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ABSTRACT

Unit commitment, including economic dispatch, is a key com-
punent of short term operation scheduling of an electric energy
system. Common industry practice is based on the use of a “pri-
arity list” for generation scheduling and a deterministic mnodel for
power/energy demand. The priority list specifies the next unit to
be started or shutdown in response to an increase or decrease in
load. A common problem in the use of priority lists is that the
next unit is improperly sized to meet the actual change in load.

The algorithm proposed here is more accurate than the pri-
ority list method and much faster than dynamic programring
which can hardly be applied to systems of more 5 machines. For
a system of 41 machines, the algorithm can determine schedules
in 0.1 second which is fast enough to do on-line control. Further-
more, Lhe total gencerating cost is superior to that obtained by
dynamic programming successive approximations.

LINTRODUCTION

In this paper we propose a scheduling algorithm (including
economic dispatch) which is fast enough to be used for on-line
scheduling in respouse to randomn changes in demand. The algo-
rithm does not represent a radical departure from current prac-
tice. It uses a quadratic function for the fuel cost (heat rate) of
thermal units, and a standard exponential function of the cu-
mulative down time to model unit starlup costs. A pumped
storage facility which may be a composite of several {pumped
and unpumped) esergy storage systems is included. It uses a
scheduling tuble for the generation system which is reminiscient
of the priority list, but more comprehensive; and it has an ef-
ficient “off-line” scheduling procedure to compute the optimal
unit commitment/economic dispatch to meet the (deterministic)
expected demand. Based on the solution to the deterministic
scheduling problem, a tast, “on-line” algorithm is applied to ad-
Jjust the commitment and dispatch in response to random fluc-
tuations in demaud. The algorithm requires about 0.1 sec to
reschedule 41 machines (on a VAX 11/780) over 1 time step.
The random fluctuations in load are modeled by white noise or a
(nou-stationary) Gaussian-Markov process. In the second case, a
Kalman filter is used to compute the one-step ahead prediction
of the load.

Performance tests for the algorithm are given for systems of
3,5, 18 aud 41 machines. The optimal costs computed are nearly
identical to those computed using dynamic programming {1} or
a modilicd dynaic programming successive approximatious al-
gorithun |2]. The tests show that the CPU times required to set
up the scheduling table and execute the on-line scheduling algo-
rithni grow slower than linearly in the number of machines in the

system.

The design and execution of the algorithin are based on the
(implicit) assumptions that the starting costs ol the geucrators
are substantially smaller than the operating (fuel) costs. We also
assume that the short term fluctuations in the load are a small
percentage (approximately 4% or less) of the mean load level. The
performance of our algorithm reflects the fact that the sensitivity
of the system operating cost to perturbations in the demand and
“small” changes in the commitment schedule decrease substan-
tially as the number of machines in the system increases. (This
fact was exploited in a different way in [3].) We have used a sim-
ple model for the scheduling problem. Enhancements to include
run time constraints, more complex {Gaussian) load models, and
starage system costs (shadow prices) would not substantially im
pact the performance of the algorithm. lucluding trausmission
costs in the scheduling problem would require redesign of the al-
gorithm.

Almost all previous work on unit commitment scheduling has
been based on deterministic load models. Work similar to ours
in spirit includes the paper of Bertsckas ct al{3] who use a du-
ality formulation of the optimal scheduling problem, the work of
Turgeon (4] [5] who uses the maximum principle to treat deter-
ministic model similar to the one used here, the thesis of Leguay
(6] who uses “impulse control” methods to treat small scale, de-
terministic scheduling problems, and the recent work of Gonza-
lez and Rofman (7] [8] who use a clever combinational algorithin
to treat modest sized, deterministic scheduling problems includ-
ing costs for the storage systems (shadow prices). Mathematical
treatments of stochastic unit commitment problenis were given in
Blankenship and Menaldi (9], Li and Blankenship [10]. Starnes’s
thesis (2] contains an effective ad hoc algorithm for treating (de-
terministic) scheduling problem with more than vne performance
measure (e.g. system security and cost). More detdils on the
present work may be found in Yan’s thesis [11].

2. SYSTEM MODEL

We consider a system with M machines (thermal or nuclear
units) operating over an interval {0,T
We assume that the system includes a (composite) energy stor-
age system (pumped hydro). The unit commitinent problem is to
schedule the startup, operating level, and shutdown of the ther-
mal units and the pumping and withdrawal ol cnerpy to aud from
Lhe storage system to meet the time varying deaand Tor poser,
L(t), t=0,1,2,..,°T, ab minimum operating cost. bnomathematead
terms the problem is

(one day or vne week).

T M
n}i‘nZZ[CG(t,i) +CS(t,1)] (2.1)

t=11i=1

subject to the constraints
M
G(t) = Y Gd) = L{) 4 r(t) (2.2)
=1

Gl <G4 SG()
R<r(t)< R (2.3)
S(t) = min{S, maz{S, S{t ~ 1) +r(t - 1)}} (2.4)



11/780 operating under Berkeley Unix version 4.1.

NO. OF BUILD UP ITERATION
MACIHINES SCHEDULING TO OBTAIN 24
TABLE HOUR OPTIMAL

SCHEDULE

03 000:30 0:42

05 000:50 1:10

18 120:00 1:35

r _200:00 3:50

CPU TIME(MIN:SEC) (OFF-LINE)
Table 2. EXECUTION TIME FOR
DETERMINISTIC CASES

The tread in computational times versus sumber of machines

is hmportant. Pigure 3 shows that both the time required to

build the scheduling table and the unit iteration time for the

deterministic algorithm have less than linear growth as functions

of tachine numbers. The search procedure used to construct

the scheduling table was not optimized, and the computational

times for this procedure could be substantially reduced if eflective
search procedures were used.
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Figure 3. CPU TIME VS NUMBER OF MACHINES

6. ON — LINE STOCHASTIC SCHEDULING

The off-line algorithm determines a schedule and a set of op-
timal transfer rates #(1), ..., #(T') corresponding to a known, deter-
ministic demand L(t),t = 0,1,...,T. Starting with ¥(1),..., 7(T)
and G(t,7),i = 1,2,..., M, the on-line algorithm may be used to
determine the best schedule (including starting costs), G{t,i),
i=1,..,M., and optimal transfer rates r(1),...,c(T) to mcet the
actual, observed (random) demand L(t), t=0,1,...,T. The algo-
rithin is fast enough to be used on-line.

In testing the algorithm we used two different models for the
demand. The first was simply

L{t) = L(t) + S L(t) (6.1)

with 6L(t) a sequence of independent zero mean random variables
uniformly distributed in the interval [—oL{t},oL(t)] with & a
small number. In the tests we used o = 0.04, so the demand

fluctuations were less than or equal to 4% of the mean at all tine
steps.

In the sccond demand model, we assumed that the demand
fluctuations were a first order Gaussian-Markov process

SL(t-+1) = ax6L(t) + w(t) (6.2)

with ‘a’ a real constant and w(t),t =0,1,.... a sequence of zero
mean, independent, identically distributed Gaussian-Markov pro-
cess(i.c. a Gaussian white noise process). We used the model

y(t) = 6L(t) + v(t) (6.3)

with v(t) Gaussian white naise process Lo deseribe the wieasure
ments of the demand fluctuatious. We assuine

Elw(t)w(s)] =v Vis

Efo()5L(0)] = 0 = Efu(s)5L(0)]

Blwtwls)] = W (1) 5.

Blo()o(s)) = V() b

BISL(O)] =0, B(BL()) = o(t)
5u={% s # L

s =t
(The parameters a,w(t),v(t) and o(t) must be identified from ac-
tual load data.)
The Kalman filter is the best estimator of §L{t) given y(s),
s <t — L. The equations are

Vit s (6.1)

(6.5)

SL{t+ Lty =ax6L{tlt — 1) + K(t) + [y(t) — SL(t)t—)| (6.6)

where §L(t]t — 1) is the best (linear) estimate of $L(L) given
y(s),s <t -1, and

Lo ax Py
KO= payiviy

. as P(t) ws P
PUA) =0 v v (7

P0) = o(0)
Both K(t) and P(t) can be computed off-line.

The ou-line scheduling algorithin based on the Gaussian-
Markov load model is shown in Figure 4. the same algorithm
is used for the random fluctuations model, with 8L(t 4 1{t) in
that Gaussian-Markov model substituled by 6L(t) in the Figure.

The overall scheduling algorithm is shown in Figure 5.

7.ON — LINE SCHEDULING FOR 41 MACHINFES

In conducting the schedule computations 80 days of (syn-
thetic) hourly demand were used to gencrate the randoin load
statistics. A break down of the computational times for the algo-
rithm in the two model cases is given in Figure 6. A plot of the
computational times required to find the optimal hourly sched-
ule for the two different random demand models versus number
of machines is given in Figure 7. Note that the rate of increase
ia less than linear. The times are longer when the algorithm in-
cludes the Kalman predictor, since time is required to execute
the additional lines of code. (For the 41 machine casc 87 seconds
were required to find the optimal schedule for 40 days in 1 hour
increments.)
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ABSTRACT

Unit commitment, including economic dispatch, is a key com-
ponent of short term operation scheduling of an electric enerygy
system. Common industry practice is based on the use of a “pri-
ority list” for generation scheduling and a deterministic model for
power/energy demand. The priority list specifies the next unit to
be started or shutdown in response to an increase or decrease in
load. A common problem in the use of priority lists is that the
next unit is improperly sized to meet the actual change in load.

The algorithm proposed here is more accurate than the pri-
ority list method and much faster than dynamic programming
which can hardly be applied to systems of more 5 machines. For
a system of 41 machines, the algorithm can determine schedules
in 0.1 second which is fast enough to do on-line control. Further-
more, the total generating cost is superior to that obtained by
dynamic programming successive approximations.

LINTRODUCTION

In this paper we propose a scheduling algorithm (including
economic dispatch) which is fast enough to be used for on-line
scheduling in response to randorn changes in demand. The algo-
rithm does not represent a radical departure from current prac-
tice. It uses a quadratic function for the fuel cost (heat rate} of
thermal units, and a standard exponential function of the cu-
mulative down tirae to model unit startup costs. A pumped
storage facility which may be a composite of several (pumped
and unpumped) energy storage systems is included. It uses a
scheduling table for the generation system which is reminiscient
of the priority list, but more comprehensive; and it has an ef-
ficient “off-line” scheduling procedure to compute the optimal
unit commitment/economic dispatch to meet the (deterministic)
expected demand. Based on the solution to the deterministic
scheduliug problem, a tast, “on-line” algorithm is applied to ad-
Jjust the comuaitment and dispatch in response to random fluc-
tuations in demand. The algorithim requires about 0.1 sec to
reschedule 41 machines (on a VAX 11/780) over 1 time step.
The random Huctuatious in load are modeled by white noise or a
(non-stationary) Gaussian-Marhov process. In the second case, a
Kalman filter i3 used to compute the one-step ahead prediction
of the load.

Performance tests for the algorithm are given for systems of
3, 5, 18 and 41 machines. The optimal costs computed are nearly
identical to those computed using dynamic programming (1] o
a wodilicd dynamic progranuuing successive approximations al-
gorithin 2. The tests show that the CPU times required to set
up the scheduling table and execute the on-line scheduling algo-
rithm grow slower than linearly in the number of machines in the

gystem.

The design and execution of the algorithm are based on the
(implicit) assumptiony that the starting costy ol the genciators
are substantially smaller than the operating (luel) costs. We also
assume that the short term fluctuativns in the load are o small
percentage (approximately 4% or less) of the mean load level. The
performance of our algorithm reflects the fact that the seasitivity
of the system operating cost to perturbations in the demand andl
“small” changes in the commitment schedule decrease substan-
tially as the number of machines in the system increases. (This
fact was exploited in a different way in [3].) We have used a sim-
ple model for the scheduling problem. Enhancements to include
run time constraints, more complex (Gaussian) load models, and
storage system costs (shadow prices) would not substantially im-
pact the performance of the algorithun. lucluding transimission
costy in the scheduling problem would require redesign of the al-
gorithm.

Almost all previous work on unit commitment scheduling has
been based on deterministic load models. Work similar to ours
in spirit includes the paper of Bertsckas ct al{3] who use a du-
ality formulation of the optimal scheduling problem, the work of
Turgeon (4] (5] who uses the maximum principle to treat deter-
ministic model similar to the one used here, the thesis of Leguay
[6] who uses “impulse control” methods to treat small scale, de-
terministic scheduling problems, and the recent work of Gonza-
lez and Rofman (7] [8] who use a clever combinational algorithin
to treat modest sized, deterministic scheduling problems includ-
ing costs for the storage systems (shadow prices). Mathematical
treatments of stochastic unit commitinent problems were given in
Blankenship and Menaldi [9], Li and Blankenship [10]. Staraes’s
thesis [2] contains an effective ad hoc algorithm for treating (de-
terministic) scheduling problem with more than one performance
measure {e.g. system securily and cost). More details on the
present work may be found in Yan’s thesis [11].

2. SYSTEM MODEL

We consider a system with M machines (thermal or nudlear
units) operating over an interval {0,T] (one day or oue week).
We assume that the system includes a (composite) energy stor-
age system (pumped hydro). The unit commitment problem is o
schedule the startup, operating level, and shutdown of the ther-
mal units and the pumping and withdrawal ol cnerpy to and lrom
the storage system to meet the time varying demand o poswer,
L{1), t=0,1,2,...,;'T, at minimum operating cost. bn wathematicad
terms the problem is

T M
xr‘\Ii‘_nZZ[CG(t,i) +CS(¢,1)] (2.1)

subject to the coustraints

[N
ro

M
Gy =Y G = L)+ r(t) (2.
=1

G() < G(t,4) < G()
R<r(t) < i (2.3)
S(t) = min{S,maz{S, St — 1) ++(t - 1)}} (2.4)



where G{t,i) is the gencration level of the ith machine in time
interval t, r(t) is the energy pumped to (r(t)>0) or withdrawn
from (r(t) <0) storage systems in t, S(t) i the totul stored energy
at 4, and the lower and upper bounds (C(3), G3), K¢, ...) are phys-
ical constraints. The generation cost per unit time is the sum
of the running costs, CG(t,i), and starting costs, CS(t,i), of the
machines. We assume

CG(t,5) = ay () -+ aa(5) « G(t,1) + as(i) * [G(41))2 (25)

1
]
‘and

CS(t,1) = b,(v) * {1 — ba(1) » exp|-bs(s) « d(t,1)]} (2.6)

where all the cost cocflicients ay (1), b,(3), ete., are non-negative
and d(t,i) i3 the cumulative down time of the ith machine at time
t.

. The controls or decision variables for the problem are r(t),
G(t,i), t=0,1,...,T, i=1,..,M, and the generation schedule [, an
M-vector of 0's and 1's with 1 in the ith position indicating ma-
chine i i3 on, and a zero indicating off. The power set [(0, 1)
is the collection of all possible schedules. Since continuous con-
trols r(t), G{t,i) are bounded and the schedules I{t) are discrete,
the optinization problem involves a non-diflerentiable objective
function.

The states of the system are the down time of the machines
d{t,i), i=1,2,...,M, and 5(t}, the slored ¢nergy. H a dynainic load
model is assumed (see section 6), then the state variables of that
model must also be included. If a more elaborate machine model
including (minimum) run time constraints or a “banked” state
is used, then these states variables must also be added to the
state vector. Since our primary concern is to develop an efficient
scheduling and dispatch algorithm, we shall not include these
features. They do not change the essential structure of the opti-
mization algorithin,

We shall treat the following types of load models : (1) deter-
ministic loads; {2) loads with & pure randomn fluctuation (white
noise) about the mean; and (3) loads with a first order Gaussian-
Markoyv process fluctuation about the mean.

As posed, the problem includes unit commitment (selection
of I{t)) and econormic dispatch (setting G(t,i) for on-machines and
r(t)). The dispatch problem is solved by having all on machines
operate at the same incremental cost level

_ deani) )
= G| )

otherwise, by shifting the load of a higher incremental cost unit
to machines with lower incremental costs, the overall generation
cost could be reduced.

Separating economic dispatch from unit commitment, as was
classically done, does not guarantee achievement of the minimum
short term scheduling cost.

3. SCHEDULING ALGORITHM

Our algoiithm iy dedigned in two stages: Fiesl, an exten-
sive ofl-line computation iy done to compute a “scheduling ta-
ble,” reminiscient of the priority list in common use in the in-
dustry. This table need be computed only once for each systemn.
Using the table, the deterministic unit commitment problem is
solved “off-line.” Then a simple, efficient “on-line” algorithm is
.used to fine tune the schedule in response to unexpected (or pre-
dicted random) changes in load. In effect the off-line algorithm
establishes a rough correspondence between the total generation
G{t) = ):{Vil G(t,1) required to serve the load, and the individ-
ual generation assignments, G(t,1), in the “first several cheapest
generation schedules” for each given level of demand. The on-
line scheduling control is then responsible for modest modifica-

tions of the machine schedule (and dispateh) to match Uie actual
load. 1t does this by selecting the best schedule among the “first
several cheapest ones” to achivve (he optimal total cout when
slarting cosls are taken iulo accouut, Phe unplicit assuniption w
constructing the table iy that the starting costs associated with
various schedules are substantially less than the fuel costs.

For each load level, the “cheapest” schedules are selected to
achieve the corresponding total gencration level, with the individ-
ual generation levely assigned to the points where all on machines
have the same A (2.7) in the candidate schedules.

OFF - LINE ALGORITHM

First, we build up a scheduling table with K candidate
cheapest schedules (G(t,i),i=1,...,M) for total gencration G(t) to
meet different demand levels. Then given the deterministic de-
mand L(t), t=0,1,...,T, with bar implying the stochastic meun,
we select the initial power transfer r{t), t=0,1,..,T, to make
G(t)=L(¢) + r(t) as flat as possible. Disturbances are added to
r(0),...,r(T) to discover the lowest cost. At each iteration the
individual generation levels G{t,i} required to achieve G(t) (to-
tal mean load at time t) are selected from the scheduling table.
Minor adjustment and compensation of r(0),...,r(T) are made to
match physical constraints and demand and achieve minimam
cost. This limits the computational burden when dealing with a
large number of machines. The final r(t), G(t,i) and G(t) are the
mean transfer rates, individual generations and total generation,
denoted by r(8),G(t,5) and G(8), L §., Ty LM
ON — LINKE ALGORITHM

When the load is a random process, ou-hne scheduling
is required to compensate the (planned) delerministic genera-
tion and pumping schedule. We regard the stochastic demand
L(t},t==0,1,...,T, as a random fluctuation about the mean demanid
L(t). The power transfer r(t) = r(t) -+ 6r{t) is adjusted to make
G(t) = G(t) + 6G(t) as flat as possible for t=20,1,...,T. By using
7(t) , t=0,1,...,T, as the starting point for the on-line iteration
and searching the scheduling table for close feasible solutions, the
optimal schedule fur the actual current load may be found very
rapidly. If the demand fluctuation process can be modeled by
Gaussian-Markov process, the Kalman state estimator provides
one-step ahead prediction of the demand. This perniits a better
(lower cost) control since we can smooth out the fuctuativus be-
tween two time intervals (present and next time steps) by using
the storage system and power trausfers.

The advantage of this algorithin over the conventional pri-
ority list is the consideration of the operating status of “all” the
machines in response to a change in demand. The priority list
indicates the next machine to be turned on or off in response to
an increase or decrease in demand. However, in some cases the
optimal response to an increase in demand is to turn some ma-
chines on while turning others off. The reverse can happen when
demand decreases,

The overall algorithm is summarized in Iig 1.

4. CONSTRUCTION QF THE SCHEDULING TABLIE
A typical scheduling table in nhowin in Fignie 20 Ple total
generation levels G(t) in increments, b (y) which can vary in
size, are listed along the left most colutun. The individual gener-
ations G(t,i) required to achieve those levels (including economic
dispatch) are listed in the rows of the table, commencing with the
cheapest schedule (ignoring starting costs) and continuing to the
Kth cheapest schedule. Note for this case, the cheapest schedule
to serve level 7420 has machine G1 down and G2 up; the reverse of
the solution at level 7400. The number, K, of candidate schedules
for each level of demand is chosen in one of two ways:
(1) If tfj,k,M + 1} is the cost entry for the (j,h) row schedule
of the table (cost in the right most column}, K is chosen in
such a way that t[j,K+1,M +1)-t[j,K,M 4 1] is larger than the
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Figure 1. DETERMINISTIC SCHEDULING ALGORITHM

most expensive starting cost of machines which are allowed
to switch.

Alternately, empirical evidence from simulation or operation
experience may indicate that among the first K cheapest
schedules, only the first 2 or 3 are ever applied. Then K
may be safely reduced to 4 or 5. This enhances the on-line
speed of the algorithm.

The increment of the total generation, G (j), is chosen by
the rule

(2

~—

§G(5) = min(8G, X[G])
= t[5+1,1,0] — ¢{5,1,0}

(4.1)

where (¢ is a nominal increment (100MW in our examples) and
X([G] is the smallest increment of generation such that G+X[G}
has a different optimal unit commitment (I{t,i}) from that at level
G. In the example in Figure 2, with §G = 100, the choices are

min (100, X{7300]) = 100

min{100, X[7400]) = 20 (4.2)

since

for j-= 1 schedule {20,0,40,10,...,600). > commitment (1,0,1,1,...,1)
for j==2 schedule (30,0,30,40,...,600) > commitment (1,0,1,1,...,1)
for j=3 schedule (0,50,60,60,...,600)z> commitment (0,1,1,1,...,1)

The power transfer rates r(t), t=0,1,...,'", arc chosen to as-
sure:

(i) the stored energy is periodic S(t}=S(t+T) which implies:

~

X::(I] Q0

[

(+)

(i) the total generation G(t) is as flat as possible; and

(iii) the constraints < r(t) < It hold.
The key condition (i) is a consequence of the quadratic form
of the generation cost functions CG(t,i).

PRIGRITY

G G1 G2 G3 G4 ... GM COSsT
7300 22 0 44 41 ... 600 18000  first

0 29 47 41 ... 600 18120  second

30 36 1] 45 ... 600 18439 3rd
(i=1)

30 11 0 67 ... 600 700 Kol
7400 34 0 32 49 ... 600 13900

31 0 0] 87 ... 600 19240
(1=2)

32 46 48 42 ... €00 22320 _
7420 0 53 62 67 ... 600 24440
(i=3)
15000 438 42 59 50 ... 600 65229 lirst

(j==302) .

Figure 2. A Typical Scheduling Table.

5. DETERMINISTIC SCHEDULING

Soveral test problemns with a detenministic demand for power
were treated with the (off-line) algorithm to establish a base line
for the (on-line) stochastic scheduling algorithm. Operating and
starting cost data for the two larger examples, 18 and 41 ma-
chines, are listed in Tables 3 and 4 in the Appendix. These
gystems have been treated carlier using a modified dynamic pro-
gramming successive approximations algorithm DPSA [2], and
the performance results were used as a check on the current algo-
rithm. Smaller examples involving 3 and § machines which can
be treated by dynamic programming were also used to validate
the algorithm. The overall cost figures obtained in these tests are
shown in Table 1. The differences in costs in the smaller examples
are primarily due to the propagation of quantization errors in the
dynamic programming algorithm. The cost differences in the two
larger examples are primarly due to quantization effects and the
inherent inaccuracy of DPSA.

PRIESSENT

NO. OF DPSA

MACHINES OR DP ALGORITHM
03 0022288.77 0022232.448
03 0030210.63 0030135.504
03 0022283.14 0022251.835
05 0038115.60 0038108.249
18 0461047.00 0459235.710
41 1623799. 00 1584421.308

Table 1. OPTIMAL COST COMPARISON

Execution times for the algorithm in this paper are shown in
Table 2, including the time required to construct the scheduling
table. One day refers to an interval of 24 time steps. The program
is written in PASCAL and the times arc obtained on a VAX



11/780 operating under Berkeley Unix version 4.1

ITERATION

NO. OF BUILD UP
MACHINES SCHEDULING TO OBTAIN 24
TABLE IIOUR OPTIMAL
SCHEDULE

03 000:30 0:42

05 000:50 1:10

t8 120:00 1:35

41 200:00 3:50

CPU TIME(MIN:SEC) (OFF-LINE)
Table 2. EXECUTION TIME FOR
DETERMINISTIC CASES
The trend in computational times versus number of muchines
iy important. Figure 8 shows that both the time required to
build the scheduling table and the unit iteration time for the
deterministic algorithm have less than linear growth as functions
of machine numbers. The search procedure used to construct
the scheduling table was not optimized, and the computational
times for this procedure could be substantially reduced if eflective
search procedures were used.
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Figure 3. CPU TIME VS NUMBER OF MACHINES

6, ON = LINE STOCHASTIC SCHEDULING

The off-line algorithm deterimnines a schedule and a set of op-
timal transfer rates 7(1), ..., F{T') corresponding to a known, deter-
ministic demand L(t),¢ = 0,1,...,T. Starting with 7(1),...,#(T)
and G(t,1),1 = 1,2,.., M, the on-line algorithm may be used to
determine the best schedule (including starting costs), G(t,i),
i=1,...,M., and optimal transfer rates r(1),...,r(T) to meet the
actual, observed (random) demand L{t), t=0,1,...,T. The algo-
rithm is fast enough to be used on-line.

In testing the algorithm we used two different models for the
demand. The first was simply

L{t) =L(t) + 6L(¢) (6.1)

with §L(t) a sequence of independent zero mean random variables
uniformly distributed in the interval [—aL(t),aL(t)] with a a
small number. In the tests we used « = 0.04, s0 the demand

fluctuations were less than or equal to 4% of the mean at all time
steps.

In the second demand model, we assumed that the demand
{ftuctuations were a first order Gaussian-Markov process

SL(t+1)=ax8L(t) +w(t) (6.2)

with ‘a’ a real constant and w(t),t = 0,1, .... a sequence of zero
mean, independent, identically distributed Gaussian-Markov pro-
cess(i.c. a Gaussian white noise process). We used the model

y(t) = SL(t) + v(t) (6.3)

with v(t) Gaussian white noise process Lo deseribe i meanure-
menty of the demand lluctuatious. We assune

Elo(tyw(s)] =0 Vi,

Elu(t)6L(0)] = 0 = Efw(s)sL(0)]
Elw(t)w(s)] — W (t) « 0,
E[u(t)o(s)] = V(1) # bu0

E[SL(0)) = 0, B{(6L())*] - o(t)

0, sAt
5,,:{‘ s #

s=1t
(The parameters a,w(t),v(t) and o(¢) must be identified from ac-
tual load data.)
The Kalman filter is the best estimator of 6L(t) given y(s),
8 <t — 1. The equations are

Vs (6.1)

(6.5)

SL(t+ L[t} = a» 6L(¢t|t — 1) + K (2) * [y(t) ~ 6L(tt~)] (6.6)

where SL(¢|t — 1) is the best (linear) estimate of dL(t) given
y(s),8 <t -1, and

Lo axP(t)
K= pviy

e, e PO e P |
P 0y vy (1)

P(0) = o (0)
Both K(t) and P(t) can be computed off-line.
The on-line scheduling algorithin based on the Gaussian-
Markov load model is shown in Figure 4. the same algorithm

is used for the random fluctuations model, with 6L(¢ +4- 1]¢) iu
that Gaussian-Markov model substituled by 8 L{t) iu the Figure.

The overall scheduling algorithm is shown in Figure 5.

7.ON — LINE SCUEDULING FOR 41 MACHINES

In conducting the schedule computations 80 days of {syn-
thetic) hourly demand were used to gencrate the random load
statistics. A break down of the computational times for the algo-
rithm in the two model cases is given in Figure 6. A plot of the
computational times required to find the optimal hourly sched-
ule for the two different random demand models versus number
of machines is given in Figure 7. Note that the rate of increase
is less than linear. The times are longer when the algorithm in-
cludes the Kalman predictor, since time is required to execute
the additional lines of code. (For the 41 machine case 87 seconds
were required to find the optimal schedule for 40 days in 1 hour
increments.)
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APPENDIX
8 CONCLUSIONS Table 3. COST COEFFICIENTS FOR 18 MACHINES
The proposed algorithm provides a fast and effective pro- GENERATION COST DATA [ I

cedure for ascheduling unit commitment and randomly varying M el G asli| a2{i| alli]
demand. The speed of the algorithm is a result of the exten- 1 15 045 0.027039  7.4840 0025
sive ofl-line computation done to construct the scheduling ta- 9 15 045 0.046586  7.1030 6044
ble. Since this need ouly be done once for a given system, the 3 15 079 0.041011  7.2710 39.6
computational expense of this operation is not excessive. The 4 20 05? 0.023020  6.8356 42.0
computational requirements of the an-line component of the al- 5 20 053 0.023020 048:556 42.0
gorithm are approximately linear in the number of machines - a ‘_3, 33 i?)(s) ggi;‘igg ggé‘;g 24‘3

dramatic improvement over DPSA. By taking advantage of the oLl . .8‘
A 8 30 105 0.012167 5.4530 8.6
fact that actual loads different only by a small percentage from 9 30 105 0.121670  5.4530 8.6
the mean expected load for a given day, an extremely accurate 10 30 105 0.012167  §.4530 68.6
initial schedule for generation and storage can be computed (off- 11 35 187 0.005206  5.6787 89.0
line). The (optimal) on-line schedule is essentially a perturbation 12 35 167 0.005206  5.6787 89.0
of the (mean) deterministic schedule, and, as the number of ma- 13 35 167 0.005206  5.6787 89.0
chines increases, the sensitivity of the cost to small perturbations 1 35 167 0'00520,6 5.6787 89.0
L . . . 15 25 388 0.002269 5.8581 68.0

in the demand or in the corresponding schedule is substantially 16 00 425 0000760  4.6860 28.2
reduced. 17 50 670 0.000827  6.4870 60.4
The speed of the scheduling algorithm means that it can be 18 50 670 0.000827  6.4870 60.4

used on-line to adjust generation schedules and fine tune dispatch — e
to minimize cost.
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USL L(l), CL{)I(e = 1)),

A L(t+2),...L{24), SET [Aesume MAXIND is the index
BIAS = SL(t+1)t) + Y (1), such that MAX = G(MAXIND)
G(MAXIND) = G(MAXIND)
FIND v(e), ., 7(24) tmaz{MED — MAX, BIAS ',
BY ITERATION, SET R~ r(MAXIND)}
Ge) = L{e) +7(¢) r(MAXIND) = G(MAXIND)
P SO ~L(MAXIND) |
SEARCH TABLE roR BIAS = BIAS ) A
G(t) ENTRY AND MAKE —maz{MED ~ MAX,BIAS :
UP SMALL GAP BY o BorMaAXxIND)} |
ECONOMIC DISPATCH X .‘
[t =t+1 ] < NO
R
Figure 4. GAUSSIAN MARKOV MODEL SCUEDULING 0 -
G(t1) = C(t1) + BIAS
r(t1) = —L(t1) + G(t1)
READ IN SCHEDULING @
TABLE,L{t) AND #{¢),
{L=1,...,24. L L
. 22
oo 1 @
J{ - _.__,é-:-———~~:~@ [(r(21) = L{s1) - G(11)
Fork=tl+1t 24
UlAb = L t1) — L{ty
[11as = iy L) | bl 18 61
/ - 0
HIAS >0 - NO_ “’)@ Re:ur-mge r(t1) (24)
\ util R<r() < R
( YLS nnd5<§:( r3) <8
‘r‘ou J=tl to 24 DO and L ll[L(t) + L{t1)]
EOEXIORLT) L,.E 121G + 7 ()]
“ (e < Ryl < J < 2 (G (1) = LET) ¥ r(e1)
- use G(t1) to search table and
MIN=minimum element in X L find the optimal schedule i
MED=2ud minimum element in X
»![ . tv:xfﬁxiul next hour
Assume MININD is a index l=tl+1
such that MIN=G[MININD],
CG(MININD) = G(MININD)
+run{MED - MIN,BIAS ,
R - r(MININD)) _—

BIAS = BIAS Figure 5. OVERALL ON-LINE ALCORITHM
~min{MED - MIN, BIAS

| B—r(MININD)}

The algorithm is very effective in smoothing variations in the
. ] demand. In a test where the standard deviation of demand fluctu-
S

X=

IMPTY SET YES G(e1) = G{tl) -+ BIA ations was 1.42% the average increase of the unit generation cost
?

r(t1) = G(t1) — L(¢t1) (defined as the total operating and starting costs divided by to-

tal generation in MW) over the deterministic cost was 0.058% for
L NO the random disturbance load model and 0.0319% for the Gaussian-
Markov noise model.







STARTING COST AS A FUNCTION OF DOWN-TIME

M cs(1)  Cs{z)  CS8(3) ©S()  CS(5)  Cs(e)
01 083 163 242 318 392 464
02 83 164 242 318 292 464
03 065 149 220 290 357 424
04 040 (18] 114 149 182 214
us 040 080 114 149 182 214
06 133 258 376 486 690 688
07 181 330 454 555 639 709
08 039 077 114 160 185 220
09 039 077 114 150 185 220
10 055 089 102 135 147 299
11 156 309 457 602 743 881
12 156 309 457 602 743 881
13 158 309 457 602 743 881
14 156 309 457 602 743 881
15 YUY 999y 9999 9999 2Y99 YUYy
16’ 9998 9uY9 9999 9999 9999 9999
17 9908 0999 9999 99YY 9999 9999
138 9998 9999 9999 9999 9999 9994

Table 4, COST COEFFICIENTS FOR 41 MACHINES
GENERATION COST DATA

T

[

3.5¢401
3.6e+01
3.5¢+01
3.5e+01
2.5e+01
2.5¢+01
2.5e+01
2.5¢+01
2.5¢+01
2.5e+01
2.6e101
2.5¢+01
2.5e+01
2.5e+01
1.3e +02
1.3e+02
2.5¢+02
2.5¢+02
6.5¢+ 01
6.5e+01
6.5¢+01
6.601-01
5.0e +-01
5.0e4 01
5.0e-+01
2.5¢+02
2.501+02
2,002
2.0e+02
2.0e 02
1.2¢+02
1.2e+02
3.2e+02
2.0e+02
2.00+02
2.0e+02
4.0e+02
4.0e+02
4.0e+02
4.0e+02
6.0e+02

%
1 76+02
1.7e+02
1.7e+02
1.7¢+02
1.0e-+02
1.0e4-02
1.0e+02
1.0e+02
1.0e+02
1.0e+U2
1.0e-+02
1.0e+02
1.0e+02
1.0e+4-02
3.9e402
3.9e+02
6.5¢+02
§.5¢+02
2.5e-+02
2.66+02
2.5e+02
2.66-+02
2.0e+02
2.0e+02
2.0e+02
6.7¢+02
6.7¢+02
5.0e4+02
5.0e+02
8.0e+02
3.5¢+02
3.5¢+02
7.5e+402
4.3¢4 02
4.3e+02
4.3¢+02
8.0e-+02
8.0e+02
8.0e+02
8.0e+02
1.2¢+03

adli)

0.00621
0.00521
0.00521
0.00521
0.00458
0.00458
0.00458
0.00453
0.00458
0.00458
0.00458
0.00458
0.00458
0.00458
0.00227
0.00227
0.00197
0.00197
0.00405
0.00408
0.00405
0.00405
0.00354
0.00354
0.00354
0.00033
0.00083
0.00064
0.00064
0.00004
0.00081
0.00081
0.00061
0.00077
0.00077
0.00077
0.00095
0.00095
0.00095
0.00095
0.00083

a2[i

5.67900
5.67900
5.67900
5.67900
6.569200
6.60200
8.569200
8.59200
6.59200
6.59200
6.59200
6.69200
6.59200
6.59200
5.85800
5.85800
6.41700
6.41700
§.35400
6.35400
6.35400
6.45400
6.14200
6.14200
6.14200
6.48700
6.48700
7.07600
7.07600
7.07600
6.89900
6.89900
6.70400
6.68600
6.68600
6.68G00
4.565100
4.55100
4.55100
4.55100
3.95100

alfi]
89.00060
89.00000
49.00000
89.00000
35.00000
35.00000
35.00000
35.00000
35.00000
35.00000
35.00000
35.00000
35.00000
35.00000
162.00000
162.00000
276.00000
275.00000
250.00000
250.00000
250.00000
250.00000
60.000000
60.000000
60.000000
360.00000
360.00000
185.00000
185.00000
185.00000
149.00000
149.00000
410.00000
128.00000
128.00000
128.00000
$90.00000
390.00000
390.00000
390.00000
586.00000

STARTING COST AS A FUNCTION OF DOWN-TIME

M Cs(t)
1. 156,39
2. 56.39

3. 166.39
4. 158.39
5. 180.96
6. 180.96
7. 180.96
8. 180.96
9. 180.96
10. 180.96
11. 180.96
12, 180.96
13. 180.96
14. 180.96
15. 35.710
16. 35.710
17. 2560.00
18, 250.0
19, 156.3
20. 156.3
21. 156.3
22. 156.3
23. 113.2
24. 113.29
25. 113.29
26, 9997.77
27. 9997.77
28. 8320.57
29. 6320.87
30. 6320.587
31. 9997.77
32, 9947.77
33. 9997.77
34. 2997.77
35, 9997.77
36, 9997.77
37. 9997.77
38. 9997.77
39, 9997.77
40. 999777

41, 9997.77

cs(2)

308.82
308.82
3048.82
308.82
330.34
330.34
330.34
330.34
330.34
330.34
$30.34
330.34
4530.94
330.34
70.850
70.850
300.00
300.00
308.82
308.82
308.82
308.82
221.64
221.64
221.64
9999

9999

8645

8645

9999
9999
0999

9999

Cs(3)

457.3Y
457.39
457.39
457,39
453.66
453.66
453.66
454.66
453.66
453,606
453.60
453.66
453.66
453,66
105.42
105.42
390.00
390.00
457.39
457.39
457.39
457.39
325.27
325.27
325.27
9999
9969
9501
9501
9501
99499
9999
9999
9499
9999
9999
5999
9999
9999
Y99
9999

Cs(4)

602.21
602.21
6u2.21
602.21
555.45
555.45
555.45
555.45
5556.45
555.45
655.45
555.45
5655.45
555.45
139.44
139.44
550.00
550.00
602.21
602.21
602.21
602.21
424.38
421.38
424.38
9999
9999
9818
93156
9815
9999
9999
9999
9999
999y
9999
9999
9999
99949
9999
9999

C3(s5)

743.35
T43.35
T438.35
743.35
639.48
639.48
639.48
639.48
630.44
639.48
039.48
839.48
439 48
639.48
172.92
172.92
660.00
660.00
743 45
743.35
743.35
743.45
519.18
519.18
519.18
9999
9999
9031
VKT
Yus1
9999
9999
4999
9999
999Y
9999
9999
9999
Guy9
YHIY
9992

Cs(6)

880.93
880.93
B8U.U3
880.93
708.85
708.85
708.85
708.85
708.85
708.85
708.85
708.85
T70U8.85
708.85
205.86
205.86
770.00
770.00
880.93
880.93
880.93
880.93
009.85
609.85
609.85
9999
O]
QY74
9074
YU
9o
9uY9
V999
4999
9999
9999
9999
9999
Y94
999y



