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Abstract

Let Ax,k=1,...,mbe nXn Hermitian matrices and let f : C* —
IR™ have components f*(z) = z¥ Az, k=1,...,m. When n > 3 and
m = 3, the set W(Ay,...,An) = {f(z) : ||z|| = 1} is convex. This
property does not hold in general when m > 3. These particular cases
of known results are proven here using a direct, geometric approach. A
geometric characterization of the contact surfaces is obtained for any
n and m. Necessary conditions are given for f(z) to be on boundary of
W(A1,...,An) or on certain subsets of this boundary. These results
are of interest in the context of the computation of the structured
singular value, a recently introduced tool for the analysis and synthesis

of control systems.
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1 Introduction

Let Ax,k = 1,...,m, be n X n Hermitian matrices and let f : C* — R™
have components f*(z) = z# Ayz, k = 1,...,m. The generalized numerical
range of matrices Ay, ..., Ap is the set W(Ay,...,An) = {f(2) : ||z|| = 1},
a subset of R™ (e.g., [1-3]). It has been long known that, when m = 2, this
set is always convex 1] and that, when m = 3, it still has a convex boundary
[1,4]. Here a set is said to have a convez boundary if its intersection with each
of its support hyperplane is convex [1,2,4]. More recently, it was shown [5-7],
as a particular case of a more general result, that the generalized numerical
range is still convex when m = 3 and n > 2, but that this property fails to
hold in general if m > 3 or n = 2. In this note, a direct, geometric proof of
convexity is given for the case m = 3, n > 2. For m > 3 or n = 2, a canonical
family of examples is exhibited where W (A, ..., An) is not convex. For any
m and n, a geometric characterization of the intersections of W(Ay, ..., An)
with its supporting hyperplanes is derived. Necessary conditions on z are
given for f(z) to be (i) on the boundary of W(Ay,...,An), (%) on the
intersection of this boundary with the boundary of the cone W(Al, ceiy Am)
it generates and (447) on a certain type of ‘corner’ of W(Ay, ..., Ap). These
results are of interest in the context of the computation of the structured
singular value, a quantity recently introduced by Doyle [8] as a tool in control
system analysis and synthesis (see [9]).

We will make repeated use of the concept of 3D-ellipsoid, defined as
follows.
Definition 1. We call 8D-ellipsoid the image in R™ of the unit sphere in R3

under an affine map. A 3D-ellipsoid is degenerate if it is entirely contained



in a two-dimensional affine set. {J
With this definition, a 3D-ellipsoid is a compact set entirely contained in a
subspace of R™ of dimension three (the range of the affine map). It can
consist in either the boundary of a nondegenerate ellipsoid, a solid ellipse, a
line segment, or a point.

In the sequel, 0 B is the unit sphere in C*, R and & indicate the real and

imaginary parts and, for any set S, coS denotes its convex hull.

2 Main Results

The following two propositions hold for any m. The first one is a straight-
forward extension of a result in [8].
Proposition 1. If n = 2, W(Ay,...,Ap) is a 3D-ellipsoid. The kth coor-
dinate of its center is trace(Ay)/2.

Proof. For k=1,...,m, let

ar b
Ar=| _ ,
by ¢k
where ag, ¢x € R, by € €, and by, is the complex conjugate of by. The unit

sphere in €% can be expressed as

. cosf
e = exp(id) 0,6,€R 1)
sin § exp (i)

where 1 is the square root of -1. For € as in (1), elementary manipulations

give
cos(26)
efl Age = trace2(Ak) 2k ; ok Rbp  — k| | sin(26) cosy
sin(20) sin )



cos(26)
Since sin(20) cosy | : 0,v € R ; is the unit sphere in R3 , the claim is

sin(20) sin¢
proven. -

Proposition 2. If n > 3, W(4y,...,An) is not a nondegenerate 3D-
ellipsoid.
Proof. If W(Ay,...,Ap) is a singleton, the claim holds. Thus suppose it is

not, i.e., suppose there exist y,2' € B and kg € {1,...,m} such that
yT Apy # 2 Ay, 2. (2)
Since n > 3, there exists an z € d B such that
dly=z"7=0
and, without loss of generality (in view of (2)),

a:HAkO:c Z;é yHAkoy. (3)

In view of (2), continuity implies that there exists a z € d B in the subspace

of C" generated by y and 2! such that
zHAkoz -‘,é mHAkoa:

and

zHAkoz # yHAkOy. (4)

Now consider the sets
Wy =W(z yTAilz y],..., [z 4] Az ¥])

and

W, =W([z 2|F Ajz 2],..., [z 2|7 A 2]).



Since both y and z are orthogonal to z, both W, and W, are subsets of
W(Ay,...,Ap). By Proposition 1, both are 3D-ellipsoids and their centers
have as koth coordinate respectively (zf A,z + y¥ Ag,y)/2 and (2% Ag,z +
2 Ay, 2) /2, so that, in view of (4), the two sets are distinct. Thus at least
one of them is a proper subset of W(Ay, ..., Ap). Since the known properties
of y and z are identical, there is no loss of generality in assuming that this
set is Wy,. Also, clearly, W, passes through the two points in IR™ whose
kth coordinates are = Ayz and y7 Axy. Thus, in view of (3), W, is not
a singleton. Since clearly a nondegenerate 3D-ellipsoid cannot have any
3D-ellipsoid but singletons as proper subsets, the proof is complete. L7
In proving the next proposition, we will make use of the following lemma,
which extends a result in [8]. It holds for any n and m.
Lemma 1. Given any u,vg,v; € W(Ay,...,Ap), there exists a point-to-
set map Eyyye, : [0,1] — 2]Rm, continuous in the Hausdorff topology, such
that u,vp € Eyyw, (0) and u,v; € Eyyyu, (1) and such that for all ¢ € [0, 1],
Euou, (t) is a 3D-ellipsoid contained in W(Ai,..., An).
Proof. First, suppose that vg # u # vy, and let z, yo, y1 € 0 B be unit vectors
such that, for k = 1,...,m, uf = zH Az, vk = yF Aryo, v¥ = v Aeyr.
Clearly, {z,yo} and {z,y;} are both linearly independent over € and the

vectors yj and y}, given by

1
) H
Yo = Yo — T Yo)x
= oo~ Gaapel )
and
1
! H
= Y1 — 2 Nnjx
= [ e & (@ n)e)

are both orthogonal to = and have unit length. Let y : [0,1] — 8B be any
continuous map such that y(0) = y§ and y(1) = y} and such that, for all



t € [0,1], y(t) belongs to the subspace of C" generated by y§ and yj. Next,
0 1

for k=1,...,m,let By :[0,1] — ©**? be the continuous map defined by
Be(t)=[=z yt) 1Al =z y(t)] Vte[0,1].

Proposition 1 implies that, for each t € [0,1], W (By{t),..., Bn(t)) is a 3D-
ellipsoid, say Fyyyu, (t). It is easily checked that E.,,,, satisfies the required
conditions. Finally, if u = v (resp. u = v1), pick Eyyyv, to be the constant
map whose value is any 3D-ellipsoid contained in W (A4, ..., A,,) and passing
through v and v; (resp. u and vo). [J
Proposition 3. If n > 3, W(A;, Az, As) is convex.
Proof. Let u,v € W(A;, A2, As) and let E C WAy, Az, As) be a 3D-ellipsoid
passing through u and v (see Lemma 1). We will show that the convex hull
of E, denoted by coE, is contained in W (A;, Az, Az), thus proving convexity.
If E is degenerate, the result is clear. Thus assume E is nondegenerate. In
view of Proposition 2, E must be a proper subset of W(Aj, As, As). Thus
let & € W(A1, A2, As), & & E, and let w be any point in coE. We prove
that w € W(A;, Az, A3). If w = @, the claims holds. Thus suppose that
w # . Let wo and w; be the intersection points with E of the straight
line through w and @& and without loss of generality suppose that w lies
between @ and wg. Let Eguow, : [0,1] — 2R™ be as specified by Lemma
1. Clearly w € coEgyyw,(0) and w ¢ coEpwow; (1) Since Eguow, is a
continuous map, there must exist a t € [0, 1] such that w € Eguygw, (t). Thus
w €W (A1, Az, 43). [

A canonical family of examples is easily constructed, showing that Propo-
sition 3 cannot be extended to the case of more than three matrices. More

precisely, for any m > 4, n > 2, one can find matrices Ay, ..., Am such



that W(A;,..., An) does not have a convex boundary {and thus is not con-
vex). The construction is as follows. For k = 1,...,m — 1, let By € €¢**?
be Hermitian matrices such that W (B, ..., Bp—1) is a nondegenerate 3D-
ellipsoid (see Proposition 1). Then, for k = 1,...,m — 1, let A; € C™"
be Hermitian matrices such that A, has Bj as its top left corner and let
Ay, = diag(oy,...,om) With 01 = 03 > 03 > ... > op. It is easily
checked that the intersection of W(Ay,..., Ap) with its supporting hyper-
plane {u € R™ : u™ = ¢y} is an R™-imbedding of W (B, ..., Bs-1), which
is not convex.

Using the construction just described, the following proposition can be
easily proved.

Proposition 4. The intersection of W(Ay,..., Ap) with any of its sup-
porting hyperplanes is an IR™-imbedding of the generalized numerical range
of some matrices. ]

It is easy to see that, for any m and n, points f(z) on the intersection
of W(Ay,...,Ap) with any supporting hyperplane are characterized by the
fact that the corresponding z is an eigenvector to the smallest eigenvalue
of 37, wkA; where the w*’s are the components of a vector orthogonal
to the hyperplane, pointing toward W(Ay,..., An). This fact is used by
Doyle to construct the projection of the origin on W(Ay,..., An) when
W(Aj,...,An) is convex ([8], see also [10]). Below, we derive properties of
any point on the boundary of W(Aj, ..., An) as well as properties of points
on certain subsets of this boundary.

Proposition 5. If z € 9B is such that f(z) is on the boundary of
W(Aji,...,An) then there exists a direction w € R™ such that z is an

eigenvector of ) ;v w*A;. Moreover (7) if ¥ is any supporting hyperplane to



W(Ay,...,Ap) at f(z), then the direction orthogonal to ¥ is a valid choice
for w. (4) if f(z) is on the boundary of any cone containing W (A, ..., An)
(or, equivalently, of the cone generated by W(Ai,..., Am)), then w can be

chosen in such a way that

m
Z kakx =0.
k=1

(#41) if there exists no subset of W(Ay,. .., Ay,) containing f(z) that is locally
homeomorphic to R™~ (@1, 1 < ¢ < m, around f (z), then there is a ¢-
dimensional subspace § of V = {A € €™ : A = T, wF Ay, w' € R} such
that all matrices in § admit z as an eigenvector.

Proof. Suppose that z € 8B is such that f(z) is on the boundary of
W(Ay,..., Am). Let

8B, ={z€dB | z¥z=0}
and, for k=1,...,m, let y; be given by
— H
yr = Apz — (27 Agz)2. (5)

Clearly, for any z € B,,

yH 2 = 2t A2 (6)
Next, for any 6 € R, z € 0 B, define
f=(8,2) = f(cosbz +sinbz)
:z:HAlz
= cos?0f(z)+sin?f(z) + 2cosfsin IR

zH Az



In view of (6), we can write

zH Az
df.(0 R
:02) _op| | =am|
00 ]
zH A,z
where
Ryf  Syf
M= . .
Ryp, Syh
Let

F:{é—[%%—z)|zeaBz}.

Since for all k, yx € 9 B;, the ellipsoid G given by

w O
G=<2M MTy | |MTb||=1, be R™
0 -1

n

is a subset of F. Clearly, since f(z) is on the boundary of W(A4;,...,A4,), F
cannot contain any neighborhood of the origin, so that G must be contained
in an m — 1 dimensional subspace of R™. This implies that M is singular,
i.e., 1, wky, = 0 for some nonzero w € R™. Thus it follows from (5) that
z is an eigenvector of 37 ; w* A as claimed. The corresponding eigenvalue
is 27 (M, wkAg)z. If ¥ is any hyperplane supporting W (Ay, ..., Ayn,) at
f(z), then G must be contained in ¥ and (%) easily follows. Consider now,
the cone C generated by the ellipsoid f(z) + G and suppose that f(z) is on
the boundary of a cone containing W(4,,...,4,,). Clearly, since G C F,
the ray r = {af(z) : @ > 0} cannot be an interior ray of coC. Since r passes

through the center of every section of C, it implies that the interior of coC



is empty. Thus, C must be entirely contained in a hyperplane ¥ passing

through the origin. Since r belongs to ¥, it follows that
m
Z whf(z)=0,
k=1

ie.,
m
(> wkA)z=0
k=1

for any w normal to ¥. Claim (4) follows. Finally, if no subset of
W(A1,...,Am) containing f(z) is homeomorphic to R™ (1) 1 < ¢ < m,
around f(z), G must be contained in subspace T of dimension m — ¢. The
subspace § = {A €V : A=Y, wFA, wlT} satisfies claim (¢z). IJ
Corollary. If W(A;, A;) is nonsmooth at a boundary point f(z), then z is
an eigenvector of both A; and A,. TJ

The well-known fact that such z is an eigenvector of Ay + jA; [3,11] is
a direct consequence of this corollary.
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