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Abstract

Software reuse has been claimed to be one of the most promising approaches to
enhance programmer productivity and software quality. One of the problems to
be addressed to achieve high software reuse is organizing databases of software
experience, in which information on software products and processes is stored
and organized to enhance reuse.

This dissertation presents a system to define and construct such databases
called the Extensible Description Formalism (EDF). The formalism is a general-
ization of the faceted index approach to classification in the sense that it provides
facilities to define facets, terms, and object descriptions. Unlike the faceted ap-
proach, objects in EDF can be described in terms of different sets of facets and
in terms of other object descriptions. This allows a software library to contain
different classes of objects, to represent various types of relations among these
classes, and to refine classification schemes by adding more detail supporting a
growing application domain and reducing the impact of initial domain analysis.

EDF incorporates a similarity-based retrieval mechanism that helps a reuser
locate candidate reuse objects that best match the specifications of a target ob-
ject. Similarity between two objects is quantified by a non-negative magnitude
called similarity distance, which represents the estimated amount of effort re-
quired to construct one given the other. Because of this, similarity distances are
not necessarily symmetric.

EDF was designed to overcome the limitations of software reuse library sys-
tems based on controlled vocabularies. In particular, EDF provides a specification
language based on concepts of set theory capable of representing a rich variety
of software and non-software domains; it provides a retrieval mechanism based
on exact matches and similarity metrics which can be customized to specific do-
mains; and it provides a mechanism for defining and ensuring certain semantic
relations between attribute values. A prototype application of this system has
been implemented in ANSI C.

1This research was funded in part by a scholarship provided by ORDEN S.A, by the Uni-
versity of Maryland Systems Research Center (Engineering Research Center: NSFD CDR-
8803012), and by NASA Goddard Space Flight Center grant NSG-5123 to the University of
Maryland.
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Chapter 1

Introduction

Complex computer programs such as large communications network controllers
and command and control systems have placed a growing demand on the talents
of software engineers as well as on existing technologies for software development.
In order to keep up with the increasing complexity of today’s software systems,
productivity must be increased and costs reduced in all phases of the software
construction process [6]. An important aspect of the projected solution to this
growing demand for new software is the development of support technologies
to help increase software reuse, that is, the reapplication of knowledge about
one system to other similar systems [14]. Rather than starting from scratch in
new development efforts, the emphasis must be placed on using already available
software assets (e.g., processes, documents, components, tools). This approach
avoids the duplication of work and lowers the overall development costs associated
with the construction of new software applications.

Software reuse techniques have been divided into two major groups, depending
on how new software components are constructed [16]. The first group places an
emphasis on composition: new components are built by combining other compo-
nents, hopefully without modification. Libraries of subroutines, object-oriented
class hierarchies, and the UNIX pipe mechanism are all examples of composition
techniques. The second group places emphasis on generation: new components
are built by instantiating existing templates or by applying given transformation
rules. The UNIX Yacc application and the Draco system [69] are examples of
generation techniques.

One important characteristic common to most approaches to software reuse
is that they rely, either explicitly or implicitly, on some kind of software repos-
itory or library from where the “basic building blocks” are extracted. This is
most obvious in the case of composition techniques which require libraries of well
organized reusable components in order to locate the proper parts to construct
new components. In some way, this is also true of generation techniques, where
the parts needed are not necessarily code, but templates or transformation rules.
Even in the case of application generators, which include these templates and
rules as part of the application, it is necessary to define large sets of parame-
ters. The task of defining this set of parameters for a new component would be
facilitated if we could start from the set of values used to generate a similar com-
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ponent. This ability to locate a starting point implies the existence of a library
of components and their associated parameters.

The fact that software libraries are such an important aspect of most reuse
systems, has made software reuse library systems (i.e., systems for designing,
building, using, and maintaining software libraries) a very important research
topic in the area of software reuse. Although many such systems have been pro-
posed (see Chapter 2), they all suffer from one or more of the following problems:

e Restricted domain. Some reuse library systems have been designed with the
sole purpose of improving reuse at the code level. Their representation lan-
guage usually does not have the “expressive power” to model more abstract or
complex software domains (e.g., software projects, defects, or processes).

¢ Poor retrieval mechanism. One essential characteristic of any software reuse
library system is to allow the retrieval of candidate reuse components based
on partial or incorrect specifications. This functionality requires the ability to
perform similarity-based comparisons, but most systems only provide retrieval
based on partial keyword matches or predefined hierarchical structures.

o Not flexible. Software reuse library systems must evolve as the level of expertise
in an organization evolves. Because of this, a software reuse library system must
be flexible enough to allow the incorporation of new classification schemes or
new retrieval patterns, yet this is not the case in most systems.

¢ No consistency verification. Most software reuse library systems are based
on representation models which must satisfy certain basic predicates for the
library to be in a consistent state. Yet, most of these systems do not provide
a mechanism for ensuring this consistency.

This dissertation proposes a classification system for software reuse called the Ex-
tensible Description Formalism (EDF) which addresses the limitations of current
software reuse library systems. EDF is based on the principles of faceted classifi-
cation which have proven to be an effective mechanism for creating such systems
[75]. EDF is capable of representing a rich variety of software (and non-software)
domains; provides a powerful and flexible similarity-based retrieval mechanism;
and provides facilities for ensuring the consistency of the libraries.

1.1 Definitions and Framework

Software reuse library systems such as the Extensible Description Formalism
(EDF) provide a very specific service to a software reuser: they facilitate the
process of finding a set of candidate objects in a software library whose descrip-
tions best match that of a required target object. Depending on the environment,
a software reuser may be a person (e.g., software designer or programmer) or some
other software tool that requires the services of the reuse library system. From
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Figure 1.1: Main processes of a reuse library system

the point of view of a reuser, such a system must support three basic processes:
description, retrieval, and incorporation.

The description process takes as input a specification of the required target
object and produces a description of the object in terms of the language defined
by the software reuse library system. Normally, the specifications of the target
object are a product of the requirement of design steps of a standard software
development life-cycle process. The target description produced by the descrip-
tion process depends on the type of representation model supported by the reuse
library system. In the case of EDF, the representation scheme used is a gener-
alization of the faceted classification system proposed by Prieto-Diaz [75], and is
introduced in Section 1.2.

The retrieval process takes as input the target description produced by the
description process, and retrieves from the software library a list of candidate
objects that best match the characteristics of the target object. Depending on
how the system is used, retrieval can be either a one-step process or an iterative
one. In the case of EDF, retrieval is an iterative process which refines the original
target description until the reuser is satisfied with the candidate objects produced
by the system. This process is supported in EDF by a similarity-based retrieval
mechanism which estimates the amount of reuse effort required to transform a
candidate object into the required target object. The retrieval process and the
mechanism for estimating similarity are introduced in Section 1.3.

The adaptation process generates the target object, usually by modifying the
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candidate objects. Although the adaptation process is not directly supported
by EDF, its task is facilitated by EDF’s similarity-based retrieval mechanism
and the existence of a rich software library. The more similar the candidate and
target objects are, the less modification effort should be involved. The adaptation
process is important due to its relation to the rest of the software development
process and organization. First, the objects produced by this process are used
directly on the software projects being developed, and, second, they represent
new software assets with potential for reuse in future projects.

The incorporation process is in charge of facilitating the reuse of newly pro-
duced software objects in future projects. Part of its task is to analyze the level of
reusability of new objects, and select those with high reuse potential. Those ob-
jects selected for future reuse must be integrated into the software library. EDF
supports this aspect of the incorporation process by allowing objects of different
software domains (e.g., code, documents, defects, processes) to be stored in a
single library. These object can also be interrelated, which facilitates the con-
struction of “software experience databases”-—databases that contain a body of
experience accumulated within a project environment or organization [11]. EDF
also provides an “assertion” mechanism to help ensure the semantic consistency
of software libraries (see Section 3.1.4).

EDF and the Software Development Process

EDF is applicable to any type of organization that requires the classification,
storage, and retrieval of large amounts of objects with the purpose of reuse. For
example, EDF can be used to create documentation catalogs or interactive help
systems.

The particular emphasis in this dissertation has to do with applying EDF to
software organizations to help reduce costs in the software development process.
One particular model of a software organization has been proposed by Basili [7].
Its structure and its emphasis on reusability make it an ideal environment in
which to use and integrate EDF. The proposed model separates project related
activities from reuse related activities in two suborganizations (see Figure 1.2).
The first suborganization, called the project, is in charge of developing software
products, taking advantage of all forms of packaged experience from prior and
current developments in the organization. The second suborganization, called
the factory, recognizes potentially reusable experience and packages it so it is
easy for the project suborganization to use.

The project suborganization performs activities specific to the implementa-
tion: of a software product. It analyzes the requirements and produces a high-level
system design. This suborganization may follow various process models such as
the Water Fall or Iterative Enhancement model. However, when the system com-
ponents have been identified, they are requested from the factory suborganization
and integrated into the program under development. After component integra-
tion, the project suborganization continues as usual with product quality control
(e.g., system test and reliability analysis) and release.
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Figure 1.2: EDF and the software development process

The factory suborganization has two main tasks: to satisfy the requests for com-
ponents coming from the project organization, and to prepare itself for answering
those requests by producing and storing reusable software components. This en-
hancement process is accomplished by analyzing, generalizing, and packaging the
components it generates.

The original proposal for the factory suborganization included a module called
“component generation.” This module has been replaced here by the Extensible
Description Formalism (EDF). As Figure 1.2 shows, the EDF module provides
a more detailed description of the original generation module, and it integrates
naturally with the rest of the factory suborganization. What is more, EDF has
been fully defined and implemented, so it could actually be used in systems that
support this type of organization structure such as the CARE System developed
at the Department of Computer Science of the University of Maryland [24].

1.2 Representation Model

The Extensible Description Formalism uses a generalization of the faceted classi-
fication approach proposed by Prieto-Diaz [75] to represent and classify software
objects. The faceted index approach relies on a predefined set of facets defined
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by experts. Facets and associated sets of terms form a classification scheme for
describing components. Component descriptions can be viewed as records with a
fixed number of fields (facets), where each field must have a value selected among
a finite set of values (terms).

Faceted classification has proven to be an effective technique to create libraries
of reusable software components. Yet, it suffers from various shortcomings which
limit its usefulness and applicability. The EDF approach to classification over-
comes these limitations by extending the representation model as follows:

¢ Components are replaced by instances that belong to several different classes.
Instances and classes are defined in terms of attributes and other classes, sup-
porting multiple inheritance.

o Facets are replaced by typed attributes. Possible types are: integers, strings,
enumerations, classes, and sets of the above. Having instances as attribute
values allows a library designer to create relations among different instances
(e.g., that push is a component of stack).

e The concept of similarity is extended to account for the richer type system,
including comparisons of instances of different classes and comparisons of set
values.

e Semantic attribute relations can be defined and checked using the assertion
construct. This facility simplifies the process of maintaining the consistency of
the definitions in a software library.

e An integrated language describes attributes, terms, classes, instances, dis-
tances, and their dependencies. Descriptions are type checked. The language
is based on a formal mathematical model which makes it both coherent and
analyzable.

A set of attributes in an EDF classification scheme defines a multidimensional
space S. A point p € S may represent two different concepts: an instance or
a class. An instance is an object description defined solely in terms of the at-
tributes of 5. A class defines the set of all instances whose projection onto S is p.
Instances and classes are defined using logical expressions in a subset of propo-
sitional calculus. Expressions are composed of attribute-name attribute-value
pairs denoted using assignments name = value. Expressions can be combined
using the operators “¢” and “|” which denote intersection and union of sets,
respectively. There are two other basic propositions: “in class” means that the
instance referred to belongs to class, and “has name” means that the attribute
name has a defined attribute value. Instances are denoted by instance(E) and
classes are denoted by class(E) where F is an expression.

For example, consider an EDF classification scheme for data structure pack-
ages and their operations. Each package is characterized by two attributes:
“language” specifies the language that was used to implement the package, and
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“operations” lists the operations of the data structure. The class of all packages
is defined in EDF as follows:

Package = class(has language & has operatioms);
attribute language : {Ada,C,Fortran};
attribute operations : set of Operationm;

Operations, on the other hand, are characterized by three different attributes:
“function” indicates its functionality, “srcFile” indicates its source code file
name, and “inPackage” indicates the package to which the operation belongs.
The class of operations is defined in EDF as follows:

Operation = class(has function & has srcFile & has inPackage);
attribute function : {insert,remove,traverse};

attribute srcFile : string;

attribute inPackage : Package;

Given the previous definitions, we can create a small software library containing
only the descriptions of one package, “stack”, and one of its operations, “push”.

stack = instance(in Package & language=Ada &
operations={newstack,push,pop,topl});
push = instance(in Operation & function=insert &

srcFile=‘push.ada’ & inPackage=stack);

This example illustrates some of the advantages of EDF over faceted classification.
First, an EDF library may contain descriptions of different types of objects (e.g.,
packages and operations). Second, attribute values are not limited to just terms;
they can also include strings (e.g., srcFile) and instances (e.g., inPackage).
Third, object descriptions may be interrelated, forming arbitrary hierarchical
classification schemes. In particular, this example defines a one-to-many relation
between packages and operations (via attribute operations), and a one-to-one
relation between operations and packages (via attribute inPackage). There is
no limit to the depth of this type of hierarchy. For example, we could add a
third level by defining a new object class called “Application” to characterize
application programs in terms of the packages used in their implementation.

A complete description of the syntax and semantics of the EDF specification
language is given in Chapter 3. In addition, Chapter 4 presents full descriptions of
various taxonomies for different software domains, showing EDF’s representation
power.



1.3 Similarity-based Retrieval

Having the ability to represent various types of objects within the same software
library allows EDF to model a wide range of domains. Yet, this representation
power would be of little value without a mechanism for retrieving objects from a
library based on partial or (possibly) incorrect specifications.

Electronic library catalogs usually provide their users with applications that
allow them to retrieve documents based on partial matches of keywords. That is,
given a list of terms, the system retrieves all those entries whose associated terms
match one or more of the terms of the query. The problem with these systems
is that if an exact match does not exist in the library, the query fails. Entries
whose description may be similar to that of the query are not consider by the
system, no matter how close they are.

Similarity-based retrieval is particularly important in environments such as
software organizations where reusability of old software components is an impor-
tant cost reduction mechanism. The reason being that a successful query based on
exact matches would only indicate the existence of identical components, which
is a situation that seldom occurs in these types of environments.

Several approaches for doing similarity-based retrievals have been proposed
in the literature (see Chapter 2), most of which are very domain specific. In par-
ticular, systems based on faceted representations of objects provide mechanisms
for doing similarity-based retrieval which are mostly derived from Prieto-Diaz’s
work [75]. In his system, software components are retrieve based on the degree
of similarity of facet terms. Similarity among some of the terms of a facet is
encoded as a integer value called conceptual distance. These distances are ar-
ranged in conceptual distance graphs which are used by the system to compute
the similarity of terms that have not been assigned an explicit distance.

EDF extends this approach to similarity-based retrieval. It computes the
degree of similarity between two instances as a non-negative magnitude called
similarity distance, which represents the estimated amount of effort (e.g., man-
hours) required to obtain one given the other. As opposed to other faceted
systems, EDF is capable of computing the degree of similarity between objects
of different classes (i.e., with different sets of attributes). In addition, similarity
distances in EDF are not necessarily symmetric. That is, given two objects, 4
and B, the transformation effort required to obtain A given B is not necessarily
the same as the one required to obtain B given A. This simple, but important
concept that transformation efforts are not symmetric is mostly ignored by other
software reuse systems.

To deal with the situation of comparing two instances with different (and pos-
sibly disjoint) sets of attributes, similarity distances are computed as an aggregate
of three different magnitudes called transformation, construction, and removal,
all of which represent estimations of reuse effort. Given a source instance, S, and
a target instance, T', the transformation distance measures the effort to transform
the values of attributes common to both S and T. The construction distance es-
timates the amount of effort required to supply those attributes found in T but
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not specified in S. Similarly, the removal distance estimates the effort required
to eliminate those attribute values in S that are not required by the specification
of T.

The transformation distance is the only type of metric found in faceted sys-
tems because components in this system are described using the same set of
attributes. EDF’s construction distance estimates the effort required to build
things from scratch, while the removal distance measures the effort required to
eliminate unwanted or unsolicited component characteristics provided by the can-
didate instance. These similarity distances allow EDF to sort candidate instances
by decreasing similarity (i.e., increasing distance) to a given target object de-
scription. The task of ordering candidate instances is accomplished using EDF’s
“query” command. This command receives as input a logical expression E (see
previous section) describing the target component, and attempts to present the
reuser with a list of the best reuse candidates to build the target.

EDF also provides facilities to integrate user-supplied distance computation
functions to the system. These “foreign” functions allow a library designer to
customize EDF’s similarity-based retrieval mechanism to different environments,
and to integrate alternative metrics for estimating similarity.

EDF’s similarity model is formalized in Chapter 3. Chapter 5 describes the
process of assigning and using similarity distances with the purpose of selecting
software reuse components extracted from the NASA SEL database. Appendix A
describes in detail the use of “foreign” distance functions.

Sample Retrieval Process

This section presents, by means of an example, a high-level overview of the main
steps involved in the process of retrieving components using EDF. This example
assumes the existence of an EDF library of packages and components such as
those previously described in page 6. The attributes used here, though, are not
the same.

Our sample retrieval process will select from a library a list of candidate
components that best approximate the required properties of a target component
T, which is described informally as follows.

Component T is required to print a spreadsheet on a printer. The
spreadsheet is stored in computer A, and the printer is connected to
computer B. Both computers use UNIX as their operating system.

For this example, component T will be separated into two subcomponents: T1,
which transfers a spreadsheet from one computer to another, and T2, which prints
the spreadsheet. These informal descriptions are used as a basis to describe the
functionality of each required component in terms of a predefined set of attributes.

T1 = instance T2 = instance
(Function = Transfer & (Function = Print &
Object = SpreadSheet & Object = SpreadSheet &



Source = Computer-A & Device = Printer-P &
Destination = Computer-B); Controller = Computer-B);

EDF selects the best reuse candidate component for each target description (e.g.,
T1 and T2). The candidates are selected based on the degree of similarity between
the target and existing library component descriptions. Assume that T1 and T2
are not in the software library, but that Ti* and T2* have been selected as their
best reuse candidates, respectively.

Ti* = instance T2* = instance
(Function = Copy & (Function = Display &
Object = File & Object = SpreadSheet &
Source = Computer-A & Device = Terminal-V &
Destination = Computer-B); Controller = Computer-B);

The selected component T1x can “copy” (not “transfer”) a “file” (not a “spread-
sheet”) between computers of different types. Component T2* can “display”
(not “print”) a spreadsheet on a “terminal” (not a “printer”). Each candidate
component can be examined by either reading its documentation or obtaining
implementation specifics. If it proves to be unsuitable, other candidates can be
obtained by using alternative descriptions of the target.

The candidates selected (e.g., T1* and T2*) could be merged to construct
the required component T, but it would be preferable if we could find in the
library a single unit combining the functionalities of these candidates in a common
environment or package (see page 6). In our example, we query the EDF library
for a package that must group both T1 and T2 and which must also work in a
UNIX environment. That is, we look for packages that are most similar to the
following description.

P* = instance(System=UNIX & operations={T1,T2});

Assume there is no package description in the library that matches P* exactly,
so EDF suggests an alternative package P+ similar to P*. P+ works under UNIX
but its member components deal with matrix operations instead of spreadsheets.
Among these components, Ti+ and T2+ are the most similar to Ti* and T2*,
-respectively.

Ti+ = instance T2+ = instance
(Function = Copy & (Function = Display &
Object = Matrix & Object = Matrix &
Source = Matrix-File & Device = Terminal-V &
Destination = Matrix-File); Controller = Computer-B);

There are now two alternatives to construct the required component T. We can
merge T1* and T2* into one software unit, requiring the overhead of creating joint
data structures, definitions, etc. Alternatively, we can use Ti+ and T2+ which
are already part of the package P+, and therefore share certain properties (e.g.,
memory management or programming language) that may reduce the overall
effort to construct T compared to using the unrelated components Ti* and T2x.
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1.4 Contribution of this Work

As explained earlier, current software reuse library systems based on the faceted
index approach to classification suffer from one or more of the following prob-
lems: they are applicable to a restricted set of domains; they posses poor retrieval
mechanisms; their classification schemes are not extensible; and/or they lack
mechanisms for ensuring the consistency of library definitions. The primary con-
tribution of this dissertation is the design and implementation of the Extensible
Description Formalism which overcomes these problems.

e EDF is applicable to a wide range of software and non-software domains. The
EDF specification language is capable of representing not only software com-
ponents at the code level, but it is also capable of representing more abstract
or complex software entities such as projects, defects, or processes. What is
more, these software entities can all be made part of one software library and
can be arranged in semantic nets using various types of relations such as “is-
a”, “component-of”, and “members-of”. The EDF representation model is

described in Section 3.2.1.

o EDF has a powerful similarity-based retrieval mechanism. One essential char-
acteristic of any software reuse library system is to allow the retrieval of candi-
date reuse components based on partial or incorrect specifications. EDF pro-
vides a retrieval mechanism that selects candidate components based on the
degree of similarity of their associated library descriptions. This mechanism
is based on an iterative refinement process in which components at different
levels of granularity can be retrieved. It also includes facilities that allow a
library designer to customize the retrieval process by including domain specific
functions coded in standard programming languages such as ANSI C. EDF’s
similarity model is described in Section 3.2.2.

e EDF provides an extensible representation scheme. A software reuse library
system must be flexible enough to allow representation schemes to evolve as
the needs and level of expertise in an organization increases. The EDF speci-
fication language provides several alternatives to extend or adjust a taxonomy
so as to allow the incorporation of new objects into the library without hav-
ing to reclassify all other objects. The methods for adjusting a taxonomy are
described in Section 3.1.

o EDF provides a consistency verification mechanism. Most software reuse li-
brary systems are based on representation models which must satisfy certain
basic predicates for the library to be in a consistent state. The EDF specifi-
cation language includes an “assertion” mechanism whose purpose is to help
specify and ensure the consistency of the object descriptions contained in a
library. This mechanism is introduced in Section 3.1.4.

In short, EDF addresses the main limitations of current faceted classification
systems by extending their representation model and incorporating a retrieval
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mechanism based on asymmetric similarity distances.

1.5 Overview of the Dissertation

Chapter 2 presents a survey of research related with software reuse techniques.
This survey covers two related areas: systems that provide functionalities similar
to that of EDF, and alternative methods for computing similarity.

Chapter 3 presents a complete description of the concepts that compose Ex-
tensible Description Formalism. These concepts are first explained informally
by constructing a sample classification taxonomy for software components. The
chapter concludes by presenting a formal definition of the syntax and semantics
of the EDF specification language. .

Chapter 4 demonstrates EDF’s representation power by presenting taxonomy
definitions of various software domains. First, I include taxonomies for describing
components of a commercial software library called the EVB GRACE library and
a library for Command, Control, and Information System developed at Contel
Technology Center. I also include a taxonomy for representing software defects,
and explain how an EDF library of software defects can help a system tester.
Finally, I present two taxonomies, one for describing software process models
and the other for software evaluation models.

Chapter 5 develops a complete software reuse library based on information
obtained from the NASA SEL database, which contains several hundred descrip-
tions of projects, systems, and components developed at NASA Goddard Space
Flight Center. The emphasis in this chapter is given to the process of designing
a similarity model with the purpose of selecting suitable reuse candidates.

Chapter 6 contains concluding remarks. I present a summary of the contents
of this document and describe the advantages of EDF over other reuse library
systems. I finish by describing some areas of future research.

Appendix A describes the main aspects of a prototype application that im-
plements the different concepts defined by the Extensible Description Formalism.
This prototype was implemented in ANSI C and has been ported to several UNIX
platforms.
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Chapter 2

Related Work

In its most general form, reuse involves using previously achieved results in a
new situation, and reusability denotes the degree of freedom with which previous
results may be used in a new situation [85]. Two levels of software reuse are
usually considered: reuse of ideas and knowledge, and reuse of software products
and their components. That is, a reusable software component may be any prod-
uct of the software development process—a unit of code, a design specification,
a test case, etc. Use of a component more than once can mean anything from
informal reuse of a design by its designer to the widespread use of a large software
package. The component can be used unchanged, or it can be modified to fit the
new application.

Recent research focuses on exploring new directions aimed at formalizing and
standardizing the activities and procedures necessary for reuse. Significant con-
tributions have been reported in the areas of software cataloging and retrieval,
program synthesis from reusable components, reuse measurement, and domain
analysis [14, 15]. Research in these areas is creating the foundation for develop-
ment of tools and methods to make reuse practical and effective [87, 88].

Approaches to software reusability have been broadly classified in two cat-
egories according to the nature of the reuse components: passive and active
[13]. Passive reuse components are almost immutable, ready building blocks.
Their reuse involves interconnecting appropriate components so as to assemble
the required program. Depending on the readiness of the reuse component, two
extreme forms can be distinguished: direct reuse (black box), and reuse after
modification (white box). Between these two extremes, there are reuse methods
which require adapting the reuse component by some predefined mechanism such
as parametrization, specialization, and others. The application of passive reuse
components requires solving the following problems: identification, description,
classification, storage, retrieval, and use of the component. It is also necessary
to be able to evaluate, modify, and combine the components into larger systems.

Active reuse components, on the other hand, are software patterns that take
malleable and diffuse forms. Both programs and results are reusable. They
can be represented as simple and widely accessible formalisms (such as BNF),
concepts (objects and methods in object-oriented languages), software models
(denotational semantic models), etc. The emphasis in active software reuse, as
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opposed to passive reuse, is on the construction of reusable components, and not
their manipulation. Sidorov [85] explains that operation of active reuse tools can

be represented by a mapping of the form M x T ER P, where M is the set of
models of the application domain, T is the set of transformations, P is the set of
new programs, and [ is the set of instructions driving the generation process. In
active reuse, the elements of all three sets, T, I, and M, can be reused.

The remainder of this section presents a review of the search work done in
the area of software reusability. Emphasis has been placed on three main topics.
First, Section 2.1 covers different methods and tools for representation of reusable
components. Second, Section 2.2 deals with the problem of effort estimation and
its relation to similarity computation. Finally, Section 2.3 describes a system

called AIRS (Al-based Reuse System) that was used as the basis to design EDF.

2.1 Representation of Reusable Components

One of the problems affecting software reuse has to do with how to represent
reusable software. Many methods for representing software components for reuse
have been proposed, including traditional library and information science meth-
ods and knowledge-based methods. Comprehensive surveys of representation
techniques have been presented in the literature [51, 14, 15, 39]. In this section I
summarize these approaches and describe systems in which they have been used.

2.1.1 Library and Indexing Methods

A major goal of reuse library developers is to provide ways for users to search
for software components that satisfy a set of requirements. Traditional libraries,
catalogues and indexes are used for this purpose. One such catalog is the ALA
glossary of library terms [93, 66] that records, describes, and indexes resources of
a collection. Indexes, for example Reader’s Guide To Periodical Literature, also
provide information about documents and other items, yet traditionally library
indexes are less descriptive and are usually designed to help users find documents
in a collection.

Indexes make use of specialized indexing languages. For example, the Dewey
Decimal System defines the location of an item in a library by describing its sub-
ject and content [33] numerically. Many indexing languages have been developed
for library and information retrieval. They are often classified as either having a
controlled or uncontrolled vocabulary. In controlled vocabularies, a limited set of
terms describes information items, while in uncontrolled vocabularies there are
no restrictions on term selection.

Controlled Vocabulary

Controlled indexing vocabularies ensure that the terms used by indexers and
searchers are the same. That is, a controlled vocabulary is based on a list of
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acceptable terms. Unacceptable terms (e.g., synonyms) are also usually listed.
Terms are generally derived using one of two methods [58}: literary warrant and
user warrant. In literary warrant, index terms are derived from examination of
the subject area; a term is used only if it occurs often enough in the literature.
In the case of user warrant, index terms are included if they are of interest to
the user population. Two major forms of controlled vocabularies exist: keyword
systems and classification systems.

Keyword Systems. Keyword indexing consists of natural-language words and
phrases that are used as terms for describing an information item. As with other
controlled systems, unacceptable terms are also made available (e.g., synonyms).
Terms in keyword systems are arranged primarily in alphabetical order and not
by class, and, therefore, these systems provide no information about relationships
between terms.

The terms subject heading and descriptor are sometimes used as synonyms
of keyword. Subject headings are like enumerated classification systems, where
indexes do not synthesize classes from terms. Synthesis is not allowed because
all terms are created before the system is used. (One exception to this is found
in the systems developed by Coates for the British Technology Index and Precis
(Preserved Context Indexing System) developed by Austin [38].)

Descriptors, on the other hand, are controlled keywords designed to allow
searchers to synthesize terms using Boolean operations. Descriptors are not nor-
mally used to represent classes; it is only after Boolean operations that descriptors
can be synthesized to form composite concepts. The main difference between sub-
ject headings and descriptors is in the way they are used. A descriptor is used in
conjunction with other descriptors, while a subject heading is designed to stand
alone [58].

Information about relations between terms has been usually more limited
in keyword systems than in classification systems. One way to overcome these
limitations has been the use of a thesaurus. A thesaurus presents searchers with
guidelines for combining terms. This is done by providing an alphabetic list of
acceptable terms and their synonyms, and descriptions of relationships between
the terms. One example of this technique is the DTIC retrieval and indexing
terminology thesaurus [31].

Subject headings and descriptors have been used to comstruct systems for
software reuse, but the literature usually does not make a distinction between
the two. One example is a system of controlled terms for searching software
components by Arnold and Stepoway [4]. It is not clear what form their list of
terms has or whether Boolean operations or other forms of synthesis are allowed
in their system.

Classification Systems. Classification systems group items into classes which
are associated to a set of terms. For example, if the term sort indexes a compo-
nent, then this component is grouped with all other components described by the
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term sort. In this sense, indexing terms can be considered class labels. There
are two types of classification systems: enumerated and faceted.

In enumerated classification, all possible class labels describing a domain area
are listed in a “classification hierarchy”. Classes in these systems must satisfy the
following conditions: they must be mutually exclusive, they cannot be combined
to form new classes, and they must have at least a partial hierarchical order. The
Dewey Decimal System [33] is a well known enumerated classification scheme, as
is the computer science classification scheme used by Computing Reviews [3].

The major advantage of enumerated systems is their hierarchical structure. A
well defined structure makes it easy to interpret the relationships between terms.
The disadvantage is that creating a well defined classification structure requires
an exhaustive analysis of the domain area. Also, these systems only provide one
view of the relationships, and modifications are difficult because changes can-
not be made without totally restructuring the hierarchy. Another problem with
enumerative schemes is traversing the hierarchical tree to find appropriate class.
In the Dewey Decimal System, for example, the title “Structured System Pro-
gramming” could be classified in any of the following classes: system analysis
(001.61), software (001.642.5), systems (003), systems analysis (620.72), or sys-
tems construction (620.73). To compensate for such ambiguity cross references
are established, but cross referencing is a cumbersome and error prone process.

Faceted classification, on the other hand, is a more flexible type of classi-
fication system aimed at overcoming the rigidity of enumerated classification.
Faceted classification was introduced by Raganathan in the late 1930s [80, 38, 22]
and is widely used in libraries throughout Europe and India. In this classifica-
tion system, a domain area is decomposed into basic terms (also called foci or
elemental classes). These terms are then conceptually arranged into facets. For
example, a faceted classification for software [75] might group terms such as “sort”
and “append” into a facet called “function”, or terms such as “array” or “string”
might be arranged in another facet called “object”.

In faceted classification, classes may be derived by synthesizing basic terms
from different facets. For example, a class “append string” may be created by
combining the terms “append” and “string” from the facets “function” and “ob-
ject”, respectively. This ability to derive classes during indexing is what dis-
tinguishes faceted systems from enumerated systems. In enumerated systems,
the class “append string” would have to be explicitly listed in the classifica-
tion hierarchy before an item can be classified. Faceted classification was called
analytico-synthetic classification [38] because it allows indexers dynamic analysis
of domains and the synthesis of terms into classes.

One major advantage of faceted classification over enumerated classification is
its ability to synthesize classes. This means that not all classes need to be deter-
mined when developing a system. Faceted systems are also easier to update and
modify because facets can be arranged independently of others. A disadvantage
of faceted classification, though, is that systems with large numbers of facets can
be difficult to use efficiently. Users may be forced to search through many facets
before finding the right combination of terms to describe an object.
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Enumerated classification systems have been used to implement classification
systems for software reuse. A comprehensive survey of early enumerated systems
for reuse was done by Prieto-Diaz [75]. One of the first classification schemes for
computer programs was the IBM SHARE System [75]. A modification of this
scheme was proposed by Bolstad [19]. Bolstad’s scheme has served as the basis
for several other collections, such as the National Bureau of Standards’ Guide
to Available Mathematical Software (GAMS) [25], and the enumerated system
used by the International Mathematics and Scientific Library (IMSL) [49]. Other
examples of enumerative schemes for software libraries include NASA’s COSMIC
Software Catalog [23] which uses a flat list of 75 NASA subject categories for
classifying its programs, and Toshiba’s PROMISS system [64] which uses a list
of function codes for categorizing its registered programs.

Faceted classification systems for software reuse are less common than enu-
merated systems. One of the earliest and best known faceted systems was devel-
oped by Prieto-Diaz [75, 76]. His system relies on a predefined set of keywords
extracted by experts from program descriptions and documentation. These key-
words are arranged by facets into a classification scheme and used as standard
descriptors for software components. A thesaurus is derived for each facet to pro-
vide vocabulary control and to add a semantic component to retrieval. Keywords
can only be used within the context of the facet they belong to and ambiguities
are resolved through a thesaurus.

An important component of Prieto-Diaz’s system is the use of a conceptual
distance graph. Conceptual distances between items of each facet are used to
evaluate their similarity, which is used in turn to evaluate the similarity between
required software specifications and available components. Conceptual distances
are assigned based on experience, intuition, and common sense. More recently,
Gagliano et al. [42], have proposed a method to compute conceptual closeness
based on statistical analysis. Frequencies of “perceived similarity” obtained by
running experiments with controlled groups of individuals are used to compute
a “dissimilarity coefficient”. This coefficient is then used to build conceptual
distance graphs for a set of users.

Prieto-Diaz’s system is reported to be very effective in retrieving components,
but the construction of conceptual graphs is labor intensive and has not been for-
malized yet. One of the main restrictions imposed by the system is that each de-
scription must be defined using all facets that belong to the classification scheme.
This implies that components that are naturally characterized by different sets of
facets must be defined in terms of a unique set, thus forcing component descrip-
tions to use facets that are meaningless to the particular component. This also
implies that, in order to add a new facet to a particular scheme, the definition of
all components in the database must be extended to include this facet.

Uncontrolled Vocabulary

In an uncontrolled vocabulary, no restriction is placed on what terms can be used
to describe an item. The vocabulary terms can be extracted from any source,
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usually from the indexed objects themselves. The vocabulary may include single
words or phrases from the text of objects, and terms sometimes have weights
to define their relative importance. Methods to derive these weights have been
described [83).

Potential advantages of uncontrolled vocabulary include reduced cost and
specificity. Because terms are usually extracted automatically from the text of
objects, indexing is usually cheaper than if done by humans. Also, since terms
are unrestricted, indexing can be done as specific as possible.

Uncontrolled vocabulary systems have been used to develop tools for software
reuse. One example is Bell Labs’ CATALOG system [40]. This system is based
on information retrieval (IR) techniques for locating components in the library.
Either the component itself or an associated component descriptor is indexed
by the IR system, so that each (non-trivial) word can be retrieved in a search.
There is no manual classification of the components into pre-defined categories.
A component descriptor template is suggested that includes programmer defined
keywords, descriptive text, and many of the same attributes described above
(author, date, environment, etc.). A user can search for an arbitrary word, phrase,
or fragment within specific fields or across the component or descriptor as a whole.

Other examples of an uncontrolled vocabulary system include the Intermet-
ric’s Reusable Software Library (RSL) [23] which uses free-text indexing to create
a hierarchical category code for describing component functionality of Ada func-
tions, procedures, packages, and programs. A KWIC index is another form of
free-text index which was developed to overcome the problem that most free-
text index systems have with loosing syntactic and semantic relationships among
terms. In a KWIC index each significant index term is presented in the phrase
it occurs in the original text.

Maarek, Berry, and Kaiser [63] have proposed the concept of lezical affinities
among pairs of words as an effective means to extract both lexical and term fre-
quency information from software documentation. Results from their experimen-
tal system (GURU) demonstrate that this approach may be able to substantially
improve keyword based library systems.

An approach that borrows from both faceted and free-text method has been
proposed by Embley and Woodfield [34]. They propose a library of abstract
data-types (ADT) which are classified using special descriptors. A descriptor
defines an ADT using keywords, facets, and list of aliases. The system allows
the user to define explicit relations among different ADT’s, and provides some
built-in relations such as “depends-on”, “close-to”, and “generalizes” which can
be derived automatically from the values of the ADT’s, facets, and keywords.

2.1.2 Knowledge-based Methods

One alternative to library classification methods are various knowledge represen-
tation methods developed in the field of Artificial Intelligence (AI). Many of these
methods [97] have been used for representing reusable components.

Two factors must be considered when evaluating knowledge representation:
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adequacy and heuristic power. Representational adequacy refers to how much
information about the represented object can be expressed in a formal way.
Heuristic power, on the other hand, refers to the kinds of inferencing that can be
achieved with the representation.

One important aspect of knowledge-based representations is that they offer
powerful ways to express relations between components. On the other hand,
one potential disadvantage with these methods is that the knowledge acquisition
problem sometimes proves to be very difficult [47]. There are various approaches
to knowledge representation, among them rule-based, semantic net, and frame-
based systems.

Rule-Based Systems

Rule-based systems are well known representation systems mainly because of
their use in Expert Systems. Rules are normally composed of two parts: an
antecedent and a consequent, both of which take the form of logical expressions.
Whenever the antecedent of a rule is true, its consequent part is activated or
assumed true. For example, a “bubble sort” component could be represented by
a rule of the form: “IF functionality needed is a sort AND required language is
Pascal THEN use bubbleSort.p”.

A system for selecting code modules for reuse has been described by Rosales
and Mehrotra [82]. Their system is called MES, and is targeted for selection
of components in transmission systems developed in PL/1. Another rule-based
system has been proposed by Bollinger and Barnes [17]. They used a Prolog-
based system for finding reusable parts from an electric load monitor program
written in Ada.

Fitzgerald and Mathis [37] developed an expert system to help select Ada
parts. Their first version used the GRACE (Generic Reusable Ada Components
for Engineering) parts, which is a set of data structures similar to those developed
by Booch [20]. They later developed a new version which added parts from
previous projects in their organization (Contel). One important characteristic of
their system is that it maintains a log about failed searches which can be later
used by the library administrator to expand or adjust the knowledge base.

Semantic Net Systems

A semantic net is a directed graph whose nodes correspond to conceptual objects
and the arcs represent relationships among these objects. It is usually easy to
express knowledge using semantic nets, that is, they have a good representation
adequacy. On the other hand, the heuristic power of some basic semantic nets is
poor. This problem is sometimes overcome by adding first-order logic semantics.

One reuse system based on knowledge representation is described by Solder-
itsch et al. [86]. The system is called RLF and uses nodes to represent concepts
from a domain, and two types of arcs: ISA arcs and role arcs. ISA arcs represent
class membership while role arcs describe non-class relationships among concepts.
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This system has been used, so far, to construct three knowledge bases of software
components.

The use of semantic nets as a tool to help the domain analysis process and
to represent complex taxonomies has also been proposed by Prieto-Diaz [76]. He
presents an example of a semantic net representation of the different concepts of a
parser for a compiler such as: variable names, symbol table, and parsing method,
code generator, etc. Several types of relations are used: is-a, represented-by,
uses-method, and others.

Frame-Based Systems

Frame-based systems make use of frames to represent conceptual objects. A
frame is a data structure composed of slots and fillers, similar to “record” struc-
tures found in most traditional programming languages. The main difference is
that frames can be arranged in hierarchical structures which allow frames to in-
herit slots, and optionally fillers. Because of this, frame-based systems are usually
compared to Object-oriented systems [30, 89, 67, 50, 54]. One difference between
these two approaches is that in most frame systems slots may be attached to
procedures, thus allowing dynamic computation of slot values and assignment of
default values [26].

Several systems for software reuse have as their foundation frame-based sys-
tems. Devanbu et al. [32] developed LaSSIE, a classification-based software
information system. LaSSIE incorporates a large knowledge base, a semantic
retrieval algorithm based on logical inference, a powerful user interface with a
graphical browser, and a natural language parser. LaSSIE is intended to help
programmers find useful information about large software systems like AT&T’s
System 75 PBX with over one million lines of C code. LaSSIE is very powerful
but creating a knowledge structure of any significant size is extremely labor in-
tensive. Another disadvantage is rigidity. They usually support a very narrow
application domain.

Another frame-based system is described by Allen and Lee [1]. Their system
is called Bauhaus and supports the description and retrieval of reusable parts and
their composition. Manual and automatic indexing methods are used, the latter
done by parsing Ada packages. Wood and Sommerville [98] have also used frames
for indexing reusable components. In their system frames slots are nominals,
actions, and modifiers from some domain. Nominals are simple concepts, actions
are simple verbs, and modifiers specify attributes of nominals and actions. Wood
and Sommerville have used their system to represent UNIX tools.

2.2 Similarity and Effort Estimation
It has been argued that effort estimation by humans has long been a problem in

software engineering. Woodfield, Embley, and Scott [99] performed an experiment
where programmers were asked to evaluate the degree of reusability of software
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components. They concluded, among other things, that programmers cannot
assess the worth of reusing a candidate component to satisfy the implementation
requirements, and that in their evaluations programmers are influenced by some
unimportant features (size of the candidate, percent of additional operations
required) and are not influenced by some important ones (percent of operators
to be modified, estimates of effort based on software science and lines of code).

From the perspective of a software production staff, profitability depends
largely on assessing the applicability of reusable components, and incorporating
them into the software system being developed, all of which requires methods for
estimating the amount of effort to reuse these components. Part of the solution
to this problem of effort estimation is to automate this process via software tools,
but this is easier said than done. Estimating the amount of effort required to
transform a candidate reuse component into a required component is, at best,
difficult because it involves analysis of the component’s structure, semantics, and
relation to its environment.

2.2.1 Similarity and Software Component Models

One method to estimate transformation efforts used by several software reuse
systems is based on computing the degree of similarity among object represen-
tations. The basic assumption is that the transformation effort from a candidate
to a target component is proportional to the degree of similarity of their repre-
sentations. Examples of such systems include Prieto-Diaz’s faceted classification
[75], the GURU system by Maarek et al. [63], and the AIRS system described in
this thesis.

Prieto-Diaz’s faceted classification system makes use of conceptual distance
graphs and fuzzy logic to estimate the degree of similarity among component
descriptions. The AIRS system, on the other hand, uses the concepts of closeness
and subsumption relations for this same purpose. Both these relations define a
measure of similarity called similarity distance.

In the case of the GURU system, a concept of dissimilarity indez is used to
cluster similar components based on lexicographic order of extracted keywords.
A dissimilarity index 6 over a set of objects (2 is defined [63] as a function 2 xQ —
R, that satisfies the following two properties:

Vz € Q,6(z,z) = 0
V(z,2') € Q2 6(z,2') = 6(z',z)

That 1s, a dissimilarity index is reflexive and symmetric, but not necessarily
transitive. This index has been used to define several similarity measures between
documents [95]. The particular one used in the GURU system is defined as
|X NY|, where X and Y are the profiles! of two documents, and represents the
number indices common to both documents. It is computed as follows:

!The profile of a document is defined by a set {(i, p)}, where p is the value of the index i.
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§X,Y)y= > (px(i) x py(i))
iep(X)Np(Y)

where px(1) is the p value of the index ¢ in the profile X, and similarly for Y.

In the area of Artificial Intelligence, knowledge is very commonly represented
as graphs or semantic nets. Depending on the nature of the problem, the edges
can represent physical links, time duration, or abstract relationships. There are
various ways of assessing the similarity of concepts depending on the representa-
tion adopted for knowledge. A comprehensive review of these different approaches
was done by Rada et al. [79]. One particular example can be found in the theory
of spreading activation [28] where one of the assumptions is that the semantic
network is organized along the lines of semantic similarity. The more properties
two concepts share in common, the more links (i.e., “is-a” relations) there are
between the concepts and the more closely related they are. Semantic distance
is measured as the minimal path length between two nodes in the net. These
concepts have been applied to systems based on semantic nets such as KL-ONE
[21].

2.2.2 Similarity and Software Metrics

All previously described systems were designed explicitly with the purpose of com-
puting the degree of similarity between pairs of component descriptions within
the same system. That is, similarity is computed based on the descriptions (i.e.,
models) of the components, but not using the components themselves.

Several types of software metrics have been defined with the purpose of analyz-
ing and comparing software components, and to assess their degree of reusability
[29, 43, 12, 24]. Software metrics attempt to quantify a particular characteristic
of a software component by producing normalized numeric values which can later
be used to rank the component against standardized tables or models. Although
most software metrics have not been designed explicitly with the purpose of es-
timating similarity and effort transformations, they can easily be used as a basis
to construct models for this purpose.

One example of a set of software metrics designed to identify and extract
reusable components is described by Caldiera and Basili [24]. They use four dif-
ferent metrics for estimating the levels of usefulness, reusability, quality, and cost
of a component: volume, regularity, reuse frequency, and cyclomatic complexzity.

¢ Volume. The volume of the component affects both its reuse cost and quality.
If a component is too small, the combined costs of extraction, retrieval, and
integration exceed its intrinsic value. If it is too large, the component is more
error prone and has lower quality. A component’s volume can be measured
using the Halstead Software Science Indicators [29], which are based on the
way a program uses the programming language.
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The Halstead volume is based on the concepts of operators and operands:
an operator is an active program element (e.g., arithmetic operators or func-
tions), and an operand represents a passive element (e.g., constants or vari-
ables). The Halstead volume is computed as V = (Ny+Ny) logy(m +12), where
N; and N, are the respective total count of all usage of operators and operands,
while 7, and 7, are the respective total count of operators and operands used
in the program.

¢ Regularity. The regularity of a component measures the readability and the
non redundancy of a component’s implementation. It can also be estimated
by using the Halstead Indicators as r = N /N, where N = N; + N; is the
actual length of the document, and N = logy(m ) + 72 logy(m2) represents the
estimated length.

¢ Reuse Frequency. The reuse-specific frequency is an indirect indicator of the
functional usefulness of a component, as long as the application domain uses
some naming conventions to ensure that different names do not represent the
same functionality. The basic idea to estimate reuse frequency is to compare
the number of static calls addressed to a component with the number of calls
addressed to a class of components known to be reusable. Let C' be a compo-
nent, n(X) be the number of calls addressed to a component X, and M be the
number of components Sj,..., Sy defined in the standard environment. The
reuse frequency of C is computed as follows:

___n(C)
ﬁ Efio n(S;)

¢ Cyclomatic Complexity. The complexity of a component’s control flow
affects both its reuse cost and quality. Reuse of a component with very low
complexity may not repay the cost, whereas high component complexity may
indicate poor quality—low readability, poor testability, and a high possibility of
errors. Complexity can be estimated using the McCabe measure [29], defined
as the cyclomatic number of the control-flow graph of the program v(G) =
e —n + 2, where e is the number of edges in the graph G, and n is the number
of nodes.

v(C)

Other examples of software metrics have been proposed. For example, Gannon
et al. [43] used the “package visibility” metric to study usage of Ada programs.
Similarly, Basili et al. [12] used the number of “data bindings” to represent the
degree of connectivity among component pairs. A data binding is defined by
Hutchens and Basili [48] as a triplet (p, z, ¢), where z is a global variable and p
and ¢ are program components, and where p assigns z and g references it.

2.3 AIRS: An Al-based Reuse System

The origins of the Extensible Description Formalism (EDF) are found in a system
called AIRS (Al-base Reuse System) [73]. This system was designed to reuse Ada
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packages, and allow a software developer to browse a software library in search
of components that best approximate some design specifications. AIRS relies
heavily on several Al related data structures, techniques, and algorithms. The
internal representation of the software library is constructed using a frame system
with multiple inheritance [26], while the procedures used to find reuse candidates
are based on A*-like search algorithms [72].

AIRS is essentially a combination between the faceted index and frame-based
approaches. The domain information inherent in the facets is used largely to
reduce the rigidity and the laborious creation of a semantic structure. A hierar-
chical frame system is used to maintain information on which of the objects in
the reuse libraries have which features, how these objects are grouped, and how
the features are related. Procedural attachment in the frame system is used to
make the AIRS browsing system more efficient. In addition the features of the
frame system are used to facilitate the integration of new components into the
AIRS system, allowing a programmer to bootstrap its knowledge structures from
a basic set of existing components.

2.3.1 The AIRS Classification Model

The AIRS model for classifying and computing similarity between software com-
ponents is based on a two-level hierarchy. The base elements in the hierarchy are
called components. The top elements are called packages and represent groups
of related components. Both components and packages are described in terms
of features. A feature is defined as a set of related values called terms. For
example, a feature named source-language can be defined as the set of terms
{Pascal, Fortran, Ada, C}. A component or package is modeled by a set of
(f,1) pairs, where f is a feature and ¢ is a term of f. A package represents a
collection of components which are tightly coupled, that is, each component in
the collection is defined to be used in conjunction with the others. This set of
components are called members of the package. For example, abstract data types
such as stacks and list can be represented in AIRS as packages.

AIRS uses two different methods for computing similarity between compo-
nents and packages: the closeness relation and the subsumption relation. The
closeness relation is based on the idea that two components are similar if one
can be obtained by adapting a small number of parts of the other. The degree
of closeness of two components (or packages) is computed by summing up the
closeness distance of their corresponding feature terms. The closeness distance
between two terms is quantified by a non-negative magnitude inversely propor-
tional to their similarity. The subsumption relation is based on the idea that
two components are similar if one is a subpart (e.g., subfunction) of the other.
Components that have this relation are arranged in a directed acyclic weighted
graph, and their degree of similarity is measured as the weight of the shortest
path in this graph.
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2.3.2 Applications of AIRS

The AIRS system has been used to construct two different software libraries.
The first is the EVB GRACE library (part I) developed by EVB corporation,
which contains a collection of Ada packages that implement data structures such
as stacks and undirected graphs. The second is the CTC CCIS software library
developed at Contel Technology Center, which contains a collection of C modules
for implementing the basic functionalities of Command, Control, and Information
Systems.

A highly interactive prototype of the AIRS system was implemented using
Common Lisp in a Macintosh computer. This prototype supports an iterative
refinement retrieval process for finding candidate reuse components and packages.
This semi-automatic process takes the initial specifications of target components
and/or packages and refines them until the reuser is satisfied with the candidate
reuse components found using the similarity-based retrieval mechanism provided
by AIRS. Figure 2.1 shows one of the panels provided by the prototype system
for the purpose of retrieving candidate reuse components. The names shown in
this figure form part of the AIRS GRACE reuse library.

[Nl===——=—= Search for OPER1

Feature name Term name

COUNT NO-COUNT {3
DIRECTION LEFT

KEY NO-KEY

POSITION FIRST

TYPE ELEMENT ]
( Exact Match ) Closeness § |

(0) INSERT-ELEMENT-LEFT
(2) INSERT-ELEMENT

(5) INSERT-SET-LEFT

(6) REMOUE-ELEMENT-FIRST i
(8) SELECT-ELEMENT-FIRST
(12) INSERT-ELEMENT-DALUE
(13) INSERT-ELEMENT-RIGHT
(13} INSERT-LINK

(13) CREATE-ELEMENT

(17) REMOUE-ELEMENT-DUALUE

Figure 2.1: Search panel of the AIRS system
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2.3.3 Shortcomings

Although AIRS provides the basis for a useful software reuse library system, it
has significant limitations and, therefore, can only be regarded as a first step
towards a more complete system.

¢ Fixed Set of Features. One important restriction of AIRS is that all com-
ponents and packages in a library must be defined in terms of a fixed set of
features. What is more, an object in a particular class (i.e., components or
packages) must be described in terms of all the features of the class.

o Fixed Class Hierarchy. In addition to the limited number of classes imposed
by AIRS, objects of these classes can only be related in a fixed hierarchy. This
arrangement does not allow a library designer to incorporate additional levels
to the hierarchy—for example, to add a third level describing systems of related
packages.

¢ Fixed Comparators. Similarity among object descriptions is quantified using
either the closeness or the subsumption relation. The system does not provide
any facilities for incorporating new methods for computing similarity.

o No Verification of Consistency. The semantic interdependencies among
feature values defined by the underlying classification model must be main-
tained in order to have consistent object descriptions in the library. Yet, AIRS
considers all features to be independent of each other, and provides no mech-
anism to express and ensure relations among their values.

¢ Restricted Feature Types. AIRS characterizes objects in terms of features
and terms, in other words, the only type of features supported by AIRS are
enumerations. This restriction limits the kinds of objects that can be described.
For instance, basic properties such as “number of lines of code” and “source

code file name” of an operation are very difficult (if not impossible) to express
with AIRS.

2.4 Summary

The EDF system is essentially a combination between the faceted index and
semantic network approaches. On one hand, objects are described in terms of
a controlled vocabulary defined by the names of attributes and values. On the
other hand, objects can be arranged in semantic networks based on relations such
as “isa-a”, “component-of”, and “contains”.

One important aspect of EDF is the ability to reason heuristically about the
similarities between desired components and components residing in the existing
software library. EDF is similar to the case-based reasoning approach currently
being explored as a solution to many Al problems. In this approach, memory of
previous solutions is used as heuristic knowledge to guide the processing of a new
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problem. An important aspect of case-based reasoning is the ability to find the
information in memory most similar to the current situation. To retrieve relevant
memories, these systems typically use a “domain theory”—a knowledge-base of
information about the particular situations the system is expected to handle.
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Chapter 3

The EDF Classification System

The Extensible Description Formalism (EDF)! is a general system for creating,
using, and maintaining libraries of object descriptions with the purpose of im-
proving reusability in software and non-software organizations. EDF is based on
a generalization of the faceted index approach for creating Reuse Library Sys-
tems such as the Al-based Reuse System (AIRS) described in Section 2.3, and
Prieto-Diaz’s Faceted Library System (FLS) [78]. EDF overcomes the limita-
tions of these systems by extending their representation model and incorporating
a retrieval mechanism based on asymmetric similarity distances.

Reusable objects (e.g., software components) are described in terms of a set of
attributes and types which define a classification taxonomy. Unlike other Reuse
Library Systems on which objects must be defined in terms of all the attributes of
the taxonomy, EDF can have different classes of objects in a library, each defined
in terms of a particular set of attributes. One important feature of EDF is that
object descriptions can themselves be used as attribute values, therefore allowing
the definition of hierarchical classifications in which values are defined in more
primitive terms. This feature, plus the fact that attributes can be assigned sets
of values, can also be used to define semantic relations between different types of
objects (e.g., “package-of” or “components-of”).

In addition to the extensions to the faceted representation model, EDF in-
corporates a similarity-based retrieval mechanism that helps find suitable reuse
candidate components in a library. Similarity is quantified by a non-negative mag-
nitude called similarity distance, which is used as an estimator of the amount of
effort required to transform one object into another. Distances between objects
are computed using the values of the attributes of the their EDF descriptors.
The basic assumption is that transformation effort can be estimated based on
the EDF descriptions of the objects. One particular characteristic of this model
is that distances between two object descriptions, 4 and B, are not symmetric,
because the effort required to transform A into B is not necessarily the same as
the one required to transform B into A.

Most Reuse Library Systems do not define a formal language for representing

"The initial version of EDF was designed by Pablo A. Straub and the author [90]. Later,
the author extended and implemented EDF, and applied it to specific software domains.
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objects and specifying the criteria for similarity. In the case of EDF, all the
concepts that form its representation and similarity models can be expressed
using the EDF Specification Language, whose syntax and semantics have been
formally defined. In addition, a prototype application system which implements
this language has been constructed and used to build several reuse library systems
(see chapters 4 and 5). This prototype system is described in Appendix A.

The remaining of this chapter presents a detailed definition of the EDF system.
Section 3.1 introduces the concepts behind EDF’s representation and similarity
model by developing a sample software reuse library. These concepts are then
formalized in Section 3.2. Finally, Section 3.3 defines the syntax and semantics
of the EDF Specification Language.

3.1 Developing a Reuse Library

To create and organize an effective reuse library, an extensive domain analy-
sis must be performed beforehand. This analysis must produce a classification
scheme (including attributes and their types) as well as an approximate measure
of similarity between objects.

This section develops a small software library to classify operations to ma-
nipulate data structures consisting of repeated elements (e.g., stacks, trees, hash
tables). The purpose of this section is to introduce the concepts underlying EDF’s
representation and similarity models. For presentation purposes we start with a
trivial library and enhance it as more features of EDF are introduced.

3.1.1 Creating a Taxonomy

Booch [20] classifies operations over a data structure in the following three classes,
based on how the structure is accessed.

¢ Constructors: operations that alter the data structure.

e Selectors: operations that evaluate the data structure.

o Iterators: operations that visit all elements of the structure.

We can describe this simple classification scheme by defining an attribute called
functionality as follows:

attribute functionality : {construct,select,iteratel};

Another attribute for classification of operations is execution time as a function
of the size of the data structure.

attribute

timing : {constant,log,linear,loglinear,quadratic,slow};
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Attributes functionality and timing define a simple classification scheme that
can be used to describe four operations for stack manipulation. Each of these
descriptions is called an instance.

push = [functionality=construct & timing=cons£ant];
pop = [functionality=construct & timing=constant];
top = [functionality=select & timing=constant];
newstack = [functionality=construct & timing=constant];

This section has introduced two basic concepts of the EDF language: attributes
and instances. The type associated with both attributes, functionality and
timing, is an enumeration of terms. Each instance defines the attribute values
of a particular data structure operation.

3.1.2 Extending a Taxonomy

The characterization of the functionality of operations presented above is too
coarse. In fact, the descriptions of push, pop, and newstack are identical. This
section refines this characterization by extending the classification scheme. There
are at least three approaches to do this.

o Add or replace terms in the type of an attribute.
¢ Add more attributes.

o Describe attribute values in terms of more primitive attributes.

The first two approaches are common practice while designing a taxonomy and
are the only alternatives a library designer has with other classification systems
such as AIRS or Prieto-Diaz’s system. The third approach is unique to EDF, and

allows the construction of hierarchical classification systems. These approaches
are explained in turn.

Adding Values to a Type

In this approach, the classification scheme is refined by including additional values
to the type of an attribute. In particular, we add new terms to the functionality
attribute. In the context of data structures consisting of repeated elements, the
constructor term will be replaced by three new terms create, insert, and
remove. With this new definition we can now tell push from pop and tell those
from newstack. The updated definitions are as follows:

attribute

functionality : {create,insert,remove,select,iterate};
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attribute

timing : {constant,log,linear,loglinear,quadratic,slow};

push = [functionality=insert & timing=constant];
pop = [functionality=remove & timing=constant];
top = [functionality=select & timing=constant];
newstack = [functionality=create & timing=constant];

The drawback of this approach is that instance definitions had to be manually
modified (e.g., changing construct by the corresponding new term in each in-
stance). Moreover these extensions create flat taxonomies with few attributes
and many terms, instead of hierarchies.

Adding Attributes

In EDF it is possible to define a new attribute and then use it to refine the
classification of selected instances. Unlike other faceted classification systems,
this new attribute does not have to be used in all instances. Hence, the addition
of attributes requires modifying only those instances for which the new attribute
is meaningful and important.

For example, we extend the taxonomy by adding a new attribute called
exception. This attribute is used to describe those operations that can signal a
fatal exception such as a stack overflow or underflow. The following definitions
are added or modified in our library:

attribute exception : {underflow,overflow};

push = [functionality=insert & timing=constant &
exception=overflow] ;
pop = [functionality=remove & timing=constant &

exception=underflow];

Only those operations that can generate an exception (i.e., push and pop) have
been described using the attribute exception. The remaining instances in the
library (i.e., top and newstack) were not modified and, therefore, have no defined
value for the attribute exception.

It can be argued that the attribute exception could have been defined with
an additional term called noException to describe those operations that do not
generate exceptions. In this solution, all instances would have been defined using
the same set of attributes and therefore a system like AIRS could still be used
to model our taxonomy. Although this argument is valid in the current example,
the fact that EDF can handle descriptions with different sets of attributes is par-
ticularly important in the case of libraries containing objects of different classes
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such as “projects”, “systems”, “packages”, and “operations”. The attributes of
these sample classes are most probably disjunct, but they can all be classified in
a single EDF library.

Describing Values of an Attribute

EDF provides a new approach to extend a classification scheme: describe all
terms of an attribute using more primitive attributes. This process is illustrated
by refining again the functionality attribute.

Within the domain of data structures consisting of repeated elements, the
functionality is described in terms of three new attributes: access (whether the
data structure is written or only read), target (which elements are affected), and
newsize (how the number of elements varies).

attribute access : {write,read};
attribute target : {leftmost,rightmost,keyed,any,all,none};

attribute newsize : {increase,decrease,reset,same};

These new attributes are used to define each of the terms that belong to the
attribute functionality.

create = [in constructors & newsize=reset & target=none];
insert = [in constructors & newsize=increase];

remove = [in constructors & newsize=decrease];

select = [in selectors];

iterate = [in iterators];

Where constructors, selectors, and iterators each define a class of in-
stances. The class mechanism is used both as an abstraction mechanism and
also as an abbreviation for expressions. These classes are defined as follows:

constructors = class(access=write);

selectors class(access=read & newsize=same);

iterators class(target=all);

The definition of the attribute functionality can now be changed, because its
elements no longer belong to an enumeration type but to a class of instances,
namely the class of instances defined in terms of one or more of the attributes
access, target, and newsize.

attribute

functionality : class(has access | has target | has newsize);
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Since all former terms of the attribute functionality are defined, instances
described using these values (e.g., push) do not need to be redefined. That is,
this extension of the classification system does not affect the classification of
objects already in the library.

This extended classification scheme allows us to define new categories of func-
tionality. For example, we can define modify as a possible value of functionality,
and also describe more specific iterators.

modify = [in modifiers];
passive-iterate = [in iterators & in selectors];

active-iterate [in iterators & in comstructors];

modify-iterate [in iterators & in modifiers];

modifiers = class(access=write & newsize=same);

Where modifiers is the class of all operations that update elements in the data
structure.

In summary, the process required to extend a classification scheme by redefin-
ing the terms of an attribute is as follows:

1. Select an attribute a whose terms are to be refined. Let T be the type of a.
In the example, @ = functionality and T = {create, insert, remove,
select, iterate}.

2. Perform a domain analysis on the domain of the terms of a. From this
analysis, define a set A of new attributes that describe terms in T, and
determine the type for each attribute in A. In the example, A = {access,
target, newsize} with their corresponding term enumerations.

3. Redefine attribute a. Possible values for a are not terms as before (type T
is no longer part of the library), but instances that belong to a class defined
using the attributes in A.

4. Define each former term ¢ € T as an instance using the attributes in A,
following the same procedure used to describe data structure operations.

5. If needed, other values for a can be described. This values can be special-
izations of former terms (e.g., passive-iterate) or they can represent new
concepts (e.g., modify).

In principle, this process of refinement can be done indefinitely providing deep
hierarchical taxonomies, but there is a point in which using this formalism is no
longer useful (e.g., do not use EDF to describe detailed functionality, including
pre- and post-conditions).
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3.1.3 Creating Object Hierarchies

Reusable software usually consists of packages or modules, made from operations
and other packages. We want to represent this modular structure, but we do
not want to force any granularity of reuse. That is, we want to have a library
consisting of packages and operations, assuming that both complete packages and
isolated operations will be reused.

The following declarations define the kinds of reusable software components
for a library of data structure packages. Because a package can have several
subunits, the subunits attribute has a set type.

attribute subunits : set of components;
attribute parent : packages;

components = class(in packages | in operations);

packages class(has subunits);

operations = class(has functionality | has timing);

Two other attributes for packages are defined: maxsize (whether there are limits
in the number of elements of the structure) and control (whether concurrent
access is supported) [20].

attribute maxsize : {bounded,limited,unbounded};

attribute control : {sequential,concurrent};

With these declarations, a stack package comprising the operations already de-
scribed can be defined using one extra attribute (parent). The implementation
has no preset bound on size and does not provide support for concurrency.

stack = [subunits=set(parent=stack) & maxsize=unbounded &
control=sequentiall;

push = [parent=stack & functionality=insert &
timing=constant & exception=overflow];

pop = [parent=stack & functionality=remove &
timing=constant & exception=underflow];

top = [parent=stack & function=select & timing=constant];

newstack = [parent=stack & function=create & timing=constant];

Where the construct “set(parent=stack)” denotes the set of all instances de-
fined in the library for which the attribute parent is equal to stack, in other
words, the set {pop, push, top, newstack}.
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3.1.4 Dependencies among Attributes

All classification schemes assume that certain semantic relations between at-
tribute values are being maintained. For this purpose, EDF provides a mechanism
that uses assertions to define semantic constrains between attribute values.

For example, consider the case of attributes describing the functionality of an
operation. If the data structure is not written then there is no size change, and
if the structure is reset then there is no specific target. These two relations can
be expressed as follows:

assertion access=read => newsize=same;

assertion newsize=reset => target=none;

In addition, the attributes maxsize and control are only relevant for packages,
and all units that declare a package as their parent must indeed be subunits of
the package.

assertion has maxsize | has control => in packages;

assertion in packages => subunits=set(parent=self);

Where the keyword self denotes the instance being analyzed for compliance with
the assertion.

3.1.5 Defining Synonyms

One of the difficulties of describing operations given our current taxonomy is
remembering the precise terms used in the library. Besides, certain concepts can
be given or referenced by more than one name. The introduction of synonyms
for terms has been suggested as a partial solution to this problem [78].

One could declare that the distance between two terms is zero, making them
synonyms from the point of view of queries based on similarity. However, queries
based on exact matches will considered them different. In EDF is possible to
declare an identifier 4; to be a synonym of an identifier 7o by simply declaring
11 = 19. For example:

update = write;

preserve = read;

These definitions introduce the synonyms update and preserve for the terms
write and read of attribute access, respectively.
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3.1.6 Queries and Comparing Objects

In order to find reusable software components in the library of packages and
operations, it is necessary to define the distance values associated with the terms
of enumerations types. This allows EDF to compute distances not only between
these terms, but between instances defined using these terms.

Distances between terms are defined with a distance clause. For example,
attributes access and newsize and their distance clauses are given below. The
distances shown here are just sample values. Chapter 5 presents a detailed de-
scription of the process of assigning distances.

attribute access :
{write,read}
distance
{write -> read:4,

read =-> write:6};

attribute newsize
{increase,decrease,reset,same}
distance
{increase -> decrease:5,same:7,
decrease -> increase:b,reset:3,
reset -> same:10,
same -> reset:10};

By transitivity we can determine other distances not explicitly given. For exam-
ple, the distance from increase to reset is 5+ 3 = 8, and the distance from
decrease to same is 12. Note that a bigger value for this distance (13) can be ob-
tained going from decrease to reset to same, but EDF always uses the smallest
value.

Basically, the distance between two instances is computed by adding the dis-
tances of their corresponding attribute values. For example, the distance from
remove to select is 16, given by the distance from write to read (4) plus the
distance from decrease to same (12).

remove = [access=write & newsize=decrease]:
4 + 12 = 16
select = [access=read & newsize=same];

Distances between instances are used by EDF to select reuse candidates from a
library. This selection is performed using the query command. For example, the
following query finds components that are similar to an operation that retrieves
an arbitrary element from a data structure in at most logarithmic time.
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query functionality=[in selectors & target=any] & timing=log

Consider another example. Find a data structure with three operations: one to
initialize, one to insert an element, and one to traverse the structure without
modifying it; concurrent control is not needed, but the structure must be able to
handle an unbounded number of elements.

query maxsize=unbounded & control=sequential &
subunits={[functionality=create],
[functionality=insert],

[functionality=passive-iterate]}

In this query only the functionality of the operations have been specified. At-
tribute timing is not defined, meaning that any value for timing is equally ac-
ceptable in the retrieved operations.

3.2 Foundations of EDF

3.2.1 Representation Model

To understand the representation principles of EDF, it is useful to consider de-
scriptions of objects of a particular class as points in a multidimensional space,
were each dimension is represented by an attribute. Attributes have a name and
a list of possible values defined by their associated type (i.e., set of values). If
a is an attribute name, and v belongs to the a’s type, the assignment “a = v”
represents the set of all objects whose attribute a is v.

Assignments can be combined in expressions to define other sets of objects.
In particular, if A; and A, are two assignments, the expressions “A; & Ay”
represents the intersection of the sets A; and A,. Similarly, “A; | A,” represents
the union of these sets. In addition, the set of objects that have been defined in
terms of a particular attribute a, independently of the value associated with a, is
denoted by “has a”. The set of objects defined by the “has” operator is a short
form of the expression “a = v; |a=1v | --+ | @ = v,” where the values v; are
the elements of the type of a.

A set of objects 1s called a class in EDF. Classes can be given a name and they
are denoted as class(FE) where E is an expression; i.e., unions and intersections
of other sets of objects. If ¢ is a class name, the set of objects it represents
is denoted by “in ¢”, and can be combined with other sets of objects in an
expression.

An object description is called an instance in EDF. Instances can be given a
name and they are denoted as instance(FE) or [E] where F is an expression.
Semantically, an instance must have only one set of attributes, therefore we say
that instance(F) is well defined if and only if (1) E is not a contradiction (i.e.,
class(E)# (), and (2) E defines a mapping from attributes to values, that is,
E can be simplified into a consistent conjunct of assignments.
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Expressions can also be used to characterize particular sets of instances de-
fined in an EDF library. We denote by set (E) the set {i]i € D N class(F)},
where D is the set of instances in the library. In other words, the set operator
defines the set of instances in the library that belong to the class defined by F.

3.2.2 Similarity Model

The goal of any Reuse Library System is to facilitate the process of finding
suitable objects for reuse. EDF supports two criteria for selecting candidate
objects: by exact match and by similarity. For exact matches the construct
set (E) already described is used. Similarity-based queries are performed using
the construct “query E”, which denotes the list of instances in the library sorted
by decreasing similarity to the target object define by E. That is, the first element
of the list “query E” is the best reuse candidate for [E], the following element
the second best, and so on.

As mentioned earlier, similarity is quantified by a non-negative magnitude
called similarity distance, which is used as an estimator of the amount of effort
required to transform one object into another. Because of this, distances between
two object descriptions, A and B, are not symmetric, because the effort required
to transform A into B is not necessarily the same as the one required to transform
B into A. For this reason, whenever a distance is computed, it is important to
define which object is the source and which the target.

Let II be an object class defined by the set of attributes Il = {Ai,...,4,},
and S and T be two instances in this class. Also, let S C II be the actual set
of attributes used to define S, and similarly for T. The distance from S to T is
denoted by D(S,T) and is computed as follows:

D(S,T) = 3 kaTa(SAT.A)+ Y. kaRa(S.A)+ Z kaCa(T.A)

AeSNT AeS-T AeT-

where I.A denotes the value of an attribute A of an instance I. The set SNT
represents the attributes shared by S and T, while § — T is the set of attributes
found in S but not in 7', and similarly for T — S. These three sets are disjoint.
In addition, each constant k4 is called the relevance factor of attribute A. Their
values fall in the range 0 to 1, and must satisfy the relation 3°,.7k4a = 1.
Functions T4, R4, and C4 are called comparators, and are explained later in this
section.

The expression for distance D(S,T) is based on the assumption that the over-
all transformation effort from S to T can be computed using a linear combination
of the differences between their respective attributes. In other words, attributes
are considered independent of each other when computing similarity. This is a
strong assumption that limits the types of domains that can be handled by EDF'’s
similarity model.
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Comparators

As explained earlier, each attribute has three associated functions T4, R4, and Cy4
called comparators. T4 is the transformation comparator and is used to quantify
the amount of effort required to transform one value of the attribute into an-
other. R, is the removal comparator and is used to estimate the amount of effort
required to eliminate a source attribute value not required in the target speci-
fication. Finally, C4 is the construction comparator and estimates the amount
of effort required to supply a target attribute value not specified in the source
specification.

The set of all attribute comparators plus their associated relevance factors
define a specific similarity model for a reuse library. These functions and val-
ues must be specified using a process called domain analysis [76] which, among
other things, defines the criteria for similarity for objects in a particular domain.
Nonetheless, EDF provides default comparators for each type of attribute. These
default comparators can be used as a starting point from which to refine the simi-
larity model of a library. This refinement is normally done by assigning attributes
non-default comparators using “foreign” functions specified in some conventional
programming language such as ANSI C. Appendix A explains “foreign” compara-
tors in detail.

Numbers and Strings. Numbers and strings are the simplest type of value
an attribute can have. In the case of numbers, the transformation distance from
a source value Ng to a target value Nr is given by |Ng — Np|, that is, by the
absolute magnitude of their difference. The construction distance for a value
N is N itself, while the removal distance is 0. The rational is that numeric
values are normally used to measure things like “the number of lines of code of a
component” which normally increase in value as the amount of work involved in
the component increases. In the case of strings, the transformation comparator is
defined as zero (0) if the text of the strings are identical, and infinity otherwise.
Construction and removal comparators are both defined as infinity.

Enumerations. Distances between terms of an enumeration are defined by
a weighted directed graph, where each node represents a term. The weight w
associated to an arc connecting a node t; to a node ¢, is a non-negative magnitude
that represents their associated transformation distance. The graph also includes
an additional node called the null term and is denoted by ©. The weight of an
arc from O to a term ¢ represents t’s construction distance, while that of an arc
from a term ¢ to © represents t’s removal distance.

Some pairs of nodes in the graph may not be connected by an arc, meaning
there is no known method to directly obtain one from the other. Yet, to compare
instances we need to estimate distances between all possible pairs of terms. We
define the distance from term f; to term ¢, as the weight of the shortest path

from t; to o in the graph. If no such path exists, the distance is set to be infinity.
If t; and t, are the same, the distance is zero.
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Consider the enumeration {assembler,pascal,common_lisp} and its asso-
ciated graph shown in Figure 3.1. According to the graph? the distance from
assembler to pascal is 10, and the distance from pascal to common_lisp is
5, corresponding to the intuition that transforming an assembler source file to
pascal is more difficult than recoding pascal to common.lisp. The creation dis-
tance for assembler is 30, given by the arc connecting © to assembler. The
creation distance for pascal and common_lisp is 40 and 45 respectively, given by
the weight of the shortest path from ©. Similarly, the distance from pascal to
assembler is 30, since the path pascal — © — assembler yields the smallest
distance from pascal to assembler.

pascal 10 —] assembler

\‘?ﬁ J

common_lisp

Figure 3.1: Distance graph for an enumeration type

For example, the definition of an attribute called language based on this enu-

meration and graph could be defined using the EDF specification language as
follows:

attribute language :
{assembler,pascal,common_lisp}

distance
{
->assembler:30,assembler->:0,assembler->pascal: 10,
pascal->:0,pascal->common_lisp:5, common_lisp->:0

};

Sets of values. The default transformation distance from a source set S to
a target set St is computed by selecting for each value v, in St the value v, in
Ss that is most similar to v; (i.e., with the smallest distance to v). The overall
transformation distance from the source set to the target set is then computed
by adding the distances associated with each of these pairs of values.

2 Arc weights were selected from a subjective scale in the range 0 (trivial transformation) to
30 (hard transformation)
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More precisely, let A and B be two attributes such that the values of A are
defined as sets of the values of B. If the type of Sg and Sr is that of attribute
A, then the transformation comparator of A is defined as follows:

TA(SS,ST) = Z min TB(v,,vt)

€5 v,E€Ss

where Ty is the transformation comparator of attribute B. In addition, the
construction and removal comparators of attribute A are defined as follows:

Ca(S) = > Cp(v)

veS

R4(S) = 3 Rp(v)

veS

where Rp and Cp are the removal and construction comparators of attribute
B, respectively. That is, the amount of effort required to construct a a set S
is the sum of the construction efforts required to construct each of its elements.
Similarly for the removal effort.

3.3 [EDF Specification Language

3.3.1 Syntax of the language

This section presents a formal definition of the syntax of the EDF language.
Syntax is presented in a variation of BNF using the following conventions: key-
words and symbols occurring literally are written in typewriter typeface; non-
terminals are written in italics; type-name, attribute-name, instance-name, term,
and class-name all denote identifiers; symbol, ... means one or more occurrences
of symbol, separated by commas; and keyword,,, means that the keyword may
or may not occur, without affecting the semantics.

Declarations

An EDF library consists of a sequence of declarations. Each declaration either
defines a name (of a type, an attribute, an instance, or a class) or describes an
assertion that must be true of all instances in the library.
library ::=

declaration
declaration ::=

type-declaration

attribute-declaration

|
| instance-declaration
| class-declaration

|

assertion
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Attributes and Types

Software components and other objects are described in terms of their attributes.
We can think of attributes as fields of a record describing the object. The dec-
laration of an attribute specifies the type of the values for the attribute. EDF
supports the following types: number, string, term enumerations, object classes,
and homogeneous sets of the above.

attribute-declaration ::=
attribute attribute-name : type ;

type-declaration ::=
type type-name = type ;
type 1=
simple-type distance-clause
| set distance-clause of type
simple-type ::=
number

where classes are defined on page 44 and the distance clauses are described below.
distance-clause ::=

distancegp

no distance

l

| distance { triplet ,... }

| distance x { triplet ,... }
|

distance { ctriplet ,... }
triplet 1=
termepe —> termep : number-literal
ctriplet ;=
SIrc-namegp; —> dst-namegy, @ { C-code }
The keyword distance by itself is optional and assigns default distance func-

tions. The case “no distance” indicates that the distance between values of the
associated type is always zero.

In the third and fourth forms of the distance clause, the triplet t; -> ¢ : n
means that the distance from term ¢; to term ¢, is n. If ¢; is omitted the unspec-
ified value is assumed (i.e., n is creation distance of t5). If both ¢; and the arrow
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are omitted, the previous ¢, is assumed. If the keyword distance is followed by
the character “x”, then the distances between terms not mentioned in a triplet
will be set to infinity. If “¥” is not specified, distances between all terms will be
adjusted by computing the shortest path between them.

The last form of the distance clause is a hook to distance functions pro-
grammed in a conventional programming language such a ANSI C. If both “src-
name” and “dst-name” are specified, the triplet defines a transformation com-
parator. If “src-name” is omitted, the triplet defines a construction comparator.
If “dst-name” is omitted, the triplet defines a removal comparator. These func-
tions have read access to the library. This clause can be used with any type. For
further details, refer to Appendix A.

Expressions

Expressions are formed from attribute assignments, the unary operators has and
in, and the binary operators & (intersection) and | (union).

expression ::=
attribute-name = value
has attribute-name
in class-name

|
|
| expression & expression
| expression | expression
|

( expression )

The expression “attribute-name = value” means that the value of attribute-name
for the instance being defined is value. The expression “in class” means that
the instance defined belongs to class; it is similar to a macro-expansion of the
expression that defines the class. The expression “has attribute-name” denotes
the condition that the instance being defined has some value for attribute-name.

Values

Values are used in assignment expressions. Values are either simple values or
set values. A simple value is either a literal (number or string), a term, an
instance, or the value of an attribute of an instance. Set values must denote
homogeneous sets; they are described either by extension or by intention, using
the set construct. Only sets of instances can be described by intention.

value ::=
simple-value
| { simple-value ,... }
| set ( expression )

| set ( instance-name | expression )
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simple-value ::=
number-literal
string-literal
term
instance

self

|
|
|
| instance . attribute-name
|
| self . attribute-name

The construct set (E') represents the set of all instances in the library that satisfy
the expression (i.e., that belong to class(E)). If the optional instance-name is
used, then the name is bound within E to each instance in the library.

The dot notation “instance . attribute-name” is used to refer to the value of
the attribute attribute-name of an instance. This notation is similar to that used
in other languages to access record fields.

The keyword self is a reference to the instance defined by the expression
in which the value is used. Within an instance construct, self is bound to
the instance defined. Within an assertion, self is bound to every instance in
the library in turn. Within nested instance constructs self is bound to the
innermost instance.

Classes

A class is defined by giving the corresponding expression; the class denotes the set
of all objects for which the expression holds. Classes are used to abstract prop-
erties of instances and also as abbreviations for the corresponding expressions.
Classes are also used as types of attributes whose values are instances.

class-declaration ::=
class-name = class ;
class ::=
class ( expression )

| class-name

Instances

Instances are defined in terms of an expression. As explained in Section 3.2.1, an

instance defined by an expression E is a representative of the class of instances
defined by “class(E)”.

instance-declaration ::=

instance-name = instance ;
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instance ::=
instance ( expression )
| [ expression ]

An instance may not exist either because the class is empty (i.e., the expression
is a contradiction) or because the class is not specific enough (i.e., it defines
more than one valid set of attributes). A sketch of a possible simplification and
verification algorithm is as follows.

1. Expand all “in” propositions with the expressions of the corresponding
classes.

2. Transform the expression into disjunctive normal form, as follows:

(a) Restructure the expression using associativity laws so that no disjunc-
tion occurs within a conjunction.

(b) Represent each conjunct as a set of assignments and has propositions.

(c) Represent the expression as a set of these conjuncts.
3. For each conjunction do the following:

(a) Delete redundant assignments.

(b) If there are still two assignments to the same attribute, or if there are
unsatisfied has propositions, delete the conjunction.

(c) Else, delete has propositions (not needed anymore).

4. Delete conjunctions that imply another conjunction.
5. If there are no conjunctions left, fail (£ is a contradiction).

6. If there are more than one conjunction left, fail (£ is not specific enough).

Assertions

An assertion specifies a semantic constraint that must be true of all instances in
the library. Expressions are used to represent dependencies between attributes,
to constrain data types and classes, and to enforce correct typing.

assertion ::=

assertion expression => expression ;
The meaning of “assertion Ej => E)” is similar to set(E;) C set(E,). This

definition does not capture subtleties with respect to the binding of self; a
precise definition is given on page 49. EDF signals false assertions.
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Queries and distance computations

Queries are used to examine an EDF library; they are not part of the library
itself. A query command computes a list of instances in the library sorted by
~ decreasing similarity (increasing distance) to the implicit target instance define
by an expression. The syntax of queries is:

query u=
query expression
| query expression : identifier

If specified, identifier must be the name of an attribute or a type, and distances
are computed using the distance functions associated with the type or the at-
tribute. If identifier is not specified, distances are computed using the default
distance functions provided by EDF.

The distance command is used to compute similarity distances between a
pair of values. This command is useful for verifying the definition of distance
functions and the results they produce.

distance ::=
distance source-valuegp ~> target-valuegp
| distance source-value,y; —> target-valuegy: : identifier

The source-value and target-value must be values of the same type (e.g., instance
names). In case of terms, they must belong to the same enumeration. If both
names are specified, the command computes their transformation distance. If
only the source value is given, its destruction distance is computed. Finally, if
only the target is specified, its construction distance is computed. The identifier
has the same use as in the case of the query command.

3.3.2 Semantics of the language

We define the denotational semantics of EDF using Schmidt’s notation [84]. We
make minor extensions to the cases construct: patterns can include nested con-
structors, more than one pattern can match the tested value (the first one is
chosen), and there is an optional otherwise pattern. In addition to A-calculus
we use standard mathematical notation (e.g., summations, set notation, predicate
calculus). ‘

To avoid considering many possible syntactical variations, the semantics is
given for a subset of EDF in which all optional keywords are present and all
types, classes and instances used are explicitly defined. We assume a preprocessor
makes the transformation3. For instance, the library at the left column below is
transformed into the equivalent library at the right column.

3In the implementation, the parser makes these transformations when it creates the abstract
syntax tree.
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attribute a : set of {i,o}; attribute a : a_type;
type a_type = set of a_base_type;
type a_base_type = {i,o0};

attribute b : class(has a); attribute b : b_type;
b_type = class(has a);

1

x = [b=[a={i}]]; [b=x_b];

x_b = [a={i}];

The following subsections introduce and defined the semantic domains as well
as the various valuation functions used in the semantic definition of the EDF
language.

Domains

The meaning of an EDF library is given by an environment with the combined
meaning of all declarations. We represent this meaning as a mapping from names
to their denotations. The following naming convention is used: A,C,I,T, Z de-
note the set of names of attributes, classes, instances, terms and types, respec-
tively and a, ¢, 7,t, 2 denote names in their respective sets. Because EDF has only
one name space, all these sets of names are pairwise disjoint.

Enviroment = Name — Denotation

Name=AUCUIUTUZ

Denotation = Attribute + Class + Instance + Term + Type

The meaning of an attribute or term is simply the name of its type.

Attribute = Z

Term=2

The meaning of an instance is a partial mapping from attributes to values, so no
two assignments are allowed for the same attribute.

Instance = A — Value
Value = I + IR + String + T + Setvalue
String = set of all finite strings

Setvalue = IP(I) + IP(R) + IP(String) + IP(T)
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The meaning of a class is an abstract syntax tree representation of the logical
expression that defines the class.

Class = Self — Ezpression

Self = Instance |

Ezxpression = And + Or + Has + Assign

And = Ezxpression X Expression

Or = Ezxpression X Expression

Has=A

Assign = A X Value

The meaning of a type is a tuple (v,t,c,r), where v represents the set of values
of the type, t is a function to compute the distance between two values of the
type, c is a function to compute the construction distance of a value, and r is is
a function to compute the removal distance of a value.

Type = Values x TransformFunc X ConstructFlunc X RemoveFunc

Values = C + Reals + Strings + Terms + Set

Reals = Unait

Strings = Unat

Terms = IP(T)

Set=2

where the meaning of the distance comparators is as follows.

TransformFunc = Value x Value — R
ConstructFunc = Value — IR

RemoveFunc = Value — IR

Declarations

The meaning of a declaration d is a function D[d] that takes an environment and
returns another environment with the updated declaration. The meaning of an
EDF library is the least fixpoint of the D function applied to the library, that is
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M : [Library] — Environment
Mllibrary] = fix(Dlibrary])

The valuation function for declarations is

D : [Declaration] — Environment — Environment
Dfattribute a :z] = de.[a — inAttribute(z)]e

Dlc = class(E)] = Ae.[c — inClass(E[E]e)]e

D[

instance(E)] = Ae.[i — instantiate(E[E]e i)]e

Dltype z = type] =
Aelet (v,t,c,r) = T[typele, €' = [z — inType(v,t,c,r)]e in
cases v
isTerms(terms) — Aid.(id € terms — z O €'(id))

otherwise — ¢

Dlassertion E; => E,] =
Aedif Vi € dom(e) N1 : satisfies(e(i),E[E1]e i)
= satis fies(e(i), E[E2]e 1)
then e else L

D[[dl d2] = Dﬂdl]] [¢] Dﬂdg:ﬂ

where £ is the valuation function for expressions; instantiate creates an instance
from a class; and 7 is the valuation function for types.

Expressions and Values

We want the meaning of an expression to be a syntax tree of the expression. To
give adequate meaning to the syntax tree, it has to be evaluated in the context
of an environment. Furthermore, because of the existence of the self value, the
tree is evaluated in the context of a particular instance s. Hence, the valuation
function for expressions £ expects an expression and an environment and returns
a class, that is, a function from an instance (self) to an expression. The valuation
function for expressions is

& : [Ezpression] — Environment — Self — Ezpression

Ela = value] = Ae.Xs.inAssign(a, V]value]e s)
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E[has a] = Ae.As.inHas(a)

E[in ] = Ae.outClass(e(c))

E[E: | Ep] = Ae.Xs.inOr(E[E]e s,E[Eo]e s)
E[E: & Ej] = de.ds.inAnd(E[E}e s,E[Es)e s)

Values are also represented as syntax trees, and again these trees are interpreted
in the context of an environment and an instance. The valuation function for
values is
V : [Value] — Environment — Self — Value
V[number] = Xe.As.inIR(number)
Vstring] = Ae.As.inString(string)
V[i] = AeAs.inI(7)
V[self] = Ae.As.s
VI {"w™,” .7, "0 Y] = Ae.ds.anSetvalue({Vv;]e s|1 < 7 < k})
V[set(E)] =
Ae.ds.inSetvalue({z € dom(e) N I|satisfies(e(x), E[E]e s)})
V[setGIE)] =
Ae.As.inSetvalue({z € dom(e) N I|satisfies(e(z), E[E)([i = e(z)]e) s)})

where the predicate satis fies is true if the instance satisfies the expression (see
details on page 53).

Types and Distances

The meaning of a type is a tuple (v,t,c,r), where v represents a set of values,
t is a transformation function, ¢ is a construction function, and r is a removal
function. As with expressions, this meaning is interpreted in the context of an
environment. Hence, the signature of the valuation function for types is

T : [Type] — Environment — Type
The valuation function for types is defined by cases. If the type includes the
“no distance” clause, the transformation, construction, and removal functions

are constant at zero. Here are all these cases
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T[cno distance] = Ae.{ inC(c), Mz,y).0, Ay.0, y.0 )
T [number no distance] = Ae.( inReals, A(z,y).0, A\y.0, 2y.0 )
T[string no distance] = Ae.( inStrings, A(z,y).0, Ay.0,\y.0 )

T[” {”t]” , » . ” , ”tn” }” no dista.nce] —
Xe.( inTerms({t,...,t}), Mz,v).0,Ay.0,Ay.0 )
For real numbers, the default distance from z to y is y — z or zero if negative;
the distance from an undefined value to a number is the number. The distance
between two strings (or terms) is zero if the strings are equal and is unbounded
otherwise; strings cannot be constructed and removal is zero. Terms cannot be
constructed or removed.

T [number distance] =
Ae.(inReals, \(isR(z), isR(y)). max(y — z,0), AisR(z).z, Ay.0 )

T[string distance] =
Ae.(inStrings, Az, y).(z = y = 00 00), Ay.00, Ay.0 )

Tl[n {”tl” , ” . ”» , ”tn” }77 dista.nceﬂ =
Ae.(inTerms({ty,...,t}), Mz,9).(z = y = 0 0 00), Ay.00, Ay.c0 )

For attributes with enumerated types, a weighted directed graph is constructed
from the distance clause of the attribute declaration. The distance between terms
is the weight of the shortest path from the candidate to the target in the distance
graph of the attribute.

Tt ..., distance{triples}] =
Ae.{ inTerms({t;,...,tn}),
MisT(z),isT(y)). WSP(z,y),
AisT(y).WSP(Unspecified,y),
AisT(y). W SP(y,Unspecified) )

where function W.SP computes the weight of a shortest path in the corresponding
distance graph. The graph is a weighted digraph G = (V,E,W), such that
V= {t1,....ta} U{Unspecified}. The edges and weight function are given by
the triples (i.e., triple z->y:n means (z,y) € E and W(z,y) = n), augmented
with (¢, Unspecified) € E and W(t,Unspecified) = 0 for all t € {t,...,t,} .

The distance from a candidate instance to a target instance is computed by
adding the distances of their corresponding attribute values. Extra attributes in
the candidate are ignored; missing attributes in the candidate must be created;
and missing attributes in the target must be removed.
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T[c distance] = Ae( inC(c),tranFunct, consFunct,remFunct )

where tranFunct, consFunct, and remFunct are

tranFunct = >‘<ZSI($)5 ZSI(@/)) Zae(dom(z)udom(:c)) D(CL, z, y)

D(a,z,y) = let (v,t,¢ r) = e(e(a)) in
cases
o € (dom(z) N dom(y)) — 1(z(a),¥(a))
o € (dom(y) — dom(x)) = (y(@))
a € (dom(z) — dom(y)) — r(z(a))

otherwise — o0
consFunct = MisI(y). Taedom(y) 1€t (v,t,c,m) = e(e(a)) in c(y(a))

remFunct = MsI(y)- Taedom(y) 1% (v,t,c,7) = e(e(a)) in r(y(a))

These functions, as stated, may not converge if there are circular dependencies
between instances (e.g., stack depends on push and push depends on stack)
and a query explicitly mentions these dependencies.

If the type includes an foreign distance clause, distance functions are external
to EDF (user—supplied). These functions receive the environment, in addition to
the corresponding values.

7 [number distance{T,C,R}] = e inReals, T(e),C(e), R(e) )
T[string distance{T, C,R}] = Xe( inStrings,T(e),C(e), R(e) )
T[c distance{T,C, R}] = Ael inC(c), T(e),C(e), R(e) )

", - "¢, ) distance{T,C, R}] =
Xe.( inTerms({t1,... i 1), T(e), C(e),R(e) )

For set types, the transformation, construction, and removal function is computed
from the functions of the corresponding base type. For every element in the
target, the distance from every element in the candidate is computed, and the
minimum is chosen; these distances are added.

T[set of z] =
Xe. let (v,t,c,m) = e(z) in
{ inSet(z),
MisSetvalue(X), isSetvalue(Y)). Tyey Millzex t(z,y),
AisSetvalue(y). Tyey V),
\sSetvalue(y). Lyey T(Y) )
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Instances

An instance defines a mapping from attributes to values. This mapping is defined
by an expression which is first converted into disjunctive normal form and then
simplified. Type DN F represents an expression in disjunctive normal form as a
set of conjuncts, where each conjunct is a set of assignments and has propositions.

DNF =P(Conjunct)

Conjunct = IP(Assign + Has)

As explained in Section 3.2.1, an expression E defines a set of points. Function
instantiate computes the set of points, where each point is represented as a
mapping from attributes to values. If there is a mapping that is less defined?
than all other mappings, that mapping is the instance; otherwise, there is no
instance (‘ming’ evaluates to L).

instantiate : Expression — Instance

instantiate = \E.ming (exprTolnstances(E))

Function exprTolnstances creates the set of instances described in the expres-
sion (usually the expression will have no disjunctions ‘|’, so this set will contain
exactly one instance). To create the instances, the expression is transformed into
disjunctive normal form, and each conjunct that is not a contradiction is used to
create an instance.

exprTolnstances : Expression — IP(Instance)

exprTolnstances = XE.{coanoInst(x)lx € normalize(E) A consistent(z)}

Function conjTolnst creates an instance (mapping) from a set of ordered pairs,
by choosing for each attribute @ in the corresponding domain the value that is
most defined (usually the expression will have one value for each attribute).

conjTolnst : Conjunct — Instance

conjTolnst = Az.Aa. maxc{v|(a,v') € z}

A conjunct is consistent if all attributes for which there is a has proposition
have some value, and if whenever there are more than one value for the same
attributes, there exists a maximal value.

4 A partial function f is less defined than a partial function g, denoted f C g if Vz € dom(f) :
f(z) = g(z) [84, chapter 6].
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consistent : Conjunct — Boolean

consistent = Az. (Va € A :inHas(a) € z = v : inAssign(a,v) € T)A
(V(a,v),(a,v') €z : v EvVv )

Function normalize transform an expression in syntax-tree from into disjunc-
tive normal form (a set of conjuncts). The definition given below is deceivingly
compact.

normalize : Expression - DNF

normalize =
AE. cases E
is0r(a,b) — normalize(a) U normalize(b)
isAnd(a,b) — {r Uy|z € normalize(a) A y € normalize(b)}
otherwise — {{E}}

Functions minc and maxg are defined below.

ming : IP(Instance) — Instance
ming = ASts€S:Vs'eS:sC¢
maxg : IP(Value) — Value

maxz = ASus€S:Vs'eS:s'Cs

These functions depend on the definition of C for instances. In addition, maxg
requires [ to be defined for values that are not instances. For set values, A C B
if Vz € A:3y € B:z C y. For other values C is equality.

Queries

We represent the meaning of a query command as a set of ordered pairs (i,n)
where ¢ is an instance name in the library and n the distance from 7 to the implicit
instance defined by E.

Q : [Ezpression] — Environment — P(I x R)

Ofquery £] =
Xe{ (z,n)|z € dom(e)NIA
n = tranFunct(e(z), instantiate(E[Ele z)) }

where tranFunct is defined on page 52 and instantiate is defined on page 53.
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3.4 Summary

This chapter has introduced and formally defined the main aspects of EDF, a
language-based classification system whose purpose is to facilitate the reuse of
software knowledge in an organization. EDF is best described as a software li-
brarian system, in which existing software components are cataloged and stored
in libraries for future reference. Whenever a new component needs to be con-
structed, EDF’s similarity-based retrieval mechanism helps retrieve from these
libraries the set of reuse candidates that best match the specifications of the
required new component. ‘

The basic principles that support this methodology have all been explained
in this chapter. In particular, we have learned about EDF’s representation and
similarity models, how these models are implemented by the EDF specification
language, and the syntax and semantics of this language. This language forms
the core of the EDF system for several reasons. First, it provides the facilities
for designing taxonomies and creating libraries of object descriptions. Second, it
allows to define similarity metrics which are used to query a library for candidate
components. Third, it provides a mechanism to define semantic relations among
the attributes of a class of objects.

The remainder of this dissertation emphasizes the uses of EDF. Chapter 4
shows the applicability of EDF to a wide range of domains by presenting tax-
onomies for “software defects”, “software processes”, and other domains. Chap-
ter 5 describes the construction of an EDF reuse library based on information
contained in the NASA SEL database. The main emphasis of this chapter is on
the design and implementation of distance comparators. Appendix A describes
the details of a prototype application that implements EDF.
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Chapter 4

Sample EDF Taxonomies

EDF was initially designed as a tool to help increase reusability of software com-
ponents at the code level (e.g., functions or subroutines). The goal of this chapter
is to show that EDF can also be used effectively to represent and reuse other types
of software knowledge. The emphasis here is on those properties of EDF that
facilitate the representation of these objects, and not on how to define similar-
ity distances for these objects. The problem of designing and using similarity
distance comparators is addressed in Chapter 5.

This chapter is divided into three sections. Section 4.1 describes the represen-
tation of two software component libraries: the GRACE library of data structure
operations, and the CCIS library which contains functions used to implement
Command, Control, and Information Systems. Section 4.2 presents a taxonomy
for software defects, and explains how this taxonomy can be used by system
testers to predict the types of defects associated with software components. Fi-
nally, Section 4.3 describes how EDF can be used to characterize elements of Rom-
bach’s MVP-L language [81], as well as Basili’s Goal/Question/Metric (GQM)
paradigm for selecting software measurements [8, 9].

4.1 Software Components

This section deals with the representation of non-trivial software components such
as data structure operations and functions for implementing Command, Control,
and Information Systems. Both of the taxonomies presented here were initially
design for the AIRS system (see Section 2.3) based on the documentation of
actual code libraries developed by independent software organizations.

4.1.1 Data Structure Packages in Ada

The EVB GRACE library (part I) developed by the EVB corporation contains
a collection of Ada packages that implement data structures such as stacks and
undirected graphs. In this section we develop a taxonomy for classifying the
components of the EVB GRACE library and creating an EDF reuse library with
the purpose of facilitating their reuse. :
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The purpose of the EDF GRACE library is to allow a software developer to
retrieve data structure packages and/or operations that best fit a set of design
specifications. Given the specifications for a set of operations, EDF can propose
a list of candidate components in the library for each of the members of this
set. Once the candidate operations have been selected, EDF can be used to find
a package whose operations best approximated the selected candidates. This
was particularly important in the case where the selected candidates belong to
different data structure packages.

Objects in the EDF GRACE library are classified in two different classes:
packages and components, where each of these classes has a unique set of at-
tributes. Packages are classified using a subset of the features of Booch’s taxon-
omy [20], namely controlled, managed, allocation and iterator. These attributes
capture the general functional behavior and the {ime and space characteristics
of a data structure. The class of all packages is defined in EDF as follows:

Package = class(has pkName & has pkControlled &
has pkAllocation & has pkManaged &
has pkIterator & has pkOpers);

That is, the set of all data structure packages in the library is defined in terms of
the attributes: pkName, pkControlled, pkAllocation, pkManaged, pkIterator,
and pkOpers. These attributes are defined in EDF as follows:

attribute pkName : string;

attribute pkControlled : {Controlled,unControlled};
attribute pkIterator : {Iterator,nonlterator};
attribute pkAllocation : {Bounded,unBounded,Limited};
attribute pkManaged : {Managed,unMénaged};
attribute pkOpers : set of Operation;

The attribute pkName is bound to a descriptive text of the package. The attribute
pkControlled indicates whether the data structure can be accessed concurrently
by more than one process, and the attribute pkIterator indicates whether the
package provides functionality to traverse all the elements of the data structure.

The attribute pkAllocation describes the memory allocation scheme used to
implement the package. In particular, if the package size is “unbounded”, the
attribute pkManaged indicates whether memory allocation is performed by the
system (unManaged) or by a user-provided set of memory allocation functions
(Managed). This semantic relation between the attributes pkControlled and
pkManaged is expressed with the following EDF assertion:

assertion pkManaged=Managed => pkAllocation=unBounded;
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That is, only “unbounded” packages can have their memory “managed” by user-
provided memory allocation functions.

The attribute pkOpers is bound to the list of all operations of the package.
Its associated type indicates that the elements of this list must all be members
of the class of objects called “Operation” (described below).

The other class of objects in the EDF GRACE library are data structure
operations. All operations in the library belong to the class called “Operation”
defined as follows:

Operation = class(has opType & has opKey & has opCount &
has opTarget & has opRange &
has opDirection & has opPackage);

The attribute opType defines the functionality of the operation by describing
how it interacts with the elements (nodes) that compose the data structure. The
operation may “create” a data structure; “select”, “insert” or “remove” a set of
nodes and or links; “traverse” the structure; or “query” properties of the structure
such as its size or length.

attribute opType : {Create,Select,Insert,Remove,Traverse,Query};

The attribute opTarget indicates the type of data structure elements affected or
selected by the operation. This may be either a set of nodes, one node, or a link
between nodes. The number of elements affected or selected is defined by the
attribute opCount, and the attribute opKey indicates the type of key value used
to select elements in the structure.

attribute opTarget : {NodeSet,Element,Link};
attribute opCount : {All,One,Zero};
attribute opKey : {Index,Pointer,Value,Size};

The attributes opRange and opDirection are used to define the relative location
of the elements affected or selected by the operation. The former indicates a
range of elements within the structure. The latter, defines a direction, relative
to the value of opRange, on which the component will operate.

attribute opRange : {FirstLast,FirstTo,FromlLast,FromTo,
Rest,Floating,First,Second,Last};

attribute opDirection : {Left,Right,ToRight,ToLeft,
Breadth,Depth};

Finally, the attribute opPackage defines the package to which the operation be-
longs. It is defined as follows:
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attribute opPackage : Package;

Having defined the classes for packages and operations, we can now present some
samples of actual object definitions of the EDF GRACE library'. The following
is the description of a data structure package that implements a circular doubly
linked list. This data structure package can work in a concurrent environment and
its maximum size is unbounded. It also provides functionality for traversing the
structure, and it uses user-provided memory allocation functions for managing
its memory structure.

CDLL_cmui =

C

in Package & pkName = ‘Circular Doubly Linked List’ &
pkControlled = Controlled & pkAllocation = unBounded &
pklterator = Iterator & pkManaged = Managed &

pkOpers = set(in Operation & opPackage=self)

1;

The list of operations of the package are not given explicitly, but are computed
automatically by EDF using the built-in “set” function. In this case, the set in-
cludes all those objects in the class “Operation” whose opPackage attribute value
is equal to self, that is, to the name of the package being defined (CDLL_cmui).
The definitions given below show two such operations: cll_InsertFirst and
cll CreateCopy. The operation cll_InsertFirst inserts one element in the
head of the circular linked list given a pointer to this head. The operation
cll_CreateCopy, on the other hand, creates a copy of the entire structure.

cll_InsertFirst = cll_CreateCopy =
[ L
in Operation & in Operation &
opType = Insert & opType = Create &
opCount = One & opCount = All &
opTarget = Element & opTarget = NodeSet &
opRange = First & opRange = Firstlast &
opDirection = Left & opDirection = ToRight &
opKey = Pointer & opKey = Pointer &
opPackage = CDLL_cmui opPackage = CDLL_cmui
1; 1;

!The complete list of package and operation definitions of the EDF GRACE library is too
long to include here.
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4.1.2 Command, Control, and Information System

In this section we describe a taxonomy for classifying the different the modules
and functions that compose the CTC CCIS library and creating an EDF reuse
library with the purpose of facilitating their reuse. The CCIS library developed
at Contel Technology Center (CTC) is composed of several modules implemented
in C (see below). These modules are used to implement the basic functionalities
of Command, Control, and Information Systems.

¢ General (GEN): general purpose functions that do not belong to any specific
module. These functions are typically extensions to the ones contained in the
standard C library.

¢ Memory File (MF): implements sequential files allocated in main memory
(RAM). These files are created and exist only during the execution of a pro-
gram.

¢ Set Structure (SET): implements unbounded sets of elements. The elements
of a particular set must be of the same type.

o Database Interface (IDB): provides a simplified interface to the most com-
monly used operations of a relational database system.

¢ Database File (DBF): implements a specialized form of database files. These
files are flat structures stored in a relational database processor.

e Mail Service (MS): implements the basic functionalities of an electronic mail
system.

¢ Man-Machine Interface (MMI): implements a graphic user interface based
on windows, predefined keys, and menus.

o Free Text File (FTF): implements a specialized form of text files which are
stored in and retrieved from on a relational database.

¢ Parametric Database Display (PPD): collection of parametric functions
used to retrieve and display information contained in a relational database.

As with the EDF GRACE library, the EDF CCIS library included two types of
objects: modules and functions. The former represent the different C modules
of the CTC CCIS library, and the latter represent their associated C functions.
Modules are described using four attributes according to the following class def-
inition:

Module = class(has mdAllocation & has mdIterator &

has mdService & has mdOpers);
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The attributes mdAllocation, mdIterator, and mdOpers have definitions similar
to the ones given for the corresponding attributes in Section 4.1.1. The attribute
mdService describes the services provided by the functions of the package (e.g.,
memory management, mail delivery, etc.). The definition of this attribute is given
below.

attribute mdService : {General,Set,MemoryFile,Databaselnterface,
V DatabaseFile,MailService,FreeTextFile,
ManMachineInterface,DatabaseDisplay};

The functions of each package in the EDF CCIS library were described in terms of
two attributes: fnFunction and fnObject. The fnFunction attribute describes
the functionality of a component, and it is defined as follows. These terms were
extracted from the documentation of the CTC CCIS library.

attribute fnFunction : {add,assign,clear,close,convert,copy,
count,create,delete,display, enable,
execute,find,goto,intersect, log,map,
measure,modify,open,parse,process,
read,rename,replace,retrieve,search,
suspend,terminate,test,transfer,

union,writel};

The attribute fnObject describes the kind of object produced or consumed by
the function, and is defined as follows. Again, these terms were extracted from
the documentation of the CTC CCIS library.

attribute fnObject : {address,code,column,column_type,
control_variable,descriptor,directory,
element,event,file,function_key,group,
interface,keyboard,list,menu,name,offset,
owner,pdd_descriptor,pdd_page,permission,
pointer,ppd._table,printer,queue, subset,
queue_entry,record,set,sql_command,string,
substring, text,tuplel};

One of the difficulties of posing queries in a library so rich in terminology is
remembering the precise terms used to describe functions. To facilitate this
situation, the EDF CCIS library included a list of synonym definitions for some
of the terms of the attributes fnFunction and fnObject. The following are some
sample synonym definitions:
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update = write; sequence = string;

i
|

insert add; location = address;

remove = delete; node = element;

These synonym definitions were made part of the EDF CCIS library by includ-
ing them as terms of their respective attributes, and then defining the distance
between them and their synonym terms as zero.

4.2 Software Defects

One obvious necessity of software systems is the ability to function without de-
fects. Traditional software construction processes have specific subprocesses to
detect defects (e.g., “unit test”, “acceptance test”). However, detecting faults is
not enough: to reduce the number of defects associated with a product and its
development process requires the ability to explain and predict them. The ability
to explain a defect helps to find its source, thus reducing the cost associated with
its correction. In addition, being able to predict defects in a software system
helps to select processes, methods and tools to avoid defects of a particular kind,
reducing the need for later detection and correction procedures. Prediction also
helps to improve the effectiveness of testing mechanisms by increasing the chances
of finding defects.

In order to explain and predict software defects, we need to characterize the
different kinds of defects associated with a particular software environment and
project [10]. We also need to understand the relationships between defects asso-
ciated with a product and its attributes. EDF can be used as an effective tool to
model software defects. In particular, queries can help both to explain the cause
of defects and to predict them in a particular software environment.

4.2.1 Characterizing Defects Using EDF

In this section we present an EDF classification made by Straub and Ostertag
[91] which is itself based on IEEE standard terminology as presented by Basili
and Rombach [10]. The reader should be aware that this classification scheme is
specific to the particular environment we intend to use for our example.

Kinds of Defects

A software product can be defined by two distinct types of entities: data and
processes. The first attribute we use to discriminate among defects is whether
they are directly associated with processes or with documents? . If a defect is
related to a document, it is called a fault. If it is related to a process, it is

2A “document” includes any form of representation of software information (e.g., books or
electronic files) such as: requirements or specification documents, source code, or help files.
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called either a failure or an error: failures are associated with processes that are
performed automatically and errors are associated with human processes.

The attribute entity classifies the kind of entity (either data or process) in
which the defect occurs. The attribute creator classifies the creator or agent
of that entity (either computer or human). These attributes are used to define
faults, errors, and failures.

attribute entity : {data,process};
attribute creator : {computer,human};
defects = class(has entity | has creator);
faults
failures

class(entity=data);

class(entity=process & creator=computer);

errors class(entity=process & creator=human);

Cause of Defects

Failures, faults and errors are interrelated. Failures are caused by one or more
faults3. For example, a failure during the execution of a program is caused by
a fault in the program. Faults in a document are the consequence of defects in
the processes that create the document or in the data used by these processes.
For example, failure in a software tool can produce a fault in a document. The
cause attribute describes these relationships. Because we do not model human
processes, this attribute does not apply to errors.

attribute cause : set of defects;

assertion has cause => in failures | in faults;

Severity of a Defect

Another way to characterize defects is by their severity. This information helps
prioritize activities aimed at correcting defects. We distinguish four levels of
severity: fatal (stops production or development completely), critical (impacts
production or development significantly), noncritical (prevents full use of fea-
tures), and minor. '

attribute severity : {fatal,critical,noncritical,minor};

Defects and the Lifecycle

We are interested in determining when and where a defect enters the system and
when it is detected. Because the phases of the lifecycle are related to documents
(e.g., the requirements phase is related to the requirements document), we use

3System failures are also caused by environmental accidents; here we only consider software-
related failures.
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phases to measure the time at which errors and failures occur as well as to deter-
mine the (kind of) document in which a fault occurs. The occurrence attribute
relates a defect to the phase at which it enters the system. The detection at-
tribute relates a defect to the phase at which it is detected. We explicitly declare
the phase type that is used in these two attributes.

type phase = {requirements,specification,design,coding,
unit_test,integration,integration_test,
acceptance_test,maintenance,operation};

attribute occurrence : phase;

attribute detection : phase;

So far we have defined attributes to characterize defects in general. The remaining
analysis defines specific kinds of failures, faults and errors.

Kinds of Failures

A fajlure occurs during the execution of either the software product or a software
tool. Our focus is on failures associated with the execution of a particular kind
of software product: implementation of data structures.

attribute failure_kind :
{overflow,underflow,illegal_access,
wrong_output,infinite_loop,tool_failure};

assertion has failure_kind => in failures;

Kinds of Faults

Faults are defects in documents: they occur in executable documents (i.e., code)
and also in other types of documents. Again, our focus is on documents inter-
preted by the computer, so we consider only faults on those documents.

attribute fault_kind :
{control_flow,interface, algebraic_computation,
data_definition,data_initialization,data_use};
assertion has fault_kind => in faults;

In' general it is difficult to isolate defects in documents. However, if a particu-
lar area in a document contains a defect, one is interested in knowing whether
something is missing (omission) or something is wrong (commission). We use the
fault_mode attribute to distinguish between this two cases.

attribute fault_mode : {omission,commission};

assertion has fault_mode => in faults;
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Kinds of Errors

Defects introduced by humans (i.e., errors) are ultimately the cause of most other
types of defects in a software product, hence understanding their nature is critical.
On the other hand, a complete characterization of errors involves modeling human
processes which is out of the scope of this work. We simply characterize errors by
the particular domain that is misunderstood or misused, using the error_kind
attribute.

attribute error_kind :
{application_area,problem_solution, syntax,
semantics,environment,clerical};
assertion has error_kind => in errors;

4.2.2 Sample Descriptions

The following examples of defects and their characterization use the proposed
classification scheme. The particular software project is the construction of a
package to manipulate hash tables.

Case 1

Consider a programmer coding a particular function which according to the spec-
ifications must receive as input two integer arguments. The programmer under-
stands exactly what must be implemented, but mistakenly declares the function
with only one formal argument. This fault is detected while reading code during
unit testing. These defects are classified as follows.

fault_1 = [in faults & occurrence=coding &
detection=unit_test & severity=critical &
cause={error_1} & fault_mode=omission &
fault_kind=interface];
error_1 = [in errors & error_kind=clericall;
Case 2

Consider the case that deletions in a hash table do not always reclaim storage.
This causes a system crash during operation due to an overflow in a hash table; the
problem is corrected promptly by reformatting the table. The specific problem
is that a code optimizer swapped two statements. These defects are classified as
follows.
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failure_2 = [in failures & severity=noncritical &
occurrence=operation & cause={swapped_stmt} &
failure_kind=overflow];

swapped_stmt = [in faults & severity=critical &
occurrence=coding &
detection=operation &
cause={failure_op} &
fault_kind=control_flow &
fault_mode=commission];

failure_op = [in failures & occurrence=coding &
detection=operation &
failure_kind=tool_failure];

4.2.3 Explaining and Predicting Defects

Having a database with software components, software defects, and their inter-
relations is useful to explain and predict defects. These explanations/predictions
are not automatic: they are done by a person who obtains relevant information
using queries to the database. (We assume that distances between terms of all
attributes are defined.)

The following is a description of a failure that has been diag