASC_11 0.778 0.180 4.32 0.00 0.192 4.05 0.00 

ASC_12 0.00 fixed 
     

ASC_2 -0.251 0.448 -0.56 0.57 0.418 -0.60 0.55 

ASC_3 0.0846 0.393 0.22 0.83 0.350 0.24 0.81 

ASC_4 0.393 0.353 1.11 0.27 0.311 1.26 0.21 

ASC_5 0.582 0.305 1.91 0.06 0.270 2.16 0.03 

ASC_6 0.794 0.243 3.27 0.00 0.219 3.62 0.00 

ASC_7 0.629 0.261 2.41 0.02 0.253 2.48 0.01 

ASC_8 0.493 0.252 1.96 0.05 0.242 2.03 0.04 
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ASC_9 0.473 0.233 2.03 0.04 0.233 2.03 0.04 

B_dist_skm 0.00448 0.00166 2.70 0.01 0.00166 2.70 0.01 

B_early -0.0593 0.00189 -31.41 0.00 0.00156 -37.95 0.00 

B_late -0.0590 0.00215 -27.45 0.00 0.00220 -26.74 0.00 

B_skim -0.185 0.0278 -6.65 0.00 0.0355 -5.21 0.00 

 

Table 11: HBS model nest coefficients estimation results 

Name Value Std err t-test 
p-

value 

Robust Std 

err 

Robust t-

test 
p-value 

afternoon_peak 0.958 0.0488 19.62 0.00 0.0415 23.08 0.00 

mid_day 1.04 0.0596 17.48 0.00 0.0505 20.62 0.00 

morning_peak 1.17 0.119 9.85 0.00 0.106 10.98 0.00 

non_peak 0.987 0.0780 12.65 0.00 0.0665 14.84 0.00 

 

All the signs are as expected, and rho square is relatively large because of preferred 

departure time estimation. It can be seen that the ratio between skim coefficient and 

scheduling coefficient is considerably larger than this ratio for HBW model. It shows 

that scheduling is less important for HBS trips, and that travelers prefer to have 

shorter travel times. The results of model validation are presented in Figure 19: 
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Figure 19: HBS model validation with 30 percent of data 

Normalized root mean square error for this model is 0.252 which is still reasonable, 

but not as good as HBW model. The figure shows that shopping trips are not as 

concentrated as work trips and they are distributed along the day. 

6-3 Home-Based Other (HBO) Trips 

Similar to HBW model, nested logit structure showed better performance than 

multinomial logit for HBO trips. The nests are morning peak containing alternatives 1 

to 5, afternoon peak containing alternatives 7 to 11, midday containing 5 hours of 

alternative 6, and night containing 9 hours of alternative 12. Tables 12 to 14 

summarize the results of model estimation: 

Table 12: HBO model performance 

Model: Nested Logit 

Number of estimated parameters: 19 

Number of observations: 4911 

Number of individuals: 4911 

Null log-likelihood: -15607.422 
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Constant log-likelihood: -13923.690 

Initial log-likelihood: -16527.351 

Final log-likelihood: -3518.540 

Likelihood ratio test: 24177.765 

Rho-square: 0.775 

Adjusted rho-square: 0.773 

 

Table 13: HBO model parameters estimation results 

Name Value Std err t-test 
p-

value 

Robust 

Std err 

Robust 

t-test 

p-

value 

ASC_1 -1.51 0.356 -4.25 0.00 0.290 -5.22 0.00 

ASC_10 0.550 0.161 3.41 0.00 0.162 3.39 0.00 

ASC_11 0.402 0.138 2.92 0.00 0.143 2.82 0.00 

ASC_12 0.00 fixed 
     

ASC_2 -0.0511 0.281 -0.18 0.86 0.241 -0.21 0.83 

ASC_3 0.576 0.235 2.45 0.01 0.205 2.80 0.01 

ASC_4 0.845 0.213 3.97 0.00 0.182 4.65 0.00 

ASC_5 0.439 0.202 2.17 0.03 0.186 2.36 0.02 

ASC_6 0.217 0.181 1.20 0.23 0.167 1.30 0.19 

ASC_7 0.255 0.195 1.31 0.19 0.191 1.34 0.18 

ASC_8 0.244 0.190 1.29 0.20 0.184 1.33 0.18 

ASC_9 0.595 0.175 3.41 0.00 0.172 3.45 0.00 

B_dist_skm 0.00221 0.000590 3.75 0.00 0.000954 2.32 0.02 

B_early -0.0646 0.00145 -44.41 0.00 0.00120 -53.95 0.00 

B_late -0.0611 0.00153 -39.90 0.00 0.00148 -41.25 0.00 

B_skim -0.155 0.0141 -10.96 0.00 0.0206 -7.51 0.00 

 

Table 14: HBO model nest coefficients estimation results 

Name Value Std err t-test 
p-

value 

Robust Std 

err 

Robust t-

test 

p-

value 

afternoon_peak 0.890 0.0325 27.35 0.00 0.0282 31.58 0.00 

mid_day 0.963 0.0414 23.24 0.00 0.0353 27.26 0.00 

morning_peak 0.856 0.0372 23.04 0.00 0.0332 25.81 0.00 

non_peak 0.945 0.0513 18.40 0.00 0.0456 20.70 0.00 
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Signs are consistent with expectation, and Rho-square is high similar to previous 

models because of preferred departure time estimation. Similar to HBS trips, the ratio 

of skim coefficient over penalty coefficient is larger than the ratio for HBW, showing 

that shorter travel time is more important for shopping and other trips.  

Results of validation can be seen in Figure 20: 

 

Figure 20: HBO model validation with 30 percent of data 

The normalized root mean square error is 0.358 which is larger than two previous 

models, showing that other trips are harder to model. Similar to HBS, trips are 

distributed during the day. 
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Table 15: HBSch model performance 

Model: Nested Logit 

Number of estimated parameters: 19 

Number of observations: 957 

Number of individuals: 957 

Null log-likelihood: -3041.398 

Constant log-likelihood: -2160.452 

Initial log-likelihood: -3281.312 

Final log-likelihood: -655.215 

Likelihood ratio test: 4772.365 

Rho-square: 0.785 

Adjusted rho-square: 0.778 

Final gradient norm: +4.470e-003 

 

Table 16: HBSch model parameters estimation results 

Name Value Std err t-test 
p-

value 

Robust 

Std err 

Robust 

t-test 
p-value 

ASC_1 0.854 0.946 0.90 0.37 0.815 1.05 0.30 

ASC_10 0.00390 0.741 0.01 1.00 0.807 0.00 1.00 

ASC_11 0.469 0.788 0.60 0.55 0.979 0.48 0.63 

ASC_12 0.00 fixed 
     

ASC_2 4.27 0.784 5.44 0.00 0.798 5.34 0.00 

ASC_3 4.08 0.734 5.56 0.00 0.745 5.47 0.00 

ASC_4 3.42 0.698 4.90 0.00 0.707 4.84 0.00 

ASC_5 0.945 0.706 1.34 0.18 0.714 1.32 0.19 

ASC_6 2.37 0.667 3.56 0.00 0.692 3.43 0.00 

ASC_7 1.80 0.648 2.77 0.01 0.675 2.66 0.01 

ASC_8 0.820 0.676 1.21 0.23 0.713 1.15 0.25 

ASC_9 1.21 0.696 1.73 0.08 0.749 1.61 0.11 

B_dist_skm 0.00480 0.00394 1.22 0.22 0.00369 1.30 0.19 

B_early -0.0704 0.00469 -14.99 0.00 0.00453 -15.53 0.00 

B_late -0.0570 0.00364 -15.65 0.00 0.00351 -16.24 0.00 

B_skim -0.148 0.0336 -4.40 0.00 0.0374 -3.95 0.00 

 

Table 17: HBSch model nest coefficients estimation results 

Name Value Std err t-test 
p-

value 

Robust Std 

err 

Robust t-

test 

p-

value 
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afternoon_peak 0.990 0.114 8.69 0.00 0.0948 10.45 0.00 

mid_day 1.24 0.158 7.87 0.00 0.170 7.29 0.00 

morning_peak 0.812 0.0711 11.42 0.00 0.0632 12.86 0.00 

non_peak 0.890 0.230 3.87 0.00 0.259 3.44 0.00 

 

Signs are as expected, and rho square is high because of preferred departure time 

estimation. The validation results are presented in figure 21: 

 

Figure 21: HBSch model validation with 30 percent of data 

Normalized root mean square error is 0.050 for this model. Concentration of travels 

in morning and afternoon peaks is considerable. 
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working hours, and they have to be reliable. This may be the reason why reliability 

performed better than skim. While putting both reliability and skim in the previous 

models made reliability insignificant because of correlation between skim and 

reliability, adding both terms in NHBW model made the skim insignificant. Both 

variables show significant effect if they are in the model alone, but the model with 

reliability had higher Rho-square and it was preferred. Tables 18 to 20 summarize the 

estimation results: 

Table 18: NHBW model performance 

Model: Multinomial Logit 

Number of estimated parameters: 14 

Number of observations: 1401 

Number of individuals: 1401 

Null log-likelihood: -4452.453 

Constant log-likelihood: -3653.126 

Initial log-likelihood: -4452.453 

Final log-likelihood: -899.234 

Likelihood ratio test: 7106.438 

Rho-square: 0.798 

Adjusted rho-square: 0.795 

 

Table 19: NHBW model parameter estimation results 

Name Value Std err t-test p-value 
Robust 

Std err 

Robust 

t-test 

p-

value 

ASC_1 0.273 0.704 0.39 0.70 0.636 0.43 0.67 

ASC_10 2.50 0.445 5.62 0.00 0.492 5.08 0.00 

ASC_11 1.83 0.448 4.08 0.00 0.473 3.86 0.00 

ASC_12 0.00 fixed 
     

ASC_2 0.518 0.644 0.80 0.42 0.604 0.86 0.39 

ASC_3 1.56 0.571 2.74 0.01 0.563 2.78 0.01 

ASC_4 1.76 0.532 3.31 0.00 0.554 3.18 0.00 

ASC_5 1.92 0.501 3.83 0.00 0.532 3.61 0.00 

ASC_6 1.79 0.451 3.96 0.00 0.517 3.46 0.00 

ASC_7 1.79 0.460 3.90 0.00 0.517 3.47 0.00 
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ASC_8 2.25 0.449 5.02 0.00 0.499 4.52 0.00 

ASC_9 2.39 0.444 5.37 0.00 0.495 4.83 0.00 

B_early -0.0596 0.00175 -34.09 0.00 0.00153 -38.86 0.00 

B_late -0.0607 0.00214 -28.42 0.00 0.00201 -30.22 0.00 

B_reliability -0.0535 0.0211 -2.54 0.01 0.0149 -3.58 0.00 

 

The sign of variables are as expected, and Rho-square is high because of preferred 

departure time estimation. The result of model validation can be seen in Figure 22: 

 

Figure 22: NHBW model validation with 30 percent of data 

Normalized root mean square error for this model is 0.131. Considerable number of 

trips in the midday can be observed in the figure. 
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containing alternatives 7 to 11, midday containing 5 hours of alternative 6, and night 

containing 9 hours of alternative 12. Tables 20 to 22 summarize the results of model 

estimation: 

Table 20: NHBO model performance 

Model: Nested Logit 

Number of estimated parameters: 19 

Number of observations: 2569 

Number of individuals: 2569 

Null log-likelihood: -8164.420 

Constant log-likelihood: -6735.675 

Initial log-likelihood: -8756.732 

Final log-likelihood: -1572.398 

Likelihood ratio test: 13184.045 

Rho-square: 0.807 

Adjusted rho-square: 0.805 

 

Table 21: NHBO model parameters estimation results 

Name Value Std err t-test p-value 
Robust 

Std err 

Robust 

t-test 

p-

value 

ASC_1 -2.97 0.951 -3.12 0.00 0.782 -3.79 0.00 

ASC_10 0.614 0.293 2.09 0.04 0.286 2.15 0.03 

ASC_11 0.739 0.254 2.91 0.00 0.253 2.92 0.00 

ASC_12 0.00 fixed 
     

ASC_2 -2.48 0.817 -3.03 0.00 0.644 -3.85 0.00 

ASC_3 0.181 0.477 0.38 0.71 0.369 0.49 0.62 

ASC_4 0.468 0.409 1.14 0.25 0.312 1.50 0.13 

ASC_5 0.786 0.354 2.22 0.03 0.281 2.80 0.01 

ASC_6 1.08 0.299 3.61 0.00 0.236 4.57 0.00 

ASC_7 1.04 0.304 3.42 0.00 0.257 4.05 0.00 

ASC_8 0.872 0.304 2.87 0.00 0.274 3.18 0.00 

ASC_9 0.612 0.302 2.03 0.04 0.291 2.10 0.04 

B_dist_skm 0.00584 0.00184 3.17 0.00 0.00180 3.24 0.00 

B_early -0.0623 0.00210 -29.70 0.00 0.00176 -35.44 0.00 

B_late -0.0637 0.00235 -27.04 0.00 0.00239 -26.68 0.00 

B_skim -0.206 0.0310 -6.65 0.00 0.0311 -6.63 0.00 
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Table 22: NHBO model nest coefficients estimation results 

Name Value Std err t-test 
p-

value 

Robust Std 

err 

Robust t-

test 

p-

value 

afternoon_peak 0.973 0.0541 17.96 0.00 0.0433 22.47 0.00 

mid_day 0.958 0.0472 20.31 0.00 0.0401 23.89 0.00 

morning_peak 0.829 0.0782 10.60 0.00 0.0654 12.67 0.00 

non_peak 1.15 0.148 7.78 0.00 0.125 9.21 0.00 

 

The signs are as expected, and Rho-square is high due to the preferred departure time 

estimation. The result of model validation can be seen in Figure 23: 

 

Figure 23: NHBO model validation with 30 percent of data 

Normalized root mean square for this model is 0.415, which is the largest among all 

models, suggesting that this purpose is the hardest one to model. These trips are 

distributed along the day, and a large number of trips can be seen in the midday 

alternative. 
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As another way of validating the work, estimated models are used to obtain total 

distribution of the demand, which is the sum of the demand distribution for all 6 trip 

purposes. Demand prediction results are described in detail in next section. The result 

is compared with the observed distribution of demand from household travel survey. 

Figure 24 shows this comparison: 

 

Figure 24: Model validation by comparing predicted distribution versus HHTS distribution 

Normalized root mean square for this comparison is 0.09. 

It should be noted here that all the presented results are outputs of one iteration of the 

loop, which show the way methodology works, and give initial results. Improved 

results can be obtained by continuing with more iterations until convergence, as 

described in the methodology section. 
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Section 7: Peak Spreading Prediction 

In the methodology section, the way in which the demand distribution can be 

obtained was described in detail. In this part demand profile for the base year 2007 

and future year 2030 are compared to assess how demand shifts to the shoulders of 

the peak. One way of doing this comparison is to compare observed base year 

distribution from household travel survey with the predicted distribution for the future 

year. Another way is to compare model predictions for both base and future years. 

The second method is used here, since the results are the outputs of only one iteration 

and may not perfectly match the reality; thus comparing model outputs is a more 

reasonable comparison. Prediction outputs for each of the trip purposes are presented 

separately, and then they are combined to show the overall peak spreading results. 

7-1 Home-Based Work (HBW) Results 

Initial run of the MSTM shows changes in the network-wide average skim values 

from base to future year as described in Figure 25: 
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Figure 25: Percent change in network-wide average skim values for HBW trips 

This network-wide average is calculated by multiplying trip tables and skim matrices, 

and dividing the results by total number of trips. The average skims show increased 

congestion for all intervals, and the increase is more severe in the afternoon peak. The 

total number of trips for the base year is 291425, and for the future year is 378032. 

Using these input data in the prediction process, the distribution of trips is obtained 

and depicted in Figure 26: 
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Figure 26: Predicted distribution of HBW trips 

Figure 27 better shows the change in the distribution. It represents the change of share 

from total number of trips in percent by comparison of base and future year: 

 

Figure 27: Change in percent share from total HBW trips 
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The figure shows that trips are shifting from the beginning of the peak hours to earlier 

time periods. In general, the figure shows that the shares of the peak hours are 

decreasing. 

7-2 Home-Based Shopping (HBS) Results 

Percent change in network-wide average skim values can be seen in Figure 28: 

 

Figure 28 Percent change in network-wide average skim values for HBS trips 

It can be seen that MSTM shows higher skims for future year, and the increase is 

more significant at the afternoon peak hours. The number of trips is 319991 for the 

base year, and 382367 for the future year. The outputs of the prediction can be seen in 

Figures 29 and 30: 
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Figure 29: Predicted distribution of HBS trips 

 

Figure 30: Change in percent share from total HBS trips 

The results show that trips are being shifted from afternoon peak hour to earlier or 

later intervals. A slight shift is also observable around 7am in the morning peak. 
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7-3 Home-Based Other (HBO) Results 

Figure 31 shows the percent change in network-wide average skim values obtained 

from MSTM outputs: 

 

Figure 31: Percent change in network-wide average skim values for HBO trips 

Congestion gets more severe all along the day, especially in the afternoon peak. The 

number of trips in the base year is 486430, and in the future year is 644947. The 

results of prediction are presented in Figures 32 and 33: 
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Figure 32: Predicted distribution of HBO trips 

 

Figure 33: Change in percent share from total HBO trips 

Similar by previous models, the afternoon peak experiences shifts to the shoulder of 

the peak. A slight shift is also observable during the morning peak toward the peak 

shoulders. 
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7-4 Home-Based School (HBSch) Results 

Figure 34 shows the percent change network-wide average skim values: 

 

Figure 34: Percent change in network-wide average skim values for HBSch trips 

More severe congestion is observable similar to previous purposes. The base year 

number of trips is 94359, and future year number of trips is 113022. The prediction 

outputs are presented in Figures 35 and 36: 
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Figure 35: Predicted distribution of HBSch trips 

 

Figure 36: Change in percent share from total HBSch trips 

School trips are being shifted to the earlier time periods in which roads are less 

congested. 

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

e
r 

o
f 

tr
ip

s

Hour

Predicted number of trips

Base
year

Future
year

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
e

rc
e

n
t 

ch
an

ge
 in

 s
h

ar
e

Hour

Change in percent share from total trips



 

 95 

 

7-5 Non-Home-Based Work (NHBW) Results 

Similar by previous models, skim values get higher for the future year as can be seen 

in Figure 37. 

 

Figure 37: Percent change in network-wide average skim values for NHBW trips 

The number of trips for the base year is 378896, and for the future year is 497827. 

The prediction outputs can be seen in Figures 38 and 39: 
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Figure 38: Predicted distribution of NHBW trips 

 

Figure 39: Change in percent share from total NHBW trips 

For this trip purpose the afternoon peak shifts to earlier less congested intervals. 

7-6 Non-Home-Based Other (NHBO) Results 

Figure 40 shows trends similar to previous figures. The only difference is the lower 

skim value for future year during night time, which should be a bug in the input data. 
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Figure 40: Percent change in network-wide average skim values for NHBO trips 

The number of trips for base and future year are 478335 and 620676, respectively. 

Prediction outputs show some shifts in the afternoon period toward peak shoulders, as 

shown in Figures 41 and 42. 

 

Figure 41: Predicted distribution of NHBO trips 
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Figure 42: Change in percent share from total NHBO trips 

7-7 Overall Peak Spreading Results 

Results of comparison between base year and future year demand profiles for 

different trip purposes were presented separately in previous sections. Now they are 

combined to show the overall demand profile. The change in skim values is presented 

first in Figures 43 and 44: 
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Figure 43: Overall network-wide average skim values 

 

Figure 44: Percent change in overall network-wide average skim values 

Based on these inputs, the overall prediction results are obtained and presented in 

Figures 44 and 45: 
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Figure 45: Overall predicted distribution of trips 

 

Figure 46: Change in Percent share from total trips 

The overall result show that afternoon peak hour share will decrease in the future 

year. A considerable amount of this shifted demand goes to the left peak shoulder. A 

slight shift can also be seen in the morning peak to the left shoulder of the peak.  
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It should be noted again, that this in the result of only one iteration to show how the 

framework works. More iterations are needed to reach improved results. 

Section 8: Summary and Conclusions 

This chapter proposed a framework that can be incorporated with trip-based four-step 

models to account for time of day. The framework estimates reliability and preferred 

departure times based on skim values, which makes it easily usable without additional 

data requirements. In this study discrete choice models were combined with MSTM 

to model departure time choice of travelers in Montgomery County, Maryland. 12 

time intervals were assumed as alternatives. Skim value, travel time reliability and 

scheduling delay penalties were considered as attributes. Each of the attributes were 

obtained in a unique way introduced in a separate section. Separate models were 

estimated for each trip purpose. An iterative framework was proposed for model 

estimation, and results of one iteration were presented. The first step for the modeling 

was to edit cube codes of MSTM to produce skim matrices for 12 intervals. This was 

done by using static hourly factors for the first iteration. Alternative specific skims 

were combined with TPB-BMC Household Travel survey data to estimate a departure 

time choice model. No data were available on preferred departure time of travelers 

and a method was introduced to estimate it based on skim values. The estimated 

models showed negative effect of longer travel time, unreliability, and scheduling 

delay, as expected. Scheduling delays turned out to be less important for travelers in 

HBS, and HBO trips in comparison with HBW trips. Estimated models were used to 

predict demand distribution for two scenarios, base year (2007) and future year 
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(2030). Another iterative method was proposed for forecasting, and results of one 

iteration were presented. Prediction results were compared and slight changes in 

demand distribution were observed. It was shown that trips shift from peak hour to 

shoulders of the peak, specifically 6am and 14pm. While HBW showed more 

significant shift in the morning peak, other trip purposes had their major shift in the 

afternoon. 

There are many ways to improve the results of this study in the future. First, the first 

iteration results should become the input for another round of iteration, and the 

process should be repeated until convergence. The model should also be expanded to 

cover the entire state of Maryland. Another idea for improvement is about estimation 

of PDT. A travel survey that includes PDT information can be conducted, and it can 

be used in model estimation instead of HHTS. The reliability model is another part 

that can be improved. Incident and weather data can be added to the regression to 

better predict travel time reliability. In addition discrete choice models can be 

substituted by continuous choice models that can better represent temporal 

resolutions. 
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