THESIS REPORT

Master’s Degree

A Systems Engineering Approach to the
Development of an Information System for
Creating ISO 9000 Quality Documentation

by A.H. Zhong
Advisor: G.M. Zhang

M.S. 94-1

‘ INSTITUTE FO&SYSTEM&L{ESEARCH
‘ Sponsored by
‘ ‘ the National Science Foundation

Engineering Research Center Program,
‘ the University of Maryland,

‘ Harvard University,
‘ and Industry

Abstract

Title of Thesis: A Systems Engineering Approach To
The Development Of An Information System
For Creating ISO 9000 Quality

Documentation
Name of Degree Candidate: Anna Hua Zhong
Degree and Year: Master of Science, 1994
Thesis Directed By: Dr. Guangming Zhang

Assistant Professor
Institute for Systems Research &
Department of Mechanical Engineering

ISO 9000 is a series of international quality standards developed by the
International Organization for Standardization (ISO) in 1987. It provides a
comprehensive set of generic standards that applies to all phases of the product
development cycle, including design, manufacturing, and service. Since its
establishment, ISO 9000 has gained widespread acceptance by companies as an
integral part in achieving total quality management. More and more companies are
registering to ISO 9000 to show their commitment to quality.

One of the key components in the ISO 9000 certification process is the
quality manual, which deals with the company's business procedures ranging from
design to service. With rapid advancements of computer technologies, the task of

producing such a quality manual can be done more efficiently with the help of a

well-designed information system. This thesis presents the design and
implementation of such an information system where systems engineering
principles are incorporated. A survey of relevant information including quality,
ISO 9000, information system, database, human factors, user interface, and
tradeoff analysis 1s also presented.
Three unique features of the developed information system are:
¢ System architecture, which follows the basic framework of the ISO 9000
standards in terms of data storage, user interface and report generation.
¢ Microsoft Windows and Visual Basic development platform, which makes
the prototype ideally suited for small companies such as Compression
Telecommunications Corporation (CTEL), an industry sponsor.
¢ Relational database approach, which offers flexibility and makes the
prototype adaptable to the needs of small companies.
The information system prototype developed in this thesis work has been used to
produce a quality manual for Compression Telecommunications Corporation

(CTEL), and will be used in the ISO 9000 registration process.

A Systems Engineering Approach To The Development Of
An Information System For Creating ISO 9000

Quality Documentation

by

Anna Hua Zhong

Thesis submitted to the Faculty of the Graduate School of
The University of Maryland in partial fulfillment of
the requirements for the degree of
Master of Science
1994

Advisory Committee:

Assistant Professor Guangming Zhang, Chairman / Advisor
Associate Professor Thomas Fuja

Associate Professor Michael Pecht

Professor Steven Spivak

Special Thanks To

Dr. Zhang, Michael, and Wing

it

Table of Contents

ion Page
Listof Figurescccieitiiiiinnnnrenarssnssanssoassnns vi
Listof Tablesuveeirreeeetsnsessnsancesssssossasnsane vii
Chapter1 Introductioncovvvennnessncnnnnnssnsns 1
1.1 Overview of ISO 9000t 1
1.2 The need for an information systems approach 3
1.3 Scope and organization of the thesis 6
Chapter 2 Quality Management And ISO 9000 8
2.1 Total quality management, 8
2.1.1 Definitionof quality i 8
2.1.2 Historyofquality i, 9
2.2 TheISO 9000 series of standardsccoovui.... 10
2.2.1 Historyof ISO9000 10
222 Elementsof ISO9000 11
2.23 The certification process of ISO 9000 12
Chapter 3 The Evolution Of Information Systems 15
3.1 Theevolutionof computersccoiiiini.... 15
3.2 The evolution of computer programming languages 19
3.3 The evolution of database systems 20
3.4 The evolution of the design and development of information
Y S OIMIS . e e 23
Chapter 4 The Systems Engineering Approach To Information
Systems Design And Development 24
4.1 OVEIVIEW ..t 24
4.2 The systems approach to information systems design 25
4.3 The waterfall model of software development 27
4.4 The spiral model of software development 29
4.5 Box-structured design of information systems 30

il

4.6 The clean-room approach to system development 33

4.7 Object-oriented design of information systems 34

4.8 Relational database designc..... it 36

49 Userinterfacedesign ...t 38

49.1 Definition of userinterface 38

492 Humanfactorst 38

493 Windows and dialogboxesol 42

494 MessagebDOXES ..ottt e 44

495 Fontsandcolor i 46

4.9.6 Helpfacilityand tutorial oL 47

4.10 Trade-offanalysist 48

4.10.1 Systemeffectiveness ...ttt 48

4.10.2 Costeffectivenesscoiiiiiiiiiiiiiiinnnennns 48

4.10.3 Trade-off analysismethods 49

4.10.4 Trade-off analysis of information systems 50
Chapter S Design And Development Of The Information

System For ISO 9000 Quality Documentation 52

5.1 Requirements analysisc... i 52

52 DeSIBN ... 53

5.2.1 Conceptualdesigncciiiiiiiiiiiiiiiii.. 53

5.2.2 Central repository preliminary and detailed design 53

5.2.3 User interface preliminary and detailed design 60

5.2.4 Report generation facility design 81

5.3 Prototypedevelopment, 81

5.3.1 Development platform 81

532 Developmentdetail 82

Chapter 6 Conclusion And Recommendationscc00uses 83

6.1 Conclusion 83

6.2 Recommendationsoiiiiiiii 84

Bibliographyiiiiiiiiiiiiiiiiii it i it e s 86

Appendix Visual Basic SourceCodeciiiiennnnanss 89

Al Global ... 89

v

A2
A3
A4
AS
A6
A7
A8
A9
A10
All
Al12
A1l3
Al4

Main WINAOW .ttt et et e e e e 94

Company dialog boxcc i 100
Element-procedure dialogbox oL 104
Employee dialogbox 114
Method dialog box ...t 122
Resource dialog boxc.oiiii i 128
Skill dialog boxo 135
Procedure-other dialogboxl 141
Employee-skill dialogboxol 164
View procedure dialogbox 169
File-new dialogbox i 169
File list dialogbox i 171
Process quality manual dialogbox 174

r

3.1
4.1
42
43
44
45
4.6
5.1
5.2
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15

List of Figures

Page
A Simplified View Of A Database System 21
The Systems Approach i, 26
The Waterfall Model i 28
ABlack Box 31
AState BoX 31
AClear Boxo 32
Object-oriented Development Model 35
Entity-Relationship Diagram 55
Simplified Entity-Relationship Diagram 57
Main Window e 64
Company Dialog Box ... 65
Element And Procedure DialogBox 66
Procedure - Other Information DialogBox 67
View Procedure Text Dialog Box 69
Employee Dialog Box i 70
Employee - Skill Dialog Box il 71
Method Dialog BoX ...t 72
Resource Dialog Box i 73
Skill Dialog BOX ..o 74
Process Quality Manual Dialog Box 75
New File Dialog Box i 76
File Selection Dialog BoXcooiiiiiiiiiii.t 77

vi

4.1
4.2
43

5.1
5.2

List of Tables

Page
Functions performed for our information system 27
Comparison Of Auditory And Visual Presentations 40
Software Performance vs. Subsystem Design
Parameters 51
Database Tables And Fieldsot 60
Window Controls' Naming Conventions 63

vii

Chapter1 Introduction

1.1 Overview of ISO 9000

Today, quality has emerged as an important strategic weapon in the
marketplace. American industry is paying a close attention to this message and
responding to the challenge by providing quality products and services at
competitive prices. Quality engineering, which focuses on productivity and quality
improvements, has become an integral part of the management strategy.

Changes in the global economy have caused American companies to take a
hard look at the way they and others have done business in the past. Central to the
quality revolution are two issues that continue to receive increasing attention. One
of these is a growing awareness and understanding of the roles and responsibilities
of management in dealing with quality. The other is an increased understanding of
both the needs for and the concepts and methods required to move the quality
issue upfront into product planning and the engineering design process. ISO 9000
emphasizes both of these issues.

ISO 9000, a series of quality standards established by the International
Organization for Standardization (ISO), has gained widespread acceptance by
companies who wish to implement total quality management in products design,

customer services, process controls and management practices. More and more

companies are registering to ISO 9000 to show their commitment to quality, and
to prove to their customers that their products or services are of the highest
quality.

Companies of different sizes and different industries are involved in the
ISO 9000 registration process, both as registrars and registees. A recent survey
conducted in the eastern region of the United States reveals that a number of
quality registrars have actively worked with a significant number of clients for ISO
9000 certification. Big names such as AT&T and Dupont are among registrars in
this country. Companies such as IBM and Northern Telecom are proud to
advertise that their manufacturing plants are either already ISO 9000 registered, or
in the process of getting registered.

The United States national standardization bodies have also recognized
ISO 9000. In fact, the American National Standard Institute (ANSI) has urged
companies to speed up the ISO 9000 registration process in order to strengthen
the competitiveness of U.S. business in the world market. In April, 1993, the
National Institute of Standards and Technology (NIST), published a booklet
named "Questions and Answers on Quality, the ISO 9000 Standard Series, Quality
system Registration, and Related Issues". The booklet provides important

information on total quality management in general and ISO 9000 in particular.

1.2 The need for an information systems approach

Almost every company implements some sort of quality systems for design
and process control. These systems may succeed and fail due to various reasons,
but by far the single most common reason for the failure of a quality system is poor
documentation. Documentation is essential because it ensures a continuous
operation of the business by facilitating the transition of knowledge from one
employee to another. Therefore, ISO 9000 certification places significant
emphasis on quality documentation in terms of the quality manual.

The quality manual is a set of tiered documents detailing procedures a
company should follow in order to do its business, with the first tier covering high
level procedures and referring to lower tiers for specific information. The quality
manual for ISO 9000 is unique because it deals with the quality of underlying
process controls that are needed in the product development cycle. This
hierarchical structure of the quality manual lends itself to the utilization of
information systems.

Recent headlines on the information superhighway promise to change the
way companies do business. With features such as full internet connection,
hand-held computers, and video conferencing, companies can practically send and
receive information when they want it and where they want it. However, looking

at the way most companies do business today, simple word processors or even

typewriters are still commonly used to produce documentation including the
quality manual. Off-the-shelf word processors are inadequate and extremely
inefficient if companies want information to be at their fingertips. The following
are several of the reasons:
¢ Information retrieval is often difficult with word processing files because of
their sequential rather than hierarchical nature.
¢ A large number of redundant information may be stored in word processing
files. For example, if a certain employee, say John Doe, is responsible for
several ISO 9000 elements, his name may have to be repeated several places
in the files.
¢ Redundancy may cause problems in updating information in files. For
example, if say Mary Smith takes over John Doe's responsibilities, changes
have to be made in several places in the files accordingly.
¢ Most word processing files are not designed to be shared. Only one person
may edit a file at a time. For example, if say John Doe is updating
information for element 1, then Mary Smith can not do anything with
element 5 until John is done with the file, even though elements 1 and 5 may
be totally unrelated.
¢ Related information are isolated into separate word processing files, and that

makes information access difficult. For example, when employee

information, which resides in a separate file, is to be included in the quality
manual, a lot of cut-and-paste may be required.

¢ Mix-and-match information from different word processing files is difficult.
Suppose a consulting company that specializes in helping companies produce
quality manuals has a set of several model quality manuals. Now they want
to create a new one based on those existing models, with some information
from each. It may take a significant amount of time and effort to dig out
relevant information from previous word processing files and combine them
into one.

It is evident that word processors are inadequate for the purpose of
creating and maintaining quality manuals. Several of the issues mentioned above
such as redundancy and updating problems, can be solved with a database
information system. However, off-the-shelf database systems come with their own
problems:

¢ Database tables and queries need to be set up by someone who is familiar
with ISO 9000.

¢ Database information entry forms that come with the application may not be
suited for the purpose of creating quality manuals.

¢ Reports generated may not be in the format required for ISO 9000

registration.

What is needed then is an information system specifically designed to
generate quality manuals. This information system includes a central repository
designed to store ISO 9000 related information, a user interface that follows the
flow of the twenty elements in the ISO 9000 series, and a report generation facility
that produces reports in a format specified by ISO 9000. Such an information

system can be readily adapted into the information superhighway architecture.

1.3 Scope and organization of the thesis

The purpose of this thesis work is to design and develop an information
system for creating ISO 9000 quality documentation using the systems engineering
approach. Topics such as methodology, requirements, design, and prototype
development are discussed in this thesis. A prototype of the information system is
also created and used to help generating a quality manual for Compression
Telecommunications Corporation (CTEL), an industry sponsor.

This thesis presentation is organized into six chapters, an appendix, and a
separate document. Chapter one gives an introduction and a rationale for this
thesis work. Chapter two gives an overview of total quality management (TQM)
and ISO 9000. Chapter three gives an introduction of information systems and

their evolution.

Chapter four incorporates systems engineering principles in the design and
development of information systems. This chapter contains extensive information
on topics such as different approaches to information system design, database
design, user interface design, and tradeoff analysis. Examples of how these
systems engineering principles are used in the design of the information system are
also discussed in this chapter.

Chapter five deals with the design and development of the information
system. Theoretical information presented in previous chapters are incorporated
into the prototype design and development phase. Emphases are place on central
repository and user interface design. The central repository is designed using the
relational database approach, while the user interface utilizes industry standard
Microsoft Windows GUI based interface. Entitiy-relationship models, database
tables, and window layouts are included in this chapter. In addition, this chapter
covers conceptual design, preliminary design, detailed design, and development of
the prototype.

Chapter six concludes with a summary of the information system and
recommendations for future improvements. The appendix contains the Visual
Basic program source code for the information system prototype. The quality
manual for Compression Telecommunications Corporation (CTEL) is attached as a

separate document.

Chapter2 Quality Management And ISO 9000

2.1 Total quality management
2.1.1 Definition of quality

Quality is not a new concept. People have been talking about
craftsmanship for centuries. What does it mean by someone having craftsmanship?
It means that the person has the skills to produce quality products. Quality is an
attribute related to not only products but also people who produce those products.

Everyone has his or her own view of quality. Consumers view quality in
terms of what they expect as a fair value for what they have paid. Quality for
consumers is therefore related to function, price and service. Producers view
quality as a measure of conformance to specifications, standards or contractual
agreements. However, mere conformance is not adequate. Producers must also
provide assurance on the quality of their products' design and performance.
Attributes such as reliability, safety and maintainability should always be on
producers' quality list.

Quality is also about people. Producing quality products requires the
commitment of not only the employer but also employees. Take a look at
McDonald's hamburg outlets. No matter where one goes in the United States or

even around the world, one can always expect the same clean restaurant and

friendly and fast service. This is the kind of quality assurance that requires the

commitment of thousands of people involved.

2.1.2 History of quality

Many people credit the recent emphasis on quality to Deming, but the
modern concept of total quality management can be traced back to Frederick
Taylor, when he first separated management from the work force. Management
had the responsibility of setting standards, and workers performed activities based
on these standards. Independent inspections were held to weed out defective
products.

Quality is a relative term, and therefore must be measurable. The concept
of statistical quality control came about during World War II, when the quality of
weapon systems became an important consideration. After the war, concepts such
as probabilities, control charts, sampling and process designs were adapted into
civilian manufacturing processes. Scientists who made significant contributions in
the area of statistical quality control include H. F. Dodge, H. G. Roming and
Walter A. Shewhart.

Another important person in the history of total quality management
(TQM) is W. Edwards Deming, who is credited with the dramatic improvements in

the quality of Japanese products, and the recent emphasis on quality in the United

States. Deming, as a management consultant, devised fourteen points that were
followed faithfully after World War II by Japanese companies and now by a
number of American companies. In his fourteen points, Deming heavily
emphasized management involvement and employee commitment, thus

underscoring the importance of people in total quality management.

2.2 TheISO 9000 series of standards
2.2.1 History of ISO 9000

The ISO 9000 series of standards were originated in Europe in 1987, when
the International Organization for Standardization (ISO) published the series.
However, the ideas behind these standards date back to 1979, when Geneva based
ISO formed Technical Committee (TC) 176. TC 176's mission was to address
worldwide customer demands for product quality and the increasing confusion
resulting from differences in quality systems. When the ISO 9000 series of
standards were published in 1987, they incorporated inputs from many European
countries to produce a set of generic, consistent quality standards that can be
applied to not only manufacturing but also service industries. The EC92 trust,
which combined twelve European countries into one economic community,

became an important driving force for the adoption of ISO 9000 into the European

10

community, and subsequently the rest of the world including the United States,

Canada, and Japan.

2.2.2 Elements of ISO 9000
ISO 9000 was intended to be advisory in nature. Companies can devise

their own quality plans and procedures based on a set of guidelines. Because of its
broad scope, ISO 9000 can be applied to companies of different sizes and in
different industries. The basic ISO 9000 series is composed of five standards --
ISO 9000, ISO 9001, ISO 9002, ISO 9003, and ISO 9004. ISO 9000 and ISO
9004 are guidance standards designed to be descriptive in nature, while ISO 9001,
ISO 9002 and ISO 9003 are conformance standards with a prescriptive nature that
companies can register to. This thesis work is concerned with the ISO 9001 and
ISO 9002 standards. ISO 9001 is the most comprehensive in the sertes, and ISO
9002 applies to the manufacturing industry to which CTEL belongs. The
following is a list of the twenty elements in ISO 9001, and elements in ISO 9002
are a subset of those:

¢ Management Responsibility

¢ Quality System

¢ Contract Review

¢ Design Control

11

¢ Document Control

¢ Purchasing

¢ Purchaser-Supplied Product

¢ Product Identification and Traceability
¢ Process Control

¢ Inspection and Testing

¢ Inspection, Measuring and Test Equipment
¢ Inspection and Test Status

¢ Control of Nonconforming Product

¢ Corrective Action

¢ Storage, Packaging and Delivery

¢ Quality Records

¢ Quality Audits

¢ Training

¢ Servicing

¢ Statistical Techniques

2.2.3 The certification process of ISO 9000

Quality systems registration is the assessment and audit of a company's

products by a third party. There is recently an increasing number of quality

12

registrars who offer the services of ISO 9000 certification. The certification
process often involves an initial on-site visit by a team from the registrar to
document facility and process compliance to the standard. If the registrar believes
that the company conforms to the standard, the company is then registered to one
of the prescriptive standards in the series -- ISO 9001, ISO 9002 or ISO 9003.
Registration is often granted for a period of three years. During the 3-year period,
the registrar will conduct additional on-site surveys and inspections.

Since large companies often have a number of manufacturing sites, ISO
9000 allows the separate certification of different sites. This is so that if one site
fails the inspection, the other sites may still be certified. The company may, of
course, choose to register several sites simultaneously.

The certification process usually involves the following six steps:

[

Application -- The company initiates the registration process.

¢ Document review -- The registrar reviews the company's process
documentation, often called the quality manual.

¢ Pre-Assessment -- The registrar conducts a small audit designed to point out
the company's major deficiencies so that the company may correct them
before the assessment step.

¢ Assessment -- The registrar conducts a complete audit to determine whether

the company will be registered.

13

¢ Registration -- The company will receive one of three possible outcomes -
approval, conditional or provisional approval, or disapproval.
¢ Surveillance -- During the three year registration period, the registrar will
conduct on-site inspections to ensure that the company conforms to the
standard. These inspections are often held in 6-months intervals. At the end
of the registration period, the company may decide whether to register again.
Therefore, in order to be ISO 9000 certified, a company must prepare a set
of documentation, and the most important documentation is the company's quality
manual. The task of producing such a quality manual can be done more efficiently

with the help of a well-designed information system.

14

Chapter 3 The Evolution Of Information Systems

3.1 The evolution of computers

The history of computer information systems started with the invention of
computers. The ancestry of modern computers can be traced back to the
seventeenth century, when machines capable of performing the four basic
arithmetic operations -- addition, subtraction, multiplication, and division, first
appeared. In 1642, the French philosopher and scientist Blaise Pascal built a
machine to automatically perform addition and subtraction. Later a German
philosopher and mathematician Gottfried Leibniz constructed a similar machine
capable of performing also multiplication and division.

An important contribution to the invention of computers is the use of
punch cards. Punch cards were originally developed to ease the task of weaving
multiple copies of patterned material. In 1801, Joseph Jacquard produced a
successful "programmable" loom in which all the power was supplied mechanically
and all the control via punch cards.

The next major step came when an Englishman, Charles Babage, designed
the Difference Engine and the Analytical Engine. The Difference Engine, like
earlier machines, was capable of performing only additions and subtractions.

However, using a mathematical technique know as finite differences, the

15

Difference Engine could be used to compute a large number of formulas --
polynomials, trigonometric functions, using just additions. The Analytical Engine,
designed a little bit later by Babage, was more of a general purpose device. It had
fundamentally the same components as modern computers, with input/output
devices, central processors, and storage devices

In the 1930s, after the invention of electricity, two persons -- Zuse and
Aiken, developed separately electromechanical computers. Zuse, a German
engineer, conceived the idea of a device that used mechanical relays or switches
which could be opened or closed automatically. This design necessitated the use
of a binary system. Zuse built a series of general-purpose program-controlled
computers, named from Z1 to Z4. At about the same time, Howard Aiken, a
physicist and mathematics professor at Harvard University, built an
electromechanical device named Mark I.

"Real" computers came about with the invention of vacuum tubes. During
World War II, to counter Germany's encryption device Enigma, the British
mathematician Alan Turing was given the responsibility of designing a decryption
device using vacuum tube technologies. The first such machine, named Colossus,
became operational in 1943,

Another famous vacuum tube computer was the ENIAC. The effort

started when John Vincent Atanasoff, an associate professor of physics and

16

mathematics at Iowa State College, designed a special purpose machine for solving
simultaneous linear equations. Since Atanosoff built the machine with the help of
his student Clifford Berry, the machine became known as the Atanasoff-Berry
Computer or the ABC. Later, John Mauchly and John Presper Echert, greatly
inspired by the ABC, built ENIAC at the University of Pennsylvania. The ENIAC,
completed in 1946, was believed to be the world's first general-purpose electronic
digital computer.

After working on ENIAC as a consultant, the mathematician John von
Newmann set out to work on the design of a new stored-program computer,
referred to as the IAS computer. The essence of the stored-program computer
was that programs can be stored in memory alongside data. The IAS computer
was the prototype of all subsequent general-purpose computers.

In the 1940s and 50s, computers were also commercialized. Eckert and
Mauchly built UNIVAC I and UNIVAC II. IBM Corporation introduced the 700
series of computers, which later established the company as a dominant computer
manufacturer.

Transistors marked the beginning of the second generation of computers.
In 1947, AT&T's Bell Laboratories invented transistors, and a few years later,

NCR, IBM, DEC all began building computers based on this new technology.

17

The third generation of computers appeared with the invention of
integrated circuit boards. Again, large companies such as IBM and DEC played
important roles in the development and commercialization of computers using
microelectronics technologies.

Later contributions to computer technologies included semiconductor
memory and microprocessors. Today, there are mainly three types of computers --
microcomputers, minicomputers and mainframes. However, computer
technologies are changing so fast even once overwhelmingly dominant companies
such as IBM and UNISYS are having trouble keeping up. The future direction of
computers is heading toward the integration of computers with other technologies
such as telecommunications. AT&T's latest commercials emphasized these trends
with previews of video phones, video conferencing devices, and voice recognition
devices, etc. Computer manufacturers are also teaming up with the entertainment
industry with a series of mergers to bring viewers multimedia entertainment and
in-house shopping among other things. Computers are getting smaller and more
powerful by the day. Latest entries in the hand-held computer arena include Apple
Computer's Newton, which weighs only a few pounds, fits in the palm of a hand,
but is capable of recognizing handwritings and sending faxes. Recent talks of the
information superhighway promise to connect all computers into a worldwide

network.

18

3.2 The evolution of computer programming languages

As computer hardware evolved from early mechanical devices to today's
integrated circuits, programming languages also evolved from early machine codes
to today's code generation tools. When programmers first started to program
computers, they literally had to tell the computers what to do using machine codes,
which were series of Os and 1s. Later assembly languages were developed so that
people could use some simple instructions such as "load" or "add," and a program
would translate these instructions into series of Os and 1s that the machine could
understand. The invention of high-level programming languages revolutionized
software development. Early high-level languages included FORTRAN, Lisp and
COBOL, and more recent ones included Pascal and Ada. High-level languages
enabled the development of large scale quality software using various techniques
and methodologies such as top-down design and structured programming. Recent
developments in this field include object-oriented programming languages, and
code generation tools.

As computer hardware gets smaller and more powerful, software
applications get larger and more extensive. Word processor applications such as
Word Perfect that used to fit on one or two low density diskettes now require ten

high density ones. Packed in these ten diskettes are functions that software

19

designers and users could only dream about ten years ago. An important feature is
the Graphical User Interface (GUI) support with menus, icons, and drag-and-drop.
Computer games have always been a good measure of software capabilities.
Games in the old days were text based, whereas now they use color graphics,
animation, and even multimedia. A computer game manufacture recently
announced that it will deliver its future products on CD-ROM s to include features

such as digitized movie images and sound tracks.

3.3 The evolution of database information systems
A database system is a special type of information system. Database

systems are repositories used to store information in an orderly fashion so that
users may access the information later. Databases may be defined by the functions
they perform. Any database systems, at the very least, should give users facilities
to perform the following functions:

¢ Adding files to the database

¢ Deleting files from the database

* Adding data into existing files

¢ Deleting data from existing files

¢ Updating data in existing files

¢ Retrieving data from existing files.

20

Databases may also be defined by their components. In order to perform
those functions mentioned above, a database system will need to have a number of
components, including hardware, software, data and users. The following picture

shows a simplified view of a database system:

Application DBMS End
programs users

Database

:
Bl

Figure 3.1 A Simplified View Of A Database System

The hardware components of a database consist of storage, I/O devices,
device controllers, and processors, etc. The software components are often
referred to as database management systems (DBMS). The function of a DBMS is

to shield users from the underlying hardware, and facilitate user operations. One

21

of the most important tasks that a DBMS supports is SQL operation, which
simplifies the task of data maintenance.

Another component of a database system is data. Data may be dedicated
or shared, depending on whether the system is single-user or multi-user. On a
single user system, only one user may access the data at a time, whereas on a
multi-user system, several users may access the same piece of data at the same
time. Obviously, on a multi-user system, some access control mechanisms need to
be built in.

The last component in a database system is user. There are two types of
users, applications programmers and end-users. Applications programmers write
programs that use database systems. They typically use programming languages
such as C or COBOL to perform operations through DBMS. On the other hand,
end-users do not normally access databases directly, instead they perform tasks
through applications programs.

There are several kinds of database architecture -- inverted list, hierarchic,
network, relational, and object-oriented. Each architecture has its advantages and
disadvantages. Inverted list and hierarchic systems were popular in the early days
of database systems due to their high access speed, but relational databases are
currently the most widely used because they are easy to maintain. Virtually all

database systems developed in the past few years are based on the relational

22

model. The latest development in database information systems is object-oriented
database architecture, which treats data not as rows and columns, but as objects.

However, object-oriented databases are still at early stages of development.

3.4 The evolution of the design and development of information systems

Early information systems were small and could often be designed and
developed by a small number of programmers. Persons who wrote the programs
were also the ones who maintained them. Documentation was poor and system
life cycles were short.

With technological advancements, large scale information systems can no
longer be designed and developed by just a few computer hackers. Today's large
scale software development teams usually include engineers, computer scientists,
usability specialists, testing specialists, and documentation specialists. Designing
and developing a large information system often require years of hard work and
millions of dollars. With a large number of people involved, it is essential that
designers follow systematic approaches throughout the entire system life cycle,

including design, development and documentation.

23

Chapter4 The Systems Engineering Approach To Information Systems

Design And Development

4.1 Overview

There are various approaches to information systems design and
development, among them are the systems approach, the waterfall model, and
object-oriented design, etc. Each approach has advantages and disadvantages.
Several approaches can be used in different phases of the same project to maximize
the benefits of each. For example, the waterfall model may be used for high level
design, while object-oriented design may be used for prototyping.

A database system is a special type of information system. Designing
databases offers unique challenges. Designing a good relational database requires
an understanding of entity-relationship diagrams, normalization, and structured
query language (SQL), etc.

In addition to various design models, the systems engineering approach to
information systems design also requires in-depth understanding of human factors,
tradeoff analysis, and cost estimation. Human factors have recently become an
important topic in the design of information systems. GUI applications are often
developed under the supervision of human factors experts, who review window

layouts, proofread help and tutorial texts, and conduct usability studies. These

24

human factors specialists ensure that the end products not only conform to
industry standards, but are also user-friendly.

To design a quality system that is efficient, reliable, maintainable, and yet
cost-effective, a number of tradeoff analyses need to be performed. Tradeoff
analysis methods relate system design parameters to performance parameters to
access the effectiveness of the system. In addition, cost estimations are often

performed to access the cost effectiveness of the system.

4.2 The systems approach to information systems design

A system is often defined as a combination of elements that perform a
specific function. Systems may be viewed in terms of their subsystems, where each
subsystem performs a small set of functions, and in turn combines to perform
larger system level functions. Systems may also be viewed in terms of their
relationships with outside environment, where some stimuli from the environment
acts like inputs to the system, and triggers some system response or outputs.
Systems may also be classified as natural or manmade, physical or conceptual,
static or dynamic, and closed or open.

No matter how systems are defined, designing quality systems in the
information age requires the systems approach. The systems approach dictates

that a system is designed for its whole life cycle. The system life cycle starts with a

25

definition of needs, ends with system disposal, and in between goes through
requirements, design, development, test, and utilization. The following figure

shows a high level overview of the life cycle approach to systems development:

Definition Conceptual Preliminary
of need | design » design

Utilization Production/ Detail design
and support implementation and development

A J
Disposal

Figure 4.1 The Systems Approach

The systems design process is often not straight forward. An important
consideration is the feedback loop. At the end of each design step, evaluations and
adjustments are performed before continuing. In order to make good choices,
systems designers need to consider the following factors:

¢ Alternatives and tradeoffs

¢ Economic evaluations and feasibility

26

L]

Optimization

[4

Process control

L

System reliability

L

System maintainability

*

Human factors

The systems approach is followed in the design and development of the

information system prototype. The following table lists the first four steps in the

systems approach along with the functions that are perform for the information

system prototype:

Steps

Functions

Definition of needs

User requirements

Conceptual design

Requirements analysis
High level specification

Preliminary design

Breakdown of subsystem
Subsystem functional requirements
Detail specification

Detail design and development

Subsystem functional design
Prototype development

Table 4.1 Functions performed for the information system prototype

4.3 The waterfall model of software development

The waterfall model of software development became highly influential in

software development processes in the 1970s. It emphasizes stage-wise software

27

development with feedback loops. It later became a standard in most government
software procurements. An important aspect of the waterfall model is that certain
documentation must be produced for each step in the process. The waterfall

model has eight steps with feedback loops between adjacent steps. The following

figure shows a picture of the waterfall model:

Feasibility Requirements Product
: .

study ‘ ™ analysis design

System Code and Detailed
integration unit test design
Implementation/ Operations/

S e —
system test maintenance

Figure 4.2 The Waterfall Model

The waterfall model requires that certain documentation be produced
during the software development cycle. For the ISO 9000 information system
prototype, the following list of documentation is produced:

¢ Requirements documentation

28

¢ Design documentation

¢ Program source code

4.4 The spiral model of software development

Since the waterfall model is document driven, it is not suited for certain
types of software development projects. The limitations of the waterfall model
become apparent in interactive, Microsoft Windows or OS/2 based applications.
Software development under these environments requires rapid prototyping with
reusable code, and not necessarily elaborate documentation.

Some have argued that software development should not be document
driven, but rather risk driven. Instead of showing off documentation at the end of
each stage, risk analyses should be performed to determine whether to proceed
further. The spiral model of software development is thus based on prototyping
and risk analysis, which make it better suited for developing GUI applications.
The spiral model involves essentially the same steps as previous approaches except
the following two major differences:

¢ Risk analyses are performed after major steps
¢ Prototyping is incorporated into the model
Since a GUI based application is designed and developed in this thesis

work, the spiral model is better suited for this purpose than the waterfall model.

29

To minimize the risks involved, a prototype of the ISO 9000 information system is
developed. Future work will include risk analyses and further prototyping before

actual implementation begins.

4.5 Box-structured design of information systems

Software development is more than just trial-and-error. The introduction
of structured programming demonstrated that program correctness can be
mathematically proven. Boxed structured design of information systems is a recent
attempt at developing software that has low rate of errors by using mathematical
analyses.

According to box structured analysis, any information system can be
viewed as a black box, a state box, or a clear box at different stages of
development. During requirements gathering, a system is often viewed as a black
box, which defines data abstraction in terms of external behaviors. All inputs and
outputs of the system are gathered during this stage. The following is a picture of

a black box:

30

System

Input ———

> Output

Figure 4.3 A Black Box

Next is the state box, which offers another level of abstraction by utilizing

states. In this stage, systems are designed in terms of how data stored in memory

is changed by each input. The following is a picture of a state box:

System

Input

State

Machine

» Output

Figure 4.4 A State Box

31

The clear box is the last step of the transformation, where procedurality is
introduced. In this stage, how each input is transformed to each output is
designed. Conditions, loops, and concurrence, etc. are incorporated into the clear

box. The following is a picture of a clear box:

System

State

Machine 1 Machine 2

Input —1—® — ¥ Qutput

Figure 4.5 A Clear Box

Good information system designs start with black boxes, then go through
state boxes, and end with clear boxes. Transformations between the three stages
must be done mathematically. Software systems designed using this rigorous box
structured method can be mathematically proven to be correct.

Using box structured approach, a high-level design of the ISO 9000

information system prototype can be given. At the black box level, input is defined

32

as information entered by users, and outputs are information displayed on the
screen and reports generated. At the state box level, state is defined as information
stored on disk or in memory. At the clear box level, the information system can be
broken down into several subsystems -- data entry, data display, data storage, data
retrieval, and report generation. To combine similar functions, three subsystems
are defined for the purpose of this thesis work -- data entry facility, central

repository, and report generation facility.

4.6 The clean-room approach to systems development

The clean-room approach attempts to capture the essence of the systems
approach, the spiral model and the box structured design. This methodology is
still at early stages of development. It was used in a few small scale software
development efforts at various companies including IBM, and the results were
promising. This model emphasizes incremental development, correctness
verification and feedback. The clean-room approach stresses certification,
documentation, and statistical testing, all of which are also emphasized by ISO

9000.

33

4.7 Object-oriented design of information systems

With the introduction of graphical user interface (GUI), object-oriented
design and implementation of information systems have become a hot topic. GUI
represents information as icons on the screen, and users choose objects and
perform actions on them. Object-oriented design attempts to simulate real world
situations, where people often think of objects first and then act on them.

Object-oriented design and implementation are based on the concepts of
classes and objects. A class defines a type of objects; it is an abstract data type
that describes interactions between the class of objects and their outside
environment. On the other hand, an object is an instance of its class; it holds
values which may be modified. Classes necessitate hierarchies. The class structure
of an object-oriented system is typically a tree structure, with superclasses and
subclasses.

The four major advantages of object-oriented design are data
encapsulation, inheritance, dynamic binding and polymorphism. Data
encapsulation refers to the fact that each object is a black box, whose behavior
may only be altered by sending it messages that it understands. The internal data
of the object is protected. Inheritance refers to the fact that objects of subclasses
inherit all the object behaviors of their parent classes. The advantage of this is

reusable code. Dynamic binding is that the system waits until run time rather than

34

compile time to interpret the messages sent to an object. This affects system
performance. Polymorphism defines the ability of most object-oriented systems to
send the same messages to objects of different classes. Each object in turn reacts
in ways defined in its own class. This also facilitates reuse.

Similar to the spiral model, object-oriented methodology also emphasizes
prototyping and feedback. The following figure shows a picture of the

object-oriented development model:

Requirements
l
Analysis ¢ » Modeling
Testing < Ig:(siiii/
l
Production

Figure 4.6 Object-oriented Development Model

35

Since the ISO 9000 information system prototype is a GUI application
developed using Visual Basic, the development approach is object-oriented.
Controls on windows and dialog boxes are treated as objects, whose actions are
programmed. At the system design level, the prototype developed is a part of

application modeling, and is used to validate analysis.

4.8 Relational database design

The essence of the relational model is entities and relationships. An entity
is a distinguishable object that is represented in the database. Examples of entities
include employee, skill, or element. In addition to entities, the relational model
includes relationships that link entities together. For example, an employee has a
certain set of skills, and a skill may belong to several employees, therefore, "has"
and "belongs to" are the relationships between employee and skill. Entities also
have properties or attributes. For example, the properties of employee include
name, employee number, department, or job title, etc. Which properties of an
entity to store in the database depends on user requirements. The relationships
between entities may be one-to-one, one-to-many, or many-to-many. For
example, the relationship between employee and skill is many-to-many, because
each employee can have many skills and each skill can belong to more than one

employee. The relationship between company and employee is one-to-many,

36

because each company has many employees, but each employee normally works
for only one company. The relationships between entities may change depending
on the circumstances. For example, if a certain company has only one employee,
then the relationship between company and employee becomes one-to-one.

Entity-relationship diagrams are used to represent conceptual views of
databases, and relational database tables can be constructed based on these
diagrams. Normally, each entity has its own table, then additional tables are
created linking entities. The number of tables varies based on the complexity of
relationships between entities. Tables are arranged horizontally by fields and
vertically by records. Each table has keys with which users can access information
stored in the table.

After all database tables are designed and built, some means are needed to
store and retrieve data. Most relational database products on the market today
support structured query language (SQL). Developed by IBM Corporation, SQL
is the most widely used database access language. It is powerful, yet English-like
and easy to learn. It provides all the necessary table, field and record operations

for relational databases.

37

4.9 User interface design
49.1 Definition of user interface

User interface is often defined as a bridge between the machine and the
human that is used to facilitate the encoding and decoding of information. For the
purpose of a computer information system, user interface is often viewed as a data
entry facility where users enter all relevant information and perform specific tasks.
It consists of a series of windows and dialog boxes upon which users may type free
texts, select options and choose actions. A good user interface guides users
through these windows in an intuitive fashion, provides enough controls such as
radio buttons or check boxes to minimize the amount of typing required, has
consistent action buttons, provides customizable fonts and colors, and has help

facilities where needed.

4.9.2 Human factors

With the increasing popularity of computers, information systems must be
designed to be used by virtually anyone. This places a lot of responsibilities on
software designers, who must design applications to be "user-friendly."
Fortunately, software designers can benefit from decades of studies done by

psychologists.

38

Much of user interface design is based on human factors, which is the
application of relevant information about human capabilities and behavior to the
design of systems that people use. Many of the bases for human factors studies
result from experiments done by psychologists. Three of the relevant topics of
these experiments are sensory modality, coding, and visual display.

Human beings have a number of senses -- visual, auditory, and tactual, etc.
Of particular importance in the context of user interface design are visual and
auditory sensory modalities. On computer screens, information is usually
presented visually, through texts and graphics. However, there are recent studies
which suggest that software designers should further utilize the auditory sensory
modality using different combinations of music-like tones. In choosing which
sensory modality to use, designers need to consider things such as the type of
messages, the desired responses, and the users' working environment. The
following table shows results from studies done by psychologists and human

factors experts regarding when to use the auditory or visual forms of presentation:

39

Use auditory presentation if: Use Visual presentation if:

The message is simple. The message is complex.

The message is short. The message is long.

The message will not be referred to later. | The message will be referred to later.

The message deals with events in time. |The message deals with location in

space.
The visual system of the person is The auditory system of the person is
overburdened. overburdened.

The receiving location is too bright or | The receiving location is too noisy.
dark-adaptation integrity is necessary.

The person's job requires moving about |The person's job allows him or her to
continually. remain in one position.

Table 4.2 Comparison Of Auditory And Visual Presentations

Most displays present information in coded forms rather than their direct
representations or reproductions. Commonly used codes include traffic signs, blips
on radar screens, hazard signs, sirens, or icons used in GUI applications. A good
coding system has the following characteristics:

¢ Detectability -- Codes must be seen or heard under the anticipated
environment conditions. For example, if the environment is dark, then good
lighting may be needed around hazard sign. If the environment is noisy, then
sirens must be loud and use a different pitch than the background noise.

¢ Discriminability -- Every code symbol must be discriminable from other

symbols. Studies show that people can identity only 7+2 different codes on

40

an absolute basis. Therefore, when auditory codes are designed, for
example, the ranges between tones need to be spread out.
¢ Meaningfulness -- Codes must be meaningful to the user so that he or she
can easily remember them. A good example of this is a traffic sign, which is
meaningful to most people. Another example is an icon used in GUI
applications that is intuitive.
¢ Standardization -- Standardization of codes also facilitates learning and
retention.
¢ Multidimensional codes -- Use of multidimensional codes can increase
discriminability. A good example of this is a police cruiser with sirens and
turning colored lights, which uses both the visual and auditory sensory
modalities. Other examples include the use of both shape and color in
hazard signs.
¢ Compatibility -- Codes must be compatible with the user. For example, use
aircraft symbols on a map to denote airports, or arrange knobs in the same
way displays are arranged.
Screen design is particularly important in software development. Users
must be able to see and understand what is on the screen with ease. For most of
the VGA displays currently in existence, texts with font sizes of between 9 and 12

are adequate. Screen density is another factor to consider. Screens should have

41

adequate white spaces so that they do not appear "too busy". A good design uses
rows and columns to group information if applicable; it also uses charts and
graphs whenever possible to minimize the amount of reading necessary. With the
introduction of GUI, standardized symbols are available to effectively code

information.

4.9.3 Windows and dialog boxes

Windows in GUI present views on objects. A typical window often has a
title bar at the top, a system menu on top left corner, minimize/maximize buttons
on top right corner, a menu bar below the title bar, a presentation space to hold
controls that convey information, and a frame that surrounds the window.
Windows may be classified as primary or secondary. Secondary windows,
sometimes called child windows, are clipped by the parent or primary window.
Closing the primary window causes all its secondary windows to be closed.
Windows may also be classified as modal or modeless. A modal window keeps the
focus and does not allow users to interact with other windows until it is closed.
On the other hand, a modeless window does not keep the focus, and users may

interact with other windows at will,

42

Dialog boxes are similar to windows, except that they usually do not have
menu bars and are not sizable. Dialog boxes may also be modal or modeless like
windows.

There are a number of standard controls that are often used in the
presentation space of a window or a dialog box. Windows, dialog boxes, and
controls are currently standardized by big companies in the computer industry,
including IBM and Microsoft. The following is a list of commonly used standard
controls, most of which are used in the data entry facility of the ISO 9000
information system prototype:

¢ Static text -- This control is used to display labels.

¢ Entry field -- Users may type free text into entry field controls. An entry
field may be single line, or multiple line with scroll bars.

¢ Radio button -- This control is used when a selection needs to be made for a
small set of values.

¢ Check box -- This control is also used for selection, but there can be only
two, sometimes three, choices.

¢ List box -- This control is used when selections need to be made for a large
and variable set of values. A list box control may be single selection or

multiple selection. List boxes usually have scroll bars attached.

43

¢ Push button -- This control is sometimes call action buttons. It is used when
users tell the computer to perform some actions. Typical push buttons
include OK, Cancel, Help, Add, Delete, etc.

¢ Combination boxes -- A combination box control may be used when the
designer want to combine several controls into one. Typical combination
boxes include drop down entry fields, drop down lists, and spin buttons.

¢ Group box -- A group box may be used when the designer wants to group
certain controls on a window for effective presentation. A typical use of a
group box is around a set of radio buttons.

¢ Picture -- A picture control is used to preserve space for graphics or
bitmaps.

¢ Container -- With object-oriented implementations, container controls are
introduced to hold icon objects, and to facilitate drag-and-drop actions.

* Notebook -- A notebook control is a collection of dialog boxes. It has the
appearance of a notebook with tabs. Users may click on tabs to goto a

specific dialog box or notebook page.

494 Message boxes

Message boxes are small dialog boxes used to remind users to perform

certain actions, or to warn users of certain error conditions. Message boxes are

44

standardized so that programmers don't need to code for all the controls on them.
Programmers usually access message boxes by calling a predefined function using
a message box number. Message boxes fall into four categories -- error, warning,
query and information, each with its predefined icons and push buttons. There
may be variations on the icons and push buttons used, but they serve the same
purpose. The following is a list of the four types of message boxes, all of which
are used in the data entry facility of the ISO 9000 information system prototype:
¢ Error -- This box is used when the user performs some action incorrectly,
and the program cannot continue. It usually comes with a stop sign icon and
push buttons OK, Cancel, or Retry, Cancel. It may also come with a beep to
catch the user's attention.
¢ Warning -- This box is used when the user performs some action that may
cause problems later, but the program can still continue at the time of the
warning. It comes with an exclamation mark icon and push buttons OK,
Cancel. It may also come with a beep.
¢ Query -- This box is often used to ask the user to confirm some action they
requested. It comes with a question mark icon and push buttons Yes, No. It

may also come with a beep.

45

¢ Information -- This box is used to present some information or as a
reminder. It comes with a letter "i" icon and push button OK. This box

usually does not have a beep associated with it.

4.9.5 Fonts and colors

The introduction of color monitors and GUI have offered software
designers and users vast opportunities in terms of software fonts and colors. The
word-processing software that is used to generate this thesis paper offers 68
different fonts, from Arial to WingDings. Font sizes range from 4 to 72. Most
VGA monitors support 256 colors, which means designers can design software
that lets users customize their windows' background and foreground using any
combination of the 256 colors.

All this computer power does not mean that designers can choose fonts and
colors according to their own preferences. On the contrary, this places greater
responsibilities on designers to consider human factors. Typically, popular fonts
such as Helvetica, Times, Chicago, and Courier are good choices, whereas Script
or WingDings are often not acceptable. Font sizes between 9 and 12 are good for
most applications. A neutral color is always a good choice. 0S/2, for example,
comes with a soft gray color. If possible, applications should give users capability

to choose fonts and colors they like.

46

49.6 Help facility and tutorial
A good help facility is an important aspect of a good application. It
sometimes takes as much time and effort to write the help facility as the application
itself. Help facilities usually come with the following elements:
¢ Using help -- This is the help for help. It shows users how to use the help
facility.
¢ Help index -- This gives users an index of the help facility. Users may
choose a topic to view and study.
¢ Help contents -- This gives users a table of contents for the help facility.
Users may choose a part to view and study.
¢ Search -- This gives users a way to search for certain key words in the help
facility.
Help facilities may be programmed using a technique know as hypertext.
Using this technique, users may go to one part of the help facility, highlight certain
keywords they want to get more information on, and click on those keywords to
go to another part of the help facility.
Another important part in assisting users in using the application is to
develop a tutorial. The tutorial is often developed as a separate application. It

guides users through the application using simple examples.

47

4.10 Tradeoff analysis
4.10.1 System effectiveness

Since World War II, mathematical and statistical concepts have been
applied to the evaluation of system effectiveness. System effectiveness measures
how well a system achieves its objective under resource constraints. System
effectiveness, presented as a probability, is the product of system readiness, system
reliability and system design adequacy, that is, P, =P_P_P,. System readiness,
also called availability, is a measure of whether the system is available and ready to
use when needed. System reliability, also called dependability is a measure of
whether the system will perform as designed when used. System design adequacy,
also called capability, is a measure of whether the system will achieve the mission
objective.

To evaluate the effectiveness of a system, each of its elements must be
evaluated separately. Many of the tradeoff issues come into play when evaluating
availability, dependability and capability. For example, cost may play an important

role in system capability.

48

4.10.2 Cost effectiveness

To make any system cost effective, cost estimations must be performed.
The methodologies for cost estimations are well established. They invariably
include establishing a work breakdown structure, and then estimating labor hours,
labor rate, material count, and material unit price for each item in the work
breakdown structure. Overhead costs are subsequently added to arrive at the total
cost of the system.

Just as cost often affects system effectiveness, system effectiveness also
affects system cost. Systems with more capability and higher dependability often

cost more to build, because better parts and more skilled people are involved.

4.10.3 Tradeoff analysis methods

Tradeoff analysis is not guessing, every choice made must be based on
quantifiable arguments. To perform a tradeoff analysis, alternatives and their
selection criteria must be defined and evaluated using decision making tools.

A number of mathematical, statistical and economical tools have been
proven to be useful in performing tradeoff analyses. The following is a partial list
of these tools:

¢ Decision evaluation function

¢ Decision evaluation matrix

49

*

Break-even economic evaluations

L

Optimization theories

[

Probabilities

*

Queuing theories

L 4

Process control theories

4.10.4 Tradeoff analysis of information systems

A good tradeoff analysis relates each system design element to each system
performance parameter and tries to quantify every element. For the ISO 9000
information systems prototype, elements such as user, hardware and software
platform, application speed, learning curves are considered. The following table
shows high-level subsystems and performance parameters for the information
system. Subsystems are shown vertically on the left and performance parameters
are show horizontally on the top. A "Yes" is shown in the box wherever the
corresponding subsystem design parameter has an impact on the performance
parameter. For the purpose of this analysis, hardware and operating systems used
are considered part of the overall system because they have major impact on the

performance of the prototype.

50

Applica- { Applica- | Applica- [User- |Learn- | Applica- | Applica-|Develop-
tion tion tion friendli- |ing tion tion ment
function- |quality {speed ness curve |maintain-|port- cycle
ality ability |ability
1. Hardware
1.1 CPU Yes Yes Yes
1.2 Memory |Yes Yes
1.3 Fixed Yes Yes
drive
2. Software
2.1 Operat. |Yes Yes Yes Yes |Yes |Yes Yes Yes
system ‘
2.3 Program.{Yes Yes Yes Yes Yes
language
3. ISO 9000
application
3.1 Database | Yes Yes Yes Yes Yes |Yes
3.2 User Yes Yes Yes |Yes |Yes Yes Yes
interface
4. User Yes |Yes
5. Developer Yes Yes Yes

Table 4.3 Software Performance vs. Subsystem Design Parameters

51

Chapter 5 Design And Development Of The Information System For ISO

9000 Quality Documentation

5.1 Requirements analysis
Using box structured design approach, the ISO 9000 information system
can be defined as having the following inputs:
¢ Company information including employees, skills, and resources.
¢ ISO 9000 elements information.
¢ Company specific ISO 9000 procedure information including verification
methods, responsible employees, skills required, and resources required.
The system also has the following outputs:
¢ Reports generated on information entered into the system, i.e., the quality
manual.
¢ Information that may be viewed on the screen.
In addition, users have requested a GUI application to be run on a typical

personal computer configured with DOS and Microsoft Windows.

52

5.2 Design
5.2.1 Conceptual design
Requirements analysis has revealed that the ISO 9000 information system
must have the following elements:
¢ A central repository
¢ A user-friendly data entry facility
¢ A report generation facility
The central repository must be flexible enough to store several kinds of
information such as employee information, skill information, and company
resource information. In addition, generic ISO 9000 guidelines and company
specific ISO 9000 procedures must also be stored. The report generation facility
must be able to generate reports on information stored in the central repository.
For the data entry facility, the standard Microsoft Windows user interface is to be

used based on user preference.

5.2.2 Central repository preliminary and detailed design
The central repository is designed to be a relational database that answers
the following questions:
¢ What does ISO 9000 recommend?

¢ What needs to be done to meet that recommendation?

53

¢ Whose responsibility is it?

L 4

What skills are required?

L

What methods are used for verification?

¢ What resources are needed?

To answer these questions, the relational database is designed to have the

following elements or entities:

¢ ISO 9000 Element or sub-element

¢ Company specific procedure

¢ Employee

¢ Skill

¢ Verification method

¢ Resource

¢ Company
The following entity-relationship diagram shows the relationships between

these entities.

54

M Has
Element or Resource
Sub-element Company
1 M 1
Has Has
Requires
MM
M Responsible M
M Uses M for M
Method Procedure Employee
M M
Requires
as
M M
Skill
Figure 5.1 Entity-Relationship Diagram

Several points are illustrate by the information presented in the chart.

¢ Each element or sub-element can have more than one company specific

procedures, but each procedure is governed by only one element or

sub-element.

55

¢ Each company has many procedures, but each procedure belongs to only one
company.
¢ For any combination of element and company, there is only one procedure,
that is, each company has one procedure for every ISO 9000 element or
sub-element.
¢ Each procedure may be 1 or more employees' responsibility, and each
employee may be responsible for more than one procedure.
¢ Each procedure may require many types of skills, such as control charts or
sampling, and each of these skills applies to more than one procedure.
. Each employee may possess many skills, and more than one employee may
have the same skill.
¢ Each company has a set of resources, and each resource may belong to
several companies.
¢ Each procedure may be verified using several methods, and each method
may apply to several procedures.
Since Compression Telecommunications Corporation (CTEL) is the only
company involved at this time, the entity-relationship diagram may be simplified to

the one shown in the following figure.

56

Element or
Sub-element
1
Has
M
Method

Company

Resource CTEL
M
Requires
M Responsible
M for M
Procedure Employee
M M

equires Has

MM

Skall

Figure 5.2 Simplified Entity-Relationship Diagram

In the above diagram, company is a table by itself used to store information

such as CTEL's address, phone number, etc. Since only one company is involved,

the relationship between element and procedure has been reduced to one to one,

with each element or sub-element dealing with only one company specific

57

procedure. In addition, the relationship between company and resource has been
eliminated with the understanding that all resources belong to CTEL.

Using the design specified in the above entity-relationship diagram, detailed
relational database tables can be constructed. The following are the 11 relational
database tables:

¢ Company table
¢ Element-procedure table
¢ Employee table
¢ Method table
¢ Resource table
¢ Skill table
¢ Procedure-Employee table
¢ Procedure-Method table
¢ Procedure-Resource table
¢ Procedure-Skill table
¢ Employee-Skill table

The following chart shows the details for each of the 11 tables, and the

definitions for each field in the tables.

58

Table name Field name Field detail
|Company Company name String (50)
Company address String (50)
City String (20)
State String (2)
Zip code String (5) - must be numeric
Area code String (3) - must be numeric

Phone number

String (3) - must be numeric

Phone extension

String (4) - must be numeric

Element - Procedure

Procedure number

Integer - key

Element number

Integer - between 1 and 20

Element sub-number 1

Integer - must be >=1

Element sub-number 2

Integer - must be >= 1

Element name String (50)
Element description String (300)
Procedure text String (500)
Employee Employee number Integer - key
Last name String (20)
First name String (15)
Middle initial String (1)
Suffix String (3)
Title String (4)
Method Method number Integer - key
Method name String (50)
Method description String (300)
Resource Resource number Integer - key
Resource name String (50)
Resource description String (300)
Skill Skill number Integer - key
Skill name String (50)

59

Skill description String (300)
Procedure - Employee |Procedure number Integer - key
Employee number Integer - key
Procedure - Method |Procedure number Integer - key
Method number Integer - key
Procedure - Resource |Procedure number Integer - key
Resource number Integer - key
Procedure - Skill Procedure number Integer - key
Skill number Integer - key
Employee - Skill Employee number Integer - key
Skill number Integer - key

Table 5.1 Database Tables And Fields

5.2.3 User interface preliminary and detailed design
The prototype has a primary window and a number of secondary windows
and dialog boxes. Each window can be considered as a view on some objects in
the central repository. The following are the major windows and dialog boxes:
¢ Primary window lets users open or close files, open secondary windows and
dialog boxes, generate reports, and access the help facility.
¢ Company dialog box lets users enter company information including name,
address, and phone number.
¢ Element or sub-element and procedure dialog box let users enter element
number, element name, element description and procedure text. It also

provides access to a lower level dialog box for users to select methods used,

60

resources needed, skills required and employees responsible for that
particular element and procedure. A list of elements in the central repository
is displayed alongside to facilitate easy browsing and editing.

Method dialog box lets users enter method name and method description. A
list of methods is also displayed so that users may select and update any
method information.

Resource dialog box lets users enter resource name and resource description.
A list of resources is also displayed so that users may select and update any
resource information.

Skill dialog box lets users enter skill name and skill description. A list of
skills is also displayed so that users may select and update any skill
information.

Employee dialog box lets users enter employee information such as last
name, first name, title, etc. It also provides access to a lower level dialog
box where users may associate skills with employees. A list of employees
currently in the central repository is also displayed so that users may easily
select and update any employee information.

The process quality manual dialog box lets users view all relevant
information in the central repository, and choose to produce a quality manual

for the company, which is CTEL in this case.

61

In order for the application to have a consistent look and feel, the following
design rules are used for windows and dialog boxes:

¢ Every window and dialog box has a title bar with a system menu, including
the maximize and minimize buttons.

¢ The main window has a menu bar with the usual File and Help menu items in
addition to Edit and Report.

¢ Every dialog box has standard push buttons - OK, Cancel and Help or Close
and Help.

¢ The OK push button performs the standard function of saving information
and closing the dialog box.

¢ The Cancel or Close push buttons perform the standard function of ignoring
changes made since the last time a push button is pressed, and closing the
dialog box.

¢ The Help push button performs the standard function of bringing up help
texts.

Another issue to consider is the naming conventions used for controls on
windows and dialog boxes. Naming convention deals with the variable names that
are assigned to each control. These variable names are used in programs to
associate actions with appropriate controls. For the prototype, the following

popular naming conventions are used:

62

¢ Variable names for all controls have a prefix followed by the control's name,

e.g., stEmployee.

¢ For variable names, each word in a control's name is initial capped with

spaces removed and no hyphens or underscores, e.g., IbSkillList.

The following table shows all types of controls used in the prototype and

their naming conventions:

[Control name Other name Prefix Example
Static text Label st stSkillName
Entry field Text field ef efSkillName
List box Selection list b 1bSkillSet
Group box Frame gb gbSkillList
Combo box Drop down list cb cbTitle
Push button Action button pb pbOk
Menu Menu drop down |mn mnFile
Sub-menu Menu item smn smnExit
Picture box Bitmaps bmp bmpProduct
Form Window or dialog |fm fmSkill

box

Table 5.2 Window Controls' Naming Conventions

The following pages show window layouts along with the detailed design

of each window and dialog box. Emphases are placed on each window's push

buttons and associated actions. Details for most of the static fields and group

boxes are omitted, since they are merely labels with no actions involved.

63

I s T
£ h“,Ln’m’/.ﬂi:ﬁ_xﬁxﬁgg’@%@?u*,y
¢ File Edit Report Help

RS
ATt '-".‘.’;lﬂ.fru!fx!.(l.'xﬂ.’.’:.’.é AN

Ot -l

Figure 5.3 Main Window

¢ The main window has a menu bar with menu items "File", "Edit", "Report"
and "Help".

¢ The "File" menu item has sub-menus "New", "Open", "Delete", and "Exit".

¢ When File-New is selected, open the "New file" dialog box.

¢ When File-Open or File-Delete is selected, open the "File list" dialog box.

¢ When File-Exit is selected, make sure all other windows are closed and shut

down the application.

64

¢ The "Edit" menu item has "Company", "Element", "Method", "Resource",
"Skill", and "Employee" sub-menu items. Selecting these sub-menu items
opens up the appropriate dialog box, e.g., "Company" dialog box, "Skill"
dialog box.

¢ The "Report" menu item has "Quality manual" sub-menu item. Selecting the
"Quality manual" sub-menu item opens up the "Process quality manual”
dialog box.

¢ The "Help" menu-item has "Contents", "Using help", Help Index, and
"Product information" sub-menu items. Selecting these sub-menu items

brings up the appropriate information.

Company name : Compression Telecommunications Corporati

Address |4 professional Drive, Suite 116

City, state, zip | Gaithersburg MD 20879

Phone number 3p4 921 0148|

Figure 5.4 Company Dialog Box

65

¢ When window opens up, display appropriate company (CTEL) information.
¢ Selecting "OK" push button causes any changes made to be saved.

¢ Selecting "Cancel" causes any changes made to be discarded.

" Element or sub-element

Element number Element name

1 { i2 { {0 | iOrganization 1.1..0.(133!!.-)

Element descrip. Procedure text

The organization
structure of CTEL will be
established to ensure

Figure 5.5 Element And Procedure Dialog Box

¢ When window opens up, the list on the right contains all elements saved
previously. The item labeled "New" is selected in the list box on the right,
and entry fields on the left are blank. Push buttons "Update" and "Delete"

are disabled.

66

¢ When an item other than "New" is selected in the list box, display the

appropriate information for that item in entry fields on the left. Enable push

buttons "Update" and "Delete", disable push button "Add".

¢ When "Add" or "Update" push buttons are clicked, save changes made in

entry fields, and refresh the list on the right to reflect the changes.

122

" Element or sub-element
Element# Element name

Verification Team

" Methods list

- Wh at? [ER—— e

" Resource list—

Quality consulf

"Employee list™

! :Brobst, D 11:
Gupta, S 15
Gupta, V 14

Figure 5.6 Procedure - Other Information Dialog Box

¢ When the window opens up, list boxes IbSet1, IbSet2, 1bSet3 and IbSet4

contain all methods, resources, skills and responsible employees associated

67

with the element, and IbList1, IbList2, IbList3 and IbList4 contain all
methods, resources, skills and employees not associated with the element but
are available.

When push button "Remove" is clicked, remove selected items from the
particular IbSet and place them into the IbList to the right. That is,
disassociate those items from the element and remove them from the

appropriate database tables, e.g., procedure-method table.

When push button "Add" is clicked, remove selected items from the
particular IbList and place them into the IbSet to the left. That is, associate
those items with the element and save them into the appropriate database
tables, e.g., procedure-method table.

When push button "View" procedure is clicked, open up the "View

procedure"” dialog box.

68

: ,/?,{:/;”/”/;"}"/f’:ﬁ’;fglﬁ A e i\

View procedure text (go back to the element and procedure
window to make changes)

Element:

1.2.2 Verification Team

A verification team will be formed using members from each
department. The role of the verification team is to audit the
quality system. A cross-functional team will ensure that the
audit results reported to management are objective and fair.

Verification methods:
Resource required:

Skills needed:

I TEETERXA IO RIN? L ¥

Figure 5.7 View Procedure Text Dialog Box

¢ When the dialog box opens up, display information for the particular element

in the entry field. This information includes procedure text, methods used,

resources required, skills required, and employees responsible.

69

~Employee “Employee list
Lastname |Gypta ' P;g’*”i“gzg‘;’fisii}
o Hartante, J
First name, Ml {vsaikunth i.., :olm, IE
ong,
] Keplinger, T
Suffix, title m} Mr. l_ltt':ell,gl'ﬂl
Patel, B

Figure 5.8

Employee Dialog Box

¢ Controls on this dialog box behave the same way as those in the

Element-procedure dialog box.

¢ The list on the right contains all employee in the company. In this case, the

employees of CTEL are displayed.

70

~“Employee

Last name Gupta

First name, Ml Vaikunth

Suffix, title , Mr.
~Employee skill set ~ Skill list
Basic statistics Sampling

Figure 5.9 Employee - Skill Dialog Box

¢ Controls on this dialog box behave the same way as those in the

Procedure-other dialog box.

¢ List box IbSet contains all skills the employee possesses, and list box IbList

contains available skills.

71

~Method ~Method list——

i New —

Method name i:""‘j‘;l’i%&ﬁ”‘” \wﬁ%
Control Charts Sampling

Variable Design
Method description

Figure 5.10 Method Dialog Box

¢ Controls on this dialog box behave the same way as those in the
Element-procedure dialog box.

¢ The list on the right contains all methods entered previously.

72

“Resource ~Resource list™""

T New -

05 N

Resource hame

Quality consultant Self study course r

Resource description

For employee
education

Figure 5.11 Resource Dialog Box

¢ Controls on this dialog box behave the same way as those in the

Element-procedure dialog box.

¢ The list on the right contains all resources entered previously.

73

-~ Skill ~ Skill list -

i--- New -

Skill name TR f""%ﬁ»\;}?
Basic statistics Sampling

Skill description

Probabilities, sets ...

Figure 5.12 Skill Dialog Box

¢ Controls on this dialog box behave the same way as those in the
Element-procedure dialog box.

¢ The list on the right contains all skills entered previously.

74

Wrww;gwwwwwwwwww AR
R s

Elements in file Procedure text

:23 glanlzfge‘r’n?.nt Responsi# [The organization structure of X
1.1.0 Quality Folicy = .. # |CTEL will be established to
S iheii: ’4‘3(’{'52%’2%1:% ensure process and product -
1.2.1 Departmental Quality 3 ¥
1.2.2 Verification Team 3

1.2.3 Quality Team Leade How? What?

1.2.4 Management Quality

1.3.0 Management Review |

2.0.0 Quality System

2.1.0 Quality Manual Which? Who?

2.2.0 Manufacturing Proce

2.3.0 Employee Commitme

2.4.0 Quality System Revievi¥]

R 2 Lot ol

Figure 5.13 Process Quality Manual Dialog Box

¢ When the dialog box opens up, display all elements saved previously in the
list box on the left.

¢ When an item is selected in the list box, display appropriate information for
the element on the right.

¢ When push button "Refresh list" is clicked, refresh the list on the left

¢ When push button "Process" is clicked, loop through all elements in the list

box on the left and write all information to an ASCII text file.

75

Figure 5.14 New File Dialog Box

¢ When push button OK is selected, create a new sub-directory under
C:\ISO9000 for the specified company. Editing will be done to ensure that
sub-directory names are valid.

¢ Cancel push button closes the dialog box.

76

Select a file to open

CIEL

Figure 5.15 File Selection Dialog Box

¢ The list box contains all sub-directory names under C:\ISO9000, where
central repositories reside. Information for different companies are stored in
separate directories.

¢ When push button OK is clicked, either load or delete information for the
selected company depend on whether File-open or File-delete has been
selected previously on the main window.

¢ The "Cancel" push button closes the window.

Standard message boxes are used in the information system prototype.

They are used in the following situations:

77

¢ Query message boxes are used when the user chooses to delete something or
shut down the application.

¢ Error message boxes are used when there is a file access error.

+ Information message boxes are used to inform the user that a file has been
generated.

The font used in the prototype is Arial with a size of 9.25. Default colors,
which is black text on white background, are used for secondary windows and
dialog boxes. The primary window inherits the Microsoft Windows color scheme
that the user has set previously.

A small help facility consisted of window level help is designed to be used
with future prototypes. The following is a list of help texts for each window:

¢ Main window -- Use the File menu pull-down to open and delete files, or to
exit the application. Use the Edit menu pull-down to enter or modify
company, element, method, resource, skill and employee information. Use
the Report menu pull-down to create quality manual for the company.

¢ Company dialog box -- Enter company information on this dialog box.
Select OK to save the information in the database, or select Cancel to
discard the changes made.

¢ Element and procedure dialog box -- Enter element and procedure

information on this dialog box. Use the list on the right to select an element

78

to edit. Select New in the list box to add an element. Select Delete to delete
the selected element from the list. Select Other information to bring up the
Element-other dialog box. Select Close to close the dialog box.

Employee dialog box - Enter employee information on this dialog box. Use
the list on the right to select an employee to edit. Select New in the list box
to add an employee. Select Delete to delete the selected employee from the
list. Select Close to close the dialog box.

Method dialog box -- Enter method information on this dialog box. Use the
list on the right to select a method to edit. Select New in the list box to add
a method. Select Delete to delete the selected method from the list. Select
Close to close the dialog box.

Resource dialog box -- Enter resource information on this dialog box. Use
the list on the right to select a resource to edit. Select New in the list box to
add a resource. Select Delete to delete the selected resource from the list.
Select Close to close the dialog box.

Skill dialog box -- Enter skill information on this dialog box. Use the list on
the right to select a skill to edit. Select New in the list box to add a skill.
Select Delete to delete the selected skill from the list. Select Close to close

the dialog box.

79

¢ Procedure-other dialog box -- Use this dialog box to associate methods,
resources, skills, and employees with the current procedure. Select Add or
Remove to add or remove items from appropriate lists. Select View
procedure to bring up the View procedure text dialog box. Select Close to
close the dialog box.

¢ Employee-skill dialog box -- Use this dialog box to associate skills with the
current employee. Select Add or Remove to add or remove items from
appropriate lists. Select Close to close the dialog box.

¢ View procedure dialog box -- Use this dialog box to view text for the
current procedure. Changes made on this dialog box will not be saved.

¢ Process quality manual dialog box -- Use this dialog box to check
information for all procedures before creating the ASCII text file. Use the
list on the left to select and view items. Select Refresh to refresh the list.
Select Process to create the quality manual for the company. Select Close to
close the dialog box.

¢ File new dialog box -- Enter a sub-directory name in the entry field. Select
OK to create the sub-directory for a new company. Select Cancel to
disregard the request.

+ File list dialog box -- Select a company in the list to open or delete. Select

OK to process the request. Select Cancel to disregard the request.

80

5.2.4 Report generation facility design

A quality manual for Compression Telecommunications Corporation
(CTEL) is generated as a part of this thesis work. The quality manual consists of
the twenty ISO 9000 elements. It is created as an ASCII text file using the ISO
9000 information system prototype. Users may use an editor or a word processor
to view, modify, add graphics, and print. The quality manual that is attached to
this thesis report is developed using a combination of the prototype and a popular

word processor.

5.3 Prototype development
5.3.1 Development platform

Since one of the requirements is that the final product must be runon a
commonly available personal computer equipped with DOS and Microsoft
Windows, a development environment that is especially designed for this platform
is used. Among the available choices are Microsoft Visual Basic, Borland C++
with Microsoft Windows support, and Smalltalk/V for Windows. Some tradeoff
analyses are done based on factors such as platform compatibility, development
time, and execution speed, etc. Microsoft Visual Basic is chosen as the

implementation platform for the prototype as a result of these analyses.

81

Microsoft Visual Basic has its foundation in Basic, which is the most
popular programming language. In addition, it introduces a new concept in
soﬁwaye development termed visual programming, which lets programmers create
GUI applications with ease. It has been suggested that with GUI applications, 90
percent of the programs written deal with user interface, and only 10 percent go to
the meat of the applications. Visual programming enables programmers to
dramatically decrease the time spent creating user interface. Microsoft Visual
Basic is also object-oriented in terms of window handling. Each window control is

viewed as an object, and programmers code actions for these objects.
5.3.2 Development detail

The actual source codes of Visual Basic programs are included in the

appendix.

82

Chapter 6 Conclusion And Recommendations

6.1 Conclusion

ISO 9000 is a set of generic standards for quality management and
assurance. It applies to all products and services, because it defines requirements
for a system to manage quality during and after product development. Due to its
broad scope, ISO 9000 registration requires elaborate documentation. A
well-designed information system utilizing recent technologies such as graphical
user interface (GUI) and relational database can be used to facilitate the task of
producing quality documentation for ISO 9000 certification.

A prototype of such an information system has been developed in this
thesis work to demonstrate the effectiveness of using the systems engineering
approach to produce a quality manual. It employs Microsoft Visual Basic on the
popular DOS/Microsoft Windows platform. Several unique features of the
implemented information system prototype are:

+ System architecture, which structures data entry, data storage and output
according to the framework of the ISO 9000 standards.

¢ Microsoft Windows and Visual Basic development platform, which makes
the prototype not only easy to use but also suitable for small companies such

as Compression Telecommunications Corporation (CTEL).

83

* Relational database approach, which offers easy maintenance and expansion
of data storage for present and future needs.
The utilization of the information system prototype has enabled a systematic and
rapid creation of the quality manual for Compression Telecommunications

Corporation (CTEL).

6.2 Recommendations
The information system has been specifically designed for creating quality
documentation for ISO 9000 certification. Several enhancements may be needed
to further expand this thesis work. These enhancements may transform the
developed prototype to a more useful and marketable tool. The following is a list
of possible future enhancements:
¢ Utilize a full relational database with structured query language (SQL)
capabilities, or even consider using an object-oriented database for large
companies.
¢ Use a more powerful programming language such as C++ to utilize full
object-oriented implementations.
¢ Enhance the user interface with customizable fonts and color, a tutorial, and

hypertext, context sensitive and field level help.

84

¢ Give users the capability to import forms and organization charts into the
information system, and include them as part of the reports.
These enhancements may require substantial studies on usability and cost
estimation. Issues such as learning curve, installation, and user training must also

be considered.

85

Bibliography
1. Arter, D. R. "Demystifying the ISO 9000 / Q90 Series Standards"

Quality Progresss, November 1992

2. Blanchard, B. S. and Fabrycky, W. J. Systems Engineering and Analysis
Prentice Hall, New Jersey, 1990

3. Boehm, B. W. "A Spiral Model of Software Development and
Enhancement" IEEE Computer, May 1988

4. Buckler, G. "ISO Designation Shows Quality A Priority" Computing
Canada September 1, 1993

5. Canter, S. "Microsoft Visual Basic For Windows, Version 3.0,
Professional Edition" PC Magazine November 9, 1993

6. Date, C. J. Database Systems Addison-Wesley Publishing Company,
Massachusetts, 1991

7. Dichter, C. "Software Audits: How Good Really?" UNIX Review
January, 1994

8. Digitalk Smalltal M Tutorial and Programming Han k Digitalt,
Los Angeles, 1989

9. Editors "Database Applications" LAN Times August 16, 1993

10. Editors "Database Management Systems" Database Programming &
Design October 15, 1993

11. Editors "Microcomputer DBMSs And Application Development Systems"
DBMS June 15, 1993

12. Elliot, S. "Management Of quality In Computing Systems Education: ISO
9000 Series Quality Standards Applied" Journal of Systems Management
September, 1993

13. Garver, R. "What Are The ISO Series Standards" Industrial Engineering
September, 1993

86

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Habayeb, A. R. Systems Effectiveness Pergamon Press, Oxford, 1987

Haverson, D. "Shedding Light On ISO 9000" MIDRANGE Systems
August 10, 1993

Haverson, D. "The Road To World Class" MIDRANGE Systems
September 14, 1993

Hevner, A. R. and Mills, H. D. Box-Structured Requirements
Determination Methods 1992

IBM Common User Access Advanced Interface Design Reference IBM
Corporation, North Carolina, 1991

Inwood, C. "Developers Still Lagging In ISO Preparation" Computing
Canada August 16, 1993

McKague, A. "The Danger Zone" Computing Canada October 25, 1993

Mills, H. D, Linger, R. C. and Hevner, A. R. "Box Structured
Information" Systems IBM Systems Journal, Vol 26, No 4, 1987

Microsoft Corporation Micr. Visual C++ Developmen m For
Windows User's Guide Microsoft Corporation, 1993

National ISO 9000 Support Group "The Price of Quality"
ComputerWorld, June 1993

Orvis, W. J. Visual Basic for Windows SAMS Publishing, Indiana, 1992

Ottey, A. "Keys To Quality" MIDRANGE Systems July 13, 1993

Peach, R. W. The ISO 9000 Handbook CEEM Information Services,
Virginia, 1992

Peters, T. J. and Waterman, R. H,, Jr. In Search of Excellence Lessions
from America's Best-Run Companies Warner Books, New York, 1982

Pratt, T. W. Programming Languages Design and Implementation

Prentice-Hall, Inc., New Jersey, 1984

87

29.

30.

31

32.

33.

34.

35.

36.

Ricciuti, M "Visual Tools Give COBOL A New Look" Datamation.
November 15, 1993

24

Rosen, C. "ISO Auditor Tells How To Pass An ISO 9000 Audit"
Electronic Business Buyer October, 1993

Rothery, B. ISO 9000 Gower Press, Hampshire, 1993

Sanders, M. S. and McCormick, E. J. Human Factors In Engineering And
Design McGraw-Hill, Inc., New York, 1993

Saracelli, K. and Bandat, K. "Process Automation In Software Application
Development" IBM Systems Journal September, 1993

Sinha, M. N. and Willborn, W. O. The Management of Quality
Assurance John Wiley & Sons, New York, 1985

Stallings, W. Computer QOrganization and Archi re Pri

Structure and Function Mcmilliam Publishing Company, New York,
1990

Stewart, R. D. Cost Estimating John Wiley & Sons, Inc, New York,
1991

88

Appendix Visual Basic Source Code For The Prototype

A.1 Global

Declarations

'window status

' false closed

' true open

Global WINfmCompany As Integer
Global WINfmElement As Integer
Global WINfmEmployee As Integer
Global WINfmSkill As Integer
Global WINfmResource As Integer
Global WINfmMethod As Integer
'return code from window

" true ok is clicked

' false cancel is clicked

Global RCfmNewFile As Integer
Global RCfmFileList As Integer
Global RCfmOther As Integer
Global RCfmEmpSkl As Integer

Global FileAction As String

89

Global CurrentFile As String
Global CurrentEmployee As Integer
Global CurrentProcedure As Integer
Global ProcedureText As String
Global Const BaseDirectory = "C:\ISO9000"
Global Const Newltem = "--- New ---"
Type CompanyRecType '137

Name As String * 50

Address As String * 50

City As String * 20

State As String * 2

Zip As String * 5

AreaCode As String * 3

Number As String * 3

Extension As String * 4
End Type
Global CompanyRec As CompanyRecType
Type ElementRecType '856

Number As Integer

Numberl As Integer

Number2 As Integer

90

Name As String * 50
Description As String * 300
Procedure As String * 500
End Type
Global ElementRec As ElementRecType
Type EmployeeRecType '43
Last As String * 20
First As String * 15
MI As String * 1
Suffix As String * 3
Title As String * 4
End Type
Global EmployeeRec As EmployeeRecType
Type SkillRecType '350
Name As String * 50
Description As String * 300
End Type
Global SkillRec As SkillRecType
Type ResourceRecType ' 350
Name As String * 50

Description As String * 300

91

End Type
Global ResourceRec As ResourceRecType
Type MethodRecType ' 350
Name As String * 50
Description As String * 300
End Type
Global MethodRec As MethodRecType
Type ProcedureSkillRecType ‘4
ElementIndex As Integer
Skilllndex As Integer
End Type
Global ProcedureSkillRec As ProcedureSkillRecType
Type ProcedureResourceRecType '4
ElementIndex As Integer
Resourcelndex As Integer
End Type
Global ProcedureResourceRec As ProcedureResourceRecType
Type ProcedureMethodRecType '4
ElementIndex As Integer
MethodIndex As ﬁteger

End Type

92

Global ProcedureMethodRec As ProcedureMethodRecType
Type EmployeeSkillRecType '22
Employeelndex As Integer
Skilllndex As Integer
End Type
Global EmployeeSkillRec As EmployeeSkillRecType
Type ProcedureEmployeeRecType '4
ElementIndex As Integer
Employeelndex As Integer
End Type
Global ProcedureEmployeeRec As ProcedureEmployeeRecType
Sub InitFlags ()
WINfmCompany = False
WINfmElement = False
WINfmEmployee = False
WINfmSkill = False
WINfmResource = False
WINfmMethod = False
WINfmManul = False
RCfmNewFile = False

RCfmFileList = False

93

RCfmEleEmp = False
RCfmEleSkl = False
RCfmEmployee = False
RCfmEmpSkl = False

End Sub

Sub OpenFiles ()
Open "COMPANY.DAT" For Random As #1 Len = 137
Open "ELEMPROC.DAT" For Random As #2 Len = 856
Open "EMPLOYEE.DAT" For Random As #3 Len = 43
Open "METHOD.DAT" For Random As #4 Len = 350
Open "SKILL.DAT" For Random As #5 Len = 350
Open "RESOURCE.DAT" For Random As #6 Len = 350
Open "PROCSKIL.DAT" For Random As #9 Len = 4
Open "EMPLSKIL.DAT" For Random As #10 Len = 4
Open "PROCEMPL.DAT" For Random As #11 Len =4
Open "PROCRESO.DAT" For Random As #12 Len =4
Open "PROCMETH.DAT" For Random As #13 Len =4

End Sub

A.2 Main window

Function saveFile () As Integer

94

If WINfmCompany = True Or WINfmElement = True Or WINfmEmployee =
True Or WINfmSkill = True Or WINfmMethod = True Or WINfmResource =
True Or WINfmlInspection = True Then

UserResponse% = MsgBox("There is a file open. Either save it by clicking
Ok on all open dialog boxes or Cancel out.", 16, "Error")
If WINfmCompany = True Then
fmCompany.Show
End If
If WINfmElement = True Then
fmElement.Show
End If
If WINfmEmployee = True Then
fmEmployee.Show
End If
If WINfmSkill = True Then
fmSkill. Show
End If
If WINfmMethod = True Then
fmMethod.Show
End If

If WINfmResource = True Then

95

fmResource.Show
End If
If WINfmManual = True Then
fmManual.Show
End If
saveFile = False
Else
Close
ChDir BaseDirectory
CurrentFile = ""
Call InitFlags
saveFile = True
End If
End Function
Sub MDIForm_Load ()
On Error Resume Next
ChDir BaseDirectory ' change directory
If Err = 76 Then "if directory does not
MkDir BaseDirectory ' exist, make one
ChDir BaseDirectory

End If

96

mnEdit.Enabled = False ' disable menu dropdowns
mnReport.Enabled = False
CompanyFlag = False ' set flags to false for not open
ElementFlag = False
EmployeeFlag = False
SkillFlag = False
InspectionFlag = False
End Sub
Sub smnCompany_Click ()
fmCompany.Show
End Sub
Sub smnDelete_Click ()
If saveFile() = True Then
Close
mnEdit.Enabled = False
mnReport.Enabled = False
ChDir BaseDirectory
fmMain.Caption = "ISO 9000 - Main Window"
FileAction = "D"
fmFileList.Show 1

End If

97

End Sub
Sub smnElement_Click ()
fmElement.Show
End Sub
Sub smnEmployee_Click ()
fmEmployee.Show
End Sub
Sub smnExit_Click ()
If saveFile() = True Then
ChDir "C:\"
Unload fmMain
End If
End Sub
Sub smnMethod_Click ()
fmMethod.Show
End Sub
Sub smnNew_Click ()
On Error Resume Next
If saveFile() = True Then
mnEdit.Enabled = False

mnReport.Enabled = False

fmNewgFile.Show 1

If RCfmNewFile = True Then
mnEdit.Enabled = True
mnReport.Enabled = True
fmMain.Caption = "ISO 9000 - " + CurrentFile
Call smnCompany_Click

End If

End If
End Sub
Sub smnOpen_Click ()
If saveFile() = True Then

FileAction = "O"

mnEdit.Enabled = False

mnReport.Enabled = False

fmFileList.Show 1

If RCfmFileList = True Then
mnEdit.Enabled = True
mnReport.Enabled = True
fmMain.Caption = "ISO 9000 - " + CurrentFile
Call smnCompany_Click

End If

99

End If

End Sub

Sub smnProductInformation_Click ()
fmProduct.Show 1

End Sub

Sub smnQualityManual_Click ()
fmManual.Show

End Sub

Sub smnResource_Click ()
fmResource.Show

End Sub

Sub smnSkill_Click ()
fmSkill. Show

End Sub

A.3 Company dialog box
Function editControls () As Integer
Dim msg As String

msg =""

If Trim$(efName.Text) = "" Then

msg = msg + "Company name cannot be blanks.

100

End If
If Trim$(efAddress.Text) = "" Then

msg =msg + " Address cannot be blanks."
End If
If Trim$(efCity.Text) = "" Then

msg =msg + " City cannot be blanks."
End If
If Len(Trim$(efState. Text)) <> 2 Then

msg =msg + " State code must be 2 characters."
End If
If Not IsNumeric(efZip.Text) Then

msg =msg + " Zip code must be numeric."
End If
If Len(Trim$(efZip.Text)) <> 5 Then

msg =msg + " Zip code must be S digits."
End If
If Not IsNumeric(efAreaCode.Text) Then

msg =msg + " Area code must be numeric."
End If
If Len(Trim$(efAreaCode.Text)) <> 3 Then

msg =msg + " Area code must be 3 digits."

101

End If
If Not IsNumeric(efNumber.Text) Then
msg =msg + " Number must be numeric."
End If
If Len(Trim$(efNumber.Text)) <> 3 Then
msg = msg + " Number must be 3 digits."
End If
If Not IsNumeric(efExtension.Text) Then
msg =msg + " Extension must be numeric."
End If
If Len(Trim$(efExtension.Text)) <> 4 Then
msg =msg + " Extension must be 4 digits."
End If
If msg <>"" Then
UserResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True

End If

End Function

102

Sub Form_Load ()
Get #1, 1, CompanyRec
If Not EOF(1) Then
efName.Text = CompanyRec.Name
efAddress.Text = CompanyRec.Address
efCity.Text = CompanyRec.City
efState.Text = CompanyRec.State
efZip.Text = CompanyRec.Zip
efAreaCode.Text = CompanyRec.AreaCode
efNumber.Text = CompanyRec.Number
efExtension.Text = CompanyRec.Extension
End If
WINfmCompany = True
End Sub
Sub Form_Unload (Cancel As Integer)
WINfmCompany = False
End Sub
Sub pbCancel_Click ()
Unload fmCompany
End Sub

Sub pbOk_Click ()

103

If editControls() = True Then
CompanyRec.Name = efName.Text
CompanyRec.Address = efAddress.Text
CompanyRec.City = efCity.Text
CompanyRec.State = efState. Text
CompanyRec.Zip = efZip.Text
CompanyRec.AreaCode = efAreaCode.Text
CompanyRec.Number = efNumber.Text
CompanyRec.Extension = efExtension. Text
Put #1, 1, CompanyRec
Unload fmCompany

End If

End Sub

A.4 Element-procedure dialog box

Declarations

Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As
Integer, unUsedInd As Integer, expression As String, actionSuccessful As Integer

Sub clearEF ()

efNumber.Text =

efNumberl.Text = ""

104

efNumber2.Text = ""

efName.Text =

n

efDescription.Text =

efProcedure. Text = ""
pbAdd.Enabled = True
pbUpdate.Enabled = False
pbDelete.Enabled = False

End Sub

Sub clearRec ()
ElementRec.Number = 0
ElementRec.Numberl =0
ElementRec.Number2 =0

ElementRec.Name =

ElementRec.Description =
ElementRec.Procedure = ""
End Sub
Function editControls () As Integer
Dim msg As String

If Trim$(efNumber.Text) = "" Then

efNumber.Text = "0"

End If

105

If Trim$(efNumberl.Text) = "" Then
efNumberl.Text = "0"
End If
If Trim$(efNumber2.Text) = "" Then
efNumber2.Text = "0"
End If
msg=""
If Not IsNumeric(Trim$(efNumber.Text)) Then
msg =msg + " Element number must be numeric."
Else
efNumber.Text = Trim$(Str$(Val(efNumber.Text)))
If Val(efNumber.Text) <= 0 Or Val(efNumber.Text) > 20 Then
msg =msg + " Element number must be between 1 and 20."
End If
End If
If Not IsNumeric(Trim$(efNumberl.Text)) Then
msg =msg + " Sub-element number must be numeric."
Else
efNumberl.Text = Trim$(Str$(Val(efNumberl.Text)))

End If

If Not IsNumeric(Trim$(efNumber2.Text)) Then

106

msg =msg + " Sub-sub-element number must be numeric.’
Else
efNumber2.Text = Trim$(Str$(Val(efNumber2.Text)))
End If
If Trim$(efName.Text) = "" Then
msg =msg + " Element name cannot be blanks."
End If
If msg <> "" Then
userResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True
End If
End Function
Function elementExists () As Integer
Dim flag As Integer, userResponse As Integer
flag = False
listind =0
While (flag = False) And (listInd < IbList.ListCount)

expression = efNumber.Text + "." + efNumberl.Text + "." +

efNumber2.Text + " " + Trim$(efName.Text)

107

If expression = Trim$(IbList.List(listInd)) Then
flag = True
Else
listInd = listInd + 1
End If
Wend
If flag = True Then
userResponse = MsgBox("Element number and name has already been
used.", 16, "Error")
End If
elementExists = flag
End Function
Sub refreshlbList ()
IbList.Clear
IbList. AddItem (Newltem)
IbList.ItemData(0) =0
fileInd = 1
unUsedInd =0
Get #2, fileInd, ElementRec

While Not EOF(2)

108

expression = Trim$(Str§(ElementRec.Number)) + "." +
Trim$(Str$(ElementRec.Numberl)) + "." + Trim(Str$(ElementRec.Number2)) +
" " 4+ Trim$(ElementRec.Name)

If expression <> "0.0.0 " Then

IbList. AddItem (expression)

IbList.ItemData(IbList. NewIndex) = fileInd
Else

unUsedInd = unUsedInd + 1

ReDim Preserve unUsed(unUsedInd)

unUsed(unUsedInd) = fileInd

End If

fileInd = fileInd + 1

Get #2, filelnd, ElementRec

Wend
maxLoc = filelnd - 1
maxUnUsed = unUsedInd
unUsedInd = 1
IbList.Selected(0) = True
Call IbList_Click

End Sub

Sub updateEF ()

109

efNumber.Text = Trim$(Str$(ElementRec.Number))
efNumberl.Text = Trim$(Str$(ElementRec.Numberl))
efNumber2.Text = Trim$(Str$(ElementRec.Number2))
efName.Text = Trim$(ElementRec.Name)
efDescription.Text = Trim$(ElementRec.Description)
efProcedure.Text = Trim$(ElementRec.Procedure)
pbAdd.Enabled = False
pbUpdate.Enabled = True
pbDelete.Enabled = True

End Sub

Sub updateRec ()
ElementRec.Number = efNumber.Text
ElementRec.Numberl = Val(efNumberl.Text)
ElementRec.Number2 = Val(efNumber2.Text)
ElementRec.Name = Trim$(efName.Text)
ElementRec.Description = Trim$(efDescription. Text)
ElementRec.Procedure = Trim$(efProcedure. Text)

End Sub

Sub Form_Load ()
Call refreshlbList

WINfmElement = True

110

End Sub
Sub Form_Unload (Cancel As Integer)
WINfmElement = False
End Sub
Sub IbList_Click ()
expression = Trim$(1bList. Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If expression = Newltem Then
Call clearEF
Else
Get #2, fileInd, ElementRec
Call updateEF
End If
End Sub
Sub pbAdd_Click ()
If editControls() = True And Not elementExists() Then
Call updateRec
If unUsedInd <= maxUnUsed Then
Put #2, unUsed(unUsedInd), ElementRec
CurrentProcedure = unUsed(unUsedInd)

unUsedInd = unUsedInd + 1

111

Else
Put #2, maxLoc + 1, ElementRec
CurrentProcedure = maxLoc + 1
maxLoc = maxLoc + 1
End If
Call refreshlbList
actionSuccessful = True
Else
actionSuccessful = False
End If
End Sub
Sub pbCancel_Click ()
Unload fmElement
End Sub
Sub pbDelete_Click ()
fileInd = IbList.ItemData(lbList.ListIndex)
Call clearRec
Put #2, fileInd, ElementRec
Call refreshlbList
End Sub

Sub pbOther_Click ()

112

If ppbAdd.Enabled = True Then
Call pbAdd_Click
Else
Call pbUpdate_Click
End If
If actionSuccessful = True Then
fmOther.Show 1
End If
End Sub
Sub pbUpdate_Click ()
expression = Trim$(efNumber.Text) + "." + Trim$(efNumberl.Text) + "." +
Trim$(efNumber2.Text) + " " + Trim$(efName.Text)
fileInd = IbList.ItemData(IbList.ListIndex)
If editControls() = True Then
If expression = Trim$(IbList. Text) Then
Call updateRec
Put #2, fileInd, ElementRec
CurrentProcedure = fileInd
Call refreshlbList
actionSuccessful = True

Else

113

If Not elementExists() Then
Call updateRec
Put #2, filelnd, ElementRec
CurrentProcedure = fileInd
Call refreshlbList
actionSuccessful = True
Else
actionSuccessful = False
End If
End If
Else
actionSuccessful = False
End If

End Sub

A.5 Employee dialog box
Declarations
Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As

Integer, unUsedInd As Integer, expression As String, actionSuccessful As Integer

Sub clearEF ()

efLast. Text=""

114

efFirst. Text = ""
efMLText=""
cbSuffix. Text = ""
cbTitle.Text = ""
pbAdd.Enabled = True
pbUpdate.Enabled = False
pbDelete.Enabled = False
End Sub

Sub clearRec ()

EmployeeRec.Last =

"

EmployeeRec.First =

EmployeeRec. MI =

ne

EmployeeRec.Suffix =

EmployeeRec.Title = ""
End Sub
Function editControls () As Integer

Dim msg As String, userResponse As Integer

e

msg =
If Trim$(efLast.Text) = "" Then

msg = msg + "Last name cannot be blanks.'

End If

115

If msg <> "" Then
userResponse = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True
End If
End Function
Sub refreshlbList ()
IbList.Clear
IbList. AddItem (NewlItem)
filelnd =1
unUsedInd =0
Get #3, fileInd, EmployeeRec
While Not EOF(3)
expression = Trim$(Trim$(EmployeeRec.Last) + ", " +
Left$(EmployeeRec.First, 1) + EmployeecRec.MI)
If expression <> "," Then
1IbList. AddItem (expression)
IbList.ItemData(IbList. NewIndex) = fileInd
Else

unUsedInd = unUsedInd + 1

116

ReDim Preserve unUsed(unUsedInd)
unUsed(unUsedInd) = fileInd

End If

fileInd = fileInd + 1

Get #3, fileInd, EmployeeRec
Wend
maxLoc = fileInd - 1
maxUnUsed = unUsedInd
unUsedInd = 1
IbList.Selected(0) = True
Call IbList_Click

End Sub
Sub updateEF ()

efLast. Text = Trim$(EmployeeRec.Last)
efFirst. Text = Trim$(EmployeeRec.First)
efMLText = Trim$(EmployeeRec.MI)
cbSuffix.Text = Trim$(EmployeeRec.Suffix)
cbTitle.Text = Trim$(EmployeeRec.Title)
pbAdd.Enabled = False
pbUpdate.Enabled = True

pbDelete.Enabled = True

117

End Sub

Sub updateRec ()
EmployeeRec.Last = Trim$(efLast. Text)
EmployeeRec.First = Trim$(efFirst. Text)
EmployeeRec.MI = Trim$(efMI. Text)
EmployeeRec.Suffix = Trim$(cbSuffix. Text)
EmployeeRec.Title = Trim$(cbTitle. Text)

End Sub

Sub Form_Load ()
Call refreshlbList
cbSuffix. AddItem ("Sr.")
cbSuffix.AddItem ("Jr.")
cbSuffix.AddItem ("III")
cbSuffix.AddItem ("IV")
cbSuffix.AddItem ("V")
cbTitle.AddItem ("Mr.")
cbTitle.AddItem ("Mrs.")
cbTitle.AddItem ("Ms.")
cbTitle. AddItem ("Miss")
cbTitle.AddItem ("Dr.")

WINfmEmployee = True

118

End Sub
Sub Form_Unload (Cancel As Integer)
WINfmEmployee = False
End Sub
Sub IbList_Click ()
expression = Trim$(IbList. Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If expression = Newltem Then
Call clearEF
Else
Get #3, fileInd, EmployeeRec
Call updateEF
End If
End Sub
Sub pbAdd_Click ()
If editControls() = True Then
Call updateRec
If unUsedInd <= maxUnUsed Then
Put #3, unUsed(unUsedInd), EmployeeRec
CurrentEmployee = unUsed(unUsedInd)

unUsedInd = ﬁnUsedInd +1

119

Else
Put #3, maxLoc + 1, EmployeeRec
CurrentEmployee = maxLoc + 1
maxLoc = maxLoc + 1
End If
Call refreshlbList
actionSuccessful = True
Else
actionSuccessful = False
End If
End Sub
Sub pbCancel_Click ()
Unload fmEmployee
End Sub
Sub pbDelete_Click ()
fileInd = IbList.ItemData(lbList.ListIndex)
Call clearRec
Put #3, fileInd, EmployeeRec
Call refreshlbList
End Sub

Sub pbSkills_Click ()

120

If ppbAdd.Enabled = True Then
Call pbAdd_Click

Else
Call pbUpdate_Click

End If

If actionSuccessful = True Then
fmEmpSkl.Show 1

End If

End Sub
Sub pbUpdate_Click ()

fileInd = IbList.ItemData(lbList.ListIndex)

If editControls() = True Then
Call updateRec
Put #3, fileInd, EmployeeRec
CurrentEmployee = fileInd
Call refreshlbList
actionSuccessful = True

Else
actionSuccessful = False

End If

End Sub

121

A.6 Method dialog box

Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As
Integer, unUsedInd As Integer, expression As String

Sub clearEF ()

efName.Text =
efDescription. Text = ""
pbAdd.Enabled = True
pbUpdate.Enabled = False
pbDelete.Enabled = False
End Sub
Sub clearRec ()
MethodRec.Name = ""
MethodRec.Description = ""
End Sub
Function editControls () As Integer
Dim msg As String
msg=""
If Trim$(efName.Text) = "" Then

msg = msg + "Method name cannot be blanks."

End If

122

If msg <>"" Then
userResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True
End If
End Function
Function methodExists () As Integer
Dim flag As Integer, userResponse As Integer
flag = False
listind =0
While (flag = False) And (listInd < IbList.ListCount)
expression = Trim$(efName.Text)
If expression = Trim$(1bList.List(listInd)) Then
flag = True
Else
listInd = listInd + 1
End If
Wend

If flag = True Then

123

userResponse = MsgBox("Method name has already been used.", 16,
"Error")
End If
methodExists = flag
End Function
Sub refreshlbList ()
IbList.Clear
IbList. AddItem (NewItem)
IbList.ItemData(0) = 0
filelnd =1
unUsedInd =0
Get #4, fileInd, MethodRec
While Not EOF(4)
expression = Trim$(MethodRec.Name)
If expression <> "" Then
IbList. AddItem (expression)
IbList.ItemData(lbList. NewIndex) = fileInd
Else
unUsedInd = unUsedInd + 1
ReDim Preserve unUsed(unUsedInd)

unUsed(unUsedInd) = fileInd

124

End If
fileInd = fileInd + 1
Get #4, fileInd, MethodRec
Wend
maxLoc = fileInd - 1
maxUnUsed = unUsedInd
unUsedInd =1
IbList.Selected(0) = True
Call IbList_Click
End Sub
Sub updateEF ()
efName.Text = Trim$(MethodRec.Name)
efDescription. Text = Trim$(MethodRec.Description)
pbAdd.Enabled = False
pbUpdate.Enabled = True
pbDelete.Enabled = True
End Sub
Sub updateRec ()
MethodRec.Name = Trim$(efName.Text)
MethodRec.Description = Trim$(efDescription.Text)

End Sub

125

Sub Form_Load ()
Call refreshlbList
WINfmMethod = True
End Sub
Sub Form_Unload (Cancel As Integer)
WINfmMethod = False
End Sub
Sub IbList_Click ()
expression = Trim$(IbList. Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If expression = Newltem Then
Call clearEF
Else
Get #4, fileInd, MethodRec
Call updateEF
End If
End Sub
Sub pbAdd_Click ()
If editControls() = True And Not methodExists() Then
Call updateRec

If unUsedInd <= maxUnUsed Then

126

Put #4, unUsed(unUsedInd), MethodRec
unUsedInd = unUsedInd + 1
Else
Put #4, maxLoc + 1, MethodRec
maxLoc = maxLoc + 1
End If
Call refreshlbList
End If
End Sub
Sub pbCancel_Click ()
Unload fmMethod
End Sub
Sub pbDelete_Click ()
fileInd = IbList.ItemData(lbList.ListIndex)
Call clearRec
Put #4, fileInd, MethodRec
Call refreshlbList
End Sub
Sub pbUpdate_Click ()
expression = Trim$(efName.Text)

fileInd = IbList.ItemData(lbList.ListIndex)

127

If editControls() = True Then
If expression = Trim$(IbList.Text) Then
Call updateRec
Put #4, fileInd, MethodRec
Call refreshlbList
Else
If Not methodExists() Then
Call updateRec
Put #4, fileInd, MethodRec
Call refreshlbList
End If
End If
End If

End Sub

A.7 Resource dialog box

Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As
Integer, unUsedInd As Integer, expression As String

Sub clearEF ()

"N

efName.Text =

efDescription.Text =

128

pbAdd.Enabled = True
pbUpdate.Enabled = False
pbDelete.Enabled = False
End Sub
Sub clearRec ()

ResourceRec.Name =
ResourceRec.Description = ""
End Sub
Function editControls () As Integer
Dim msg As String
msg=""
If Trim$(efName.Text) = "" Then
msg = msg + "Resource name cannot be blanks."
End If
If msg <> "" Then
userResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True

End If

End Function

129

Sub refreshlbList ()
IbList.Clear
IbList. AddItem (Newltem)
IbList.ItemData(0) =0
fileInd = 1
unUsedInd =0
Get #6, filelnd, ResourceRec
While Not EOF(6)
expression = Trim$(ResourceRec.Name)
If expression <> "" Then
IbList. AddItem (expression)
IbList.ItemData(IbList. NewIndex) = fileInd
Else
unUsedInd = unUsedInd + 1
ReDim Preserve unUsed(unUsedInd)
unUsed(unUsedInd) = fileInd
End If
fileInd = fileInd + 1
Get #6, fileInd, ResourceRec
Wend

maxLoc = filelnd - 1

130

maxUnUsed = unUsedInd
unUsedInd =1
IbList.Selected(0) = True
Call IbList_Click
End Sub
Function resourceExists () As Integer
Dim flag As Integer, userResponse As Integer
flag = False
listind =0
While (flag = False) And (listind < 1bList.ListCount)
expression = Trim$(efName.Text)
If expression = Trim$(IbList.List(listInd)) Then
flag = True
Else
listInd = listInd + 1
End If
Wend
If flag = True Then
userResponse = MsgBox("Resource name has already been used.", 16,
"Error")

End If

131

resourceExists = flag
End Function
Sub updateEF ()
efName.Text = Trim$(ResourceRec.Name)
efDescription.Text = Trim$(ResourceRec.Description)
pbAdd.Enabled = False
pbUpdate.Enabled = True
pbDelete.Enabled = True
End Sub
Sub updateRec ()
ResourceRec.Name = Trim$(efName.Text)
ResourceRec.Description = Trim$(efDescription.Text)
End Sub
Sub Form_Load ()
Call refreshlbList
WINfmResource = True
End Sub
Sub Form_Unload (Cancel As Integer)
WINfmResource = False
End Sub

Sub IbList_Click ()

132

expression = Trim$(1bList. Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If expression = NewlItem Then
Call clearEF
Else
Get #6, fileInd, ResourceRec
Call updateEF
End If
End Sub
Sub pbAdd_Click ()
If editControls() = True And Not resourceExists() Then
Call updateRec
If unUsedInd <= maxUnUsed Then
Put #6, unUsed(unUsedInd), ResourceRec
unUsedInd = unUsedInd + 1
Else
Put #6, maxLoc + 1, ResourceRec
maxLoc = maxLoc + 1
End If
Call refreshlbList

End If

133

End Sub
Sub pbCancel_Click ()
Unload fmResource
End Sub
Sub pbDelete_Click ()
fileInd = IbList.ItemData(lbList.ListIndex)
Call clearRec
Put #6, fileInd, ResourceRec
Call refreshlbList
End Sub
Sub pbUpdate_Click ()
expression = Trim$(efName.Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If editControls() = True Then
If expression = Trim$(IbList. Text) Then
Call updateRec
Put #6, fileInd, ResourceRec
Call refreshlbList
Else
If Not resourceExists() Then

Call updateRec

134

Put #6, fileInd, ResourceRec
Call refreshlbList
End If
End If
End If

End Sub

A.8 Skill dialog box

Declarations

Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As
Integer, unUsedInd As Integer, expression As String

Sub clearEF ()

"

efName.Text =

efDescription. Text = ""
pbAdd.Enabled = True
pbUpdate.Enabled = False
pbDelete.Enabled = False

End Sub

Sub clearRec ()
SkillRec.Name = ""

SkillRec.Description = ""

135

End Sub
Function editControls () As Integer
Dim msg As String
msg=""
If Trim$(efName.Text) = "" Then
msg = msg + "Skill name cannot be blanks."
End If
If msg <> "" Then
userResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True
End If
End Function
Sub refreshlbList ()
IbList.Clear
IbList. AddItem (Newltem)
IbList.ItemData(0) = 0
fileInd = 1
unUsedInd =0

Get #5, filelnd, SkillRec

136

While Not EOF(S)
expression = Trim$(SkillRec.Name)
If expression <> "" Then
IbList. AddItem (expression)
IbList.ItemData(1bList. NewIndex) = fileInd
Else
unUsedInd = unUsedInd + 1
ReDim Preserve unUsed(unUsedInd)
unUsed(unUsedInd) = fileInd
End If
fileInd = fileInd + 1
Get #5, fileInd, SkillRec
Wend
maxLoc = fileInd - 1
maxUnUsed = unUsedInd
unUsedInd = 1
IbList.Selected(0) = True
Call IbList_Click
End Sub
Function skillExists () As Integer

Dim flag As Integer, userResponse As Integer

137

flag = False
listind =0
While (flag = False) And (listInd < 1bList.ListCount)
expression = Trim$(efName.Text)
If expression = Trim$(lbList.L;ist(listInd)) Then
flag = True
Else
listInd = listInd + 1
End If
Wend
If flag = True Then
userResponse = MsgBox("Skill name has already been used.”, 16, "Error")
End If
skillExists = flag
End Function
Sub updateEF ()
efName.Text = Trim$(SkillRec.Name)
efDescription.Text = Trim$(SkillRec.Description)
pbAdd.Enabled = False
pbUpdate.Enabled = True

pbDelete.Enabled = True

138

End Sub
Sub updateRec ()
SkillRec.Name = Trim$(efName.Text)
SkillRec.Description = Trim$(efDescription.Text)
End Sub
Sub Form_Load ()
Call refreshlbList
WINfmSkill = True
End Sub
Sub Form_Unload (Cancel As Integer)
WINfmSkill = False
End Sub
Sub IbList_Click ()
expression = Trim$(1bList. Text)
fileInd = 1bList.ItemData(lbList.ListIndex)
If expression = Newltem Then
Call clearEF
Else
Get #5, fileInd, SkillRec
Call updateEF

End If

139

End Sub
Sub pbAdd_Click ()
If editControls() = True And Not skillExists() Then
Call updateRec
If unUsedInd <= maxUnUsed Then
Put #5, unUsed(unUsedInd), SkiliRec
unUsedInd = unUsedInd + 1
Else
Put #5, maxLoc + 1, SkillRec
maxLoc = maxLoc + 1
End If
Call refreshlbList
End If
End Sub
Sub pbCancel_Click ()
Unload fmSkill
End Sub
Sub pbDelete_Click ()
fileInd = IbList.ItemData(lbList.ListIndex)
Call clearRec

Put #5, fileInd, SkillRec

140

Call refreshlbList
End Sub
Sub pbUpdate_Click ()
expression = Trim$(efName.Text)
fileInd = IbList.ItemData(lbList.ListIndex)
If editControls() = True Then
If expression = Trim$(IbList. Text) Then
Call updateRec
Put #5, fileInd, SkillRec
Call refreshlbList
Else
If Not skillExists() Then
Call updateRec
Put #5, fileInd, SkillRec
Call refreshlbList
End If
End If
End If

End Sub

A.9 Procedure-other dialog box

141

Declarations
Dim unUsed1() As Integer, maxUnUsedl As Integer, maxLocl As Integer,
fileInd1 As Integer, unUsedInd1 As Integer, expressionl As String,
tempMethodRec As MethodRecType
Dim unUsed2() As Integer, maxUnUsed2 As Integer, maxLoc2 As Integer,
fileInd2 As Integer, unUsedInd2 As Integer, expression2 As String,
tempResourceRec As ResourceRecType
Dim unUsed3() As Integer, maxUnUsed3 As Integer, maxLoc3 As Integer,
fileInd3 As Integer, unUsedInd3 As Integer, expression3 As String, tempSkillRec
As SkillRecType
Dim unUsed4() As Integer, maxUnUsed4 As Integer, maxLoc4 As Integer,
fileInd4 As Integer, unUsedInd4 As Integer, expressiond4 As String,
tempEmployeeRec As EmployeeRecType
Sub clearRec1 ()
ProcedureMethodRec.ElementIndex = 0
ProcedureMethodRec.MethodIndex = 0
End Sub
Sub clearRec2 ()
ProcedureResourceRec.ElementIndex = 0
ProcedureResourceRec.Resourcelndex = 0

End Sub

142

Sub clearRec3 ()
ProcedureSkillRec.ElementIndex = 0
ProcedureSkillRec.Skilllndex = 0
End Sub
Sub clearRec4 ()
ProcedureEmployeeRec.ElementIndex = 0
ProcedureEmployeeRec.Employeelndex =0
End Sub
Function employeelInSet (Selected As String) As Integer
Dim flag As Integer, tempInd As Integer
flag = False
tempInd =0
While (flag = False) And (templnd < 1bSet4.ListCount)
If Selected = Trim$(1bSet4.List(templInd)) Then
flag = True
Else
templnd = tempInd + 1
End If
Wend
employeelnSet = flag

End Function

143

Function methodInSet (Selected As String) As Integer
Dim flag As Integer, templnd As Integer
flag = False
tempInd =0
While (flag = False) And (tempInd < IbSet1.ListCount)
If Selected = Trim$(1bSet1.List(tempInd)) Then
flag = True
Else
templInd = tempInd + 1
End If
Wend
methodInSet = flag
End Function
Sub refreshlbListl ()
IbListl.Clear
fileIndl =1
Get #4, fileInd1, tempMethodRec
While Not EOF(4)
expressionl = Trim$(tempMethodRec.Name)
If expressionl <> "" And Not methodInSet(expressionl) Then

IbList1.AddItem (expressionl)

144

IbList1.ItemData(lbList1.NewIndex) = fileInd1
End If
fileInd1 = fileIndl + 1
Get #4, fileInd1, tempMethodRec
Wend
pbAdd1.Enabled = False
End Sub
Sub refreshlbList2 ()
IbList2.Clear
fileInd2 =1
Get #6, fileInd2, tempResourceRec
While Not EOF(6)
expression2 = Trim$(tempResourceRec.Name)

If expression2 <> "" And Not resourceInSet(expression2) Then
IbList2. AddItem (expression2)
IbList2.ItemData(lbList2.NewlIndex) = fileInd2

End If

fileInd2 = fileInd2 + 1

Get #6, fileInd2, tempResourceRec
Wend

pbAdd2.Enabled = False

145

End Sub

Sub refreshlbList3 ()
IbList3.Clear
fileInd3 =1
Get #5, fileInd3, tempSkillRec
While Not EOF(5)

expression3 = Trim$(tempSkillRec.Name)

If expression3 <> "" And Not skilllnSet(expression3) Then
1bList3.AddItem (expression3)
IbList3.ItemData(IbList3.NewIndex) = fileInd3

End If

fileInd3 = fileInd3 + 1

Get #5, fileInd3, tempSkillRec

Wend
pbAdd3.Enabled = False
End Sub
Sub refreshlbList4 ()
IbList4.Clear
fileInd4 = 1
Get #3, fileInd4, tempEmployeeRec

While Not EOF(3)

146

expression4 = Trim$(tempEmployeeRec.Last) + ", " +
Trim$(Left$(tempEmployeeRec.First, 1)) + Trim$(tempEmployeeRec.MI) +
Str$(fileInd4)

If (expressiond <> (", " + Str$(fileInd4))) And Not
employeelnSet(expression4) Then

IbList4. AddItem (expression4)
IbList4.ItemData(lbList4.NewIndex) = fileInd4

End If

fileInd4 = fileInd4 + 1

Get #3, fileInd4, tempEmployeeRec

Wend
pbAdd4.Enabled = False
End Sub
Sub refreshlbSet1 ()
IbSetl.Clear
filelndl =1
unUsedIndl =0
Get #13, fileInd1, ProcedureMethodRec
While Not EOF(13)
If ProcedureMethodRec.ElementIndex = CurrentProcedure Then

Get #4, ProcedureMethodRec.MethodIndex, tempMethodRec

147

expressionl = Trim$(tempMethodRec.Name)
IbSet1.AddItem (expressionl)
1bSetl.ItemData(lbSetl.NewlIndex) = fileInd1
Else
If ProcedureMethodRec.ElementIndex = 0 Then
unUsedInd] = unUsedIndl + 1
ReDim Preserve unUsed1(unUsedIndl)
unUsed1(unUsedIndl) = fileInd1
End If
End If
fileInd1 = fileInd1 + 1
Get #13, fileInd1, ProcedureMethodRec
Wend
maxLocl = fileInd1 - 1
maxUnUsed1 = unUsedInd1
unUsedIndl =1
pbRemovel.Enabled = False
End Sub
Sub refreshlbSet2 ()
IbSet2.Clear

fileInd2 =1

148

unUsedInd2 =0
Get #12, fileInd2, ProcedureResourceRec
While Not EOF(12)
If ProcedureResourceRec.ElementIndex = CurrentProcedure Then
Get #6, ProcedureResourceRec.Resourcelndex, tempResourceRec
expression2 = Trim$(tempResourceRec.Name)
1bSet2. AddItem (expression2)
IbSet2.ItemData(lbSet2.NewIndex) = fileInd2
Else
If ProcedureResourceRec.ElementIndex = 0 Then
unUsedInd2 = unUsedInd2 + 1
ReDim Preserve unUsed2(unUsedInd?2)
unUsed2(unUsedInd2) = fileInd2

End If

End If

fileInd2 = fileInd2 + 1

Get #12, fileInd2, ProcedureResourceRec

Wend
maxLoc2 = fileInd2 - 1
maxUnUsed2 = unUsedInd2

unUsedInd2 =1

149

pbRemove2.Enabled = False
End Sub
Sub refreshlbSet3 ()
IbSet3.Clear
fileInd3 =1
unUsedInd3 =0
Get #9, fileInd3, ProcedureSkillRec
While Not EOF(9)
If ProcedureSkillRec.ElementIndex = CurrentProcedure Then
Get #5, ProcedureSkillRec.SkillIndex, tempSkillRec
expression3 = Trim$(tempSkillRec.Name)
1bSet3.AddItem (expression3)
IbSet3.ItemData(1bSet3.Newlndex) = fileInd3
Else
If ProcedureSkillRec.ElementIndex = 0 Then
unUsedInd3 = unUsedInd3 + 1
ReDim Preserve unUsed3(unUsedInd3)
unUsed3(unUsedInd3) = fileInd3
End If
End If

fileInd3 = fileInd3 + 1

150

Get #9, fileInd3, ProcedureSkillRec
Wend
maxLoc3 = fileInd3 - 1
maxUnUsed3 = unUsedInd3
unUsedInd3 =1
pbRemove3.Enabled = False
End Sub
Sub refreshlbSet4 ()
1bSetd.Clear
fileInd4 = 1
unUsedInd4 =0
Get #11, fileInd4, ProcedureEmployeeRec
While Not EOF(11)
If ProcedureEmployeeRec.ElementIndex = CurrentProcedure Then
Get #3, ProcedureEmployeeRec.Employeelndex, tempEmployeeRec
expressiond = Trim$(tempEmployeeRec.Last) + ", " +
Left$(tempEmployeeRec. First, 1) + tempEmployeeRec.MI +
Str$(ProcedureEmployeeRec. Employeelndex)
1bSet4.AddItem (expressiond)
IbSetd.ItemData(lbSet4. NewIndex) = fileInd4

Else

151

If ProcedureEmployeeRec.ElementIndex = O Then
unUsedInd4 = unUsedInd4 + 1
ReDim Preserve unUsed4(unUsedInd4)
unUsed4(unUsedInd4) = fileInd4
End If
End If
fileInd4 = fileInd4 + 1
Get #11, fileInd4, ProcedureEmployeeRec
Wend
maxLoc4 = fileInd4 - 1
maxUnUsed4 = unUsedInd4
unUsedInd4 = 1
pbRemove4.Enabled = False
End Sub
Function resourceInSet (Selected As String) As Integer
Dim flag As Integer, templnd As Integer
flag = False
tempInd =0
While (flag = False) And (templnd < 1bSet2.ListCount)
If Selected = Trim$(1bSet2.List(tempInd)) Then

flag = True

152

Else
templInd = tempInd + 1
End If
Wend
resourcelnSet = flag
End Function
Sub setStaticText ()
Get #2, CurrentProcedure, ElementRec
stVarNumber.Caption = Trim$(Str$(ElementRec.Number)) + "." +
Trim$(Str$(ElementRec.Numberl)) + "." + Trim$(Str$(ElementRec.Number2))
stVarName.Caption = Trim$(ElementRec.Name)
End Sub
Function skilllnSet (Selected As String) As Integer
Dim flag As Integer, tempInd As Integer
flag = False
tempInd =0
While (flag = False) And (templnd < ibSet3.ListCount)
If Selected = Trim$(1bSet3.List(tempInd)) Then
flag = True
Else

templnd = templInd + 1

153

End If
Wend
skilllnSet = flag
End Function
Sub Form_Load ()
Call setStaticText
Call refreshlbSetl
Call refreshlbSet2
Call refreshlbSet3
Call refreshlbSet4
Call refreshlbListl1
Call refreshlbList2
Call refreshlbList3
Call refreshlbList4
End Sub
Sub IbList1_Click ()
pbAdd1.Enabled = True
End Sub
Sub IbList2_Click ()
pbAdd2.Enabled = True

End Sub

154

Sub IbList3_Click ()
pbAdd3.Enabled = True

End Sub

Sub IbList4_Click ()
pbAdd4.Enabled = True

End Sub

Sub 1bSet1_Click ()
pbRemovel.Enabled = True

End Sub

Sub 1bSet2_Click ()
pbRemove2.Enabled = True

End Sub

Sub 1bSet3_Click ()
pbRemove3.Enabled = True

End Sub

Sub 1bSetd_Click ()
pbRemove4.Enabled = True

End Sub

Sub pbAdd1_Click ()
listind1 =0

While listInd1 < IbListl.ListCount

155

If 1bList1.Selected(listInd1) = True Then
ProcedureMethodRec.ElementIndex = CurrentProcedure
ProcedureMethodRec.MethodIndex = IbListl.ItemData(listInd1)
If unUsedIndl <= maxUnUsed! Then

Put #13, unUsed1(unUsedInd1), ProcedureMethodRec
unUsedIndl = unUsedIndl + 1
Else
Put #13, maxLocl + 1, ProcedureMethodRec
maxLocl = maxLocl + 1
End If
End If
listInd1 = listInd1 + 1
Wend
Call refreshlbSetl
Call refreshlbList1
End Sub
Sub pbAdd2_Click ()
listlnd2 =0
While listInd2 < IbList2.ListCount
If IbList2.Selected(listInd2) = True Then

ProcedureResourceRec.ElementIndex = CurrentProcedure

156

ProcedureResourceRec.Resourcelndex = 1bList2.ItemData(listInd2)
If unUsedInd2 <= maxUnUsed2 Then
Put #12, unUsed2(unUsedInd2), ProcedureResourceRec
unUsedInd2 = unUsedInd2 + 1
Else
Put #12, maxLoc2 + 1, ProcedureResourceRec
maxLoc2 = maxLoc2 + 1
End If
End If
listInd2 = listInd2 + 1
Wend
Call refreshlbSet2
Call refreshlbList2
End Sub
Sub pbAdd3_Click ()
listlnd3 =0
While listInd3 < IbList3.ListCount
If 1bList3.Selected(listInd3) = True Then
ProcedureSkillRec.ElementIndex = CurrentProcedure
ProcedureSkillRec.Skilllndex = IbList3.ItemData(listInd3)

If unUsedInd3 <= maxUnUsed3 Then

157

Put #9, unUsed3(unUsedInd3), ProcedureSkillRec
unUsedInd3 = unUsedInd3 + 1
Else
Put #9, maxLoc3 + 3, ProcedureSkillRec
maxLoc3 = maxLoc3 + 1
End If
End If
listInd3 = listInd3 + 1
Wend
Call refreshlbSet3
Call refreshlbList3
End Sub
Sub pbAdd4_Click ()
listInd4 =0
While listInd4 < 1bList4.ListCount

If 1bList4.Selected(listind4) = True Then

ProcedureEmployeeRec.ElementIndex = CurrentProcedure

ProcedureEmployeeRec.Employeelndex = IbList4.ItemData(listInd4)

If unUsedInd4 <= maxUnUsed4 Then

Put #11, unUsed4(unUsedInd4), ProcedureEmployeeRec

unUsedInd4 = unUsedInd4 + 1

158

Else
Put #11, maxLoc4 + 1, ProcedureEmployeeRec
maxLoc4 = maxLoc4 + 1
End If
End If
listInd4 = listInd4 + 1
Wend
Call refreshlbSet4
Call refreshlbList4
End Sub
Sub pbCancel_Click ()
Unload fmOther
End Sub
Sub pbRemovel _Click ()
listind1 =0
While listInd1 < IbSetl.ListCount
If 1bSet1.Selected(listInd1) = True Then
fileInd1 = 1bSetl.ItemData(listInd1)
Call clearRecl
Put #13, fileInd1, ProcedureMethodRec

End If

159

listInd1 = listInd1 + 1
Wend
Call refreshlbSet!
Call refreshlbList1
End Sub
Sub pbRemove2_Click ()
listind2 =0
While listInd2 < 1bSet2.ListCount
If 1bSet2.Selected(listind2) = True Then
fileInd2 = IbSet2.ItemData(listInd2)
Call clearRec2
Put #12, fileInd2, ProcedureResourceRec
End If
listInd2 = listInd2 + 1
Wend
Call refreshlbSet2
Call refreshlbList2
End Sub
Sub pbRemove3_Click ()
listInd3 =0

While listInd3 < 1bSet3.ListCount

160

If 1bSet3.Selected(listind3) = True Then
fileInd3 = 1bSet3.ItemData(listInd3)
Call clearRec3
Put #9, fileInd3, ProcedureSkillRec
End If
listInd3 = listInd3 + 1
Wend
Call refreshlbSet3
Call refreshlbList3
End Sub
Sub pbRemove4_Click ()
listind4 = 0
While listInd4 < 1bSet4.ListCount
If 1bSetd.Selected(listind4) = True Then
fileInd4 = 1bSet4.ItemData(listInd4)
Call clearRec4
Put #11, fileInd4, ProcedureEmployeeRec
End If
listInd4 = listInd4 + 1
Wend

Call refreshlbSet4

161

Call refreshlbList4
End Sub
Sub pbView_Click ()
Dim eol As String, text As String, ind As Integer, eRec As ElementRecType,
mRec As MethodRecType, rRec As ResourceRecType, sRec As SkillRecType,
yRec As EmployeeRecType, pmRec As ProcedureMethodRecType, prRec As
ProcedureResourceRecType, psRec As ProcedureSkillRecType, pyRec As
ProcedureEmployeeRecType

eol = Chr$(13) + Chr$(10)

text=""

Get #2, CurrentProcedure, eRec

text = text + "Element:" + eol + Trim$(Str$(eRec.Number)) + "." +
Trim$(Str$(eRec.Numberl)) + "." + Trim$(Str$(eRec.Number2)) + " " +
Trim$(eRec.Name) + eol

text = text + Trim$(eRec.Procedure) + eol + eol

ind=0

text = text + "Verification methods:" + eol

While ind < 1bSetl.ListCount

Get #13, IbSetl.ItemData(ind), pmRec
Get #4, pmRec.MethodIndex, mRec

text = text + Trim$(mRec.Name) + eol

162

ind =ind + 1

Wend

text = text + eol

ind=0

text = text + "Resource required:" + eol

While ind < 1bSet2.ListCount
Get #12, 1bSet2.ItemData(ind), prRec
Get #6, prRec.Resourcelndex, rRec
text = text + Trim$(rRec.Name) + eol
ind =ind + 1

Wend

text = text + eol

ind=0

text = text + "Skills needed:" + eol

While ind < 1bSet3.ListCount
Get #9, 1bSet3.ItemData(ind), psRec
Get #5, psRec.SkillIndex, sRec
text = text + Trim$(sRec.Name) + eol
ind=ind + 1

Wend

text = text + eol

163

ind=0
text = text + "Employees responsible:" + eol
While ind < 1bSet4.ListCount
Get #11, 1bSet4.ItemData(ind), pyRec
Get #3, pyRec.Employeelndex, yRec
text = text + Trim$(yRec.Last) + ", " + Trim$(yRec.First) + " " + yRec.MI +
eol
ind=1ind + 1
Wend
text = text + eol
ProcedureText = text
fmProcedureText.Show 1

End Sub

A.10 Employee-skill dialog box

Declarations

Dim unUsed() As Integer, maxUnUsed As Integer, maxLoc As Integer, fileInd As
Integer, unUsedInd As Integer, expression As String, tempSkillRec As
SkillRecType

Sub clearRec ()

EmployeeSkillRec. Employeelndex = 0

164

EmployeeSkillRec.Skilllndex = 0
End Sub
Sub refreshlbList ()
IbList.Clear
fileInd = 1
Get #5, fileInd, tempSkillRec
While Not EOF(5)

expression = Trim$(tempSkillRec.Name)

If expression <> "" And Not skillInSet(expression) Then
IbList. AddItem (expression)
IbList.ItemData(IbList. NewIndex) = fileInd

End If

fileInd = fileInd + 1

Get #5, fileInd, tempSkillRec

Wend
pbAdd.Enabled = False
End Sub
Sub refreshlbSet ()
IbSet.Clear
filelnd =1

unUsedInd =0

165

Get #10, fileInd, EmployeeSkillRec
While Not EOF(10)
If EmployeeSkillRec.Employeelndex = CurrentEmployee Then
Get #5, EmployeeSkillRec.SkillIndex, tempSkillRec
expression = Trim$(tempSkillRec.Name)
IbSet.AddItem (expression)
IbSet.ItemData(lbSet.NewIndex) = fileInd
Else
If EmployeeSkillRec.Employeelndex = 0 Then
unUsedInd = unUsedInd + 1
ReDim Preserve unUsed(unUsedInd)
unUsed(unUsedInd) = fileInd

End If

End If

fileInd = fileInd + 1

Get #10, fileInd, EmployeeSkillRec

Wend

maxLoc = fileInd - 1
maxUnUsed = unUsedInd
unUsedInd = 1

pbRemove.Enabled = False

166

End Sub
Sub setStaticText ()
Get #3, CurrentEmployee, EmployeeRec
stVarLast.Caption = Trim$(EmployeeRec.Last)
stVarFirst.Caption = Trim$(EmployeeRec.First)
stVarMI.Caption = Trim$(EmployeeRec.MI)
stVarSuffix.Caption = Trim$(EmployeeRec.Suffix)
stVarTitle.Caption = Trim$(EmployeeRec.Title)
End Sub
Function skillInSet (Selected As String) As Integer
Dim flag As Integer, tempInd As Integer
flag = False
tempIlnd =0
While (flag = False) And (tempInd < 1bSet.ListCount)
If Selected = Trim$(IbSet.List(tempInd)) Then
flag = True
Else
templnd = templnd + 1
End If
Wend

skilllnSet = flag

167

End Function
Sub Form_Load ()
Call setStaticText
Call refreshlbSet
Call refreshlbList
End Sub
Sub IbList_Click ()
pbAdd.Enabled = True
End Sub
Sub 1bSet_Click ()
pbRemove.Enabled = True
End Sub
Sub pbCancel_Click ()
Unload fmEmpSkl
End Sub
Sub pbRemove_Click ()
listind =0
While listInd < 1bSet.ListCount
If 1bSet.Selected(listInd) = True Then
fileInd = IbSet.ItemData(listInd)

Call clearRec

168

Put #10, fileInd, EmployeeSkillRec
End If
listInd = listInd + 1
Wend
Call refreshlbSet
Call refreshlbList

End Sub

A.11 View procedure dialog box
Sub Form_ILoad ()
efText = ProcedureText
End Sub
Sub pbCancel_Click ()
Unload fmProcedureText

End Sub

A.12 File-new dialog box
Function editControls () As Integer
Dim msg As String

msg =

If Trim$(efFileName.Text) = "" Then

169

msg = msg + "File name cannot be blanks."
End If
If msg <> "" Then
UserResponse% = MsgBox(msg, 16, "Error")
editControls = False
Else
editControls = True
End If
End Function
Sub pbCancel_Click ()
Unload fmNewFile
RCfmNewgFile = False
End Sub
Sub pbOk_Click ()
On Error Resume Next
If editControls() = True Then
MkDir BaseDirectory + "\" + Trim$(efFileName.Text)
If Err <> 0 Then
UserResponse% = MsgBox("File name not valid or already exists.", 16,
"Error")

Else

170

ChDir BaseDirectory + "\" + Trim$(efFileName.Text)
Call OpenFiles
CurrentFile = Trim$(efFileName.Text)
RCfmNewgFile = True
Unload fmNewFile
End If
End If

End Sub

A.13 File list dialog box
Sub Form_Load ()
Dim count, d(), i, dirName ' Declare variables.
If FileAction = "O" Then 'set text
stFileList.Caption = "Select a file to open"
Else
stFileList.Caption = "Select a file to delete”
End If
' get subdirectories
dirName = Dir$(BaseDirectory + "*.*", 16)
Do While dirName <> ""

If dirName <> "." And dirName <> ".." Then

171

If GetAttr(BaseDirectory + "\" + dirName) = 16 Then
If (count Mod 10) =0 Then
ReDim Preserve d(count + 10)
End If
count = count + 1
d(count) = dirName
End If
End If
dirName = Dir$
Loop
IbFileList.Clear
Fori=1Tocount 'additems and select current
IbFileList. AddItem d(i)
If CurDir = BaseDirectory + "\" + d(i) Then
IbFileList.Selected(i - 1) = True
End If
Next i
pbOk.Enabled = False
End Sub
Sub IbFileList_Click ()

pbOk.Enabled = True

172

End Sub
Sub IbFileList_DblClick ()
Call IbFileList_Click
Call pbOk_Click
End Sub
Sub pbCancel_Click ()
RCfmFileList = False
Unload fmFileList
End Sub
Sub pbOk_Click ()
On Error Resume Next
If FileAction = "O" Then
ChDir BaseDirectory + "\" + IbFileList. Text
Call OpenFiles
CurrentFile = Trim$(IbFileList. Text)
RCfmFileList = True
Unload fmFileList
Else
Kill BaseDirectory + "\" + Trim$(lbFileList. Text) + "* *"
RmDir Trim$(IbFileList. Text)

If Err <> 0 Then

173

UserResponse% = MsgBox("Error removing directory. File not deleted.”,
16, "Error")
End If
RCfmFileList = True
Unload fmFileList
End If

End Sub

A.14 Process quality manual dialog box
Declarations
Dim curProc As Integer, listInd As Integer, fileInd As Integer, expression As
String, tempElementRec As ElementRecType, tempMethodRec As
MethodRecType, tempResourceRec As ResourceRecType, tempSkillRec As
SkillRecType, tempEmployeeRec As EmployeeRecType, pmRec As
ProcedureMethodRecType, prRec As ProcedureResourceRecType, psRec As
ProcedureSkillRecType, pyRec As ProcedureEmployeeRecType
Sub refreshlbList ()

IbList.Clear

fileInd = 1

Get #2, fileInd, tempElementRec

While Not EOF(2)

174

expression = Trim$(Str$(tempElementRec.Number)) + "." +
Trim$(Str$(tempElementRec. Numberl)) + "." +
Trim(Str$(tempElementRec.Number2)) + " " + Trim$(tempElementRec. Name)

If expression <> "0.0.0 " Then

IbList. AddItem (expression)
IbList.ItemData(IbList. NewIndex) = fileInd

End If

fileInd = filelnd + 1

Get #2, fileInd, tempElementRec

Wend
End Sub
Sub refreshlbSetl ()
1bSetl.Clear
filelnd =1
Get #13, fileInd, pmRec
While Not EOF(13)
If pmRec.ElementIndex = curProc Then
Get #4, pmRec.MethodIndex, tempMethodRec
expression = Trim$(tempMethodRec.Name)
1bSetl.AddItem (expression)

IbSetl.ItemData(IbSetl.NewlIndex) = fileInd

175

End If
fileInd = fileInd + 1
Get #13, fileInd, pmRec
Wend
End Sub
Sub refreshlbSet2 ()
1bSet2.Clear
filelnd =1
Get #12, fileInd, prRec
While Not EOF(12)
If prRec.ElementIndex = curProc Then
Get #6, prRec.Resourcelndex, tempResourceRec
expression = Trim$(tempResourceRec.Name)
IbSet2. AddItem (expression)
IbSet2.ItemData(1bSet2.NewIndex) = fileInd
End If
fileInd = fileInd + 1
Get #12, fileInd, prRec
Wend
End Sub

Sub refreshlbSet3 ()

176

1bSet3.Clear
filelnd =1
Get #9, filelnd, psRec
While Not EOF(9)
If psRec.ElementIndex = curProc Then
Get #5, psRec.Skilllndex, tempSkillRec
expression = Trim$(tempSkillRec.Name)
IbSet3.AddItem (expression)
IbSet3.ItemData(lbSet3.NewlIndex) = fileInd
End If
fileInd = fileInd + 1
Get #9, fileInd, psRec
Wend
End Sub
Sub refreshlbSet4 ()
IbSetd.Clear
fileInd = 1
Get #11, fileInd, pyRec
While Not EOF(11)
If pyRec.ElementIndex = curProc Then

Get #3, pyRec.Employeelndex, tempEmployeeRec

177

expression = Trim$(tempEmployecRec.Last) + ", " +
Left$(tempEmployeeRec.First, 1) + tempEmployeeRec.MI +
Str$(ProcedureEmployeeRec. Employeelndex)

1bSet4.AddItem (expression)

IbSet4.ItemData(IbSet4.NewlIndex) = fileInd

End If
fileInd = fileInd + 1
Get #11, fileInd, pyRec
Wend
End Sub
Sub updateEF ()
Get #2, curProc, tempElementRec
efProcedure. Text = Trim$(tempElementRec.Procedure)
End Sub
Sub Form_Load ()
WINfmManual = True
Call refreshlbList
IbList.Selected(0) = True
Call IbList_Click
End Sub

Sub Form_Unload (Cancel As Integer)

178

WINfmManual = False

End Sub

Sub IbList_Click ()
curProc = IbList.ItemData(lbList.ListIndex)
Call updateEF
Call refreshlbSetl
Call refreshlbSet2
Call refreshlbSet3
Call refreshlbSet4

End Sub

Sub pbCancel_Click ()

Unload fmManual

End Sub

Sub pbProceed_Click ()

Dim eol As String, Text As String, ind As Integer
Open "MANUAL.TXT" For Output As #14
eol = Chr$(13) + Chr$(10)

Print #14, "Quality Manual for "; CurrentFile; eol; eol
Print #14, CompanyRec.Name

Print #14, CompanyRec.Address

179

Print #14, Trim$(CompanyRec.City); ", "; CompanyRec.State; " ";
CompanyRec.Zip
Print #14, "("; CompanyRec.AreaCode; ") "; CompanyRec.Number; " - ";
CompanyRec.Extension; eol; eol
listind =0
While listInd < IbList.ListCount
IbList.Selected(listInd) = True
curProc = IbList.ItemData(listInd)
Text=""
Get #2, curProc, tempElementRec
Text = Text + Trim$(Str$(tempElementRec.Number)) + "." +
Trim$(Str$(tempElementRec.Numberl)) + "." +
Trim$(Str$(tempElementRec. Number2)) + " " + Trim$(tempElementRec.Name)
+eol
Text = Text + Trim$(tempElementRec.Procedure) + eol + eol
If 1bSetl.ListCount > 0 Then
ind=0
Text = eol + Text + "Verification methods:" + eol
End If
While ind < 1bSet1.ListCount

Get #13, IbSetl.ItemData(ind), pmRec

180

Get #4, pmRec.MethodIndex, tempMethodRec
Text = Text + Trim$(tempMethodRec.Name) + eol
ind =ind + 1
Wend
If 1bSet2.ListCount > 0 Then
ind=0
Text = eol + Text + "Resource required:" + eol
End If
While ind < 1bSet2.ListCount
Get #12, 1bSet2.ItemData(ind), prRec
Get #6, prRec.Resourcelndex, tempResourceRec
Text = Text + Trim$(tempResourceRec.Name) + eol
ind =ind + 1
Wend
If 1bSet3.ListCount > 0 Then
ind=0
Text = eol + Text + "Skills needed:" + eol
End If
While ind < 1bSet3.ListCount
Get #9, IbSet3.ItemData(ind), psRec

Get #5, psRec.Skilllndex, tempSkillRec

181

Text = Text + Trim$(tempSkillRec.Name) + eol
ind =ind + 1
Wend
If IbSet4.ListCount > 0 Then
ind=0
Text = eol + Text + "Employees responsible:" + eol
End If
While ind < 1bSet4.ListCount
Get #11, IbSet4.ItemData(ind), pyRec
Get #3, pyRec.Employeelndex, tempEmployeeRec
Text = Text + Trim$(tempEmployeeRec.Last) + ", " +

Trim$(tempEmployeeRec.First) + " " + tempEmployeeRec.MI + eol
ind =ind + 1
Wend
Print #14, Text
listInd = listInd + 1
Wend
msg$ = "Quality manual has been created as ' MANUAL.TXT in
'C:\ISO9000\" + CurrentFile + "'. Use an editor to view and print."

userResponse% = MsgBox(msg$, 64, "Information")

Close #14

182

End Sub
Sub pbRefresh_Click ()
Call refreshlbList

End Sub

183

