BLIND DECONVOLUTION USING A REGULARIZED
STRUCTURED TOTAL LEAST NORM ALGORITHM *

ARMIN PRUESSNER!T AND DIANNE P. O’LEARY*

Abstract. Rosen, Park and Glick proposed the structured total least norm (STLN) algorithm
for solving problems in which both the matrix and the right-hand side contain errors. We extend
this algorithm for ill-posed problems by adding regularization and use the resulting algorithm to
solve blind deconvolution problems as encountered in image deblurring when both the image and the
blurring function have uncertainty. The resulting regularized structured total least norm (RSTLN)
algorithm preserves any affine structure of the matrix and minimizes the discrete L,-norm error,
where p = 1,2, or co. We demonstrate the effectiveness of these algorithms for blind deconvolution.
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1. Introduction and Background. Most image recording devices fail to record
the intensity of a given image scene exactly. Each recorded image section (or pixel)
describing the corresponding scene has errors in the form of either random noise, blur-
ring, or both. Blurring occurs when the recorded intensity of a given pixel is in effect
influenced by the intensity of neighboring sections. Because of these imperfections in
recorded images, it is often necessary to apply deblurring techniques to obtain clearer
images.

The problem of image deblurring is modeled as an integral equation of the first
kind:
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(1.1) /Qa(s,t):n(t) dt

where s,t € R? are the spatial coordinates, Q the domain or (nonzero) support of
the image,  : R?> = R the true image, a : R* — R the point spread function, and
p : R? — R random noise. The function b(s) is the observed, blurred, noisy image,
and b.(s) is the noiseless blurred image.

In particular, if it is assumed that a(s,t) is spatially-invariant, that is, its effect
depends only on the spatial distance between s and ¢, then the preceding equation
represents a convolution integral, where a(s,t) = a(s — ). In this case, b.(s) is the
result of convolving a(s) and z(s).

Since recording devices make only a finite number of measurements, the imaging
model can be discretized and Equation (1.1) can be written as a matrix equation.
The discretized model is:

(1.2) Az =b+ p.
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where the matrix A is the discretized counterpart of a(s,t), and x and b are also the
discretized versions of the corresponding continuous functions. If the blurring function
a is assumed to be spatially-invariant, then the matrix A has a special structure: for
1-dimensional signals it is Toeplitz and for 2-dimensional signals block Toeplitz with
Toeplitz blocks.

If the cause of the blur and hence a is not known exactly, then our estimate of A
has errors and the problem is known as blind deconvolution. In this case the model in
(1.2) should be replaced by

(1.3) (A+ E)x=0b+r,

a problem of the total least norm variety. If the matrix A has no special structure
and the error |[[E | r]||, is measured using the Frobenius norm, then the problem
can be solved using the total least squares (TLS) method [5]. For image processing
problems, the matrix A has a special structure, and it is desirable to enforce the same
structure on the error matrix E. Rosen, Park and Glick [22] developed the structured
total least norm (STLN) method to solve such problems.

While STLN is useful for many structured linear problems, the blind deconvolu-
tion problem as encountered for image deblurring is generally ill-posed [9]. In partic-
ular, the matrix A is often ill-conditioned, resulting in poor recovered images when
STLN is applied.

Regularization methods must be implemented in order to stabilize STLN and to
obtain useful results. In this paper it is shown how to implement Tikhonov regu-
larization [20, 24] to arrive at the regularized structured total least norm (RSTLN)
algorithm. While implementations of Tikhonov regularization for constrained total
least squares problems had been developed previously [15, 17], the first even before
the work of Rosen et. al. on the simpler problem, they focused solely on the 2—norm
case. The contributions herein are the extension for p = 1 and p = oo norms and the
comparison of methods. In the p = 1 and p = oo cases, the main computational task
lies in solving a linear program (LP).

The paper is structured as follows: in the next section the STLN method is intro-
duced and derived. In §3 the general RSTLN method is introduced and derivations
are presented for the p = 1,2 and oo cases. Finally, in §4 we present numerical results
and in §5 draw conclusions.

2. Derivation of the STLN Method. In order to understand the RSTLN
method, a brief derivation of STLN based on [22] is given. For a more thorough
derivation, the reader is referred to [22] and [12].

2.1. Total Least Squares and Structured Total Least Norm. The total
least squares [5] formulation for solving problems as in Equation (1.3) is to find a
matrix E and a vector 7 such that

(2.1) &, rlllr

is minimized, where F' denotes the Frobenius norm and r = b — (A + E)x is the
residual. If the matrix A has a special structure which the user wants to enforce on
E, then the TLS formulation is not applicable. Instead, the STLN formulation proves
useful.

As in [22] assume that the matrix A € R™*™ is parameterized by elements of
the vector a € RY, ¢ < mn. Then the residual is a function of @ and x. Hence, the
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STLN formulation is to find vectors @ and x such that

(2.2) ‘

r(a, )
Da

p

is minimized where p = 1,2 or co and D is a diagonal weighting matriz through which
the size of a is measured.

We assume that there is a relationship between E and z. In particular, assume
there exists a matrix X parameterized by x such that

(2.3) Xa=Exz.

For a detailed description on construction of the matrix X, the user is referred to [22]
and [12], although the reader should note that if the matrix E is structured then so
is X.

Now let Az and AE denote small changes in z and E, respectively, then

(2.4) XAa = (AE)z.

If we expand r(a, z) in a Taylor series about [a? T]T and ignore second order and

higher terms, we have

r(a+ Aa,z + Azx) b—(A+E)x—XAa—-(A+E)Ax

r(a,z) — XAa — (A + E)Az.

I

(2.5)

Hence, we have a linearization of (2.2):

o (ae)+ (on)

The general idea behind the STLN method is to start with some initial estimates
for  and E, solve the minimization problem in Equation (2.6) for A« and Az, set
r =+ Az and a = a + Aa, and update the residual r and the matrices E and
X. The procedure is repeated iteratively until ||Ac|| and ||Az|| are below a specified
tolerance, at which point the algorithm has converged to a solution. For a detailed
description the reader is referred to [22].

20 ARR

p

3. Derivation of RSTLN. In order to make STLN more robust in the presence
of noise (as is encountered in most image deblurring applications), a form of regu-
larization must be introduced. The method of Tikhonov [24] is implemented herein,
which prevents the solution z from getting too large. In particular, Equation (2.2)
can be modified to arrive at the Regularized Structured Total Least Norm (RSTLN)
algorithm. The new problem formulation is to find vectors a and z so that

r(a, x)
(3.1) Da

AT
p

is minimized, where A is a positive scalar known as the regularization parameter and
p=1, 2 or co. Using the relation in Equation (2.5) and similar reasoning as for the
STLN method, the linearization of Equation (3.1) results in:

X A+ FE A —r
(3.2) min ||| D 0 ( A ) +| Da
AaBe || g AT Az

p
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RSTLN Algorithm

. Set & = 0pyxn and o = Ogx1.
. Compute z by min ||Az — b||, (for p = 2 this is just least squares).
. Compute X from z and the residual r = b — Ax.
. For k=1,2,... until ||Az|],||Aca|| < € repeat Steps 4.1 — 4.3
4.1. Solve

= N =

X A+E —r(a,x)
min D 0 < Aa ) + Da
Ax

Aetelll 0 AI Az
4.2. Set z = x + Az and a = a + Aa.
4.3. Construct F from ¢, and X from x and compute
r=b—(A+ E)x.
5. The recovered image is = and the recovered blurring
matrix (A+E).

p

TABLE 3.1

The general RSTLN algorithm (for arbitrary norm p) is listed in Table 3.1.

3.1. RSTLN for p = 2. The minimization problem in the RSTLN formulation
is equivalent to minimizing the function:

1 . 1 . 1 .
(33) #la,2) = Slir(a D)l + 5 IDal + 5 IAall

The 2-norm case has the property of differentiability so that Gauss-Newton theory is
applicable. Using similar reasoning as in [22] for the STLN method, it follows that
Step 4.1 is a Gauss-Newton method which approximates the Hessian of ¢(a, x) by the
positive definite matrix M T M, where

[X A+E]
(3.4) M=|D 0 .
Lo A |

See also [3].

The least squares normal equations can be solved using the conjugate gradient
method, where the Toeplitz (or block Toeplitz with Toeplitz block) structure of M is
exploited. In particular, the FFT is used for efficient computation of matrix-vector
products.

Another more efficient approach for p = 2 may be to apply the techniques of
[14] for the non-regularized STLN to RSTLN. In particular, an algorithm based on
the generalized Schur algorithm [16] for solving least squares problems is used which
exploits the structure of the STLS matrix:

(35) {X A+E]'

D 0
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Since the RSTLN matrix M has a similar structure to this, the method in [14] should
be applicable. This may be the focus of future work.

3.2. RSTLN for p = co. For both the p = 1 and p = oo cases Step 4.1 of the
RSTLN algorithm is a linear program. To see this, an approach similar to [22] is used.

Let us first consider the derivation for p = oco. Suppose the original image in
vector form is € R™*!, that o € R?*! and that the residual » € R™*1. Then
the optimal function value in Step 4.1 is &, where & is determined from the linear
program

min o
Aa,Azx,7
(3.6) subject to —de,, < XAa+(A+E)Az—r < dep
—oe;, < DAa + Da < oey
—ge, < Az + Az < ge,
where ej, € R¥*1 is a vector of ones.
Using the matrix M we can write the LP in standard form:
min o
Aa,Azx,c
r
—Da
(3.7) _ Aa _
subject to M Cmtnte Az < AT
—M —eminiq 5 —-r
Da
Az

Depending on the method to solve the LP, it may be useful to consider the dual

formulation. Setting 0 = —& it follows that the dual is:
min ryr — ' Dys — Aa"ys — r"ys + o’ Dys + Ae" yo
yi>
Y1 8
(3.8) Y2
. MT —MT Ys 0
subject to T T <
Cmtntq Cmtntq Y4
Ys 0
Ye 1

where y1,y3 € R™ !, yo, 92 € R?*Y, and y3,y6 € R™*!. The system in Equation
(3.8) can be solved using any standard simplex or interior point method.

The reader should note that since the matrix M has a special structure (Toeplitz
or block Toeplitz with Toeplitz blocks), any practical implementation of RSTLN for
p =1 or p= oo should exploit this property when solving the LP.

3.3. RSTLN for p = 1. The derivation for the p = 1 case is similar to the
p = oo case. Again, let & be the optimal function value in Step 4.1. In particular,
assuming z, «, and r are defined as previously, we have that & is determined by
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m q n
min o= E o1, + E 09, + E 03,
Ao, Az,G ‘ fo4 4 ‘
i=1 =1 =1

3.9

(39) subject to -1 < XAa+(A+E)Az—r < 0y
-2 < DAa + Da < 09
—6’3 S /\AZL” + AZL” S 5’3

where 5; € R™*!, 65 € R?*!, and 63 € R™*!. Using the matrix M we can write the
LP as:

=1 =1 =1
Aa "
(3.10) Az ~Da
subject to { M —Iminiq o1 < —Az
M —Iminiq Gy -r
5 Da
3 AL

As for the p = oo case, the user may want to use the dual formulation. Setting
o = —0, then our formulation becomes

min Ty, —a? Dys — AeTys — rTys + a® Dys + Azl yq

yi>0
Y1 0m><1
311 , . Yo Ogx1
(3.11) subject to M -M ¥l < Onx1
Lintq  Imtntg Ya €m
Ys €q
Ye €n

where all y; are as defined previously for the co-norm case, and Ogx; is a vector of
ZEros.

3.4. Convergence of RSTLN for p =1 or p = co. As for the STLN problem,
the function minimized in Equation (3.1) is nonconvex so that there is no guarantee
that the RSTLN algorithm converges to a global minimum. For the p = 2 norm case
Gauss-Newton theory is applicable: a suitable line search method (see for example [3])
can be used to guarantee convergence to a local minimizer from any starting point.

For p = 1 and p = oo Gauss-Newton theory is not directly applicable since
differentiability is lost. But the essential idea is the same as for the p = 2 norm.
In particular, the solutions [Aa™ AxT]T to the LPs given in Equations (3.7) and
(3.10) can be thought of as descent directions to the function in Equation (3.1) for
the respective p-norm. Again, in order to guarantee convergence to a local minimizer
from any starting point, a line search method can be implemented.

4. Numerical Results. In this section, experiments will be given which show
that RSTLN deblurs images better than the STLN method. In particular, examples
are shown comparing RSTLN and STLN for the p = 1,2 and oo norms. We also
compare our results with other blind deconvolution algorithms.
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4.1. Experimental Design.

4.1.1. Numerical Issues. All of our code was written in MATLAB to take
advantage of its image visualization capabilities.

The choice of regularization parameter is a well-studied problem (see, for exam-
ple, [8]). Ideally, the choice balances the need to stay close to the original noise-
contaminated problem [10] without causing its ill-conditioning to produce unaccept-
able noise in the solution. In our experiments, we were concerned with the best
solution obtainable for any choice of parameter. We set D = I and solved each prob-
lem for a wide range of values A > 0, choosing the parameter resulting in the smallest
value for the 2-norm of the image error.

For the STLN and RSTLN algorithms, a linear problem needs to be solved at each
iteration; see Step 4.1 of Table 3.1. For the p = 2 norm, we used the conjugate gradient
least squares method to solve this problem. We set the CG termination condition
to a relative residual tolerance of 10~% or 1000 iterations. This generally produces
satisfactory accuracy to determine the descent direction, but for larger images, the
maximum number of iterations was sometimes taken.

We stop the STLN or RSTLN iterations when

[Az||2 / [|b]]2 < tol

”AACY“Z / ||Aest||2 < tOl,

where b is the blurred image, A¢s; the blurring matrix parameterized by the initial
PSF estimate, and Aa, the blurring matrix parameterized by the current PSF error
Aa.

For the p = 1 and p = oo cases we solved the linear program in Step 4.1 using
the MATLAB function linprog.m with the largescale model employed. The function
uses the LIPSOL [25] algorithm and is based on a primal-dual interior point method.
Because of limitations in the MATLARB interface to LIPSOL, we were only able to set
our stopping criteria to O(1072) to O(10~3) compared to tolerances of O(107%) for
the STLN experiments in [22]; a smaller tolerance caused LIPSOL to fail to converge.
Even with this difficulty, RSTLN gives better results than STLN.

Our current implementation is restricted to fairly small images because of the
large number of constraints in the linear program. While the actual constraint matrix
M passed into linprog.m is sparse, its factorization within the routine generally is
not. Hence, the LP solver as implemented in MATLAB is very memory intensive and
currently restricts our test cases to images no larger than 100 x 100.

We computed the following values in order to compare STLN and RSTLN:

bpert = ||bnoisy - btrue||2 / ||btrue||2

Apert = ||Anoisy - Atrue”F / ||Atrue||F
Terr — ||mrec - mtrue”Z / ||mtrue||2

Aerr = ||(A + E)rec - Atrue”F / ||Atrue||F
berr = ||brec - btrue”Z / ||btrue||2

where .. is the recovered image (in vector form), (A + E),. represents the blurring
matrix parameterized by the recovered PSF, b,.... is the result obtained from convolving
the recovered image and PSF, and x¢rye, Atrue, and e are the correct values, so
that ArueTirue = berue- The values bpepr and Ape,s represent the perturbed versions
of b and A, where b,,0i5y and A,,045y are the noisy versions of b and A with the addition
of zero-mean Gaussian noise.
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4.1.2. Comparison with Other Blind Deconvolution Methods. We com-
pare RSTLN with two other blind deconvolution methods: blind Lucy-Richardson,
and the APEX/SECB method of Carasso.

The blind Lucy-Richardson algorithm is an extension of the well-known
original Lucy-Richardson method [13, 21]. The original iterative method was derived
from Bayes’ Theorem and assumes that the blurred image, the original image, and the
PSF are (possibly non-normalized) probability density functions. The most common
and efficient implementation makes use of the FFT to compute convolutions. This
implicitly imposes periodic boundary conditions on the image.

The blind version is similar to the original method; each iteration alternately uses
several iterations of the non-blind algorithm to estimate a new PSF and then a new
image. It is generally more effective for images having many pixels and for images
with fewer sharp edges, since convolution tends to smooth edge boundaries [9].

The algorithm can be used without FFTs, but it is computationally much slower
and may produce ringing if the image does not have finite support. But because the
method has a probabilistic basis, any implementation must conserve energy. Thus, a
non-periodic (for example, zero boundary condition) implementation is useful only for
images having support strictly inside the image boundaries. Convolutions involving
images with non-finite support do not conserve energy and result in data being lost
outside of the original image boundary; this leads to ringing in the resulting images.

The stopping criterion for MATLAB’s blind Lucy-Richardson function deconvblind.m
is based solely on the input number of iterations. The user may specify this total num-
ber of iterations or use the default value of 10. Our non-FFT implementation is similar
to the non-blind MATLAB routine deconvlucy.m, but lets the user specify the total
number of iterations and, for each, the number of Lucy-Richardson inner iterations to
update the image and PSF estimates. We estimate the optimal number of iterations
by recovering images using a wide variety of choices and then choosing the image
resulting in the smallest 2-norm error. For our comparison test cases, where our goal
was to show only general trends in the recovered images, we often used a default of
10 iterations, modifying this number as needed.

Carasso’s APEX /SECB method [1] can be applied to the class of PSFs a whose
FFT, denoted by a(§,n), is of the form:

(4.1) a(g,n) = e—a(E+n*)?

where ¢ and n are the respective frequency coordinates. If the blurred image b = a® x
is obtained by (periodic) convolution, then in the Fourier domain

8(ga Tl) = i:(g: 77) : &(f, 77)
(4.2) = #(&n) e~ &)

The idea behind the PSF identification method is to fit the function «|¢|?” to the
logarithm of the Fourier transform of the blurred image and an estimate of the true
image; see [1] for details. If the image or the PSF fails to meet necessary requirements,
then such a fit will not be possible.

4.2. Test 1. Our first test consists of a cross of size 21 x 21. The true PSF is a
Gaussian blur with variance 2.5, truncated to a support of size 11 x 11.

The blurred image was obtained by convolving the original image and PSF, as-
suming that pixel values outside the image are zero (zero boundary conditions). The
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Test Case 1 Terr Acrr berr

p=2STLN 1.19 | 3.97e—2 | 1.1e—3
p=2RSTLN | 0.39 | 4.10e—2 | 1.1e—3
p=1STLN 0.97 | 3.99e—2 | 1.4e—3
p=1RSTLN | 0.44 | 4.00e—2 | 1.1e—2
p =o0 STLN 0.50 | 4.02e—2 | 5.5e—1
p=o00 RSTLN | 0.45 | 3.98e—2 | 4.9e—1

TABLE 4.1
RSTLN FErrors for p =1, 2 and co. We list the errors in the image x, the matriz A and the
residual error berr for the unregularized STLN and the RSTLN methods for each of the norms. For
the p =1 and p = 2 norms the RSTLN recovered image error Terr is much smaller than for STLN.
For p = oo the image error is near optimal and the error using RSTLN is only slightly smaller than
for STLN.

original and blurred images are shown in (A) and (B) of Figure 4.1. Random, zero
mean 6-bit noise was added to the PSF to obtain the initial PSF estimate. This
resulted in Aper = 3.99 x 1072, Furthermore, 11-bit Gaussian noise was added to the
blurred image, resulting in bye,e = 1.10 x 1073,

The errors resulting from the STLN and RSTLN methods for the different p-
norms are shown in Table 4.1. The corresponding images are shown in Figure 4.1, (C)
through (H). From the error table we see that the use of RSTLN generally increases
the error Ag,.,. in the blurring matrix and the residual error b.,... For the 1- and
2- norms, however, the error z.,, in the image estimate is considerably lower, so the
reconstructed image is improved. For the p = co norm, the image obtained from STLN
was near optimal, and all RSTLN experiments for nonzero values of the regularization
parameter A resulted in higher image errors.

In Figure 4.2 we present the results of the blind Lucy-Richardson method (denoted
by LR). In (A) we show results obtained by LR in reconstructing images blurred with
periodic boundary conditions (6-bit noise added), using 20 outer iterations with 10
Lucy-Richardson iterations in each. The width of the cross is broadened due to
blurring of the edges during the reconstruction.

In Figure 4.2 (B) through (F), we present the result of various attempts to recon-
struct the image with zero boundary conditions from Figure 4.1. In (B) we show the
result obtained by using 5 outer iterations with 10 Lucy-Richardson iterations each,
computing convolutions using zero padded images. It is clear that the image is dis-
torted and ringing is observed throughout. The other images are reconstructed using
the MATLAB-supplied implementation of blind Lucy-Richardson, which we call M-
LR. In (C) we show the M-LR result, beginning with the blur estimate as for RSTLN,
and stopping after the MATLAB-default 10 iterations. We repeat this experiment in
(D), but starting from a flat PSF estimate (a matrix of ones of size 11 x 11). In
both cases only poor reconstructions are obtained. In (E) and (F) we show similar
results as in (C) and (D), except that the image was tapered using edgetaper.m,
which seeks to transform a nonperiodic image into a more periodic one by reblurring
the edges of an image with a suitable PSF. The reader is referred to [23] for details.
We performed 50 and 100 M-LR iterations, respectively. The reader should note that
the algorithm is not able to reconstruct data near the image boundary, although the
interior is adequately recovered.

The APEX/SECB method cannot be applied to this image, because it is too small
to yield enough data points.
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Test Case 2 - Acrr berr
p=2STLN 4.2895 | 4.03e—2 | 1.03e—2
p=2RSTLN | 0.5885 | 1.15e+0 | 9.20e—3
TABLE 4.2
RSTLN Errors for p = 2 for the large cross test case. We list the errors in the image x, the
matriz A and the residual error be,, for the unregularized STLN and the RSTLN methods for p = 2.
For the RSTLN (X = 2.5) recovered image error Terr is much smaller than for STLN.

Test 2. Our next test consists of a somewhat broader cross image of size 41 x 41
with a nonzero cross width of 5. The image was blurred with an 11 x 11 Gaussian.
Gaussian 8-bit noise was added to the blurred images, resulting in bpe,+ = 1.05 x 102
and 9.8 x 1073, respectively. The blur estimate was obtained by adding 6-bit noise to
the original blur, resulting in A,¢+ = 3.91 X 10~2.

Again, we present results comparing the STLN, RSTLN, LR, and M-LR methods,
as well as Carasso’s APEX/SECB method. In Figure 4.3 we show the original and
blurred images in (A) and (B). In (C) we show the STLN 2-norm solution (that
is, without any regularization) and in (D) the best RSTLN 2-norm solution with
regularization (using A = 0.75). (The RSTLN p =1 and p = oo were not computed
due to the expense of solving the linear programming problems.) The resulting STLN
and RSTLN errors for the 2-norm are shown in Table 4.2.

For APEX/SECB, the original image in (A) was blurred using periodic boundary
conditions as in Equation (4.2) using parameters a = 0.075 and # = 1. This resulted
in a blurred image nearly identical to (B). Again, 8-bit noise was added to the blurred
image. In subplot (E) we show the results of using APEX/SECB for PSF identification
and subsequent deblurring of the periodic noisy blurred image. The APEX PSF
identification procedure resulted in parameter estimates of e = 0.0749 and Best =
0.9756, which are fairly close to the true parameter values. Unfortunately, this method
was unsuccessful for images blurred with zero boundary conditions and noise added.
In (F), we show the APEX optimization function for different scalar value image
estimates. The non-smooth family of curves corresponds to the optimization function
for different scalar estimates for the unknown image quantity log | f (&, 0)] if the natural
logarithm is applied to the right and left hand sides in Equation 4.2 and when a noisy
zero boundary condition blurred image is used. The curves do not have the proper
form and thus do not permit a curve fit of the form «|¢[>’. For this case no proper
PSF can be found.

In Figure 4.4 we present results of the blind Lucy-Richardson algorithm. In (A)
we see that the algorithm gives a good result for periodic blurs, but the reconstruction
for a zero boundary condition exhibits ringing and distortion. These results used 50
outer iterations, each using 10 Lucy-Richardson iterations. In (B) we give the result
for the zero boundary condition image using the zero boundary implementation. We
then apply the M-LR algorithm to a noisy zero boundary blurred image. In (C) and
(D) we show results using no tapering, 25 iterations, and using an initial guess of
either the RSTLN blur estimate or a matrix of ones of size 11 x 11. Both results
exhibit ringing due to improper boundary conditions. In (E) and (F) we show M-LR
results with tapering, using 10 outer iterations and initial blur estimates as in (C)
and (D). The reconstructions are not useful.

4.3. Test 3. Our final comparison test consists of an image obtained from the
NASA Image Exchange (http://nix.nasa.gov). It shows the corona of the sun and
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Test Case 3 - Acrr berr

p=2STLN 20.01 2.47e—2 2.19e—2

p =2 RSTLN | 0.9265 | 3.8483e+0 | 6.71le—1
TABLE 4.3

RSTLN Errors for p = 2 for the sun test case. We list the errors in the image x, the matric A

and the residual error ber, for the unreqularized STLN and the RSTLN methods for p = 2. For the
RSTLN (X =T75) recovered image error Terr is much smaller than for STLN.

a large solar eruption. We truncated the image to size 99 x 99 and reduced it to
gray-scale.

Again, the image was blurred with a Gaussian PSF of size 11 x 11 in two ways:
one assuming zero values for pixels outside the image, and the other assuming a
periodic image. A 6-bit noisy version of the zero boundary condition blurred image
was obtained by adding zero mean Gaussian noise. This resulted in bpe,s = 2.20x1072.
For the periodic image no noise was added to the blurred image. The blur estimate
was obtained by adding 6-bit noise to the original blur (Apert = 2.46 x 1072).

In Figure 4.5 (A) we show the original and in (B) the noisy blurred image using
zero boundary conditions. In (C) we show the STLN result using the 2-norm. Due
to the high noise level in both the blurred image and the blur estimate, no useful
result was obtained. In (D) we show the best result using the RSTLN method with
a regularization value of A = 75. We remark that in this case the algorithm did not
converge to a tolerance of 1072, Instead we stopped prematurely after 10 iterations.
A larger number of iterations which did achieve the desired tolerance produced an
image of lesser quality contaminated by severe ringing.

In Table 4.3 we computed the resulting errors for the STLN and RSTLN methods.
Although A.,, and b, are increased for RSTLN with respect to STLN, clearly the
image error is drastically reduced using the RSTLN method.

For the APEX/SECB method the image was blurred with a Gaussian blur using
periodic boundary conditions and parameters o = 0.01 and f = 1 as in Equation
(4.2). This resulted in a blurred image very similar to the one in (B). Noise (6-bit)
was added to the blurred image. Using the APEX PSF identification method, a
curve fit to the optimization function was done, resulting in parameter estimates of
Qest = 0.0108 and fF.s¢ = 1.028. These are fairly close to the true PSF parameters. In
(E) we show the APEX/SECB recovered image using the noisy blurred image with
periodic boundary conditions. In (F) we show the function to be fit using the noisy
image with zero boundary conditions. We plot the function using different scalar
estimates for the original image component in Equation 4.2. None of the functions
have the proper form and a suitable curve fit of the form «|¢|?? is not possible. For
this case no useful PSF was found.

In Figure 4.6 we show the results from the various Lucy-Richardson experiments.
In subplot (A) we have the LR result using a periodic image using our own periodic
LR implementation. We performed 10 iterations, each with 10 Lucy-Richardson iter-
ations. In (B) we show the result using the zero boundary implementation and a zero
boundary blurred image. We performed outer 15 iterations, each with 10 iterations to
estimate the new PSF and image. Severe ringing is present. In (C) and (D) we show
the non-tapered M-LR results using the RSTLN blur estimate, an 11 x 11 matrix of
ones for the blur estimate and a zero boundary blurred image. 25 outer iterations
were performed, with 10 iterations each. For the result in (C) ringing is observed
near the image boundary, whereas in (D) the image is severely distorted. Finally, in
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(E) and (F) we obtained results using M-LR and a tapered noisy blurred image using
the two different initial blur estimate types. For the result in (E) 25 iterations were
performed which produced reasonable results. The result in (F) was obtained after
10 iterations with less favorable results.

5. Conclusions. We have presented th RSTLN algorithm for blind deconvolu-
tion. Like the STLN method, RSTLN preserves any affine structure in the matrix,
and the user has the choice of minimizing the error for the 2-norm or for other norms
such as the 1 and oo norms. The use of norms other than the 2-norm leads to good
image recovery, although the cost is substantially higher.

In contrast to other methods, such as that of Carasso’s APEX/SECB, the RSTLN
method does not depend on having a periodic image. Ringing in the reconstructed
images is less of a problem. Therefore, we can apply the RSTLN method for arbitrary
boundary conditions, for example zero (Dirichlet), Neumann (data outside of the
image boundary is a reflection of the corresponding data inside), or periodic.
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(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)

5 10 15 20 5 10 15 20
(C) STLN-inf (D) RSTLN-inf

5 10 15 20
(F) RSTLN-2

5 10 15 20
(H) RSTLN-1

5 10 15 20 5 10 15 20

Fi1G. 4.1. RSTLN - Cross (noise, Gaussian blur). Test 1, results of STLN and RSTLN methods
using p = 1,2, co-norms. Random noise is present in the blurred image. The blur estimate is the
true blur plus the addition of 6-bit noise so that Apert = 3.99 X 10—2. Random, zero mean Gaussian
11-bit noise was added to the blurred image so that bpert = 1.10 X 1073, (A) Original image
- 21 x 21; (B) Noisy blurred image (zero BC); (C) STLN (co-norm) solution with tol = 1072,
Solution is near optimal: 13 iterations; (D) RSTLN (co-norm) recovered image with tol = 1072,
regularization parameter X = 0.001, 12 iterations. (E) STLN (2-norm,) solution with tol = 1073,
22 iterations; (F) RSTLN (2-norm) recovered image with tol = 1073, X\ = 0.05, 27 iterations; (G)
STLN (1-norm) solution with tol = 102, 13 iterations; (H) RSTLN (1-norm) recovered image with
tol =10~2, A = 0.5, 50 iterations.
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(A) LR w/noise (PER. BC) (B) LR w/noise (0 BC)

5 10 15 20 5 10 15 20

(C) M-LR w/noise (no taper, blur est.) (D) M-LR wi/noise (no taper, ones)

5 10 15 20 5 10 15 20

(E) M-LR w/noise (taper, blur est.) (F) M-LR w/noise (taper, ones)

5 10 15 20 5 10 15 20

F1G. 4.2. Test 1, Lucy-Richardson results. (A) periodic LR implementation using a periodic
blurred image, 20 LR iterations each with 10 iterations; (B) zero boundary condition LR imple-
mentation using a zero BC blurred image, 5 LR iterations each with 10 iterations; (C) M-LR result
without tapering and using the RSTLN initial PSF estimate, 10 iterations; (D) M-LR result without
tapering and using an 11 X 11 matriz of ones for the initial PSF estimate, 10 iterations; (E) M-LR
result with tapering and using the RSTLN initial PSF estimate, 50 iterations; (F) M-LR result with
tapering and using an 11 X 11 matriz of ones for the initial PSF estimate, 100 iterations
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(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)

10 20 30 40

(D) RSTLN-2

(E) APEX/SECB w/noise (PER. BC) (F) OPT.FUNC.FIT (0 BC)

10 20 30 40 1 3 5 7 9 11 13 15 17 19 21

Fi1G. 4.3. Test 2, RSTLN and APEX/SECB results. The image was blurred using zero boundary
conditions. 8-bit noise was added to obtain the image in (B), resulting in bper¢ = 1.05 X 10~2. The
blur estimate was obtained by adding 6-bit noise to the original blur, resulting in Apert = 3.91X 102,
(C) STLN 2-norm solution, tol = 10~3, 26 iterations; (D) Best RSTLN 2-norm solution, A = 0.75,
tol = 10~3, 25 iterations; (E) APEX/SECB recovered image using a noisy periodic image. The
image was blurred as in Equation (4.2) using parameters o = 0.075 and = 1. The recovered PSF
parameter estimates are aest = 0.0749 and Best = 09756 using a scalar image component estimate
of K =22. (F) APEX optimization function for a zero BC noisy image. Since the function does
not have the proper form o¢|§|2ﬂ, no fit can be obtained. In this case no PSF was found.
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(A) LR w/noise (per. BC) (B) LR w/noise (0 BC)

10 20 30 40 10 20 30 40

(C) M-LR w/noise (no taper, blur est.) (D) M-LR w/noise (no taper, ones)

10 20 30 40 10 20 30 40

(E) M-LR w/noise (taper, blur est.) (F) M-LR w/noise (taper, ones)

10 20 30 40

F1G. 4.4. Test 2, Lucy-Richardson results. (A) Periodic LR implementation using a periodic
blurred image, 50 LR iterations each with 10 iterations; (B) zero boundary LR implementation using
a zero BC blurred image, 50 LR iterations each with 10 iterations; (C) M-LR result without tapering
and using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an
11 X 11 matriz of ones for the PSF estimate, 25 iterations; (E) M-LR result with tapering and using
the RSTLN blur estimate, 10 iterations; (F) M-LR result with tapering and using an 11 X 11 matriz
of ones for the PSF estimate, 10 iterations
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(A) ORIGINAL (B) NOISY BLURRED IMAGE (0 BC)
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Fi1G. 4.5. Test 3, RSTLN and APEX/SECB results. (A) Original image - 99 X 99; (B) Noisy
blurred image (zero BC); (C) STLN (2-norm) solution with tol = 10~2, 2 iterations; (D) RSTLN
(2-norm) recovered image with initial tol = 10~2 and regularization A\ = 75. The experiment was
stopped prematurely after 10 iterations. While larger number of iterations did achieve the desired
tolerance, the results were distorted by ringing; (E) APEX/SECB recovered image. Image is blurred
assuming a periodic image as in Equation 4.2 with parameters o = 0.01 and 8 = 1. (F) Plot
of optimization function if the image is blurred using zero BC. The different plots represents the
optimization function for different scalar estimates for the unknown quantity log|f(£,0)|, where
f(f,n) denotes the normalized FFT of the original image f. Since none of the curves possess the
proper shape, no useful PSF can be found.
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(A) LR w/noise (PER. BC) (B) LR w/noise (0 BC)

20 40 60 80 20 40 60 80

(C) M-LR w/noise (no taper, blur est.)

20 40 60 80

(E) M-LR w/noise (taper, blur est.)

20 40 60 80 20 40 60 80

F1G. 4.6. Test 3, Lucy-Richardson results. (A) Periodic LR implementation using a periodic
blurred image, 10 LR iterations each with 10 iterations; (B) zero boundary LR implementation using
a zero BC blurred image, 15 LR iterations each with 10 iterations; (C) M-LR result without tapering
and using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an
11 X 11 matriz of ones for the PSF estimate, 10 iterations; (E) M-LR result with tapering and using
the RSTLN blur estimate, 25 iterations; (F) M-LR result with tapering and using an 11 X 11 matriz
of ones for the PSF estimate, 10 iterations



