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Deployment of low power basestations within cellular networks can potentially

increase both capacity and coverage. However, such deployments require efficient

resource allocation schemes for managing interference from the low power and macro

basestations that are located within each other’s transmission range. In this disser-

tation, we propose novel and efficient dynamic resource allocation algorithms in the

frequency, time and space domains. We show that the proposed algorithms perform

better than the current state-of-art resource management algorithms.

In the first part of the dissertation, we propose an interference management

solution in the frequency domain. We introduce a distributed frequency allocation

scheme that shares frequencies between macro and low power pico basestations,

and guarantees a minimum average throughput to users. The scheme seeks to

minimize the total number of frequencies needed to honor the minimum throughput

requirements. We evaluate our scheme using detailed simulations and show that it

performs on par with the centralized optimum allocation. Moreover, our proposed



scheme outperforms a static frequency reuse scheme and the centralized optimal

partitioning between the macro and picos.

In the second part of the dissertation, we propose a time domain solution to

the interference problem. We consider the problem of maximizing the alpha-fairness

utility over heterogeneous wireless networks (HetNets) by jointly optimizing user as-

sociation, wherein each user is associated to any one transmission point (TP) in the

network, and activation fractions of all TPs. Activation fraction of a TP is the

fraction of the frame duration for which it is active, and together these fractions

influence the interference seen in the network. To address this joint optimization

problem which we show is NP-hard, we propose an alternating optimization based

approach wherein the activation fractions (AFs) and the user association are opti-

mized in an alternating manner. The sub-problem of determining the optimal acti-

vation fractions is solved using a provably convergent auxiliary function method. On

the other hand, the sub-problem of determining the user association is solved via a

simple combinatorial algorithm. Meaningful performance guarantees are derived in

either case. Simulation results over a practical HetNet topology reveal the superior

performance of the proposed algorithms and underscore the significant benefits of

the joint optimization.

In the final part of the dissertation, we propose a space domain solution to

the interference problem. We consider the problem of maximizing system utility

by optimizing over the set of user and TP pairs in each subframe, where each user

can be served by multiple TPs. To address this optimization problem which is

NP-hard, we propose a solution scheme based on difference of submodular function



optimization approach. We evaluate our scheme using detailed simulations and show

that it performs on par with a much more computationally demanding difference

of convex function optimization scheme. Moreover, the proposed scheme performs

within a reasonable percentage of the optimal solution. We further demonstrate the

advantage of the proposed scheme by studying its performance with variation in

different network topology parameters.
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Chapter 1: Introduction

Cellular network deployments are saturated in areas with high density of users, such

as in urban environments. In the downlink scenario with many users served by a

single basestation (BS), it becomes difficult to satisfy the demands of all users, es-

pecially as user density and expected demands increase over time. Partitioning the

spectrum across neighboring BSs does not address the congestion problem. While

adding more spectrum expands the network capacity, it is often not a feasible solu-

tion.

Augmenting the macro BSs with low-power BSs provides a scalable solution

for increasing the capacity of the network [1, 20, 31]. Service providers can deploy

these low power BSs in high-density areas (e.g., malls, stadiums). However, such

deployments require efficient resource allocation schemes for managing interference

from the low power and macro BSs that are located within each other’s transmission

range. The following efficient resource management (RM) approaches can further

increase the network capacity in a heterogeneous network by managing the inter-

ference amongst BSs. Firstly, in the frequency domain, BSs can take advantage

of low pairwise interference (macro-pico or pico-pico) to share spectrum, thereby

improving the aggregate throughput in the network. Secondly, in the time domain,
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we can switch off a BS for a fraction of a transmission frame to mitigate interference

it causes for the neighboring BSs. We can also actively push more users to associate

with small cells having less load, to reduce the load on the macro BS. Thirdly, in

the space domain, we can also associate users to more than one BS so as to explore

the possibility of network-level MIMO by means of tight cooperation amongst sets

of network nodes. In this dissertation, we explore the three-pronged RM solution in

frequency, time and space for heterogeneous wireless networks.

1.1 Motivation

Bob

Alice

20m

160m

300m

M

P

Figure 1.1: Example topology
consisting of two BSs (M,P) and
two users (Alice, Bob). Note that
this figure is not to scale.

Consider the following scenario depicted in

Fig. 1.1 consisting of a macro BS (M) which

transmits at 50 dbm, and a pico BS (P) which

transmits at 10 dbm and is contained in M’s cov-

erage area. Alice is associated with M, while

Bob is associated with P. Given that M’s cov-

erage area extends across the entire region, Bob

receives some interference when both M and P

transmit on the same frequency. In contrast, due

to P’s lower transmit power, Alice receives only

little interference from P.

Partitioning the available spectrum assigns different frequency resources to

each BS (and thus each user). However, since Alice sees little interference from P,
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M can share any frequency it allocates for Alice with P (and in turn with Bob).

Suppose that P can serve Bob at a data rate of 540 kbps using a frequency shared

with M. Then, compared to the throughput of, say, 810 kbps for one exclusive

frequency for Alice, a shared frequency can achieve an aggregate throughput of

1350 kbps. This demonstrates how sharing can reduce the spectrum required by the

network.

Figure 1.2: Association and activation fraction (AF) optimization

Consider another example topology in Fig. 1.2, where user equipment UE-1

can connect to any of the three TPs. UE-2 can connect to either TP-1 or TP-3.

Note that if both the users connect to the same TP, then both of them will only

get a fraction of resources available at that particular TP. Therefore, we need to

load balance the users amongst TPs using association schemes to allocate resources

efficiently. Suppose, UE-1 connects to TP-1 and faces interference from TP-2 and

TP-3. One solution as proposed in the literature is subframe-based TP on-off, which
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is called the almost blank subframe approach. Almost blank subframe (ABS) is an

approach to managing inter-cell interference in the time domain. The main idea of

ABS is that all BSs follow universal frequency reuse and are switched off for a fraction

of super-frame (hundred of milliseconds) so as to reduce interference experienced by

neighboring BSs. Activation fraction (AF) of each transmission point is the fraction

of the frame duration for which it is active, and together these fractions influence the

interference seen in the network. In Fig. 1.2, a one in a time slot for a TP denotes

that the TP is on in that time slot, and a zero denotes that the TP is switched

off for that particular time slot. The fraction of ones in the collection of time slots

for a TP is the activation fraction for the particular TP. We need to determine

appropriate activation fractions for each TP in order to manage interference in the

network efficiently.

Also, multiple transmission point (TP) coordination can be used to manage

interference in heterogeneous networks effectively. Using network-level MIMO co-

ordination amongst TPs, we can serve a user by transmitting independent data

streams from multiple TPs.

1.2 Challenges of heterogeneous networks

One of the main challenges in designing RM schemes for heterogeneous networks is

the random topology of the networks. Recent studies have shown that topologies

without one common dominant interferer will be ubiquitous (referred to as small cell

only deployments in 3GPP) and in such cases a new RM approach is needed. The
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RM schemes for the heterogeneous networks need to take into account interference

from the neighboring small cells in addition to the interference caused by macro

TPs.

As mentioned in [30, 42] as well as other similar studies, another major chal-

lenge pertaining to frequency allocation and determining activation fractions in het-

erogeneous LTE networks is that the scheme should be executed at the timescale of

hundreds of milliseconds in order to take advantage of time-varying loads at various

TPs. The reason for this is that small cells (e.g., pico or femto cells) in general

serve fewer users than macro cells and, as a result, the aggregated traffic at these

cells is expected to fluctuate more than at macro cells, thereby leading to more

frequent transitions between empty and non-empty queue states at the associated

TPs. This in turn causes more rapid variations in interference to users in neighbor-

ing cells. Hence, in order to cope with the fast fluctuations in interference between

neighboring cells and use resources more efficiently, resource coordination across

heterogeneous cells has to be much more dynamic than in macro-only cases. As

mentioned in [6], the re-deployments of resources at the timescale of hundreds of

milliseconds ensure efficient resource allocation by closely tracking (i) the changes

in user position, and resulting channel gain, and (ii) user arrivals and departures in

the system.

The time domain solution pertaining to the design of ABS scheme in heteroge-

neous networks is quite challenging due to the well recognized interference coupling;

while increasing the activation fraction of a TP will help it serve more users (or

serve a given set of users better), it injects more interference and is detrimental to
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all users being served by other TPs.

1.3 Main contributions and organization

In the first two parts of the dissertation, we take a two timescale RM approach. In

the time domain solution, as shown in Fig. 1.3, at a coarse timescale TPs coordinate

to determine the association and AFs. At a faster timescale, each TP without any

coordination from other TPs, uses efficient scheduling algorithms for the associated

users. In the final part of the dissertation, we assume that a set of TPs (forming a

cluster) coordinate at a fine timescale.

Figure 1.3: Two-timescale solution

In the first part of the dissertation, we design interference management schemes

in the frequency domain, and explore the generalization of the example in Fig. 1.1

involving multiple pico BSs (PBSs) within the coverage area of a macro BS (MBS).

We address the problem of frequency allocation at a slow time scale (order of 100

ms) so as to minimize the total spectrum usage while meeting the minimum av-

erage throughput requirements for all users. By taking advantage of coordinated
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interference management, we can increase the aggregate throughput of current LTE

deployments. Prior work in this area [11], [54], [59] uses coarse-grained feedback

from users to assign frequency resources. We improve on this model by incorpo-

rating more fine-grained feedback from users, calculating the expected throughput

rates at each user when nearby BSs broadcast interfering transmissions.

In the second part of the dissertation, we address interference management

in the time domain, and adopt α-fairness utility as the system-wide utility which

generalizes all popular utility functions [41], wherein we allow for assigning any arbi-

trary set of weights (reflecting priorities) to the users. We develop algorithms that

yield good solutions for any given input fairness parameter α. These algorithms

are obtained by adopting an alternating optimization based approach. The latter

approach is well justified since the problem at hand is NP-hard and our goal is to

obtain unified low-complexity algorithms that are suitable for all α. For the discrete

user association subproblem, we first prove that this subproblem itself is NP-hard

and proceed to completely characterize the underlying set function that needs to

be optimized. We then suggest and comprehensively analyze a simple centralized

combinatorial algorithm (referred to as the GLS algorithm) that involves a greedy

stage followed by local search improvements. For the continuous AF optimization

subproblem, we adopt the auxiliary function method and show that it is provably

convergent and yields a local optima. Further, a key step in the case of AF opti-

mization entails a novel geometric program (GP) formulation.

In the final part of the dissertation, we design an interference management

scheme in the space domain by allowing a user to connect to multiple TPs. We
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prove that the scheduling problem in coordinated multipoint spatial multiplexing,

including TP on-off, is NP-hard. We show that the scheduling problem can be ex-

pressed as a constrained maximization of difference of submodular functions, and

its relaxed version can be expressed as a constrained maximization of difference of

concave functions. We then propose an algorithm based on a difference of submod-

ular function optimization. We demonstrate the gains achieved by our algorithm

using extensive simulations. We also demonstrate that our algorithm performs at

par ( within 1.1%) with the more computationally complex difference of concave

based scheme and performs within 14.35% of the optimal solution.

The organization of the dissertation is as follows : we first discuss prior resource

allocation algorithms proposed in the literature in Chapter 2. We then propose and

evaluate a novel dynamic frequency allocation algorithm in Chapter 3. We then

study the problem of joint association and activation fractions and propose an effi-

cient algorithm in Chapter 4. In Chapter 5 we propose and evaluate a coordinated

multipoint scheduling algorithm based on difference of sub modular function opti-

mization. Finally, in Chapter 6 we conclude the dissertation and discuss possible

directions for future work.
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Chapter 2: Related Work

In this chapter, we discuss the previous RM schemes proposed in the literature and

contrast the schemes with our work. In the first section of this chapter, we present

previous work related to interference management schemes in the frequency domain.

In the next section, we discuss the previous works related to joint optimization of

association and ABS. Finally, we discuss coordinated multipoint schemes to manage

interference in hetnets, proposed in the literature.

2.1 Frequency allocation

Different techniques such as interference avoidance, interference management and

interference cancellation have been proposed to counter the interference in the un-

planned cellular network of low-power BSs deployed in coverage regions of existing

MBSs. A broad survey of these techniques is given by Perez et al. [52]. Power con-

trol techniques are used in 3GPP for handling dominant interference scenarios as

discussed in [4]. The femtocell BSs adjust transmission power of BSs for interference

management in heterogeneous cellular network while using the same spectrum for

BSs. As pointed out by Perez et al. [49], reducing the radiated power at femtocells

also reduces the total throughput of femtocell users while improving the performance
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of victim UEs.

Madan et al. [42] formulate a centralized optimal power control and resource

allocation problem for 2-tier network, which contains low power and macro BSs. As

discussed by Perez et al. [52], the computational complexity of solving the mini-

mization problem can be prohibitive if the number of low-power BSs is large. This

problem is exacerbated by user arrivals and departures as well as inter-cell mobility,

since each such event triggers a recomputation. In the rest of this section, we discuss

prior work that provides heuristic solutions.

Perhaps the simplest resource allocation technique in multi-BS scenarios is to

partition frequencies between BSs. Prior work has explored probabilistic methods for

partitioning the frequency space without assuming coordination between different

transmitters. Sundaresan et al. [59] proposed a randomized hashing algorithm to

avoid collision of frequency resources with interfering femto BSs. Chandrashekhar et

al. [19] use F-ALOHA spectrum access to avoid persistent collisions with interfering

femto cells in their allocated spectrum. In contrast, our work in Chapter 3, assumes

coordination and communication between PBSs and an MBS to more effectively

allocate spectrum.

In general, an MBS can be allocated frequencies exclusive from low power

BSs [12, 19, 48, 59] to completely eliminate the cross-tier interference. However, as

noted elsewhere [52] and our results, partitioning frequencies is inefficient.

Sundaresan et al. [59] do introduce a sharing model based on femto BS loca-

tions with respect to MBS. However, the sharing does not take user location (within

the femto cell) into account, which can lead to low SINR for a poorly positioned
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(cell-edge) user. In our work, we share frequencies by explicitly taking the user

locations (and achievable SINR) into account.

There exists another set of studies that examine the problem of power con-

trol and user association, using the network utility maximization framework. Chen

and Baccelli [21] and Borst et al. [15] use Gibbs sampling to solve the problem

of power control over one or more frequencies and user association. Stolyar and

Viswanathan [58] propose a gradient-based scheme for power control. These demon-

strate the potential to improve the overall network performance measured by the

aggregate user utility via efficient schemes. However, there are several key differ-

ences between these studies and ours. First, we formulate the frequency allocation

problem as one of minimizing the required number of frequency resources subject

to minimum throughput requirements, as opposed to the aggregate utility of the

users. Second, our goal is to design a practical scheme that can deal with practical

constraints, in particular, limited backhaul bandwith and computational resources.

While the approaches in [15,21,58] are interesting, they are iterative algorithms and

require many iterations even for small problems as demonstrated in [15,21].

Almost blank subframe (ABS) is another approach to managing inter-cell in-

terference in the time domain. The main idea of ABS is that all BSs follow uni-

versal frequency reuse and are switched off for a fraction of super-frame (hundred

of milliseconds) so as to reduce interference experienced by neighboring BSs. Our

approach, on the other hand, switches off BSs in the frequency domain to produce

different types of frequency resources shared by varying sets of BSs. Thus, our

approach can be viewed as a frequency domain analogue of the time domain ABS
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approach. As mentioned in [5,6], for interference management in heterogeneous net-

works, we can use power control in the frequency domain and/or in the time domain

(e.g., ABS). Although ABS schemes might be easier to implement, our scheme can

operate at a comparable timescale (hundreds of milliseconds). Moreover, our scheme

provides a more fine-grained control compared to ABS, for it selectively switches off

individual frequencies to manage interference, rather than all the frequencies in a

subframe.

The idea of sharing spectrum amongst the interfering BSs to increase spectral

efficiency is not new. The cell geometry generally assumed in the literature for

homogeneous cell scenario is symmetric hexagons, with each BS equidistant from

its neighboring BSs. Fractional frequency reuse schemes have been proposed in the

literature [32] to maximize the spectral efficiency of the cellular system. In these

schemes, a cell is divided into two regions, an inner region comprising users close to

the BS and an outer region which is comprised of cell edge users. Neighboring BSs

can share frequencies used within inner regions. However, to minimize interference,

the outer regions of neighboring BSs use different frequencies. Perez et al. [50]

propose a centralized dynamic frequency reuse scheme for interference avoidance to

support dynamic traffic in macro cells. However, the sharing does not take user

location into account. Ali et al. [10] also propose a centralized dynamic frequency

reuse scheme for macro cells while satisfying minimum rate requirements. The

sharing in this work is restricted to standard fractional frequency reuse techniques.

Such a frequency sharing framework can be inefficient if we assume an unplanned

cellular network or one where BSs are added based on demand (hotspots) since the
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demarcation between inner and outer regions no longer remains uniform.

Prior work has also considered scenarios where a mobile user is allowed to

share its frequency resources with the interfering BSs only if the user is guaranteed

a minimum SINR [45, 46]. Shi et. al [54] also focus on sharing frequency resources

amongst interfering femto cells. The interference model in their work captures the

interference amongst all the users in the system rather than low-power BSs; each

user is modeled to require one resource block irrespective of its position in the

associated cell (hence this model ignores individual user requirements). Under this

model, the frequency allocation problem can be modeled as a (centralized) vertex

coloring problem with every user in the system modeled as a vertex requiring a

single color. We compare our techniques to coloring algorithms in Section 3.8.

Cao et al. [17] explore the same idea by using a heuristic coloring technique

for non-interfering femto BSs in the first stage. The algorithm in the work includes

a second stage in which each femto cell user sends a request to the adjacent BSs to

share their resources. The request is granted by the BSs under the constraint that

every user is guaranteed a minimum SINR. We note that Necker et al. [46] and Cao

et al. [17] use shared frequencies based on a fixed SINR threshold, which leads to a

somewhat more restrictive sharing model.

Finally, we note that interference cancellation techniques have been proposed [25,

29] but remain impractical due to the difficulty of eliminating errors in the cancel-

lation process and the cost of custom hardware [52].
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2.2 Association and activation fractions

In Chapter 4, we consider the problem of maximizing the alpha-fairness utility

over heterogeneous wireless networks (HetNets) by jointly optimizing user associa-

tion, wherein each user is associated to any one transmission point in the network,

and activation fractions of all transmission points. User association (without AF

optimization) is by itself a popular HetNet RM scheme, wherein the interference

coupling problem is mitigated by assuming that all TPs in an area of interest have

fixed activation fractions, which fixes the interference that would be seen by any

user upon being associated to any TP. Under this assumption, association is then

determined by approximately maximizing a system utility [16,56,63]. Another sub-

sequent promising RM technique combines user association with partial muting of

the high power macro TP. In this RM scheme (referred to as combined user associa-

tion and enhanced intercell interference coordination) the activation fraction for only

the Macro TP is optimized together with the user association [13,14]. The intuition

behind this combined approach is that the Macro TP is the dominant interferer for

a majority of users in many topologies, so allowing a non-unity activation fraction

for only the Macro TP can accrue most of the gain while retaining tractability.

Recent studies have shown that topologies without one common dominant

interferer will be ubiquitous (referred to as small cell only deployments in 3GPP),

and in such cases a new approach is needed. The problem we seek to solve is

geared exactly towards such deployments and generalizes the existing combined user

association and eICIC scheme. One attempt to solve our problem would be to extend
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the solutions proposed for the latter scheme, but then it becomes immediately clear

that those solutions do not scale when activation fractions for all TPs have to be

optimized. This is because those solutions explicitly maintain a rate for each TP-

user link under each possible interference pattern, which grow exponentially in the

number of TPs. We propose a simple formulation that imposes activation fractions

via Bernoulli activation random variables and yields one average rate expression for

each TP-user link that is a closed-form function of all activation fractions. The

latter expression is also conservative since it is derived by invoking the fact that the

instantaneous rate is a convex function of the activation variables corresponding to

the interfering TPs. Interestingly, in the absence of fast fading our rate expression

coincides with an approximate rate expression introduced in [55], which considered

the problem of determining activation fractions to meet a given set of user traffic

demands for a given user association. Our formulation sheds new insight on the

observation made in [55] (further confirmed in our simulations here) that the rate

expression is in fact very accurate for practical HetNets.

2.3 Coordinated scheduling in MIMO heterogeneous wireless net-

works

Multiple TP coordination can be used to effectively load balance the users to differ-

ent TPs and serve them using efficient resource management (RM) algorithms. Fur-

ther, multiple TP coordination is helpful in mitigating inter-TP interference. Hence,

LTE-Advanced proposes the use of coordinated multipoint schemes (COMP) to ex-
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plore the possibility of network-level MIMO by means of tight cooperation amongst

sets of network nodes. Based on the correlation of data streams transmitted from

different TPs, COMP transmission strategies can be divided into two categories.

The first category is COMP joint transmission (JT) scheme, in which multiple TPs

transmit the same data to a user. The signals from different TPs are constructively

combined at the receiver to enhance the signal to interference plus noise ratio (SINR)

of the user. This scheme is similar to spatial diversity in single TP MIMO cases.

Secondly, in an alternative approach, multiple TPs can connect to the same user

and each TP transmits independent data streams to increase the data rate of a user.

This approach is based on the idea of spatial multiplexing in single TP MIMO. In

Chapter 5 of this dissertation, we focus on the COMP spatial multiplexing trans-

mission strategy.

Single TP user association is itself a popular RM scheme where association is

determined by approximately maximizing a system utility [16,56,63]. Even the single

TP association problem for weighted system utility ensuring proportional fairness

(PF) is known to be NP-Hard. Zhao et. al. address the association problem for

COMP to minimize data transfer on backhaul in [65]. However, in these works, the

association problem is solved at a coarse time scale granularity of a frame constituted

by hundreds of subframes. Chen et. al. propose a heuristic for scheduling at

subframe granularity for diversity COMP schemes in [22]. However, they restrict

the TP-user pairs based on long term signal strength, which depends on average

channel gains of the user, rather than instantaneous channel gains. In contrast, our

approach captures the advantage of coordination of TPs and channel gains at a fine
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time scale. Cheng et. al. propose heuristic algorithms in order to minimize the

total power consumption in a MISO COMP scenario in [23]. In contrast, we address

the problem of maximizing system utility in MIMO COMP scenario, wherein the

system utility quantifies a tradeoff between system throughput and system fairness.

Considering the downlink, which is the focus in this dissertation, we see that

successive convex approximation technique is a popular approach to ensure tractabil-

ity of non-concave objective maximization [26, 43, 64]. In this optimization tech-

nique, the non-concave optimization is replaced by a series of concave maximization

problems. The technique is proven to converge to a local optimum solution of the

non-concave problem. This technique is used to solve the non-concave power control

problem, which aims to maximize the weighted sum of rates in a single transmit and

multiple interfering links setup [39,43]. This approach is also used to solve the single

TP MIMO association problem in [53]. We use a discrete version of this technique

to propose an efficient difference of submodular function algorithm for the COMP

scheduling problem.

Switching on a TP for each subframe helps to serve the users in the TP coverage

area. However, it causes additional interference to users connected to other TPs.

Binary (on-off) power control in each subframe has been found to be a particularly

effective interference avoidance technique [13,14]. Therefore, we seek to capture the

benefits of subframe level binary power control over a HetNet in COMP transmission

scenario as opposed to COMP works [22] that assume all TPs to be on.
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Chapter 3: Dynamic Frequency Resource Allocation

3.1 Introduction

Deployment of low power pico basestations within cellular networks can potentially

increase both capacity and coverage. However, such deployments require efficient

frequency allocation schemes for managing interference from the pico and macro

basestations that are located within each others’ transmission range. Partitioning

the available frequencies between the various basestations avoids the problem of

interference, but can lead to inefficient spectrum usage.

In this chapter, we introduce a distributed frequency allocation scheme that

shares frequencies between macro and pico basestations, and guarantees a minimum

average throughput to cell users. The scheme seeks to minimize the number of

frequencies used. We evaluate our scheme using detailed simulations and show that

it performs on par with the centralized optimum allocation (solved by a centralized

linear program). Moreover, our proposed scheme outperforms a static frequency

reuse scheme and the centralized optimal partitioning between the macro and picos.
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Figure 3.1: Example topology containing 5 PBSs in the coverage area of a MBS
BS-6. The conflict graph for the DIM is shown without the macro node (6), which
has edges to all other nodes.

3.2 System model

We consider a network consisting of one MBS and multiple PBSs within its coverage

area. Fig. 3.1a shows an example network topology which fits this model. While we

limit our study to the case of a single MBS, we can extend the frequency allocation

algorithms to fit scenarios with more than one MBS. We first study a homogeneous

(1-tier) network of PBSs, where all BSs use the same transmit power. We then

consider a refined network including the MBS, which forms a heterogeneous (2-tier)

network.

We focus on the frequency allocation problem at a superframe (order of 100

ms) time rather than the scheduling problem at a frame time scale, for downlink

communication between the BS and the users. We assume a fixed association scheme

where users choose the BS that provides them the highest SNR, with a bias towards

choosing a PBS. Although it may be possible for multiple BSs to serve a user, we

choose to consider only the single association case. In addition, we do not consider
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spatial diversity that can be provided by multiple transmit antennas, which may

permit simultaneous scheduling of more than one user on the same frequency at a

single BS.

We model the network as a conflict graph G = (V,E), where each vertex v ∈ V

represents a BS in the network. Undirected edges e ∈ E capture the presence of

non-negligible interference at users within a pair of BSs. We say that two BSs BS-i

and BS-j are neighbors when e = (i, j) ∈ E.

We use a distance-based interference model (DIM) to define the edges in the

conflict graph, in which two PBSs are neighbors if their distance is less than a certain

threshold value. In Fig. 3.1a, the solid circles surrounding each PBS (PBS1−PBS5)

have a radius of half of this threshold distance. Therefore, two PBSs are considered

neighbors if their circles overlap. In our model, the MBS is assumed to be a neighbor

to all PBSs.

The data rate for a user is largely determined by the signal strength at the

user from the serving BS, as well as the interference present from any non-serving

BSs sharing the same frequency. We capture the interference experienced by a user

by considering the received power from the neighboring BSs of the user’s serving

BS.

3.2.1 Mapping to LTE networks

A single frequency resource in the LTE standard of OFDMA cellular system consists

of a set of subcarriers, called a frequency resource block (FRB). One FRB spans a
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frequency band of 180 kHz in the LTE standard, which consists of 12 subcarriers

separated by 15 kHz between two adjacent subcarriers.

As mentioned in [30,42] as well as other similar studies, the frequency alloca-

tion in heterogeneous LTE networks should be executed at the timescale of hundreds

of milliseconds in order to take advantage of time-varying loads at TPs. The reason

for this is that small cells (e.g., pico or femto cells) in general serve fewer users

than macro cells and, as a result, the aggregated traffic at these cells is expected

to fluctuate more than at macro cells, thereby leading to more frequent transitions

between empty and non-empty queue states at the TPs. This in turn causes more

rapid variations in interference to users in neighboring cells. Hence, in order to cope

with the fast fluctuations in interference between neighboring cells and use resources

more efficiently, resource coordination across heterogeneous cells ought to be much

more dynamic than in macro-only cases. As mentioned in [6], the re-deployments

of resources at the timescale of hundreds of milliseconds ensure efficient resource al-

location by closely tracking (i) the changes in users positions and resulting channel

gains and (ii) user arrivals and departures in the system.

In a 2-tier network, we assume that all PBSs are connected to the MBS through

a wired backhaul connection. This backhaul connection can be provided using a fiber

cable. However, microwave backhaul connections are emerging as a more practical

solution due to the time and cost of setting up a fiber connection [2,3]. The capacity

of a microwave backhaul connection between a MBS and PBSs is constrained to

hundreds of Mbps [3].

As a cluster of PBSs may have a large number of users during peak hours (e.g.,
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during a football game), signaling traffic on the backhaul needs to be limited. This

restricts coordination between BSs, which makes the frequency allocation problem

more challenging.

3.3 Centralized allocation

The goal for our allocation scheme is to minimize the total number of FRBs needed

to provide the minimum throughput required by the users. In order to minimize

the number of needed FRBs, BSs can take advantage of sharing FRBs when some

of the users can tolerate the interference present from non-serving BSs. Each BS

requires knowledge of the average throughput their users can expect when a FRB

is shared with any subset of the neighboring BSs.

We provide a list of notations and their meanings in Table 3.1.

Suppose that C ∈ P(B) \ ∅ = C?, i.e., a non-empty set of BSs, where P(B)

denotes the power set of B. For each BS b ∈ C and user u ∈ Ub, let ru,C denote

the expected throughput of user u when it is served by a FRB shared by the BSs

in C. Each user estimates these rates by measuring the strength of the pilot signals

transmitted by each of the neighboring BSs, and then reports the rate vector to its

associated BS.

The problem of minimizing the number of FRBs required to provide the min-

imum throughput to the users can be formulated as an integer LP. As we prove,

this minimization problem is in general NP-hard for heterogeneous networks. More-

over, as mentioned in the next subsections, it is hard to provide a small constant
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Notation Description

b, o A BS in the network
B Set of all BSs in the network
C A nonempty set of BSs in the network
B(u) BS to which user u is associated
Nb Set of all neighbors of BS b

xC Number of FRBs shared among the BSs
in C

yC,u Number of FRBs assigned to user u,
which are shared among the BSs in C

t A FRB type
O(t) BS which owns FRB type t
P (t) Set of participating BSs in FRB type t
Tb Set of all FRB types owned by a BS b
N(t) Number of FRBs of type t
c(t) Cost associated with FRB type t
Lu Sorted list of FRB types for user u ac-

cording to decreasing efficiency
C(t, b) Compatible set for FRB type t with re-

spect to BS b
E(t) Extended compatible set of type t

U Set of all users in the network
Ub Set of users associated with BS b
ru,C Expected throughput for the user u

when it is served by a FRB type shared
with the BSs in C

requ Average throughput requirement of the
user u

Table 3.1: Notations and associated definitions
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factor approximation guarantees. For this reason, we formulate a relaxed problem

of minimizing the total number of FRBs as an LP problem. For every C ∈ C?, let

xC denote the number of FRBs shared among the BSs in C and yC,u refine xC for a

specific user u. We define x = (xC , C ∈ C?) and y = (yC,u, C ∈ C? ∧ u ∈ U). The

following minimization problem provides us with a lower bound to the solution:

min
x,y

∑
C∈C?

xC

subject to
∑
C∈C?

ru,C · yC,u ≥ requ, ∀ u ∈ U

∑
u∈Ub

yC,u ≤ xC , ∀b ∈ C, ∀C ∈ C?

(3.1)

The first constraint states that the total rate of user u is at least its minimum

required throughput requ. The second constraint requires that the total number of

FRBs that are shared among the BSs in C and are allocated to the users served by

each BS b is at most xC .

Unfortunately, solving the LP in (3.1) requires a centralized entity that has

access to all information available at the BSs, i.e., rates ru,C . However, even if a

centralized agent could collect the rates from all BSs, solving the LP and commu-

nicating the solutions back to the BSs in a timely fashion would be difficult; the

cardinality of C? grows exponentially with the number of BSs |B| in the network. For

this reason, we focus on designing a distributed heuristic algorithm to approximate

the centralized solution.
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3.3.1 Hardness of frequency allocation

We can assume that disk graphs can model the interference conflict graph amongst

the BSs with different transmission powers in a heterogeneous network. We will

show that the frequency allocation problem in a heterogeneous network is NP-hard

by proving that the vertex coloring problem on disk graphs, which is NP-hard, is

a special case of the frequency allocation problem. Consider a frequency allocation

problem where the average rates users receive on exclusive FRBs are equal to their

minimum throughput requirements. Also, assume that the rates the users receive

on shared FRBs are zero (for instance, because the minimum SINR value necessary

for the lowest modulation and coding scheme is not achieved). Finally, each BS has

a single associated user. Let G be the conflict graph among the BSs. From the

above assumptions, if BS set C contains BS b that serves user u, the achieved rates

of user u are given by

ru,C =


0 if C ∩Nb 6= φ,

requ otherwise.

Note that each BS requires one exclusive FRB to satisfy the associated user’s

requirement. Thus, the problem of minimizing the number of required FRBs is

equivalent to the vertex coloring problem on disk graphs, where we need to color

the graph G with the minimum number of colors in such a way that no two adjacent

vertices are assigned the same color. This implies that a feasible frequency alloca-

tion would be a solution to the vertex coloring problem on graph G. It is clear that
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given a vertex coloring problem on any disk graph, we can construct a correspond-

ing or equivalent frequency allocation problem. Hence, if there exists an optimal

polynomial time frequency allocation algorithm for a heterogeneous network, it can

also solve the vertex coloring problem on any disk graph and, hence, is optimal

polynomial time for the NP-hard vertex coloring problem.

3.3.2 Approximation of frequency allocation

The best known online coloring algorithm for disk graphs provides an approximation

ratio O(min(log n, log σ)), where σ is the ratio of maximum to minimum BS coverage

radius and n is the number of nodes in the graph [18, 28] (references at the end of

this document). For σ = 2, the approximation ratio is equal to 28 [28], which is

obtained using first fit algorithm. Moreover, a variant of first fit algorithm can be

used to obtain the best known offline coloring approximation ratio of five. Note that

although constant factor approximation algorithms are known for the disk coloring

problem, the approximation ratios of five and 28 [18, 28] are too high to give tight

practical guarantees. We would like to point out that we use the first fit algorithm

in the second stage of our scheme, different versions of which are known to provide

the best known approximation ratio for offline and online coloring of disk graphs.

Although disk graph coloring is used to prove hardness for the frequency al-

location problem, disk graph coloring is much simpler than the original frequency

allocation problem that we address in this chapter. This is because even if we can

optimally determine the number and types of FRBs required by each BS, the prob-
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Figure 3.2: Schematic for distributed solutions; the 1-tier algorithm is used as a
subroutine in the 2-tier allocation.

lem of mapping the requested FRBs to physical FRBs can be modeled as a vertex

coloring problem on much more general and complicated graphs compared to con-

flict graphs in wireless networks. As pointed out further in the chapter, the vertices

of this graph are the requested FRBs of all BSs, and an edge exists between two ver-

tices when they cannot be mapped to the same physical FRB due to interference.

The number of colors required to color the graph is equal to the number of physical

FRBs required to satisfy the requirements of different FRB types.

3.4 Distributed allocation

We begin with a broad procedural outline of our distributed FRB allocation scheme.

In order to simplify the exposition, we first describe our technique on a network

consisting of only PBSs, and later augment it to account for the MBS as well.

In our solution, multiple BSs may transmit over the same FRB, even if they

are neighbors of each other. To capture and facilitate sharing of FRBs, it is useful

to classify FRBs into different types : In our model, a FRB is “owned” by a single
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BS that chooses to “share” the FRB with other BSs. We denote a FRB type by

(o : v), where o is the owner BS and v is a subset of the o’s neighbors in the conflict

graph. By denoting a FRB of type (o : v), the BS o chooses to share the FRB only

with BSs contained in the set v. The BSs in v may interfere with users served by

o using the type (o : v). If v is empty, o claims the FRB for its own exclusive use.

For example, the FRB type (1 : 2) denotes FRBs BS 1 is willing to share with BS

2.1 Finally, note that (1 : 2) and (2 : 1) denote two different FRB types with two

different owners.

Fig. 3.2 shows a block-level decomposition of our algorithms; Fig. 3.2a outlines

the algorithm for 1-tier networks consisting of only PBSs, and Fig. 3.2b illustrates

our proposed scheme for heterogeneous 2-tier networks comprising both a MBS and

PBSs.

3.4.1 PBS only network (1-tier network)

Recall that we assume users associate with the BS that provides the highest SNR.

With multiple overlapping transmission ranges and user positions, different users

experience different levels of interference from the non-serving BSs. On one hand,

in order to minimize the number of required FRBs, each BS should select FRB types

for its users in a way that tries to maximize sharing with neighboring BSs. On the

other hand, some users may be located close to neighboring BSs, and sharing with

such neighboring BSs may not be beneficial. Hence, it is important to consider the

expected throughput of the users when served using shared FRBs. We capture this

1For brevity, we write (1 : 2) instead of (1 : {2}).
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trade-off between sharing and expected throughput of a user using the efficiency of

a FRB type for each user.

Users rank FRB types by their efficiency, defined as ru,P (t)/c(t) for a FRB

type t = (o : v) and user u. P (t) is the set of participating BSs in FRB type t, i.e.,

the BSs in {o} ∪ v. ru,P (t) is the expected throughput of user u when it is served by

a FRB shared among the set of BSs P (t).

We define the cost of a FRB type as a function which has an inverse relationship

to the amount of sharing. Let No be the set of all neighbors of BS-o. The cost of a

FRB type t = (o : v) is given by c(t) = 1 + |No \P (t)|, i.e., the number of neighbors

of BS-o that are not allowed to share the FRB type plus one.

The input to the algorithm is the set of users along with their minimum re-

quired throughput and ranked list of FRB types. BSs undertake an iterative dis-

tributed procedure, described in Section 3.5.1 to find a feasible solution that meets

the minimum throughput requirement for each associated user. The output of this

step specifies how many FRBs of each type are required to accommodate all users.

We take these requirements and use a distributed first-fit graph coloring heuristic

to map compatible FRB type(s) to physical FRBs, as described in Section 3.5.2.

3.4.2 2-tier network with MBS

Our complete solution, outlined in Fig. 3.2b, considers a MBS as well and uses

the 1-tier algorithm described above as a subroutine. In the rest of this chapter,

we refer to this procedure as the 2-tier algorithm as it considers a heterogeneous
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network containing one MBS and multiple PBSs.

The input to the 2-tier algorithm is the same as the 1-tier network case. The

MBS first creates a feasible FRB allocation for its users only. In doing so, the MBS

may choose to share FRBs with some of the PBSs. We describe the procedure used

by the MBS in Section 3.6. The PBSs then take the resulting FRB allocation from

the MBS and run the 1-tier algorithm, initializing the mapping stage with the FRBs

shared with the MBS.

3.5 Distributed algorithm for 1-tier networks

We propose a two-stage algorithm to solve the FRB allocation problem in 1-tier

networks. During the first stage, each BS coordinates with neighboring BSs to de-

termine a set of FRB types which satisfy user throughput requirements. These FRB

types are not the physical FRBs the BSs will use to serve the users. Instead, they

are used to identify the set of FRBs that can be shared among different sets of BSs

in order to reduce the number of physical FRBs needed to satisfy user throughput

requirements. The second stage takes the FRB types determined in the first stage

and maps them to physical FRBs while trying to minimize the total number of FRBs

used.

3.5.1 First stage

In the first stage, each BS attempts to find a feasible set of FRBs through an iterative

procedure, shown in Fig. 3.3, consisting of three steps in each round until it satisfies
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all users’ requirements. During the first step, each BS computes a set of FRBs

of different types in order to satisfy the user requirements, which we call its wish

list. BSs then exchange wish lists with their neighbors and identify the set of FRBs

which the participating BSs agree on, called the agreed list. Finally, each BS takes

the FRBs in the agreed list and allocates them to its associated users. Each BS

repeats these steps until its users’ minimum requirements are met, after which it

passes the number of each FRB type allocated in the first stage to the second stage.

Initialization

During initialization, each BS b sorts the FRB types according to decreasing effi-

ciency for every user u ∈ Ub. We denote the sorted list for user u by Lu, where

Lu(k) is the kth most efficient FRB type for user u. The length of Lu is |P(Nb)|,

based on the number of available FRB types for b.

Initially set req′u = requ, where requ is the required minimum throughput and
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req′u represents the remaining minimum throughput for future rounds to satisfy.

Starting with priority k = 1, we perform the following three steps.

Step 1 - Computation

Each BS computes the number of FRBs of type Lu(k) for all users u ∈ Ub. Taking

into consideration the remaining throughput requirements of its users, the BS adds

req′u/ru,Lu(k) FRBs of type Lu(k) to its wish list for each user u. However, since

sharing a FRB requires coordination among all participating BSs in a type, a BS

may not be able to obtain all FRBs it requires unless the neighbors also wish to

share the same number of compatible FRBs.

Step 2 - Agreement

Each BS exchanges its wish list with all neighbors, and then determines the set of

FRBs agreed upon by all participating BSs, called the agreed list. Computation of

this set requires determining which FRB types are compatible, and therefore can

share a FRB.

We first introduce two concepts, matching and compatibility, which allow us to

build pair-wise constraints between FRB types, termed original constraints. We mo-

tivate these concepts by considering the earlier example topology and corresponding

conflict graph shown in Fig. 3.1.

Matching types- Assume there is a requirement of 1 FRB of type (2 : 3, 5) at BS-2,

1 FRB of type (3 : 2, 5) at BS-3, and 1 FRB of type (5 : 2, 3) at BS-5. We can map
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all of these FRB types to the same physical FRB, as these types denote the sharing

between the same set of participating BSs ({2, 3, 5}). We term this relationship

between the FRB types as matching.

Two FRB types, (o : v) and (o′ : v′), are said to be matching types if (i) o 6= o′

and (ii) {o} ∪ v = {o′} ∪ v′. A matching set is a maximal set of FRB types such

that (i) every pair of FRB types from the set are matching types and (ii) there is

no other FRB type that is a matching type to the elements in the set and does not

belong to the set.

Compatible types and sets- When BSs select matching FRB types, it means that

they are willing to share with other participating BSs. However, a BS may be able

to share a FRB with another BS without selecting matching types. For example,

consider two FRB types (1 : 2) and (2 : 1, 4). While they are not matching types, as

BS-1 and BS-4 do not interfere with each other, it does not matter to BS-1 whether

BS-2 selects a FRB of type (2 : 1) or (2 : 1, 4).

We formalize this observation as follows: Suppose BS-o and BS-o′ are neighbors

which select FRB types (o : v) and (o′ : v′), respectively. For simplicity, we denote

No ∩ No′ by No,o′ . Two FRB types (o : v) and (o′ : v′) are said to be compatible if

(i) o ∈ v′ and o′ ∈ v, and (ii)

No,o′ ∩ (v \ {o′}) = No,o′ ∩ (v′ \ {o}) (3.2)

which implies that there is no common neighbor between BS-o and BS-o′ with which
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only one of them elects to share an FRB.

Given a FRB type t = (o : v), the compatible set C(t, o′) with respect to a

neighboring BS-o′ contains FRB types that are compatible with (o : v) and owned

by BS-o′ where o′ 6= o. For example, the compatible set for FRB type (1 : 2) with

respect to BS-2 is {(2 : 1), (2 : 1, 3), (2 : 1, 4), (2 : 1, 3, 4)}.

Note that matching types are compatible with each other.

Original constraints- We look to define constraints based on the compatibility of

various FRB types in order to compute the agreed list. The most basic constraints

exist between pairs of matching FRB types, ensuring that the total numbers of FRB

types from both compatible sets (with respect to the other owner BS) are equal.

We call these original constraints.

Consider the following three matching FRB types: (2 : 3, 5), (3 : 2, 5), and

(5 : 2, 3). The pair-wise original constraints for the types in the matching set are

listed below. The first constraint corresponds to the compatible set of (2 : 3, 5) with

respect to BS-3 and (3 : 2, 5) with respect to BS-2. In total there are
(

3
2

)
original

constraints, which generalizes to
(
n
2

)
for a matching set containing n different FRB

types.

N(2 : 3, 5) +N(2 : 1, 3, 5) = N(3 : 2, 5)

N(2 : 3, 5) +N(2 : 3, 4, 5) = N(5 : 2, 3)

N(3 : 2, 5) +N(3 : 2, 4, 5) = N(5 : 2, 3) +N(5 : 1, 2, 3)
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We define the general form of original constraints by considering two matching

FRB types, t1 and t2.

∑
t′1∈C(t1,O(t2))

N(t′1) =
∑

t′2∈C(t2,O(t1))

N(t′2) (3.3)

Algorithmic Constraints- Since each pair of matching types gives rise to an original

constraint, the presence of many interfering BSs introduces a large number of original

constraints. Moreover, even for a fixed FRB type owned by BS-b, the compatible set

can vary from one neighboring BS to another, increasing the computational burden

for identifying all necessary compatible sets. For this reason, instead of working

with these original constraints, we consider a new form of constraint which captures

the complete relationship between FRB types within a matching set and is easier

to work with.

We first define an extended compatible set for an FRB type which, unlike the

compatible set, takes into account compatibility with respect to all owners of FRB

types in the matching set.

Given a FRB type t = (o : v), we let H(t) represent the set of BSs which are

a neighbor of BS-o but not a neighbor of at least one of the owners in the matching

set of type t. We define the extended compatible set as:

E(t) = {(o : v,H ′)|H ′ ∈ P(H(t))} (3.4)

where P(H(t)) represents the power set of H(t).
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Just as original constraints are derived from the compatible sets, we derive

the algorithmic constraints from the extended compatible sets of FRB types. Given

a matching set containing FRB types {t1, t2, ..., tn} we define the algorithmic con-

straint by

∑
t′1∈E(t1)

N(t′1) =
∑

t′2∈E(t2)

N(t′2) = ... =
∑

t′n∈E(tn)

N(t′n) (3.5)

Proposition 3.1. Algorithmic constraints are equivalent to the set of original

constraints.

Proof : Appendix A.

Third Step - Allocation

Once a given BS-b knows the number of FRBs available for each type, it allocates

them to each user. There are different ways in which the allocation can be carried

out. Here, we describe one allocation scheme similar to a waterfilling algorithm. An

alternative second approach is explained in Appendix B.

Let avail(t) denote the number of available FRBs of type t, which is initially

set to the agreed number of FRBs of type t from the second step (already calculated

in Line 7). Users are first sorted by decreasing value of efficiency of their current

priority FRB type Lu(k). Then, starting with the first user in sorted order, we

perform the following steps:

1. Temporarily assign α = min(req′u/ru,P (Lu(k)), avail(Lu(k))) FRBs of type

Lu(k) to user u;
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2. Update available FRBs of type Lu(k) to avail(Lu(k)) = avail(Lu(k))− α.

If the above temporary assignments to the users satisfy the algorithmic con-

straints, we update the remaining throughput requirement of each user u to req′u −

α · ru,P (Lu(k)). We also update the FRB types allocated to the users according to

their temporarily assigned FRB types.

If the temporary assignments do not satisfy the algorithmic constraints, then

we repeat the kth round after updating the FRB type requirements in the wishlist

based on the temporary FRB assignments. Therefore, if there is at least one BS

for which the temporary FRB allocations do not fulfill the algorithmic constraints,

we need to repeat the round until all BSs can honor the algorithmic constraints.

However, the alternative approach described in Appendix B guarantees that the al-

gorithmic constraints will always be met by considering only allocations that satisfy

them.

The iterative procedure described above terminates after a finite number of

rounds, after satisfying the minimum throughput requirements for all users. Once

the procedure reaches the exclusive FRB type in a user’s priority list, we can fully

satisfy the remaining throughput requirement of the user with FRBs of this type.

Finally, we round up the required number of FRBs of each type.

We use the output from the iterative procedure, i.e., the number of FRBs

of each type, as an input to the following distributed LP problem solved at each

BS. We denote by Tb the set of all different FRB types owned by BS b and, for

each type t ∈ Tb, nxt is the number of FRBs of type t assigned in the first stage.
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The number of FRBs of type t assigned to user u ∈ Ub is denoted by nyt,u and let

ny = (nyt,u, u ∈ Ub and t ∈ Tb).

min
ny

∑
t∈Tb

c(t) ·

(∑
u∈Ub

nyt,u

)

subject to
∑
t∈Tb

ru,P (t) · nyt,u ≥ requ, ∀ u ∈ Ub

∑
u∈Ub

nyt,u = nxt, ∀ t ∈ Tb \ {(b : ∅)}

(3.6)

The LP presented above reduces the number of FRBs needed by each BS

without violating any agreements with the neighbors. We keep the number of FRBs

of every shared type fixed (second constraint), and minimize the number of exclusive

FRB types by assigning available FRBs to the users more efficiently than in the

iterative procedure.

3.5.2 Second stage

The first stage computes the required FRBs of each type, but does not allocate them

to physical FRBs. For example, consider a conflict graph that is not connected such

that we can partition it into two disjoint subgraphs. It is clear that we could allocate

a single physical FRB to both sets with no resulting interference. The second stage

serves to establish this physical FRB allocation.

We formulate the problem of mapping requested FRBs in the first stage to

physical FRBs as a vertex coloring problem. The vertices of the graph are the
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requested FRBs of all BSs, where edges exist between two vertices when they are

unable to be mapped to the same physical FRB due to interference. The number of

colors required to color the graph is equal to the number of physical FRBs required

to satisfy the output from the first stage.

We design a distributed greedy first-fit approximation algorithm for the color-

ing problem: We take the requested FRB types of each BS and map it to the first

physical FRB that can accommodate the FRB type. Before a FRB of type t can be

mapped to a physical FRB, the following conditions must be met:

(a) The owner of the FRB type t cannot own any other FRB type already mapped

to the physical FRB.

(b) The neighbors of BS O(t) which are not included in the set P (t), i.e., NO(t)\P (t),

constitute a complement set of BSs for type t. Any BS in the complement set

of type t should not be a participating BS of any FRB type already mapped to

this physical FRB.

(c) Any BS in the union of the complement sets of FRB types already mapped to

the physical FRB should not be in P (t).

Using the example in Fig. 3.1, consider the addition of type (3 : ∅) to a physical

FRB which is already assigned to type (2 : 4, 5). In this case, the above conditions

(b) and (c) for compatibility are not met. Therefore, we cannot map type (3 : ∅) to

this physical FRB. On the other hand, type (5 : 2) satisfies all of the compatibility

requirements.
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If we cannot map a FRB type to physical FRBs that are already assigned to

other FRB types, we assign it to a new physical FRB. The algorithm repeats until

we map all FRB type requirements to physical FRBs.

Our algorithm is designed to minimize the total number of physical FRBs

required to accommodate the throughput requirements of all users in the system.

However, it can also handle a scenario where we are given a set of available physical

FRBs to allocate as follows: We first compute an initial allocation to meet users’

requirements, making use of our algorithm. Then, if there are any remaining FRBs,

they are assigned to the users in proportion to the initial allocation. Thus, each

user in the system would get a throughput that is proportional to its minimum

requirement.

3.5.3 Example allocation

We provide an example to demonstrate the benefit of our 1-tier allocation approach

over other schemes such as reuse-1 and exclusive frequency allocation. Consider a

portion of the topology shown in Fig. 3.1a consisting of PBS1, PBS2, and PBS5. We

assume user Alice is associated with PBS1, Bob associated with PBS2, and Carol

associated with PBS5. The rate for each FRB type for all users are listed below (in

kbps), sorted in decreasing order of efficiency.

Alice Bob Carol

(1 : 2)→ 270 (2 : 1)→ 360 (5 : 1, 2)→ 270
(1 : ∅)→ 360 (2 : ∅)→ 360 (5 : 2)→ 360
(1 : 2, 5)→ 90 (2 : 1, 5)→ 120 (5 : 1)→ 270
(1 : 5)→ 120 (2 : 5)→ 180 (5 : ∅)→ 360
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Assume each user requires an average throughput of 1000 kbps.

1. Priority k = 1 : BS-1 requires 4 FRBs of type (1 : 2) for Alice, BS-2 requires

3 FRBs of type (2 : 1) for Bob, and BS-5 requires 4 FRBs of type (5 : 1, 2) for

Carol. The agreed list for this round consists of 3 FRBs of types (1 : 2) and

(2 : 1), according to the constraint that N((1 : 2)) = N((2 : 1)). We update

Alice’s residual throughput requirement to 1000 − 3 ∗ 270 = 190 kbps, and

Bob’s residual throughput requirement to 0 kpbs. BS-2 stops participating in

the algorithm as it has satisfied all user requirements.

2. Priority k = 2 : BS-1 requires 1 FRB of type (1 : ∅) for Alice, and BS-5 re-

quires 3 FRBs of type (5 : 2) for Bob. Since BS-1 is only interested in allocat-

ing exclusive subcarriers, it satisfies Alice’s residual throughput requirement

and sets it to 0 kbps. The agreed list for this round is empty. BS-1 stops

participating in the algorithm as it has satisfied all user requirements.

3. Priority k = 3 : BS-5 requires 4 FRBs of type (5 : 1) for Carol. The agreed

list for this round is empty again.

4. Priority k = 4 : BS-5 requires 3 FRBs of type (5 : ∅) for Carol. Since

BS-5 is only interested in allocating exclusive subcarriers, it satisfies Carol’s

throughput requirement and sets it to 0 kpbs. The agreed list for this round

is empty. BS-5 stops participating in the algorithm as it has satisfied all user

requirements.

The final list of requirements from the first stage is given in the table below.
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Since (1 : 2) and (2 : 1) are compatible, this allocation requires a total of 7 physical

FRBs.

FRB Type # Required

(1 : 2), (2 : 1) 3
(1 : ∅) 1
(5 : ∅) 3

In contrast to our allocation scheme, the reuse-1 algorithm requires d1000/90e =

12 FRBs and the exclusive frequency allocation algorithm requires 3∗d1000/360e = 9

FRBs.

3.6 Distributed algorithm for 2-tier networks

While we can apply the proposed 1-tier algorithm for use in 2-tier networks, the

performance degrades when applied to conflict graphs in which nodes have high

degrees. Since we assume all users associated with a PBS see interference from the

MBS, the MBS node in the conflict graph has degree |B|−1. Therefore, we propose

a new algorithm for 2-tier networks which handles users associated with the MBS

first, removing the need for PBSs to consider the MBS.

In addition, we group the PBSs into clusters to simplify allocation and reduce

the computational complexity of our algorithm. Clusters capture the topological

structure in practical deployments, and consist of a group of PBSs within an area

such as a stadium or shopping mall. Consider a graph where the vertices correspond

to the PBSs. Edges exist between two PBSs if their distance is less than a given

threshold d, where d is chosen such that inter-cluster interference is negligible. Each

connected component in this graph corresponds to a cluster of PBSs.
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We propose a two stage algorithm for allocation in 2-tier networks. The MBS

first allocates physical FRBs to satisfy its associated users, and sends out allocation

information which pertains to the clusters. The PBSs in each cluster run the 1-

tier algorithm to satisfy user requirements, bootstrapping with the physical FRBs

shared with the MBS.

3.6.1 First stage

We classify the users associated with the MBS into three classes based on the amount

of sharing they can do with the PBS clusters. We assume that there are H PBS

clusters:

Class A – Class A users are sufficiently far from all H PBS clusters. More specifi-

cally, when a class A user shares its FRB with all the PBSs, its data rate does

not degrade by more than a certain threshold β compared to its data rate on

an MBS exclusive FRB. The threshold β is set to 20 percent in our numerical

studies.

Class B – Class B users are sufficiently far from H−1 clusters but close to one PBS

cluster. The closest cluster to the user is called the interfering cluster. When

a class B user is served on an FRB shared with all the PBSs in the H − 1

non-interfering clusters and some PBSs in the interfering cluster, its data rate

does not decrease by more than β (compared to its data rate on an MBS

exclusive FRB). Thus, class B users can be served using FRBs shared with

the PBSs in non-interfering clusters and, possibly, some of PBSs in interfering
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clusters which are also sufficiently far, without sacrificing their throughput

significantly.

Class C – All other users are class C users. These users are in general served only

by FRBs exclusive to the MBS.

Each of the assigned FRB types is mapped to a distinct physical FRB, as FRB

types owned by the MBS are not compatible with each other. The MBS sends out

a subset of this list of physical FRBs to each cluster in the network. A cluster’s list

contains the physical FRBs, and their associated MBS-shared FRB type based on

the PBSs that can share the FRB within the cluster.

3.6.2 Second stage

Each PBS runs the 1-tier algorithm described in Section 3.5, coordinating with the

other PBSs in their cluster. Stage 1 of the algorithm remains the same, where each

BS identifies the feasible solution that satisfies its users. In stage 2, we now bootstrap

the set of physical FRBs shared with the MBS prior to running the distributed first-

fit approximation algorithm. This algorithm chooses to first use existing compatible

MBS shared FRBs before allocating other FRBs, ensuring utilization of the physical

FRBs shared with the MBS. If all FRBs that the MBS is willing to share with the

`th cluster (` = 1, 2, · · · , H) are exhausted, then the cluster computes additional

FRBs that are not shared with the MBS. This can be done by using the 1-tier

network algorithm after reducing the required throughput of the users by the amount

provided via the FRBs shared with the MBS.
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However, we need to redefine the notion of compatibility for FRB types shared

by the MBS. In the first stage, MBS allocates FRBs to users based on their class. It

is possible that a MBS is willing to share a FRB with all PBSs in a cluster, yet more

efficient if only a subset of the PBSs actually share it due to interference. In contrast

to the previous notion of compatibility introduced in (3.2), it is acceptable for the

PBS FRB type to elect not to share with all neighboring BSs contained in the MBS

FRB type. FRB types tm and tp, owned by the MBS and a PBS, respectively, are

compatible if P (tp) ⊂ P (tm).

A key idea that we exploit in our algorithm is the following: Since we assume

that different clusters of PBSs cause minimal interference to PBSs in other clusters,

any FRBs used by some cluster of PBSs (which are not shared with the MBS) can

be shared with all other clusters of PBSs with minimal interference. Suppose that

each cluster ` of PBSs (` = 1, 2, · · · , H) computes the number of additional FRBs

of each type it needs to satisfy the minimum throughput requirements of the users

served by the cluster, which we denote by ξ`. Based on the above observation, the

total number of FRBs we need is approximately equal to the sum of the FRBs

needed by the MBS (including those shared with PBSs) and the maximum among

the additional required FRBs of the clusters, i.e., max`=1,2,...,H ξ`.

While we only consider a 2-tier scenario with a single MBS, our algorithms

can be used to handle scenarios where more than one MBS interferes with PBSs.

A simple solution is to allocate the MBSs the FRBs not shared with other MBSs

and then use the 2-tier algorithm to determine sharing of MBS FRBs with PBSs. A
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more interesting solution is to use the 1-tier algorithm to assign FRBs to the MBSs.

In this case, we would have multiple macro FRB types based on the conflict graph

among the MBSs. Using the 1-tier algorithm, we calculate the respective FRB types

required by MBS users and the corresponding MBS-shared physical FRBs. Further,

for each different set of MBSs which share the MBS FRBs, we use 2-Tier algorithm

to determine sharing of these FRBs with PBSs.

3.7 Dynamic allocation

We also consider a dynamic system where the user population varies with time

as opposed to the static case considered in previous sections. Every instance of

departing user associated with a BS creates a slack of FRBs of the type previously

allocated to the departing user at the BS. FRB slack at a BS is defined as the set

of FRBs available to the BS but not currently allocated to any user associated with

the BS.2 In the 2-tier algorithm, the MBS-shared physical FRBs may be sufficient to

satisfy the throughput requirements of the users associated with the PBSs. Further,

the surplus MBS-shared FRBs create an ‘implicit slack’ at the PBSs. The PBSs

can share surplus physical FRBs based on the associated MBS-shared FRB types.

A newly arriving user can associate with a BS that can satisfy the requirement of

the user with the available slack of FRBs. Thus, given sufficient slack, the FRB

allocation to a new user does not require any additional FRBs.

We propose a greedy joint association and FRB allocation scheme for the

dynamic system using the slack of FRBs available at BSs. The pseudocode for the

2In practice, these extra FRBs will be reallocated to other users to increase their throughput.
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Table 3.2: Dynamic Algorithm

1: If Periodic optimization time instance Then
2: Use the 2-tier allocation algorithm
3: Slack = Set of unused MBS-shared FRBs
4: Endif
5: If User ud departs Then
6: Slack = Slack ∪ FRB types used by the departing ud
7: Endif
8: If User ua arrives Then
9: If Slack available at BS b satifies ua Then

10: ua associates with b
11: Allocate the required FRBs to ua from the Slack
12: Update the Slack
13: Else
14: ua associates with BS providing the highest SNR
15: Allocate exclusive FRBs to ua
16: Update the Slack
17: Endif
18: Endif

scheme is provided in Table 3.2. (Line 1-3) We run the 2-tier allocation algorithm

periodically (with period of Ta) to (re)-allocate the FRBs. (Line 9-12) An arriving

user associates with the BS that has sufficient slack of FRBs available to satisfy

the throughput requirement of the user. When more than one BS can satisfy the

user’s requirement, the user associates with the BS that offers the highest SNR to

the user. (Line 13-16) When no BS has enough slack, the user associates with the

BS offering the highest SNR and we assign additional FRBs exclusive to the serving

BS to satisfy the user requirement.

3.8 Evaluation

We present an evaluation of our 1-tier and 2-tier allocation algorithms. Table 3.3

contains the default parameters used in our numerical studies and simulations unless
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Parameter Value
Macro transmission power per FRB 103 mW
Pico transmission power per FRB 0.1 mW
Path Loss Exponent 3.5
Coverage radius of the macro BS 700 m
Coverage radius of the PBS BS 50 m
Power spectral density of noise -172 dBm/Hz
log-normal shadowing standard deviation 6 dB
BW of a frequency resource block 180 kHz
Number of users in a hotspot area 20
User min. avg. throughput requirement 2000 kbps
Min. distance between macro and PBS BS 50 m
Min. distance between any 2 PBS BSs 30 m
Threshold distance d for defining a cluster 150 m
Threshold distance for interference 150 m

Table 3.3: Default parameters

otherwise stated.

At the beginning of each realization or sample path, we generate mutually

independent log-normal random variables to model the shadow fading between all

(user, BS) pairs. Each user computes its SINR, according to the path loss to each

BS based on the parameters given in Table 3.3 and the realized random variables

for shadow fading. The users report their SINR to their serving BSs, which use

the reported SINR values to choose appropriate modulation and coding schemes

according to the required SINRs and corresponding data rates based on the spectral

efficiency of the modulation and coding scheme shown in Table 3.4 as used by Perez

et. al [51]. The throughput of a user on a particular FRB type is the product of the

spectral efficiency and the bandwidth of an FRB .

We determine the threshold distance for interference between any two PBSs

(as shown in Table 3.3) based on a maximum allowable interference power received
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SINR threshold (dB) Spectral Efficiency((bit/s)/Hz)
-6.5 0.15
-4.0 0.23
-2.6 0.38
-1.0 0.6
1.0 0.88
3.0 1.18
6.6 1.48
10.0 1.91
11.4 2.41
11.8 2.73
13.0 3.32
13.8 3.90
15.6 4.52
16.8 5.12
17.6 5.55

Table 3.4: Required SINRs and spectral efficiency.

by a user present at any location in the coverage area of a PBS; two PBSs do not

interfere if every user associated with either of the PBSs receives a SINR of at least

6.6 dB in order to guarantee a spectral efficiency of 1.48 (bit/s)/Hz. We use the

same threshold distance value for defining a cluster.

PBS user locations are uniformly distributed within the coverage area of PBSs.

In the 2-tier network topology, the remaining users’ locations are uniformly dis-

tributed within the coverage area of the MBS. As proposed by Peng et. al [48], each

user associates with the BS that provides the highest SNR with 6 dB bias in favor

of PBSs.

We compare our 1- and 2-tier schemes to the following allocation algorithms:

• Centralized LP allocation – This obtains an optimal solution that minimizes

the number of required FRBs by solving the centralized LP for the 2-tier
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network as described in Section 3.3.

• Partitioned pico – This scheme partitions FRBs among PBSs and allocates

distinct FRBs to the PBSs, using the greedy first fit algorithm.

• Centralized macro-pico allocation – Under this scheme, an MBS does not

share FRBs with PBSs. However, PBSs are allowed to share FRBs among

themselves. The FRBs are allocated to the PBSs using a (centralized) LP

solver.

• Frequency reuse algorithm [32] for conventional homogeneous networks – A

user is allocated an FRB shared with all the neighboring BSs if the user’s

SINR remains above a threshold value even when all the neighboring BSs

transmit on the shared FRB. We choose an SINR threshold that provides the

best performance for the frequency reuse scheme from the set of threshold

values given by {1 dB, 2 dB, . . . , 10 dB}. Roughly speaking, the BSs serve

the users that are near their serving BSs with shared FRBs.

• User coloring algorithm [54] – In the frequency reuse algorithm, a user either

shares an FRB with all its neighboring BSs or uses an exclusive FRB. However,

in the user coloring algorithm, a user might share an FRB with a subset of

neighboring BSs, based on interference models in [45,46].

• FERMI [11] – This 1-tier centralized algorithm distinguishes the users that

share frequency resources with all neighboring BSs from those that do not

share resources with any neighboring BS. Thus, the type of FRBs are limited
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to either all shared or exclusive types. This user categorization is based on

a threshold on the ratio of throughput of the user on the two different types

of frequency resources. The desired number of all shared and exclusive FRBs

in each BS is determined based on the category and requirement of each user

attached to the BS. The actual number of all shared FRBs at a BS is the

minimum among the desired all shared FRBs of the BS and its neighbors.

• LRA [59] – It allows sharing of frequency resources amongst a single MBS and

multiple PBSs, for allocation in a 2-tier scenario. A PBS is allowed to use

an FRB already used by an MBS user present in a square grid as long as the

user is at a sufficient distance (140m) from the PBS. Moreover, each PBS is

allocated exclusive FRBs not shared with neighboring PBSs.

3.8.1 1-tier algorithm

We begin with an evaluation of the 1-tier algorithm by examining the number of

required FRBs as we increase the number of PBSs. The PBSs are uniformly dis-

tributed within a circular area with a radius of 250 meters. Each PBS has twenty

(other) users inside its coverage radius, and thus the total number of users in the

system increases with the number of PBSs. Each point in Fig. 5.1 is an average of

80 realizations.

Unlike the PBS partitioning scheme that allocates exclusive FRBs not shared

with neighboring PBSs, our 1-tier algorithm allows sharing of FRBs among inter-

fering BSs. As a result, the 1-tier algorithm requires at least 26.5% fewer FRBs,
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Figure 3.4: Number of required FRBs in a 1-tier network with varying number of
PBSs.

demonstrating the advantage of sharing FRBs even amongst interfering PBSs. The

user coloring scheme uses on average 37.6% more FRBs than the 1-tier algorithm

when there are 7 PBSs. This is because the user coloring scheme uses a fixed SINR

threshold to decide the type of sharing for a physical FRB, as opposed to explicitly

accounting for the efficiency of FRBs of different types. FERMI requires at least

28% more FRBs compared to the 1-tier algorithm. This shows the advantage of

using more general FRB types in the 1-tier algorithm as opposed to the use of just

exclusive and all shared FRB types in FERMI.
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3.8.2 2-tier algorithm

In the rest of this section, we focus on the 2-tier algorithm. We study its performance

as (i) the number of PBSs, (ii) the number of MBS users (iii) the level of interference

among the PBSs, and (iv) the number of users are varied with time, and compare the

number of required FRBs to that of the centralized LP and other existing schemes.

Figure 3.5: Number of required FRBs with varying number of PBSs (2-tier network).

Effects of increasing network size : We begin with a scenario comprising 50 users

inside the MBS coverage radius but ouside the PBS coverage areas, and change the

number of PBSs. Each PBS has twenty (other) users inside its coverage radius.

Thus, the total number of users increases with the number of PBSs. Users are uni-

formly distributed within the coverage area of their serving BSs, and we compute
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the average of 80 realizations. To ensure that the MBS users do not belong to the

coverage area of PBSs, we generate MBS user positions using the uniform distribu-

tion over the MBS coverage area and any user that lies in the coverage area of a

PBS is discarded and a new user position is generated until it is not covered by any

of the PBSs.

With an increasing number of PBSs, the number of FRBs needed is expected

to rise. However, the ability to share amongst PBSs also increases with the number

of PBSs. As shown in Fig. 5.3, the 2-tier algorithm performs well (within 6% of

the centralized LP for all scenarios). In contrast, the frequency reuse scheme [32]

performs up to 13.8% worse than the 2-tier algorithm. The centralized macro-pico

allocation scheme also performs worse than the 2-tier algorithm, illustrating the

benefits of sharing FRBs between MBS and PBSs. The LRA algorithm performs

up to 9.4% worse than the 2-tier algorithm which demonstrates the advantage of

sharing amongst PBSs in a 2-tier scenario.

Effects of MBS load : We plot the number of required FRBs as the number of users

increases. There are 7 PBSs, each of which contains 20 users in its coverage area.

With an increasing number of users placed outside the PBS coverage areas, the

fraction of users served by the MBS increases. In each realization, the MBS users

are randomly placed according to the uniform distribution on the coverage area of

the MBS with a radius of 650 m, and we compute the average of 80 realizations

(Fig. 5.2).

Fig. 5.2 shows that as the fraction of users served by the MBS increases, the
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Figure 3.6: Number of required FRBs with varying number of users outside PBS
coverage area.

MBS is able to share more FRBs with PBSs. The 2-tier algorithm first allocates the

FRBs shared with the MBS to PBSs in the second stage before turning to FRBs

exclusive to PBSs. Since the number of users in the coverage area of a PBS is fixed,

as shown in Fig. 5.2 (labeled as “Exclusive Pico Frequencies”), the number of FRBs

exclusive to PBSs decreases from 16.2% of the total number of FRBs to 3.8% as the

number of MBS users rises from 35.8% to 65.8%.

In addition, as the number of MBS users rises, the performance of 2-tier algo-

rithm approaches that of the centralized LP. The 2-tier algorithm is only 2.2% worse

than the LP when the fraction of MBS users is 65.8%, while it is 10% higher with

35.8% MBS users. This is because as the MBS serves more users, it can share more

FRBs with the PBSs. Hence, it needs fewer FRBs exclusive to PBSs. In contrast,
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the centralized macro-pico allocation scheme that does not allow MBS and PBSs to

share FRBs cannot utilize these sharing opportunities. Consequently, the gap be-

tween the 2-tier algorithm and the centralized macro-pico allocation scheme widens

with increasing MBS users. Finally, the user coloring [54] and frequency reuse [32]

schemes perform consistently worse, as they cannot take advantage of the sharing

opportunities. Thus, with sufficiently many MBS users, the proposed distributed

2-tier algorithm approaches the optimal centralized LP.

Figure 3.7: Number of required FRBs with varying maximum degree of PBSs in the
conflict graph.

Effects of PBS clustering : The 2-tier algorithm performs best when multiple PBSs

can take advantage of the FRBs shared with the MBS. In general, as the number of

PBS clusters increases, so does the opportunity for FRB sharing. However, how well
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the PBSs can share the FRBs among themselves depends on the level of interference

they cause to each other. Here, we investigate the effects of the level of clustering

among the PBSs on the performance of the schemes. We place 7 PBSs in varying

configurations such that the level of interference among the PBSs changes.

Fig. 3.7 plots the number of required FRBs as a function of the maximum

degree among the PBSs in the conflict graph. The average numbers of clusters for

maximum degree of 1, 2, 3, 4 and 5 are 7, 5.7, 4.6, 3.7 and 2.85, respectively. As

expected, the number of FRBs required by the 2-tier algorithm is positively corre-

lated with the maximum degree (and hence inversely with the number of clusters).

Also, the centralized macro-pico allocation scheme does not perform well when the

maximum degree is small since the MBS is not permitted to share FRSs with PBSs.

As the PBSs cluster together, the opportunity to share FRBs with many PBSs

diminishes and, consequently, the number of required FRBs goes up. Moreover, as

the clustering increases and it becomes more difficult for the PBSs to share FRBs

with the MBS, the performance of the 2-tier algorithm approaches that of the cen-

tralized macro-pico allocation scheme. In fact, in the worst case where no sharing is

possible, the 2-tier algorithm performs worse than the centralized macro-pico allo-

cation scheme. This is due to the fact that the latter employs an optimal allocation

among the PBSs by solving the centralized LP, whereas the 2-tier algorithm adopts

a distributed heuristic algorithm.

In the above simulations we consider a fixed association bias of 6 dB. But, at

a lower association bias, more users will attach to the MBS rather than PBSs. As

a result, more macro shared FRBs will be available to the PBSs, which will in turn
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reduce the number of exclusive pico FRBs. Thus, as we decrease the association

bias, the 2-tier algorithm converges to the optimal frequency allocation solution.

On the other hand, at a higher association bias, the users will prefer being served

by PBSs, which will result in an increase of exclusive pico FRBs. As we increase

the bias, the performance of the 2-tier algorithm will converge to the performance

of the 1-tier algorithm.

Scenarios with user arrivals and departures : We study how varying the period

between optimizations affects the overall performance with dynamic user arrivals

and departures, as described in Section 3.7. We evaluate the greedy joint allocation

scheme with time-varying user population in a network consisting of two PBSs and

an MBS. Users arrive in the system according to a Poisson process with rate 200

users per unit time. The holding times of the users are Pareto distributed with

minimum value 0.15 and shape parameter 1.5.

The MBS is located at (0 m, 0 m), and two PBSs are placed at (300 m, 0

m) and (200 m, 0 m). An arriving user is placed in the coverage of each PBS with

probability 0.25 according to the uniform distribution. With remaining probability

0.5, the user is placed in the coverage area of the MBS according to the uniform

distribution. Each user selects its serving BS using the association scheme explained

in Algorithm 2 in Section 3.6.

We plot the minimum number of FRBs we need to meet the throughput re-

quirements of users in 90% of the instances of user arrivals and departures, as a

function of the update period of 2-tier algorithm. The reported results are the aver-
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Figure 3.8: Number of required FRBs with varying period of FRB reallocations with
greedy joint association.

age of 10 sample paths, each of which has 5000 user arrivals. As shown in Fig. 3.8,

as the 2-tier algorithm is executed more frequently, i.e., the update period Ta de-

creases, fewer FRBs are needed. Hence, it demonstrates a clear tradeoff between

the performance of the dynamic allocation and the frequency at which we execute

the 2-tier algorithm.

We also compare the performance of our 2-tier algorithm to that of the cen-

tralized LP. The plot indicates that the 2-tier algorithm performs comparably to

the centralized LP up to Ta=0.4. This observation is due to higher “implicit slack”,

i.e., FRBs shared with the MBS which are not fully utilized by the PBSs, offered

by the 2-tier algorithm compared to the centralized LP. The centralized LP solution

tends to share more MBS FRBs with PBSs compared to the 2-tier algorithm and,
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as a result, has lower implicit slack. An arriving user might attach to a PBS offering

sufficient implicit slack without requiring any additional FRBs. However, in case

of insufficient implicit slack, the user might require additional FRBs to satisfy its

minimum average throughput requirement. As we increase Ta, after a certain point

(Ta = 0.4 in Fig. 3.8), the optimal allocation of centralized LP outperforms the

2-tier algorithm, as the implicit slack is exhausted by the arriving users in the time

interval.

Figure 3.9: Number of required FRBs with varying period of FRB reallocation with
a fixed SNR-based association scheme.

Finally, we replace the greedy association scheme with fixed association in

which a user selects the BS with the highest SNR with 6 dB bias towards PBSs.

Fig. 3.9 plots the number of FRBs required to meet the throughput requirements in

90% of the instances (user arrivals and departures). The plot suggests that the 2-tier
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algorithm continues to perform on par with the centralized LP. However, because

the association scheme no longer takes advantage of implicit slack, in most cases

both algorithms require slightly more FRBs than in Fig. 3.8.
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Chapter 4: On Optimal Association and Activation Fractions

4.1 Introduction

It is well established by now that all emerging cellular wireless networks will be dense

HetNets formed by a multitude of disparate transmission points (TP) deployed in a

highly irregular fashion [8]. In this chapter, we propose a RM scheme which decides

at the onset of each frame the user association and the activation fractions (AF).

In particular, our scheme decides which set of users should each TP serve over that

frame such that each user is served by exactly one TP (user association) and how

often should each TP transmit over that frame (activation fraction of that TP).

We adopt α-fairness utility as the system-wide utility which generalizes all pop-

ular utility functions [41]. However, even under our more tractable model, the joint

optimization of user association and activation fractions is NP-hard. Consequently,

we propose an alternating optimization based approach wherein the respective sub-

problem is solved at each step. For the discrete user association sub-problem, we

completely characterize the underlying set function that needs to be optimized and

suggest a simple combinatorial algorithm (referred to as the GLS algorithm) that

involves a greedy stage followed by local search improvements. For performance

guarantees, we first develop a novel bound on the performance of the greedy stage
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when used to maximize (minimize) any submodular (supermodular) set function

and then derive firm guarantees by specializing this bound to the particular set

function of interest. Two key new results that follow from our analysis are: (i)

firm (instance independent) guarantees for all α ≤ ln(3)
ln(2)

, and (ii) the fact that the

same guarantees can be achieved by a restricted (online) greedy algorithm that has

a significantly lower complexity. Our results reveal that a simple greedy algorithm

can maximize the weighted proportional fairness system utility (i.e., when α = 1)

to within a constant additive gap of 2 ln(2). Next, for the continuous AF opti-

mization sub-problem, we adopt the auxiliary function method and show that it is

provably convergent and yields a local optima. Finally, the performance of all our

proposed algorithms is compared with baseline schemes via extensive simulations

over a HetNet topology generated as per 3GPP LTE guidelines (configuration 4b

in [7]). Our results highlight the significant gains that can be achieved in realistic

HetNet deployments via the joint optimization.

4.2 Problem statement

Let U = {1, · · · , K} denote the set of users and let B denote the set of transmission

points (TPs) with cardinality |B| = B. Further, suppose that the time axis is

divided into multiple frames, where each frame (of unit duration) consists of several

consecutive slots. The set of fast and slow fading coefficients seen by all the K

users from all the B TPs on a slot together describe the system state on that slot.

The fast and slow fading coefficients seen by each user are assumed to be mutually
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independent. For simplicity, the fast fading coefficients for each user are assumed

to change across slots in an independent identically distributed (i.i.d.) manner,

while the slow fading coefficients are assumed to change across frames in an i.i.d.

manner. The choice of the activation fraction for each TP along with the user

association for all TPs is made once for each frame to optimize the system utility.

This choice can be based on the slow fading realization in that frame but does not

consider any previous such choices. Each TP then independently implements its

per-slot scheduling policy over the users associated with it in that frame, where the

latter scheduling policy respects the assigned activation fraction and exploits the

instantaneous fast fading coefficients seen by the associated users. Consequently,

we can suppress the dependence on the frame and slot indices in the following.

Let U (b), ∀b ∈ B denote the set of users associated to TP b and let ρ =

[ρb]b∈B denote the activation vector, where ρb ∈ [0, 1] denotes the activation fraction

assigned to TP b. We systematically derive an average rate that each user can obtain

over the frame under the given user association and activation vector. The derived

average rates are conservative in terms of optimizing the system utility. We begin by

assuming that each TP b allocates a fraction γk,b ∈ [0, 1] of the frame to serve each

associated user k ∈ U (b), where these fractions are determined at the onset of the

frame, i.e., each TP is assumed to adopt a fractional round robin policy. Note that

for any choice of the allocated fractions, this fractional round robin policy will be

inferior (in terms of optimizing the utility) to an efficient per-slot scheduling policy

(cf. [57]) that can exploit instantaneous fading. Next, we assume that the activation

fraction is implemented via a Bernoulli activation variable Xb with E[Xb] = ρb that
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is i.i.d. across slots in the frame and is independent of all other random variables.

Then, the average rate rk of user k ∈ U (b) is given by,

γk,bρbE

[
log

(
1 +

βk,b
1 +

∑
b′ 6=b βk,b′Xb′

)]
(4.1)

where the the channel gain variables {βk,b, βk,b′} include both fast and slow fading as

well as noise normalized transmit powers and the expectation is over the activation

variables as well as the fast fading. Upon invoking the fact that the instantaneous

rate in (4.1) is convex in the activation variables, which we recall are independent of

the fast fading coefficients, we can further lower bound (4.1) to obtain a conservative

average rate,

rk = γk,b ρbE

[
log

(
1 +

βk,b
1 +

∑
b′ 6=b βk,b′ρb′

)]
︸ ︷︷ ︸

4
=Rk,b(ρ)

, (4.2)

where now the expectation is over only the fast fading. Note that rk in (4.2) de-

pends on the slow fading realization (comprising of the path losses and shadowing

factors) over the frame of interest. Letting r = [r1, · · · , rK ] denote the vector of

such conservative rates obtained for all the K users over the frame, the achieved

system utility is given by

∑
k∈U

wku(rk, α), (4.3)

65



where α ≥ 0 is a tunable fairness fraction and

u(rk, α) =



r
(1−α)
k

1−α α ∈ (0, 1)

log(rk) α = 1

− r
(1−α)
k

α−1
α > 1

(4.4)

and wk > 0 denotes the weight associated with user k ∈ U . These weights can

be used to assign different priorities to different users and we assume that they

are normalized, i.e.,
∑

k∈U wk = 1. We can now write our optimization problem of

interest, which is a mixed optimization problem, as

max
ρ∈[0,1]B ;xk,b∈{0,1};
γk,b∈[0,1] ∀ k,b

{∑
k∈U

∑
b∈B

xk,b (wku(γk,bRk,b(ρ), α))

}

s.t.
∑
b∈B

xk,b = 1, ∀ k ∈ U ;
∑
k∈U

γk,b ≤ 1 ∀ b ∈ B.

(4.5)

Note that in (4.5) the binary variable xk,b is one if user k is associated to TP b

and zero otherwise, so that the first set of constraints ensures that each user is

associated with only one TP. Consequently, U (b) 4
= {k : xk,b = 1} yields the user

set associated with TP b. The variables {γk,b} are referred to here as allocation

fractions and their sum is upper bounded by unity for each TP, as depicted in the

second set of constraints. Note that in (4.5), we enforce {U (b)}b∈B to be a partition

of U . This is meaningful and indeed important since we are targeting short-term

optimality by maximizing a system utility independently over each frame. The joint

optimization problem in (4.5) is unfortunately intractable, indeed even the user
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association sub-problem (for any fixed ρ) is shown to be NP-hard. Consequently,

we develop efficient methods (with meaningful guarantees) for the user-association

and the AF optimization sub-problems, and then leverage these methods in an

alternating optimization framework to solve the joint problem in (4.5).

4.3 User association

For any fixed ρ, we proceed to systematically consider the user-association sub-

problem of (4.5) given by

max xk,b∈{0,1};
γk,b∈[0,1] ∀ k,b

{∑
k∈U

∑
b∈B

xk,b (wku(γk,bRk,b(ρ)))

}

s.t.
∑
b∈B

xk,b = 1, ∀ k ∈ U ;
∑
k∈U

γk,b ≤ 1, ∀ b ∈ B,
(4.6)

over three regimes defined by the values that the parameter α can take. We first

define a ground set, Ω = {(k, b) : k ∈ U , b ∈ B}, that consists of all possible

tuples and where each tuple (k, b) denotes an association of user k to transmission

point b. We also define the set Ω(b) = {(k, b) : k ∈ U} for each transmission point

b ∈ B which consists of all tuples whose transmission point is b, along with the set

Ω(k) = {(k, b) : b ∈ B} for each user k which consists of all tuples whose user is k.

Finally, we define a family of sets I, as the one which includes each subset of Ω

such that the tuples in that subset have mutually distinct users. Formally,

G ⊆ Ω : |G ∩ Ω(k)| ≤ 1, ∀ k ⇔ G ∈ I. (4.7)
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Using the definitions, we see that I is a partition matroid. We start with the regime

α > 1 and note that upon choosing α = 2, (4.6) represents optimization of average

system delay, whereas as α → ∞, (4.6) represents association to achieve max-min

fairness [41]. Note that for any given user association, i.e, for any given feasible

choice of variables {xk,b}, (4.6) is a continuous optimization problem. Moreover,

it is separable across the set of TPs and for each TP b ∈ B, we have a convex

optimization problem over the set of variables {γk,b} for k ∈ U : xk,b = 1. Using

K.K.T. conditions it can be verified that for each TP b ∈ B

max γk,b∈[0,1] ∀ k∑
k∈U γk,b≤1

{∑
k∈U

xk,b (wku(γk,bRk,b(ρ)))

}
=

−

(∑
k∈U

xk,b

(
wk

(Rk,b(ρ))1−α

α− 1

)1/α
)α (4.8)

Consequently, upon defining

Θ
(b)
k (α) =

(
wk

(Rk,b(ρ))1−α

α− 1

)1/α

, ∀ α > 1,

(4.6) reduces to the following discrete optimization problem.

min xk,b∈{0,1} ∀ k,b∑
b∈B xk,b=1 ∀ k

{∑
b∈B

(∑
k∈U

xk,bΘ
(b)
k (α)

)α}
. (4.9)

We now consider the case α ∈ (0, 1). In this case, (4.6) reduces to

max xk,b∈{0,1} ∀ k,b∑
b∈B xk,b=1 ∀ k

{∑
b∈B

(∑
k∈U

xk,bΘ
(b)
k (α)

)α}
, (4.10)
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where Θ
(b)
k (α) =

(
wk

(Rk,b(ρ))1−α

1−α

)1/α

, ∀ α ∈ (0, 1).

Recalling the sets Ω,Ω(k),Ω
(b) defined before, we further define the set function

g(G, α) =
∑
b∈B

(
∑

(k′,b′)∈G∩Ω(b)

Θ
(b′)
k′ (α))

α
, (4.11)

∀ G ⊆ Ω,G 6= ∅ with g(∅, α) = 0, where ∅ denotes the empty set. The minimization

problem in (4.9) can now be reformulated as

minG:G∈I & |G|=K{g(G, α)}, (4.12)

whereas the maximization problem in (4.10) can be re-formulated as

maxG:G∈I & |G|=K{g(G, α)}. (4.13)

Similarly, for α = 1, (4.6) can be reformulated as in (4.13) but where

g(G, 1) =
∑

(k,b)∈G

wk ln(wkRk,b(ρ))−

∑
b∈B

(
∑

(k′,b′)∈G∩Ω(b)

wk′) ln(
∑

(k′,b′)∈G∩Ω(b)

wk′).

(4.14)

We offer the following result that completely characterizes these set functions for all

α.

Proposition 4.1. For any α > 0 the problem 4.6 is NP-Hard. Further, for any

α > 1, the set function g(., α) is a normalized, nonnegative and nondecreasing su-
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permodular set function over Ω. For any α ∈ (0, 1), the set function g(., α) is a

normalized, nonnegative and nondecreasing submodular set function over Ω.

The set function g(., 1) is a normalized submodular set function over Ω. A

sufficient condition for g(., 1) to be nonnegative is given by

∑
k∈U

1

Rk,b(ρ)
≤ 1, ∀ b ∈ B. (4.15)

A stronger condition that suffices for g(., 1) to be nonnegative and nondecreasing is

given by

Rk,b(ρ) ≥ 1

wk(1− wk)
1−wk
wk

, ∀ k ∈ U , b ∈ B. (4.16)

Proof. Hardness of User Association: The hardness of the user association sub-

problem for a fixed ρ can be shown via a reduction from the partition problem.

To show this, we consider the case α > 1 and suppose that there is an optimal

polynomial time user association algorithm. Further, we restrict ourselves to input

instances in which the rates that all users can obtain from two distinct TPs b1, b2 ∈ B

are identical to one, whereas the rate that each user can obtain from any other

TP is zero. Thus, we assume that Rk,b(ρ) = 1, ∀ k ∈ U & b ∈ {b1, b2} while

Rk,b(ρ) = 0, ∀ k ∈ U & b ∈ B \ {b1, b2}. We allow the user weights to be any input

set of positive scalars that sum to 1. Then, the problem in (4.9) simplifies to

minxk,b∈{0,1} ∀ k∈U,b∈{b1,b2}∑
b∈{b1,b2} xk,b=1 ∀ k

 ∑
b∈{b1,b2}

(∑
k∈U

xk,bw
1/α
k

)α
 . (4.17)
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Then, defining ẑ = arg minz∈[0,1]{zα+(1−z)α}, it is readily verified that ẑ is unique

and equal to 1/2, with ẑα + (1− ẑ)α = 21−α. Letting W =
∑

k∈U w
1/α
k , this implies

that the objective value in (4.17) returned by the optimal polynomial time user

association algorithm will be equal to Wα21−α if and only if there exists a partition

of the set of user weights (each raised to power 1/α) into two parts that have an

identical sum. This in turn implies that the algorithm at hand is an optimal poly-

nomial time algorithm for the NP-complete subset sum problem. Indeed, suppose

{y1, · · · , yK} : yk > 0, ∀k is any input set to the latter problem where we need

to determine if there exists a partition of that set into two parts of identical sum.

Setting wk =
yαk∑K
i=1 y

α
i

, ∀ k = 1, · · · , K, we obtain a valid input set of weights for

(4.17). Then, from the output of the supposed optimal algorithm at hand, we can

immediately determine if there is such a partition for the set { yk
(
∑K
i=1 y

α
i )1/α}Kk=1 and

thus the set {yk}Kk=1, which yields the desired contradiction. The same reduction

can be established for α = 1 as well as α ∈ (0, 1).

To prove the remaining parts of this proposition, we note that xα, ∀x ≥ 0 is

concave in x when α ∈ (0, 1) and convex in x when α > 1. Then, we note the fact

that composition of a nonnegative modular set function with a real valued concave

(convex) function yields a submodular (supermodular) set function. Further, the

sum of submodular (supermodular) functions is submodular (supermodular) and

submodularity as well as supermodularity is preserved under set restriction. Us-

ing these facts, we obtain the desired result. Similarly, for α = 1 we note that

−x ln(x), ∀x ≥ 0 is concave in x with limx→0+ −x ln(x) = 0. This fact along with

the aforementioned arguments establishes the proof in this case.
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4.3.1 Unified algorithm

In Table 4.1 we propose the GLS Algorithm, which is a simple combinatorial algo-

rithm to solve the problem in (4.6). It considers the respective reformulated versions

in (4.12) or (4.13) and comprises of two stages. The first one is the greedy stage

(steps 1 to 6). Here in each greedy iteration the feasible tuple (k′, b′) (with respect

to the ones already selected so far) offering the best gain is selected, until no such

tuple can be found. In particular, this tuple (k′, b′) is determined by solving

arg max(k,b)∈Ω:Ĝ∪(k,b)∈I{g(Ĝ ∪ (k, b), α)− g(Ĝ, α)}, α ≤ 1,

arg min(k,b)∈Ω:Ĝ∪(k,b)∈I{g(Ĝ ∪ (k, b), α)− g(Ĝ, α)}, α > 1

The second stage of Algorithm 4.1 is the local search improvement stage and

comprises of steps 7 to 13. Here, a feasible pair of tuples is determined in each local

search iteration as (k′, b1), (k′, b2) =


arg max k∈U & b,b′∈B

(k,b)∈Ğ,(k,b′)/∈Ğ
{g(Ĝ ∪ (k, b′) \ (k, b), α)}, α ≤ 1,

arg min k∈U & b,b′∈B
(k,b)∈Ğ,(k,b′)/∈Ğ

{g(Ĝ ∪ (k, b′) \ (k, b), α)}, α > 1

and the corresponding relative improvement is deemed to be better than ∆ by

checking if

g((Ğ ∪ (k′, b2) \ (k′, b1)), α)− g(Ğ, α) > ∆sgn(g(Ğ, α))g(Ğ, α), α ≤ 1,

g((Ğ ∪ (k′, b2) \ (k′, b1)), α)− g(Ğ, α) < −∆g(Ğ, α), α > 1,
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Table 4.1: GLS Algorithm

1: Initialize with α, ∆ ≥ 0, MaxIter ≥ 1, Ĝ = ∅ and U ′ = U .
2: Repeat
3: Determine (k′, b′) as the tuple in Ω which offers the best gain among all tuples

(k, b) ∈ Ω such that Ĝ ∪ (k, b) ∈ I.

4: Update Ĝ = Ĝ ∪ (k′, b′) and U ′ = U ′ \ {k′}
5: Until U ′ = ∅.
6: Set Ğ = Ĝ, Iter = 0.
7: Repeat
8: Increment Iter = Iter + 1.
9: Find a pair of tuples: (k′, b1) ∈ Ğ and (k′, b2) ∈ Ω \ Ğ such that the relative

improvement upon swapping (k′, b1) ∈ Ğ with (k′, b2) is better than ∆.
10: If such a pair exists then
11: Update Ğ = Ğ ∪ (k′, b2) \ (k′, b1).
12: End If
13: Until no such pair exists or Iter = MaxIter.
14: Output Ğ.

where sgn(x) = 1, ∀x ≥ 0 and −1 otherwise.

We now proceed to analyze the performance of our proposed GLS algorithm.

Our goal is to bound the gap (by obtaining easily computable bounds) between the

optimal system utility value and the one returned by the GLS Algorithm. Towards

this end, let Gopt denote the optimal solution to the problem in (4.12) for α > 1 or

(4.13) for α ∈ (0, 1], and let Ğ, Ĝ denote the counterparts obtained by our algorithm

as the final output and after the greedy stage, respectively. We will first analyze the

performance of the greedy first stage. To do so, we derive new bounds that relate

the optimal solution to that returned by the greedy stage. These bounds are in fact

applicable to arbitrary (not necessarily nonnegative or nondecreasing) submodular

or supermodular set functions.
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Proposition 4.2. For any given α, the greedy stage yields an output Ĝ such that

g(Ĝ, α) ≥ g(Gopt ∪ Ĝ, α)− g(Ĝ \ Gopt, α), ∀ α ≤ 1

g(Ĝ, α) ≤ g(Gopt ∪ Ĝ, α)− g(Ĝ \ Gopt, α), ∀ α > 1.

Proof. For notational convenience let us denote a tuple as e = (k, b). We expand

Ĝ as Ĝ = {ê1, ê2, · · · , êK} where êi denotes the tuple added at the ith greedy step

and let δi, i = 1, · · · , K denote the associated incremental gain. Further, we define

the sets Ĝ
i

= {ê1, ê2, · · · , êi}, ∀ i = 1, · · · , K with Ĝ
0

= φ. Then, note that both

Gopt, Ĝ ∈ I and are maximal members in I, i.e., |Gopt| = |G| = K. Invoking a

result on maximal members in a matroid (cf. [40]), we can deduce that without

loss of generality, we can expand Gopt = {eopt
1 , eopt

2 , · · · , eopt
K } such that for each

i ∈ {1, · · · , K},

Either eopt
i = êi, or

eopt
i /∈ Ĝ & (Ĝ \ êi) ∪ e

opt
i ∈ I. (4.18)

Then, letting G̃ 4
= Ĝ \Gopt we have the chain of inequalities (4.19) given below which

yields the desired result. In (4.19) the first inequality follows from submodularity

of g(., α) and the fact that for each i : êi ∈ Ĝ ∩ Gopt, Ĝ
i−1
⊆ Ĝ

i−1
∪ G̃ and êi /∈

Ĝ
i−1
∪ G̃. The second inequality follows from (4.18) along with the fact that for

each i : eopt
i /∈ Ĝ, the greedy algorithm would have considered eopt

i but chose êi

instead since the latter offered a larger incremental gain. The third inequality also
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g(Ĝ, α) =
K∑
i=1

δi =
∑

i:êi∈Ĝ∩Gopt

(g(Ĝ
i−1
∪ êi, α)− g(Ĝ

i−1
, α)) +

∑
i:êi∈G̃

(g(Ĝ
i−1
∪ êi, α)− g(Ĝ

i−1
, α))

≥
∑

i:êi∈Ĝ∩Gopt

(g(Ĝ
i−1
∪ G̃ ∪ êi, α)− g(Ĝ

i−1
∪ G̃, α)) +

∑
i:êi∈G̃

(g(Ĝ
i−1
∪ êi, α)− g(Ĝ

i−1
, α))

= g(Ĝ, α)− g(G̃, α) +
∑
i:êi∈G̃

(g(Ĝ
i−1
∪ êi, α)− g(Ĝ

i−1
, α))

≥ g(Ĝ, α)− g(G̃, α) +
∑

i:eopt
i /∈Ĝ

(g(Ĝ
i−1
∪ eopt

i , α)− g(Ĝ
i−1
, α))

≥ g(Ĝ, α)− g(G̃, α) +
∑

i:eopt
i /∈Ĝ

(g(Ĝ ∪ eopt
i , α)− g(Ĝ, α))

≥ g(Ĝ, α)− g(G̃, α) + g(Gopt ∪ Ĝ, α)− g(Ĝ, α),

(4.19)

follows from submodularity of g(., α) and the fact that for each i : eopt
i /∈ Ĝ we have

Ĝ
i−1
⊆ Ĝ, and the final inequality also follows from submodularity of g(., α). Note

that none of the steps require g(., α) to be a non-negative set function or that the

incremental gains should be nonnegative. The second relation in the proposition

can be proved in an analogous fashion.

We now demonstrate the utility of the bounds in Proposition 4.2 by specializing

them to the set functions of interest to us in (4.11) and (4.14).

Proposition 4.3. For any given α, the greedy stage yields an output Ĝ such that

g(Ĝ, α) ≥ g(Gopt, α)/2, ∀ α ∈ (0, 1),

g(Ĝ, α) ≥ g(Gopt, α)− 2 ln(2), ∀ α = 1,

(3− 2α)g(Ĝ, α) ≤ g(Gopt, α), ∀ α > 1.

(4.20)

Proof. For α ∈ (0, 1), since g(., α) is submodular and nondecreasing, we can readily
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obtain (4.20) from Proposition 4.2 by observing that g(Gopt∪ Ĝ, α) ≥ g(Gopt, α) and

g(Ĝ, α) ≥ g(Ĝ \ Gopt, α). Note that (4.20) is the classical result derived earlier [47].

For α = 1, the result in (4.20) is novel and thus more interesting. To prove (4.20),

we first rewrite the bound in Proposition 4.2 as

g(Ĝ, 1) ≥ g(Gopt, 1) + g(Gopt ∪ Ĝ, 1)− g(Gopt, 1)

−g(Ĝ \ Gopt, 1).

(4.21)

Then, recall from (4.14) that g(., 1) is the sum of a modular function and a sub-

modular function where the latter depends only on the user weights, and the sum

of these weights across all users is unity. Consequently, we can infer that

g(Gopt ∪ Ĝ, 1)− g(Gopt, 1)− g(Ĝ \ Gopt, 1)

=−
∑
b

(xb + yb) ln(xb + yb) +
∑
b

(zb + yb) ln(zb + yb)

+
∑
b

(xb − zb) ln(xb − zb)

(4.22)

where xb is the sum of weights of users associated to TP b by the greedy solution

(and hence is known), yb + zb is the sum of weights of users associated to TP b by

the optimal solution and zb is the sum of weights of users associated to TP b by both

the greedy and the optimal solutions. Note further that
∑

b xb =
∑

b(yb + zb) = 1.
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Combining (4.22) with (4.21) we can obtain the following specialized bound,

g(Ĝ, 1) ≥g(Gopt, 1)

+ min
yb,zb≥0;zb≤xb ∀b∑

b(yb+zb)=1

{−
∑
b

(xb + yb) ln(xb + yb)

+
∑
b

(zb + yb) ln(zb + yb)

+
∑
b

(xb − zb) ln(xb − zb)}.

(4.23)

Then, by using the necessary K.K.T. conditions for the optimization problem in the

RHS of (4.23), it can be shown that the minima is attained at yb = xb & zb = 0, ∀ b

so that

min
yb,zb≥0;zb≤xb ∀b∑

b(yb+zb)=1

{−
∑
b

(xb + yb) ln(xb + yb)

+
∑
b

(zb + yb) ln(zb + yb) +
∑
b

(xb − zb) ln(xb − zb)} = −2 ln(2).

(4.24)

This proves the result in (4.20). Next, we consider α > 1 and specialize the bound

in Proposition 2 as

g(Ĝ, α) ≤ g(Gopt, α) + g(Gopt ∪ Ĝ, α)− g(Gopt, α)− g(Ĝ \ Gopt, α)

= g(Gopt, α) +
∑
b

((vb + tb)
α − (vb + ub)

α

− (tb − ub)α), (4.25)

where now tb is the sum of gains of all users associated to TP b by the greedy solution
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(i.e., sum of Θ
(b)
k (α) in (4.9) for all tuples in Ĝ ∩ Ω(b) and hence is known) so that

g(Ĝ, α) =
∑

b t
α
b . vb + ub is the sum of gains of all users associated to TP b by the

optimal solution and ub is the sum of gains of all users associated to TP b by both

the greedy and the optimal solutions. Clearly, we can further bound

g(Ĝ, α) ≤ g(Gopt, α)+ max
vb,ub≥0;ub≤tb ∀b∑
b(vb+ub)

α≤g(Ĝ,α)

{
∑
b

((vb + tb)
α

− (vb + ub)
α − (tb − ub)α)}

(4.26)

Again invoking the necessary K.K.T. conditions for the optimization problem in the

RHS of (4.26), it can be shown that the maxima is attained at vb = tb & ub = 0, ∀ b

so that

max
vb,ub≥0;ub≤tb ∀b∑
b(vb+ub)

α≤g(Ĝ,α)

{
∑
b

((vb + tb)
α − (vb + ub)

α − (tb − ub)α)}

= (2α − 2)g(Ĝ, α)

(4.27)

This then proves the result in (4.20)

Remark 4.1. Note that the last bound in Proposition 4.3 is meaningful in the regime

α ∈
(

1, ln(3)
ln(2)

)
since then 3 − 2α > 0. As a result, we can deduce that for all

α ∈
(

0, ln(3)
ln(2)

)
, the greedy stage of the GLS algorithm itself provides firm (instance

independent) guarantees. However, as α is progressively increased, the performance

of the greedy stage is increasingly degraded compared to the optimal and the local

search stage of the GLS algorithm becomes increasingly important.

For nonnegative nondecreasing submodular set functions, which we recall does
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Table 4.2: Restricted Greedy Algorithm

1: Initialize with any ordering π(.) defined on U and Ĝ
rg

= ∅.
2: For k = 1 to K,
3: Determine (π(k), b′) as the tuple in Ω which offers the best incremental gain

among all tuples (π(k), b) ∈ Ω.

4: Update Ĝ
rg

= Ĝ
rg
∪ (π(k), b′).

5: End For.
6: Output Ĝ

rg
.

not hold for our set functions when α ≥ 1, a somewhat lesser known result is that

a restricted version of the greedy algorithm can also yield identical constant factor

approximation [33]. We next establish a similar result with respect to the bounds in

Propositions 4.2 and 4.3. In particular, we detail the Restricted Greedy Algorithm

in Table 4.2 and prove its guarantee in the following proposition.

Proposition 4.4. For any given ordering π(.), the Restricted Greedy Algorithm

yields a solution that also satisfies the bounds in Proposition 4.2 for all α. Thus, the

solution of the Restricted Greedy Algorithm also satisfies the bounds in Proposition

4.3 for all α and hence yields the same firm guarantees for all α ∈
(

0, ln(3)
ln(2)

)
.

Proof. We expand the solution yielded by the Restricted Greedy Algorithm as Ĝ
rg

=

{êrg
π(1), ê

rg
π(2), · · · , ê

rg
π(K)} where êrg

π(i) denotes the tuple added at the ith step as per the

ordering π(.). Then, all the arguments in the proof of Proposition 4.2 go through

even upon replacing Ĝ with Ĝ
rg

and êi with êrg
π(i), ∀ i. The key point to note here

is that we do not require the incremental gains obtained across the steps to be

ordered. In other words, we do not use the fact that the incremental gains obtained

during the greedy stage of the GLS algorithm are ordered as δ1 ≥ δ2 ≥ · · · ≥ δK

whereas no such ordering is ensured for those obtained during the restricted greedy
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algorithm.

Notice here that the restricted greedy algorithm can be viewed as an online

algorithm by setting the order π(.) to be the order in which users arrive. Then,

for any given set of users, our result implies that the online greedy and the offline

greedy (i.e., the greedy stage of the GLS algorithm) yield the same guarantees.

4.4 AF optimization

The association scheme described in the previous section determines U (b), the set of

users associated to TP b for all b ∈ B. In this section, for a given user association,

we seek to determine ρb for each b so as to optimize the system utility over different

α regimes. Our approach is based on the auxiliary function method. Such a method

has been used for precoder optimization over the single-cell downlink in [24] and

over the multi-cell downlink in [60].

α > 1 : The AF optimization problem in this regime is given by

minρ∈[0,1]B
{∑

b∈B
(∑

k∈U(b) w̃k/(Rk,b(ρ))1−1/α
)α}

(4.28)

where w̃k = ( wk
α−1

)1/α and Rk,b(ρ) is given by (4.2). Note that optimization over

the activation vector ρ seems intractable since Rk,b(ρ) involves an expectation of

a nonlinear function of ρ. Nevertheless, we demonstrate that a local optima can

be obtained via a provably convergent auxiliary function method. We let βk =

{βk,b} ∀b ∈ B denote the vector containing all fading coefficients pertaining to user
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k on any slot. Then, we introduce auxiliary variables gk,b(βk) for each vector βk

for each user k ∈ U (b) for each TP b. Using gk,b(βk) as a filter at user k to detect

the signal transmitted from TP b over that slot, the mean squared error (MSE),

ek,b(βk,ρ), is given by

ek,b(βk,ρ) =
∣∣∣gk,b(βk)√βk,b − 1

∣∣∣2 + |gk,b(βk)|2 + |gk,b(βk)|2
∑
b′ 6=b

βk,b′ρb′ (4.29)

Using the mutual information and MSE identity and introducing more auxiliary

variables (cf. [24]), we have

Rk,b(ρ) = ρbE[maxgk,b(βk),sk,b(βk)≥0{1− sk,b(βk)ek,b(βk,ρ) + log(sk,b(βk))}](4.30)

The solution of each inner maximization problem in (4.30) is obtained by setting

gk,b(βk) to be the MMSE filter ĝk,b(βk) with sk,b(βk) = ŝk,b(βk) = 1/êk,b(βk,ρ),

where êk,b(βk,ρ) = ek,b(βk,ρ) |gk,b(βk)=ĝk,b(βk). Using (4.30), the problem in (4.28)

(for the given association) can be reformulated as the following optimization problem

over variables ρ, s = {sk,b(βk)}, g = {gk,b(βk)} ∀βk, k ∈ U (b), b ∈ B.

min
ρ∈[0,1],g≥0,s≥1

∑
b∈B

 ∑
k∈U(b)

w̃k
(ρbE[1− sk,b(βk)ek,b(βk,ρ) + log(sk,b(βk))])1−1/α

)α}

Note that for a fixed ρ, (4.31) can be optimized over s,g via the closed form ex-

pressions given above. On the other hand, for fixed s,g to optimize (4.31) over ρ,

we introduce additional variables z = {zb} ∀b ∈ B and t = {tk,b}, ∀ k ∈ U (b), b ∈ B
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and express the reduced problem in (4.31) as

minρ∈[0,1],z≥0,t≥0

{∑
b∈B

zαb

}

subject to

zb ≥
∑
k∈U(b)

w̃kt
1/α−1
k,b ∀k, b

tk,b ≤ ρbE[1− sk,b(βk)ek,b(βk,ρ) + log(sk,b(βk))] ∀k, b

(4.31)

Notice that (4.31) can in turn be re-written as

minρ∈[0,1],z≥0,t≥0{
∑
b∈B

zαb }

subject to∑
k

z−1
b w̃kt

1/α−1
k,b ≤ 1 ∀k, b

tk,bρ
−1
b + E[sk,b(βk)ek,b(βk,ρ)]

1 + E[log(sk,b(βk))]
≤ 1 ∀k, b

(4.32)

The problem in (4.32) is a geometric program (GP) since all constraints are in-

equalities involving posynomials. Thus, we can repeat the following two steps until

convergence.

(a) Fix ρ and minimize (4.31) over s, g using closed form solution of (4.30).

(b) Fix s, g and minimize (4.31) over ρ by solving equivalent GP in (4.32).

Note that in the described auxiliary function method we have a monotonic im-

provement in the objective value of (4.31) so that convergence is guaranteed. Using

standard tools we can also deduce the additional result stated in the following propo-
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sition.

Proposition 4.5. The auxiliary function method provably converges. Each cluster

point of the obtained sequence of activation vectors satisfies the KKT conditions of

(4.28).

Regarding the practical implementation of the proposed auxiliary function

method, we first note that the GP in (4.32) can be efficiently solved. Further, we

can approximate the expectations in (4.31) and (4.32) by using a set of generated

fading coefficients {βk} ∀k. As a further simplification we can use the following

approximate expression for the average rate

R̃k,b(ρ) = ρb log

(
1 +

β̃k,b

1 +
∑

b′ 6=b β̃k,b′ρb′

)
(4.33)

where each β̃k′,b′ is obtained by averaging βk′,b′ over the fast fading. Analogous

solutions for the AF optimization problem in the regime α = 1 and the regime

α < 1 are derived.

4.5 Joint association and AF optimization

We propose two joint association and AF optimization algorithms for solving the

problem in (4.5). These algorithms follow an alternating optimization approach

where user association (stage 1) and AF (stage 2) are optimized in an alternating

fashion. Fig. 4.1 shows a block-level decomposition. The first algorithm is the

Joint GLS-AF algorithm, in which we first run the GLS algorithm (Algorithm in
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Figure 4.1: Joint Association and AF optimization block diagram

Table 4.1) and use the obtained association in our AF optimization algorithm in

Section 4.4. We repeat the following two steps until the benefit in terms of the

α-fairness system utility falls below a threshold.

(a) Stage1–Fix ρ and use GLS algorithm to calculate the user association.

(b) Stage2–Fix the association and optimize over ρ using the auxiliary function

method given in Section 4.4.

In the Joint GLS-AF algorithm, TPs that do not serve any user in any one itera-

tion will be discarded in all subsequent iterations. To overcome this limitation we

propose the Joint Relaxed Association AF (Joint RA-AF) algorithm. To obtain the

association, this algorithm in stage 1 solves the convex optimization problem ob-

tained by relaxing variables xk,b, ∀ k, b in (4.9) or (4.10) to be continuous variables

in [0, 1]. In this solution, a user k can have xk,b nonzero for more than one TP b. In

stage 2, the algorithm fixes xk,b for all k, b and optimizes the AF. To do so, it uses

the auxiliary function method of Section 4.4 on the objective in the problem (4.9)

rather than (4.28) as xk,b can now have fractional values. This two stage procedure

is repeated until the benefit in system utility falls below a threshold. Finally, the
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Joint RA-AF algorithm rounds xk,b to obtain a feasible association.

4.6 Evaluation

We present a detailed evaluation of our proposed Greedy Local Search (GLS), Re-

stricted Greedy (RG) and Joint Association & AF algorithms for an LTE HetNet

deployment. In our evaluation topology (Fig. 4.2), an enhanced NodeB (eNB) cov-

ers the coordination area. The eNB site consists of three cells (sectors), where each

sector contains a set of 11 transmission points formed by one macro and ten lower

power (pico) nodes (red squares in Fig. 4.2). We drop 99 users (green dots in Fig.

4.2) on the eNB site. Thus, there are a total of B = 33 TPs and K = 99 users. All

TPs and users have a single antenna each. The transmit power for macro BS and

pico nodes is 46 dBm and 35 dBm respectively. We assume a noise power of -104

dBm.

We use the simplified expression in (4.33) for optimization and evaluation in

Section 4.6.1 and Section 4.6.2. All the other parameters used in our numerical

studies, such as the distributions for dropping users and pico nodes, the path loss

and shadowing values, are according to 3GPP evaluation guidelines unless otherwise

stated. We also assume identical weights for all users and use ∆ = 10−9 to capture

even small improvements in the LS stage.

We compare the GLS and RG algorithms proposed in Section 4.3 to the fol-

lowing association schemes:

• Relaxed Upper bound (RU)–Solves the convex optimization problem obtained
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Figure 4.2: Topology

by relaxing xk,b in (4.9) or (4.10). Though the obtained solution need not

be feasible for (4.6), the scheme provides us with an upper bound to the

association problem (4.6).

• Relaxed Rounded Association (RRA)–Solves the convex optimization problem

obtained by relaxing xk,b in (4.9) or (4.10). Each user k connects to the TP

b corresponding to highest xk,b in the obtained convex optimization solution.

This scheme requires solving a convex problem and it can be computationally

quite complex compared to the GLS/RG algorithms in a dense deployment.

• Max SNR Association (MSA)– Each user independently connects to the TP

from which it sees the highest average channel gain.

4.6.1 Association

In this section we evaluate the association algorithms by examining their returned

utility function values for varying α. We also evaluate the additional gain yielded

by the local search (LS) stage over the greedy one in the GLS algorithm.
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α Greedy GLS RU RRA MSA RG LSI
0.25 67.75 67.82 67.82 67.82 65.08 67.48 1
0.5 112.67 112.67 112.71 112.52 107.03 110.39 0
0.75 288.57 288.57 288.82 288.46 277.65 283.98 0
1.0 -133.93 -133.87 -133.3 1 -133.93 -154.67 -139.76 1

Table 4.3: Utility versus α

α ≤ 1 : We begin with an evaluation of the GLS and RG algorithms in the regime

α ≤ 1, where we consider the maximization of the objective in (4.10). We set ρ = 1

for each of the 33 TPs and list the utility values of different association algorithms

in Table 4.3. As suggested by the guarantee in Proposition 4.3, we observe that the

greedy stage of the GLS Algorithm itself performs very close to the upper bound

RU, and hence close to the optimal and provides good gains over the MSA scheme.

In the α ≤ 1 regime, the main advantage of the proposed RG and GLS algorithms

over RRA is they have a much lower computational complexity, while performing at

par with the latter. An additional advantage of the RG algorithm is that we can use

it to assign TPs to the arriving users in an online fashion (without altering previous

associations). We also observe from Table 4.3 that the local search iterations (LSIs)

of the GLS Algorithm are at most 1 and that there is a slight utility gain obtained

by the LS stage. This gain is limited because here the greedy stage itself is almost

optimal.

α > 1 : Next we study the performance of GLS and RG algorithms in α > 1 region,

where we consider the minimization of the objective in (4.9). As seen in Fig. 5.1,

the proposed GLS and RG algorithms perform very similarly and they noticeably

outperform RRA in α > 3 regime while beating MSA over the entire range of α > 1.

87



α Greedy GLS LSI
1.25 563.9 563.9 0
1.5 411.4 411.3 1
1.75 408.7 406.8 2
2.0 462.6 458.9 2
2.25 565.6 559.0 2
2.5 728.5 717.2 2
2.75 975.2 956.1 2
3.0 1345.8 1314.2 2
3.25 1904.6 1853.0 2
3.5 2754.6 2671.2 2
3.75 4045.1 3911.4 2
4.0 5953.6 5740.7 2

Table 4.4: Local search improvement

For example, GLS performs 13.5 % better than RRA and 80% better than MSA at

α = 4. MSA performs poorly throughout the α > 1 regime since that algorithm

has a user specific rather than system specific view. The superiority of GLS and

RG over RRA & MSA increases with increase in α. For example, at a high α = 10,

which approaches max-min fairness, the GLS outperforms RRA and MSA by 93.2

% and 100% respectively.

In Table 4.4 we study the advantage of doing local search in the α > 1 region.

It is known that the greedy algorithm does not yield a constant factor approximation

for the minimization of a supermodular set function. Therefore, the greedy stage

need not be close to the optimal and there is room for improvement by the LS

stage. As seen in Table 4.4, though the number of LS iterations are at most two,

the order of gain over the greedy is up to 3.6%. At a higher α = 10, the gain of

GLS over greedy jumps to 43%, with the number of LSI equal to 5. Therefore, as

α is progressively increased, the local search stage of the GLS algorithm becomes

increasingly important.
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Figure 4.3: Utility vs α

4.6.2 Joint association and activation fraction optimization

α=3 α=0.5

Figure 4.4: Activation fractions for heterogeneous networks.

Fig. 4.4 illustrates the different AF yielded by the Joint GLS-AF algorithm for

α = 0.5 and α = 3.0, respectively. We observe that in both the cases at least one

macro AF is reduced to minimize the macro interference to small cells. For α = 0.5,

maximizing the utility forces the AF of a macro to almost zero, whereas the AF in

all small cells except three is equal to one. In our evaluation, we observe that a high

percentage of activation fractions in the α < 1 range are binary {0, 1} valued. For

example, note that the AF when α = 0.5 are mostly binary except for that of one

pico TP. It can be proved that for α = 0, i.e., the weighted sum rate utility, the
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optimal activation fractions will be binary valued. These observations do not apply

for AF optimization at higher α values, as evident in Fig. 4.4.

Figure 4.5: Utility vs iterations

In Fig. 4.5 we study the performance of the two joint algorithms for α =

3.0 up to 4 iterations. Each point in the plot at an iteration is the utility value

corresponding to the updated association, where that association is calculated using

the updated value of activation fractions. The value at the first iteration is the utility

corresponding to the association done using AF equal to one for all TPs. In the

Joint RA-AF, at every iteration we calculate the utility by rounding the fractional

association as done in the RRA algorithm. However, as mentioned in Section 4.5,

fractional values of association variables {xk,b} are passed on to the second stage

of AF identification. MSA with ρ = 1 for each TP with a utility value of 3531.8,

performs much worse than the Joint GLS-AF & Joint RA-AF schemes. We obtain

a gain of 6.1% for Joint GLS-AF over the case when we do only association via GLS

with a fixed ρ = 1, which demonstrates the benefit of doing the joint association
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and AF optimization. The Joint RA-AF scheme performs worse (upto 8.45%) than

the Joint GLS-AF algorithm at every iteration, illustrating that the benefits of GLS

over RRA observed before at ρ = 1 are preserved even in the joint optimization

problem.

For α = 0.5, Joint GLS-AF performs 23.36% better than MSA with ρ = 1, as

compared to the gain of 4.6% obtained by GLS over MSA observed in Table 4.3,

again demosntrating the gain of optimizing AF and the association jointly. We

observe that Joint GLS-AF and Joint RRA-AF algorithms perform very close to

each other in α < 1 regime. This is because of the at par performance of GLS and

RRA schemes in this α regime.

4.7 Association and activation fractions (AFs) for users with limited

queue

In a practical LTE system, a user might need limited service restricted to a fraction

of frame. Moreover, due to the burstiness of the traffic, users should have an up-

perbound on their service in each frame. Otherwise, the extra resources allocated

to a user by a TP in a frame might be wasted. Therefore, we study the association

and activation fraction optimization for limited queue size of the users in addition

to the backlogged traffic model studied in previous sections of this chapter. We can

now write our joint optimization problem of interest, which is a mixed optimization
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problem, as

max
ρ∈[0,1]B ;xk,b∈{0,1};
γk,b∈[0,1] ∀ k,b

{∑
k∈U

∑
b∈B

xk,b (wku(γk,bRk,b(ρ)))

}

s.t.
∑
b∈B

xk,b = 1, ∀ k ∈ U ;
∑
k∈U

γk,b ≤ 1 ∀ b ∈ B; γk,bRk,b ≤ Qk.

(4.34)

The third constraint puts an upper bound on the allocation fraction such that the

service provided by the TP does not exceed the service required by user. This

problem is intractable and it can be proved that even the association sub-problem

is NP-hard, because the association problem for even the backlogged traffic model

(unconstrained traffic) is NP hard.

We use an alternating optimization framework to solve the problem jointly.

We adopt an iterative two stage procedure, where the first stage determines the

association assuming activation fractions are fixed. The second stage determines

the activation fractions assuming association is the one which is obtained in the

first stage. We iterate over the two stages until we stop geting benefit in terms of

system utility. The two stages are solved as follows:

Stage 1 Association- We fix the activation fractions in (4.34) and obtain a mixed

optimization problem. Further, we optimize over the allocation fractions γk,b using

KKT conditions. Note that the solution to optimization over allocation fraction

partitions the users connected to a TP b into two subsets U ′b and U ′′b . The quantity
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λb partitions the two sets such that

k ∈ U ′b λb >
Rk,bwk
Qk

α

k ∈ U ′′b otherwise,

(4.35)

where λb is given by

λb = {
∑

k∈U ′b
R

(1−α)/α
k,b wk

1/α

1−
∑

k∈U ′′b
Qk/Rk,b

}α. (4.36)

Using the optimal allocation fractions, we can reduce the mixed optimization prob-

lem to a discrete problem. We conjecture that the objective of the discrete problem

has a known structure such as submodularity or supermodularity. Further, we use a

form of greedy and local search algorithms as proposed in the discrete optimization

literature to determine the association.

Stage 2 AF optimization- We fix the association obtained in the first stage and

obtain a continuous optimization problem. We will use auxiliary function method

for the problem such that the procedure converges to a solution that satisfies KKT

conditions.

93



Chapter 5: Coordinated Scheduling in MIMO Heterogeneous Wire-

less Networks using Submodular Optimization

5.1 Introduction

In the hetnet architecture, the basic unit of coordination is referred to as a clus-

ter. Clusters partition the set of TPs in the system and each cluster is assigned

a separate set of users that it should serve. The TPs in the cluster are connected

through high-speed backhaul and can coordinate in fine time scale granularity of

the order of a subframe. However, the coordination amongst different clusters is

at a slower timescale of the order of hundreds of milliseconds. In this chapter, we

focus on the resource allocation within each cluster in a fine time scale of subframes

(milliseconds). The set of users and the set of TPs in the cluster are fixed at this

fine time scale. In this work, we assume that each user can be served by a set of TPs

in the coordinated multipoint (COMP) cluster. We seek to determine which users

should be scheduled in each subframe, and which TPs should be assigned to the sched-

uled users to maximize the system utility in the spatial multiplexing MIMO COMP

schemes. This COMP scheduling problem is quite challenging due to the fact that

as we increase the number of TPs serving a user, we increase the throughput of that
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user, but limit service to other users.

5.2 System model

We consider the downlink in a heterogeneous network with universal frequency reuse

and focus on a cluster of TPs, which can simultaneously transmit in a subframe.

Let B denote the set of TPs in the cluster, and U denote the set of users in the

coordination unit, which need to be served by B in a physical resource block (PRB).

We assume that there is a single PRB in each subframe. Each user may connect

to a set of TPs S ⊂ B. However, each TP can serve only a single user in a PRB.

The problem is to design a centralized scheduling scheme which at each subframe

selects a set of users to be served in the subframe, such that each user is served by a

disjoint set of TPs. The decision variables are x = {xi,b}∀i, b, where xi,b = 1 if user

i is associated with TP b, and xi,b = 0 otherwise.

The objective is to maximize the sum of user utility
∑

i∈U ui(Ri, α), where Ri

is an estimate of average throughput, α ≥ 0 is a tunable fairness parameter and ui

is the utility function of user i given by:

ui(Ri, α) =



R
(1−α)
i

1−α α ∈ (0, 1)

log(Ri) α = 1

−R
(1−α)
i

α−1
α > 1.

(5.1)
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This family of utility functions defines various tradeoffs between total through-

put and fairness. We favor system throughput by choosing small values of α, and

favor system fairness by choosing larger values of α. The case of α = 1 provides

proportional fairness (PF).

The channel matrix from a TP to a user contains elements hm,n, which is the

channel gain from the nth transit antenna of the TP to the mth receive antenna of

the user. Let Hi,b be the channel matrix from TP b to user i. Based on the channel

from serving TPs, the user feeds back precoder matrix index (PMI) to the central

scheduler, which determines the precoder weights. The precoder weights of each

user are assumed to be known at the scheduler. Wi,b denotes the precoding matrix

for TP b transmission to user i. The signal received by user i is given by

Yi =
∑
b∈B

Hi,bWi,bsi,bxi,b +
∑
b∈B

∑
k 6=i

Hi,bWk,bsk,bxk,b. (5.2)

si,b is the stream of data transmitted from TP b to user i, and is independent of all

streams sk,j, where k 6= i or j 6= b.

The maximum achievable rate [62] by user i is given by

log2(det(Inr +Kd
i (x) · (Kn

i )−1(x)), (5.3)

whereKd
i (x) is the desired signal matrix for user i given by

∑
b∈B (xi,bHi,bWi,bW

H
i,bH

H
i,bPb),

Kn
i (x) is the noise and interference matrix given by

∑
b∈B
∑

k 6=i (σ
2Inr + xk,bHi,bWk,bW

H
k,bH

H
i,bPb).

Here nr denotes the number of receive antennas at each user, and Inr is the identity
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matrix of dimension equal to the number of receive antennas at each user. Pb is the

transmission power of TP b.

The gradient-based scheduling algorithm was proved to be asymptotically op-

timal for concave and continuously differentiable utility functions of long term user

average rates in [57], assuming users always have data to be served. This scheme

can be easily extended to our COMP setting. ri(x) is the effective rate that the user

i gets when it is served by the TP set determined by x. Ri(t) is the estimated long

term average throughput of user i at time instance of subframe t. Ri(t) is updated

for the next subframe according to

Ri(t+ 1) = (1− p)Ri(t) + pri(x), (5.4)

where p is the average throughput update parameter.

5.3 Problem statement

In order to maximize the average system utility, in each subframe we wish to maxi-

mize weighted sum of rates obtained by each user in subframe, given by
∑

i∈U wiri(x)

[57]. Here, ri(x) is the maximum achievable rate by user i in the PRB and is given

by (5.3) and wi is inversely proportional to the long term throughput achieved by

user i.

wi(Ri, α) = 1
Rαi

α ≥ 0 (5.5)
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The discrete optimization problem can be stated as

COMP Scheduling Problem

maximizexi,b∈{0,1}∑
i∈U

wi log
(
det(Inr +Kd

i (x) · (Kn
i (x))−1)

)
subject to∑
i∈U

xi,b ≤ 1 ∀b

(5.6)

The constraint in the optimization problem ensures that no two users in a PRB are

served by the same TP. The quantity
∑

i∈U xi,b determines if a TP b transmits in

the subframe. If
∑

i∈U xi,b = 0, then the TP b is silent in the subframe.

Proposition 5.1 The problem (5.6) is NP-Hard.

Proof. We prove the hardness of MIMO COMP scheduling for fixed precoders by

showing that even the MISO version of the problem is NP-hard. We assume that TPs

serve using multiple antennae, and users have only a single antenna. We will show

that MISO COMP scheduling for fixed precoders is NP-hard by showing that the

subset sum problem, which is NP-hard, is a special case of MISO COMP scheduling

problem. Consider the scheduling problem for input instances in which there are N

TPs in set B and only two users in the cluster. Also, the quantity

||Hi,bWk,b||2Pb = Kcb, i = k

= 0, otherwise
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where cb ∈ Z+, ∀b ∈ B. The COMP scheduling problem is to come up with

subsets of TPs that serve each user. Note that the set of TPs serving a user will

be exclusive of the set of TPs which serve the other user, as each TP can serve not

more than a single user. For equal weight users, the problem can be stated as

maximizexi,b∈{0,1}log

(
1 +

∑
b∈B cbx1,b

σ2/k

)
+log

(
1 +

∑
b∈B cbx2,b

σ2/k

)
(5.7)

where both the vectors x1 = {x1,b}, ∀b and x2 = {x2,b}, ∀b are mutually exclusive,

i.e., x1 and x2 cannot have value equal to one at the same position. Also, the

solution must satisfy the constraint that
∑

b∈B cbx1,b +
∑

b∈B cbx2,b ≤
∑

b∈B cb. Note

that the objective in the problem (5.7) is concave, and the maximum possible value

of the objective is 2 log (1 +
∑
b∈B cb/2

σ2/k
). This is when

∑
b∈B cbx1,b =

∑
b∈B cbx2,b =∑

b∈B cb/2.

Since x1 and x2 are mutually exclusive, the solution of the COMP scheduling

problem guarantees the maximum value of objective 2 log (1 +
∑
b∈B cb/2

σ2/k
) when the

solution of problem (5.7) obtains two subsets of the set {cb} ∀b which have equal

sum and form a partition of the set {cb} ∀b. Indeed, suppose {y1, .., yK} : yk > 0,∀k

is any input set to the subset sum problem where we need to determine if there

are two subsets which form a partition of the set and have equal sum. We can

appropriately map the input set to the corresponding set {cb} ∀b. Then from the

solution of scheduling problem, we can determine if there are two subsets that are
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disjoint and have equal sum. It is clear that given a subset sum problem, we can

construct a corresponding equivalent COMP scheduling problem. Hence, if there

exists an optimal polynomial time COMP scheduling algorithm, it can also solve

the subset sum problem on any set and, hence, is optimal polynomial time for the

NP hard subset sum problem.

The objective of the problem (5.6) can be expressed as the following difference

of two weighted logarithmic sums:

∑
i∈U

wi log(det(Kn
i (x) +Kd

i (x))) (5.8)

−
∑
i∈U

wi log(det(Kn
i (x))).

If we allow xi,b to take continuous values in the interval range [0,1] rather than just

binary values, each weighted logarithmic sum in (5.8) can be proved to be concave in

the following way: We note that log(det(X)), ∀X ∈ S++
n is concave in X, where S++

n

is the set of n×n positive definite matrices. Also, we note the fact that composition

of a nonnegative affine function with a real-valued concave function yields a concave

function. Further, the weighted sum of concave functions is concave if the weights

are nonnegative.

The version of problem (5.6) in which we allow the xi,b to take continuous

values in the interval range [0,1] is referred to as, the relaxed version of problem

(5.6) throughout this chapter. Note that even the relaxed version of problem (5.6)

is hard to solve as the objective is a sum of concave and convex functions which

makes it a non-concave maximization problem [39].

100



5.4 Proposed approach

We begin with an outline of our proposed approach using successive convex approx-

imation. Next, using the discrete version of successive convex approximation, we

describe different steps in order to solve the original (discrete) problem. As noted

in [37], in an alternative approach [39, 53], continuous version of successive convex

approximation scheme can be used to solve the relaxed problem. In the next section,

we present the continuous version of the scheme for the relaxed (continuous) version

of the problem (5.6). Fig. 5.1 gives a unified block-level decomposition of discrete

and continuous versions of successive convex approximation. In the first step, we

represent the objective as a difference of two functions f(x) − g(x), where both

the functions f(x) and g(x) are submodular in the case of (5.6). Next we follow

an iterative procedure, which iterates upon two steps, namely step 2 and step 3.

In step 2 of the kth iteration in this procedure, we approximate g(x) as a modular

function gk(x) (or an affine function in the case of the relaxed problem), where gk(x)

is an upper bound to g(x). In step 3 of kth iteration in this procedure, we maximize

the objective f(x) − gk(x), which is effectively maximizing the lower bound of the

original objective. We iterate upon steps 2 and 3 until we converge to a solution.

In the following subsection, we describe the difference of submodular function algo-

rithms, which is a discrete version of the successive convex approximation procedure

in Fig. 5.1.
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Identify the 
Objective as 
difference of 
concave/sub-

modular functions
f(x) – g(x)

Approximate g(x) 
as gk(x) which is 
affine/modular

Solve the 
maximization 

problem 
f(x) - gk(x)

Solution xk

STEP 1 STEP 2 STEP 3

kth Iteration 

Figure 5.1: Block diagram

5.4.1 Difference of submodular (DS) function algorithm

We now proceed to reduce the COMP scheduling problem (5.6) to a constrained

maximization of difference of two submodular functions. Interestingly, we can rep-

resent any set function as a difference of two submodular functions. However, in

general this requires exponential complexity [35]. In order to express the objective

set function in (5.6) as a DS function as done in Step 1 of Fig. 5.1, we first define a

ground set Ω = {(i, b) : i ∈ U , b ∈ B}. The ground set consists of all possible tuples,

and each tuple (i, b) denotes an association of user i to TP b. Further, we define a

family of sets I as the one which includes each subset of Ω such that the tuples in

that subset have mutually distinct TP. (Ω, I) is said to be a partition matroid when

there exists a partition Ω = ∪Ji=1Ωi, where Ωi ∩Ωj = ∅, ∀ i 6= j, along with integers
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ni ≥ 1 ∀ i such that

C ⊆ Ω : |C ∩ Ωi| ≤ ni ∀ i⇔ C ∈ I. (5.9)

Each subset of tuples having a common TP-i constitute the set Ωi, and each

such set Ωi containing distinct TP form the partition of the ground set Ω. Using the

definition we see I is a partition matroid. Let G be the solution set, which should

belong to the partition matroid I. Let

φ(G) =
∑
i

wi log

(
det(

∑
b:(i,b)∈G

Hi,bWi,bW
H
i,bH

H
i,bPb

+
∑

(k,b)∈G:k 6=i

Hi,bWk,bW
H
k,bH

H
i,bPb + σ2Inr)

)
(5.10)

and

φ′(G) =
∑
i

wi log

(
det(

∑
(k,b)∈G:k 6=i

Hi,bWk,bW
H
k,bH

H
i,bPb + σ2Inr)

)
(5.11)

Proposition 5.2: For any α, the set functions φ(G) and φ′(G) are nonde-

creasing submodular set functions over Ω.

Proof. We note that log(det(X)), ∀X ∈ S++
n is concave in X. Then, we note

the fact that composition of a nonnegative modular set function with a real-valued
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concave function yields a submodular set function. Further, the weighted sum of

submodular functions is submodular if the weights are nonnegative. Also submod-

ularity is preserved under set restriction. Using these facts, we obtain the desired

result.

The COMP scheduling problem (5.6) can be reduced to the following maxi-

mization of DS function over a partition matroid.

maximizeG∈I φ(G)− φ′(G)
(5.12)

The problem of maximizing the difference of any two submodular functions

generalizes the problem of maximizing a submodular function, and hence it is NP

hard as well. Unfortunately, even obtaining an approximation algorithm for the

difference of submodular maximization is known to be NP hard [35]. These hard-

ness results provide a justification for use of an inspired heuristic algorithm for the

difference of submodular maximization problem.

For solving problem (5.12), we use an approximate difference of submodu-

lar function maximization approach proposed for machine learning applications

in [44], [35]. This approach is based on concave-convex procedure [64]. Concave

functions are a continuous analogue of submodular functions, and therefore this is a

natural approach for DS functions. The algorithm is a discrete analogue of succes-

sive convex approximation scheme that depends on discrete superdifferentials. Iyer

et. al. in [37] show that many of the state-of-the-art submodular function optimiza-
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tion approaches are special cases of this procedure. Furthermore, this procedure

is shown [37] empirically to work very well for submodular function optimization.

Thus, we use the procedure for the problem (5.12).

As shown in Step 2 of Fig. 5.1, we need to approximate the submodular func-

tion φ′ by a modular function φ′H , which is exact at a set H ∈ Ω. The modular

approximation should satisfy the following properties:

• φ′(H) = φ′H(H)

• φ′(G) ≤ φ′H(G) ∀G ⊂ Ω

Bilmes et. al. in [36, 38] showed that we can define supergradient ∂φ′(H) of a sub

modular function φ′ at H:

∂φ′(H) ={y ∈ Rn :

φ′(G)− y(G) ≤ φ′(H)− y(H);∀G ⊂ Ω}

A supergradient at H is defined as ∂φ′(H) = φ′(j|H \ j) for j ∈ H and ∂φ′(H) =

φ′(j|∅) for j /∈ H in [37]. Using this supergradient we use a modular approximation

given by

φ′(H) + ∂φ′(G)− ∂φ′(H) ≥ φ′(G)

The modular approximation which satisfies the above properties, reduces to the
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Table 5.1: DS Algorithm

1: Initialize with G0, t = 0.
2: Repeat
3: Gt+1 = argmaxG f(G), where H = Gt.
4: Update t = t+ 1
5: Until Gt+1 = Gt.

following:

φ′H(G) = φ′(H)−
∑
j∈H\G

φ′(j|H \ j) +
∑
j∈G\H

φ′(j|∅), (5.13)

where φ(H|G) = φ(H ∪G)− φ(G). Note that the function φ′(G) is submodular iff

φ′H(G) ≥ φ′(G) [35].

As shown in Fig. 5.1 at Step 3, we solve the maximization problem (5.12) by an

iterative procedure, which involves solving the following submodular maximization

problem at each iteration:

maximizeG∈I f(G)

f(G) = φ(G)− φ′(H) +
∑
j∈H\G

φ′(j|H \ j)−
∑
j∈G\H

φ′(j|∅)
(5.14)

We solve for G using the iterative DS algorithm given in Table 5.1. Each

iteration (line 3), requires the constrained maximization of submodular function

f(G), which is done using the simple greedy algorithm given in Table 5.2. Note that

we perform approximate constrained submodular optimization in every iteration,

and we are not guaranteed to monotonically increase the objective in every iteration.
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Table 5.2: Greedy maximization

1: Initialize with Ĝ = ∅
2: Repeat
3: Determine (k′, b′) as the tuple in Ω which offers the best gain among all tuples (k, b) ∈ Ω

such that Ĝ ∪ (k, b) ∈ I.
4: Update Ĝ = Ĝ ∪ (k′, b′)
5: Until gain is positive.
6: Output Ĝ.

However, if we ensure that we move to the next iteration only when the objective

does not decrease, we will restore monotonicity at every iteration. This follows from

the following set of inequalities:

φ(Gt+1)− φ′(Gt+1) ≥a φ(Gt+1)− φ′Gt(Gt+1) ≥b φ(Gt)− φ′Gt(Gt) =c φ(Gt)− φ′(Gt).

Here, (a) follows from the upper bound property of the modular approximation, (b)

follows from the assumption that we move to the next step only when the objective

does not decrease, and (c) follows from the tightness of modular approximation at

Gt.

Let K = |U| and B = |B|. Since the total number of the (user, TP) tuples

is KB, and the maximum number of iterations of the greedy algorithm is B, com-

plexity of the greedy maximization in the DS algorithm is O(B2K). We note that

simulations reveal that for a medium-sized cluster (KB ≈ 100) only very few DS

iterations (6 or less) are needed to capture the available gains.

5.5 Relaxed problem

We now proceed to relax the COMP scheduling problem (5.6) and solve the relaxed

problem using DC method by expressing the objective as a difference of two concave

107



functions.

The MISO version of this relaxed problem has structure similar to the problem

of power control, which aims to maximize the weighted sum of rates in a single

transmit and multiple interfering links setup [39, 43]. The non-concave problem is

very challenging as pointed out in [9, 27]. Among efforts to solve for the global

optimal solution of the power control problem, [9, 27, 61] use branch and bound

techniques or outer approximation techniques. However, these techniques are very

computationally demanding. We aim to solve the problem efficiently and using a low

complexity algorithm. Therefore, we solve the problem using a difference of concave

function optimization approach as done in [39] for the power control problem. The

successive convex approximation procedure as proved in [43] converges to a local

optimum. Moreover, numerical results in [39] for small dimensions of x indicate

that the algorithm converges to the global optimum in small number of iterations.

As done in Step 1 of Fig. 5.1, using (5.8) the objective of the relaxed problem can be

rewritten as difference of concave and differentiable functions. The successive convex

approximation procedure generates a sequence {xk} of improved feasible solutions

for the relaxed problem. Now, as done in Step 2 of Fig. 5.1 in the kth iteration,

we can approximate g(x) as an affine function gk(x), such that f(x) − gk(x) is a

concave function. The solution of the successive convex approximation procedure

converges to a point which satisfies the first order optimality conditions for the

relaxed problem. Further, it can be proved that the solution in the k + 1 iteration

xk+1 improves the solution of previous iteration xk.

The size of the unknown decision variable x in the relaxed problem is KB.
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The complexity of a convex program is of cubic order in number of decision vari-

ables. Therefore, the complexity of the concave maximization is O(K3B3). The

simulations for a medium-sized cluster (KB ≈ 100) show that we require around 40

DC iterations for ε = 0.004. Therefore, DC algorithm is much more computationally

demanding than the DS algorithm. Though the solution need not be feasible, it pro-

vides us with an efficient benchmark for an upper bound of the COMP scheduling

problem.

5.6 Evaluation

Parameter Value
Macro transmission power per PRB 1000 mW
Pico transmission power per PRB 0.1 mW
Path Loss Exponent 3.5
log-normal shadowing standard deviation 6 dB
Coverage radius of the macro TP 700 m
Coverage radius of the pico BS 50 m
Power spectral density of noise -172 dBm/Hz
log-normal shadowing standard deviation 6 dB
BW of a frequency resource block 180 kHz
Number of macro TPs in a cluster 1
Number of antennae at each user 4
Number of antennae at each TP 4
Min. distance between macro and pico TP 50 m
Min. distance between any 2 pico TPs 30 m

Table 5.3: Default parameters

We present an evaluation of the proposed DS algorithm. Table 5.3 contains

the default parameters used in our numerical studies and simulations unless stated

otherwise. We evaluate the COMP scheduling algorithms over a cluster topology

consisting of a macro TP and multiple pico TPs. Pico TPs are distributed uni-
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formly in the coverage area of the macro TP. Furthermore, pico TP user locations

are uniformly distributed within the coverage area of picos. In the 2-tier network

topology, the remaining users’ locations are uniformly distributed outside the pico

coverage area and within the coverage area of the macro TP. At the beginning of

each realization or sample path, we generate mutually independent log-normal ran-

dom variables to model the shadow fading between all (user, BS) pairs. We compute

the signal strength for each user according to the path loss to each BS based on the

parameters given in Table 5.3 and the realized random variables for shadow fading.

Channel matrix between user i and TP b, Hi,b is generated assuming Rayleigh fast

fading, and can be represented as Ui,b
∑

i,b V
H
i,b using SVD transform, where

∑
i,b is

a diagonal matrix and Vi,b is a unitary matrix. For simplicity, we assume precoder

matrix between user i and TP b, Wi,b = Vi,b.

In this section, firstly using simulations we show that the DS algorithm per-

forms at par with the much more computationally complex DC and the optimal

solution (calculated using brute force). Secondly, we study the DS solution with

variation in different topology parameters and compare its performance with re-

spect to the following algorithms:

• Weighted SNR (wSNR): Each TP b selects a user to serve based on the cri-

terion argi {max wi · log(det(Hi,bWk,bW
H
k,bH

H
i,bPb + σ2Inr)), where the term

inside logarithm considers channel between user i and TP b, and neglects the

interference from other TPs. Though this criterion is simple, it takes the pa-

rameter α into account as it depends on the user weight wi, unlike schemes
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that are only based on the channel between user and TP.

• Long-term COMP (LCOMP): [22] In the first step, the recommended trans-

mission set for each user is calculated. The set includes TP that provides

the user highest signal strength and is called the anchor TP. In addition this

set includes TPs whose long term signal strength is within a threshold (6

dB) from anchor TP. In the second step, the COMP coordination cluster is

partitioned into COMP non-overlapping transmission sets. In the third step,

for each transmission set, from the set of COMP users with matching recom-

mended transmission set, search for optimal user maximizing the PF utility

wiri, where ri is given by (5.3). Note that we assume Kn
i = σ2Inr to limit

the complexity of the algorithm. If we include the interference term in Kn
i ,

the computational complexity of the algorithm would be exponential as users

served (and hence their precoders ) by interfering TPs are not known in the

third step. We repeat steps two and three over different partitions and choose

the partition corresponding to the maximum weighted sum of user utility.

The initialization point for the DC and DS algorithms is based on wSNR criterion

in the simulations. The convex optimization program in DC algorithm is imple-

mented using CVX toolbox [34]. To contain the complexity of the DC algorithm,

the maximum number of iterations is limited to 20 and ε = 0.1.

We begin by evaluating the DS algorithm with respect to the optimal solution

and DC solution, by examining their returned utility function values for propor-

tional fairness utility (α = 1). We consider a scenario which contains two pico TPs
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Algorithm Average System Utility
Optimal 11.36
DC 9.95
DS 9.89
wSNR 8.59
LCOMP 7.37

Table 5.4: PF performance of different algorithms.

distributed uniformly inside the macro coverage radius. Each pico TP contains six

users placed uniformly in its coverage area. Ten users are distributed uniformly

inside the macro coverage area and outside the pico coverage radius. We calculate

the average system utility by taking an average of 80 realizations, where in each

realization TP positions and user positions vary. As seen in Table 5.4, DS algorithm

performs on average within 14.35% of the optimal and performs within 1.1% of DC

algorithm. Though we limit complexity of DC algorithm in the simulations, because

of its cubic complexity in KB, it still takes far more computation time than DS (and

wSNR, LCOMP).

In the rest of this section, we focus on the DS algorithm. We study its per-

formance as (i) the distance of pico TPs from macro, (ii) the number of users per

pico, and (iii) the number of picos are varied. We compare the system utility ob-

tained using DS algorithm for PF (α = 1) to that of the baseline wSNR and existing

LCOMP scheme.

Effects of distance between macro and pico TPs : We begin with a scenario in

which there are two pico TPs inside the macro TP coverage radius. Each pico TP

has six users placed uniformly inside its coverage radius. The coordinates of the
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Figure 5.2: PF system utility with varying distance of closest pico TP from macro
TP.

macro TP are (0,0) and those of the nearest pico and other pico are (100,0) and

(200,0), respectively. We fix the inter-pico distance to 100 m in this experiment,

and vary distance between the closest pico and macro TP, by moving both the pico

TPs along x axis to generate different points in Fig. 5.2. Each point in Fig. 5.2 is

an average of 80 realizations, where in each realization TP positions are fixed and

user positions vary.

Unlike the wSNR algorithm, the DS algorithm can switch off TPs to reduce

interference faced by users in a subframe. As a result, in Fig. 5.2, DS algorithm

outperforms the wSNR algorithm by 60% and LCOMP algorithm substantially,

when closest pico faces excessive interference (from macro) at a distance of 100 m

from macro TP. Note that both the wSNR and LCOMP algorithms do not take

into account the inter-TP interference, unlike the DS algorithm. As the distance of
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closest pico from macro TP is increased, the interference from the macro faced by

picos decreases, and performance of wSNR and LCOMP algorithms approach that

of DS scheme. In particular, the LCOMP algorithm performance suffers severely

when pico TPs are close to macro TP, as the scheme limits the association of users

based on average SNR.
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Figure 5.3: PF system utility with varying number of users per pico TP.

Effects of the number of users per pico : We plot the PF system utility as the

number of users in each pico TP coverage region increases, where the users are

placed uniformly in pico coverage area. In each realization, there are ten users placed

outside the pico coverage area and inside macro coverage area. Also, two pico TPs

are placed uniformly inside the macro TP coverage area in each realization. We

compute an average of 80 such realizations in this experiment (Fig. 5.3).

Fig. 5.3 shows that as the number of users in pico coverage area increases,

114



the performance gain of the DS algorithm over the wSNR algorithm increases from

2% up to 18.9%. This is due to the fact that DS algorithm, using pico TP on-off,

controls the pico TP interference faced by users that are in pico coverage area but

are connected to macro TP. Note that the performance of LCOMP algorithm with

respect to wSNR algorithm improves with an increase in users in pico TP coverage

area. The system fairness suffers using the LCOMP algorithm, due to limitation of

user association based on long term signal strength. However, we observe that the

LCOMP algorithm performs well in terms of the total user throughput.
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Figure 5.4: PF system utility with varying number of pico TPs in the cluster.

Effects of increasing network size : We consider a scenario in which there are ten

users inside macro TP coverage radius but outside the pico TP coverage radius, and

vary the number of pico TPs. Each pico TP has six (other) users inside its coverage

radius, and the total number of users in the system increases with the number of pico
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TPs. The picos are distributed uniformly in macro coverage area and we compute

the average of 80 realizations.

With an increasing number of pico TPs, the PF system utility increases. This

is because the number of users served by picos increases as the number of picos

increases. However, the average inter-TP interference also increases. As shown in

Fig. 5.4, the DS algorithm is able to handle increase in interference better than

the other two algorithms. The DS algorithm performs 8% better than the wSNR

algorithm and 11.1% better than the LCOMP scheme in a single pico TP scenario.

As the number of picos is increased to 3, DS algorithm performs 13.2% better than

wSNR algorithm and 31.5% better than LCOMP scheme.
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Chapter 6: Conclusion

In Chapter 3, we have introduced and evaluated a new algorithm for frequency

allocation in 2-tier heterogeneous networks. Our algorithm is completely distributed,

requires little coordination between various BSs, and is able to effectively share

frequency resources between an MBS and PBSs. Our algorithm is more efficient than

previously known distributed schemes, and performs nearly on par with centralized

LP-based optimal solutions if the PBS deployments allow for spatial frequency reuse.

There remain many open issues we have not investigated here. For instance,

we have not explored the possibility of joint association and resource allocation and

design of distributed algorithms. We plan to examine these open issues in the future

and study how much benefit we can achieve through joint design of association and

allocation schemes.

We also plan to study the comparison of our approach in which we minimize

frequency resources while guaranteeing a minimum throughput to all users, and

then use the remaining frequency resources for network utility maximization; with

respect to the approach where network utility is maximized guaranteeing a minimum

throughput to each user.

In Chapter 4, we introduced and evaluated a new joint association and ac-
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tivation fraction optimization algorithm for maximizing the α-fairness utility in

HetNets. We derived meaningful performance guarantees and demonstrated the

significant benefit of the joint algorithm over a practical HetNet topology.

Note that we have separately studied the frequency domain and time domain

interference solution in Chapter 3 and Chapter 4, respectively. We plan to examine

and compare the performance of solutions in both the domains. In future, we also

plan to study a joint frequency and time domain solution to the interference problem.

Finally in Chapter 5, we have proposed a difference of submodular function

optimization algorithm for the problem of COMP MIMO system utility maximiza-

tion over the set of user and TP pairs. The discrete algorithm (DS) performs at

par and is much less computationally complex than its continuous analogue (DC

algorithm). Also, the DS algorithm performs within a reasonable percentage of the

optimal solution. There remain many open issues we have not investigated here.

For instance, we have not explored the possibility of joint precoder and TP-user

pairs optimization. We plan study how much benefit we can achieve through joint

design of precoder and TP-user pairs algorithms.

In this dissertation, we have designed algorithms for interference management

assuming communication amongst TPs either at superframe level or subframe level.

However, there could be practical deployment scenarios where neighboring TPs be-

long to different service providers and TPs operated by one service provider cannot

communicate with TPs operated by other service provider. Therefore, in the future,

we plan to extend our study of interference management algorithms to the schemes

which do not require communication with TPs operated by other service providers.
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Chapter : Appendix

Appendix A

Proposition 3.1. Algorithmic constraints are equivalent to the set of original con-

straints.

Proof. Suppose, BS-a1 and BS-a2 are neighbors in the interference graph. Let S

denote a subset of BSs which interfere with BS-a1 and BS-a2. Both the FRB types

(a1: a2,S) and (a2: a1,S) denote the sharing amongst same set of BSs, i.e; BS-a1,

BS-a2 and BSs in the set S. Therefore, both the FRB types are compatible with

each other. BS-Z is a neighbor of BS-a1 but not a neighbor of BS-a2. Hence, any

FRB type of (a1:a2,S,Z) is compatible with type (a2:a1,S).

A set of constraints is introduced to couple the number of FRB types in the

compatible sets for each pair of the neighboring BSs, in order to maximize the use

of shared FRB types. For every pair of matching FRB types in any two neighboring

BSs, the constraints equate total number of FRBs of different types present in

the compatible set of each matching FRB. All the constraints generated using this

criterion constitute an original constraint set.

Suppose H1 denotes the set of BSs which interfere with BS-a1 but not BS
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a2. H2 denotes the set of BSs which interfere with BS-a2 but not with BS-a1. For

every neighboring BSs a1 and a2 and S = {a3, a4, ..., aj} in the interference graph,

the original set of constraints corresponding to the FRB type (a1 : a2, a3, a4, ...aj)

and matching FRB type (a2 : a1, a3, a4, ...aj) is given by

∑
H’∈P (H1)

N(a1 : a2,S,H’) =
∑

H’∈P (H2)

N(a2 : a1,S,H’) (.1)

Note that P denotes the power set. N(a1 : a2,S) represents the number of FRBs of

type (a1 : a2,S).

However, we note that the original set of constraints are equalities for a pair

of matching FRB types. The set of equality constraints for all the matching FRB

types can be given by the following set of equations. The equations are valid for

any matching FRB of the type (a1:a2,S). H3 denotes the set of BSs that interfere

with BS-a1 but do not interfere with at least one BS which owns the matching FRB

of type (a1:a2,S). Similarly, H4 denotes the set of BSs which interfere with BS-a2

but do not interfere with at least one BS which owns the matching FRB of type

(a2:a1,S). For every neighboring BSs a1 and a2 in the interference graph, the original

set of constraints corresponding to the FRB type (a1 : a2, a3, a4, ...aj) and matching

FRB type (a2 : a1, a3, a4, ...aj) is given by

∑
H’∈P (H3)

N(a1 : a2,S,H’) =
∑

H’∈P (H4)

N(a2 : a1,S,H’) (.2)

Let SSC denote the set of FRBs which have their FRB type as SC. N(SC) =
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|SSC |. ∪SC∈(a1:a2,S,P (H3))SSC is the union of all the FRBs having the FRB type

(a1 : a2,S, P (H3)) and are the physical FRBs of the types present in the extended

compatible set of FRB type (a1 : a2,S) .

a) From algorithmic constraint to the corresponding original constraint.

Consider FRB types (a1 : a2, a3, a4, ...aj) and (a2 : a1, a3, a4, ...aj). The physical

FRBs of the types present in extended compatible set of type (a1 : a2, a3, a4, ...aj)

is denoted as ψ and physical FRBs of the types present in the extended compatible

set of FRB type (a2 : a1, a3, a4, ...aj) is denoted as φ. We assume (Assumption 1)

each element in the set of BSs {aj+1, aj+2..., aj+n} interferes with both BS-a1 and

BS-a2. (Assumption 2) However, each element of this BS set does not interfere with

at least one BS that owns the matching of FRB type (a1 : a2, a3, a4, ...aj). The

physical FRBs of the types present in the extended compatible set of type (a1 :

a2, a3, a4, ...aj, aj+i) is denoted by ψi. Moreover, physical FRBs of the types present

in the extended compatible set of type (a1 : a2, a3, a4, ...aj, aj+k1 , aj+k2 ..aj+km) (where

1 <= k1, k2, .., km <= n) is denoted by ψk1,k2,..,km .

M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k)) is the set of FRB types which match with

the FRB type (a1 : a2, a3, a4, ...aj, aj+1, ...aj+k).

O(M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k))) is the set of owner BSs of the FRB types

which match with the FRB type (a1 : a2, a3, a4, ...aj, aj+1, ...aj+k).

We aim to derive the original constraint in equation (.1) corresponding to the FRB

type (a1 : a2, a3, a4, ...aj) and matching FRB type (a2 : a1, a3, a4, ...aj) from the
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algorithmic constraint of the two FRB type in equation (.2). Firstly, we prove

Lemma 1 and obtain a corollary that ψk1,k2..km ⊆ ψ. Further, using cardinality of

union of sets property and Lemma 2 we obtain the corresponding original constraint.

Lemma 1: The extended compatible set of FRB type (a1 : a2, a3, a4, ...aj, aj+1, ...aj+k)

is a subset of extended compatible set of FRB type (a1 : a2, a3, a4, ...aj) where 1 ≤ k.

Therefore, ψ1,2,..k ⊆ ψ.

Proof :

a) Note that O(M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k))) is the set of BSs whose ele-

ments belong to {a2, a3..., aj+k} , such that each of the element BSs interferes with

the BSs ai where, 1 ≤ i ≤ j + k (of course excluding itself).

b)O(M((a1 : a2, a3, a4, ...aj))) is the set of BSs whose elements belongs to {a2, a3..., aj},

such that each of the element BSs interferes with the BSs ai where, 1 ≤ i ≤ j (of

course excluding itself)

We know that 1 ≤ k.

Note that O(M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k))) is a subset of {a2, a3..., aj}. This

is because we assumed (in Assumption 2 ) every BS element in the set {aj+1, aj+2, .., aj+n}

does not interfere with atleast one BS element of O(M(a1 : a2, a3, a4, ...aj)) (which

itself is the subset of {a2, a3..., aj} from statement b. Therefore, further from state-

ments a) and b),

O(M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k)))

⊆ O(M((a1 : a2, a3, a4, ...aj))) (.3)
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The FRB types present in the extended compatible set of FRB type (a1 : a2, a3, a4, ...aj, aj+1, ...aj+k)

are of the form (a1 : a2, a3, a4, ...aj, aj+1, ...aj+k, P (Yk)) where Yk is the set of base

stations that interfere with a1 but do not interfere with at least one BS present in

the set O(M((a1 : a2, a3, a4, ...aj, aj+1, ...aj+k))).

Similarly, the FRB types present in the extended compatible set of FRB type

(a1 : a2, a3, a4, ...aj) are of the form (a1 : a2, a3, a4, ...aj, P (Y )) where Y is the set

of base stations that interfere with a1 but do not interfere with at least one BS

present in the set O(M((a1 : a2, a3, a4, ...aj))). Therefore, following from equation

(.3) we have P (Yk) ⊆ P (Y ). Moreover, from the assumption (in Assumption-2 )

{aj+1, aj+2, aj+3...., aj+n} ⊆ Y . Since Y includes the set of BSs {aj+1...aj+k}, and

P (Yk) ⊆ P (Y ) , we have ψ1,2,..,k ⊆ ψ.

Hence, Lemma 1 is proved

Corollary 1:Suppose BS2 ⊆ BS1. Then

O(M((a1 : a2, a3, a4, ...aj, BS1)))

⊆ O(M((a1 : a2, a3, a4, ...aj, BS2)))

Corollary 2:ψk1,k2,..,km ⊆ ψ

From the algorithmic constraint of FRB type (a1 : a2, a3, a4, ...aj) and type

(a2 : a1, a3, a4, ...aj), it follows that

|ψ| = |φ| (.4)
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Using Corollary 2 of Lemma 1, equation (.4) can be written as

|ψ ∪ ψ1 ∪ ψ2.. ∪ ψn ∪ ψ12 ∪ ψ1n... ∪ ψ123.. ∪ ψ123..n|

= |φ ∪ φ1 ∪ φ2.. ∪ φn ∪ φ12 ∪ φ1n... ∪ φ123.. ∪ φ123..n|
(.5)

In equation (.5), LHS is the cardinality of union of physical FRBs of the types present

in the extended compatible set of all the FRB types (a1 : a2, a3, a4, ...aj, aj+1, ...aj, P (Y )),

where Y = {aj+1, ..., aj+n}.

We need to obtain the original constraint for the FRB type (a1 : a2, a3, a4, ...aj)

and type (a2 : a1, a3, a4, ...aj) from (.5). Therefore, we need to get rid of FRB type el-

ements which contain any of the BSs in the set {aj+1, ..., aj+n}, as these BSs interfere

with both BS-a1 and BS-a2 which should not be present in the original constraint

(.1) corresponding to FRB type (a1 : a2, a3, a4, ...aj) and type (a2 : a1, a3, a4, ...aj).

Following this motivation,

|ψ ∪ ψ1 ∪ ψ2.. ∪ ψn ∪ ψ1,2 ∪ ψ1,n... ∪ ψ1,2,3.. ∪ ψ1,2,3..,n|

= |ψ \ ψ1 ∪ ψ2.. ∪ ψn ∪ ψ1,2 ∪ ψ1,n... ∪ ψ1,2,3.. ∪ ψ1,2,3..,n|

+ |ψ1 ∪ ψ2.. ∪ ψn ∪ ψ1,2 ∪ ψ1,n... ∪ ψ1,2,3.. ∪ ψ1,2,3..,n|

(.6)

Also

|φ ∪ φ1 ∪ φ2.. ∪ φn ∪ φ1,2 ∪ φ1,n... ∪ φ1,2,3.. ∪ φ1,2,3..n|

= |φ \ φ1 ∪ φ2.. ∪ φn ∪ φ1,2 ∪ φ1,n... ∪ φ1,2,3.. ∪ φ1,2,3..n|

+ |φ1 ∪ φ2.. ∪ φn ∪ φ1,2 ∪ φ1,n... ∪ φ1,2,3.. ∪ φ1,2,3..,n|
(.7)
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The first term in the RHS of equation (.6) is equivalent to
∑

H’∈P (H1) N(a1 : a2, a3.., ajH’)

where H1 denotes the set of BSs which interfere with BS-a1 but not BS-a2. The first

term in the RHS of equation (.7) is equivalent to
∑

H’∈P (H1) N(a2 : a1, a3.., ajH’).

H2 denotes the set of BSs which interfere with BS-a2 but not with BS-a1. Therefore,

if we are able to prove the equality of second term in the RHS of equation (.6) and

second term in the RHS of equation (.7), using (.5) we obtain the desired original

constraint for FRB type (a1 : a2, a3, a4, ...aj) and type (a2 : a1, a3, a4, ...aj).

The problem of obtaining the desired original constraint is reduced to proving

|ψ1 ∪ ψ2.. ∪ ψn ∪ ψ1,2 ∪ ψ1,n... ∪ ψ1,2,3.. ∪ ψ1,2,3,..n|

= |φ1 ∪ φ2.. ∪ φn ∪ φ1,2 ∪ φ1,n... ∪ φ1,2,3.. ∪ φ1,2,3..,n|
(.8)

By the cardinality of union of sets property, for any n sets A1;A2...;An we know

that :-

|∪ni=1Ai|=
∑n

i=1 |Ai| −
∑n

1≤i<j≤n |Ai ∩ Aj|

+
∑n

1<=i<j<k<=n |Ai ∩ Aj ∩ Ak| ...

+(−1)n−1 |∩ni=1Ai|

(.9)

Let ψ1 = ψ1,...,ψn = ψn ,ψn+1 = ψ1,2,...,ψ2n = ψ1,2,3,4..,n

Similarly, let φ1 = φ1,...,φn = φn, φn+1 = φ1,2,...,φ2n = φ1,2,3,4..n.
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Using equation (.9)

∣∣∪2n

i=1ψ
i
∣∣ =

∑2n

i=1 |ψi| −
∑2n

1≤i<j≤2n |ψi ∩ ψj|

+
∑2n

1<=i<j<k<=2n

∣∣ψi ∩ ψj ∩ ψk∣∣ ...
+(−1)2n−1

∣∣∩2n

i=1ψ
i
∣∣ (.10)

∣∣∪2n

i=1φ
i
∣∣= ∑2n

i=1 |φi| −
∑2n

1<=i<j<=2n |φi ∩ φj|

+
∑2n

1<=i<j<k<=2n

∣∣φi ∩ φj ∩ φk∣∣ ...
+(−1)2n−1

∣∣∩2n

i=1φ
i
∣∣

(.11)

Lemma 2: Each ψ term in the RHS of equation (.10) can be mapped to

the corresponding φ term in in the RHS of equation (.11), i.e., |ψi1 ∩ ψi2 .. ∩ ψik |=

|φi1 ∩ φi2 .. ∩ φik | where 1 ≤ i1 < i2.. < ik ≤ 2n

Proof : Suppose ψim is the set of physical FRBs of the types present in the ex-

tended compatible set of FRB type (a1 : a2...aj, BSim), for 1 ≤ m ≤ k where

BSim ⊆ {aj+1, ..., aj+n}. The FRB types in the set ψim are of the form (a1 :

a2...aj, BSim , P (Yim)). LetBSi = ∪km=1BSim . Let the FRB type A is (a1 : a2...aj, BSi)

and FRB type B is(a2 : a1...aj, BSi) . Note that if ∩km=1ψ
im 6= φ then this set con-

tains the FRB of type (a1 : a2...aj, BSi, P (X)). From the definition of X, we have

X = ∩km=1Yim . X can be partitioned into X1 and X2 such that X = X1 ∪ X2,

where X1 is the set of BSs which are contained in the set X and interfere with every

element of O(M(A)). X2 is the set of BSs which do not interfere with at least one

element of O(M(A)).
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O(M((a1 : a2...aj, BSi))) ⊆ O(M((a1 : a2...aj, BSim))), ∀m from corollary of

Lemma 1.

Further,

O(M((a1 : a2...aj, BSi))) ⊆ ∩km=1O(M((a1 : a2...aj, BSim))).

Physical FRBs of types present in the extended compatible set of A are repre-

sented by EX(A), which contains the FRBs of type (a1 : a2...aj, BSi, P (X2)). Since,

∩km=1ψ
im contains the FRBs of type (a1 : a2...aj, BSi, P (X)) and X2 ⊆ X, we have

EX(A) ⊆ ∩km=1ψ
im .

Therefore,

|ψi1 ∩ ψi2 .. ∩ ψik | = |ψi1 ∩ ψi2 .. ∩ ψik \ EX(A)|

+ |EX(A)|
(.12)

Similarly,

|φi1 ∩ φi2 .. ∩ φik | = |φi1 ∩ φi2 .. ∩ φik \ EX(B)|

+ |EX(B)|
(.13)

This is because, |EX(A)| = |EX(B)| using the algorithmic constraint for FRB type

A and type B. To prove lemma 2 our aim is to prove:

∣∣∩km=1ψ
im \ EX(A)

∣∣ =
∣∣∩km=1φ

im \ EX(B)
∣∣ (.14)

For a FRB to belong to the set ∩km=1ψ
im but not belong to EX(A), the FRB should
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be of type (a1 : a2...aj, BSi, Z) where set Z(Z ⊆ X) contains at least one BS which

interferes with every element of O(M(A)). At least one element of Z should belong

to the set X1 and the rest of the elements may belong to X2. We try to classify all

such FRBs which belong to ∩km=1ψ
im \ EX(A) and then use the algorithmic con-

straint to show (.14).

Suppose, BS-v interferes with every element of O(M(A)) and v ∈ X1 , FRB of

type A1 (a1 : a2...aj, BSi, v) ∈ ∩km=1ψ
im \ EX(A). Also note that O(M(A)) =

O(M(A1) as BS- v interferes with every owner of O(M(A)). Therefore, every

owner BS in the set O(M(A)) also owns the corresponding matching in M(A1).

Since X2 is the set of BS which do not interfere with at least one element of

O(M(A)), the extended compatible set of FRB type A1 contains the FRBs of the

type (a1 : a2...aj, BSi, v, P (X2)). If physical FRBs of type A1 ∈ ∩km=1ψ
im \ EX(A)

then EX(A1) ∈ ∩km=1ψ
im \ EX(A).

Now we can follow the same arguments for V1 ∈ P (X1) ( same argument

for v in previous paragraph) and the type of FRBs (a1 : a2...aj, BSi, V1)) . The

physical FRB of type (a1 : a2...aj, BSi, V1) ∈ ∩km=1ψ
im \ EX(A). Moreover, all

the FRB types present in the extended compatible set of this FRB type are of the

form (a1 : a2...aj, BSi, V1, P (X2)) ∈ ∩km=1ψ
im \ EX(A). Also note that O(M(a1 :

a2...aj, BSi, V1)) = O(M(A)).

Suppose, V2 ∈ P (X1) and V2 6= V1. We have O(M(a1 : a2...aj, BSi, V2)) =

O(M(A)). This is because, V2 6= V1, and all elements of V2 and V1 interfere

with O(M(A)), and O(M(a1 : a2...aj, BSi, V2)) = O(M(a1 : a2...aj, BSi, V1)) =
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O(M(A)) . If V2 ⊆ V1, then the physical FRBs in the set EX((a1 : a2...aj, BSi, V2)∩

EX((a1 : a2...aj, BSi, V1) are of the type (a1 : a2...aj, BSi, V1, ..). But every element

of V1\V2 interferes with every element ofO(M(a1 : a2...aj, BSi, V2)). Therefore, FRB

type (a1 : a2...aj, BSi, V1, ..) cannot be present in the set EX((a1 : a2...aj, BSi, V2).

We have EX((a1 : a2...aj, BSi, V2)∩EX((a1 : a2...aj, BSi, V1) = φ. If neither of the

sets V1 or V2 is a subset of the other, then also

EX((a1 : a2...aj, BSi, V2) ∩ EX((a1 : a2...aj, BSi, V1) = ∅ (.15)

since each element BS of the set V1 \ V2 interferes with every element of O(M(a1 :

a2...aj, BSi, V2)) and each element BS of the set V2 \ V1 interferes with every ele-

ment of O(M(a1 : a2...aj, BSi, V1)). Neither of the sets EX((a1 : a2...aj, BSi, V2))

or EX((a1 : a2...aj, BSi, V2)) can have an element FRB type (a1 : a2...aj, BSi, V2 ∪

V1, ..). Similarly by symmetry, EX((a2 : a1...aj, BSi, V2)∩EX((a2 : a1...aj, BSi, V1) =

φ. By algorithmic constraints, we know that

|EX(a1 : a2...aj, BSi, V )| = |EX(a2 : a1...aj, BSi, V )| , ∀V ∈ P (X1) (.16)

The FRB types present in the extended compatible set of FRB type (a1 : a2...aj, BS, V )

are of the form (a1 : a2...aj, BS, V, P (X2)). We also know from (.15) that the ex-

tended compatible sets for distinct V1 and V2 are non-intersecting. Therefore, if we
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add (.16) for all the V ∈ P (X1) we obtain

∑
V ∈P (X1),S∈P (X2) N(a1 : a2...aj, BSi, V, S)

=
∑

V ∈P (X1),S∈P (X2) N(a2 : a1...aj, BSi, V, S)

(.17)

Since X1 ∪X2 = X and ∩km=1ψ
im contains the FRB of type (a1 : a2...aj, BSi, P (X))

we obtain:-

|ψi1 ∩ ψi2 .. ∩ ψik |= |φi1 ∩ φi2 .. ∩ φik | (.18)

Hence, Lemma 2 is proved.

From Lemma 2 and equations (.10) and (.11), the equation (.8) follows. This proves

|ψ \ ψ1 ∪ ψ2.. ∪ ψn ∪ ψ12 ∪ ψ1n... ∪ ψ123.. ∪ ψ123..n|

= |φ \ φ1 ∪ φ2.. ∪ φn ∪ φ12 ∪ φ1n... ∪ φ123.. ∪ φ123..n|
(.19)

We obtain the desired original constraint corresponding to FRB type (a1 : a2, a3, a4, ...aj

and type (a2 : a1, a3, a4, ...aj) from the algorithmic constraint set.

b) From original constraint set to the corresponding algorithmic constraint.

We need to prove that we can obtain the algorithmic constraints for the FRB types

(a1 : a2...aj) and (a2 : a1...aj) from the set of corresponding original constraints.

H3 denotes the set of BSs that interfere with BS-a1 but does not interfere with at

least one BS element of O(M((a1 : a2...aj))). Similarly, H4 denotes the set of BSs

which interfere with BS a2 but does not interfere with at least one BS element of

O(M((a2 : a1...aj))). The algorithmic constraint we aim to obtain is given by
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∑
H’∈P (H3)

N(a1 : a2, ..aj,H’) =
∑

H’∈P (H4)

N(a2 : a1, ..aj,H’)

We first approach the problem by partitioning the set H3 into two sets of BSs.

The first one is a set of BSs in which every element BS interferes with both a1 and

a2 and each element of the other set of BSs interferes with a1 but not a2. We do

the same thing for H4. Let H3x be the set of BSs which interfere with a1 but do

not interfere with a2. Further, H3y is the set of BSs which interfere with both a1

and a2 and H3x ∪H3y = H3. Similarly, H4x be the set of BSs which interfere with

a2 but do not interfere with a1. Further, H4y is the set of BSs which interfere with

both a2 and a1 and H4x ∪ H4y = H4. Note that from the definition of H3 and

H4, the BSs which interfere with both a1 and a2 are same in both sets H3 and H4.

Therefore H3y = H4y.

Our approach is to use the original constraints corresponding to FRBs of type

(a1 : a2, ..aj, P (H3y)) and (a2 : a1, ..aj, P (H4y)) and then add them up to obtain

the algorithmic constraint. The set of original constraints is given by

∑
S∈P (H3x)

N(a1 : a2, ..aj, V, S)

=
∑

S∈P (H4x)

N(a2 : a1, ..aj, V
′, S);∀V ∈ P (H3y), V = V ′. (.20)

Adding all the original constraints in the equation (.20) for ∀V ∈ P (H3y). We
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obtain

∑
V ∈P (H3y),S∈P (H3x)

N(a1 : a2, ..aj, V, S)

=
∑

V ′∈P (H4y)S∈P (H4x)

N(a2 : a1, ..aj, V
′, S);V = V ′. (.21)

Since H3x∪H3y = H3 and H4x∪H4y = H4. (.21) is the same as (.20). Hence, we

have obtained the algorithmic constraint (.20) from the set of original constraints

in (.20).

Appendix B

Recall that each BS is interested in allocating the FRBs in the agreed list at the

k-th priority level to its users. Let us denote the FRB of type t allocated to user u

by yu,t, and define yu = (yu,t; t ∈ Tb) and y = (yu;u ∈ Nb). Similarly, let

ỹu,t =


req′u/ru,t if t = Lu(k),

0 otherwise,

ỹu = (ỹu,t; t ∈ Tb), and ỹ = (ỹu;u ∈ Nb). Then, we can allocate the available FRBs

according to the solution to the following optimization problem:

minimizey≥0 ||y − ỹ||22

subject to algorithmic constraints in (5)
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It is clear that the objective function is a convex function of y, and the feasible

set is a convex set because if both y1 and y2 satisfy the algorithmic constraints, then

so does any convex combination of y1 and y2. Hence, this optimization problem can

be solved efficiently using convex optimization tools and is guaranteed to produce a

solution that meets the algorithmic constraints.

This optimization can also be changed in different ways. For instance, we

can weigh entries in the difference vector by different constants. Similarly, we can

impose a constraint so that no user is allocated more FRBs than necessary to meet

its minimum throughput requirement.

Appendix C

We capture some basic definitions that are used in the dissertation

Given a ground set Ω, we define its power set (i.e., the set containing all the subsets

of Ω) as 2Ω. Then, a real-valued function defined on the subsets of Ω, h : 2Ω → R

is called a submodular set function if and only if

h(B ∪ a)− h(B) ≤ h(A ∪ a)− h(A),

∀ A ⊆ B ⊆ Ω & a ∈ Ω \B

A real valued set function h : 2Ω → R is a monotonic non-decreasing set func-

tion if and only if it satisfies, h(A) ≤ h(B), ∀ A ⊆ B ⊆ Ω.
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