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Analyses of neuronal activity have revealed that various types of neurons, both

at the single-unit and population level, undergo rapid dynamic changes in their re-

sponse characteristics and their connectivity patterns in order to adapt to variations

in the behavioral context or stimulus condition. In addition, these dynamics often

admit parsimonious representations. Despite growing advances in neural modeling

and data acquisition technology, a unified signal processing framework capable of

capturing the adaptivity, sparsity and statistical characteristics of neural dynamics

is lacking. The objective of this dissertation is to develop such a signal processing

methodology in order to gain a deeper insight into the dynamics of neuronal en-

sembles underlying behavior, and consequently a better understanding of how brain

functions.

The first part of this dissertation concerns the dynamics of stimulus-driven

neuronal activity at the single-unit level. We develop a sparse adaptive filtering

framework for the identification of neuronal response characteristics from spiking



activity. We present a rigorous theoretical analysis of our proposed sparse adaptive

filtering algorithms and characterize their performance guarantees. Application of

our algorithms to experimental data provides new insights into the dynamics of

attention-driven neuronal receptive field plasticity, with a substantial increase in

temporal resolution.

In the second part, we focus on the network-level properties of neuronal dynam-

ics, with the goal of identifying the causal interactions within neuronal ensembles

that underlie behavior. Building up on the results of the first part, we introduce

a new measure of causality, namely the Adaptive Granger Causality (AGC), which

allows capturing the sparsity and dynamics of the causal influences in a neuronal

network in a statistically robust and computationally efficient fashion. We develop a

precise statistical inference framework for the estimation of AGC from simultaneous

recordings of the activity of neurons in an ensemble.

Finally, in the third part we demonstrate the utility of our proposed method-

ologies through application to synthetic and real data. We first validate our theo-

retical results using comprehensive simulations, and assess the performance of the

proposed methods in terms of estimation accuracy and tracking capability. These

results confirm that our algorithms provide significant gains in comparison to exist-

ing techniques. Furthermore, we apply our methodology to various experimentally

recorded data from electrophysiology and optical imaging: 1) Application of our

methods to simultaneous spike recordings from the ferret auditory and prefrontal

cortical areas reveals the dynamics of top-down and bottom-up functional interac-

tions underlying attentive behavior at unprecedented spatiotemporal resolutions; 2)



Our analyses of two-photon imaging data from the mouse auditory cortex shed light

on the sparse dynamics of functional networks under both spontaneous activity and

auditory tone detection tasks; and 3) Application of our methods to whole-brain

light-sheet imaging data from larval zebrafish reveals unique insights into the orga-

nization of functional networks involved in visuo-motor processing.
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Chapter 1: Introduction

The brain is arguably the most complex dynamical system in nature, con-

sisting of billions of interconnected neurons. It continuously processes internal and

external inputs from various sources in real time, and integrates neural information

from multiple streams through its many circuits in order to generate and control

behavior. Characterizing the spatiotemporal dynamics of the neurons, as the core

computational units of this sophisticated organic system, is crucial to deciphering

the many mysteries of brain function.

Analyses of neuronal activity recorded from various types of neurons have

revealed three main features: first, neuronal activity is remarkably stochastic in

nature and exhibits significant variability over time and across trials; second, many

neurons often undergo rapid changes in their response characteristics referred to as

neuronal plasticity, in order to adapt to changing stimulus salience or behavioral

context; and third, the neuronal dynamics often admit parsimonious descriptions.

Examples include place cells in the hippocampus [1] and spectrotemporally tuned

neurons in the primary auditory cortex [2] with sparse tuning characteristics.

This dissertation aims at developing a statistically robust and computationally

efficient signal processing methodology in order to gain a deeper insight into the
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dynamics of neuronal ensembles underlying behavior, and consequently a better

understanding of the brain function. At a high level, this dissertation comprises

two major parts. The first part concerns the dynamics of stimulus-driven neuronal

activity at the single-unit level (Chapter 3), whereas in the second part, we inspect

the network-level aspects of neuronal dynamics by probing the neuronal functional

network dynamics underlying behavior (Chapters 4-6).

Part 1: Adaptive Sparse Identification of Neuronal Dynamics

The theory of point processes [3] has been recently adopted as a mathematical

framework to model the stochasticity of neuronal data. Traditionally, these models

have been used to predict the likelihood of self-exciting processes such as earthquake

occurrences [4,5], but have recently found significant applications in the analysis of

neuronal data [6–12]. On the other hand, classic results in signal processing such as

the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms [13]

have created a framework to efficiently capture the dynamics of the parameters in

linear observation models. Existing solutions in computational neuroscience have

adopted this framework to estimate the dynamics of neuronal activity. For in-

stance, in [7] an LMS-type point process filter was introduced to study plasticity

in hippocampal neurons. In [14], more general adaptive filtering solutions based on

approximations to the Chapman-Kolmogorov equation were introduced. Although

quite powerful in analyzing neuronal data, these solutions do not account for the

sparsity of the underlying parameters.
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Finally, the theory of compressed sensing (CS) has provided a novel methodol-

ogy for measuring and estimating statistical models governed by sparse underlying

parameters [15–18]. In particular, for static linear and generalized linear mod-

els (GLM) with random covariates and sparsity of the parameters, the CS theory

characterizes sharp trade-offs between the number of measurement, sparsity, and

estimation accuracy [19]. The sparse solutions of CS are typically achieved using

batch-mode convex programs and greedy techniques (See [20] for a review of these

techniques). In online settings, sparse adaptive filters have only been introduced

in the context of linear systems governed by sparse parameters such as communi-

cation channels [21–23]. Despite significant progress in all these research fronts, a

cohesive analytical framework to simultaneously capture the dynamicity, sparsity

and stochastic nature of neuronal dynamics had been lacking, and served as the

motivation for the first part of this dissertation.

In Chapter 3, we indeed close this gap by integrating techniques from point

process theory, adaptive filtering, and compressed sensing, and develop novel online

methods for sparse neuronal system identification. To this end, we consider the

problem of estimating time-varying stimulus modulation coefficients (e.g., receptive

fields) from a sequence of binary observations in an online fashion. We model the

spiking activity by a conditional Bernoulli point process, where the conditional in-

tensity is a logistic function of the stimulus and its time lags. We then design a

novel objective function by incorporating the forgetting factor mechanism of RLS-

type algorithms into the `1-regularized maximum likelihood estimation of the point

process parameters. We present theoretical guarantees that extend those of CS the-
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ory and characterize fundamental trade-offs between the number of measurements,

forgetting factor, model compressibility, and estimation error of the underlying point

processes in the non-asymptotic regime. We then develop two adaptive filters for

recursive estimation of the `1-regularized objective function based on proximal gra-

dient techniques, as well as a filter for recursive computation of statistical confidence

regions.

Next, we extend the proposed sparse adaptive filtering framework, and de-

velop new adaptive greedy techniques and regularization-based filters beyond the

`1-norm. Greedy algorithms iteratively identify and update the model parame-

ters until a halting criterion is met. Regularization-based methods, on the other

hand, perform sparse identification through convex optimization algorithms involv-

ing sparsity-inducing regularization schemes. Most conventional methods from both

approaches [24–28] operate in batch mode, and therefore do not meet real-time re-

quirements. Several solutions have been introduced for sparse adaptive estimation

problem in the literature taking greedy [23, 29] or regularization-based [21, 22] ap-

proaches. However, all these algorithms are tailored for adaptive estimation of

linear Gaussian models, which makes them inapplicable for neural data analysis

with highly non-Gaussian statistics. In this dissertation, we develop a sparse greedy

adaptive filter for point process data based on a novel choice of the proxy metric

and low-complexity recursive computational update rules. Next, we extend the fil-

tering algorithms by considering regularization schemes beyond the `1-norm. These

approaches show excellent performance in terms of sparse estimation and tracking

capabilities by taking advantage of greedy iterations and optimal properties of the

4



employed sparsity-inducing penalty functions, respectively.

In order to validate our algorithms, we provide simulation studies which re-

veal that the proposed adaptive filtering algorithms significantly outperform exist-

ing point process filters in terms of goodness-of-fit, mean square error and track-

ability. We finally apply our proposed filters to multi-unit spike recordings from

ferret primary auditory cortex (A1) during passive stimulus presentation and dur-

ing performance of a click rate discrimination task [30] in order to characterize the

spectrotemporal receptive field (STRF) plasticity of A1 neurons. Application of

our algorithm to these data provides new insights into the time course of attention-

driven STRF plasticity, with orders of magnitude increase in temporal resolution

from minutes to centiseconds, while capturing the underlying sparsity in a robust

fashion. Aside from their theoretical significance, our results are particularly impor-

tant in light of the recent technological advances in neural prostheses, which require

real-time robust neuronal system identification from limited data. The results of

this chapter were selected in part for nanosymposium presentation at the annual

meeting of the Society for Neuroscience (SfN 2015), were presented at the IEEE

Asilomar Conference on Signals, Systems and Computers [31] and the international

Conference of Engineering in Medicine and Biology Society (EMBC 2016) [32], and

have been published in the IEEE Transactions on Signal Processing [33].
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Part 2: Probing Neuronal Functional Network Dynamics at High Res-

olutions

In the second part of dissertation, we study neuronal dynamics from a network-

level perspective. Converging lines of evidence in neuroscience, from neuronal net-

work models and neurophysiology [34–41] to resting-state imaging [42–44], suggest

that sophisticated brain function results from the emergence of distributed, dynamic,

and sparse functional networks underlying the brain activity. These networks are

highly dynamic and task-dependent, which allows the brain to rapidly adapt to

abrupt changes in the environment resulting in robust function.

Recent technological advances in neural data acquisition have resulted in abun-

dant pools of neural data across different modalities and time-scales. In particular,

simultaneous recordings from a large number of neurons have provided valuable in-

sights into the mechanisms of complex dynamic interactions among neurons, within

neuronal populations and across brain regions. In order to exploit these modern-

day neural data, computationally efficient time series analysis techniques capable of

simultaneously capturing the dynamicity, sparsity and statistical characteristics of

the underlying functional networks are required.

Historically, various techniques such as cross-correlogram [45] and joint peris-

timulus time histogram [46] analyses have been utilized for inferring the statistical

relationship between pairs of spike trains [45–47]. Despite being widely used, these

methods are unable to provide reliable estimates of the underlying directional pat-
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terns of causal interactions among an ensemble of interacting neurons due to the

intrinsic deficiencies in identification of directionality, low sensitivity to inhibitory

interactions [48], and susceptibility to the indirect interactions and latent common

inputs.

Methods based on Granger causality (GC) analysis have shown promise in

addressing these shortcomings and have thus been employed for inferring functional

interactions from neural data of different modalities [49–52]. The notion of GC was

originally introduced by Wiener [53] based on the concept of temporal predictability,

and later adapted into more pragmatic form by Granger [54] in the context of

econometrics. The rationale behind GC analysis is based on two principles: the

temporal precedence of cause over effect, and the unique information of cause about

the effect. Given two time series {Xt, Yt}Tt=1, if including the history of Yt can

improve the prediction of Xt+1, it is implied that the history of Yt contains unique

information about Xt, not captured by other covariates. In this case, we say that

Yt has a G-causal link to Xt.

Numerous efforts have been dedicated to extending the bivariate GC measure

to more general settings, such as the conditional form of GC in [55] for multivariate

setting, and several frequency-domain variants of GC [56–58]. Despite significant

advances in time series analysis using GC and its variants, when applied to neuronal

data, the existing methods exhibit several drawbacks.

First, most existing methods for causality inference provide static estimates

of the causal influences associated with the entire data duration. Although suit-

able for the analysis of stationary neural data, they are not able to capture the
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rapid task-dependent changes in the underlying neural dynamics. To address this

challenge, several time-varying measures of causality have been proposed in the lit-

erature based on Bayesian filtering and wavelets [59–65]. Second, there are very

few causal inference approaches to take into account the sparsity of the functional

networks [66–68]. As an example, authors in [66] introduced a method for sparse

identification of functional connectivity patterns from large-scale functional imaging

data. Despite their success in inferring sparse connectivity patterns, these techniques

assume static connectivity structures. Third, most existing approaches are tailored

for continuous-time data, such as electroencephalography (EEG) and Local Field

Potential (LFP) recordings, which limits their utility when applied to binary neu-

ronal spike recordings. These methods are generally based on MVAR modeling, with

a few non-parametric exceptions [65,69]. Some efforts have been made to adapt the

MVAR modeling to neuronal spike trains [50,70,71]. For instance, the binary spikes

were pre-processed in [50,70] via a smoothing kernel, which significantly distorts the

temporal details of the neuronal dynamics. In addition, the frequency-domain GC

analysis techniques implicitly assume that the data have rich oscillatory dynamics.

Although this assumption is valid for steady-state EEG responses or resting-state

recordings, spike trains recorded from cortical neuronal ensembles often do not ex-

hibit any oscillatory behavior.

In order to address the third challenge, point process modeling and estima-

tion have been successfully employed in capturing the stochastic dynamics of binary

neuronal spiking data, as mentioned earlier [12, 72]. This framework has been par-

ticularly utilized for inferring functional interactions in neuronal ensembles from
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spike recordings [67, 72–76]. A maximum likelihood (ML)-based approach was in-

troduced in [72] based on a network likelihood formulation of the point process

model; a model-based Bayesian approach based on point process likelihood models

with sparse priors on the connectivity pattern was introduced in [67]. Among the

more recent results, an information-theoretic measure of causality, referred to as the

directed information, is proposed in [75]; a static GC measure based on point pro-

cess likelihoods is proposed in [74]. However, a modeling and estimation framework

to simultaneously take into account the dynamicity and sparsity of the G-causal

influences as well as the statistical properties of binary neuronal spiking data had

been lacking, which served as motivation for the second part of this dissertation.

We indeed fill this gap in Chapter 4 by developing a novel dynamic measure of

GC by integrating the forgetting-factor mechanism of recursive least squares (RLS),

point process modeling and sparse estimation. To this end, we first exploit the

prevalent parsimony of neurophysiological time-constants manifested in neuronal

spiking dynamics, such as those in sensory neurons with sharp tunings, as well

as the potential low-dimensional structure of the underlying functional networks.

These features can be captured by point process models in which the cross-history

dependence of the neurons are described by sparse vectors. The significance of

sparsity in our approach is two-fold. First, while the functional networks may not be

truly sparse, they can often be parsimoniously described by a sparse set of significant

functional links. Our models can indeed capture these significant links through

sparse cross-history dependence. Second, sparsity enables stable estimation in the

face of limited data. This is particularly important for adaptive estimation, where
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the goal is to reliably estimate a large number of cross-history parameters using

short effective observation windows.

Building up on the results of Chapter 3, we then employ the exponentially-

weighted log-likelihood framework to recursively estimate the model parameters via

sparse adaptive filtering, thereby defining a dynamic measure of GC, which we call

the Adaptive Granger Causality (AGC) measure. Next, we develop a statistical

inference framework for the proposed AGC measure by extending classical results

on the analysis of deviance to our sparse dynamic point process setting. Moreover,

we derive a non-central chi-square filtering and smoothing algorithm to track the

dynamics of the underlying distributions involved in characterizing the statistical

significance of the detected GC interactions.

In Chapters 5 and 6, we demonstrate the utility of our proposed methodolo-

gies through application to synthetic and real data. First, we examine the validity

of our theoretical results through multiple simulation studies and numerical exam-

ples in Chapter 5, and carry out a comprehensive evaluation of the performance of

the proposed methods for both discrete spiking data and continuous-valued opti-

cal imaging data. We provide numerical examples to assess the identification and

tracking capabilities of the AGC inference method for synthetically generated spike

trains, which reveal remarkable performance gains compared to existing techniques,

in both detecting the causal links and avoiding false detections, while capturing the

dynamics of the causal interactions in a neuronal ensemble. We also test the robust-

ness of our methods to the choice of parameters, and evaluate how they affect the

performance metrics. We further test the robustness of our methods against latent
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confounding causal effects using comprehensive numerical studies, involving both

deterministic and stochastic latent common inputs, and confounding effects due to

network subsampling, which reveal that our proposed techniques provide a degree

of immunity to these latent confounding effects. We finally present a simulation

study to verify the utility of a static variant of our GC inference method tailored

for continuous-valued data.

In Chapter 6, we present the application of our methodology to various exper-

imental datasets from both electrophysiology and optical imaging. We first present

our results on the AGC analysis of spiking data from two experimental recordings:

1) spike trains inferred from two-photon (2P) calcium imaging of the mouse auditory

cortex under spontaneous activity; and 2) simultaneous spike recordings from the

ferret auditory and prefrontal cortices under a tone-detection task. Our analyses of

the 2P imaging data from the mouse auditory cortex reveals unique sparse dynamic

features of the functional networks under spontaneous activity. Application of our

methods to simultaneous spike recordings from the ferret auditory and prefrontal

cortices extracts the dynamics of inter-cortical (top-down and bottom-up) func-

tional interactions underlying attentive behavior at unprecedented spatiotemporal

resolutions.

We then demonstrate the applicability of our GC inference methodology to two

different optical imaging datasets: 1) 2P imaging data from the mouse primary audi-

tory cortex during auditory tasks, and 2) whole-brain light-sheet imaging data from

the larval zebrafish during fictive motor behavior. Our analysis of the 2P imaging

data sheds light on the transient emergence of localized functional networks with
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sparse configuration and preferred orientations under auditory task performance.

Finally, our analysis of the light-sheet imaging data from the entire brain of the lar-

val zebrafish brings new insights into the functional organization of the large-scale

networks involved in visuo-motor processing. In particular, the latter analysis led

to a comprehensive spectral analysis of the whole-brain imaging data and simulta-

neous electrophysiological recordings from motor neurons in the tail, which resulted

in the discovery of a synchronized network of neurons with predominant oscillatory

dynamics and forming new hypotheses on their functional role in motor behavior.

The comprehensive study in the first sections of Chapters 4, 5 and 6, including the

theory, simulation and applications to the neural spiking data, was presented first

at the Conference on Information Science and Systems (CISS 2016) [77], and later

at the IEEE Asilomar Conference on Signals, Systems and Computers [78] and the

annual meeting of the Society for Neuroscience (SfN 2017), and finally published

in the Proceedings of the National Academy of Sciences [79]. The study in the sec-

ond sections of the aforementioned chapters, including the theory, simulation study

and applications to the continuous-valued 2P imaging data from the mouse A1, was

published in Neuron [80].

In addition to their utility in analyzing neuronal data, our techniques have

potential application in extracting functional network dynamics in other domains

beyond neuroscience, such as social networks or gene regulatory networks, thanks

to the plug-and-play nature of the algorithms used in our inference framework. We

close this dissertation by discussing the limitations of our approach and outlining

future directions of research to follow.
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Chapter 2: Preliminaries and Notations

In this chapter, we give a brief introduction to point processes and discuss

how it can be utilized to capture neuronal spiking statistics (see [3] for a detailed

treatment). We will use the following notation throughout the dissertation: pa-

rameter vectors are denoted by bold-face greek letters, and the scalar parame-

ters are shown by regular-type letters. For example, ω = [ω1, ω2, · · · , ωM ]′ de-

notes an M -dimensional parameter vector consisting of M scalar parameters ωm for

m = 1, . . . ,M , with [·]′ denoting the transpose operator.

2.1 Overview on Point Process Theory

Consider a stochastic process defined by a sequence of discrete events occurring

at random points in time, noted by τJ1 = [τ1, τ2, · · · , τJ ]′, and a counting measure

given by

dN(τ) =
J∑
k=1

δ(τ − τk), and N(τ) =

∫ τ

0

dN(u), (2.1)

where δ(.) is the Dirac’s measure. The Conditional Intensity Function (CIF) for this

process, denoted by λ(τ |Hτ ), is defined as

λ(τ |Hτ ) := lim
ε→0

P (N(τ + ε)−N(τ) = 1|Hτ )

ε
, (2.2)
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where Hτ denotes the history of the process as well as the covariates up to time

τ . The CIF can be interpreted as the instantaneous rate given the history of the

process and the covariates. For a point process with a CIF λ(τ |Hτ ), the likelihood

of a sample path N(τ) with J events at τ1 < τ2 < · · · < τJ in the interval [0, T ] is

given by:

p(N(τ)) = exp

(∫ T
0

log λ(τ |Hτ )dN(τ)−
∫ T

0

λ(τ |Hτ )dτ

)
. (2.3)

A point process model is fully characterized by its CIF. For instance, λ(τ |Hτ ) = λ

corresponds to the homogenous Poission process with rate λ. A discretized version

of this process can be obtained by binning N(τ) within an observation interval of

[0, T ] by bins of length ∆, that is

nt := N(t∆)−N((t− 1)∆), t = 1, 2, · · · , T, (2.4)

where T := dT /∆e and N(0) := 0. Throughout this dissertation, {nt}Tt=1 will

be considered as the observed spiking sequence, which will be used for estimation

purposes. Also, by approximating Eq. 2.2 for small ∆ � 1, and denoting λt :=

λ(t∆|Ht∆), we have:

P(nt = 0) = 1− λt∆ + o(∆),

P(nt = 1) = λt∆ + o(∆),

P(nt ≥ 2) = o(∆).

(2.5)

In discrete time, the orderliness of the process is equivalent to the requirement that

with high probability not more than one event fall into any given bin. In practice,

this can always be achieved by choosing ∆ small enough. An immediate consequence
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of Eq. 2.5 is that {nt}Tt=1 can be approximated by a sequence of Bernoulli random

variables with success probabilities {λt∆}Tt=1.

A popular class of models for the CIF is given by Generalized Linear Models

(GLM). In its general form, a GLM consists of two main components: an observation

model, which is given by Eq. 2.5 in our case, and an equation expressing some

(possibly nonlinear) function of the observation mean as a linear combination of the

covariates. In modeling neuronal dynamics, the effective neural covariates consist

of extrinsic covariates (e.g., the neural stimuli) as well as intrinsic covariates (e.g.,

the self- or cross-history of the neuronal activity).

Let st denote the stimulus at time bin t, [θ0, θ1, · · · , θM−2]′ denote the vector

of stimulus modulation parameters, and µ denote the baseline firing rate. We adopt

a logistic regression model for the CIF as follows:

logit(λt∆) := log

(
λt∆

1− λt∆

)
= µ+

M−2∑
i=0

θist−i. (2.6)

By defining ω := [µ, θ0, θ1, · · · , θM−2]′ and xt := [1, st, · · · , st−M+2]′, we can equiva-

lently write:

λt∆ = logit−1(ω′xt) :=
exp(ω′xt)

1 + exp(ω′xt)
. (2.7)

The model above is also known as the logistic-link CIF model. Another pop-

ular model in the computational neuroscience literature is the log-link model where

λt∆ = exp(ω′xt). The significance of the logistic-link model is that unlike the log-

link, logit−1(.) maps the real line (−∞,+∞) to the unit probability interval (0, 1),

making it a feasible model for describing statistics of binary events independent of

the scaling of the covariates and modulation parameters.
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Despite capturing the stimulus dependence in quite a general form, the GLM

model in Eq. 2.7 represents a static model. We therefore generalize this model to

the dynamic setting by allowing temporal variability of the modulation parameters:

λt∆ = logit−1(ω′txt) =
exp(ω′txt)

1 + exp(ω′txt)
, (2.8)

where ωt := [µt, θt,0, θt,1, . . . , θt,M−2]′ represents the time-varying parameter vector

at time t. Throughout the rest of the dissertation, we refer to xt and ωt as the

covariate vector and the modulation parameter vector at time t, respectively.

In order to have a framework allowing multi-timescale dynamics, we consider

piece-wise constant dynamics for the modulation parameter vector. That is, we

assume that ωt remains constant over time windows of arbitrary length W ≥ 1

samples, for some integer W . By segmenting the corresponding spiking data {nt}Tt=1

into K := T
W

windows of length W samples each, the latter assumption implies that

the CIF for each time point (k − 1)W + 1 ≤ t ≤ kW is governed by ωt = ωk, for

k = 1, 2, · · · , K. Note that number of spiking samples T is assumed to be an integer

multiple of window size W , without loss of generality.

In our applications of interest, the modulation parameter vector exhibits a

degree of sparsity [81,82]. That is, only certain components in the stimulus modula-

tion have significant contribution in determining the statistics of the process. These

components can be thought of as the preferred or intrinsic tuning features of the

underlying neuron. To be more precise, for a sparsity level S < M , we denote by

S ⊂ {1, 2, · · · ,M} the support of the S highest elements of ω in absolute value,
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and by ωS the best S-term approximation to ω. We also define

σS(ω) := ‖ω − ωS‖1 (2.9)

to capture the compressibility of the parameter vector ω. Recall that for x ∈ RM ,

the `1-norm is defined as ‖x‖1 :=
∑M

i=1 |xi|. When σS(ω) = 0, the parameter ω is

called S-sparse. If σS(ω) = O(S1− 1
ξ ) for some ξ ∈ (0, 1), the parameter is called

(ξ, S)-compressible [26].
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Chapter 3: Adaptive Identification of Sparse Neuronal Models

In this chapter, we develop a novel sparse adaptive filtering framework for

estimation of the dynamics of a neuronal model under plasticity from its spiking

activity. We provide an algorithmic framework for sparse adaptive filtering of point

process data based on greedy techniques and regularized optimization, and present

theoretical guarantees on their performance.

We further assess the performance of the proposed filtering algorithms in terms

of goodness-of-fit, estimation accuracy and trackability using simulation studies.

Finally, we present the application of our filtering algorithms to experimentally

recorded spiking data from the ferret primary auditory cortex during attentive be-

havior. Note that we only consider purely extrinsic covariates (e.g., acoustic stimuli)

for GLM models in this chapter, although most of our results can be generalized to

incorporate intrinsic covariates as well, as discussed in the forthcoming chapters.

3.1 `1-regularized Point Process Adaptive Filtering

In this section, we first formulate the sparse adaptive estimation problem,

and later provide algorithmic solutions and theoretical guarantees. We propose

two efficient filtering algorithms for adaptive estimation of the sparse time-varying
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modulation coefficients from point process observations, through recursive solution

of a sequence of `1-regularized ML problems via proximal algorithms. Moreover, we

describe how statistical confidence intervals can also be constructed in a recursive

fashion for our estimates.

We provide a rigorous theoretical analysis on the consistency of the estimated

sparse parameter vectors, and thereby extend the classical CS guarantees to the

more complex setting of dynamic point process models.

3.1.1 Problem Formulation

The main estimation problem of this chapter can be stated as follows: given

binary observations {nt}Tt=1 and covariates {xt}Tt=−M+1 from a point process with a

CIF given by Eq. 2.8, the goal is to estimate the M-dimensional parameter vectors

{ωt}Tt=1 in an online and stable fashion.

To establish a sparse adaptive filtering framework, we first construct a new

objective function tailored specifically for our sparse dynamic point process setting.

Recall that for small choices of bin size ∆ � 1, the point process statistics can

be simplified using the Bernoulli approximation, as was shown in Eq. 2.5. Based

on this approximation, the log-likelihood of the observation nt at time t can be

expressed as:

log p(nt) ≈ nt log(λt∆) + (1− nt) log(1− λt∆)

= nt(x
′
tωt)− log (1 + exp (x′tωt)) . (3.1)

Assuming conditional independence of the spiking events, the joint log-likelihood
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of the observations within window i evaluated at ω is given by:

`i(ω) :=
W∑
j=1

{
n(i−1)W+jx

′
(i−1)W+jω − log

(
1 + exp(x′(i−1)W+jω)

)}
. (3.2)

In order to explicitly enforce adaptivity in the log-likelihood function, we adopt

the forgetting factor mechanism of the RLS algorithm, where the log-likelihood of

each window is exponentially weighted regressively in time, with a forgetting factor

0 < β ≤ 1. That is, the effective data log-likelihood up to and including window k

is taken to be:

`β(ωk) :=
k∑
i=1

βk−i`i(ωk) (3.3)

for some 0 < β ≤ 1. Note that for β = 1, `1(ωk) coincides with the natural data log-

likelihood. Moreover, if we replace the Bernoulli log-likelihood with the Gaussian

log-likelihood, then `β(ωk) coincides with the conventional RLS objective function.

Next, in order to explicitly enforce sparsity, we adopt the `1-regularization

mechanism. That is, at every window k, we seek to solve an `1-regularized ML

problem of the form:

ω̂k = argmax
ωk

{
`β(ωk)− γ‖ωk‖1

}
, (3.4)

where γ is a regularization parameter controlling the trade-off between the log-

likelihood fit and the sparsity of estimated parameters. In the next subsection,

we proceed with the development of recursive filters to track the solutions of the

`1-regularized ML problem sequence in the more general time-varying setting.
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3.1.2 Algorithm Development

Several standard optimization techniques, such as interior point methods, can

be used to find the maximizer of Eq. 3.4. However, most of these techniques

operate in batch mode and do not meet the real-time requirements of the adaptive

filtering setting where the observations arrive in a streaming fashion. In order to

avoid the increasing runtime complexity and memory requirements of the batch-

mode computation, we seek a recursive approach which can perform low-complexity

updates in an online fashion upon the arrival of new data in order to form the

estimates. To this end, we adopt the proximal gradient approach. Each iteration

of the proximal algorithm moves the previous iterate along the gradient of the log-

likelihood function, which will then pass through a shrinkage operator. For more

details on the proximal gradient algorithm, see Appendix A.2.

Before proceeding further with our development, we introduce a more compact

notation for convenience. Let nk := [n(k−1)W+1, n(k−1)W+2, . . . , nkW ]′ denote the

vector of observed spikes within window k, for k = 1, 2, . . . , K. Similarly, let λk :=[
λ(k−1)W+1, λ(k−1)W+2, . . . , λkW

]′
denote the vector of CIFs within window k. By

extending the domain of the logit−1(·) to vectors in a component-wise fashion, we

define λk(ω) for any window k and any parameter ω to be:

λk(ω) :=
1

∆
logit−1

(
Xkω

)
, (3.5)

where Xk :=
[
x(k−1)W+1,x(k−1)W+2, . . . ,xkW

]′
is the data matrix of size W×M with

rows corresponding to the covariate vectors in window k. Suppose that at window
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k, we have an iterate denoted by ω̂
(`)
k , for ` = 0, 1, · · · , L, with L being an integer

denoting the total number of iterations. The gradient of `β(·) evaluated at ω̂
(`)
k can

be written as:

∇ω`β
(
ω̂

(`)
k

)
=

k∑
i=1

βk−iX′iεi

(
ω̂

(`)
k

)
=: gk

(
ω̂

(`)
k

)
, (3.6)

where εi(·) := ni − λi(·)∆ represents the innovation vector of the point process at

window i. The innovation vector εi can be thought of as the counterpart of the

conventional innovation vector in adaptive filtering of linear models. The proximal

gradient iteration for the `1-regularized ML problem can be written in the compact

form as:

ω̂
(`+1)
k = Sγα

(
ω̂

(`)
k + αgk

(
ω̂

(`)
k

))
(3.7)

where Sτ (·) is the element-wise soft thresholding operator at a level of τ given

in Appendix A.2. The final estimate at window k is obtained following the Lth

iteration, and is denoted by ω̂k := ω̂
(L)
k . In order to achieve a recursive updating

rule for gk, we can rewrite Eq. 3.6 as:

gk

(
ω̂

(`)
k

)
= β gk−1

(
ω̂

(`)
k

)
+ X′kεk

(
ω̂

(`)
k

)
. (3.8)

However, in an adaptive setting, we only have access to values of gk−1 evaluated

at ω̂
(1:L)
k−1 ! In order to turn Eq. 3.8 into a fully recursive updating rule, all the

previous CIF vectors {λi(·)}k−1
i=1 should be recalculated at the most recent set of

iterates ω̂
(1:L)
k . In order to overcome this computational burden, we exploit the

smoothness of the logistic function and employ the Taylor series expansion of the

CIF to approximate the required recursive update. In what follows, we consider
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the zeroth order and first order expansions, which result in two distinct, yet fully

recursive, updating rules for Eq. 3.8.

Zeroth Order Expansion: By retaining only the first term in the Taylor

series expansion of the CIF λi

(
ω̂

(`)
k

)
around ω̂i, we get:

λi

(
ω̂

(`)
k

)
∆ ≈ λi (ω̂i) ∆, (3.9)

where λi(ω̂i)∆ = logit−1(Xiω̂i). Substituting this approximation in Eq. 3.6, we

can express the zeroth order approximation to the gradient at window k, denoted

by g0
k(·), as:

g0
k

(
ω̂

(`)
k

)
=

k∑
i=1

βk−i X′iεi(ω̂i). (3.10)

It is then straightforward to obtain a recursive form as:

g0
k

(
ω̂

(`)
k

)
= β g0

k−1

(
ω̂

(`)
k

)
+ X′kεk

(
ω̂

(`)
k

)
.

The shrinkage step will be then given by:

ω̂
(`+1)
k = Sγα

(
ω̂

(`)
k + αg0

k

(
ω̂

(`)
k

))
. (3.11)

We refer to the resulting filter as the `1-regularized Point Process Filter of the Zeroth

Order (`1-PPF0). A pseudo-code is given in Algorithm 1.

First Order Expansion: If instead, we retain the first two terms in the

Taylor expansion, Eq. 3.9 will be replaced by:

λi

(
ω̂

(`)
k

)
∆ ≈ λi (ω̂i) ∆ + Λi (ω̂i) Xi

(
ω̂

(`)
k − ω̂i

)
, (3.12)
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Algorithm 1 `1-regularized Point Process Filter of the Zeroth Order (`1-PPF0)

Inputs: nk, Xk, gk−1, ω̂
(0)
k , and L .

1: for ` = 0, . . . , L− 1 do

2: λk∆ = logit−1
(
Xkω̂

(`)
k

)
3: εk = nk − λk∆
4: gk = β gk−1 + X′kεk

5: ω̂
(`+1)
k = Sγα

[
ω̂

(`)
k + αgk

]
6: end for

Output: ω̂k := ω̂
(L)
k .

where Λi(ω̂i) is a diagonal W × W matrix with the (m,m)-th diagonal element

given by λ(i−1)W+m∆(1− λ(i−1)W+m∆). Using the first order approximation above,

we can improve the resulting approximation to the gradient, denoted by g1
k, as:

g1
k

(
ω̂

(`)
k

)
=

k∑
i=1

βk−i X′i

(
εi(ω̂i)−Λi(ω̂i)Xi

(
ω̂

(`)
k − ω̂i

))
. (3.13)

By defining:

uk :=
k∑
i=1

βk−i X′i

(
εi(ω̂i) + Λi(ω̂i)Xiω̂i

)
Bk :=

k∑
i=1

βk−i X′iΛi(ω̂i)Xi, (3.14)

we can express g1
k

(
ω̂

(`)
k

)
as:

g1
k

(
ω̂

(`)
k

)
= uk −Bkω̂

(`)
k

= β g1
k−1

(
ω̂

(`)
k

)
+ X′kεk(ω̂k). (3.15)

The shrinkage step is then given by:

ω̂
(`+1)
k = Sγα

(
ω̂

(`)
k + αg1

k

(
ω̂

(`)
k

))
. (3.16)
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It is then straightforward to check that both uk and Bk can be updated recursively

as:

uk = β uk−1 + X′k

(
εk

(
ω̂

(L)
k

)
+ Λk

(
ω̂

(L)
k

)
Xkω̂

(L)
k

)
,

Bk = βBk−1 + X′kΛk

(
ω̂

(L)
k

)
Xk.

Note that the update rules for both Bk and uk involve simple rank-W operations.

We refer to the resulting filter as the `1-regularized Point Process Filter of the First

Order (`1-PPF1). A pseudo-code is given in Algorithm 2.

Algorithm 2 `1-regularized Point Process Filter of the First Order (`1-PPF1)

Inputs: nk, Xk, uk−1, Bk−1, ω̂
(0)
k , and L .

1: for ` = 0, . . . , L− 1 do
2: λ

(`)
k ∆ = logit−1

(
Xkω̂

(`)
k

)
3: ε

(`)
k = nk − λ(`)

k ∆

4: g
(`)
k = β

(
uk−1 −Bk−1ω̂

(`)
k

)
+ X′kε

(`)
k

5: ω̂
(`+1)
k = Sγα

[
ω̂

(`)
k + αg

(`)
k

]
6: end for
7: (Λk)m,m = (λ

(L)
k )m∆

(
1− (λ

(L)
k )m∆

)
, m = 1, · · · ,W

8: uk = β uk−1 + X′k
(
ε

(L)
k + ΛkXkω̂

(L)
k

)
9: Bk = βBk−1 + X′kΛkXk

Output: ω̂k := ω̂
(L)
k .

Remark. The computational complexity of `1-PPF0 and `1-PPF1 algorithms

can be shown to be linear and quadratic in M per iteration, respectively. Our results

in Section 3.3 will reveal that both filters outperform existing filters of the same

complexity, respectively. Furthermore, `1-PPF1 exhibits superior performance over

`1-PPF0 as expected, although with an additional cost of O(M) in computational

complexity per iteration. Our theoretical analysis in the next subsection reveals

appropriate choices for γ, β and the trade-offs therein.
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3.1.3 Theoretical Guarantees and Trade-offs

In order to quantify the trade-offs involving our choice of the objective func-

tion in Eq. 3.4, we proceed in the tradition of performance analysis result of the

RLS algorithm [13] by characterizing the geometric properties of the estimates ωk

in a stationary environment where ωk = ω for all k. Our analysis, however, is

quite general and avoids ad hoc assumptions such as direct averaging or covariate

independence which are usually invoked in the analysis of least squares problems.

We have the following theoretical result regarding the consistency of the sparse

parameter vector estimates:

Theorem 3.1 Suppose that binary observations from a point process with a CIF

given by Eq. 2.8 are given over K windows of length W each. Consider the setting

where ωk = ω for all k. Then, under mild technical assumptions, for an arbitrarily

chosen positive constant d > 0, there exist constants C, C ′, and C ′′ such that for

M > 10S, 1 − C′

S2 logM
≤ β < 1, K ≥ log 2

log( 1
β

)
, and a choice of γ = C ′′

√
logM
1−β , any

solution ω̂ to Eq. 3.4 satisfies the bound

‖ω̂ − ω‖2 ≤ C
√

(1− β)S logM +
√
CσS(ω) 4

√
(1− β)S logM,

with probability at least 1− 5
Md . The constants C, C ′, and C ′′ are only functions of

d, pmin, pmax, σ2, B, and W , and are explicitly given in Appendix A.1.

Proof 3.1 The proof of Theorem 3.1 is given in Appendix A.1.
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Remarks. The result of Theorem 3.1 has four major implications. First,

assuming that σS(ω) = 0, the error bound scales with
√

(1− β)S logM , the spar-

sity level, as opposed to
√

(1− β)M for the ML estimate. This is consistent with

results from conventional CS, where given T observations, the error bound of the

`1-regularized estimate scales as
√

S logM
T

as opposed to
√

M
T

obtained by the least

squares estimate [19, 83, 84]. Note that the latter implies a putative performance

gain of order O
(

M
S logM

)
in terms of estimation error, and thereby results in the ro-

bustness of the estimate when the underlying parameter is sparse. Nevertheless, the

bound holds for general non-sparse ω, but is sharpest when σS(ω) is negligible, i.e.,

the parameter vector is nearly S-sparse. If the ω is (ξ, S)-compressible, the second

term scales as S
3ξ−2
4ξ . In particular, as ξ → 0 resulting in an S-sparse parameter

vector, the second term vanishes.

Second, the theorem prescribes a lower bound on the forgetting factor akin to

the bounds obtained in CS theory for the total number of observations. For instance,

the result of [85] for CS under Toeplitz sensing measurements for the linear model

requires T = O(S2 logM) number of measurements to achieve a similar scaling of

the error bound. In our case, the role of the number of measurements is transferred

to forgetting factor by taking 1
1−β as the effective length of the measurements. In

the absence of the forgetting factor (β = 1), by a careful limiting process, our results

require T = O(S2 logM) measurements. The latter case can be compared to the

result of [19] for point process models with independent and identically distributed

covariate vectors, which requires O(S logM) for stability. The loss of O(S) is in-

curred due to the shift structure and hence high dependence of the covariate vectors
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in our case.

Third, the theorem reveals the scaling of the regularization parameter in terms

of M and β. In particular, this scaling is significant as it reveals another role for

the forgetting factor mechanism: not only the forgetting factor mechanism allows

for adaptivity of the estimates, it also influences the scaling of the `1-regularization

term with respect to the log-likelihood term. Fourth, unlike conventional results

in the analysis of adaptive filters which concern the expectation of the error in

the asymptotic regime, our result holds for a single realization with probability

polynomially approaching 1, in the non-asymptotic regime.

Note that the objective function in Eq. 3.4 is clearly concave, and assum-

ing that the matrix of the covariate vectors is full-rank, will be strictly concave

with a unique maximizer. However, the result of Theorem 3.1 does not require the

uniqueness of the maximizer and holds for any maximizer of the objective function.

3.1.4 Constructing Confidence Intervals

Characterizing the statistical confidence bounds associated with the estimates

is of utmost importance in neural data analysis, as it allows to test the validity of

various hypotheses. Although construction of confidence bounds for linear models

in the absence of regularization is well understood and widely applied, regularized

ML estimates are usually deemed as point estimates for which the construction of

statistical confidence regions is not straightforward. A series of remarkable results

in high-dimensional statistics [86–88] have recently addressed this issue by providing
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techniques to construct confidence intervals for `1-regularized ML estimates of linear

models as well as GLMs. These approaches are based on a careful inspection of the

Karush-Kuhn-Tucker (KKT) conditions for the regularized estimates, which admits

a procedure to decompose the estimates into a bias term plus an asymptotically

Gaussian term (referred to as ‘de-biasing’ in [87]), which can be computed using a

nodewise regression [89] of the covariates.

In what follows, we give a brief description of how the methods of [87] apply

to our setting, and leave the details to Appendix A.3. Using the result of [87], the

estimate ω̂k as the maximizer of 3.4 can be decomposed as:

ω̂k = Θ̂kgk(ω̂k) + ŵk, (3.17)

where Θ̂k is an approximate inverse to the Hessian of `β(ω) evaluated at ω̂k, gk

is the gradient of `β(ω) previously defined in Eq. 3.6, and ŵk is an unbiased and

asymptotically Gaussian random vector with a covariance matrix of cov(ŵk) =

Θ̂kGk(ω̂k)Θ̂
′
k, with

Gk(ω̂k) :=
k∑
i=1

β2(k−i)X′iεi(ω̂k)εi(ω̂k)
′Xi. (3.18)

The first term in Eq. 3.17 is a bias term which can be directly computed given Θ̂k.

Given cov(ŵk), statistical confidence bounds for the second term can be constructed

at desired levels in a standard way. The main technical issue in the aforementioned

procedure in our setting is the computation of Θ̂k in a recursive fashion. Since the

rows of Θ̂k are computed using `1-regularized least squares, we use the SPARLS

algorithm [21] as an efficient method to carry out the computation in a recursive
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fashion. Algorithm 3 summarized the recursive computation of confidence intervals

for the m-th component of ŵk.

Algorithm 3 Recursive Construction of the Confidence Regions for the m-th Com-
ponent of ŵk.

a

Inputs: nk, Xk, uk, Bk, and ω̂k, Gk−1, m, γm, and ψ̂
(0)

m .
1: gk = uk −Bkω̂k
2: Gk = β2Gk−1 + X′kεkε

′
kXk

3: for ` = 0, . . . , L− 1 do

4: ψ̂
(`+1)

m =Sγmα
[
ψ̂

(`)

m − α
(

(Bk)m,\m− (Bk)\m,\mψ̂
(`)

m

)]
5: end for

6: τ 2
m = (Bk)m,m − ψ̂

(L)

m (Bk)
′
m,\m

7: (c)m = 1, and (c)\m = −ψ̂(L)

m

8: (Θ̂k)m = 1
τ2m

c

9: σ̂2
k,m := (Θ̂k)mGk(Θ̂k)

′
m

10: (ŵk)m = (ω̂k)m − (Θ̂k)mgk
Output: CRk,m := [(ŵk)m ± Φ−1(1− α/2) σ̂k,m]

aFor a matrix A ∈ RM×M , we denote by (A)m,\m the m-th row with the m-th element removed,
and by (A)\m,\m the submatrix of A with both the m-th row and column removed.

3.2 A Family of Sparse Adaptive Algorithms for Spiking Data

In this section, we introduce two new classes of sparse adaptive filtering algo-

rithms for point process data: First, we develop a sparse greedy point process filter

based on a novel choice of the proxy metric and low-complexity recursive update

rules. Second, we extend our proposed `1-PPF adaptive filtering framework by in-

curring sparsifying regularization schemes beyond the `1-norm. These approaches

can improve the estimation performance of the adaptive filters by taking advan-

tage of greedy iterations and optimal properties of the employed sparsity-inducing

penalty functions, respectively.
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3.2.1 Greedy Approach

We develop a framework for greedy adaptive filtering which can be integrated

with a variety of existing greedy techniques [24–26]. We choose the Compressed

Sampling Matching Pursuit algorithm (CoSaMP) [26] for presentation of our greedy

framework here. Inspired by [29], we modify the update procedure of CoSaMP to the

adaptive setting by integrating the forgetting factor mechanism of RLS algorithm

into the proxy identification and estimation steps. In our adaptive scheme, the

gradient of the effective log-likelihood function defined earlier in Eq. 3.6, namely

the score function, is chosen as the proxy signal for identification of support set.

Intuitively speaking, the score function is an indication of the sensitivity of the data

log-likelihood function with respect to each component of the parameter vector,

which makes it a suitable candidate for the proxy metric. The forgetting factor-

based scheme of the proposed proxy metric enables us to capture the variations of

the support set over time. Note that the proposed proxy function for the point

process log-likelihood is analogous to the correlation-based proxy signal used in

greedy algorithms for linear Gaussian models.

As for the estimation step, we compute the ML estimate based on the adaptive

log-likelihood objective function `βk(ωk) at each time step k, by performing a simple

gradient ascent update as follows:

ω̂
(`+1)
k |Ωk = ω̂

(`)
k |Ωk + αg

(`)
k |Ωk (3.19)

where α > 0 is the step size, ` = 0, 1, . . . , L − 1 is the iteration index, g
(`)
k |Ωk :=
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gk(ω̂
(`)
k |Ωk), and the subscripted notation ω̂

(`)
k |Ωk represents the restriction of ω̂

(`)
k to

the updated merged support set Ωk.

The gradient function gk plays a central role in the proposed greedy procedure,

both in the proxy identification and the estimation steps. Hence, a recursive update

rule for the gradient function is required in order to attain a low-complexity real-

time greedy algorithm. We consider the fully recursive update rule derived in Eq.

3.15 based on the first-order Taylor series expansion. The same update procedure

can be applied for the gradient ascent update in the estimation stage, by replacing

ω̂k with the index-restricted version ω̂k |Ωk .

Algorithm 4 Sparse Greedy Point Process Filter (SGPPF)

Inputs: nk, xk, ω̂
(0)
k , uk−1, and Bk−1.

1: for ` = 1, 2, . . . , L− 1 do

2: λ
(`)
k ∆ = logit−1

(
x′kω̂

(`)
k

)
3: κ

(`)
k = λ

(`)
k ∆(1− λ(`)

k ∆)

4: ε
(`)
k = nk − λ(`)

k ∆

5: p
(`)
k := gk(ω̂

(`)
k ) = β(uk−1 −Bk−1ω̂

(`)
k ) + ε

(`)
k xk

6: Ωk = Supp(p
(`)
k , 2S) ∪ S(`)

k

7: g
(`)
k |Ωk = β(uk−1 |Ωk −Bk−1 |Ωkω̂

(`)
k |Ωk) + ε

(`)
k xk |Ωk

8: ω̂
(`+1)
k |Ωk = ω̂

(`)
k |Ωk + αg

(`)
k |Ωk

9: S(`+1)
k = Supp(ω̂

(`+1)
k |Ωk , S)

10: ω̂
(`+1)

k |SCk
= 0

11: end for
12: uk = β uk−1 +

(
ε

(L)
k + κkx

′
kω̂

(L)
k

)
xk

13: Bk = βBk−1 + κ
(L)
k xkx

′
k

Output: ω̂k := ω̂
(L)
k

Algorithm 4 gives the summary of our proposed adaptive greedy algorithm

procedure at time step k, which we refer to as Sparse Greedy Point Process Filter

(SGPPF). The algorithm recursively updates the score function as the proxy metric
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(line 5), and updates the support set by selecting the 2S highest correlated compo-

nents from the proxy denoted by function Supp(p
(`)
k , 2S). It then merges the new

components with the previous support set S(`)
k := Supp(ω̂

(`)
k ), updates the restricted

gradient (line 7), and performs a gradient ascent (line 8), followed by pruning to S

largest set of components denoted by S(`+1)
k (line 9 and 10). Finally, it updates uk

and Bk for next time step (line 12 and 13).

3.2.2 Regularization-based approach

In this subsection, we adopt an alternative approach by casting the adaptive

sparse identification problem as an ML problem regularized by a sparsity-inducing

penalty function. We develop a unified regularized likelihood-based framework

for sparse identification of time-varying tuning features of the underlying neuronal

model. We regularize the adaptive point process log-likelihood objective function in

Eq. 3.3 by a general sparsity-inducing penalty function, and solve a regularized ML

problem at each time step k as follows:

ω̂k = argmax
ωk

`βk(ωk)− γ
M∑
m=1

JR(|ωk,m|) (3.20)

where γ > 0 is the regularization parameter and JR(·) denotes a separable sparsity-

inducing regularization function typically in form of a non-smooth norm.

The commonly-used sparsity-inducing penalty is the `1-norm [27,28]. The `1-

norm penalty γ‖ · ‖1 penalizes all the parameters uniformly with a regularization

level γ, leading to an overall shrinkage of the estimated parameters, and therefore

biased estimates of the true parameters [90]. In [89], the authors prove an inherent
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shortcoming of the `1-norm penalty which implies that consistent variable selection

and optimal estimation cannot be attained simultaneously.

To resolve this issue, we extend the regularized likelihood framework of the

`1-PPF adaptive filters developed earlier in Section 3.1 to a family of sparse adaptive

filters which we refer to as Regularized Likelihood Point Process Filters (RLPPF),

by replacing the `1-norm penalty with specific sparsity-inducing penalty functions

with optimal variable selection and prediction properties. In particular, we select

a non-concave penalty function called smoothly clipped absolute deviation (SCAD)

[90]. It is proven that this method enjoys the so-called oracle properties, namely

it performs nearly as accurate as the genie-aided model where true sparse support

of the parameters is known in advance. The SCAD penalty has a re-weighted-

`1 form JR(|ωk,m|) = ĉk,m|ωk,m|, which cleverly assigns non-uniform data-dependent

weights ĉk,m to different components ωk,m, in a way that the out-of-support near-zero

coefficients are penalized further (with larger weights) as compared to the in-support

coefficients with larger absolute values. Unlike the uniform shrinkage effect of the

`1-norm penalty, the shrinkage rule obtained from the SCAD penalty systematically

sets the small parameter components to zero and returns nearly-unbiased values

of the significant non-zero components. Following the techniques in [33], we use

proximal algorithms to recursively solve the regularized ML problems in RLPPF

with the SCAD penalty. Due to the separability of the SCAD penalty, it turns

out that the resulting algorithm has the same computational complexity as that

using the `1-norm penalty, while nearly achieving the optimal performance of the

genie-aided estimator.
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3.3 Applications

In this section, we apply the proposed algorithms to the simulated data as well

as experimentally recorded spiking data from the ferret primary auditory cortex. In

our simulation studies, we compare the performance of our proposed filters with two

of the state-of-the-art point process filters, namely the steepest descent point process

filter (SDPPF) [7] and the stochastic state point process filter (SSPPF) [14]. These

adaptive filters are based on approximate solutions to the Chapman-Kolmogorov

forward equation obtained by a steepest descent and a Gaussian approximation

procedure, respectively.

3.3.1 Simulation Study 1: MSE and Sparse Recovery Learning Curves

First, we consider a stationary environment where ω is constant over time. We

use a bin size of ∆ = 1 ms and window size of W = 1 sample, for a total observation

window of T = 30 sec (K = 30000). The length of the parameter vector ω = [µ,θ]

is chosen as M = 101. For each realization, we draw a sparse parameter vector θ

of fixed length M − 1 = 100 and sparsity S = 3. The support S and values of

the nonzero components of θ are chosen randomly and the values are normalized so

that ‖θ‖2 = 10. The binary spike train {nk}Kk=1 is generated as a single realization

of conditionally independent Bernoulli trials with success rate λk∆. The stimulus

input sequence {sk}Kk=−M+1 is drawn from an i.i.d. Gaussian distribution N (0, σ2).

The stimulus variance is chosen as σ2 = 0.01 small enough so that the average

spiking rate λ̄∆ = 0.13� 1 to ensure that the Bernoulli approximation is valid. All
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the simulations are done with L = 1 iteration per time step. The step size is chosen

as ' 9× 10−4 (See Appendix A.2 for details).

For a given forgetting factor and step size, we select an optimal value for

the regularization parameter γ by performing a two-fold even-odd cross validation

procedure: first, the data are split into two sets of even and odd samples in an

interleaved manner. Then, one set is used as the training set for estimation of

the parameter vectors ωk and the other is used to assess the goodness-of-fit of the

estimates ω̂k with respect to the log-likelihood of the observations. We repeat the

process switching the role of the two sets and take the average as the overall measure

of fit.

Let Ê denote the averaging operator with respect to realizations. We con-

sider two performance metrics: the normalized mean squared error (MSE) de-

fined as MSEk := 10 log10

(
Ê‖ω̂k − ωk‖2/Ê‖ωk‖2

)
to evaluate MSE performance

in dB at time step k; and the out-of-support energy defined as SPMk := Ê‖θ̂k −

(θ̂k)S‖2/E‖θ̂k‖2 to represent a sparsity metric (SPM), where (θ̂k)S denotes the re-

striction of θ̂k to the support S. Ideally, SPMk must be equal to zero at all times.

The averaging is carried out over a total of 1000 realizations, ensuring that the

standard deviation of the ensemble following convergence is below 0.1 dB for all

algorithms.

Figure 3.1 shows the corresponding learning curves for the four algorithms.

According to Figure 3.1–A, the `1-PPF1 achieves the lowest stationary MSE measure

of −11.8 dB, followed `1-PPF0 which achieves an MSE of −9.5 dB. The SSPPF and

SDPPF algorithms respectively achieve an MSE of −2.7 dB and −1.9 dB, which
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Figure 3.1: Learning curves of the adaptive filtering algorithms in a
stationary environment. A) MSE vs. time, B) SPM vs. time.

reveals a gap of at least ≈ 8 dB with respect to our proposed filters.

3.3.2 Simulation Study 2: Tracking and Goodness-of-fit Performance

In the second simulation scenario, we consider a more realistic setting where

ωk evolves in time. Furthermore, as in the case of real data applications, we assume

that the support of ωk is not available as a performance benchmark and resort to

statistical goodness-of-fit test. These tests for point process models have been de-

veloped as an application of the time-rescaling theorem [91, 92] and consist of the

Kolmogorov-Smirnov (KS) test for assessing the conditional intensity estimation

accuracy, and the Autocovariance Function (ACF) test to assess the conditional

independence assumption. We skip the details, and refer the readers to the afore-

mentioned references for a detailed treatment.

As in the previous case, we consider a bin size of ∆ = 1ms, window size of W =

1, and a total observation window of T = 60sec (K = 60000 bins). The stimulus is
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generated as in the previous case. For the parameter vector ωk, we choose a fixed

baseline rate of µk = −2.51 to set the baseline spiking rate to λ̄∆ ≈ 0.1, and select

a sparse modulation vector θk of length M = 100 with a support S = {1, 10, 20} of

size S = 3, and respective values of (θk){1,10,20} = {10,−5, 5} for k ≤ K/2. Halfway

through the test, at k = K/2 + 1, the largest component (θk)1, drops rapidly and

linearly to 0, within a window of length 1 sec and remains zero for the rest of the

run.

Figure 3.2 shows the performance of all four algorithms in the aforementioned

setting. Each row (A through D) shows the true time-varying parameter vector

(dashed traces) as well as the filtered estimates (solid traces) in the left panel. In

particular, the gray solid traces show the out-of-support components which must

ideally be equal to zero. The colored hulls around (θ̂k)1 show the 95% confidence

intervals (note that confidence intervals for SDPPF cannot be directly obtained and

require averaging over multiple realizations). The middle and right panels show

the KS and ACF test results at a 95% confidence, respectively. For the quadratic

algorithms `1-PPF1 and SSPPF, a forgetting factor of β = 0.9995 is chosen. The

regularization parameter for `1-PPF1 is chosen as γ = 1, obtained by the aforemen-

tioned two-fold even-odd cross validation. For the zeroth order algorithm `1-PPF0,

a smaller forgetting factor of β = 0.995 is chosen to ensure stability, and a value of

γ = 0.1 is used based on cross validation. The step size of ' 5 × 10−3 is chosen to

be the same for both algorithms. These settings ensure that all the algorithms are

tuned in their optimal operating point for fairness of comparison.

Figures 3.2–A and 3.2–B reveal three striking performance gaps between the
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Figure 3.2: Performance comparison of the adaptive filtering algorithms:
A) `1-PPF1, B) SSPPF, C) `1-PPF0, and D) SDPPF. In each row, the
left panel shows the true parameter vector with dashed traces and the
estimates with solid traces. Colored hulls show the 95% confidence in-
tervals for one of the components. The middle and right panels show
the corresponding KS and ACF test plots, respectively. Red traces show
confidence regions at a level of 95% for both tests.
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two second-order algorithms (with the same computational complexity, quadratic in

M): first, the out-of-support components (gray traces) of `1-PPF1 are significantly

smaller than those of SSPPF; second, the confidence regions of `1-PPF1 are narrower

than those of SSPPF; and third, `1-PPF1 fully passes the KS test, while SSPPF

marginally does so. Similarly, comparing the two first-order algorithms (with the

same computational complexity, linear in M) Figure 3.2–C and 3.2–D reveal that

the `1-PPF0 significantly suppresses the out-of-support components as compared to

SDPPF. Moreover, `1-PPF0 provides confidence bounds, which cannot be directly

obtained for SDPPF. Finally, `1-PPF0 marginally fails the KS test, whereas SDPPF

does so significantly. Both algorithms fail the ACF test, which shows that the

second-order corrections embedded in `1-PPF1 and SSPPF are necessary to achieve

a better goodness-of-fit, with a price of higher computational complexity.

We also inspect the estimated firing probability λk(ω̂k)∆ for the four algo-

rithms in Figure 3.3. In addition, we include the probability estimated by the

normalized reverse correlation (NRC) method, which is commonly used in neural

data analysis, and fits the modulation parameters using a linear model. Figure 3.3

shows the true spiking probability (blue solid trace) and the resulting spikes (black

vertical lines). In the subsequent rows (B through F), the true and estimated prob-

abilities are shown by dashed blue and solid red traces, respectively. A comparison

of all the rows reveals that `1-PPF1 and `1-PPF0 outperform SSPPF and SDPPF,

respectively, in terms of estimating the true probability. The NRC method is inferior

to the preceding four algorithms, and results in negative estimates of the probability

due to its use of a linear model (as opposed to logistic).
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3.3.3 Application to Real Data: Dynamic Analysis of Spectrotem-

poral Receptive Field Plasticity

The responses of neurons in the primary auditory cortex (A1) can be char-

acterized by their spectrotemporal receptive fields (STRFs), where each neuron is

tuned to a specific region in the time-frequency plane, and only significantly spikes

when the acoustic stimulus contains spectrotemporal contents matching its tuning

region [2] (See, for example, Figure 3.4, top row, leftmost panel). Several exper-
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imental studies have revealed that receptive fields undergo rapid changes in their

characteristics during attentive behavior in order to capture salient stimulus mod-

ulations [30, 93, 94]. In [30], it is suggested that this rapid plasticity has a signifi-

cant role in the functional processes underlying active listening. However, most of

the widely-used estimation techniques (e.g., normalized reverse correlation) provide

static estimates of the receptive field with a temporal resolution of the order of min-

utes. Moreover, they do not systematically capture the inherent sparsity manifested

in the receptive field characteristics.

In the context of our model, the STRF can be modeled as an (I×J)-dimensional

matrix, where I and J denote the number of time lags and frequency bands, respec-

tively. By vectorizing this matrix, we obtain an (M − 1)-dimensional vector θk at

window k, where M = I × J + 1. Augmenting the baseline rate parameter µk, we

can model the activity of the A1 neurons using the logistic CIF with a parameter

ωk := [µk,θk]
′. The stimulus vector at time t, st is given by the vectorized version

of the spectrogram of the acoustic stimulus with J frequency bands and I lags. In

order to capture the sparsity of the STRF in the time-frequency plane, we further

represent θk over a Gaussian time-frequency dictionary consisting of Gaussian win-

dows centered around a regular subset of the I × J time-frequency plane. That is,

for θk = Fξk, where F is the dictionary matrix and ξk is the sparse representation

of the STRF. The estimation procedures of this chapter can be applied to ξk, by

absorbing the dictionary matrix into the data matrix Xk at window k.

We apply our proposed adaptive filter `1-PPF1 to multi-unit spike recordings

from the ferrets A1 during a series of passive listening conditions and active auditory
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task conditions (data from the Neural Systems Laboratory, Institute for Systems

Research, University of Maryland, College Park). During each active task, ferrets

attended to the temporal dynamics of the sounds, and discriminated the rate of

acoustic clicks [93]. The STRFs were estimated from the passive condition, where

the quiescent animal listened to a series of broadband noise-like acoustic stimuli

known as Temporally Orthogonal Ripple Combinations (TORC). The experiment

consisted of 2 active and 11 passive blocks. Within each passive block, 30 TORCs

were randomly repeated a total of 4-5 times each. In our analysis, we pool the spiking

data corresponding to the same repeated TORC within each block. Therefore, the

time axis corresponds to the experiment time modulo repetitions within each block.

We discretize the resulting duration of T = 990s to time bins of size ∆ = 1 ms, and

segment data to windows of size W = 10 samples (10 ms). The STRF dimensions

are 50×50, regularly spanning lags of 1 to 50 ms and frequency bands of 0.5 kHz to

16 kHz (in logarithmic scale). The dictionary F consists of 13×13 Gaussian atoms,

evenly spaced within the STRF domain. Each atom is a two-dimensional Gaussian

kernel with a variance of D2/4 per dimension, where D denotes the spacing between

the atoms. We selected a forgetting factor of β = 0.9998, a step size of α = 4(1−β)
MWσ̄2 ,

where σ̄2 is the average variance of the spectrogram components, L = 1 iteration

per sample, and a regularization parameter of γ = 40 via two-fold even-odd cross

validation.

Figure 3.4, top row, depicts five snapshots taken at {180, 360, 540, 630, 990} sec

corresponding to the end-points of the {2, 4, 6, 7, 11}th passive tasks. The bottom

row shows the time-course of five selected points (marked as A through D in the
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leftmost panel of the top row) of the STRF during the experiment. The STRF

snapshots at times 180 and 540 sec correspond to 90 secs after the two active

tasks, respectively, and verify the sharpening effect of the excitatory region (∼

30 msec, 8 kHz) due to the animal’s attentive behavior following the active task

reported in [30]. Moreover, the STRF snapshots at times 360 and 630 sec reveal

the weakening of the excitatory region long after the active task and returning to

the pre-active state, highlighting the plasticity of A1 neurons. Previous studies

have revealed the STRF dynamics with a resolution of the order of minutes [94].

Our result in Figure 3.4 provides a temporal resolution of the order of centiseconds

(3 orders of magnitude increase), while capturing the STRF sparsity in a robust

fashion.
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Figure 3.4: The time-course of task-dependent STRF plasticity of a
ferret A1 neuron. The top row shows snapshots of the STRF at five
selected points in time, marked by the dashed vertical lines in the bottom
graph. The bottom graph shows the time-course of five selected points
(A through E) in the STRF marked on the leftmost panel of the top
row.
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3.3.4 Application to Real Data: Sparse Adaptive Point Process Fil-

ters

We apply the proposed sparse adaptive filters in Section 3.2 to the same multi-

unit spiking data set from the ferret A1 as the previous subsection. We binned the

experiment duration T = 1017s to bins of size ∆ = 1ms, and segmented bins

by windows of length W = 5. For the adaptive filtering setup, we selected the

parameters β = 0.9999 and α = (1 − β)/(200κ̄) to be equal for both greedy and

regularized ML-based filters and set the γ = 15 for the RLPPF tuned by a two-fold

even-odd cross validation.

Figure 3.5 depicts five snapshots of the estimated STRFs corresponding to
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Figure 3.5: Adaptive sparse estimation of spectrotemporal receptive
fields from the multi-unit spiking recordings. Each row depicts snap-
shots of the estimated STRFs for five selected time points during the
experiment obtained by A) SGPPF, B) RLPPF with SCAD penalty.
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five selected time points, obtained by SGPPF (Fig. 3.5-A) and RLPPF with SCAD

penalty (Fig. 3.5-B). The first and second pair of STRFs correspond to respective

pre-active and post-active conditions, and the last one is showing the long-term

passive condition. Inspection of these figures reveal that both sparse adaptive filters

effectively capture the sparsity manifested in the STRF domain while the adaptive

nature of the estimates reveals the time-course of the receptive field plasticity. These

results are consistent with the sharpening effect of low-latency features in temporal

tasks [93], and provide a significant improvement in the temporal resolution of the

STRF estimates.
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Chapter 4: Inference of Neuronal Functional Network Dynamics via

Adaptive Granger Causality Analysis

Studies of complex network systems, such as social networks, financial markets

or the human brain, generally aim at understanding how the myriad components of

a system interact together and collectively generate a macroscopic behavior. The

problem of extracting and quantifying these functional interactions among network

entities based on local observations is a key challenge in the study of complex net-

worked systems. In particular, addressing this challenge is crucial in systems neu-

roscience, as it provides the opportunity to gain insights into how the brain, as one

of the most mysterious and sophisticated systems in the universe, functions and

coordinates behavior.

In this chapter, we present our theoretical results and algorithmic framework

for modeling, estimation, and statistical inference for extracting functional neuronal

network dynamics in the sense of Granger. First, we develop a dynamic measure of

GC tailored for binary-natured neuronal spiking data recordings from an ensemble

of sparsely interacting neurons. Later on, we describe a static variant of our GC

inference framework with application to continuous-valued modalities of imaging

data with linear Gaussian statistics.
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4.1 Adaptive Granger Causality Inference from Ensemble Neuronal

Spiking Activity

In this section, we present a new dynamic GC inference framework for neu-

ral spiking data, for which we integrate several techniques from adaptive filtering,

compressed sensing, point process theory, and high-dimensional statistics. We use

an exponential weighting scheme inspired by the RLS to design a recursive algo-

rithm for computation of the dynamic GC measure in an online fashion. To assess

the statistical significance of the new measure, we formulate a novel test statistic

specifically tailored for our sparse dynamic setting, present theoretical results on

its distribution, and further characterize the test strengths corresponding to the

detected GC interactions.

4.1.1 The Adaptive Granger Causality (AGC) Measure

Consider simultaneous spike recordings from an ensemble of C neurons indexed

by c = 1, 2, · · · , C, denoted by {{n(c)
t }Tt=1}Cc=1 over the time bins t = 1, · · · , T . At

time t, the spiking statistics of each neuron (c) are modeled via the CIF formulation

of Eq. 2.8 using a sparse modulation parameter vector ω
(c)
t = [µ

(c)
t ,ω

(c,1)
t

′
,ω

(c,2)
t

′
, · · · ,

ω
(c,C)
t

′
,θ

(c)
t ]′ consisting of a scalar baseline firing parameter µ

(c)
t , a collection of sparse

history dependence parameter vectors {ω(c,c̃)
t }Cc̃=1 of size MH , in which ω

(c,c̃)
t repre-

sents the contribution of the spiking history of neuron (c̃) to the CIF of neuron (c),

and θ
(c)
t accounts for the stimulus modulation vector (e.g., receptive field), as we

48



had in the previous chapter. Let h
(c)
t,i :=

∑t−1−bi−1

j=t−1−bi n
(c)
j be the spike count of neuron

(c) within the i-th spike counting window of length WH,i, where bi :=
∑i

j=1 WH,j for

i = 1, 2, · · · ,MH and b0 = 0. The covariates associated with the ensemble activity

are given by xt := [1,h
(1)
t

′
,h

(2)
t

′
, · · · ,h(C)

t

′
, s′t]

′, where h
(c)
t := [h

(c)
t,1 , h

(c)
t,2 , · · · , h(c)

t,MH
]′

denotes the history of spike counts of neuron (c) within non-overlapping windows

of WH = [WH,1, . . . ,WH,MH
] up to a lag of LH :=

∑MH

i=1 WH,i, and st ∈ RMs is the

vector of neural stimuli in effect at bin t. We refer to this model, where the history

of all the neurons in the ensemble are taken into account, as the full model. Fig.

4.1 shows an example of the neuronal ensemble and the corresponding covariates for

C = 3.

In order to assess the G-causal influences, a likelihood-based GC measure has

H

1

3 2
H H

Figure 4.1: An example of the neuronal ensemble model for C =
3 neurons. The CIF of neuron (2) can be expressed as λ

(2)
k =

logit−1
(
µ

(2)
k + ω

(2,1)
k

′
n

(1)
k + ω

(2,2)
k

′
n

(2)
k + ω

(2,3)
k

′
n

(3)
k + θ

(2)
k

′
sk

)
.
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been proposed in [74] for point process models. Consider neuron (c) as the target

neuron with an observation vector n(c) := [n
(c)
1 , n

(c)
2 , · · · , n(c)

K ]′. Let H(c) denote the

history of the covariates of neuron (c). The parameter vector and covariate history

of neuron (c) after excluding the effect of neuron (c̃) are denoted by ω
(c\c̃)
k and

H(c\c̃), respectively, and compose the so-called reduced model. The log-likelihood

ratio statistic associated with the G-causal influence of neuron (c̃) on neuron (c) can

be defined as:

F(c̃ 7→ c) := s
(
ω̂(c,c̃)

)
log

L(ω̂(c)|n(c),H(c))

L(ω̂(c\c̃)|n(c),H(c\c̃))
, (4.1)

where L(ω̂|n,H) denotes the likelihood of estimated parameter vector ω̂ given the

observation sequence n and the history of the covariates included in the model H,

and s(ω) := sign(
∑

l ω̂l). Based on this formulation, the GC effect from neuron (c̃)

to neuron (c) can be measured as the reduction in the point process log-likelihood

of neuron (c) in the reduced model as compared with the full model. Note that the

signum function determines the effective aggregate excitatory or inhibitory nature

of this influence. This form of GC, conditioned on the mutual set of covariates

(the spiking history of all other neurons in the ensemble) is referred to as condi-

tional Granger causality, which allows to effectively distinguish between the direct

and indirect causal interactions among an ensemble of simultaneously-acquired time

series.

Most existing formulations of GC leverage the MVAR modeling framework [55–

64,66,70], which pertains to data with linear Gaussian statistics. The GC measure

in Eq. 4.1, however, benefits from the likelihood-based inference methodology and
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covers a wide range of complex statistical models. Both the MVAR-based GC

measure and its log-likelihood-based point process variant of [74] assume that the

underlying time series are stationary, i.e., the modulation parameters are all static.

In many scenarios of interest, however, the underlying dynamics exhibit a degree of

non-stationarity, in which the underlying parameters change in time. An example of

such a scenraio is the task-dependent receptive field plasicity phenomenon [7,30,33].

In addition, ML estimation used by these techniques does not capture the underlying

sparsity of the parameters and often exhibits poor performance, when the data

length is short or the number of neurons C is large.

In order to account for possible time-variability of the ensemble parameters

and their underlying sparsity, we introduce the AGC measure, which is capable

of capturing the dynamics of G-causal influences in the ensemble. To this end,

we make two major modifications to the classical GC measure. First, we leverage

the exponentially-weighted log-likelihood formulation of Eq. 3.3 to induce adap-

tivity into the GC measure. Second, we exploit the possible sparsity of the en-

semble parameters using the sparse parameter estimates obtained through the `1-

regularized ML procedure of Eq. 3.4 from Chapter 3. Replacing the standard data

log-likelihoods in Eq. 4.1 by their sparse adaptive counterparts given in Eqs. 3.3

and 3.4, we define the AGC measure from neuron (c̃) to neuron (c) at time window

k as:

F (c̃ 7→ c)
k,β := sk(ω̂

(c,c̃)
k )

(
`βk(ω̂

(c)
k )− `βk(ω̂

(c\c̃)
k )

)
. (4.2)

Although these modifications bring about crucial advantages in capturing the func-

tional network dynamics in a robust fashion, they require construction of a statis-
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tical inference framework in order for the proposed AGC measure to be useful. We

address these issues in the forthcoming sections.

4.1.2 The AGC Inference Framework

Due to the stochastic and often biased nature of GC estimates, nonzero values

of GC do not necessarily imply existence of G-causal influences. Hence, a statistical

inference framework is required to assess the significance of the potential G-causal

interactions extracted from the neural data.

Consider two nested GLM models, referred to as full and reduced models, with

respective parameters ω(F ) := ω(c) and ω(R) = ω(c\c̃), in which the latter is a special

case of the former. In order to assess the statistical significance of a GC link, one

can test for the null hypothesis H0 : ω = ω(R) against the alternative H1 : ω = ω(F ).

The test statistic often used for statistical inference of two nested models is referred

to as the deviance difference of the two models and is defined as,

D(ω̂(F ); ω̂(R)) := 2
(
`(ω̂(F ))− `(ω̂(R))

)
(4.3)

where `(·) is the log-likelihood and ω̂(F ) and ω̂(R) denote the parameter estimates

with the respective dimensions of M (F ) and M (R) under the full and reduced models,

respectively. The deviance difference for the likelihood-based GC is twice the right-

hand-side of Eq. 4.1, modulo the signum function.

To perform the foregoing hypothesis test, the distributions of the deviance

difference under both null and alternative hypotheses need to be characterized. The

asymptotic distribution of the deviance difference statistic under both hypotheses
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has been studied in the literature in the context of classical likelihood-ratio tests.

It has been proven in [95,96] that under certain regularity conditions, the deviance

difference statistics asymptotically follow a chi-squared distribution with M (d) :=

M (F ) − M (R) degrees of freedom, as the data length goes to infinity, when null

hypothesis is true. Furthermore, under the same regularity conditions, the deviance

difference has been proven to asymptotically converge in distribution to a non-central

chi-squared with M (d) degrees of freedom and with a non-centrality parameter ν,

under a sequence of local alternative hypotheses [97,98].

The aforementioned classical distributional inference results cannot be read-

ily extended to our AGC measure for two main reasons: first, the log-likelihoods

are replaced by their exponentially-weighted counterparts, which suppresses their

dependence on the data length N due to the forgetting factor mechanism. Second,

unlike ML estimates which are asymptotically unbiased, the `1-regularized ML esti-

mates are biased, and hence violate the common asymptotic normality assumptions.

In order to address these challenges, inspired by the recent results in high-

dimensional regression [86,87], we define the adaptive de-biased deviance as:

Dk,β(ω̂k;ωk) :=
1 + β

1− β
(

2
(
`βk(ω̂k)−`βk(ωk)

)
− ˙̀β

k(ω̂k)
′῭β
k(ω̂k)

−1 ˙̀β
k(ω̂k)

)
, (4.4)

where ˙̀β
k(·) and ῭β

k(·) are the gradient vector and Hessian matrix of the exponentially-

weighted log-likelihood function `βk(·), and ωk and ω̂k denotes the true and estimated

parameter vector at time window k, respectively. The adaptive de-biased deviance

is composed of two main terms: the first term is twice the exponentially-weighted

log-likelihood ratio statistic, which is analogous to the standard deviance difference,
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whereas the second is a bias correction term. The bias correction term compensates

for the effect of the `1-regularization bias imposed in favor of enforcing sparsity in

the estimate ω̂k. The effect of forgetting factor mechanism appears in the form of

the scaling (1+β)/(1−β). Note that the bias term has a quadratic form and would

vanish, if the log-likelihoods were evaluated at the ML estimates, since ˙̀β
k(ω̂ML

k ) = 0.

Finally, we define a test statistic for AGC inference referred to as adaptive de-biased

deviance difference as follows:

D
(c̃ 7→ c)
k,β :=Dk,β(ω̂

(c)
k ;ω

(c)
k )−Dk,β(ω̂

(c\c̃)
k ;ω

(c\c̃)
k ). (4.5)

In the following, we will mainly work with D
(c̃ 7→ c)
k,β , as opposed to its biased version

given by F (c̃ 7→ c)
k,β in Eq. 4.2. Note that F (c̃ 7→ c)

k,β = 1
2
sk(ω̂

(c,c̃)
k )

(
D

(c̃ 7→ c)
k,β

1+β
+ B

(c̃ 7→ c)
k,β

)
,

where B
(c̃ 7→ c)
k,β is the difference of the bias terms of the full and reduced models.

In what follows, we develop the AGC inference procedure in four major stages:

(1) efficient computation of D
(c̃ 7→ c)
k,β from the data in recursive form, (2) distribu-

tional inference of D
(c̃ 7→ c)
k,β under both the absence and presence of a GC link, (3)

the false discovery rate control procedure, and (4) the statistical significance assess-

ment of the detected GC links. Fig. 4.2 shows a schematic depiction of the overall

inference procedure, which we will discuss next.

(1) Recursive Computation of the AGC Measure: The computation

of the adaptive de-biased deviance differences D
(c̃ 7→ c)
k,β for all the possible |C| links

and at all times k is required for our statistical analysis. Therefore, in order for

the analysis to scale favorably with the network size C and the data length K, it is

crucial to develop an efficient framework for the computation of the AGC measure.
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Figure 4.2: Schematic depiction of the inference procedure for the AGC measure.

The RLS-inspired exponential weighting of the log-likelihoods in Eq. 3.3 indeed

paves the way for the recursive computation of the AGC measure. We design low-

complexity recursive update rules for computation of `βk(ω̂k) for a generic estimate

ω̂k, from which the AGC measure of Eq. 4.2 can be computed. This step comprises

the Recursive AGC Computation block in Fig. 4.2.

In order to achieve recursive computation, we exploit the smoothness of the

point process log-likelihood function, and approximate each scalar-valued log-likelihood

function `i(ω̂k) using a second order Taylor’s series expansion around ω̂i for i ≤ k.

Retaining the first three terms of the expansion yields:

`i(ω̂k) ≈ `i(ω̂i) + (ω̂k − ω̂i)′ ˙̀ i(ω̂i) +
1

2
(ω̂k − ω̂i)′῭i(ω̂i)(ω̂k − ω̂i), (4.6)

where ˙̀
i(·) and ῭

i(·) denote the gradient vector and Hessian matrix with respect to
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ω, which can be computed from Eq. 3.2 for the logit-linked GLM model as follows:

˙̀
i(ω̂i) = X′iεi, (4.7)

῭
i(ω̂i) = −X′iΛiXi, (4.8)

where εi := ni−λi(ω̂i)∆ denotes the point process innovation vector at time window

i, and Λi := diag (λi∆� (1− λi∆)) is a W ×W diagonal matrix with (Λi)m,m :=

λ(i−1)W+m(ω̂i)∆(1− λ(i−1)W+m(ω̂i)∆) as the m-th diagonal element obtained from

the second-order derivative of the logistic log-likelihood function. Substituting the

quadratic Taylor’s approximation of Eq. 4.6 into Eq. 3.2 and rearranging terms will

lead to the following recursive update rule for the adaptive log-likelihoods at time

step k:

`βk(ω̂k) = ak + ω̂′kuk +
1

2
ω̂′kBkω̂k, (4.9)

where

ak =
k∑
i=1

βk−i
(
1W
′`i(ω̂i)− ω̂′iX′iεi −

1

2
ω̂′iX

′
iΛiXiω̂i

)
,

uk=
k∑
i=1

βk−iX′i
(
εi + ΛiXiω̂i

)
,

Bk=−
k∑
i=1

βk−iX′iΛiXi, (4.10)

in which `i(ω̂i) := [`(i−1)W+1(ω̂i), . . . , `iW (ω̂i)]
′ denotes the vector of log-likelihoods

corresponding to the i-th time window, and 1W := [1, . . . , 1]′ is the vector of all ones

of length W . It is easy to see that ak, uk and Bk also admit recursive update rules
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at time step k:

ak = β ak−1 + 1W
′`k(ω̂k)− ω̂′kX′kεk −

1

2
ω̂′kX

′
kΛkXkω̂k,

uk = β uk−1 + X′k (εk + ΛkXkω̂k) ,

Bk = βBk−1 −X′kΛkXk. (4.11)

By performing the recursive computation of Eq. 4.9 for both the full model

and the reduced model, a fully recursive update procedure for the AGC measure

of Eq. 4.2 is obtained, which enables us to track the G-causal interactions among

the neurons in an online fashion. This fully recursive procedure can be further

extended to our proposed statistical inference framework based on the de-biased

deviance statistics. To this end, we obtain a recursive update rule for the quadratic

bias terms in Eq. 4.4. The recursion for the score statistic evaluated at the current

estimate, ˙̀β
k(ω̂k), is readily available through a similar treatment using the Taylor’s

series expansion and is employed in the `1–PPF1 filtering procedure for estimating

the maximizers of `1-regularized ML problems recursively in Eq. 3.15 of Chapter 3.

This update rule simplifies to:

˙̀β
k(ω̂k) = uk + Bkω̂k. (4.12)

The inverse Hessians ῭β
k(ω̂k)

−1 can also be efficiently computed via the Wood-

bury matrix identity applied to the update rule of the quadratic bias term from

Eq. 4.4. When the Hessians are not invertible, a recursive implementation of the

node-wise regression procedure of [87] can be used, which is developed in [31] using

the SPARLS iteration [21] for RLS-type exponentially weighted log-likelihoods, as
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Algorithm 5 Recursive update rule for `βk(ω̂k)

Inputs: nk, Xk, ω̂k, ak−1, uk−1, and Bk−1.
1: yk = Xkω̂k
2: λk∆ = logit−1 (yk)
3: εk = nk − λk∆
4: Λk = diag (λk∆� (1− λk∆))
5: ak = β ak−1 + 1W

′`k(ω̂k)− y′kεk − 1
2
y′kΛkyk

6: uk = β uk−1 + X′k (εk + Λkyk)
7: Bk = βBk−1 −X′kΛkXk

Output: `βk(ω̂k) = ak + ω̂′kuk + 1
2
ω̂′kBkω̂k

presented in Appendix A.3. Algorithm 5 summarizes the recursive computation of

the exponentially-weighted log-likelihoods at window k.

(2) Asymptotic Distributional Analysis of the AGC measure: We next

present our main theoretical result, which extends the asymptotic inference results

of the classical deviance difference statistic to our adaptive de-biased variant:

Theorem 4.1 Consider simultaneous spike train observations {{n(c)
t }Tt=1}Cc=1 from

an ensemble of C neurons. Let ω̂
(c)
k and ω̂

(c\c̃)
k denote the estimated sparse parameter

vectors of neuron (c) at time window k in two nested logit-linked point process GLM

models, where the contribution of neuron (c̃) is suppressed in the latter. Suppose that

the adaptive estimation is carried out through solving the `1-regularized ML problem

of Eq. 3.4 at time window k. Then,

i) in the absence of a GC link from (c̃) to (c), we have D
(c̃ 7→ c)
k,β → χ2

(
M (d)

)
,

and

ii) in the presence of a GC link from (c̃) to (c), and assuming that the cross-

history coefficients from (c̃) to (c) scale at least as O
(√

1−β
1+β

)
, then D

(c̃ 7→ c)
k,β →
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χ2
(
M (d), ν

(c̃ 7→ c)
k

)
,

as β → 1, where M (d) := M (F ) −M (R) is the dimensionality difference of the two

nested models, and ν
(c̃ 7→ c)
k > 0 is the corresponding non-centrality parameter and

is only a function of the true model parameter of neuron (c) at time k.

Proof 4.1 The proof is given in Appendix B.

Remarks. Theorem 4.1 has two major implications. First, it establishes that our

proposed adaptive de-biased deviance difference statistic admits simple asymptotic

distributional characterization. Given that these asymptotic distributions form the

main ingredients of the forthcoming inference procedure, the second block in Fig. 4.2

serves to highlight the significance of adaptive de-biasing. The output of the second

block is the de-biased deviance differences corresponding to all pairs of neurons

(shown in 2D as deviance difference maps).

Second, given that for ν
(c̃ 7→ c)
k = 0, the non-central chi-squared distribution

coincides with the chi-squared distribution, the non-centrality parameter plays a

key role in separating the distributions under the null and alternative hypotheses:

when the deviance difference is close to zero, the null hypothesis H0 is likely to be

true, i.e., no GC link. When the deviance difference is large, the alternative H1

is likely to be true, i.e., a GC link exists (See Remark 2 in the Appendix B for

further discussion). The non-centrality parameter ν
(c̃ 7→ c)
k , however, is a complicated

function of the true values of the parameters, and can not be directly observed. In

what follows, we initially assume that an estimate ν̂
(c̃ 7→ c)
k is at hand, and later on
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derive an algorithm for its estimation. Moreover, we will show how to translate the

deviance differences to statistically interpretable AGC links.

(3) False Discovery Rate Control: We next describe a statistical inference

procedure for simultaneous assessment of the statistical significance of all possible

GC interactions among the neurons in the ensemble. In the multiple hypothesis

testing problem, a group of interconnected null hypotheses are tested simultane-

ously, where the probability that at least one true null would be rejected (joint false

positive) can increase considerably.

Several solutions have been proposed to handle this problem such as the well-

known Bonferroni correction [99,100], where the probability of incorrectly rejecting

at least one null among all the hypotheses (also referred to as family-wise error

rate (FWER)) is controlled. Here, we take an alternative approach given by the

Benjamini-Yekutieli (BY) procedure [101], which is proved to be among the most

effective solutions to the multiple testing problem. The BY procedure aims at

controlling the false discovery rate (FDR), which is the expected ratio of incorrectly

rejected null hypotheses or namely “false discoveries”, at a desired significance level

α.

We use part (i) of the result of Theorem 4.1 in order to control the FDR

in a multiple hypothesis testing framework. In order to identify significant GC

interactions while avoiding spurious false positives, we conduct multiple hypothesis

tests on the set of |C| := C × (C − 1) pairwise possible GC interactions C := {(c̃ 7→

c) | c̃, c = 1, . . . , C, c 6= c̃} among the ensemble of C neurons at each time step k. The
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null hypothesis H
(c̃ 7→ c)
0,k corresponds to lack of a GC link from neuron (c̃) to (c) at

time step k. Thus, rejection of the null hypothesis amounts to discovering a GC link

(c̃ 7→ c) at time step k. We first compute D
(c̃ 7→ c)
k,β for all possible links in C. Based

on Theorem 4.1, under null hypothesis H
(c̃ 7→ c)
0,k , we have D

(c̃ 7→ c)
k,β → χ2(M (d)) as

β → 1. Hence, by virtue of convergence in distribution, for β close to 1, thresholding

the test statistic results in a consistent approximation to limiting the false positive

rate, namely type I error: the null hypothesis H
(c̃ 7→ c)
0,k is rejected at a confidence

level of 1 − α, if D
(c̃ 7→ c)
k,β > F−1

χ2(M(d))
(1 − α), where F−1

χ2(M(d))
(·) is the inverse CDF

of a χ2 distribution with M (d) degrees of freedom. Using the BY procedure, we can

thus control the mean FDR at a rate of ᾱ :=
(|C|+ 1)α

2|C| log |C| for all tests. This stage

forms the FDR Control block in Fig. 4.2.

(4) Test Strength Characterization via J-statistic: Next, we use part

(ii) of the result of Theorem 4.1 to assess the significance of the tests for the

detected GC links. Under the alternative hypothesis, Theorem 4.1 implies that

H
(c̃ 7→ c)
1,k : D

(c̃ 7→ c)
k,β → χ2

(
M (d), ν

(c̃ 7→c)
k

)
as β → 1. Hence, by virtue of convergence

in distribution, the false negative rate, namely the type II error can be estimated

by η
(c̃ 7→ c)
k := Fχ2(M(d),ν̂k)

(
F−1
χ2(M(d))

(1 − α)
)
, at a confidence level of 1 − α, where

Fχ2(M(d),ν̂k)(·) represents the CDF of a non-central χ2 distribution with M (d) de-

grees of freedom and the estimate ν̂k of the corresponding non-centrality parameter

ν
(c̃ 7→ c)
k . It can be seen that the true positive rate defined as 1 − η

(c̃ 7→ c)
k is in-

creasing in ν̂k, due to the monotonically decreasing property of the non-central χ2

CDF function with respect to the non-centrality parameter. In other words, the
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larger ν̂k takes values, the closer to one the true positive rate will be. Hence, the

non-centrality parameter ν̂k can be interpreted as an implicit measure of test power

for underlying GC link.

In order to quantify the significance of an estimated GC link, we utilize the

Youden’s J-statistic, which is an effective measure often used for summarizing the

overall performance of a diagnostic test. The J-statistic in our setting is given by:

J
(c̃ 7→ c)
k := 1− α− Fχ2(M(d),ν̂k)

(
F−1
χ2(M(d))

(1− α)
)
, (4.13)

for a fixed significance level α. Note that the J-statistic can take values in [0, 1]. The

case of J
(c̃ 7→ c)
k being close to one represents high sensitivity and specificity of the

test statistic, which coincides with large values of non-centrality. One advantage of

the J-statistic over the conventional p-value is that it accounts for both type I and

type II errors. In the context of GC analysis, the J-statistic for each possible link can

serve as a normalized indicator of how reliable the detected link is. For consistency,

we assign a value of J
(c̃ 7→ c)
k = 0, when the null hypothesis is not rejected. The

foregoing statistical test strength characterization forms the last block of Fig. 4.2.

Fig. 4.3 demonstrates the hypothesis testing framework and the FDR control

procedure, and summarizes the quantities involved. Fig. 4.3-A illustrates the hy-

pothesis testing by showing the distributions under null H0 and alternative H1, and

the areas corresponding to type I and type II errors, given a confidence level 1− α.

Fig. 4.3-B exhibits the receiver operating characteristic (ROC) curves for different

values of (M (d), ν), as well as how the J-statistic is calculated for α = 0.05.

Algorithm 6 summarizes the FDR control procedure based on BY rule along
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Figure 4.3: Illustration of the hypothesis testing framework and
the FDR control procedure. A) PDFs of H0 and H1 for M (d) =
10, ν = 15, and α = 0.05, B) ROC curves for differ-
ent values of M = {2 (narrow) , 4 (medium) , 6 (thick)} and ν =
{0 (black) , 2.5 (red) , 5 (blue) , 10 (green)}.

with the test strength characterization via J-statistics. Given the estimates of de-

viance differences D
(c̃ 7→ c)
k,β and the non-centrality parameters ν

(c̃ 7→ c)
k , the G-causal

links can be detected at a fixed FDR α, and their corresponding test strengths can

be assessed via the J-statistics computed at the mean FDR ᾱ.

It remains to estimate the unknown non-centrality parameters ν
(c̃ 7→ c)
k given the

observed deviance differences D
(c̃ 7→ c)
k,β . Under the assumption that ν

(c̃ 7→ c)
k changes
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smoothly in time, this can be carried out efficiently using a non-central χ2 filtering

and smoothing algorithm, which is discussed next.

Algorithm 6 BY FDR Control and Characterizing the J-statistics

Input:
{
{D(c̃ 7→ c)

k,β , ν̂
(c̃ 7→ c)
k }K=1 | (c̃ 7→ c) ∈ C

}
, M (d), and α.

1: for k = 1, 2, . . . , K do
2: for (c̃ 7→ c) ∈ C do

3: Define p-values p
(c̃ 7→ c)
k := 1−Fχ2(M(d))

(
D

(c̃ 7→ c)
k

)
4: end for
5: Sort the calculated p-values as p

(m1)
k ≤ p

(m2)
k ≤ · · · ≤ p

(m|C|)

k where
{m1, · · · ,m|C|} is a permutation of {1, · · · , |C|}

6: Find largest imax for which p
(mi)
k ≤ αi := iα

|C| log
(
|C|
)

7: Reject all null hypotheses {H(mi)
0 |i ≤ imax} associated with the GC links

m = m1,m2, . . . ,mimax

8: J
(mi)
k = 0 for i = imax + 1, . . . , |C|

9: J
(mi)
k = 1− ᾱ− F

χ2(M(d),ν̂
(mi)

k )

(
F−1
χ2(M(d))

(1− ᾱ)
)

for i = 1, . . . , imax

10: end for
Output:

{
{J (c̃ 7→ c)

k }Kk=1 | (c̃ 7→ c) ∈ C
}

Non-central χ2 Filtering and Smoothing Algorithm: In order to esti-

mate the unknown non-centrality parameters ν
(c̃ 7→ c)
k given in Theorem 4.1, we make

two additional assumptions. First, although the result of Theorem 4.1 establishes

convergence in distribution as β → 1, we make the assumption that D
(c̃ 7→ c)
k,β is a sam-

ple drawn from a χ2
(
M (d), ν

(c̃ 7→ c)
k

)
density, when β is close to 1. This assumption

is akin to the common adoption of a Gaussian density to parametrically describe

uncertainties which are known to converge in distribution to a Gaussian random

variable, thanks to the law of large numbers. In what follows, the dependence of

D
(c̃ 7→ c)
k,β and ν

(c̃ 7→ c)
k on c, c̃, and β will be suppressed for notational convenience.

Second, we assume that νk changes smoothly in time. Based on this assump-
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tion, we construct a state-space model and develop recursive filtering and smoothing

algorithms to compute smoothed estimates of νk from the observed deviance data

{Dk}Kk=1. To this end, given that νk ≥ 0, we define the exponential link νk = exp(zk),

for some random variable zk in the range of (−∞,∞) and impose first-order autore-

gressive dynamics of the form:

zk = ρzk−1 + ek, (4.14)

where 0 < ρ ≤ 1 is a scaling factor, and ek ∼ N (0, σ2
e) is a zero-mean i.i.d. Gaussian

random variable with a variance of σ2
e . Together with the assumption of Dk ∼

χ2
(
M (d), νk

)
, Eq. 4.14 forms a state-space model describing the dynamics of νk.

The parameters ρ and σ2
e are unknown, and need to be estimated. Assuming

that the values of ρ and σ2
e are known, we can estimate {zk}Kk=1 given the sequence

of deviance differences {Dk}Kk=1 using approximate state-space smoothing [8]. The

resulting estimator consists of two steps: a forward filter, and a backward fixed

interval smoother.

For the filtering algorithm, we exploit the unimodal property of non-central

chi-squared distribution, and make a recursive Gaussian approximation to the poste-

rior probability density function p(zk|D1:k), where the posterior modes and variances

are computed recursively [8]. Let zk|l and σ2
k|l denote the respective mode and vari-

ance of the state variable zk, given the deviance samples up to and including time l,

{Di}li=1. Using the Bayes’ rule and substituting the non-central chi-squared density

65



function into the log-posterior, we get:

zk|k := argmax
zk

{
− (Dk + exp(zk))

2
+
ξ

2
(logDk − zk) + log Iξ(ζk)−

(zk − zk|k−1)2

2σ2
k|k−1

}
,

(4.15)

where ζk :=
√
Dk exp(zk), and Iξ(.) denotes the modified Bessel function of the first

kind of order ξ := M (d)/2 − 1. Note that in Eq. 4.15 a Gaussian approximation is

applied to the density p(zk|D1:k−1) ∼ N (zk|k−1, σ
2
k|k−1), where the mode and variance

are easily derived from Eq. 4.14 as zk|k−1 = ρzk−1|k−1 and σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
e .

From Eq. 4.15, the posterior mode zk|k can be computed as the solution to the

following nonlinear equation:

zk = zk|k−1 +
σ2
k|k−1

2

(
ζk rξ(ζk)− exp(zk)

)
, (4.16)

where the function rξ(ζ) := Iξ+1(ζ)/Iξ(ζ) is the ratio of modified Bessel functions

of the first kind with order difference of one. This nonlinear equation can be solved

numerically using iterative techniques such as Newton’s method.

Given zk|k, the posterior variance σ2
k|k can be computed as the negative inverse

of the second order derivative of the log-posterior at zk|k:

σ2
k|k =

((
σ2
k|k−1

)−1
+

exp(zk|k)

2
−
ζ2
k|k

4

(
1− Iξ−1(ζk|k)Iξ+1(ζk|k)

Iξ(ζk|k)2

))−1

, (4.17)

where ζk|k :=
√
Dk exp(zk|k), and we used the recurrence relation Iξ−1(ζ) = Iξ+1(ζ)+

(2ξ/ζ)Iξ(ζ) to simplify the update rule. Unlike the ordinary Bessel functions, the

modified Bessel functions of the first kind Iξ(·) are exponentially growing. This could

cause numerical stability issues for the recursive update rules of Eqs. 4.16 and 4.17,

as the input ζk may take large values through recursion leading to extremely large
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values of the modified Bessel functions. To resolve potential numerical instability,

we use the following sharp bounds on the ratio of Bessel function [102]:

√
ζ2+(ξ+1)2−(ξ + 1)≤ ζ rξ(ζ) ≤

√
ζ2+(ξ+1/2)2−(ξ+1/2).

We select the upper-bound as the more accurate approximate of the ratio ζ rξ(ζ) in

Eq. 4.16 for large values of ζ. Moreover, the second order Bessel ratio in Eq. 4.17

can be replaced using a sharp upper bound on the Turánian of the modified Bessel

functions of the first kind, Iξ(ζ)2 − Iξ−1(ζ)Iξ+1(ζ) [103]:

Iξ(ζ)2 − Iξ−1(ζ)Iξ+1(ζ)

Iξ(ζ)2
≤ 1√

ζ2 + ξ2 − 1/4
. (4.18)

Given filtered outputs zk|k and σ2
k|k obtained from the forward filtering algorithm, we

next perform backward smoothing using the fixed interval smoothing algorithm [8],

yielding the smoothed posterior modes zk|K and variances σ2
k|K for k = K,K −

1, . . . , 1 as follows:

zk−1|K = zk−1|k−1 + sk(zk|K − zk|k−1)

σ2
k−1|K = σ2

k−1|k−1 + s2
k(σ

2
k|K − σ2

k|k−1), (4.19)

where sk := ρσ2
k−1|k−1/σ

2
k|k−1 is the backward smoothing gain. It should be noted

that unlike the forward filtering, the backward smoothing step results in an over-

all batch-mode algorithm, as it refines the preceding filtered estimates zk|k using

the deviance data Di for i > k. Nevertheless, for real-time implementations one

can always resort to the filtered estimates of the non-centrality parameters. Sta-

tistical confidence regions for both the filtered estimates ẑfiltered
k ∼ N (zk|k, σ

2
k|k) and

smoothed estimates ẑsmoothed
k ∼N (zk|K , σ

2
k|K) can be computed at each time step k
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Algorithm 7 Non-central χ2 Filtering and Smoothing Algorithm

Input: Dk, M
(d), ρ, σ2

e , z0|0 and σ2
0|0.

1: for k = 1, 2, . . . , K do
2: Define ξ := M (d)/2− 1 and ζk|k :=

√
Dk exp(zk|k)

3: zk|k−1 = ρ zk−1|k−1

4: σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
e

5: zk|k = zk|k−1+
σ2
k|k−1

2

(√
ζ2
k|k+(ξ+1/2)2−(ξ+1/2)−exp(zk|k)

)
6: σ2

k|k =
(

(σ2
k|k−1)−1 +

exp(zk|k)

2
− ζ2

k|k

4
√
ζ2
k|k+ξ2−1/4

)−1

7: ν̂filtered
k = exp(zk|k)

8: CRfiltered
k =

[
exp

(
zk|k ± Φ−1(1− ε/2)σk|k

)]
9: end for

10: Given {zk|k}Kk=1 and {σ2
k|k}Kk=1

11: for k = K,K − 1, . . . , 1 do
12: zk−1|K = zk−1|k−1 + sk(zk|K − zk|k−1)
13: σ2

k−1|K = σ2
k−1|k−1 + s2

k(σ
2
k|K − σ2

k|k−1)

14: ν̂smoothed
k−1 = exp(zk−1|K)

15: CRsmoothed
k−1 =

[
exp

(
zk−1|K ± Φ−1(1− ε/2)σk−1|K

)]
16: end for
Output: Filtered estimates (ν̂ filtered

1:K , CRfiltered
1:K ), and smoothed estimates

(ν̂ smoothed
1:K , CRsmoothed

1:K )

and mapped to those of ν̂filtered
k = exp

(
ẑfiltered
k

)
and ν̂smoothed

k = exp
(
ẑsmoothed
k

)
in a

straightforward fashion. Algorithm 7 summarizes the non-central χ2 filtering and

smoothing procedure.

In order to simultaneously smooth zk’s and estimate the unknown parameters

ρ and σ2
e , an Expectation-Maximization (EM) approach can be used [104]. The

details of this EM-based approach are given in subsection 4.1.4.

4.1.3 Summary of Advantages of AGC Inference over Existing Work

Algorithm 8 summarizes the overall AGC inference procedure. Choices of the

parameters Θ involved in Algorithm 8 and its computational complexity are dis-
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Algorithm 8 AGC Inference from Ensemble Neuronal Spiking

Input: Spike trains {{n(c)
t }Tt=1}Cc=1 and parameters Θ.

1: for c, c̃ = 1, . . . , C , c̃ 6= c do
2: Recursively estimate the sparse time-varying modulation parameter vectors

{ω̂(c)
k }Kk=1 and {ω̂(c\c̃)

k }Kk=1 corresponding to full and reduced GLMs using `1–PPF1

(Algorithm 2),

3: Recursively compute the adaptive de-biased deviance differences {D(c̃ 7→ c)
k,β }Kk=1 (Al-

gorithm 5),
4: Perform non-central χ2-squared filtering and smoothing to estimate the non-

centrality parameters {ν̂(c̃ 7→ c)
k }Kk=1 from {D(c̃ 7→ c)

k,β }Kk=1 (Algorithm 7),
5: end for
6: for k = 1, . . . ,K do
7: Apply BY rejection rule to the ensemble set of GC tests to control FDR at rate α

(Algorithm 6),
8: Compute AGC maps Φ̂k ∈ [−1, 1]C×C based on the J-statistics as (Φ̂k)c,c̃ :=

sk
(
ω̂

(c,c̃)
k

)
J

(c̃ 7→ c)
k (Algorithm 6).

9: end for
Output: AGC maps {Φ̂k}Kk=1.

cussed in the next subsection. Here, we summarize the advantages of our method-

ology over existing work:

1) Sparse dynamic GLM modeling provides more accurate estimates of the

parameters [33], and hence more reliable detection of the GC links, as compared

to existing static methods based on ML. We further examine this aspect of our

methodology in the next chapter, using an illustrative simulation study;

2) Relating the non-centrality parameters to the test strengths of the detected

GC links is novel, and is not employed by existing techniques. In light of Theorem

4.1 and the need for estimating the non-centrality parameters, we devised a non-

central χ2 filtering and smoothing algorithm to exploit the entire observed data for

obtaining reliable estimates;

3) Exponential weighting of the log-likelihoods admits construction of adaptive
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filters for estimating the network parameters in a recursive fashion, which signifi-

cantly reduces the computational complexity of our inference procedure; and

4) Characterization of AGC via the J-statistic as a normalized measure of

hypothesis test strength for each detected GC link is novel, and can be further

utilized for graph-theoretic analysis of the inferred functional networks. By viewing

the J-statistic as a surrogate for link strength, the AGC networks can be refined by

thresholding the J-statistics, and access to the distribution of the J-statistics in a

network allows to perform further hypothesis tests regarding the network function.

In Chapter 5, we illustrate these advantages by comparing our methodology

with two representative techniques for inferring functional network dynamics using

a comprehensive range of simulation studies.

4.1.4 Parameter Selection and Computational Complexity

In this subsection, we describe how the various parameters involved in our

proposed AGC inference procedure are selected, and discuss the underlying trade-

offs.

Forgetting Factor: As discussed earlier in Chapter 3, the effective block

length of the filter is determined by Neff = W
1−β in the adaptive filtering setting with

a forgetting factor mechanism β and window size W . It was shown in the remarks

of Theorem 3.1 that the estimation error scales as O(
√
S logM/Neff) in the `2

sense, where S denotes the sparsity level. Thus, the forgetting factor β controls

the trade-off between the estimation and tracking performance of the filter. That

70



is, a choice of β close to 1 corresponds to a large effective block length Neff , which

in turn results in a more accurate estimation of the modulation parameters ω̂k,

and consequently the AGC, at the cost of losing the trackability of the underlying

dynamics. On the other extreme, a choice of β far from 1 reduces the effective

block length, and thereby results in capturing the fast dynamics of the underlying

time-varying process, although the estimation accuracy degrades. As discussed in

the remarks following the proof of Theorem 4.1, the proposed statistical testing

procedure enables us to detect G-causal links associated with true cross-history

components of the order of ωβk = O(
√

1− β). Hence, a choice of β close to 1 will

increase the test strengths. In the applications of interest in this dissertation, the

underlying dynamics are slower than the sampling rate, which allows us to choose

forgetting factor values sufficiently close to 1. While it may be beneficial to tune

β via cross-validation, our numerical experiments show that the resulting values of

β turn to be close to 1 (i.e., 1 − β ∈ [10−4, 10−2], depending on the choice of W ).

Therefore, in order to simplify the cross-validation procedure, we fixed the value of

β close to 1 in our analysis. It is noteworthy that the usage of the forgetting factor

mechanism mitigates the problem of choosing a window size faced by GC inference

methods based on sliding-window processing.

Model Order Selection: Our model selection procedure is grounded in the

compressed sensing theory. In contrast to classical model order selection procedures

(e.g., AIC), compressed sensing suggests choosing large model orders followed by

sparse regularization to avoid overfitting. Indeed, our recent results on extending

the theoretical guarantees of compressed sensing to processes with non-i.i.d. and
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history dependent covariates [33, 105], show that recovery of sparse history kernels

with large ambient dimensions M is possible from a limited number of observations

N , in which N may be comparable or smaller than M , as long as the sparsity level

S is small enough. In more precise terms, long kernels of self-history can be robustly

estimated given an effective number of observations Neff scaling sub-linearly with

M and S.

The benefit of employing such models with long self-history kernels is two-

fold: first, long self-history kernels M self
H enable us to maximally capture the intrinsic

spiking statistics of a unit. Second, due to the autoregressive nature of these models,

long self-history kernels allow for estimation, and thereby correcting for the effects

of latent confounding variables, which cannot be explained by the cross-history

influences from other units. Thus, we choose M self
H > M cross

H to maximally capture

the aforementioned intrinsic and latent confounding effects. At the same time,

smaller values of M cross
H are beneficial in increasing the statistical test strengths,

as they directly set the statistical thresholds for multiple hypothesis testing. We

present two illustrative numerical experiments in subsection 5.1.4 that corroborate

our choices for these parameters.

Adaptive Filtering Parameters: In order to achieve an estimation perfor-

mance with high accuracy, we select the effective block length Neff � M (F ) to be

larger than the kernel length. We use non-overlapping spike counting windows of

length WH for parameterizing the self- and cross-history kernels, where WH is often

chosen to be comparable to the filtering window length W .

For the adaptive filtering setting, we first standardize the matrix of covariates
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(i.e., zero-mean columns with unit norm), and then apply the `1–PPF1 adaptive

filter, with a step size of ς := 1−β
cW

, where c is a constant often chosen in the range

c ∈ [1, 10], to achieve different levels of smoothing.

The regularization parameter γ for the `1–PPF1 is chosen as γ = O
(√

logM/Neff

)
,

based on the results of Theorem 3.1 discussed in Chapter 3, and the asymptotic scal-

ing requirement in [87], to obtain consistent `1-regularized ML estimates. In order

to adapt this parameter to different neurons, we choose γ(c) = γ̄(c)
√
κ̄(c) logM/Neff

for neuron (c), where κ̄(c) := var(n(c)) = λ̄∆(c)(1 − λ̄∆(c)), followed by tuning the

normalized regularization parameter γ̄(c) for each neuron in a data-driven fashion

via the even-odd two-fold cross validation procedure.

Note that when the underlying functional network is fully connected, the cross-

validation procedure for tuning the regularization parameter γ is expected to choose

values near zero (i.e., no sparsity in the parameter vectors), and hence our method-

ology can adapt to non-sparse network connectivity as well. For the applications of

interest in this work, the cross-validation procedure consistently resulted in sparse

functional networks.

Finally, it is possible to generalize the `1-regularization scheme to have a differ-

ent regularization parameter γ(c,c̃) for the cross-history parameters of units (c) and

(c̃). Theoretical analysis, however, suggest that there is little benefit in terms of esti-

mation accuracy in doing so, which comes at the cost of higher computational com-

plexity in the cross-validation and bias correction stages. More precisely, separate

regularization of each of the cross-history parameters may result in better constants

in the error rate, but the asymptotic scaling of the rate remains unchanged. For
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instance, as mentioned earlier, the result of Theorem 3.1 implies that the estimation

error scales as O(
√
S logM/Neff), which is optimal modulo the logarithmic factor.

By viewing the concatenation of several sparse vectors as another sparse vector, we

use a single regularization parameter that is tuned appropriately via cross-validation

in order to select a sparse model at a near optimal error rate. Nevertheless, the `1-

PPF1 procedure can be generalized in a straightforward fashion to accommodate

multiple regularization parameters, thanks to the separable nature of the `1 norm

and the underlying proximal algorithms (See Appendix A.2 for further details).

Parameters of the Non-central χ2 Filtering and Smoothing: For the

non-central χ2 filtering and smoothing algorithm, we select the scaling factor ρ ∈

[β, 1] close (or equal) to one to promote temporal continuity. The state variance

σ2
e plays the role of a smoothing factor for non-centrality parameter estimates ν̂k,

and can be determined in two ways. First, we can choose a small value, e.g. in the

range [10−7, 10−4] suggested by our numerical experiments, which results in smooth

estimates of ν̂k for a wide range of settings.

Second, σ2
e can be systematically estimated via the expectation maximization

(EM) algorithm [106] in a data-driven fashion using the observed deviance data

D1:K := {Dk}Kk=1. We take z1:K := {zk}Kk=1 as the set of latent variables for the EM

algorithm. Given an estimate σ̂
2,(`)
e at the `-th iteration, the E-step at the (`+ 1)-st

iteration computes:

74



Ez

[
log p

(
D1:K , z1:K |σ2

e

)∣∣D1:K , σ̂
2,(`)
e

]
= −K

2
log(σ2

e)

− 1

2σ2
e

K∑
k=1

{(
σ2
k|K+z2

k|K
)
+ρ2

(
σ2
k−1|K+z2

k−1|K
)

− 2ρ
(
σ2
k−1,k|K + zk−1|Kzk|K

)}
+ cnst., (4.20)

where Ez

[
.|D1:K , σ̂

2,(`)
e

]
denotes the expectation operator with respect to the latent

variables given the complete set of deviance data D1:K and the current estimate

of the parameter σ̂
2,(`)
e , and cnst. denotes all terms not dependent on σ2

e . It is

noteworthy that calculation of the E-step involves computation of the smoothed

means and variances Ez

[
z2
k |D1:K , σ̂

2,(`)
e

]
= σ2

k|K + z2
k|K , which are readily available

from the non-central chi-squared smoothing given by Eq. 4.19, and the covariance

terms Ez

[
zk−1zk|D1:K , σ̂

2,(`)
e

]
= σ2

k−1,k|K+zk−1|Kzk|K , which can be computed using a

state-space covariance smoothing algorithm [104] as σ2
k−1,k|K = skσ

2
k|K . The M-step

gives the update for σ̂
2,(`+1)
e by maximizing Eq. 4.20 as follows:

σ̂2,(`+1)
e =

1

K

K∑
k=1

{(
σ2
k|K + z2

k|K
)
+ρ2

(
σ2
k−1|K + z2

k−1|K
)
− 2ρ

(
σ2
k−1,k|K+zk−1|Kzk|K

)}
.

(4.21)

Computational Complexity Considerations: The computational com-

plexity of Algorithm 8 (per cross-validation iteration) is linear in the total data

length T and quadratic in the network size C and parameter orders M , due to

the RLS-type adaptive filtering procedure used [33]. However, the high number

of cross-validation iterations required to tune the regularization parameters in-

creases the overall runtime of the algorithm. Substantial reduction of the run-
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time can be achieved by parallel implementation: the cross-validation steps for

each unit can be done independently of the others, and therefore using a nat-

ural parallel implementation, the runtime would reduce by 1/C. Note that we

have not used this parallel scheme in our current implementation deposited on

GitHub (https://github.com/Arsha89/AGC_Analysis). In order to efficiently an-

alyze data from high-density neuronal recordings, we suggest the use of a parallel

implementation and view it as a future work.

4.2 Granger Causality Analysis of Optical Imaging Data

We finally present a static variant of our GC methodology to be applied to

optical imaging data. In particular, we apply this method to data from two different

imaging experiments: two-photon imaging data from mouse A1 during different

auditory tasks and behavioral conditions, and light-sheet imaging data from the

entire brain of larval zebrafish during locomotive behavior. The results will be

discussed in chapter 6.

In order to capture the functional dependencies within an ensemble of nodes

with continuous-valued activities, and the sparsity of interactions thereof, we employ

sparse multivariate autoregressive models. Similar to our methodology for spiking

data, we introduce a variant of GC which accounts for sparse interactions, estimate

the model parameters using fast optimization methods, and perform statistical tests

to assess the significance of possible GC interactions, while controlling the FDR to

avoid spurious detection of the GC links.
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Modeling: Consider a sequence of calcium indicator fluorescence measure-

ments from a set of C neurons indexed by c = 1, 2, . . . , C within a slice, denoted by

{y(c)
r,n}c=1:C

r=1:R,n=1:N over time bins n = 1, . . . , N , and across R trial repetitions indexed

by r = 1, . . . , R. We adopt a sparse vector autoregressive (VAR) framework [66]

for modeling the slow-decaying and transient dynamics of the calcium fluorescence

signals as well as the cross-dependencies among the neurons.

Suppose that the fluorescence observation vector of neuron (c) at the r-th rep-

etition is represented by y
(c)
r := [y

(c)
r,1 , . . . , y

(c)
r,N ]′, and let ȳ(c) :=

[
y

(c)
1

′
,y

(c)
2

′
, . . . ,y

(c)
R

′]′
denote the zero-mean total observation vector, containing the set of all observa-

tion vectors y
(c)
r from all trials r = 1, . . . , R. The effective neural covariates taken

into account in our models are each neuron’s self-history of activity and the history

of activities of other neurons in the ensemble. We consider a lag of LH samples

within which the possible neuronal interactions may occur. Then, we segment LH

into M windows of lengths WH,1,WH,2, . . . ,WH,M such that
∑M

i=1WH,i = LH . Let

bm :=
∑m

l=1 WH,l for m = 1, . . . ,M , and b0 = 0. Let

h(c)
r,n,m :=

1

WH,m

n−1−bm−1∑
k=n−1−bm

y
(c)
r,k (4.22)

represent the average activity of neuron (c) within the m-th window lag of length

WH,m with respect to time n and at trial r. We can then define the vector of history

covariates from neuron (c), effective at time n and trial r as h
(c)
r,n := [h

(c)
r,n,1, h

(c)
r,n,2, . . . ,

h
(c)
r,n,M ]′. Next, let xr,n :=

[
h

(1)
r,n

′
,h

(2)
r,n

′
, . . . ,h

(C)
r,n

′]′
denote the vector of covariates from

all neurons at time n and trial r.

In order to represent the covariates in a more compact form, we consider the
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N ×MC matrix Xr :=
[
xr,1,xr,2, . . . ,xr,N

]′
which contains in its rows the covariate

vectors at all times n = 1, . . . , N within trial r. Finally, let X̄ :=
[
X′1,X

′
2, . . . ,X

′
R

]′
represent the matrix of all covariates with standardized columns (i.e., zero-mean

columns with unit norm), capturing the covariates Xr for all the trials r = 1, . . . , R.

The VAR model can then be expressed as:

ȳ(c) = X̄ω(c) + ε̄(c) (4.23)

where ε̄(c) := [ε
(c)
1

′
, . . . , ε

(c)
R

′
]′ ∼ N (0, σ(c)2

I) is a zero-mean Gaussian noise vector of

size R × N with variance σ(c)2
, and ω(c) is a parameter vector accounting for the

interactions in the network, for c = 1, 2, . . . , C.

In agreement with the parsing of the covariates in the matrix X̄, the parameter

vector ω(c) :=
[
ω(c,1)′,ω(c,2)′, . . . ,ω(c,C)′] in Eq. 4.23 is composed of a collection of

cross-history dependence vectors {ω(c,c̃)}c̃= 1:C , where ω(c,c̃) represents the contribu-

tion of the history of neuron (c̃) to the activity of neuron (c) via the corresponding

covariate vector h
(c)
r,n encoded in matrix X̄. In particular, the component ω(c,c) is

important in capturing the slow calcium florescence decay in an autoregressive fash-

ion, and thereby excluding the transient effects of fluorescence decay from the GC

analysis.

Next, we invoke the hypothesis of sparsity in the interactions among the neu-

rons in the network, as previous section. This hypothesis is grounded in a body

of well-accepted evidence from theoretical and experimental studies [34, 36–39, 41].

In our model, the sparsity of the interactions can be captured through the sparsity

of the parameter vector ω(c): when only very few components of ω(c) are non-zero,
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neuron ω(c) is only affected by the activity history of a few neurons in the network.

In addition, as the dimension of the parameter vector given by MC scales with the

network size C, the hypothesis of sparsity enables the detection of salient interac-

tions within a large network, and thereby mitigates overfitting, especially when the

observations are noisy and trials are limited in number.

Estimation: In order to define a framework for inferring a possible GC link

(c̃ 7→ c), two nested models are taken into account: 1) the VAR model in Eq.

4.23, where the contributing covariates from all the neurons are taken into account,

referred to as the full model, and 2) the same model in which the covariates and

parameters of a single neuron (c̃) on neuron (c), c̃ 6= c are excluded, to which we refer

as the reduced model. The parameters and covariates associated with the reduced

model are denoted by ω(c\c̃) and X\c̃, respectively.

The sparse parameter vector associated with either of the two models can be

estimated by solving an `1-regularized maximum likelihood (ML) problem for each

neuron as follows:

ω̂ = argmin
ω

( 1

2
‖ȳ −Xω‖2

2 + γ‖ω‖1

)
(4.24)

where X takes the two values of X̄ and X̄\c̃ for the full and reduced models, respec-

tively, the `1-norm is defined as ‖ω‖1 :=
∑M

m=1 |ωm|, and γ ≥ 0 is a regularization

parameter tuning the sparsity level, which can be selected based on analytical results

on `1-regularized ML problems [33, 87] or via cross-validation. This `1-regularized

ML problem can be solved efficiently using proximal algorithms [20,107], as discussed

in Appendix A.2. Given the parameter estimate ω̂, the corresponding variance asso-
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ciated with the two full or reduced model can be computed as σ̂2 = 1
NR
‖ȳ−Xω̂‖2

2.

Inference: The conventional measures of GC are based on ML estimates of

the VAR parameters, and not the regularized ML as in our case. Hence, as before,

we need to modify the GC measure and the corresponding deviance statistics, to

account for the estimation bias incurred due to `1-regularization.

To this end, we modify the deviance difference statistic corresponding to

the full and reduced models to compensate for the bias incurred due to sparse

regularization. Building on the theoretical results from section 4.1 in the con-

text of point processes, and recent results from high dimensional statistics [87],

the bias can be computed for the full model as B(c) := g(c)′H(c)−1
g(c), where

g(c) := X̄′(ȳ(c)− X̄ω̂(c))/σ̂(c)2 and H(c) := −X̄′X̄/σ̂(c)2 are the gradient and Hessian

of the log-likelihood function for the Gaussian VAR model of Eq. 4.23, respectively.

Similarly, the bias B(c\c̃) for the reduced model can be computed by replacing the

matrix of covariates and parameter estimate by X̄\c̃ and ω̂(c\c̃), respectively.

The deviance difference statistic associated with the two nested full and re-

duced models can be expressed as:

D(c̃ 7→ c) := NR log
σ̂(c \ c̃)2

σ̂(c)2
−B(c̃ 7→ c) (4.25)

where B(c̃ 7→ c) := B(c) − B(c \ c̃) denotes the difference of bias terms correspond-

ing to the full and reduced models. Note that the first term coincides with the

log-likelihood ratio statistic for Gaussian data [108], and captures the prediction

improvement of the full model over the reduced model.

We finally employ the inference framework presented in the previous section to
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simultaneously test the statistical significance of all possible GC interactions and to

control the FDR at a given significance level α. This inference framework integrates

an extension of classical results on analysis of deviance, and a multiple hypothesis

testing procedure based on the Benjamini-Yekutieli FDR control [101]. The weights

of the detected links are similarly characterized using the Youdens J-statistic, and

the excitatory or suppressive nature of GC links are determined by the effective sign

of estimated cross-history parameters associated with shorter latencies.
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Chapter 5: Validation of the Theoretical Framework Using Compre-

hensive Simulation Studies

This chapter contains the simulation results and the numerical examples used

for validating the proposed algorithms and theoretical results discussed in Chapter

4. In the first section, we assess the performance of AGC inference for neural

spiking data in terms of estimation accuracy and tracking capability through several

simulated examples and comparisons. In the second section, we provide a simulation

study for static GC inference from continuous-valued observations in the context of

optical imaging data.

5.1 Simulation Studies for Neuronal Spiking Data

In this section, we carry out a comprehensive evaluation of the performance of

the AGC inference method in terms of both identification and tracking of G-causal

influences from neural spike trains through simulation studies and comparisons with

two representative techniques for functional network inference.
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5.1.1 A Simulated Example: AGC Inference for Neuronal Spike Trains

We consider a network of C = 8 functionally inter-connected neurons indexed

by c = 1, 2, . . . , 8, where each neuron is causally linked to a group of other neurons

through a set of inhibitory or excitatory links.

As illustrated in Fig. 5.1, the network connectivity pattern undergo three main

evolution states in time, each covering one-third (40s) of the simulation period: 1)

the first static state, where neuron (1) plays a dominant role, causally influencing

all other neurons, 2) the intermediate dynamic state, where neuron (1) loses the

dominant role to neuron (5), as its causal influences smoothly decay, while a new

set of causal interactions from neuron (5) to all the other neurons emerge, 3) the

final static state, where all the causal links from neuron (1) are completely vanished

and the links from neuron (5) are stabilized. The network also comprises three static

causal links, e.g. (3 7→ 7), which remain constant throughout.
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Figure 5.1: Three states of the functional network evolution, where a net-
work of 8 neurons (vertices) are interacting through static (solid edges)
or dynamic (dashed edges) causal links of inhibitory (open circles) or ex-
citatory (filled circles) nature. The selected G-causal links under study
are color-coded in blue, red and green.
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An observation period of T = 120 s is discretized to T = 120 k bins of length

∆ = 1 ms. We use a point process model with Bernoulli spiking statistics to generate

the binary spike trains for all neurons, where the CIF is modeled given the dynamic

GLM of Eq. 2.8. Note that the G-causal pattern of Fig. 5.1 is unknown to the

estimator, and is to be inferred from the simulated spike trains. Further details on

the parameter selection and estimation procedure are given later in this section.

Fig. 5.2–A shows a realization of the simulated spike trains indicated by black

vertical lines for all 8 neurons within three sample windows of length 1s, with end-

points at {40, 60, 120} s, selected from the three segments of the simulation. Fig.

5.2–B shows the time-course of the estimated non-centrality parameters ν̂k and their

95% confidence intervals obtained by the non-central χ2 filtering and smoothing

algorithm associated with four selected GC links: 1) (1 7→ 4) a dynamic weakening

GC link (red), 2) (5 7→2) a dynamic strengthening GC link (blue), 3) (8 7→6) a static

link (green), and 4) (8 7→ 2) a non-existing GC link (magenta). Black traces show

the shifted observed deviances Dk −M (d). Fig. 5.2–C represents the time-course

of the estimated J-statistics associated with four selected GC links plotted in four

separate panels, where the FDR is controlled at a rate α = 0.1.

In Fig. 5.2–B, the estimates of ν̂k corresponding to the three existing GC

links take significant values, correctly identifying the G-causal interactions, while ν̂k

takes values close to zero for the non-existing link, implying no significant G-causal

interaction. The time-course of changes for both dynamic links and the static link

is closely tracked by the non-centrality parameters, albeit with an apparent delay.

This delay is due to the choice of the effective window length, and highlights the
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trade-off between estimation accuracy and delay. While it is possible to reduce this

delay by choosing smaller effective windows, for the sake of accuracy of parameter

estimation and thereby robust detection of the AGC links, we have chosen the

effective window length to be 10 s (a fraction of the 40 s transition period) to incur

a tolerable delay. The aforementioned performance is echoed in the test strengths

quantified by the J-statistics shown in Fig. 5.2–C. Even though the non-centrality

parameters in Fig. 5.2–C track the changes of the network parameters much faster,

the J-statistics may lag behind due to the conservative statistical thresholds set

by the FDR control procedure. By choosing a higher FDR level, the J-statistics

will capture the changes much faster, but at the expense of possibly more false

discoveries. It is noteworthy that our proposed method distinguishes the direct GC

links from the indirect ones, as it correctly detects the direct GC links (8 7→6) and

(6 7→2), but rejects the existence of the corresponding indirect link (8 7→2).

The top row in Fig. 5.2–D shows the ground truth G-causal maps plotted

at 9 time instances (three per segment). Each map Φk represents an 8 × 8 color-

coded array showing the excitatory, inhibitory and no-GC links in red, blue and

green colors, respectively. The AGC maps estimated by our method are shown in

the second row, where each entry (Φ̂k)c,c̃ represents the J-statistic J
(c̃ 7→ c)
k of the

estimated GC link (c̃ 7→ c), where the excitatory or inhibitory nature of the links

is determined by the sign of the AGC measure, accounting for the aggregate cross-

history contribution. Note that such excitatory or inhibitory nature is not indicative

of the morphological identity of the connections.

We compare the AGC maps with two other methods: the static GC method of
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Figure 5.2: Functional network dynamics inference from simulated
spikes. A) one realization of simulated spikes within 1s windows selected
at {40, 60, 120}s, B) estimated non-centrality ν̂k across time correspond-
ing to 4 selected GC links (color-coded in Fig. 5.1), along with the
shifted deviance differences Dk−M (d) (black traces) and the 95% confi-
dence regions for each estimated trace ν̂k (colored traces), C) four panels
of estimated J-statistics Jk corresponding to the selected GC links, D)
performance comparison of the causal inference methods: 1) the pro-
posed AGC method (second row), 2) static GC method in [74] (third
row), and 3) functional connectivity method in [72] (last), along with
the true causality maps (first row). Each panel represents the estimated
8× 8 causality map at a specific time.
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[74] (third row), and the functional connectivity analysis of [72] (final row). In order

to adapt these methods to the time-varying setting, we used non-overlapping window

segments whose length is chosen to match the effective window length Neff := W
1−β

of our method. Within each window, the signed binary functional connectivity is

estimated using the methods outlined in [72] and [74]. The true model order and

the same significance level are used for all methods. Fig. 5.2–D (last two rows)

shows the connectivity maps obtained by [72] and [74], at the same 9 time instances

as in the previous rows. On a qualitative level, Fig. 5.2–D reveals the favorable

performance of our proposed framework in terms of both identification and tracking

of the GC influences. The method of [74] results in both high false positive and

false negative errors, and fails to track the GC dynamics due to highly variable

parameter estimates. Similarly, the method of [72] shows poor false positive rejection

and tracking performance. In the spirit of easing reproducibility, we have archived

a MATLAB implementation that fully generates Fig. 5.2 on GitHub (https://

github.com/Arsha89/AGC_Analysis).

Quantitative Performance Comparison In order to quantify the foregoing

performance comparison between the AGC inference and the methods of [72] and

[74], we repeated the previous simulation for R = 500 realizations of spike trains

randomly generated based on the network dynamics in Fig. 5.1, and computed

two performance metrics, true detection rate (TDR) and false alarm rate (FAR),

for each repetition. In what follows, we describe the computation of the TDR and

FAR performance metrics for the AGC inference method, and discuss the details of

87



statistical tests performed on these metrics.

Given the continuous nature of the AGC links, as opposed to the binary con-

nectivity measures of the other two methods, we binarize the resulting J-statistics

for fairness of comparison. To this end, let A
(c̃ 7→ c)
R be the fraction of times within

a time window where the AGC link (c̃ 7→ c) is identified with high statistical sig-

nificance J
(c̃ 7→ c)
k > Jth. We call an AGC link active within a given time window if

A
(c̃ 7→ c)
R > Ath, and inactive otherwise. We selected the thresholds to be Ath = 1

3
and

Jth = 1−ᾱ
3

.

The TDR at each time window is computed as the ratio of the correctly iden-

tified links to the total number of existing GC links. The FAR at each time k is

computed as the ratio of spuriously detected links to the total number of non-existent

links. Given the ground truth GC map shown in Fig. 5.2–D, these performance met-

rics can be computed for the static (first and last) segments of the experiment in a

straightforward fashion. For the middle segment, where the GC influences undergo

dynamic changes, we define the ground truth as follows: a threshold of Gth = 1
4

is used to binarize the ground truth GC links, which linearly ascend from 0 to 1

(emerging link) or descend from 1 to 0 (vanishing link) in the middle segment. For

each repetition of the simulation, the FAR and TDR metrics are computed for each

of the three segments by averaging over the time windows within, resulting in two

summary statistics.

The area under curve (AUC) performance metric further summarizes the two

TDR and FAR metrics into a single summary statistic, by computing the area under

the ROC curve. The ROC performance curves are obtained by varying the values
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of mean FDR ᾱ ∈ [0, 1] for AGC and the statistical thresholds of [74] and [72] and

plotting the corresponding (TDR,FAR) pairs averaged across repetitions.

Due to the highly non-Gaussian nature of the empirical distributions of the

paired difference metrics, we have used the non-parametric Wilcoxon signed-rank

test for comparison. The corresponding effect sizes are computed in the form of

rank correlation r := W /S , where W is the Wilcoxon signed-rank statistic and S

is the total sum of ranks [109].

Fig. 5.3–A represents the performance results in terms of TDR and FAR,

which are shown in green and red, respectively. Boxes indicate the mean values

as well as the 90% confidence intervals pooled across all repetitions. Based on the

Wilcoxon signed-rank test with p < 0.001, our method has a significantly lower

FAR compared with both [72] (effect sizes of r = 1 for all segments) and [74]

(r = 0.8, 0.86 and 0.98 for the three segments, respectively). Our achieved TDRs

are also significantly higher than those of [74] (r = 0.73, 0.996 and 0.94 for the three

segments, respectively), and are only outperformed by [72] in the middle segment

(r = 0.19, 0.86 and 0.27 for the three segments, respectively). It is noteworthy that

our method is the only one with consistently low FAR (< 1%), while maintaining

high TDR. Finally, both methods in [72] and [74] output binary connectivity maps,

as opposed to AGC which provides normalized continuous-valued test strengths of

the detected GC links. Figure 5.3–B exhibits the ROC performance curves for the

three segments of simulation, obtained by varying the significance levels for all three

methods. The corresponding AUC values for the three segments are indicated on top

of Fig 5.3–B. While the methods of [74] and [72] exhibit similar ROC performances,
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Figure 5.3: A) Performance comparison of AGC inference with the meth-
ods of [74] and [72] in terms of TDR (green) and FAR (red) for the three
segments of the simulation period. Boxes represent the mean and 90%
confidence intervals. Stars indicate significant difference with effect size
of r ≥ 0.8 (Wilcoxon signed-rank test, p < 0.001), B) ROC performance
curves of the AGC inference (blue) and the methods of [74] (red) and [72]
(green) for the three segments. The corresponding AUC values for the
three methods are reported at the top of ROC curves.

the AGC achieves higher AUC values, particularly in the middle segment. We

expect the performance gap between the AGC inference and the other two methods

to increase for larger networks with higher sparsity.

Empirical Validation of the Results of Theorem 4.1: In order to validate

the results of Theorem 4.1, we inspect the empirical distributions of the observed

deviance differences D
(c̃ 7→ c)
k for some selected links at arbitrary time points, and
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compare them with the associated theoretical fits. To this end, we use the same

ensemble of R = 500 simulated spike train realizations from the previous simulation

study.

Fig. 5.4 exhibits the resulting histograms and theoretical density fits (solid

curves), as predicted by Theorem 4.1, for two representative GC links (1 7→ 7)

and (5 7→ 2) from Fig. 5.1 at two selected time points of 40 s (endpoint of the

first segment) and 120 s (endpoint of the third segment). Note that the GC link

(1 7→ 7) was present in the first segment of the experiment and vanished in the last
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Figure 5.4: Empirical and theoretical fits to the distributions of the
adaptive de-biased deviance difference D

(c̃ 7→ c)
k for two selected links from

Fig. 5.1. The empirical densities are shown as histograms using 15 bins
(colored bars) and the theoretical fits are plotted as solid curves. (A)

Empirical and theoretical densities of D
(1 7→ 7)
k at t = 40 s (existing GC

link) and t = 120 s (non-existing GC link), (B) Empirical and theoretical

densities of D
(5 7→ 2)
k at t = 40 s (non-existing GC link) and t = 120 s

(existing GC link).
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segment, and the GC link (5 7→ 2) did not exist in the first segment, but emerged in

the last segment. The theoretical density χ2(M (d)) from part (i) of the theorem is

plotted for M (d) = 10. The theoretical density from part (ii), i.e., χ2(M (d), ν
(c̃ 7→ c)
k ),

is plotted for M (d) = 10 and the non-centrality parameter estimates ν̂
(c̃ 7→ c)
k obtained

by subtractingM (d) from the average deviance differences across the 500 realizations.

As it can be observed from Fig. 5.4, the theoretical predictions closely match

the empirical estimates of the densities, even at a practical value of β = 0.999

close enough to unity and W = 10 (i.e., Neff = 10000). We confirmed that similar

results hold for the rest of the links in the network, but have only plotted those

corresponding to the aforementioned representative links for the sake of brevity.

Numerical Choices of Parameters: We now elaborate on the details of

the parameter selection and estimation procedures used for the foregoing simulated

example. We selected the modulation parameter vectors to be the same for all the

G-causal interactions, and set to ωexc. = [1, 0, 0, 2, 0, 0, 0, 0, 0, 1] for excitatory links

and ωinh. = −ωexc. for the inhibitory links, where each component corresponds to a

uniform non-overlapping spike counting window of length 10 bins (or 10 ms). The

modulation parameter vector associated with the non-existing G-causal links (such

as (8 7→ 2)) is set to all zeros. The self-history dependence for all neurons is chosen

to be of inhibitory and static nature to maintain stable behavior for simulation

purposes. The norm of all non-zero parameter vectors is normalized to 1. The

average spiking probability is set to λ̄∆ ≈ 0.07� 1 by choosing the baseline firing

parameter µk = −2.597 to be the same for all neurons.
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To model the dynamics of the G-causal links in the second segment of the

simulation, we enforce a linear time evolution for all the coefficients of underlying

parameter vector, with a respective decay and growth for the links associated with

neurons (1) and (5). For estimation of G-causal interactions, we select the sparse

parameter vector associated with the full GLM model of neuron (c) to be in form

of ω
(c)
k = [µ

(c)
k ,ω

(c,1)
k

′
,ω

(c,2)
k

′
, . . . ,ω

(c,C)
k

′
]′ of length M (F ), composed of the scalar

baseline parameter µ
(c)
k , and sub-vectors ω

(c,c)
k of length M self

H , and ω
(c,c̃)
k of length

M cross
H for c̃ 6= c, denoting the respective parameter vectors tuning the self-history

dependence and the cross-history effects from neuron (c̃). We select M cross
H = M self

H =

10 history components associated with the respective kernel lengths of Lcross
H =

Lself
H = 100 ms, obtained by non-overlapping windows of length WH = 10 bins. Note

that M (F ) = 81, and M (R) = M (F ) −M cross
H = 71.

We employ the sparse adaptive filter `1–PPF1 to estimate the sparse parameter

vectors ω̂k at every time step k for both the full and reduced models. For the

`1–PPF1 filtering algorithm, an effective block length of Neff = 10k is selected with

a window size of W = 20, forgetting factor of β = 0.998 chosen sufficiently close

to one, step size of ς := 1−β
W

, and L = 1 number of iterations. The regularization

parameter is tuned for each cell separately γ̄(c) ∈ [0.3, 0.5], via the two-fold even-odd

cross validation [33]. For the χ2 filtering and smoothing algorithm, the smoothing

and scaling factors are selected as σ2
e = 5 × 10−6 and ρ = 1, respectively, using an

initialization of z0|0 = 0 and σ2
0|0 = 1 in the EM algorithm.

For the performance comparison in Fig. 5.2–D, we have adapted the methods

in [74] and [72], which are designed for static connectivity inference, to the time-
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varying setting in full fairness. First, due to the batch-mode computation of these

static methods, we divided the total T = 120k observed bins to non-overlapping

window segments of length WML = 10k, matching the effective block length Neff

of our dynamic method. Both methods compute the ML estimates of the network

parameters for each segment. We have therefore selected the true model orders

MML = 10 for both methods, matching the selected model order for our AGC

inference method, so as to have a fair statistical comparison and to ensure that they

operate at their optimal performance. (note that the dimensionality difference M (d)

has a particularly pivotal role in the inference procedure).

The method in [74] computes a static GC connectivity map obtained from

nested full and reduced ML estimates, followed by an FDR control procedure for

correction of multiple comparison errors. The method in [72] performs a likelihood-

ratio test to assess the significance of each pair-wise interaction. The same sig-

nificance levels are chosen for the statistical tests in both methods, to match our

FDR rate of α = 0.1. Finally, both methods have been modified to the logit-linked

GLM setting, in order to ensure their consistency with the generative model used

for simulating the spike trains.

5.1.2 Robustness of AGC Inference to the Choice of Parameters

We inspect the robustness of the proposed AGC inference with respect to the

choice of three major parameters: the dimensionality difference M (d), the regular-

ization parameter γ, and the effective block length of the adaptive filter Teff :=
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Neff∆ = W∆
1−β . We consider three different choices for each parameter, and for each

choice, we run the simulated example in Fig. 5.2 for R = 100 repetitions, where

a random sequence of spike trains are generated at each repetition based on the

network dynamics of Fig. 5.1. In each setting, the rest of the parameters are chosen

as described earlier in the previous subsection.

Robustness to the choice of M (d): For the dimensionality difference M (d),

we consider three settings of M (d) ∈ {10, 15, 20}. Fig. 5.5 shows the TDR and FAR

performance results for different choices of M (d). While the FAR values remain

consistently low (i.e., < 0.01, on average), as expected the larger choices of M (d)

would impose stricter statistical thresholds on the hypothesis tests (See Fig. 4.3–B),

leading to slight degradation of the TDR performance.

Robustness to the choice of γ: For the choice of regularization parameter,

M (d)
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Figure 5.5: Performance of the AGC inference for three different values
of M (d) ∈ {10, 15, 20}, in terms of TDR (top row) and FAR (bottom
row).
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Figure 5.6: Performance of the AGC inference for three different scalings
γ for cγ ∈ {0.1, 1, 10}, in terms of TDR (top row) and FAR (bottom row).

we consider three different settings for γ = cγγ
∗, cγ ∈ {0.1, 1, 10}, where cγ denotes

a scaling factor and γ∗ represents the optimally tuned regularization parameter

vector obtained from cell-by-cell two-fold even-odd cross-validation. Fig. 5.6 reveals

the robustness of the AGC inference with respect to the choice of the regularization

parameter. It can be observed that the resulting performance metrics show resilience

to under-regularization (cγ = 0.1), while the TDR performance notably degrades

due to over-regularization (cγ = 10). This is due to the fact that larger choices of γ

would shrink the inferred cross-history coefficients and thereby remove weaker GC

effects, which would lead to reduced TDR (and FAR) performance for all segments.

The optimally-tuned choice of the regularization parameter γ = γ∗ obtained via

cross-validation achieves a favorable TDR-FAR performance trade-off.

Robustness to the choice of Teff: For the effective filtering length, we

select three different settings of Teff ∈ {5, 10, 20} s. Fig. 5.7 exhibits the significant
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influence of effective filtering length Teff on the performance of AGC inference, where

as expected larger choices of Teff would increase both the TDR and FAR metrics.

In other words, larger effective number of samples for GC inference at each time

step would increase both the capability of correct identification (due to increased

estimation accuracy of the existing links) and the risk of false detection (due to

increased effective observation noise).
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Figure 5.7: Performance of the AGC inference for three different values
of Teff ∈ {5, 10, 20} s, in terms of TDR (top row) and FAR (bottom row).

5.1.3 The Roles of Adaptive Sparse Estimation and Bias Correction

in AGC Inference

In this subsection, we inspect the roles of the bias correction procedure as well

as sparse estimation in our proposed AGC inference method using an illustrative

simulation study. We examine how these features affect the performance in terms

of correct identification of the GC links and avoiding false positives. To this end,
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we compare the performance of our AGC inference method with a biased variant

in which the bias correction stage is removed, as well as the static ML-based GC

inference [74], in which the dynamics and sparsity are not taken into account.

We consider R = 100 realizations of a random network configuration compris-

ing C = 10 neurons, causally interacting through NLinks = 10 randomly selected

directional links. For each repetition and given the network configuration, a se-

quence of spike trains with a duration of T = 30 s is generated with a bin size

of ∆ = 1 ms. The average baseline spiking probability is set to λ̄∆ = 0.05. For

spike generation, we use a logit-linked GLM model with a static block-sparse pa-

rameter vector ω(c̃,c) with a support set of S = {1, 5, 10}, and respective values of

(ω(c̃,c))S = {2,−1, 1} to model the self- and cross-history dependencies among neu-

rons. Each history component is associated with a non-overlapping history window

of WH = 5 time bins. The sign of the history kernel determines the aggregate exci-

tatory or inhibitory effect of a causal link. We assume self-excitatory behavior for all

neurons, and the excitatory/inhibitory nature of the cross-history interactions are

randomly selected for each link. For GLM estimation, we select M cross
H = M self

H = 10

history components, associated with spike counting windows of length 5 time bins.

For the `1–PPF1 algorithm, we select the forgetting factor β = 0.999, and a filtering

window size of W = 5 bins (corresponding to an effective window length of 5 s),

cw = 1 and L = 1 number of iterations. The regularization parameter γ is tuned for

each neuron via two-fold even-odd cross-validation. The χ2 filtering and smoothing

algorithm parameters are chosen as σ2
e = 5 × 10−6 and ρ = 1, and the FDR is

controlled at a significance level of α = 0.1.
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Figure 5.8: Performance comparison of AGC inference (B) to its bi-
ased variant (C) and static ML-based GC inference (D). A) the ground
truth GC maps in a network of 10 neurons. The top rows of B, C and
D, correspond to three snapshots of the network inference result for a
given realization, and the bottom rows show the TDR and FAR met-
rics computed for the six non-overlapping segments, pooled across 100
realizations. Stars indicate significant differences between the AGC and
static ML-based GC, with effect sizes of r ≥ 0.8 (Wilcoxon signed-rank
test, p < 0.001).
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Fig. 5.8–A shows the static ground truth GC maps for a selected realization,

plotted at three time instances in the form of 10×10 matrices. Fig. 5.8–B, C and D

show the results for the full AGC inference method, its biased variant with no bias

correction, and the ML-based static GC method, respectively. Each panel consists

of three rows: snapshots of the detected GC maps for one realization (top row),

and the TDR (second row) and FAR (third row) performance metrics computed for

consecutive non-overlapping 5 s windows, and pooled across the R = 100 repetitions.

Boxes show the mean and 90% confidence regions. The static GC maps in Fig. 5.8–

D are estimated for non-overlapping windows of length Teff = 5 s, equal to the

effective filtering block length of the AGC method.

Figs. 5.8–B and C reveal the favorable FAR performance of the AGC method

as compared to the static ML, even in the absence of bias correction. In particular,

based on the Wilcoxon signed-rank test with a p-value of p < 0.001, the FAR

performance of AGC inference is significantly lower than that of the static ML

for all segments (effect sizes of r = 0.44, 0.38, 0.44, 0.52, 0.37, and 0.37 in the six

segments, respectively). However, the lack of bias correction (Fig. 5.8–C) results in

lower TDR performance compared to the AGC method. The TDR performance of

the AGC method is also significantly higher than that of the static ML for the last

4 segments, but is outperformed by the static ML in the first segment (effect sizes

of r = 1, 0.17, 0.73, 0.74, 0.88 and 0.90, in the six segments, respectively), which is

expected due to the initialization period of ∼ 5 s for the AGC method.

This illustrative example shows that the static ML-based approach that does

not account for sparsity overfits the parameters when applied to limited data, and

100



hence results in low true positive performance and a high number of spurious link

detections. In comparison, the AGC method provides favorable TDR and FAR

performance, but only after the initialization period, which is of the order of the

effective window length. In addition, this example highlights the crucial role of bias

correction for the deviance difference statistics in our proposed statistical inference

procedure.

5.1.4 Robustness Against Latent Confounding Causal Effects: Three

Simulation Studies

In this subsection, we investigate the robustness of our proposed AGC infer-

ence method with respect to latent confounding causal effects, which is one of the

major challenges in causality inference. When the two time series Xt and Yt sub-

ject to GC inference are driven by a third latent common process Zt, with possibly

different latencies, i.e., (Xt ← Zt → Yt), the GC inference may lead to spurious

detection of causal effects between Xt and Yt. This is due to the fact that the com-

mon information from Zt introduced in both Xt and Yt cannot be captured by the

conditional covariates due to the latent nature of Zt, and may result in false positive

errors, thereby limiting the reliability of GC inference.

Although the original form of the GC measure does not take into account

the latent confounding causal effects, several solutions have been proposed in the

literature to resolve this issue. As an example, a variant of GC called “partial

G-causality” is introduced in [110], which shows superior performance in terms of
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removing the effects of hidden confounding influences compared to the conditional

GC.

Our proposed method for AGC inference mitigates this issue through several

mechanisms. First, the hypothesis of sparsity allows for stable estimation of high

order GLM models, with large number of self-history components in both the re-

duced and full models used in the conditional GC measure. Hence, we expect that

the latent effects are partially captured via the high order self-history parameters

due to the autoregressive nature of the GLM models, which promotes the detec-

tion of the actual GC links between the units using the cross-history components.

This feature is akin to estimating latent Moving Average (MA) components using

autoregressive models in the ARMA modeling paradigm.

Second, by explicitly modeling the dynamics of the non-centrality parameters

describing the deviance statistics, and thereby using the χ2 filtering and smooth-

ing algorithm to reliably estimate them, we expect that only the temporally-salient

G-causal effects are captured, and the transient G-causal links possibly due to con-

founding influences manifested in the deviance statistics are suppressed.

Third, the non-centrality parameter estimates allow us to characterize the

test strengths for the rejected nulls (i.e., detected GC interactions) obtained by the

FDR-controlled multiple hypothesis testing framework, in a model-based fashion.

The resulting J-statistics can be further used to reject the detected GC links with

low test strength, which may be due to transient latent effects.

In order to demonstrate these features, we test the performance of the proposed

AGC inference method in the presence of confounding causal effects under the fol-
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lowing three scenarios: 1) confounding deterministic common input, 2) confounding

stochastic common input, and 3) confounding effects due to network subsampling.

Scenario 1: Confounding Effects Due to Latent Deterministic Com-

mon Input. We first consider an illustrative two-neuron example. We consider a

setting with a GC-link from neuron (2) to (1), and no GC link in the opposite direc-

tion. We also consider a hidden (confounding) source (H) affecting both neurons.

We assess the robustness of AGC inference method in terms of two performance

metrics: the detected false alarm rate (FAR) corresponding to the link (1 7→ 2), and

the true detection rate (TDR) for correctly identifying the link (2 7→ 1), all in the

presence of the confounding source (H 7→ 1, 2) (Fig. 5.9–A).

We assume a stationary environment with static GC links, and we use the same

spiking statistics based on logit-linked GLM model. We consider the case with no

self-history dependence in order to more specifically inspect the trade-off between the

cross-history and the latent confounding influences on our GC inference procedure.

To model the cross-history dependence associated with the GC link (2 7→ 1), we

select a uniform modulation vector ω
(1,2)
k = 1√

W (1,2)
1W (1,2) covering a window of

W (1,2) time bins, where 1W (1,2) denotes the vector of all ones of length W (1,2). The

effect of the latent hidden source is later added to the contributing effects in the

GLM models for both neurons. For the estimation of the GLM models, a larger

number of M self
H = 5 ×M cross

H self-history components are considered compared to

the cross-history in order to better capture the effects of the latent confounding

influences.
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In this first scenario, we model a sinusoidal signal xk = AH sin(2πk/200) af-

ferent to neurons (1) and (2) as the latent common input with different delays. We

consider a phase difference of π/2 between the latent inputs to neurons (1) and (2)

to account for the delay. For simulation of this scenario, we select a ground-truth

cross-history window of W (1,2) = 100 time bins, and a uniform non-overlapping spike

counting window of length WH = 50 for parameterizing the history components, and

M cross
H = 20 number of cross-history components.

For fairness of comparison, we choose the mean power EH of the latent con-

founding source to be equal to the mean power of the G-causal link EGC := var(ω
(1,2)′

k

x
(1,2)
k ) for the first two scenarios, and denote them by E . We run the simulation for

R = 50 repetitions, where a spike train of T = 180k samples covering a dura-

tion of T = 180 s is generated with ∆ = 1 ms time bins for each realization.

For the `1–PPF1 sparse filtering setup, we selected an effective block length of

Neff = W
1−β in the set {10k, 20k, 100k}, with respective average spiking probabili-

ties of λ̄∆ ∈ {0.1, 0.05, 0.01}. The regularization parameter γ is tuned for both

neurons via two-fold even-odd cross-validation. For the χ2 filtering and smoothing

setup, we selected a scaling factor ρ = 1, and a smoothing factor σ2
e = 10−4. We

infer the GC links for each repetition, and finally measure the mean FAR and TDR

across all realizations.

Table 5.1 exhibits the (FAR, TDR) performance pairs for six different settings

of (λ̄∆, E) for the sinusoidal latent source, pooled across all the repetitions. Each row

and column correspond to specific choices of the average spiking probability λ̄∆ and

mean confounding power E , respectively. The effective number of spikes per filtering
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window neff := Neff λ̄∆ is chosen to be the same across all rows. We selected two

different values of E ∈ {0.01, 0.05}. The FDR is controlled at the respective rates

of α = 0.1 and 0.05 for E = 0.01 and 0.05. The respective small and large values of

FARs and TDRs in the entries of Table 5.1 reveal the utility of our proposed method

in suppressing the effect of confounding latent causal influences, while identifying the

true G-causal links between the two neurons with high sensitivity and specificity.

In addition, they suggest that high-order self-history components are capable of

capturing deterministic latent effects. It is worth mentioning that the six different

settings in Table 5.1 are chosen to span the low-spiking (λ̄∆ = 0.01) and high-spiking

(λ̄∆ = 0.1) regimes, both in presence of weak (E = 0.01) and strong (E = 0.05)

confounding effects.

In order to illustrate the aforementioned features of our proposed method in

detecting the salient effects, and characterizing the corresponding test powers, we

have shown one realization from Table 5.1 in Fig. 5.9, corresponding to the setting

(λ̄∆, E) = (0.05, 0.01). The corresponding spike trains of neurons (1) and (2) within

a short window of 4 s are shown in Fig. 5.9–B. Fig. 5.9–C shows the time-course

λ̄∆
E

0.01 0.05

0.01
FAR 0.01± 0.05 0.13± 0.20
TDR 0.66± 0.32 1

0.05
FAR 0.11± 0.11 0.15± 0.10
TDR 0.89± 0.11 1

0.1
FAR 0.15± 0.09 0.12± 0.06
TDR 0.90± 0.08 1

Table 5.1: Performance metrics of AGC inference in presence of a latent determin-
istic sinusoidal common input. Entries show mean +/- standard deviation.
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of the estimated non-centrality parameter ν̂
(17→2)
k associated with the false positive

error (1 7→ 2) (blue trace), and ν̂
(27→1)
k associated with the true positive excitatory

G-causal link (2 7→ 1) (red trace). The black traces show the shifted deviance

differences Dk,β − M (d). Fig. 5.9–D shows the time-course of the estimated J-

statistics corresponding to the existing GC link (2 7→ 1) (red trace) and the non-

existing (1 7→ 2) link (blue). As expected, the existing GC link is detected in a

temporally-salient fashion with high test strength, whereas the non-existing link is

overwhelmingly rejected, with low test strength otherwise. In order to highlight
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Figure 5.9: Performance of the AGC inference method in presence of the
latent confounding causal effects corresponding to the realization from
Table 5.1 with median performance metric pair (FAR, TDR) at the set-
ting (λ̄∆, E) = (0.05, 0.01). A) dual-neuron network model with hidden
source, B) spike trains of both neurons within 4 s window, C) estimated
non-centrality ν̂k corresponding to GC links (1 7→ 2) (blue) and (2 7→ 1)
(red) across time, along with the 95% confidence regions, and the shifted
deviance differences Dk,β−M (d) (black traces), D) estimated J-statistics
Jk for both GC links.
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the effect of capturing the latent input using long self-history kernels, a sample of

the estimated self-history coefficients of neuron (2) in the sinusoidal input scenario

is shown in Fig. 5.10. The coefficients that are away from zero at a significance

level of 90% are highlighted in black. The estimated sparse high-order self-history

components are able to capture the sinusoidal latent input based on the temporal

correlations in the spiking history of the neuron.

-0.15

0.15

0 10 20 30 40 50 60 70 80 90 100

0

Figure 5.10: A sample of the self-history coefficient of neuron (2) in
the latent sinusoidal common input scenario for a generic trial and time
window. The error bars show 90% confidence intervals. Coefficients that
are significantly away from zero are further highlighted in black.

Scenario 2: Confounding Effects Due to Latent Stochastic Common

Input. For the second scenario, we consider a similar setting as the previous one,

but instead of a deterministic input, we generate a high-order AR process to model

a general stochastic latent confounding effect. We use a block-sparse structure for

the AR kernel with parameters ωAR = [0.7, 0, 0, 0,−0.05, 0, 0, 0, 0.02]′, where each

coefficient is associated with a non-overlapping spike counting window of length

WH = 25 bins. The AR coefficients are normalized to result in a stable process.

We selected an arbitrary delay of 40 bins between the common input to the two

neurons. A uniform ground-truth cross-history window of length W (1,2) = 50, and
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M cross
H = 10 number of cross-history components are selected for this setting. All the

other parameters used for AGC inference are chosen similar to the previous scenario.

In the same vein as Table 5.1, Table 5.2 exhibits the (FAR, TDR) performance

pairs for six different settings of (λ̄∆, E) for the AR latent source. Similarly, the

respective small and large values of FARs and TDRs in the entries of Table 5.2

confirm the utility of our proposed method in suppressing the effect of stochastic

latent common causal influences.

λ̄∆
E

0.01 0.05

0.01
FAR 0.07± 0.18 0.05± 0.16
TDR 0.81± 0.29 1

0.05
FAR 0.10± 0.09 0.06± 0.07
TDR 0.92± 0.11 1

0.1
FAR 0.09± 0.06 0.06± 0.05
TDR 0.93± 0.05 1

Table 5.2: Performance metrics of AGC inference in presence of a latent stochastic
AR common input. Entries show mean +/- standard deviation.

Scenario 3: Confounding Effects due to Network Subsampling. In the

third scenario, we evaluate the performance of our proposed AGC inference method

in the context of the more general confounding setting of network subsampling. This

scenario occurs when the observable neurons are subsampled from a large neuronal

network, and are prone to significant confounding effects from the unobserved por-

tion of the network, as illustrated in Fig. 5.11. This scenario often happens in the

analysis of experimentally recorded data, in which the observable neuronal ensemble

consists of a small subset of a larger latent network of neurons, due to the physical

limitations of data acquisition.
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Figure 5.11: A schematic depiction of the network subsampling scenario.
A small observable subnetwork of three neurons (within the dashed cir-
cle) are sampled from a large latent neuronal network. The observable
subnetwork and the interactions within are represented by blue, red and
green colors, while the latent neurons and interactions are shown in gray.

In order to test the robustness of our method to the problem of network sub-

sampling, we consider a network of C = 20 neurons, where the AGC inference is

performed on a small subnetwork of Csub. = 3 observable neurons. We repeat the

network subsampling simulation for R = 100 realizations, where a random net-

work configuration consisting of NLinks = 40 links randomly selected out of 380

possible directional links is considered for each realization. To determine the ob-

servable ensemble for AGC inference, we randomly select a subset of Csub. neurons,

such that there would be at least one direct latent common input to a pair of

causally-linked observable neurons (e.g. neurons 1 and 2 in Fig. 5.11). For simu-

lation, we consider a static setting for the GC links, where the underlying parame-

ters remain constant throughout the entire duration. We use a block-sparse kernel

of ωH = [2,−1, 0, 0,−0.5, 0, 0, 0, 0,−0.5]′ with non-overlapping history windows of

length WH = 5 bins, to model the self- and cross-history dependence among the
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causally interacting neurons. The effective excitatory or inhibitory natures of the GC

links are determined by positive (ω(c̃,c) = +ωH) or negative polarity (ω(c̃,c) = −ωH)

of the kernel. We assume the self-history dependence to be of excitatory nature for

all neurons, and the probability of excitatory or inhibitory cross-history dependence

is set to 50% for all links.

For each realization, we generate spike trains with a total duration of T = 180 s

with ∆ = 1 ms time bins. For estimation of the GLM models, a total number of

M cross
H = 10 cross-history and M self

H = 20 self-history components are considered with

a spike counting window of length 5 for parameterizing the history components.

We repeat the network subsampling simulation and perform the AGC inference

for six different settings of (λ̄∆, E) pairs, similar to the Tables 5.1 and 5.2, where

two different values of the mean GC link power E ∈ {0.01, 0.03} and three different

values of the average spiking probability λ̄∆ ∈ {0.01, 0.05, 0.1} are selected. We use

the same parameter settings for the `1–PPF1 filter and the non-central χ2 filtering

and smoothing as in the previous two scenarios for the three different λ̄∆ settings.

The regularization parameter γ is tuned for each observable neuron separately via

two-fold even-odd cross-validation. The FDR is controlled at a significance level of

α = 0.1.

As before, we evaluate the performance of AGC inference in terms of two

performance metrics: FAR and TDR within the observable network across all real-

izations. Table 5.3 summarizes the performance results for the six different settings.

The resulting metrics reveal the remarkable performance of our proposed AGC in-

ference in suppressing the false positives due to the latent confounding causal effects
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λ̄∆
E

0.01 0.03

0.01
FAR 0.01± 0.03 0.04± 0.07
TDR 0.74± 0.27 0.99± 0.01

0.05
FAR 0.01± 0.01 0.01± 0.02
TDR 0.71± 0.14 1

0.1
FAR 0.01± 0.01 0.01± 0.01
TDR 0.68± 0.11 1

Table 5.3: Performance metrics of AGC inference under network subsampling. En-
tries show mean +/- standard deviation.

(low FAR rate of ∼ 1%, on average), while maintaining high true detection rates

(high TDR rate of ∼ 70%, on average). Together with the results of the two forego-

ing scenarios, these results corroborate our earlier assessment of the AGC inference

in maintaining a degree of immunity to latent confounding effects.

5.2 A Simulation Study on GC Inference from Imaging Data

To validate the GC inference method introduced in section 4.2 for imaging

data modalities, and particularly highlight the roles of sparse estimation and bias

correction, we provide an illustrative simulation study with known ground truth

causal links. To this end, we compare the performance of our proposed method

with the conventional ML-based GC inference technique, as well as GC inference

from sparse estimates with no bias correction.

We consider a network of C = 8 neurons, causally inter-connected based on

the pattern shown in Fig. 5.12–B (the leftmost panel). For each neuron, we sim-

ulate a sequence of fluorescence measurements of length T = 150 samples, across

R = 10 trial repetitions, based on the VAR model in 4.23, driven by a zero-mean

111



Gaussian sequence of variance σ2 = 0.002. Fig. 5.12–A shows a simulated trial for

all 8 neurons. To simulate the fluorescence activity, we consider a random sequence

of discrete events uniformly distributed over time with a low probability of p = 0.33

event/trial, to represent the VAR innovation sequences (i.e., spikes). We select a

sparse parameter vector θ of length M = 20 with a support set of S = {1, 5, 15, 20}

of sparsity S = 4, and respective values of θS = {0.3, 0.05, 0.05, 0.05} to model the

self and cross-history dependencies among neurons. The cross-history parameters

are chosen to be the same for all the existing G-causal links, i.e., ω(c,c̃) = θ, and have

a positive or negative sign for the excitatory or suppressive GC links, respectively. In

addition to the cross-history effects, we assume self-history dependence of excitatory

nature, ω(c,c) = θ, and a scalar fluorescence baseline parameter, µ(c) = 0.01, consis-

tent across all neurons. The underlying ground truth functional pattern is unknown

to the estimator, and is to be inferred from the simulated fluorescence traces. For

estimation of GC links, we consider M cross
H = M self

H = 50 history components associ-

ated with the lag of LH = 50 samples (with WH,m = 1). For sparse estimation, the

regularization parameter γ is separately tuned for each neuron via cross-validation

across trials. The FDR is controlled at a rate of α = 0.05, for simultaneous testing

of 56 possible GC links.

Figs. 5.12–B and C show the comparison of our proposed method (2nd pan-

els) with: 1) sparse estimation without bias correction (3rd panels), and 2) the

conventional GC inference based on ML estimates (4th panels), in graphical and

matrix forms, respectively. The GC maps of Fig. 5.12–C represent 8 × 8 color-

coded arrays, where red, blue and green show excitatory, suppressive and no link,
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respectively. The first method (3rd panels) is the biased variant of our proposed GC

inference framework, where we adopt a similar estimation procedure and inference,

but disregard the bias correction term incurred by the sparse regularization in Eq.

4.25. In the second method, the sparsity of the parameters is not taken into account,

and the parameter estimation and deviance computation are performed based on

ML estimates.

Figs. 5.12–B and C reveal that our presented method outperforms the two

other compared methods in terms of both identification of the true GC links and

avoiding false discoveries: while our proposed method matches the ground truth,

removing the bias correction step results in low hit rate, and not accounting for

sparsity results in high false alarm rate. This illustrative example highlights the

crucial role of bias correction for the deviance difference statistics in our proposed
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Figure 5.12: Illustrative simulated example of GC network inference
with known ground truth. A) Simulated fluorescence traces from a sin-
gle trial. B) Graphical functional network maps corresponding to the
ground truth, our proposed inference method with and without bias cor-
rection, and the ML-based GC inference. C) The network maps of the
abovementioned methods in matrix form.
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statistical inference procedure. In addition, it shows that ML-based approaches that

do not account for sparsity overfit the parameters when applied to limited data, and

hence result in significant false discoveries.
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Chapter 6: Application to Experimental Data

This chapter contains our results from the application of the proposed GC

inference methods to experimentally recorded data. In the first section, we present

the results obtained from AGC analysis of neural spiking data. In the second section,

we provide the GC inference results from continuous-valued optical imaging data.

6.1 Application to Neural Spiking Data

In this section, we use data from two experimental settings: 1) inferred spike

trains from two-photon imaging data recorded from the mouse auditory cortex under

spontaneous activity, and 2) simultaneous spike recordings from the ferret primary

auditory (A1) and prefrontal cortices (PFC) under a tone-detection task.

6.1.1 Application 1: Spontaneous Activity in the Mouse Auditory

Cortex

In this subsection, we apply our proposed method to experimentally recorded

neuronal population data from the mouse auditory cortex. We imaged the sponta-

neous activity in the auditory cortex of an awake mouse with in vivo two-photon

calcium imaging. Within an imaged field of view, the activity of Ncells = 219 neurons
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is recorded at a sampling rate of fs ≈ 30 Hz for a total duration of T ≈ 22 mins.

Spike trains are inferred from the fluorescence traces using the constrained-foopsi

technique [111]. For GC inference, a subset of C = 20 neurons exhibiting high

spiking activity were selected, as many of the neurons in the ensemble are relatively

silent. The FDR is controlled at a rate of α = 0.005 for testing the |C| = 380 possible

GC links.

Figs. 6.1–A and 6.1–B show the time-course of the non-centrality estimates

and J-statistics for four selected candidate GC links, respectively. These repre-

sentative GC links consist of a persistent link (6 7→ 4) (blue), two transient links

(1 7→ 18) (red) and (2 7→ 12) (green), and an insignificant link (8 7→ 9) (magenta).

Figs. 6.1–C and 6.1–D show four snapshots of the AGC map estimates, respec-

tively in the matrix form, and as a network overlaid on the slice, at time-stamps

{8.33, 11.66, 16.66, 22.22} mins. Other than the three color-coded significant links,

the rest of the detected G-causal links are indicated by black arrows.

The detected G-causal maps are considerably sparse (maximum ∼ 16 out of

380 possible links), with a few persistent GC links and a multitude of transient links

emerging and vanishing over time. The sparsity of the AGC maps is consistent with

sparse activity in auditory cortex [112]. A careful inspection of the spatial pattern

of the AGC links reveals that the detected links correspond to distances in the range

of [150, 200] µm. These distances are consistent with in vitro measurements of the

spatial patterns of intra-laminar connectivity within the mouse auditory cortex [113],

showing a significant peak in the connection probability within the mean radial range

of [120, 200] µm. These results indicate that the proposed AGC method is able to
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Figure 6.1: Adaptive G-causal interactions among ensemble of neurons
in mouse auditory cortex under spontaneous activity. The time-course
of estimated GC changes for four selected GC links obtained through A)
non-centrality parameter ν̂k, and B) J-statistics Jk. C) AGC map esti-

mates Φ̂k at four selected points in time, marked by the dashed vertical
lines in the top panel. D) network maps overlaid on the slice, showing
cells with black circles and the selected cells highlighted in cyan. The
detected GC links depicted in black directed arrows and colored for the
selected links.

detect underlying connectivity patterns among neurons.

Numerical Choices of Parameters: We used time bins of length ∆ =

33 ms, equal to the sampling interval. For the GLM models, we chose M cross
H = 3

cross-history components associated with a block length of Lcross
H = 10 samples, ob-
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tained by non-overlapping windows of length [2, 4, 4] samples. To correct for possible

latent confounding effects, we select a larger self-history kernel of Lself
H = 30 sam-

ples segmented using windows of [2, 4, 4, . . . , 4] samples, giving a total of M self
H = 8

parameters. We corrected for the clustered spike detection effect of the constrained-

foopsi method, using a masking window for rejecting multiple consecutive spikes.

We selected an optimal data-driven masking window of size Wmask = 8 samples,

obtained by computing minimum rise-time of the calcium peaks inferred from the

smoothed fluorescence traces of all cells. Then, the spikes detected within an interval

of length Wmask are rejected.

We employ `1–PPF1 algorithm for adaptive parameter estimation with a for-

getting factor of β = 0.999, a window size of W = 10 bins, and L = 1 number

of iterations. The regularization parameter was tuned for each cell via two-fold

even-odd cross validation. The χ2 filtering and smoothing algorithm parameters are

chosen as ρ = 0.999, and σ2
e = 10−3. The J-statistics are evaluated at the mean

FDR for the detected GC links.

6.1.2 Application 2: Ferret Cortical Activity During Attentive Au-

ditory Behavior

Studies of the prefrontal cortex (PFC) have revealed its association with high-

level executive functions such as decision making and attention [114–116]. In par-

ticular, recent findings suggest that PFC is engaged in cognitive control of auditory

behavior [116], through a top-down feedback to sensory cortical areas, resulting in
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enhancement of goal-directed behavior. It is conjectured in [117] that the top-down

feedback from PFC triggers adaptive changes in the receptive field properties of

A1 neurons during active attentive behavior, in order to facilitate the processing of

task-specific stimulus features. This conjecture has been examined in the context of

visual processing, where top-down influences exerted on the visual cortical pathways

have been shown to alter the functional properties of cortical neurons [118,119].

In order to examine this conjecture at a single-unit level, we apply our pro-

posed AGC inference method to single-unit spiking activities from an ensemble of

neurons simultaneously recorded from two cortical regions of A1 and PFC in ferrets

during a series of passive listening and active auditory task conditions. In this ap-

plication, we sought to reveal the significant task-specific changes in the G-causal

interactions within or between PFC and A1 regions at the single-unit level during

active behavior. We used the spike data recordings from a large set of experi-

ments (more than 35) conducted on three ferrets for GC inference analysis (data

from the Neural Systems Laboratory, Institute for Systems Research, University of

Maryland, College Park, MD). During each trial in an auditory discrimination task,

the ferrets were presented with a random sequence of broadband noise-like acoustic

stimuli known as temporally orthogonal ripple combinations (TORCs) along with

randomized presentations of the target tone. Ferrets were trained to attend to the

spectrotemporal features of the presented sounds, and discriminate the tonal tar-

get from the background reference stimuli (see [117] for details of the experimental

procedures). Due to their broadband noise-like features, the TORCs and the corre-

sponding neural responses admit efficient estimation of the spectrotemporal tuning
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of the primary auditory neurons via sparse regression [33,120].

Fig. 6.2 shows our results on a selected experiment in which a total number

of C = 9 single-units were detected through spike sorting (5 units in A1 and 4 units

in PFC detected from 4 electrodes per region). The selected experiment consists

of three main blocks: passive listening pre-task, active task and passive listening

post-task, composed of R = 4, 4, and 6 repetitions, respectively. Within each repe-

tition, a complete set of 30 randomly permuted TORCs were presented along with

a randomized presentation of the target tone at f = 2.5 kHz. Fig. 6.2–A shows

the activity of all the units during the first repetition of each block, separated by

vertical dashed lines. Fig. 6.2–B shows the time-courses of the inferred J-statistics,

where each row represents the significant incoming GC links from all the other units.

Each unit and its significant outgoing GC links are color-coded uniquely as labeled

on the right side of each panel. For brevity, the significant GC links that show a

degree of persistence during at least one block of the experiment are plotted. Fig.

6.2–C depicts the representative network maps of the detected GC links among the

9 units during the three main blocks, where each significant GC link from panel

6.2–B is indicated by a directional link. Finally, Fig. 6.2–D exhibits snapshots of

the spectrotemporal receptive fields (STRFs) of all the five A1 units, taken at the

endpoint of each block. The red arrow marks the tonal target.

Three major task-specific dynamic effects can be inferred from Fig. 6.2: 1) a

significant bottom-up GC link from the target-tuned A1 unit during active behav-

ior, 2) a persistent task-relevant top-down GC link, and 3) task-relevant plasticity

and rapid tuning changes within A1. First, unit 4 in A1 shows strong frequency
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Figure 6.2: Dynamic inference of G-causal influences between single-
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controlled at α = 0.1), C) detected patterns of network AGC maps dur-
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the endpoints of three blocks of experiment.
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selectivity to the target around f = 2.5 kHz during the whole experiment (vertical

dashed lines, Fig. 6.2–D). Moreover, its STRF dynamics reveal a plastic shift of the

target-tuned facilitative regions to shorter latencies following the active attentive

behavior (upward arrow, mid. panel). Strikingly, a bottom-up GC link from the

very same strongly target-tuned unit to PFC (red link, 4 7→ 8) emerges during the

active task (second row, Fig. 6.2–B), temporally preceding any top-down significant

GC link.

The second effect appears as a strong top-down GC link (green link, 8 7→ 3)

which builds up during the active auditory behavior, and even persists during a few

repetitions of the post-active condition (fifth row, Fig. 6.2–B). The onset of this

top-down GC link coincides with a dramatic and rapid change in the STRF of the

A1 unit 3, which was initially tuned to ∼ 8 kHz (downward arrow, left panel, Fig.

6.2–D) but eventually gets suppressed at this non-target frequency (mid. panel, Fig.

6.2–D) by getting G-causally influenced by the PFC unit 8. This effect reveals the

relationship between the top-down network dynamics and the changes in the tuning

of the A1 units. We examine the dynamics of the parameters of the foregoing

bottom-up and top-down links in detail in section 6.1.3, for further clarification.

The third effect concerns the emergence and strengthening of frequency selectivity

in some of the A1 units (e.g, units 1 and 2, Fig. 6.2–D, right panel) to the target

tone, which alludes to a salient synaptic reinforcement effect within A1 during and

after the active task.

In addition to these inter-region GC links, multiple instances of GC links

within A1 (e.g., 5 7→ 4) or within PFC (e.g., 9 7→ 8) emerge or vanish during
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the active block, which accounts for the task-specific network-level changes within

the cortical regions that are involved in active listening. A salient instance of this

phenomenon can be observed in the dynamics of unit 8, whose GC links within PFC

significantly change during the active behavior: as it gets G-causally linked to the

lower-level A1 region, its GC links to the other PFC units fade away (rows 1, 3 and 5,

Fig. 6.2–B). It is noteworthy that the fluctuating instances of the J-statistics (e.g.,

Fig. 6.2–B, fourth row, third segment) are due to the FDR control procedure, and

there is no evidence to believe that they have a neurophysiological basis. In order to

reduce these fluctuations, one can choose a higher FDR rate. If these effects persist

at high FDR rates, careful inspection of the cross-history coefficients is needed to

assess their possible neurophysiological basis. Further discussion on the dynamics of

cross-history coefficients is provided in subsection 6.1.3. Finally, careful inspection

of Fig. 6.2 reveals a remarkable property of our proposed AGC inference method.

Although the pattern of spiking activities of the units in A1 and PFC did not vary

significantly across active-passive blocks of the experiment, the inferred G-causal

dynamics reflect significant task-specific network-level changes among the units in

the two cortical regions.

In order to validate our results in the absence of ground truth, we assess their

reliability using surrogate data obtained by random shuffling and network subsam-

pling in subsection 6.1.4, and verify the robustness of the inferred task-dependent

functional network dynamics against the aforementioned adversarial perturbations.

In conclusion, our methodology enabled the extraction of the top-down and bottom-

up network-level dynamics that were previously conjectured in [117] to be involved
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in active attentive behavior, at the neuronal scale with high temporal resolution.

In subsection 6.1.5, we present our analysis of another experiment, which further

corroborates our findings.

Numerical Choices of Parameters: We discretized the total duration of

T = 420 s using bins of length ∆ = 1 ms. The GLM modulation parameter

ωk := [µk;ω
Hist
k ;ωSTRF

k ] at time k consists of the baseline firing parameter µk, the

history dependence vector ωHist
k , as well as the STRF vector denoted by ωSTRF

k .

For the history dependence parameters, we selected M cross
H = 3 cross-history and

M self
H = 21 self-history components associated with respective history block lengths

of Lcross
H = 100 ms and Lself

H = 1 s, using non-overlapping windows of W cross
H =

[20, 30, 50] and W self
H = [20, 30, 50, . . . , 50] bins, respectively.

For the STRF parameters, we used a vectorized array of size I×J , with I = 50

time lag bins, and J = 50 frequency bins in logarithmic scale, uniformly spanning

time lags in the range of [0, 50] ms, and frequencies in the range of f ∈ [500, 16k] Hz,

respectively. To capture the inherent sparsity of the STRFs in the time-frequency

domain, we used a representation θSTRF
k = FωSTRF

k , where F is a Gaussian time-

frequency dictionary of 49 Gaussian atoms [33], and ωSTRF
k and θSTRF

k denote the

sparse representation of the STRF (with 49 parameters) and the vectorized STRF

at time k, respectively. We used two-dimensional symmetric Gaussian kernels with

a variance of dF
2/4 as Gaussian atoms in time-frequency plane, where atoms are

distributed on a grid of size 7×7 with a spacing of dF = 7 bins. The vectorized array

of the TORC sequence spectrograms with J frequency bins and I time lags (the same
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as those used for the STRFs) is considered as the common stimulus sequence sk in

the GLM model.

We used the `1–PPF1 filter to estimate the sparse parameter vectors ω̂k asso-

ciated with the reduced and full GLMs for each neuron in a dynamic fashion. We

selected a forgetting factor of β = 0.9998, a window size of W = 8, a step size

ς = 1−β
5W

, L = 20 number of iterations per step, and regularization parameters γ(c)

tuned for each unit separately via two-fold even-odd cross validation. We chose the

scaling factor ρ = β, and the smoothing factor σ2
e = 5 × 10−6 for the χ2 filtering

and smoothing algorithm. The FDR is controlled at the rate α = 0.1, and the J-

statistics computed at mean FDR ᾱ = 0.0119, testing for |C| = 9× 8 = 72 possible

GC links among the units.

6.1.3 Cross-history Coefficient Dynamics of the Top-down and Bottom-

up Links in the Ferret A1-PFC Analysis

We examine the dynamics of the cross-history coefficients associated with the

extracted top-down and bottom-up GC links in the ferret A1-PFC interaction during

active behavior (See Fig. 6.2). Recall that two of the major findings of this analysis

were: 1) emergence of a bottom-up inhibitory link from unit 4 in A1 to 8 in PFC,

followed by 2) a top-down excitatory link from unit 8 in PFC to 3 in A1. The latter

effect resulted in the disappearance of the frequency selectivity of unit 3 which was

originally sharply tuned to f = 8 kHz. In addition, unit 4 which affects unit 8 is

sharply tuned to the target frequency of f = 2.5 kHz.
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In order to gain insight into the nature of these influences, we examine the

time-course of the estimated underlying cross-history coefficients, and their corre-

sponding confidence intervals. Fig. 6.3–A shows the time-course of the cross-history

coefficients ω̂
(8,4)
k (red traces) and ω̂

(3,8)
k (green traces) corresponding to the bottom-

up and top-down links, respectively. As mentioned earlier in 6.1.2, the cross-history

coefficients consist of three components: a low-latency component corresponding

to a cross-history window of 20 ms, a mid-latency component corresponding to

a cross-history window of 30 ms, and a high-latency component corresponding to

a cross-history window of 50 ms, which cover an overall cross-history window of

100 ms. The low-, mid- and high-latency components are distinguished by their line

width in Fig. 6.3–A, as indicated in the figure legend.

Consistent with our AGC inference results of Fig. 6.2, these cross-history

coefficients undergo major changes shortly after the onset of the active segment,

some of which persist throughout a considerable portion of the post-active passive

segment. Note that the observed delay of order ∼ 40 s in adaptive parameter

estimation is consistent with the choice of effective window length W
1−β for W = 8

and β = 0.9998.

In order to dissect these dynamics more carefully, we have plotted three snap-

shots of these coefficients together with their 90% confidence intervals in Fig. 6.3–B.

The confidence intervals are obtained based on the de-biasing procedure to account

for the bias of the adaptive `1-regularized ML estimates [33, 87]. Note that, unlike

the conventional unbiased Gaussian case, the confidence intervals are not evenly

centered around the estimates, which highlights the effect of bias correction. The
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Figure 6.3: Dynamics of the cross-history coefficients for the bottom-up
(4 7→ 8) and the top-down (8 7→ 3) links estimated from the simulta-
neous PFC and A1 recordings during the tone detection task (See Fig.
6.2). A) the low-, mid- and high-latency components are distinguished by
their line widths, where red and green traces correspond to the bottom-
up and top-down link, respectively. B) Bar plots of the cross-history
coefficients and their 90% confidence intervals at times indicated by the
dashed vertical lines. Each panel also depicts the inferred AGC network.
Downward and upward vertical arrows in the middle panel highlight the
significant changes in the coefficients.

confidence intervals are not shown in Fig. 6.3–A for graphical clarity. Each panel

also shows the inferred AGC network from Fig. 6.2, in which the units not involved

in the top-down and bottom-up GC links are grayed out for graphical simplicity.

The left panel shows that during the first passive task, most of the cross-history

coefficients are insignificant, which is also reflected in the absence of any cross-region

link in the inferred AGC network. The middle panel reveals the emergence of low-

latency excitation together with strong mid- and high-latency inhibition from unit

4 to 8 (indicated by downward arrows), hence the overall inhibitory bottom-up
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GC link. Similarly, the strong low- and mid-latency excitation from unit 8 to 3

(indicated by upward arrows) results in the top-down excitatory GC link. The

latter excitation locks the activity of unit 3 to that of unit 8, and as a result the

high frequency responsiveness of unit 3 is suppressed. Finally, the right panel shows

that the cross-history coefficients return to the original setting of the pre-active

condition.

As mentioned in the discussion following Fig. 6.2, the fluctuations of the J-

statistics (e.g., red trace in Fig. 6.2–B, panel 8) are due to the FDR correction

procedure, which results in rejecting the null hypotheses only corresponding to links

with strong enough coefficients at a given time step. Therefore, the stochastic

fluctuations of the cross-history coefficients (e.g., red traces in Fig. 6.3–A) lead to

the fluctuations of the deviance statistics around the statistical thresholds set by

the FDR control procedure in our multiple hypothesis testing framework.

6.1.4 Validation of the AGC Inference Results from the Ferret A1-

PFC Experiment via Surrogate Data Analysis

Given the lack of access to ground truth in the analysis of real data, it is crucial

to assess the reliability of our results using carefully devised surrogate data. To this

end, we generate two sets of data using random shuffling and network subsampling

procedures, and thereby evaluate the consistency of our results.

Analysis of Surrogate Data from Random Shuffling: We first assess

the reliability of the inferred AGC networks in the analysis of the ferret A1-PFC
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interaction through surrogate data obtained by random shuffling. To this end, we

randomly shuffle the activity of single-units across different repetitions regardless of

their active or passive nature (14 repetitions in total), such that each repetition of

a single unit would be randomly aligned with different repetitions of other single

units recorded at different experimental periods. We then infer the AGC network

patterns for each shuffled composition of the repetitions. Our goal is to investigate

whether our AGC inference procedure detects any significant GC pattern from the

shuffled data.

We repeat the random shuffling procedure for R = 100 trials, and compute the

J-statistics for different links across the whole experiment. We test the reliability of

the detected significant links from the original unshuffled data by comparing their

J-statistics to those pooled from the randomly shuffled surrogate data. For brevity,

we focus on two of the most notable GC links: the top-down (8 7→ 3) link from PFC

to A1 and the bottom-up (4 7→ 8) link from A1 to PFC.

Fig. 6.4 shows the time course of the J-statistics for these two representative

GC links inferred from both the original (red and green traces) and surrogate (gray

traces) data. In each panel, the black solid trace represents the mean J-statistics

across the R = 100 randomly shuffled repetitions, and the colored hulls indicate the

corresponding 95% confidence regions. It can be observed that the mean J-statistics

from the surrogate data do not surpass the small value of 0.06, while the originally

detected J-statistics take large values in the range of ∈ (0.7, 1). For instance, the

value of J
(87→3)
k at t = 300 s is significantly higher than those from the surrogate

data (One-tailed Z-test, p < 0.0001).
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Figure 6.4: Analysis of surrogate data from random shuffling of the
repetitions in the ferret A1-PFC experiment. The J-statistics of the
(4 7→ 8) and (8 7→ 3) links inferred from the original data are shown
in red and green traces, respectively. The average J-statistics obtained
from the randomly shuffled ensemble are shown by black traces, with
95% confidence regions shown by the gray hulls. The J-statistics inferred
from the original data show a significant statistical separation from those
obtain from the surrogate data.

Moreover, the J-statistics of the surrogate data do not suggest any task-

dependent behavior, as opposed to those from the original data. To illustrate this

more precisely, suppose that the task-dependence behavior of the link (8 7→ 3)

were to be preserved in the surrogate data, i.e., this link would persist for blocks

comparable in length to that of the original data. Given that this link is active

with significant J-statistics for ∼ 120s, then it would be expected that the average

J-statistics of this link for the surrogate data would be close to 120/420 ≈ 0.28.

However, the p-value of this observation with respect to the distribution of the

J-statistics over the entire duration of the surrogate data is given by p = 0.0007

(One-tailed Z-test).

This analysis verifies that the highly significant AGC links inferred from the

data vanish under random shuffling of the repetitions, and are therefore highly

specific to the correct temporal ordering of the repetitions in the experiment.
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Analysis of Surrogate Data from Network Subsampling: Next, we

assess the reliability of the inferred AGC interactions in the analysis of the ferret

A1-PFC interaction through surrogate data obtained by network subsampling. To

this end, we investigate the robustness of the inferred AGC patterns and their time

course against excluding a single or a group of neurons from the observed ensemble.

For brevity, we focus on the two bottom-up and top-down AGC links and assess

their reliability under three different network subsampling scenarios:
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Figure 6.5: Analysis of surrogate data from network subsampling in the
ferret A1-PFC experiment, where unit 8 (shown in gray) is excluded
from the analysis. As expected, the significant bottom-up and top-down
links between A1 and PFC vanish.
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Scenario 1: We first exclude the single-unit 8, the only unit in PFC with a signifi-

cant GC link to A1, from the analysis. We explore the presence of any possible new

inter-region GC interactions, and expect that the top-down and bottom-up GC links

between PFC and A1 would vanish due to the exclusion of unit 8. Fig. 6.5 shows the

resulting AGC network maps and the time courses of the corresponding J-statistics.

Indeed, the significant bottom-up and top-down interactions between A1 and PFC

vanish, while the rest of the networks within A1 and PFC remain unchanged. The

only notable exception is a small transient link from 2 to 7 for t ∈ [135, 140]s.

Scenario 2: Next, we exclude the single-unit 4 in A1, with a bottom-up link to

PFC, and test the robustness of our method in terms of the new detected GC links,

and expect that no new bottom-up links from A1 to PFC are discovered. Fig. 6.6

shows the resulting AGC network maps and the time courses of the corresponding J-

statistics. As expected, the bottom-up link from unit 4 to 8 vanishes, while the rest

of the AGC interactions, notably the top-down link from 8 to 3, remain unchanged.

Scenario 3: Finally, we consider a highly undersampled case where we restrict the

observable set to the three units {3, 4, 8} which are involved in the top-down and

bottom-up interactions. We expect that the same bottom-up and top-down patterns

between these units are discovered in the absence of all the other 6 neurons which

did not exhibit any inter-region GC links. Fig. 6.7 shows the resulting AGC network

maps and the time courses of the corresponding J-statistics. Indeed, the expected

pattern of GC interaction between these three units is preserved, with the exception

of a weak excitatory GC link from 3 to 4 with low statistical significance.

These results show that the inferred AGC maps and the time courses of the
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Figure 6.6: Analysis of surrogate data from network subsampling in the
ferret A1-PFC experiment, where unit 4 (shown in gray) is excluded
from the analysis. As expected, the bottom-up link from A1 to PFC
vanishes.

corresponding J-statistics, and notably those pertaining to the bottom-up and top-

down network structure, are robust to network subsampling. Hence, they are specific

to the interactions between the single-units under study in this experiment, and there

is no evidence to believe that they are the byproduct of this particular observable

subsampled network of 9 neurons.
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Figure 6.7: Analysis of surrogate data from network subsampling in the
ferret A1-PFC experiment, where only units 3, 4 and 8 are included in
the analysis (all other units shown in gray). As expected, the signif-
icant bottom-up and top-down links and their respective time courses
are preserved.

6.1.5 Supporting Example: Ferret A1-PFC Interaction

We present the application of our proposed AGC inference on another instance

of spike recordings from the same set of experiments on ferrets as described in 6.1.2,

where the animal is performing a pure tone detection task [117].

Fig. 6.8 shows the results of our AGC inference for a selected experiment

consisting of four main blocks: pre-active, active, and two post-active conditions,

where each block is composed of R = 5 repetitions. Within each repetition, a

complete set of 30 randomly permuted 1 sec-long TORCs was presented along with

a randomized repetition of the target tone at f = 8 kHz. Fig. 6.8 shares the same
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structural format as Fig. 6.2. A total number of C = 8 single-units are detected

through spike sorting (4 units in each region), whose spike trains are shown in

Fig. 6.8–A. For graphical convenience, we only plotted the spike trains within the

last repetition of each block. Fig. 6.8–B shows the time-course of the changes in

the J-statistics associated with detected GC links, where each row represents the

corresponding significant GC influences from all units to a target unit, which passed

the BY FDR control procedure. Each single-unit along with its significant outgoing

GC link is color-coded uniquely as shown on the right. Fig. 6.8–C depicts these

detected changes in the pattern of G-causal links among the 8 single-units during

three main blocks of the experiment. Three STRF snapshots of all the four A1 units

at the endpoints of the pre-active, active and post-active blocks are shown in Fig.

6.8–D, along with the target frequency f = 8 kHz indicated by a red arrow.

Fig. 6.8 reveals significant task-relevant changes in the pattern of G-causal

interactions among the units within or across the PFC and A1 regions. The most

striking observation is the identification of 4 bottom-up and 4 top-down GC links

during active attentive behavior, which verifies the functional interaction (in the

sense of Granger) between the higher-level PFC and the lower-level cortical region

involved in active listening. The most significant and persistent bottom-up GC

links, e.g. (1 7→ 5), belong to the A1 unit 1, whose STRF characteristics show a

frequency-selective suppression around the target frequency. As can be observed

in Fig. 6.8–D, this A1 unit exhibits significant task-related plasticity [30], as its

suppressive response to the target frequency vanishes entirely during the active

attentive behavior (downward arrow, mid. panel, Fig. 6.8–D) while it G-causally
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Figure 6.8: Adaptive GC inference from single-unit recordings in the
ferret PFC and A1 during auditory tasks. (A) Spike trains correspond-
ing to the last repetition of each block, (B) time-course of GC changes
for the significant links through J-statistics, (C) inferred network AGC
maps during pre-task, active task, and post-task passive conditions. D)
STRF snapshots of A1 units at the endpoints of the three blocks of the
experiment. Note the selective reduction in inhibition at 8 kHz (target
tone) in A1 unit 1 during behavior (downward arrow, middle panel).
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influences the higher level PFC units in an inhibitory fashion. Interestingly, unit

1 retrieves its original pre-active STRF after the active task is over. In addition

to the detected inter-region GC links, several instances of task-relevant changes in

GC links within A1 (e.g., 3 7→ 2; see upward arrows, mid. panel) or within PFC

(e.g., 5 7→ 6) occur during active behavior. In addition, the pattern of GC links

within PFC changes dramatically during active attentive behavior as compared to

the passive conditions.

Choices of the Parameters: The total duration of T = 600 s is binned by ∆ =

1 ms, and segmented by windows of length W = 25 bins. We applied the `1-PPF1

adaptive filter to the spiking data of all single-units, where we selected a forgetting

factor of β = 0.9995, a step size ς = 1−β
5W

, L = 20 number of iterations per step,

and regularization parameters tuned for each unit separately via two-fold even-odd

cross validation. We consider the same dynamic GLM model to capture the spiking

statistics as in the previous analysis, with the modulation coefficients accounting

for both the ensemble spike history and stimuli. For the stimulus modulation,

we consider a vectorized STRF array of size I × J , with I = 50 time lags and

J = 50 frequency bins in logarithmic scale represented by a Gaussian time-frequency

dictionary [33], capturing the effect of the reference acoustic stimuli spectrogram.

As for the ensemble history dependence, we select M cross
H = 3 cross-history and

M self
H = 21 self-history components associated with respective non-overlapping spike

counting windows of W cross
H = [20, 30, 50] and W self

H = [20, 30, 50, . . . , 50] bins. The

FDR is controlled at the rate α = 0.1, testing for |C| = 56 possible GC links among

the 8 single-units.
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6.2 Application to Optical Imaging Data

In this section, we present the results from application of our proposed GC

inference methodology introduced earlier in section 4.2 to data from two different

continuous-valued modalities of optical imaging: 1) two-photon (2P) calcium imag-

ing data from mouse auditory cortex during auditory tasks, and 2) whole-brain

light-sheet imaging data from the larval zebrafish during motor behavior.

6.2.1 Application 1: Probing the Functional Network Organization

in the Mouse A1 During Auditory Task Performance

In this subsection, we report the findings obtained from application of our

proposed static GC inference method to 2P imaging data in collaboration with

the Kanold Laboratory, Systems and Developmental Neuroscience, Department of

Biology, University of Maryland, College park. The following results are published

in [80], and included in part here.

It is known that neuronal populations in A1 layer 2/3 (L2/3) exhibit heteroge-

neous frequency tuning in response to pure tones, and many neurons show occasional

response or even no response to acoustic stimuli [121,122]. It is conjectured that such

diversity in local tunings and response properties is likely due to the complex intra-

and inter-laminar connections to L2/3 [123]. Such local heterogeneity and complex

connectivity pattern raise the speculation that task-related information processing

might differ across subpopulations.
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We investigate the functional representation of task performance and behav-

ioral choice at the network-level through GC inference analysis of 2P imaging data

from A1 L2/3 of mice performing a tone-detection task. GC inference enables us to

estimate and quantify the effective connectivity in the neuronal network by simul-

taneous analysis of tone-evoked responses in the ensemble of neurons. In addition,

2P imaging allows us to precisely identify the spatial location of each neuron, and

thereby provides valuable insights into the spatial structure of the GC networks.

In the following, we perform statistical tests to compare the GC networks

across three major task conditions: passive, hit, and miss, in terms of multiple

network statistics such as the number, length, and direction of the GC links.

We use data from a large set of experiments (Nexpt. = 80, with total Ncells =

4316 identified neurons) conducted on 10 awake behaving mice for GC analysis (data

from the Kanold Lab, Department of Biology, University of Maryland, College park,

MD). During task performance, mice were head-fixed and imaged in vivo in A1 using

the 2P Ca2+ imaging technique. Sharing a similar experimental design as those in

section 6.1.2, during each trial in a tone-detection task, the mice were trained to

attend and follow a simple response-timing behavior by licking a waterspout only

during a reward time interval shortly after the target tone onset. On hit trials, mice

show licking behavior within the time interval and get rewarded with water flow,

whereas they do not lick on miss trials. The number of trials was determined by the

persistence of active behavior exhibited by the trained mouse (see [80] for details on

the experimental procedures).

Figure 6.9–A shows a sample of inferred GC network maps within an imaged
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Figure 6.9: Inferred GC network structures in Mouse A1 L2/3 for differ-
ent task conditions. A) Sample GC networks during passive (left), hit
(middle), and miss (right) conditions. Excitatory (+) and suppressive
(−) links are shown in orange and black colors, respectively. B) Sample
∆F/F traces associated with (+) and (−) GC-linked neurons. C) CDF
of GC link weights, (∗) indicates the difference between the passive and
hit trials (bootstrap t-test, p < 0.001). D) Polar histogram of GC link
average angles, (∗) indicates the significant rostro-caudal directionality
of links during hit condition (Rayleigh test, p = 0.03).

field of view across three different task conditions (passive, hit, and miss) from a

selected experiment. The G-causal interactions with effective excitatory (positive)

or suppressive (negative) nature are color-coded in orange and black, respectively.

Fig. 6.9–B shows three selected ∆F/F traces associated with the G-causally linked

neurons, where the detected effective excitatory or suppressive nature of links reflects

the relative sign of the two associated traces.

Three major findings can be obtained from the GC inference analysis and the

corresponding statistical tests: 1) Increase in test strengths of GC networks during
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auditory task performance, 2) Orientation of GC interactions along the rostro-caudal

axis during the hit condition, 3) Pruning of the GC links during auditory task

performance.

First, we examine whether the GC link weights change significantly across dif-

ferent task conditions. We use the J-statistics measure obtained from the proposed

GC inference as a natural representative reflecting the relative weights of the de-

tected links. Fig. 6.9 represents the CDF of the J-statistics corresponding to the

detected links for three major task conditions pooled across different experiments.

Our analysis shows that the strengths of GC interactions were larger during the hit

condition compared to the passive condition (Fig. 6.9–C; hit: 0.91 ± 0.005 versus

passive: 0.84±0.005, bootstrap t-test, p < 0.001), but not different for the hit versus

miss conditions (hit-miss, 0.002 ± 0.006; bootstrap t-test, p = 0.52). This reveals

that the auditory task performance boosts the strengths of functional interaction

within the networked neurons.

It is known that A1 has a functionally anisotropic property, with the sensi-

tivity to low and high frequencies arranged roughly in a rostro-caudal direction. In

addition, this functional asymmetry is reflected in its underlying connectivity pat-

tern [124]. Based on this evidence, we conjecture that the functional interactions

within subnetworks involved in hit and miss conditions might differ in terms of spa-

tial organization, in particular, in terms of their angular orientation with respect to

the tonotopic axis of A1 (rostro-caudal). We computed the average GC link angle

across all detected links for each experiment with the caudal direction taken as 0◦

reference. As shown in Fig. 6.9–D, the GC links with large test strengths (J > 0.9)
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show significant directionality along the rostro-caudal axis during the hit condition

(−0.27◦ ± 0.18◦, Rayleigh test, p = 0.033), and significant directionality was absent

in the passive and miss conditions (Rayleigh test, p > 0.05). Hence, strong func-

tional connections show preferential orientation along the tonotopic axis during tone

detection.

We next performed statistical comparison of the size of GC networks and

the organization of subnetworks within. Figs. 6.10–A and B show the CDF of the

number of excitatory and suppressive links across different experiments. The average

number of excitatory links was largest for passive trials (Fig. 6.10–A; hit, 6.8±0.84;

miss, 5.3 ± 0.78; passive, 24.7 ± 2.2; bootstrap t-test, p < 0.001 for both hit and

miss), while the number of links between hit and miss trials was similar (bootstrap

t-test, p = 0.14). Similarly, for suppressive links, more GC links were present in the

passive condition (Fig. 6.10–B; hit, 1.3± 0.26; miss, 0.62± 0.15; passive, 5.3± 0.51;

bootstrap t-test, p < 0.001 for both hit and miss), and the average number of links

was similar between the hit and miss trials (bootstrap t-test, p = 0.27). This result

reveals the predominant effect of task performance in decreasing the number of both

excitatory and suppressive GC links. Further inspection of the GC networks unveils

that groups of neurons form isolated subnetworks within the larger GC network.

The CDFs of GC subnetwork size for three task conditions are shown in Fig. 6.10–

C. The number of neurons within each isolated GC subnetwork was larger in the hit

compared to miss condition (4.6±0.4 versus 3.7±0.41, bootstrap t-test, p = 0.019),

and was largest in the passive condition (13.6± 0.8, bootstrap t-test, p < 0.001).

Finally, we performed statistical analysis of the length of the GC links, using
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Figure 6.10: Formation of small and localized GC subnetworks during
tone detection. A) and B) CDF for the number of (+) and (−) links,
respectively. Black (∗) indicates the significant difference in passive-hit
comparison (bootstrap t-test, p < 0.001). C) CDF of GC subnetwork
size, blue (∗) shows significant difference in hit-miss comparison (boot-
strap t-test, p = 0.019). D) CDF for GC link lengths. E) Illustration of
passive and active (i.e., hit) GC networks.

the spatial information available thanks to the 2P imaging technique. Fig. 6.10–D

shows the CDF of the GC link lengths for different task conditions. We found that

not only did the number of links decrease during tone detection, but so did the

length of the links (hit, 66.9± 3.6mm; miss, 62.8± 4.03mm; passive, 79.4± 1.8mm;

bootstrap t-test: hit versus miss conditions, p = 0.58; hit or miss versus passive

conditions, p < 0.001), indicating that during the hit condition, nearby cells were

more likely to be GC linked. This finding reveals that tone detection reduces the

area occupied by active neural networks in A1 L2/3.

In conclusion, our GC network inference analysis indicates that auditory tar-
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get recognition correlates with the transient formation of small and localized sub-

networks, having both effective excitatory and suppressive causal interactions that

orient preferentially across the rostro-caudal tonotopic axis of A1 during tone de-

tection.

6.2.2 Application 2: Extracting Large-scale Functional Network Maps

of Larval Zebrafish from Whole-brain Imaging Data

It is known that the brain function arises from collective interactions among

large-scale dynamic networks of neuronal populations spanning the entire brain.

Analysis of these large-scale functional networks is only possible if the activity of

large populations of neurons across the entire brain could be recorded simultane-

ously.

Although the number of simultaneously recorded neurons is growing for various

modalities of electrophysiology [125] and optical imaging [126,127], the conventional

neural imaging techniques and data acquisition methods could only acquire data

from a small fraction of all the neurons in the brain. In addition, these methods

mostly suffer from common physical constraints such as the trade-off between the

imaging resolution and the effective area of the field of view. Hence, the functional

networks among disparate population of neurons in different brain regions would be

untraceable using these conventional recording techniques.

Recently, a novel imaging technique using light-sheet microscopy [128] is de-

veloped to record the activity of neurons in the larval zebrafish brain in vivo through
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Figure 6.11: Whole-brain imaging of neuronal activity at cellular reso-
lution. (credit: M. Ahrens, Nature Methods, 2013. [128])

genetically encoded calcium indicators. Unlike the conventional methods, it is re-

ported that this new imaging technique is able to image the activity of almost all

neurons (more than > 80, 000) in the larval zebrafish brain at the single-cell reso-

lution, covering the entire brain area. This imaging technique provides us with the

opportunity, for the first time, to capture the functional organization of large-scale

networks spanning the entire brain.

In what follows, we first briefly describe the experimental setup and two loco-

motion behavioral paradigms. Next, we present the results from the GC analysis of

the light-sheet imaging data from larval zebrafish’s entire brain during fictive motor

behavior (data from the Ahrens Lab, Janelia Research Campus, Howard Hughes

Medical Institute, Ashburn, VA).

Motivated by the findings from our GC inference analysis, we then perform
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a comprehensive spectral analysis of the whole-brain imaging data with the goal of

identifying neural oscillations and rhythmic activity across the brain.

Experimental Paradigm: Fictive Swimming Behavior Setup. The

light-sheet imaging data is recorded from a larval zebrafish in fictive conditions. In

the fictive behavior setup, the larval zebrafish is paralyzed and embedded in a drop of

low melting point agarose, with a freed tail for electrophysiological recordings. Two

electrodes record multi-unit extracellular signals from clusters of motor neuron ax-

ons, and provide a readout of intended locomotion. Fictive swim bouts are processed

separately for the two left and right channels. For more details on the experimental

procedure see [126,129]. In the closed-loop experimental paradigm, a visual stimuli

is presented to the zebrafish with fictive motion in the environment, time-locked to

the fictive swim bouts, as a visual feedback to mimic the visual effect of swimming.

In the open-loop paradigm, a visual stimuli with forward grating is shown to the

zebrafish with no visual feedback from the fictive motion. The swimming statistics

of the fictively behaving zebrafish change significantly in the open-loop condition,

as the fish abruptly ceases to engage in behavior for long periods of time.

In what follows, we infer the functional networks underlying this motor behav-

ior and investigate the network dynamics during the transition from the closed-loop

to open-loop condition.

Whole-brain Functional Network Inference via GC Analysis: Authors

in [128] performed correlational analysis across the entire brain to identify neuronal

populations with correlated activity patterns, which led to the detection of two
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functional networks spanning large areas of the hindbrain that may be involved in

locomotion.

Despite its well-known merits, it is known that correlational analysis provides

limited insights into the directional representation of functional network structure,

due to the intrinsic deficiencies in identification of directionality, low sensitivity to

inhibitory interactions, and susceptibility to the indirect interactions and confound-

ing effects.

To address these shortcomings, we perform Granger causality analysis on the

light-sheet imaging data from the entire brain of the larval zebrafish during fictive

motion behavior to elucidate the functional circuitry of large-scale neuronal networks

involved in locomotion. Before proceeding with the GC inference, we first need to

handle the redundancy of highly correlated activity by reducing the dimensionality

of the problem. To this end, we take an unsupervised learning approach to group the

neural components within a dorsal projection of the brain based on their observed

activity via the K-means clustering technique. For GC analysis, we select 8 neural

clusters across different brain regions (forebrain, midbrain, and hindbrain) from the

total number of 70 clusters, whose activity shows distinct statistics and significant

variability. It can be observed from the clustering results (Fig. 6.12–B) that some

neural clusters are localized within a brain region (e.g. cluster 5), while others appear

as disparate populations scattered across brain (e.g. cluster 3). The symmetry of

neural clusters and the coupling among distant populations are consistent with the

known anatomy of the zebrafish brain.

Fig. 6.12 shows the GC inference results from light-sheet imaging of a selected
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dorsal single-plane of the larval zebrafish brain during the fictive locomotion exper-

iment. The selected experiment consists of a 100 s closed-loop segment followed

by a ≈ 10 min open-loop fictive motion condition. Figs. 6.12–A and B represent

the detected GC maps among the Nclust. = 8 neural clusters corresponding to four

100 s segments of the experiment, respectively in the matrix form and as a network

map overlaid on the selected dorsal plane. We selected the open-loop segments to

be of equal duration as the closed-loop segment for consistency of the GC inference

results. Each neural cluster is color-coded with a unique color (Fig. 6.12–A, left-

most panel) and its location within the dorsal plane is indicated in the network map

(Fig 6.12–B). The effective excitatory and inhibitory GC links are shown by red and

blue colors, respectively. The imaged ∆F/F fluorescence traces corresponding to 3

selected neural clusters within a 40 s time window are shown in Fig. 6.12–C, along

with the recorded electrophysiology signal from the tail (black trace) reflecting the

fictive swim activity.

A careful inspection of Fig. 6.12 reveals three major effects: 1) significant

inhibitory and excitatory GC interactions in the hindbrain; 2) GC link from the

caudal hindbrain to optic tectum during the closed-loop setting; and 3) significant

changes in the GC pattern following the onset of the open-loop condition. First, the

neural clusters in the hindbrain (clusters 1, 2 and 3) show persistent GC interactions

during the locomotion behavior, representing the active neural regions engaged in

motor processing. In particular, a strong inhibitory interaction is identified between

the symmetric neural clusters 1 (purple) and 2 (dark green) located in the anterior

hindbrain region, referred to as the “waist” region, and the caudal hindbrain, re-
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Figure 6.12: GC Inference of large-scale functional networks in the larval
zebrafish brain during fictive locomotion behavior. A) Four detected GC
maps among the 8 selected neural clusters in matrix form corresponding
to a 100 s closed-loop segment, followed by three open-loop segments of
equal duration. Each neural cluster is color-coded with a unique color.
B) network maps overlaid on the selected dorsal plane. C) Imaged ∆F/F
activity traces associated with three selected neural clusters within a 40 s
window reflecting significant GC interactions.

spectively. This inhibitory interaction is reflected in Fig. 6.12–C in the form of an

anti-correlated pair of activity traces.

The second effect emerges only during the closed-loop condition, in the form

of a GC link from the caudal hindbrain (cluster 2) to the optic tectum (clusters 7
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and 8). This effect reflects the visual feedback from the motor commands in caudal

hindbrain to the optic tectum region during the closed-loop condition, as the neural

activity in the caudal hindbrain is strongly time-locked to the swim bouts. The third

effect appears shortly after the onset of the open-loop condition (Rows A and B,

second panel), where the GC links among several neural clusters change significantly,

such as the inhibitory link from the tectum (cluster 7) to hindbrain (clusters 2 and 3).

This reflects the change in functional circuitry during the transition from the closed-

loop to open-loop behavioral conditions. In the following, we focus on the significant

inhibitory GC interaction identified in the hindbrain and the corresponding anti-

correlated activity of the two neural clusters.

Spectral Analysis of Whole-brain Imaging Data in Pursuit of Neu-

ral Oscillations. It is generally known that the spatiotemporal patterns of neural

activity reflect the functional structure of the underlying neuronal circuits. More

specifically, the synchronized patterns of neural activity often arise from the func-

tional interactions among neurons, and the resulting rhythmic activity may syn-

chronize across multiple different brain regions to form large-scale brain networks.

Hence, the identification of neural oscillations at the neuronal scale across the whole

brain can provide us valuable insights into the functional circuitry underlying motor

behavior.

Neural oscillations have been observed throughout the brain in a wide range of

species and across different modalities [125,130], ranging from neuronal-scale rhyth-

mic spike trains to population-level oscillatory LFP dynamics. Increasing evidence
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suggests that synchronized neural activity is associated with a diverse set of potential

functional roles such as neural binding [131], motor coordination [132], brain-wide

communication [133] and selective attention [134]. For instance, based on the neural

binding theory, oscillatory activity patterns are thought to enable the integration

of neural information from a diverse set of sensory streams into a single cohesive

form. Despite this growing evidence, the precise underlying mechanisms and the

functional roles of different types of rhythmic neural activity are still subjects of

controversy.

Despite being widely observed in a diverse set of vertebrates, to the best of

our knowledge, there is very limited evidence on the presence of neural oscillations

in the zebrafish brain [135]. We inspect the presence of oscillatory dynamics in the

larval zebrafish brain using whole-brain light-sheet imaging during motor behavior,

and investigate the possible role of these neural oscillations in visuo-motor process-

ing. There is ample evidence that motor and sensory functions are modulated by

rhythmic activity patterns, and these rhythmic patterns may be involved in the sen-

sorimotor processing [134]. The emergence of rhythmic oscillatory neural activity

is often regarded as a fundamental principle for movement generation and motor

control across different species, reflecting a dynamical system structure of the mo-

tor cortex [125]. Examples include the rhythmic muscle contractions in medicinal

leech [130] and the ∼ 1 Hz rhythmic cortical activity in the walking monkey which

are consistent with the movement rate [125].

Motivated by the identified GC-linked neural clusters with oscillatory dynam-

ics in the hindbrain, we perform a thorough spectral analysis on the light-sheet
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imaging data from the larval zebrafish brain during locomotion behavior in search

of coordinated neural oscillations across the entire brain. We construct anatomical

spectral maps comprised of multiple dorsal single-plane cross-sections spanning the

whole-brain, inspecting the presence of neural oscillations of different frequencies as

well as quantifying their extent at different regions through the entire brain.

To this end, we integrate techniques from sparse VAR-based regression and

multi-taper spectral analysis [136, 137]. The dynamics of the imaged neural re-

sponses often rely on different factors: the transient decay of calcium indicators, the

functional interactions among neurons, the sensory inputs, and the motor output.

In order to capture and dissect the effects of different covariates, e.g. the transient

dynamics of the calcium indicators, we employ a modified variant of the sparse VAR

modeling framework which we discussed earlier in Section 4.2. In this new variant,

rather than the regular AR-based windowing of regressors, we designed a symmetric

Slepian windowing scheme for sparse regression. The advantage of this symmetric

window structure is the zero-phase property of the resulting regression filters, which

will prevent the phase distortion and the possible emergence of artifacts in spec-

tral domain, when computing the response conditioned on the covariates. In other

words, this symmetric structure preserves the spectral power of high-frequency com-

ponents, conditioned on the effective regressors. In addition to symmetry, we replace

the rectangular windows with the zero-th order discrete prolate spheroidal sequence

(DPSS) or Slepian sequence [138]. This window function has the optimal property of

maximizing the energy concentration in the main lobe of frequency response, which

leads to minimal distortion in the spectral properties of conditioned responses. A
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schematic depiction of this windowing procedure is shown in Fig. 6.13 along with

the conventional AR-based rectangular windows. Note that this symmetric window

structure restricts the number of windows Mh (the associated number of coefficients)

and the number of samples per window Wh to odd numbers. After dissecting the

covariate effects via sparse regression, we perform multitaper spectral analysis on

the responses, conditioned on the transient calcium indicator and swim activity, to

obtain a high-resolution characterization of the spectral profiles of all neural clusters

across the brain [136,137]. Characterizing the power spectral densities (PSD) at high

spectral resolutions helps us in precise detection and localization of the rhythmic

activity patterns across the whole brain.

k k+mWk-mW

Symmentric Slepian windows

. . . k-W k+W . . .

kk-mW . . . k-Wk-2W

Autoregressive Rectangular windows

Figure 6.13: Two windowing schemes for sparse regressional analysis of
neural responses conditioned on the effective covariates. The AR-based
rectangular windows (top panel), and the overlapping symmetric Slepian
windows (bottom panel).

Fig. 6.14 depicts the dorsal spectral heat maps of the larval zebrafish brain

obtained from spectral analysis of the single-plane light sheet imaging data from the
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entire brain. These heat maps represent the degree of rhythmicity associated with

the neural response, conditioned on the swim bouts, at each point in the dorsal

projection around specific peak frequencies. In order to quantify the measure of

rhythmicity, we use the normalized ratio of PSD within a narrow band (fc ± δf)

around a peak central frequency fc. The frequency band width is selected as δf ≥

RMT, where RMT denotes the multi-taper spectral resolution.

It is noteworthy that due to the limitations imposed by the relatively slow tem-

poral dynamics of calcium indicators, we are only able to detect the low-frequency

brain rhythms with a frequency roughly up to fc ∼ 7 Hz. These spectral maps can

be helpful in the identification of functionally coupled neuronal populations, and

can provide insights into the large-scale functional networks, in particular, the brain

circuits involved in sensorimotor processing.

Although more dominant in the hindbrain, the identified rhythmic neural clus-

ters are scattered across both the dorsal and lateral projections spanning a large area

of the brain. This widespread property along with temporal persistence in specific

regions raise the speculation that the detected neural oscillations might be involved

in or be a byproduct of the vital rhythmic signals such as cardiovascular or respi-

ratory activity. The proximity of the frequency range of the heart beat of larval

zebrafish of a certain age ([2 . . . 3]Hz at [4 . . . 6] days post fertilization (dpf)) to the

one from the neural oscillations identified in specific brain regions further encourage

this speculation.

There are several practical ways to examine this conjecture: 1) Inducing ar-

rhythmia using a cardiovascular drug such as terfenadine; 2) Manipulating the heart
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Figure 6.14: Anatomical spectral maps of the larval zebrafish brain dur-
ing motion behavior in dorsal view, obtained by spectral analysis of the
light-sheet imaging data. These maps consist of 10 single-plane cross-
sections from the whole-brain stack, and represent the heat maps of the
rhythmicity measure at the low frequencies of fc = {2, 3.5, 4.5}Hz.

beat rate by changing the temperature or stress condition; and 3) Silencing the heart

beat. In order to examine this conjecture, we conducted a simple experiment: In

an attempt to manipulate the characteristics of the heart beat and the respiratory

function, we added hot water to the petri-dish where the zebrafish was located dur-

ing the fictive swim condition. We simultaneously recorded the heart beat through

the first channel and the fictive swim bouts using the second channel, meanwhile

imaging the neural activity of the entire brain.

If associated with the heart beats, it is expected that the neural oscillations

would have similar spectral properties as the heart beat rhythms, and any change

in the characteristics of the heart beat (including its rate) would be reflected in

the detected brain rhythms. Based on our analysis of this experiment, the heart

155



beat rate increased as a result of the increase in the temperature, while there was

no significant change in the characteristics of the neural oscillations. Hence, we

rule out the possibility that the observed neural oscillations are mainly tied to vital

rhythmic signals.

We next inspect the identified neural clusters showing significant rhythmic

activity (Fig. 6.14) in more detail. Four major rhythmic neural clusters are identified

across different brain regions: 1) An anatomically symmetric pair of neural clusters

in the anterior hindbrain (planes 8 to 14); 2) A symmetric neural cluster in the

caudal hindbrain close to the spinal cord (planes 5 to 11); 3) A localized symmetric

pair of neuronal groups in the anterior hindbrain (planes 6 and 7); and 4) Symmetric

clusters in the forebrain (planes 11 and 12).

The most predominant rhythmic activity appears in the anatomically sym-

metric pairs of neural clusters in the anterior hindbrain, referred to as the “waist”

region. This cluster spans a wide range in the lateral projection, spanning many

planes [8 . . . 14] as shown in Fig. 6.14. The maximum rhythmicity occurs around

plane 10 with a sharp peak frequency in the range fc ∈ [2 . . . 5] Hz. The second

rhythmic neural cluster is located in the caudal hindbrain, spanning several ventral

planes [5 . . . 11], with the highest rhythmicity being around planes [10, 11]. The peak

frequency of the rhythms within this cluster was in the frequency range fc ∈ [2 . . . 5]

Hz for this experiment. The third rhythmic cluster is a relatively small localized

symmetric pair in the anterior hindbrain. We speculate that this neuronal group

pair might be the locus coeruleus (LC), as its outline and location in the dorsal and

lateral projections match those of the LC based on the registered brain atlases. The
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LC is known to have widespread connections across the brain, and is involved in

many functions including arousal, stress and cognitive control. The last dominant

rhythmic cluster appears in the form of symmetric pairs in the forebrain. The degree

of regularity and rhythmicity of oscillations across forebrain is often less than those

in the hindbrain. The peak rhythmicity appears around plane 11, and is roughly

located within the habenula region.

In the following, we focus on the aforementioned neural clusters with predom-

inant oscillatory dynamics, and we will further inspect their temporal and spectral

characteristics by precise estimation of their PSD and analysis of their phase-locking

characteristics. In particular, we will inspect whether these rhythmic activities are

synchronized with each other or to the swim behavior with the aim of detecting

potential candidates involved in sensorimotor processing.

Fig. 6.15 shows our results from the inspection of the oscillatory dynamics of

the two neural clusters with the most predominant rhythmic activity imaged during

a fictive open-loop experiment. Fig. 6.15–A represents a selected dorsal projection

(plane 10) where both neural clusters exhibit the highest rhythmicity. The waist and

the caudal hindbrain clusters are shown in respectively red and blue colors within the

dorsal projection of the brain in yellow (forehead in upward direction). Fig. 6.15–

B shows the mean response traces, condition on the swim bouts, associated with

the two neural regions along with the recorded sequence of swim activity (black

traces) within a selected 20 s time window. The PSD estimates corresponding to

the conditioned responses of both clusters are shown in Fig. 6.15–C. Fig. 6.15–D

represents the phase histogram of the oscillatory activity of the two clusters pooled
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across the swim onsets throughout the experiment.
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Figure 6.15: Neural clusters with predominant oscillatory dynamics in
the hindbrain of larval zebrafish during fictive locomotion behavior. A) a
dorsal projection of the waist (blue) and caudal hindbrain (red) clusters
within the brain (yellow). B) the neural activity of the two clusters
(conditioned on the swim bouts) along with the swim activity (black)
within a 20 s time window. C) the estimated PSD for both neural clusters
showing oscillatory power around 2 Hz. D) the phase histogram pooled
across the swim onsets representing phase-locked antiphase activity of
the two neural clusters.

Figs. 6.15–B, C and D reveal the highly oscillatory dynamics of the two neural

regions in the hindbrain, which even persist during the absence of the swim bouts.

Moreover, the oscillatory activity associated with the waist and caudal hindbrain

clusters share the same narrow-band frequency characteristic around the peak fc ∼ 2

Hz, and oscillate in an antiphase fashion (∆φ ∼ 180◦). This synchronized activity

provides new evidence on the possible connection of these two neural clusters, and

reflects a potential inhibitory functional interaction among them, as detected earlier

in Fig. 6.12.
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Moreover, Fig. 6.15–D further demonstrates a remarkable property of these

two oscillations: both neural clusters are phase-locked to the swim activity. The

neural activity in the waist often drops during swimming (φ ≈ 90◦), while the

activity in the caudal hindbrain rises at the swim bout onsets (φ ≈ 270◦). This

striking feature reveals the association of these neural oscillations to the motor

behavior.

Next, we investigate the neural properties of the regions showing synchronized

activity in the hindbrain, with the aim of detecting neuronal populations showing

oscillatory activity. We specifically focus on the waist region which shows the highest

degree of rhythmicity. This region is mostly composed of densely mixed neuropil

structures with axons and dendrites from different brain regions. Apart from the

neuropil, the waist region contains sparse neuronal populations according to high

resolution whole-brain zebrafish atlases. To this end, we analyze the light-sheet

imaging data, in an attempt to distinguish between rhythmic neurons and neuropil

structures, and to identify the possible neuronal populations within or close to the

waist region with predominant rhythmic activity.

Fig. 6.16 shows the results of our analysis of the light-sheet imaging data dur-

ing the closed-loop condition, where the field of view is restricted to the waist region.

Fig. 6.16–A depicts the raw imaging field (left panel) along with its high-pass filtered

version (middle panel), where we are able to locate the neuronal populations (bulb-

shaped structures) surrounding the smoother neuropil area. Careful inspection of

the imaging field reveals the presence of a patch of neurons within the posterior

waist region. The right panel represents the detected neural components (with sig-
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Figure 6.16: Identification of rhythmic neuronal populations within and
around the waist neurpil using light-sheet imaging data during fictive
locomotion behavior. A) the raw (left) and high-pass filtered imaging
field (middle), and the corresponding heat map of rhythmicity overlaid
on the FOV (right). B) the top five rhythmic neural clusters (colored
crosses) overlaid on FOV. C) the estimated PSD with peak around fc ∼
1.35Hz and D) the rhythmic activity conditioned on the swim bouts
within a 15 s time window associated with these neural clusters.

nificant variability) as filled circles overlaid on the imaging field, and color-coded

based on the rhythmicity measure. It can be observed that the neural components

within the waist region show the maximum rhythmicity.

Fig. 6.16–B exhibits the top five neural clusters showing the highest rhyth-

micity around the peak frequency fc ∼ 1.35 Hz using colored crosses overlaid on

the imaging field. The corresponding PSD estimates are shown in Fig. 6.16–C, and
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the activity traces (conditioned on the calcium indicator decay dynamics) associ-

ated with the top three rhythmic neural clusters are plotted in Fig. 6.16–D. The

first major observation is that the identified neuronal patch in the posterior waist

region (red arrow) shows the highest degree of rhythmicity with the most domi-

nant spectral power around the peak frequency (red traces in 6.16–C and D). Such

oscillatory activity appears throughout the rest of the waist region in an in-phase

but weaker form. Another major observation is the presence of a small neuronal

population close to the waist region (green arrow) showing oscillatory activity of

the same frequency, but surprisingly in an antiphase fashion (red and green traces

in 6.16–D). These close-to-waist neuronal populations appeared partially in Fig.

6.15–A showing synchronized activity in-phase with the caudal hindbrain region.

In summary, we detected isolated neuronal populations within the posterior

waist region with dominant oscillatory activity, and small groups of neurons located

close to the waist region which are precisely synchronized in an antiphase fashion.

This pair of antiphase neural oscillations may have a potential role in the synchro-

nization of motor control. This hypothesis remains to be tested in the future using

optogenetic ablation and excitation studies.

Given the neuronal populations detected around the waist region, we next

investigate their neurotransmitter identity and morphology using new imaging ex-

periments. In general, neurons can be categorized as excitatory or inhibitory based

on their neurotransmitters. Excitatory (inhibitory) neurons release neurotransmit-

ters at their synapses upon arrival of an action potential, triggering positive (neg-

ative) changes in the membrane potential of the post-synaptic neurons. Two of
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the most common excitatory and inhibitory neurotransmitters are glutamate and

gamma aminobutyric acid (GABA), and the neurons generating these transmitters

are called Glutamatergic and GABAergic, respectively. We inspect whether the

identified rhythmic neurons are Glutamatergic or GABAergic using two different

imaging experiments: 1) The two-colored light-sheet imaging from the double trans-

genic larval zebrafish, and 2) Voltage imaging from the GABA-labeled zebrafish.

Fig. 6.17–A shows the raw imaging field containing the waist and hindbrain

regions of the larval zebrafish during locomotion behavior, where the green indica-

tor is expressed in most neurons, and the GABAergic neurons are labeled by red

indicators in the double transgenic fish. Fig. 6.17–B represents the high-pass fil-

tered version of imaging field which facilitates the distinction of the neurons from

the neuropil and identifying the precise location of neurons. We perform a similar

spectral analysis of the activity of detected neural components (conditioned on the

calcium indicator decay dynamics). The two neural clusters with high rhythmicity

and antiphase synchronized activity are indicated in Fig. 6.17–C with yellow and

magenta colored crosses overlaid on their associated regions. It can be observed that

the neuronal cluster near the waist (magenta) roughly coincides with the red-labeled

cells, and hence we speculate that they may be GABAergic.

To further validate this finding, we imaged the oscillatory neural activity ob-

served around the waist region using voltage imaging. The significance of conduct-

ing such imaging experiment is twofold: First, it provides further evidence for the

aforementioned conjecture about the GABAergic nature of the near-waist rhythmic

neuronal cluster. Second, voltage imaging enables us to image the neural activity
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Figure 6.17: Inspection of the neural identity of the rhythmic neuronal
cluster near the waist using two-color light-sheet imaging of the double
transgenic zebrafish. A) the raw and B) high-pass filtered two-colored
imaging field from the waist and hindbrain regions, where green and
red indicators are expressed in all neurons and the GABAergic neurons,
respectively. C) the two dominant oscillatory clusters: waist neuropil
(yellow), and the near-waist neurons (magenta), where the second cluster
roughly coincides with the red-labeled GABAergic neurons.

at a higher temporal resolution (up to f < 500 Hz) at the expense of lower SNR. At

such a high temporal resolution, we are able to detect the neural spike events. This

gives us the opportunity to discover the nature of the identified neural oscillation,

and determine whether they are the result of smoothed rhythmic spike bursts or

smoothed oscillatory LFP activity.

Fig. 6.18–A shows the dorsal projection of the larval zebrafish’s hindbrain
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Figure 6.18: Inspection of the neural identity of the rhythmic neuronal
cluster near the waist using voltage imaging. A) the FOV (yellow rect-
angle) within hindbrain whose location is set to image the activity of the
target rhythmic neuronal cluster. B) the preprocessed voltage trace of
the single neuron highlighted by a yellow circle, showing strong rhythmic
spiking activity along with the swim activity within a 20 s time window.

during fictive motor behavior, where only a sparse subset of GABAergic neurons

are labeled by voltage indicators. The voltage imaging field is restricted to a small

window (yellow rectangle) targeting the rhythmic neuronal cluster identified near

the waist. Fig. 6.18–B represents the voltage indicator response of a single neuron

(Fig. 6.18–A, yellow circle) in the imaging field (red trace) preprocessed with sparse

regression, along with the recorded sequence of swim activity (black trace) within a
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20 s time window. The sharp drops in the imaged traces represent spike events.

Two remarkable observations can be made from Fig. 6.18: First, the oscilla-

tory dynamics observed earlier in the target neuronal cluster are originally rhythmic

bursts of spiking activity locked to the swim onset. Second, the rhythmic neuronal

cluster near the waist is indeed GABAergic. This observation corroborates our spec-

ulation on the presence of local oscillators around the waist region in the form of

a pair of excitatory and inhibitory clusters. The possible presence of excitatory-

inhibitory neuronal clusters along with the strong anti-phase synchronized activ-

ity suggests a potential inhibitory connection in the waist region. In summary,

our network-level GC and spectral analyses show the promise of these methods in

forming hypotheses regarding the functional roles of various brain regions in the

visu-motor behavior. These new hypotheses remain to be tested in the future using

optogenetic ablation and excitation studies.
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Chapter 7: Concluding Remarks and Future Directions

7.1 Summary and Extensions of our Contributions

In the first part of this dissertation, we proposed a sparse adaptive filter-

ing framework for recursive estimation of the time-varying neuronal tuning char-

acteristics from binary spiking data driven by continuous external stimuli. To this

end, we integrated several techniques from point process theory, adaptive filtering,

compressed sensing, optimization and statistics. We formulated the sparse adap-

tive estimation problem using an elegantly tailored objective function which enjoys

from the trackability features of the RLS-type algorithms, sparsifying features of

`1-minimization, and unlike the rate-based linear models commonly used to ana-

lyze spiking data, takes into account the binary statistics of the observations. We

constructed a family of filtering algorithms called `1-regularized point process fil-

ters, namely `1-PPF, consisting of two adaptive filters, with respective linear and

quadratic complexity requirements, for recursive solution of the sequence of sparse

adaptive filtering problems in an online setting. We analyzed the consistency of the

parametric solutions to these problems in a rigorous fashion, revealing novel trade-

offs between various model parameters. Moreover, we characterized the statistical

confidence regions for our estimates, and devised a recursive procedure to compute
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them efficiently. We further extended this family of adaptive filters to accommodate

greedy techniques and regularization-based approaches beyond the `1-norm.

We tested the performance of our algorithms on simulated as well as experi-

mentally recorded spiking data. Our simulation studies revealed that the proposed

filters outperform several existing point process filters. Application of our filters to

real data from the ferret primary auditory cortex provided a high-resolution char-

acterization of the time-course of spectrotemporal receptive field plasticity, with

orders of magnitudes increase in temporal resolution. Although we focused on audi-

tory neurons, we expect a similar favorable performance of our filters when applied

to other sensory or motor neurons (e.g., neurons in primary or supplementary motor

cortex [139]).

In the second part of this dissertation, we considered the problem of inferring

functional network dynamics from neuronal data at high resolutions. Most widely

adopted time series analysis techniques for quantifying functional causal relations

among the nodes in a network assume static functional structures or otherwise en-

force dynamics using sliding windows. While they have proven successful in analyz-

ing stationary Gaussian time-series, when applied to spike recordings from neuronal

ensembles undergoing rapid task-dependent dynamics, they hinder a precise statisti-

cal characterization of the sparse dynamic neuronal functional networks underlying

adaptive behavior.

To address these shortcomings, we developed a dynamic inference paradigm for

extracting functional neuronal network dynamics in the sense of Granger, by inte-

grating techniques from adaptive filtering, compressed sensing, point process theory,
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and high-dimensional statistics. We proposed a novel measure of time-varying GC,

namely AGC, and demonstrated its utility through theoretical analysis, algorithm

development, and application to synthetic and real data. Application of our tech-

niques to simultaneous recordings from the ferret auditory and prefrontal cortical

areas suggested evidence for the role of rapid top-down and bottom-up functional dy-

namics across these areas involved in robust attentive behavior. Our analysis of the

mouse auditory cortical activity revealed unique features of the functional neuronal

network structures underlying both spontaneous activity and auditory task perfor-

mance at unprecedented spatiotemporal resolutions. Application of our methods to

the whole-brain imaging data from larval zebrafish unveiled new insights into the

functional organization of the large-scale neuronal networks involved in visuo-motor

processing.

7.2 Limitations of our Approach

In closing, it is worth discussing two potential limitations of our proposed AGC

inference methodology:

1. Confounding Effects due to Network Subsampling: A common

criticism of statistical causality measures, such as the GC, directed information, or

transfer entropy, is susceptibility to latent confounding causal effects arising from

network subsampling. In practice, these methods are typically applied to a small

subnetwork of the circuits involved in neuronal processing. Given that each neuron

may receive thousands of synaptic inputs, lack of access to a large number of latent
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confounding inputs can affect the validity of the causal inference results obtained

by these methods.

We have evaluated the robustness of our method against such confounding

effects using comprehensive numerical studies in subsection 5.1.4. These studies

involve scenarios with deterministic and stochastic latent common inputs as well as

confounding effects due to network subsampling, and suggest that our techniques

indeed exhibit a degree of immunity to such confounding effects. We argue that

this performance is due to explicit modeling of the dynamics of the Granger causal

effects in the GLM framework, invoking the sparsity hypothesis, and employing

sharp statistical inference procedures.

2. Biological Interpretation: The functional network characterization pro-

vided by our framework must not be readily interpreted as direct or synaptic con-

nections that result in causal effects. Our analysis results in a sparse number of

GC interactions between neurons that can appear and vanish over time in a task-

specific fashion. While it is possible that these connections reflect synaptic contacts

between neurons, as changes in synaptic strengths can be induced rapidly within

minutes [140], the observed GC dynamics could also be due to other underlying

mechanisms such as desynchronization of inputs, altered shunting or dendritic fil-

tering. Thus, these plasticity effects remain to be tested with ground truth exper-

iments. An alternative and inclusive view is that these links reflect a measure of

information transferred from one neuron to another.

The relatively rapid switching of these links, however, must be interpreted with
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caution: while some of the rapid fluctuations are due to the usage of the FDR control

procedure (as discussed in sections 6.1.2 and 6.1.3 of Chapter 6), sudden emergence

or disappearance of a link does not necessarily imply sudden changes in the causal

structure or information transfer in the network. A sudden disappearance of a

steady link most likely reflects the fact that given the amount of currently available

data, there is not enough evidence to maintain the existence of the link at the group

level with the desired statistical confidence; similarly, a sudden emergence of a link

most likely implies that enough evidence has just been accumulated to justify its

presence with statistical confidence. The gradual effects of these interactions are

indeed reflected in the dynamics of the non-centrality parameters estimated by our

methods.

7.3 Future Directions

The plug-and-play nature of the algorithms used in our framework enables

them to be generalized for application to various other domains beyond neuro-

science, such as the analysis of social networks or gene regulatory networks. As

an example, the GLM models can be generalized to account for m-ary data or

accommodate other link functions (such as log or probit-link) and other regular-

ization schemes (e.g., re-weighted or group-sparse regularization), the forgetting

factor mechanism for inducing adaptivity can be extended to state-space models

governing the coefficient dynamics, and the FDR correction can be replaced by

more recent techniques such as knockoff filters [141]. To ease reproducibility and
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aid the adoption of our method, we have archived an implementation on GitHub

(https://github.com/Arsha89/AGC_Analysis).

As demonstrated by the applications of our inference procedures, our frame-

work provides a robust characterization of the dynamic statistical dependencies in

the network in the sense of Granger at high temporal resolution. This character-

ization can be readily used at a phenomenological level to describe the dynamic

network-level functional correlates of behavior, as demonstrated by our real data

applications. More importantly, as demonstrated by our analysis of the whole-brain

data from the larval zebrafish, this characterization can serve as a guideline in form-

ing hypotheses for further testing of the direct causal effects using experimental

procedures such as lesion studies, microstimulation, or optogenetics in animal mod-

els.
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Appendix A: Supplementary Material on Chapter 3

A.1 Proof of Theorem 3.1

The proof is mainly based on the beautiful treatment of Negahban et al. [19].

The major difficulty in our case lies in the high inter-dependence of the covariates,

which form a Toeplitz structure due to the setup of adaptive filtering. We address

the latter issue by adopting techniques from another remarkable paper by Haupt et

al. [85] to deal with the underlying inter-dependence. In the process, we also employ

concentration inequalities for dependent random variables due to van de Geer [142].

Before proceeding with the proof, we need to make the following technical

assumptions for our analysis:

(1) The stimulus sequence {st}Tt=−M+1 consists of independent (but not neces-

sarily identically distributed) random variables with a variance of σ2 which

are uniformly bounded by a constant B > 0 in absolute value. Note that

with this assumption, two successive covariate vectors, say at times t and

t+1, given respectively by xt = [1, st−M+2, st−M+3, st−M+4, · · · , st] and xt+1 =

[1, st−M+3, st−M+4, · · · , st, st+1] are highly dependent, as they have M − 3 ran-

dom variables in common. Hence, the independence assumption used in study-
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ing least squares problem is violated.

(2) We further assume that for all times t, 0 < pmin ≤ λt∆ ≤ pmax < 1, for

some constants pmin and pmax, i.e., the probability of spiking does not reach

its extremal values of 0 and 1, but can get arbitrarily close. This assumption

can be realized due to the boundedness of the covariates and appropriate

normalization of the stimulus modulation coefficients, and does not result in

any practical loss of generality.

In order to proceed, we adopt the notion of Strong Restricted Convexity (RSC)

introduced in [19]. For a twice differentiable log-likelihood with respect to ω, the

RSC property of order S implies the existence of a lower quadratic bound on the

negative log-likelihood:

D`(∆,ω) := −`β(ω + ∆) + `β(ω) + ∆′∇`β(ω) ≥ κ‖∆‖2
2, (A.1)

for a positive constant κ > 0 and all ∆ ∈ RM satisfying:

‖∆Sc‖1 ≤ 3‖∆S‖1 + 4σS(ω). (A.2)

for any index set S ⊂ {1, 2, · · · ,M} of cardinality S. The following key lemma

establishes the RSC for `β(ω):

Lemma A.1 Let {xt}KWt=1 denote a sequence of covariates and let ω denote the

corresponding logistic parameters. Then, for an arbitrarily chosen positive constant

d > 0, there exist constants C ′ and κ > 0 such that for M > 10S, β ≥ 1 − C′

S2 logM

and K ≥ log 2

log( 1
β )

the negative log-likelihood −`β(ω) satisfies the RSC of order S with
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constant κ
1−β with probability greater than 1− 3

Md . The constants C ′ and κ are only

functions of d, pmin, pmax, σ2, B, W , and are explicitly given in the proof.

Proof A.1 The proof is inspired by the elegant treatment of Negahban et al. [19].

The major difficulty in our setting is the high interdependence of successive co-

variates due to the shift structure induced by the adaptive setting, whereas in [19],

the matrix of covariates is composed of i.i.d. rows. Using the Taylor’s theorem,

D`(∆,ω) can be written as:

K∑
i=1

W∑
j=1

βK−i
exp

(
x′(i−1)W+jω

?
)
|∆′x(i−1)W+j|2(

1 + exp
(
x′(i−1)W+jω

?
))2 ,

with ω? = ω + τ∆ for some τ ∈ (0, 1). Since by hypothesis 0 < pmin ≤ λi∆ ≤

pmax < 1, we have:

exp
(
x′(i−1)W+jω

?
)(

1 + exp
(
x′(i−1)W+jω

?
))2 ≥ pmin(1− pmax).

We can therefore further lower bound D`(∆,ω) by:

D`(∆,ω) ≥ pmin(1− pmax)σ2Nβ {∆′Cβ∆} ,

where Nβ := W 1−βK
1−β , and

Cβ :=
1

σ2Nβ

K∑
i=1

W∑
j=1

βK−ix(i−1)W+jx
′
(i−1)W+j. (A.3)

Note that the matrix Cβ has highly inter-dependent elements due to the Toeplitz

structure in the adaptive design. In order to establish the RSC condition, we show

the stronger Restricted Eigenvalue (RE) property, which in turn implies RSC [143].

Let δ ∈ (0, 1) be fixed so that 1+δ
1−δ <

M−S
9S

. To do so, we need to bound the eigenvalues
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of (Cβ)S , the restriction of Cβ to a subset of columns and rows corresponding to

indices in S ⊂ {1, 2, · · · ,M} with |S| = rS, for some integer r > 1+ 9(1+δ)
1−δ such that

rS ≤ M . Note that the hypothesis of M > 10S makes it possible to simultaneously

choose δ and r satisfying the aforementioned inequalities.

Without loss of generality, we replace the first entry of the covariate vectors

xt by σ instead of 1, for presentational simplicity of the following treatment. For

m,m′ 6= 1, we have:

(Cβ)m,m′ =
1

σ2Nβ

K∑
i=1

W−1∑
j=0

βK−is(i−1)W+j+m−M × s(i−1)W+j+m′−M .

For m = m′ = 1,

(Cβ)1,1 =
1

σ2Nβ

K∑
i=1

WβK−iσ2 =
1

Nβ

W
1− βK
1− β = 1,

and for m 6= 1,

(Cβ)m,1 = (Cβ)1,m =
1

σNβ

K∑
i=1

W−1∑
j=0

βK−is(i−1)W+j+m−M .

We also have E{(Cβ)m,m′} = δmm′. Using Hoeffding’s inequality [144] we get:

P (|(Cβ)m,m − 1| > t) ≤ 2 exp

(
−

2N2
βt

2σ4

B4
∑K

i=1Wβ2(K−i)

)

= 2 exp

(
−

2N2
βt

2σ4

B4Nβ2

)
≤ 2 exp

(
−2Nβt

2σ4

B4

)
, (A.4)

since Nβ2 = Nβ
1+βK

1+β
≤ Nβ, for β ∈ [0, 1]. Similarly,

P (|(Cβ)1,m| > t) ≤ 2 exp

(
−2Nβt

2σ2

B2

)
, (A.5)
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Next, we adopt the partitioning technique of Theorem 4 in [85]: for m 6= m′, each

term in the summation defining (Cβ)m,m′ is at most dependent on two other terms in

the summation. Hence, it is possible to decompose (Cβ)m,m′ = (Cβ)
(1)
m,m′ + (Cβ)

(2)
m,m′,

where

(Cβ)
(i)
m,m′ =

1

σ2Nβ

Ti∑
`=1

βK−b
πi(`)

W
csπi(`)+m−Msπi(`)+m′−M , i = 1, 2, (A.6)

in which π1(·) and π2(·) are permutation operators over {1, 2, · · · , KW} and T1, T2 ≤

KW+1
2

, such that the summands in each of (Cβ)
(1)
m,m′ and (Cβ)

(2)
m,m′ are independent.

Thus,

P (|(Cβ)m,m′ | > t) ≤
2∑
i=1

P
(∣∣∣(Cβ)

(i)
m,m′

∣∣∣ > t

2

)

≤ 4 exp

(
−Nβt

2σ4

8B4

)
, (A.7)

where the first inequality follows from the union bound and the second inequality

follows from the Hoeffding’s inequality and the fact that
∑Ti

`=1 β
2K−2bπi(`)

W
c ≤ Nβ, for

i = 1, 2.

Let B0 := max{B2, B
4

σ2 }. Now, the inequalities of Eqs. A.5 and A.7 and the

union bound yield:

P

(
M⋃

m,m′=1
m<m′

{∣∣(Cβ)m,m′
∣∣> δ

2rS

})
≤ 2M2exp

(
− Nβδ

2σ2

32B0r2S2

)
,

where we have used
(
M
2

)
< M2

2
. Similarly, the inequality of Eq. A.4 and the union

bounds yield:

P

(
M⋃
m=1

{
|(Cβ)m,m − 1| > δ

2rS

})
≤ 2M exp

(
− Nβδ

2σ2

4B0r2S2

)
.
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Now, by invoking the Gershgorin’s disc theorem, the eigenvalues of any sub-matrix

of Cβ restricted to an index set S with |S| = rS, lie in the interval [1− δ, 1 + δ] with

probability at least:

1− 2M2 exp

(
− Nβδ

2σ2

32B0r2S2

)
− 2M exp

(
− Nβδ

2σ2

4B0r2S2

)
≥ 1− 3M2 exp

(
− Nβδ

2σ2

32B0r2S2

)
.

Hence, by choosing Nβ ≥ 32B0σ2r2(d+2)
δ2

S2 logM , the probability above is greater than

1− 3
Md .

Next, by invoking Lemma 4.1 (ii) of [143], we have that Cβ satisfies the RSC

condition over the set given by Eq. A.2 with a constant given by:

κ0 =
(1− δ)

(
1− 3

√
1+δ

(r−1)(1−δ)

)2

(
1 + 9

r−1

) . (A.8)

Hence, the negative log-likelihood satisfies the RSC with a constant given by pmin(1−

pmax)σ2Nβκ0. Finally, by taking K ≥ log 2

log( 1
β )

, we have that Nβ ≥ W
2(1−β)

, which makes

κ independent of K and β, given by:

κ :=
pmin(1− pmax)σ2κ0W

2
, (A.9)

and β ≥ 1− C′

S2 logM
with C ′ := Wδ2

64B0σ2r2(d+2)
.

Next, the result of Theorem 1 of [19] implies:

‖ω̂ − ω‖2 ≤
2γ
√
S

κ
+

√
2γσS(ω)

κ
, (A.10)

for γ > 2‖∇`β(ω)‖∞. We have, for m 6= 1,

(
∇`β(ω)

)
m

=
K∑
i=1

W∑
j=1

βK−is(i−1)W+j+m−M+1

(
n(i−1)W+j+m−M+1 − λ(i−1)W+j+m−M+1∆

)
.

(A.11)
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Now, let Ft be the σ-field generated by s−M+1, · · · , st, i.e., σ(s−M+1, · · · , st). We

have that

E {(nt − λt∆) st} = E {E {(nt − λt∆) st|Ft}}

= E {stE {(nt − λt∆) |Ft}}

= E
{
stE
{

(λt∆− λt∆)︸ ︷︷ ︸
=0

|Ft
}}

= 0.

Hence for all m, E
{(
∇`β(ω)

)
m

}
= 0. Noting that

(
∇`β(ω)

)
m

is a sum of martin-

gale differences, we next invoke the following result for concentration of dependent

random variables:

Proposition A.1 Consider a sequence of σ-fields F0 ⊂ F1 ⊂ · · · . Suppose that Xi

is Fi-measurable with |Xi| ≤ Bi for some constant Bi, i = 1, 2, · · · and E{Xi|Fi−1} =

0. Then for all t > 0,

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
− t2

2
∑n

i=1B
2
i

)
.

Proof A.2 This result is a special case of Theorem 2.5 of [142] for bounded and

possibly dependent random variables, which generalizes Hoeffding’s inequality.

In our case, we can similarly show that E
{
st(nt− λt∆)|Ft−1

}
= E

{
stE
{

(nt− λt∆)|

Ft−1,Ft
}}

= 0. Moreover, each summand is bounded by 2βK−iB. Hence, using the

result of Proposition A.1, by taking n = TW and Xi = si(ni − λi∆), we get:

P
(∣∣(∇`β(ω)

)
m

∣∣ > tNβ

)
≤ 2 exp

(
−

t2N2
β

8
∑K

i=1 Wβ2(K−i)

)

≤ 2 exp

(
−Nβt

2

8

)
.
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Using the union bound, we have:

P
(∥∥∇`β(ω)

∥∥
∞ > tNβ

)
≤ 2M exp

(
−Nβt

2

8

)
. (A.12)

By choosing t =
√

8(d+1) logM
Nβ

, we have that

∥∥∇`β(ω)
∥∥
∞ <

√
8(d+ 1)Nβ logM,

with probability at least 1− 2
Md .

Hence, for a fixed δ < 1, d > 0, and r > 1 + 9(1+δ)
1−δ , by taking β ≥ 1− C′

S2 logM

with C ′ := Wδ2

64B0σ2r2(d+2)
and γ=C ′′

√
logM
1−β with C ′′ :=

√
32(d+ 1)W , any maximizer

ω̂ satisfies:

‖ω̂−ω‖2≤C
√

(1−β)S logM+
√
CσS(ω) 4

√
(1−β)S logM,

with probability at least 1− 3
Md − 2

Md , where C is given by

C :=

√
512(d+ 1)

(
1 + 9

r−1

)
√
Wpmin(1− pmax)σ2(1− δ)

(
1− 3

√
1+δ

(r−1)(1−δ)

)2 . (A.13)

A.2 The Proximal Gradient Algorithm

In this appendix, we give an overview of the proximal gradient algorithm for

minimization of convex functions. The corresponding algorithm for maximization

of concave functions can be obtained by negating the objective functions. Consider

the general optimization problem

min
x

f(x) + g(x), (A.14)

where functions f(x) : RM → R and g(x) : RM → R ∪ {∞} are assumed to be

closed proper convex functions. Suppose that f is differentiable with a Lipschitz

179



continuous gradient ∇f with constant L(∇f). The function g can be possibly non-

smooth. A wide range of practical optimization problems can be cast in this form,

particularly in the context of machine learning [145], where the objective function

can be decomposed into a loss function and a regularization term.

The proximal gradient algorithm provides an iterative procedure for solving

Eq. A.14 in the following form:

x(`+1) = Pα(`)g

[
x(`) − α(`)∇f(x(`))

]
, (A.15)

where the parameter α(`) is an appropriately chosen step size at iteration ` so that

α(`) < 1
L(∇f)

, and the proximal operator Pαg(.) of function g with parameter α is

defined as

Pαg(x) := argmin
u

{
g(u) +

1

2α
‖u− x‖2

2

}
. (A.16)

Among the several interpretations available for the proximal gradient method, we

adopted a quadratic approximation-based model to derive the main iterative scheme

in Eq. A.15. This interpretation [146,147], is based on the Majorization-Minimization

algorithm (see [148] for a detailed discussion). In the approximation-based deriva-

tion, the `-th iteration for solving the general problem of Eq. A.14 can be written

in the following form:

x(`+1) = argmin
x

{
f̂α(x,x(`)) + g(x)

}
, (A.17)

where the original objective function f is replaced with a quadratically-regularized

linear approximation around the previous iterate x(`), given by

f̂α(x,y) := f(y) +∇f(y)′(x− y) +
1

2α
‖x− y‖2

2,
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where the quadratic term is referred to as the trust region penalty. Modulo constants,

the objective function in Eq. A.17 can be rearranged to get the proximal gradient

form

x(`+1) = argmin
x

{
g(x) +

1

2α
‖x− x(`) + α∇f(x(`))‖2

2

}
= Pαg

[
x(`) − α∇f(x(`))

]
. (A.18)

The proximal operator often admits closed form expressions. As for `1- reg-

ularization, the proximal operator takes the simple form of the soft thresholding

shrinkage operator Pα‖.‖1 =: Sα whose ith component is given by

(Sα(x))i := sgn(xi)(|xi| − α)+,

with sgn denoting the standard signum function, and (a)+ := max{a, 0}. In this

case, the proximal algorithm leads to a family of algorithms referred to as iterative

shrinkage algorithms [20, 149, 150], where each iteration involves a simple gradient

descent step followed by a shrinkage operation.

Finally, in our setting, the function f is taken to be the exponentially weighted

log-likelihood `β(·). Due to the smoothness of the logistic function, the Lipschitz

constant for ∇`β(ωk) can be upper bounded by the trace of the Hessian Bk(ωk)

given in Eq. 3.14. Noting that the elements of Λi are at most equal to 1/4 yields

L(∇`β(ωk)) ≤ 1
4

∑k
i=1

∑W
j=1 β

k−ix2
(i−1)W+j. Using assumption (1) of the proof in

Appendix A.1 and an application of Hoeffding’s inequality, we can show that the

sum is concentrated around its mean given by MWσ2

4(1−β)
, for large enough k. Therefore,

we choose the step size α = (1−β)
cMWσ2 , for some constant c ≥ 1/4.
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A.3 Computation of Confidence Intervals

The `1-regularized ML estimate of Eq. 3.4 can be written in the following

form

ω̂k = argmax
ωk

{Pβ`(ωk)− γ‖ωk‖1} ,

where `(ω) := log p
(
n|X,ω

)
denotes the log-likelihood function over a generic win-

dow with spiking vector n, data matrix X and parameter vector ω, and the operator

Pβf(n,X,ω) is defined for a function f : {0, 1}W × RW×M × RM → R as the em-

pirical expectation exponentially weighted with a forgetting factor β:

Pβf(ω) :=
k∑
i=1

βk−if
(
ni,Xi;ω

)
, (A.19)

where we have suppressed the dependence of f on n and X on the left hand side

for notational simplicity. Following the treatment of Theorem 3.1 of [142], the

corresponding empirical gradient vector and Hessian are respectively given by:

gk(ωk) := Pβ∇`(ωk) =
k∑
i=1

βk−iX′iεi(ωk), (A.20)

Bk(ωk) := Pβ∇2`(ωk) = −
k∑
i=1

βk−i X′iΛi(ωk)Xi. (A.21)

The KKT conditions for the estimator ω̂k can be then written as:

gk(ω̂k)− γŝk = 0, ‖ŝk‖∞ ≤ 1.

where ŝk ∈ ∂‖ω̂k‖1 is a subgradient vector from the subdifferential of the `1 norm,

with components (ŝk)m = sgn ((ω̂k)m) for (ω̂k)m 6= 0 and |(ŝk)m| ≤ 1 otherwise,

for m = 1, 2, . . . ,M . Substituting Pβ`(ωk) by its quadratic approximation around
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the true parameter vector ωk, and inverting the corresponding KKT conditions, the

de-biased estimator ŵk can be obtained as:

ŵk := ω̂k − Θ̂kgk(ω̂k), (A.22)

where the matrix Θ̂k is the approximate inverse of Hessian matrix Bk(ω̂k), and can

be computed using the following node wise regression procedure [142]. To compute

the m-th row of Θ̂k, first the solution to the following LASSO problem is obtained:

ψ̂m := argmin
ψ∈RM−1

(
− 2(Bk)m,\mψ +ψ′(Bk)\m,\mψ + 2γm‖ψ‖1

)
, (A.23)

where the dependence of Bk on ω̂k is suppressed for notational convenience, and the

subscript notations are the same as those described in the footnote of Algorithm 3.

Then, we define the vector c ∈ RM as:

(c)m = 1, (c)\m = −ψ̂(L)

m , (A.24)

and the scaling constant τ 2
m as

τ 2
m := (Bk)m,m − ψ̂

(L)

m (Bk)
′
m,\m. (A.25)

Finally, the m-th row of Θ̂k is given by (Θ̂k)m := 1
τ2m

c. The variance and the confi-

dence interval at a level of α for the m-th component of ω̂k can then be computed

as given in lines 9 and the output of Algorithm 3 [142], where

Gk(ω) := Pβ2∇`(ω)∇`′(ω)=
k∑
i=1

β2(k−i)X′iεi(ω)εi(ω)′Xi. (A.26)

Using Taylor expansion similar to that in the development of `1-PPF1, the

matrix Gk(ω̂k) can be recursively updated as given in line 2 of Algorithm 3. Finally,
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the node wise regression can be recursively computed using the SPARLS algorithm

[21], which is given in lines 3–5 of Algorithm 3. The parameter γm can be chosen to

be in the same order of γ in Eq. 3.4.
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Appendix B: Proof of Theorem 4.1: Asymptotic Distributional Anal-

ysis of the Adaptive De-biased Deviance Statistic

In this Appendix, we provide the proof of Theorem 4.1, followed by a discussion

of the results and their implications. Before presenting the proof of Theorem 4.1,

we make a few technical assumptions, and introduce further notations.

1) We consider a scaling of γ = O(
√

(1− β) logM), where M denotes the

model order (M (F ) or M (R)). This assumption leads to asymptotic consistency of

`1-regularized ML estimation [33,87], similar to that used in Theorem 3.1 of chapter

3.

2) We assume that the stimuli {st}Tt=1 form a Markovian random sequence.

This assumption facilitates the limiting arguments used in our asymptotic analysis.

For a log-likelihood function `(ω) with parameter vector ω, we define:

˙̀ (ω) := ∇ω`(ω), (B.1)

῭(ω) := ∇2
ω`(ω), (B.2)

I(ω) := E
{

˙̀ (ω) ˙̀ ′(ω)
}
, (B.3)

where ˙̀ (·) is the gradient of the log-likelihood with respect to the parameter vector

ω, known as the score statistic, ῭(·) is the Hessian of the log-likelihood, and I(·)

denotes the Fisher information matrix as the covariance of the score vector, where
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the expectation is over the realization of the process.

For simplicity of analysis, we consider a piece-wise constant model in which

ωk is constant within observation windows indexed by i = k−N, k−N+1, . . . , k for

some large N = O( 1
1−β ), following the tradition of performance analysis of RLS-type

algorithms [13]. Recall that the exponentially weighted log-likelihood at window k

is given by:

`βk(ωk) := (1− β)
k∑

i=k−N

βk−i`i(ωk). (B.4)

Let ωk and ω̂k denote the true and estimated parameter vectors of length

M associated with a unit at window k, where M can take any of the two values

M (F ) and M (R) corresponding to full and reduced models, respectively. Suppose

that the inverse Hessian exists at ωk for each time k, which we denote by Θk :=

(῭
β

k(ωk))
−1 for notational convenience. Throughout the proof, we make use of the

consistency results on `1-regularized exponentially-weighted maximum likelihood

estimation, such as those discussed earlier in Chapter 3. These results imply that

for β close enough to 1, we have ‖ω̂k −ωk‖2 = O(
√

(1− β)S logM), with a choice

of γ = O(
√

(1− β) logM) for the regularization parameter.

The de-biased deviance Dk,β(ω̂k;ωk) of Eq. 4.4 can be expressed in the fol-

lowing quadratic form:

Dk,β(ω̂k;ωk) = −
(

1 + β

1− β

)
(ŵk − ωk)′ ῭

β

k(ωk) (ŵk − ωk), (B.5)

where

ŵk := ω̂k −Θk
˙̀β
k(ω̂k). (B.6)
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By rearranging some terms, Eq. B.5 can be expressed as:(
1− β
1 + β

)
Dk,β(ω̂k;ωk) = 2(ω̂k − ωk)′ ˙̀

β

k(ω̂k)

− (ω̂k − ωk)′῭
β

k(ω̂k)(ω̂k − ωk)−Bk + ∆1, (B.7)

where Bk := ˙̀β
k(ω̂k)

′Θk
˙̀β
k(ω̂k) denotes the bias term due to `1-regularization, and

∆1 denotes a remainder term given by:

∆1 := (ω̂k−ωk)′
(
῭β
k(ω̂k)− ῭β

k(ωk)
)
(ω̂k−ωk). (B.8)

Next, we use the Taylor’s series expansion as follows:

`βk(ωk) = `βk(ω̂k) + (ωk−ω̂k)′ ˙̀
β

k(ω̂k) +
1

2
(ωk−ω̂k)′῭

β

k(ω̃k)(ωk−ω̂k), (B.9)

where ω̃k := tωk + (1− t)ω̂k is an intermediate vector for some t ∈ (0, 1), such that

‖ω̃k−ωk‖ < ‖ω̂k−ωk‖. Combining Eqs. B.7 and B.9, we get:(
1− β
1 + β

)
Dk,β(ω̂k;ωk) = 2(`βk(ω̂k)−`βk(ωk))−Bk + ∆2, (B.10)

where the remainder term ∆2 takes a similar form to Eq. B.8 with the Hessian

evaluated at ω̃k instead. Using the Lipschitz property of the second-order derivative

of the logistic function, boundedness assumption on the covariates (‖X‖∞ = O(K)),

and the consistency of ω̂k, it can be proved that both remainder terms ∆1 and ∆2

are asymptotically negligible with a rate of ‖ω̂k−ωk‖3 = oP((1− β)3/2) as β → 1.

In order to adapt the treatment of Davidson and Lever [97] to our setting,

we first consider a sequence of forgetting factors {βj}∞j=1 approaching unity, i.e.,

limj→∞ βj = 1. Then, at window k, we test the null hypothesis H0,k : ω0
k = (ω0,k,0)

against a sequence of local alternatives {Hβj
1,k}∞j=1 = {Hβj

1,k : ω
βj
k = (ω∗0,k,ω

βj
1,k)},
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where ω
βj
1,k =

√
1−βj
1+βj

δk corresponds to the unspecified sub-vector excluded in the

reduced model for some constant vector δk of dimension M (d).

Statistical inference under the sequence of local alternatives {Hβj
1,k} is carried

out through testing local departures from null hypothesis to the limiting true pa-

rameter ω∗k at the rate of O
(√

1−βj
1+βj

)
as βj → 1. For notational convenience, we

drop the dependence of βj on the index j. It is understood that expressions involv-

ing limits of β are interpreted as the sequential limit. From the definition of ŵk in

Eq. B.6, it follows that:

ŵk − ωk = ω̂k − ωk −Θk
˙̀β
k(ω̂k) = −Θk

˙̀β
k(ωk) + ∆, (B.11)

where ∆ := (I−Θk
῭β
k(ω̃k))(ω̂k − ωk) , and we used:

˙̀β
k(ω̂k) = ˙̀β

k(ωk) + ῭β
k(ω̃k)(ω̂k − ωk), (B.12)

in Eq. B.11 which holds for some intermediate vector ω̃k = tωk + (1 − t)ω̂k for

some t ∈ (0, 1). It can be shown that ∆ = oP(1 − β) is asymptotically negligible,

following the aforementioned argument used for ∆1 and ∆2.

Next, we need to determine the asymptotic behavior of the Hessian ῭β
k(ωk)

as β → 1. Due to the dependencies of the covariates, the common law of large

numbers (LLN) for i.i.d. random variables cannot be applied. Due to the logistic link

used in defining the log-likelihood, the Hessian can be written as (1− β)X′WDX,

where W is a diagonal bounded weighing matrix, D is a diagonal matrix containing

the exponential weights, and X is the matrix of covariates [33]. Also, for finite

M , {n(c)
i }Cc=1 form a 2C-state Markov chain with φ-mixing property. Hence, the
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version of LLN for bounded functions of φ-mixing random variables can be used to

characterize the limit (e.g., [151] or Theorem 27.4 in [152]). Hence, as β → 1:

῭β
k(ωk)

p−→ E[῭i(ωk)] = −I(ωk), (B.13)

where the second equality is obtained using the Fisher information equality.

Similarly, in order to characterize the asymptotic behavior of the score statistic,

a version of the Central Limit Theorem (CLT) for dependent random variables

is required. Note that the Lindeberg CLT for i.i.d. random variables does not

apply, since the covariates are highly dependent. In the absence of the stimuli

in the logistic model, i.e., si = 0,∀i, by invoking the aforementioned φ-mixing

property of the equivalent 2C-state Markov chain {n(c)
i }Cc=1, we use a version of the

martingale CLT [151]. In the presence of stimuli, by the hypothesis that the stimuli

are generated by a Markov process, we invoke stronger versions of the CLT for

autoregressive models [153, 154]. Hence, the score statistic at the true parameter

converges in distribution to a Gaussian random vector with zero mean and covariance

given by the Fisher information matrix:√
1 + β

1− β
˙̀β
k(ωk)

d−→ N (0,I(ωk)), (B.14)

as β → 1. Note that this result holds both under H0,k when ωk = ω0
k is the true

parameter vector, and for the sequence of alternatives Hβ
1,k, where ωk = ωβk is the

sequence of true parameters.

The asymptotic normality of ŵk under H0,k follows by invoking the Slutsky’s
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theorem using Eqs. B.13 and B.14:√
1 + β

1− β (ŵk − ωk) d−→ N
(
0,I(ωk)

−1
)
, (B.15)

as β → 1. Hence, under H0, combining the asymptotic result on the Hessian in

Eq. B.13, and the asymptotic normality of ŵk in Eq. B.15 leads to the weak

convergence of the adaptive de-biased deviance to a central chi-squared distribution

with M degrees of freedom:

[
Dk,β(ω̂k;ωk) |H0,k

] d−→ χ2(M), (B.16)

as β → 1. Following on the classical results [95, 96], it can be shown that the

deviance difference of two nested full and reduced models asymptotically converges

in distribution to a central chi-squared with M (d) degrees of freedom:

[
Dk,β(ω̂βk ; ω̂0

k)
∣∣H0,k

] d−→ χ2(M (d)), (B.17)

as β → 1, where M (d) is the dimension of the specified sub-vector ω1,k = 0 under

the null hypothesis, i.e, the dimensionality difference of the two nested models. This

establishes part (i) of the statement of Theorem 4.1.

As for part (ii), such an asymptotic result under the sequence of local alterna-

tive hypotheses will be slightly different, as the limiting Gaussian distributions are

non-zero mean. To see this, we define the de-biased vector ŵβ
k associated with each

local alternative Hβ
1,k at time step k as:

ŵβ
k := ω̂βk −Θ∗k

˙̀β
k(ω̂βk), (B.18)
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where Θ∗k := Θk(ω
∗
k). By similar arguments leading to Eq. B.11, it follows that:

ŵβ
k − ω∗k = ω̂βk − ω∗k −Θ∗k

˙̀β
k(ω̂βk)

= −Θ∗k
˙̀β
k(ω∗k) + oP(1− β) (B.19)

= ωβk − ω∗k −Θ∗k
˙̀β
k(ωβk) + oP(1− β), (B.20)

where we have respectively used the following linear expansions around ω∗k in Eq.

B.19 and B.20:

˙̀β
k(ω̂βk) = ˙̀β

k(ω∗k) + ῭β
k(ω∗k)(ω̂

β
k − ω∗k) + oP(1− β), (B.21)

˙̀β
k(ωβk) = ˙̀β

k(ω∗k) + ῭β
k(ω∗k)(ω

β
k − ω∗k) + oP(1− β). (B.22)

Using similar arguments leading to Eqs. B.13 and B.14, the asymptotic form of

the Hessian and the asymptotic normality of the score function at the true parameter

vector ωβk under the sequence of local alternatives Hβ
1,k will follow:

῭β
k(ωβk)

p−→ −I(ω∗k), (B.23)

√
1 + β

1− β
˙̀β
k(ωβk)

d−→ N (0,I(ω∗k)). (B.24)

Hence, incorporating the asymptotics of Eqs. B.23 and B.24 into Eq. B.20,

the de-biased estimate ŵβ
k under the sequence of local alternatives Hβ

1,k converges

in distribution to a multivariate normal distribution:√
1 + β

1− β (ŵβ
k − ω∗k)

d−→ N (δ̄k,I(ω∗k)
−1), (B.25)

with non-zero asymptotic mean δ̄k := [0′, δ′k]
′ as β → 1. The asymptotic mean

is obtained from the asymptotic rate of the Pitman drift, where the sequence of
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true local parameter vectors {ωβk} approach the limit ω∗k at a rate of ‖ωβk − ω∗k‖ =

O
(√

1−β
1+β

)
.

Next, consider the decomposition of I(ω∗k) into blocks corresponding to ω0,k

and ω1,k:

I(ω∗k) =

 I0,0(ω∗k) I0,1(ω∗k)

I1,0(ω∗k) I1,1(ω∗k)

 . (B.26)

By invoking a similar treatment as in the proof of Theorem 1 of [97] via the

extension of Cochran’s theorem to non-central chi-squared distribution [155, 156],

and using the asymptotic result of Eq. B.25 in the quadratic forms of Eq. B.5

for both the reduced and full model estimates (ω̂0
k, ω̂

β
k), it can be shown that the

deviance difference of two nested models converges in distribution to a non-central

chi-squared distribution under the sequence of local alternatives Hβ
1,k as β → 1:

[
Dk,β(ω̂βk ; ω̂0

k)
∣∣Hβ

1,k

] d−→ χ2(M (d), νk), (B.27)

where M (d) is the dimensionality difference of two nested models as before, and

νk := δ′kĪ1,1(ω∗k)δk is the non-centrality parameter with Ī1,1(ω∗k) := I1,1(ω∗k) −

I1,0(ω∗k)I−1
0,0(ω∗k)I0,1(ω∗k). This establishes part (ii) of the statement of Theorem

4.1.

Discussion of the Result of Theorem 4.1: Two remarks regarding the

bias correction and implications of the result of Theorem 4.1 are in order:

Remark 1. The bias term Bk that emerged in the derivation of Dk,β in Eq. B.7

can be estimated as B̂k = ˙̀β
k(ω̂k)

′Θ̂k
˙̀β
k(ω̂k), where Θ̂k =

(
῭β
k(ω̂k)

)−1
. Proof of the

consistency of this estimate, i.e., B̂k
p−→ Bk follows directly from the consistency of
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the inverse Hessian Θ̂k
p−→ Θk. Since we assumed that the Hessian is invertible at

true parameter ωk, there exists a subsequence of the estimators {ω̂(β`)
k }`, at which

the Hessians are invertible, and approach the true inverse Hessian Θk, given that M

is fixed. In the case that the Hessian ῭β
k(ω̂k) is not invertible, either due to the rank-

deficiency at ω̂k for some k, or the case of infinitely growing dimensions M (F ) and

M (R) with fixed difference M (d), we adopt the approach taken in [87] and compute

Θ̂k using the so-called node-wise regression, as discussed in Appendix A.3, for which

similar asymptotic results have been proven, implying that ‖Θ̂k −Θk‖∞ = oP(1).

Remark 2. In the conventional asymptotic analysis of deviance, the true param-

eters {ωN}∞N=1 associated with the sequence of local alternatives HN
1 approach the

limiting true parameter ω∗ at the rate of O
(

1√
N

)
, where N is the number of ob-

servations. In our case, given a forgetting factor β, it follows from our asymptotic

analysis that the true (cross-history) parameter ωβ1,k of order O
(√

1−β
1+β

)
associated

with the alternative Hβ
1,k will lead to a non-trivial asymptotic distribution of the test

statistic, i.e., a non-central chi-squared distribution. Hence, one expects that the

underlying cross-history coefficients taking small values would still be detectable for

β close enough to 1. In other words, the more number of observations we have for hy-

pothesis testing, the easier it gets to distinguish between the null H0 : ω1,k = 0 and

the alternative Hβ
1 : ω1,k = ωβ1 . Therefore, we expect to detect causal links resulting

from regression coefficients as small as O
(√

1−β
1+β

)
, as stated in the theorem.
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