
BLIND DECONVOLUTION USING A REGULARIZEDSTRUCTURED TOTAL LEAST NORM ALGORITHM �ARMIN PRUESSNERy AND DIANNE P. O'LEARYzAbstra
t. Rosen, Park and Gli
k proposed the stru
tured total least norm (STLN) algorithmfor solving problems in whi
h both the matrix and the right-hand side 
ontain errors. We extendthis algorithm for ill-posed problems by adding regularization and use the resulting algorithm tosolve blind de
onvolution problems as en
ountered in image deblurring when both the image and theblurring fun
tion have un
ertainty. The resulting regularized stru
tured total least norm (RSTLN)algorithm preserves any aÆne stru
ture of the matrix and minimizes the dis
rete Lp-norm error,where p = 1; 2; or 1. We demonstrate the e�e
tiveness of these algorithms for blind de
onvolution.Key words. least squares, total least squares, total least norm, stru
tured total least norm,minimization, regularization, ill-posed problem, 1�norm, 2�norm, 1�norm, overdetermined linearsystem, blind de
onvolution, image deblurring, boundary 
onditions, 
onstrained total least squaresAMS subje
t 
lassi�
ations. 65F22, 65K10, 90C051. Introdu
tion and Ba
kground. Most image re
ording devi
es fail to re
ordthe intensity of a given image s
ene exa
tly. Ea
h re
orded image se
tion (or pixel)des
ribing the 
orresponding s
ene has errors in the form of either random noise, blur-ring, or both. Blurring o

urs when the re
orded intensity of a given pixel is in e�e
tin
uen
ed by the intensity of neighboring se
tions. Be
ause of these imperfe
tions inre
orded images, it is often ne
essary to apply deblurring te
hniques to obtain 
learerimages.The problem of image deblurring is modeled as an integral equation of the �rstkind: Z
 a(s; t)x(t) dt = b(s)� �(s) = b
(s)(1.1)where s; t 2 R2 are the spatial 
oordinates, 
 the domain or (nonzero) support ofthe image, x : R2 ! R the true image, a : R4 ! R the point spread fun
tion, and� : R2 ! R random noise. The fun
tion b(s) is the observed, blurred, noisy image,and b
(s) is the noiseless blurred image.In parti
ular, if it is assumed that a(s; t) is spatially-invariant, that is, its e�e
tdepends only on the spatial distan
e between s and t, then the pre
eding equationrepresents a 
onvolution integral, where a(s; t) = a(s � t). In this 
ase, b
(s) is theresult of 
onvolving a(s) and x(s).Sin
e re
ording devi
es make only a �nite number of measurements, the imagingmodel 
an be dis
retized and Equation (1.1) 
an be written as a matrix equation.The dis
retized model is: Ax = b+ �:(1.2)�Manus
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2 A. PRUESSNER and D. P. O'LEARYwhere the matrix A is the dis
retized 
ounterpart of a(s; t), and x and b are also thedis
retized versions of the 
orresponding 
ontinuous fun
tions. If the blurring fun
tiona is assumed to be spatially-invariant, then the matrix A has a spe
ial stru
ture: for1-dimensional signals it is Toeplitz and for 2-dimensional signals blo
k Toeplitz withToeplitz blo
ks.If the 
ause of the blur and hen
e a is not known exa
tly, then our estimate of Ahas errors and the problem is known as blind de
onvolution. In this 
ase the model in(1.2) should be repla
ed by (A+E)x = b+ r;(1.3)a problem of the total least norm variety. If the matrix A has no spe
ial stru
tureand the error k[E j r℄kp is measured using the Frobenius norm, then the problem
an be solved using the total least squares (TLS) method [5℄. For image pro
essingproblems, the matrix A has a spe
ial stru
ture, and it is desirable to enfor
e the samestru
ture on the error matrix E. Rosen, Park and Gli
k [22℄ developed the stru
turedtotal least norm (STLN) method to solve su
h problems.While STLN is useful for many stru
tured linear problems, the blind de
onvolu-tion problem as en
ountered for image deblurring is generally ill-posed [9℄. In parti
-ular, the matrix A is often ill-
onditioned, resulting in poor re
overed images whenSTLN is applied.Regularization methods must be implemented in order to stabilize STLN and toobtain useful results. In this paper it is shown how to implement Tikhonov regu-larization [20, 24℄ to arrive at the regularized stru
tured total least norm (RSTLN)algorithm. While implementations of Tikhonov regularization for 
onstrained totalleast squares problems had been developed previously [15, 17℄, the �rst even beforethe work of Rosen et. al. on the simpler problem, they fo
used solely on the 2�norm
ase. The 
ontributions herein are the extension for p = 1 and p =1 norms and the
omparison of methods. In the p = 1 and p =1 
ases, the main 
omputational tasklies in solving a linear program (LP).The paper is stru
tured as follows: in the next se
tion the STLN method is intro-du
ed and derived. In x3 the general RSTLN method is introdu
ed and derivationsare presented for the p = 1; 2 and1 
ases. Finally, in x4 we present numeri
al resultsand in x5 draw 
on
lusions.2. Derivation of the STLN Method. In order to understand the RSTLNmethod, a brief derivation of STLN based on [22℄ is given. For a more thoroughderivation, the reader is referred to [22℄ and [12℄.2.1. Total Least Squares and Stru
tured Total Least Norm. The totalleast squares [5℄ formulation for solving problems as in Equation (1.3) is to �nd amatrix E and a ve
tor r su
h that jj[E; r℄jjF(2.1)is minimized, where F denotes the Frobenius norm and r = b � (A + E)x is theresidual. If the matrix A has a spe
ial stru
ture whi
h the user wants to enfor
e onE, then the TLS formulation is not appli
able. Instead, the STLN formulation provesuseful.As in [22℄ assume that the matrix A 2 Rm�n is parameterized by elements ofthe ve
tor � 2 Rq ; q < mn. Then the residual is a fun
tion of � and x. Hen
e, the



REGULARIZED STRUCTURED TOTAL LEAST NORM 3STLN formulation is to �nd ve
tors � and x su
h that



 r(�; x)D� 



p(2.2)is minimized where p = 1; 2 or1 and D is a diagonal weighting matrix through whi
hthe size of � is measured.We assume that there is a relationship between E and x. In parti
ular, assumethere exists a matrix X parameterized by x su
h thatX� = Ex:(2.3)For a detailed des
ription on 
onstru
tion of the matrix X , the user is referred to [22℄and [12℄, although the reader should note that if the matrix E is stru
tured then sois X .Now let �x and �E denote small 
hanges in x and E, respe
tively, thenX�� = (�E)x:(2.4)If we expand r(�; x) in a Taylor series about [�T xT ℄T and ignore se
ond order andhigher terms, we haver(�+��; x +�x) � b� (A+E)x�X��� (A+E)�x= r(�; x) �X��� (A+E)�x:(2.5)Hen
e, we have a linearization of (2.2):min��;�x



� X A+ED 0 �� ���x �+� �rD� �



p :(2.6)The general idea behind the STLN method is to start with some initial estimatesfor x and E, solve the minimization problem in Equation (2.6) for �� and �x, setx = x + �x and � = � + ��, and update the residual r and the matri
es E andX . The pro
edure is repeated iteratively until jj��jj and jj�xjj are below a spe
i�edtoleran
e, at whi
h point the algorithm has 
onverged to a solution. For a detaileddes
ription the reader is referred to [22℄.3. Derivation of RSTLN. In order to make STLN more robust in the presen
eof noise (as is en
ountered in most image deblurring appli
ations), a form of regu-larization must be introdu
ed. The method of Tikhonov [24℄ is implemented herein,whi
h prevents the solution x from getting too large. In parti
ular, Equation (2.2)
an be modi�ed to arrive at the Regularized Stru
tured Total Least Norm (RSTLN)algorithm. The new problem formulation is to �nd ve
tors � and x so that





 r(�; x)D��x 





p(3.1)is minimized, where � is a positive s
alar known as the regularization parameter andp = 1; 2 or 1. Using the relation in Equation (2.5) and similar reasoning as for theSTLN method, the linearization of Equation (3.1) results in:min��;�x
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p :(3.2)



4 A. PRUESSNER and D. P. O'LEARYRSTLN Algorithm1. Set E = 0m�n and � = 0q�1:2. Compute x by minx kAx� bkp (for p = 2 this is just least squares).3. Compute X from x and the residual r = b�Ax.4. For k = 1; 2; ::: until k�xk; k��k � � repeat Steps 4.1 { 4.34.1. Solvemin��;�x





24 X A+ED 00 �I 35� ���x �+0� �r(�; x)D��x 1A





p.4.2. Set x = x+�x and � = �+��.4.3. Constru
t E from �, and X from x and 
omputer = b� (A+E)x.5. The re
overed image is x and the re
overed blurringmatrix (A+E). Table 3.1The general RSTLN algorithm (for arbitrary norm p) is listed in Table 3.1.3.1. RSTLN for p = 2. The minimization problem in the RSTLN formulationis equivalent to minimizing the fun
tion:�(�; x) = 12kr(�; x)k22 + 12kD�k22 + 12k�xk22:(3.3)The 2-norm 
ase has the property of di�erentiability so that Gauss-Newton theory isappli
able. Using similar reasoning as in [22℄ for the STLN method, it follows thatStep 4.1 is a Gauss-Newton method whi
h approximates the Hessian of �(�; x) by thepositive de�nite matrix MTM , whereM = 24 X A+ED 00 �I 35 :(3.4)See also [3℄.The least squares normal equations 
an be solved using the 
onjugate gradientmethod, where the Toeplitz (or blo
k Toeplitz with Toeplitz blo
k) stru
ture of M isexploited. In parti
ular, the FFT is used for eÆ
ient 
omputation of matrix-ve
torprodu
ts.Another more eÆ
ient approa
h for p = 2 may be to apply the te
hniques of[14℄ for the non-regularized STLN to RSTLN. In parti
ular, an algorithm based onthe generalized S
hur algorithm [16℄ for solving least squares problems is used whi
hexploits the stru
ture of the STLS matrix:� X A+ED 0 � :(3.5)



REGULARIZED STRUCTURED TOTAL LEAST NORM 5Sin
e the RSTLN matrix M has a similar stru
ture to this, the method in [14℄ shouldbe appli
able. This may be the fo
us of future work.3.2. RSTLN for p = 1. For both the p = 1 and p = 1 
ases Step 4.1 of theRSTLN algorithm is a linear program. To see this, an approa
h similar to [22℄ is used.Let us �rst 
onsider the derivation for p = 1. Suppose the original image inve
tor form is x 2 Rn�1, that � 2 Rq�1 and that the residual r 2 Rm�1. Thenthe optimal fun
tion value in Step 4.1 is ��, where �� is determined from the linearprogram min��;�x;�� ��subje
t to ���em � X��+ (A+E)�x� r � ��em���eq � D�� +D� � ��eq���en � ��x + �x � ��en(3.6)where ek 2 Rk�1 is a ve
tor of ones.Using the matrix M we 
an write the LP in standard form:min��;�x;�� ��subje
t to � M �em+n+q�M �em+n+q �0� ���x�� 1A � 0BBBBBB� r�D���x�rD��x
1CCCCCCA(3.7)

Depending on the method to solve the LP, it may be useful to 
onsider the dualformulation. Setting � = ��� it follows that the dual is:minyi�0 rT y1 � �TDy2 � �xT y3 � rT y4 + �TDy5 + �xT y6
subje
t to � MT �MTeTm+n+q eTm+n+q �0BBBBBB� y1y2y3y4y5y6

1CCCCCCA � 0BBBBBBB� 000...01
1CCCCCCCA(3.8)

where y1; y3 2 Rm�1, y2; y4 2 Rq�1, and y3; y6 2 Rn�1. The system in Equation(3.8) 
an be solved using any standard simplex or interior point method.The reader should note that sin
e the matrix M has a spe
ial stru
ture (Toeplitzor blo
k Toeplitz with Toeplitz blo
ks), any pra
ti
al implementation of RSTLN forp = 1 or p =1 should exploit this property when solving the LP.3.3. RSTLN for p = 1. The derivation for the p = 1 
ase is similar to thep = 1 
ase. Again, let �� be the optimal fun
tion value in Step 4.1. In parti
ular,assuming x; �, and r are de�ned as previously, we have that �� is determined by



6 A. PRUESSNER and D. P. O'LEARYmin��;�x;�� �� = mXi=1 ��1i + qXi=1 ��2i + nXi=1 ��3isubje
t to ���1 � X��+ (A+E)�x� r � ��1���2 � D��+D� � ��2���3 � ��x + �x � ��3(3.9)where ��1 2 Rm�1, ��2 2 Rq�1, and ��3 2 Rn�1. Using the matrix M we 
an write theLP as: min��;�x;�� �� = mXi=1 ��1i + qXi=1 ��2i + nXi=1 ��3isubje
t to � M �Im+n+q�M �Im+n+q �0BBBB� ���x��1��2��3 1CCCCA � 0BBBBBB� r�D���x�rD��x
1CCCCCCA(3.10)

As for the p = 1 
ase, the user may want to use the dual formulation. Setting� = ���, then our formulation be
omesminyi�0 rT y1 � �TDy2 � �xT y3 � rT y4 + �TDy5 + �xT y6subje
t to � MT �MTIm+n+q Im+n+q �0BBBBBB� y1y2y3y4y5y6
1CCCCCCA � 0BBBBBB� 0m�10q�10n�1emeqen

1CCCCCCA(3.11)where all yi are as de�ned previously for the 1-norm 
ase, and 0k�1 is a ve
tor ofzeros.3.4. Convergen
e of RSTLN for p = 1 or p =1. As for the STLN problem,the fun
tion minimized in Equation (3.1) is non
onvex so that there is no guaranteethat the RSTLN algorithm 
onverges to a global minimum. For the p = 2 norm 
aseGauss-Newton theory is appli
able: a suitable line sear
h method (see for example [3℄)
an be used to guarantee 
onvergen
e to a lo
al minimizer from any starting point.For p = 1 and p = 1 Gauss-Newton theory is not dire
tly appli
able sin
edi�erentiability is lost. But the essential idea is the same as for the p = 2 norm.In parti
ular, the solutions ���T �xT �T to the LPs given in Equations (3.7) and(3.10) 
an be thought of as des
ent dire
tions to the fun
tion in Equation (3.1) forthe respe
tive p-norm. Again, in order to guarantee 
onvergen
e to a lo
al minimizerfrom any starting point, a line sear
h method 
an be implemented.4. Numeri
al Results. In this se
tion, experiments will be given whi
h showthat RSTLN deblurs images better than the STLN method. In parti
ular, examplesare shown 
omparing RSTLN and STLN for the p = 1; 2 and 1 norms. We also
ompare our results with other blind de
onvolution algorithms.



REGULARIZED STRUCTURED TOTAL LEAST NORM 74.1. Experimental Design.4.1.1. Numeri
al Issues. All of our 
ode was written in MATLAB to takeadvantage of its image visualization 
apabilities.The 
hoi
e of regularization parameter is a well-studied problem (see, for exam-ple, [8℄). Ideally, the 
hoi
e balan
es the need to stay 
lose to the original noise-
ontaminated problem [10℄ without 
ausing its ill-
onditioning to produ
e una

ept-able noise in the solution. In our experiments, we were 
on
erned with the bestsolution obtainable for any 
hoi
e of parameter. We set D = I and solved ea
h prob-lem for a wide range of values � > 0, 
hoosing the parameter resulting in the smallestvalue for the 2-norm of the image error.For the STLN and RSTLN algorithms, a linear problem needs to be solved at ea
hiteration; see Step 4.1 of Table 3.1. For the p = 2 norm, we used the 
onjugate gradientleast squares method to solve this problem. We set the CG termination 
onditionto a relative residual toleran
e of 10�6 or 1000 iterations. This generally produ
essatisfa
tory a

ura
y to determine the des
ent dire
tion, but for larger images, themaximum number of iterations was sometimes taken.We stop the STLN or RSTLN iterations whenk�xk2 = kbk2 < tolkA��k2 = kAestk2 < tol;where b is the blurred image, Aest the blurring matrix parameterized by the initialPSF estimate, and A�� the blurring matrix parameterized by the 
urrent PSF error��.For the p = 1 and p = 1 
ases we solved the linear program in Step 4.1 usingthe MATLAB fun
tion linprog.m with the larges
ale model employed. The fun
tionuses the LIPSOL [25℄ algorithm and is based on a primal-dual interior point method.Be
ause of limitations in the MATLAB interfa
e to LIPSOL, we were only able to setour stopping 
riteria to O(10�2) to O(10�3) 
ompared to toleran
es of O(10�6) forthe STLN experiments in [22℄; a smaller toleran
e 
aused LIPSOL to fail to 
onverge.Even with this diÆ
ulty, RSTLN gives better results than STLN.Our 
urrent implementation is restri
ted to fairly small images be
ause of thelarge number of 
onstraints in the linear program. While the a
tual 
onstraint matrixM passed into linprog.m is sparse, its fa
torization within the routine generally isnot. Hen
e, the LP solver as implemented in MATLAB is very memory intensive and
urrently restri
ts our test 
ases to images no larger than 100� 100.We 
omputed the following values in order to 
ompare STLN and RSTLN:bpert = kbnoisy � btruek2 = kbtruek2Apert = kAnoisy �AtruekF = kAtruekFxerr = kxre
 � xtruek2 = kxtruek2Aerr = k(A+E)re
 � AtruekF = kAtruekFberr = kbre
 � btruek2 = kbtruek2where xre
 is the re
overed image (in ve
tor form), (A+E)re
 represents the blurringmatrix parameterized by the re
overed PSF, bre
 is the result obtained from 
onvolvingthe re
overed image and PSF, and xtrue, Atrue, and btrue are the 
orre
t values, sothat Atruextrue = btrue: The values bpert and Apert represent the perturbed versionsof b and A, where bnoisy and Anoisy are the noisy versions of b and A with the additionof zero-mean Gaussian noise.



8 A. PRUESSNER and D. P. O'LEARY4.1.2. Comparison with Other Blind De
onvolution Methods. We 
om-pare RSTLN with two other blind de
onvolution methods: blind Lu
y-Ri
hardson,and the APEX/SECB method of Carasso.The blind Lu
y-Ri
hardson algorithm is an extension of the well-knownoriginal Lu
y-Ri
hardson method [13, 21℄. The original iterative method was derivedfrom Bayes' Theorem and assumes that the blurred image, the original image, and thePSF are (possibly non-normalized) probability density fun
tions. The most 
ommonand eÆ
ient implementation makes use of the FFT to 
ompute 
onvolutions. Thisimpli
itly imposes periodi
 boundary 
onditions on the image.The blind version is similar to the original method; ea
h iteration alternately usesseveral iterations of the non-blind algorithm to estimate a new PSF and then a newimage. It is generally more e�e
tive for images having many pixels and for imageswith fewer sharp edges, sin
e 
onvolution tends to smooth edge boundaries [9℄.The algorithm 
an be used without FFTs, but it is 
omputationally mu
h slowerand may produ
e ringing if the image does not have �nite support. But be
ause themethod has a probabilisti
 basis, any implementation must 
onserve energy. Thus, anon-periodi
 (for example, zero boundary 
ondition) implementation is useful only forimages having support stri
tly inside the image boundaries. Convolutions involvingimages with non-�nite support do not 
onserve energy and result in data being lostoutside of the original image boundary; this leads to ringing in the resulting images.The stopping 
riterion for MATLAB's blind Lu
y-Ri
hardson fun
tion de
onvblind.mis based solely on the input number of iterations. The user may spe
ify this total num-ber of iterations or use the default value of 10. Our non-FFT implementation is similarto the non-blind MATLAB routine de
onvlu
y.m, but lets the user spe
ify the totalnumber of iterations and, for ea
h, the number of Lu
y-Ri
hardson inner iterations toupdate the image and PSF estimates. We estimate the optimal number of iterationsby re
overing images using a wide variety of 
hoi
es and then 
hoosing the imageresulting in the smallest 2-norm error. For our 
omparison test 
ases, where our goalwas to show only general trends in the re
overed images, we often used a default of10 iterations, modifying this number as needed.Carasso'sAPEX/SECB method [1℄ 
an be applied to the 
lass of PSFs a whoseFFT, denoted by â(�; �), is of the form:â(�; �) = e��(�2+�2)�(4.1)where � and � are the respe
tive frequen
y 
oordinates. If the blurred image b = a
xis obtained by (periodi
) 
onvolution, then in the Fourier domainb̂(�; �) = x̂(�; �) � â(�; �)= x̂(�; �) � e��(�2+�2)� :(4.2)The idea behind the PSF identi�
ation method is to �t the fun
tion �j�j2� to thelogarithm of the Fourier transform of the blurred image and an estimate of the trueimage; see [1℄ for details. If the image or the PSF fails to meet ne
essary requirements,then su
h a �t will not be possible.4.2. Test 1. Our �rst test 
onsists of a 
ross of size 21� 21. The true PSF is aGaussian blur with varian
e 2.5, trun
ated to a support of size 11� 11.The blurred image was obtained by 
onvolving the original image and PSF, as-suming that pixel values outside the image are zero (zero boundary 
onditions). The



REGULARIZED STRUCTURED TOTAL LEAST NORM 9Test Case 1 xerr Aerr berrp = 2 STLN 1:19 3:97e�2 1:1e�3p = 2 RSTLN 0:39 4:10e�2 1:1e�3p = 1 STLN 0:97 3:99e�2 1:4e�3p = 1 RSTLN 0:44 4:00e�2 1:1e�2p =1 STLN 0:50 4:02e�2 5:5e�1p =1 RSTLN 0:45 3:98e�2 4:9e�1Table 4.1RSTLN Errors for p = 1; 2 and 1. We list the errors in the image x, the matrix A and theresidual error berr for the unregularized STLN and the RSTLN methods for ea
h of the norms. Forthe p = 1 and p = 2 norms the RSTLN re
overed image error xerr is mu
h smaller than for STLN.For p =1 the image error is near optimal and the error using RSTLN is only slightly smaller thanfor STLN.original and blurred images are shown in (A) and (B) of Figure 4.1. Random, zeromean 6-bit noise was added to the PSF to obtain the initial PSF estimate. Thisresulted in Apert = 3:99�10�2. Furthermore, 11-bit Gaussian noise was added to theblurred image, resulting in bpert = 1:10� 10�3.The errors resulting from the STLN and RSTLN methods for the di�erent p-norms are shown in Table 4.1. The 
orresponding images are shown in Figure 4.1, (C)through (H). From the error table we see that the use of RSTLN generally in
reasesthe error Aerr in the blurring matrix and the residual error berr. For the 1- and2- norms, however, the error xerr in the image estimate is 
onsiderably lower, so there
onstru
ted image is improved. For the p =1 norm, the image obtained from STLNwas near optimal, and all RSTLN experiments for nonzero values of the regularizationparameter � resulted in higher image errors.In Figure 4.2 we present the results of the blind Lu
y-Ri
hardson method (denotedby LR). In (A) we show results obtained by LR in re
onstru
ting images blurred withperiodi
 boundary 
onditions (6-bit noise added), using 20 outer iterations with 10Lu
y-Ri
hardson iterations in ea
h. The width of the 
ross is broadened due toblurring of the edges during the re
onstru
tion.In Figure 4.2 (B) through (F), we present the result of various attempts to re
on-stru
t the image with zero boundary 
onditions from Figure 4.1. In (B) we show theresult obtained by using 5 outer iterations with 10 Lu
y-Ri
hardson iterations ea
h,
omputing 
onvolutions using zero padded images. It is 
lear that the image is dis-torted and ringing is observed throughout. The other images are re
onstru
ted usingthe MATLAB-supplied implementation of blind Lu
y-Ri
hardson, whi
h we 
all M-LR. In (C) we show the M-LR result, beginning with the blur estimate as for RSTLN,and stopping after the MATLAB-default 10 iterations. We repeat this experiment in(D), but starting from a 
at PSF estimate (a matrix of ones of size 11 � 11). Inboth 
ases only poor re
onstru
tions are obtained. In (E) and (F) we show similarresults as in (C) and (D), ex
ept that the image was tapered using edgetaper.m,whi
h seeks to transform a nonperiodi
 image into a more periodi
 one by reblurringthe edges of an image with a suitable PSF. The reader is referred to [23℄ for details.We performed 50 and 100 M-LR iterations, respe
tively. The reader should note thatthe algorithm is not able to re
onstru
t data near the image boundary, although theinterior is adequately re
overed.The APEX/SECB method 
annot be applied to this image, be
ause it is too smallto yield enough data points.



10 A. PRUESSNER and D. P. O'LEARYTest Case 2 xerr Aerr berrp = 2 STLN 4:2895 4:03e�2 1:03e�2p = 2 RSTLN 0:5885 1:15e+0 9:20e�3Table 4.2RSTLN Errors for p = 2 for the large 
ross test 
ase. We list the errors in the image x, thematrix A and the residual error berr for the unregularized STLN and the RSTLN methods for p = 2.For the RSTLN (� = 2:5) re
overed image error xerr is mu
h smaller than for STLN.Test 2. Our next test 
onsists of a somewhat broader 
ross image of size 41� 41with a nonzero 
ross width of 5. The image was blurred with an 11 � 11 Gaussian.Gaussian 8-bit noise was added to the blurred images, resulting in bpert = 1:05�10�2and 9:8� 10�3, respe
tively. The blur estimate was obtained by adding 6-bit noise tothe original blur, resulting in Apert = 3:91� 10�2.Again, we present results 
omparing the STLN, RSTLN, LR, and M-LR methods,as well as Carasso's APEX/SECB method. In Figure 4.3 we show the original andblurred images in (A) and (B). In (C) we show the STLN 2-norm solution (thatis, without any regularization) and in (D) the best RSTLN 2-norm solution withregularization (using � = 0:75). (The RSTLN p = 1 and p = 1 were not 
omputeddue to the expense of solving the linear programming problems.) The resulting STLNand RSTLN errors for the 2-norm are shown in Table 4.2.For APEX/SECB, the original image in (A) was blurred using periodi
 boundary
onditions as in Equation (4.2) using parameters � = 0:075 and � = 1. This resultedin a blurred image nearly identi
al to (B). Again, 8-bit noise was added to the blurredimage. In subplot (E) we show the results of using APEX/SECB for PSF identi�
ationand subsequent deblurring of the periodi
 noisy blurred image. The APEX PSFidenti�
ation pro
edure resulted in parameter estimates of �est = 0:0749 and �est =0:9756, whi
h are fairly 
lose to the true parameter values. Unfortunately, this methodwas unsu

essful for images blurred with zero boundary 
onditions and noise added.In (F), we show the APEX optimization fun
tion for di�erent s
alar value imageestimates. The non-smooth family of 
urves 
orresponds to the optimization fun
tionfor di�erent s
alar estimates for the unknown image quantity log jf̂(�; 0)j if the naturallogarithm is applied to the right and left hand sides in Equation 4.2 and when a noisyzero boundary 
ondition blurred image is used. The 
urves do not have the properform and thus do not permit a 
urve �t of the form �j�j2� . For this 
ase no properPSF 
an be found.In Figure 4.4 we present results of the blind Lu
y-Ri
hardson algorithm. In (A)we see that the algorithm gives a good result for periodi
 blurs, but the re
onstru
tionfor a zero boundary 
ondition exhibits ringing and distortion. These results used 50outer iterations, ea
h using 10 Lu
y-Ri
hardson iterations. In (B) we give the resultfor the zero boundary 
ondition image using the zero boundary implementation. Wethen apply the M-LR algorithm to a noisy zero boundary blurred image. In (C) and(D) we show results using no tapering, 25 iterations, and using an initial guess ofeither the RSTLN blur estimate or a matrix of ones of size 11 � 11. Both resultsexhibit ringing due to improper boundary 
onditions. In (E) and (F) we show M-LRresults with tapering, using 10 outer iterations and initial blur estimates as in (C)and (D). The re
onstru
tions are not useful.4.3. Test 3. Our �nal 
omparison test 
onsists of an image obtained from theNASA Image Ex
hange (http://nix.nasa.gov). It shows the 
orona of the sun and



REGULARIZED STRUCTURED TOTAL LEAST NORM 11Test Case 3 xerr Aerr berrp = 2 STLN 20:01 2:47e�2 2:19e�2p = 2 RSTLN 0:9265 3:8483e+0 6:71e�1Table 4.3RSTLN Errors for p = 2 for the sun test 
ase. We list the errors in the image x, the matrix Aand the residual error berr for the unregularized STLN and the RSTLN methods for p = 2. For theRSTLN (� = 75) re
overed image error xerr is mu
h smaller than for STLN.a large solar eruption. We trun
ated the image to size 99 � 99 and redu
ed it togray-s
ale.Again, the image was blurred with a Gaussian PSF of size 11� 11 in two ways:one assuming zero values for pixels outside the image, and the other assuming aperiodi
 image. A 6-bit noisy version of the zero boundary 
ondition blurred imagewas obtained by adding zero mean Gaussian noise. This resulted in bpert = 2:20�10�2.For the periodi
 image no noise was added to the blurred image. The blur estimatewas obtained by adding 6-bit noise to the original blur (Apert = 2:46� 10�2).In Figure 4.5 (A) we show the original and in (B) the noisy blurred image usingzero boundary 
onditions. In (C) we show the STLN result using the 2-norm. Dueto the high noise level in both the blurred image and the blur estimate, no usefulresult was obtained. In (D) we show the best result using the RSTLN method witha regularization value of � = 75. We remark that in this 
ase the algorithm did not
onverge to a toleran
e of 10�2. Instead we stopped prematurely after 10 iterations.A larger number of iterations whi
h did a
hieve the desired toleran
e produ
ed animage of lesser quality 
ontaminated by severe ringing.In Table 4.3 we 
omputed the resulting errors for the STLN and RSTLN methods.Although Aerr and berr are in
reased for RSTLN with respe
t to STLN, 
learly theimage error is drasti
ally redu
ed using the RSTLN method.For the APEX/SECB method the image was blurred with a Gaussian blur usingperiodi
 boundary 
onditions and parameters � = 0:01 and � = 1 as in Equation(4.2). This resulted in a blurred image very similar to the one in (B). Noise (6-bit)was added to the blurred image. Using the APEX PSF identi�
ation method, a
urve �t to the optimization fun
tion was done, resulting in parameter estimates of�est = 0:0108 and �est = 1:028. These are fairly 
lose to the true PSF parameters. In(E) we show the APEX/SECB re
overed image using the noisy blurred image withperiodi
 boundary 
onditions. In (F) we show the fun
tion to be �t using the noisyimage with zero boundary 
onditions. We plot the fun
tion using di�erent s
alarestimates for the original image 
omponent in Equation 4.2. None of the fun
tionshave the proper form and a suitable 
urve �t of the form �j�j2� is not possible. Forthis 
ase no useful PSF was found.In Figure 4.6 we show the results from the various Lu
y-Ri
hardson experiments.In subplot (A) we have the LR result using a periodi
 image using our own periodi
LR implementation. We performed 10 iterations, ea
h with 10 Lu
y-Ri
hardson iter-ations. In (B) we show the result using the zero boundary implementation and a zeroboundary blurred image. We performed outer 15 iterations, ea
h with 10 iterations toestimate the new PSF and image. Severe ringing is present. In (C) and (D) we showthe non-tapered M-LR results using the RSTLN blur estimate, an 11� 11 matrix ofones for the blur estimate and a zero boundary blurred image. 25 outer iterationswere performed, with 10 iterations ea
h. For the result in (C) ringing is observednear the image boundary, whereas in (D) the image is severely distorted. Finally, in



12 A. PRUESSNER and D. P. O'LEARY(E) and (F) we obtained results using M-LR and a tapered noisy blurred image usingthe two di�erent initial blur estimate types. For the result in (E) 25 iterations wereperformed whi
h produ
ed reasonable results. The result in (F) was obtained after10 iterations with less favorable results.5. Con
lusions. We have presented th RSTLN algorithm for blind de
onvolu-tion. Like the STLN method, RSTLN preserves any aÆne stru
ture in the matrix,and the user has the 
hoi
e of minimizing the error for the 2-norm or for other normssu
h as the 1 and 1 norms. The use of norms other than the 2-norm leads to goodimage re
overy, although the 
ost is substantially higher.In 
ontrast to other methods, su
h as that of Carasso's APEX/SECB, the RSTLNmethod does not depend on having a periodi
 image. Ringing in the re
onstru
tedimages is less of a problem. Therefore, we 
an apply the RSTLN method for arbitraryboundary 
onditions, for example zero (Diri
hlet), Neumann (data outside of theimage boundary is a re
e
tion of the 
orresponding data inside), or periodi
.A
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20Fig. 4.1. RSTLN - Cross (noise, Gaussian blur). Test 1, results of STLN and RSTLN methodsusing p = 1; 2; 1-norms. Random noise is present in the blurred image. The blur estimate is thetrue blur plus the addition of 6-bit noise so that Apert = 3:99�10�2. Random, zero mean Gaussian11-bit noise was added to the blurred image so that bpert = 1:10 � 10�3. (A) Original image- 21 � 21; (B) Noisy blurred image (zero BC); (C) STLN (1-norm) solution with tol = 10�2.Solution is near optimal: 13 iterations; (D) RSTLN (1-norm) re
overed image with tol = 10�2,regularization parameter � = 0:001, 12 iterations. (E) STLN (2-norm) solution with tol = 10�3,22 iterations; (F) RSTLN (2-norm) re
overed image with tol = 10�3, � = 0:05, 27 iterations; (G)STLN (1-norm) solution with tol = 10�2, 13 iterations; (H) RSTLN (1-norm) re
overed image withtol = 10�2, � = 0:5, 50 iterations.
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20Fig. 4.2. Test 1, Lu
y-Ri
hardson results. (A) periodi
 LR implementation using a periodi
blurred image, 20 LR iterations ea
h with 10 iterations; (B) zero boundary 
ondition LR imple-mentation using a zero BC blurred image, 5 LR iterations ea
h with 10 iterations; (C) M-LR resultwithout tapering and using the RSTLN initial PSF estimate, 10 iterations; (D) M-LR result withouttapering and using an 11� 11 matrix of ones for the initial PSF estimate, 10 iterations; (E) M-LRresult with tapering and using the RSTLN initial PSF estimate, 50 iterations; (F) M-LR result withtapering and using an 11� 11 matrix of ones for the initial PSF estimate, 100 iterations
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Fig. 4.3. Test 2, RSTLN and APEX/SECB results. The image was blurred using zero boundary
onditions. 8-bit noise was added to obtain the image in (B), resulting in bpert = 1:05� 10�2. Theblur estimate was obtained by adding 6-bit noise to the original blur, resulting in Apert = 3:91�10�2.(C) STLN 2-norm solution, tol = 10�3, 26 iterations; (D) Best RSTLN 2-norm solution, � = 0:75,tol = 10�3, 25 iterations; (E) APEX/SECB re
overed image using a noisy periodi
 image. Theimage was blurred as in Equation (4.2) using parameters � = 0:075 and � = 1. The re
overed PSFparameter estimates are �est = 0:0749 and �est = 09756 using a s
alar image 
omponent estimateof K = 2:2. (F) APEX optimization fun
tion for a zero BC noisy image. Sin
e the fun
tion doesnot have the proper form �j�j2�, no �t 
an be obtained. In this 
ase no PSF was found.
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Fig. 4.4. Test 2, Lu
y-Ri
hardson results. (A) Periodi
 LR implementation using a periodi
blurred image, 50 LR iterations ea
h with 10 iterations; (B) zero boundary LR implementation usinga zero BC blurred image, 50 LR iterations ea
h with 10 iterations; (C) M-LR result without taperingand using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an11�11 matrix of ones for the PSF estimate, 25 iterations; (E) M-LR result with tapering and usingthe RSTLN blur estimate, 10 iterations; (F) M-LR result with tapering and using an 11�11 matrixof ones for the PSF estimate, 10 iterations
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Fig. 4.5. Test 3, RSTLN and APEX/SECB results. (A) Original image - 99 � 99; (B) Noisyblurred image (zero BC); (C) STLN (2-norm) solution with tol = 10�2, 2 iterations; (D) RSTLN(2-norm) re
overed image with initial tol = 10�2 and regularization � = 75. The experiment wasstopped prematurely after 10 iterations. While larger number of iterations did a
hieve the desiredtoleran
e, the results were distorted by ringing; (E) APEX/SECB re
overed image. Image is blurredassuming a periodi
 image as in Equation 4.2 with parameters � = 0:01 and � = 1. (F) Plotof optimization fun
tion if the image is blurred using zero BC. The di�erent plots represents theoptimization fun
tion for di�erent s
alar estimates for the unknown quantity log jf̂(�; 0)j, wheref̂(�; �) denotes the normalized FFT of the original image f . Sin
e none of the 
urves possess theproper shape, no useful PSF 
an be found.
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90Fig. 4.6. Test 3, Lu
y-Ri
hardson results. (A) Periodi
 LR implementation using a periodi
blurred image, 10 LR iterations ea
h with 10 iterations; (B) zero boundary LR implementation usinga zero BC blurred image, 15 LR iterations ea
h with 10 iterations; (C) M-LR result without taperingand using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an11�11 matrix of ones for the PSF estimate, 10 iterations; (E) M-LR result with tapering and usingthe RSTLN blur estimate, 25 iterations; (F) M-LR result with tapering and using an 11�11 matrixof ones for the PSF estimate, 10 iterations


