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This dissertation consists of three essays empirically investigating three important aspects of the

U.S. agriculture: conservation, subsidy, and productivity. Each essay is conducted with the U.S. Census of

Agriculture micro file data. Availability of cross-sectional and time variations of detailed individual farm

production and demographic characteristics allows for uncovering heterogeneous relationships between farm

production decisions and the corresponding aspects of U.S. agriculture.

The first essay examines an adverse effect of a cropland retirement policy. A cropland retirement

policy contributes to the reduction of environmental externalities from agricultural production such as soil

erosion, nutrient runoff and loss of wildlife habitat. On the other hand, participant’s potential adverse

behavior could undermine the environmental benefits of the policy. Several sources of such an unintended

effect, known as “slippage”, have been conceptually identified, but their empirical evidence has been scarce.

This article tests one source of slippage caused by in-farm land substitution from noncropland to cropland as

a result of farmland retirement in the U.S. Conservation Reserve Program (CRP). The causal relationship

of CRP participation and subsequent slippage through in-farm land substitution is identified by employing

farm fixed effects, time-varying county fixed effects, and selection-on-observables. These could eliminate

effects of unobservables that are potentially correlated with both the program participation and subsequent

farmland reallocation decisions. Overall, slippage seems evident and fairly robust among specifications.

It is found that an average program participant converts 14% of noncropland to cropping activities after

enrollment. Results further show that participants with a larger share of uncropped land contribute more

to slippage, indicating that farms with the excess capacity of conversion are more flexible in the land

allocation decision and thus likely to give rise to slippage. This suggests that additional restrictions on the

rest of land use for participants and/or introduction of penalty points reflecting the share of noncropland

in the current auction mechanism can hinder such a backward incentive offsetting the program benefits.

The second essay examines the distortionary effects of agricultural policy on farm productivity by

examining the response of U.S. tobacco farmers’ productivity to the quota buyout of 2004. We focus on

the impact of distortionary policy, i.e., the tobacco quota, by decomposing aggregate productivity growth

into the contribution of farm-level productivity growth and the contribution of reallocation of resources

among tobacco growers. We find that the aggregate productivity of Kentucky tobacco farms grew 44%



between 2002 and 2007. The elimination of quota rental costs and reallocation of resources, including entry

and exit, accounted for most of the post-buyout productivity growth. It is also noted that the aggregate

productivity of Kentucky tobacco farms vary across farm characteristics and locations. This highlights the

importance of using highly disaggregated data to uncover the sources of aggregate productivity growth.

The third essay examines the relationship between farm size and productivity growth. In the past

several decades, crop production in the U.S. has shifted to larger farms. During the same period, crop

productivity has fairly improved. While these two events seem clearly associated, no studies have fully

uncovered the link between them. Using farm-level longitudinal data from the Censuses of Agriculture

from 1987-2007 enables us to decompose the contributions of aggregate productivity growth (APG) by

farm size, but also by farm entry/exit and by technology/reallocation. We have three main findings.

First, productivity growth is clearly non-uniform among farm sizes. Between 1987 and 2007, virtually

all of the aggregate productivity growth of crop farms came from farms with annual sales of more than

$500,000. These farms account for only 8% of U.S. crop farms. A closer look at the APG contributions

to productivity growth from surviving farms confirms the findings for all crop farms: the productivity of

mid-size farms has barely increased, and the productivity of smaller farms has fallen. Finally, the relative

importance of technical efficiency growth and resource reallocation varies over time. Technical efficiency

growth seems to be a larger source of APG for large farms between 1987 and 1997, whereas reallocation

across all sales classes contributes more to APG between 1997 and 2007. Overall, our finding provides the

concrete evidence that farm consolidation has been strongly associated with the productivity growth of

U.S. crop farms. Our finding that resource reallocation through farm consolidation is nontrivial for the

APG of crop farms highlights the usefulness of farm-level panel data for studying structural changes and

APG.
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Essay I

Indirect Land Use Effects of Conservation:
Disaggregate Slippage in the U.S. Conservation Reserve Program

abstract

A cropland retirement policy contributes to the reduction of environmental externalities
from agricultural production such as soil erosion, nutrient runoff and loss of wildlife habi-
tat. On the other hand, participant’s potential adverse behavior could undermine the en-
vironmental benefits of the policy. Several sources of such an unintended effect, known
as “slippage”, have been conceptually identified, but their empirical evidence has been
scarce. This article tests one source of slippage caused by in-farm land substitution from
noncropland to cropland as a result of farmland retirement in the U.S. Conservation Re-
serve Program (CRP). With the farm-level longitudinal data I can utilize cross-sectional
and time variation of detailed individual farm characteristics to identify the causal relation-
ship of CRP participation and subsequent slippage through in-farm land substitution. An
identified assumption of the slippage estimate is verified by farm fixed effects, time-varying
county fixed effects, and selection-on-observables. These could eliminate effects of unob-
servables that are potentially correlated with both the program participation and subsequent
farmland reallocation decisions. Overall, slippage seems evident and fairly robust among
specifications. It is found that an average program participant converts 14% of noncropland
to cropping activities after enrollment. Results further show that participants with a larger
share of uncropped land contribute more to slippage, indicating that farms with the excess
capacity of conversion are more flexible in the land allocation decision and thus likely to
give rise to slippage. This suggests that additional restrictions on the rest of land use for
participants and/or introduction of penalty points reflecting the share of noncropland in the
current auction mechanism can hinder such a backward incentive offsetting the program
benefits.

JEL Classification Codes: Q15, Q18, Q24, Q58.
Keywords: Conservation Reserve Program, Farmland use, Land conservation, Slippage.

The views expressed are those of the authors and should not be attributed to USDA.
The results in this paper have been screened to insure that no confidential information
is revealed. I am grateful to Barrett Kirwan, Erik Lichtenberg, Eiichiro Nishizawa,
Charles Towe and Kirk White as well as workshop participants at the University of
Tokyo and the University of Kyoto for comments and suggestions. I also thank Jim
Burt and Robert Hunt for many disclosure avoidance reviews.
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Introduction
Programs that pay landowners for reductions in soil erosion, preservation of wildlife habi-

tat, avoided deforestation or afforestation, and the like are seen as an equitable and efficient

way to restore ecosystem services. In developed nations like the US and in EU countries,

they are also seen as an attractive way of maintaining farm income supports, because such

green payments are considered “green box” subsidy under WTO rules. But the effective-

ness of the programs is open to question, because participant’s potential adverse behavior

could undermine the targeted environmental benefits of the policy. Answering this question

is of particular importance in conducting the cost and benefit analysis of future policies

where absence of the legitimate measure of such adverse effects would overestimate the

benefits.

This paper evaluates such an unwanted effect, known as “slippage”, as a consequence of

participation in a farmland retirement program. Several sources of slippage have been con-

ceptually identified, but their empirical evidence has been scarce. Wu (2000) and Roberts

and Bucholtz (2005) analyzed the impacts of the Conservation Reserve Program (CRP),

U.S. voluntary farmland setaside program, on farmland conversion from noncropland to

cropland using region-level aggregate data. They indicate the possibility that benefits from

retired acres in the CRP were partially offset by an increase in cropped land converted from

noncropland. While these studies shed light well on the incidence of slippage, their esti-

mation results and policy implications are confronted with methodological problems and

practical limitations, respectively. First, their cross-sectional estimates may suffer from a

self-selection problem due to the voluntary nature of program participation, as well as from

spurious correlation between participation and farmland allocation decisions due to unob-

served farm characteristics. Debates between Roberts and Bucholtz (2005, 2006) and Wu

(2005) identified these potential econometric problems, yet they have remained unsolved.
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Second, even though their slippage estimates were proved consistent, their region-level ag-

gregate results are not able to fully reveal mechanisms through which such slippage occurs.

This article makes three distinct contributions. First, several econometric techniques are

used to identify the causal relationship of CRP enrollment and slippage. An identified as-

sumption of the slippage estimate is verified by farm fixed effects, time-varying county

fixed effects, and selection-on-observables. These could eliminate effects of unobservables

that are potentially correlated with both the CRP participation and subsequent farmland re-

allocation decisions. With the quinquennial U.S. Census of agriculture micro file data from

1982 to 1992 cross-sectional and time variations of detailed individual farm production and

demographic characteristics allow me to employ those techniques. Second, the article con-

trasts with the previous aggregate studies by isolating one source of slippage from others.1

Specifically, I test slippage caused by “in-farm” land conversion from noncropland to crop-

land as a result of CRP enrollment. The mechanism and the testable slippage hypothesis

via in-farm land substitution were illustrated by Wu (2000). By using a subsample of data

from farms whose size remained constant between Census years, I single out potential ef-

fects from purchases and/or rentals of land on the farm’s land allocation decision between

cropping and non-cropping activities. Finally, the rich farm-level panel data also offers an

opportunity to discern farm’s heterogeneous responses to the CRP program across region,

farm production type, farm operation size, and the timing of CRP enrollment.

Knowledge about the mechanism(s) through which slippage occurs should help policy-

makers devise programs with features designed to avoid or mitigate slippage incentives. A

potential is large in the growing market of carbon sequestration projects where carbon leak-

1Slippage could occur from the redistribution of resources between farms through farm-
land trade because CRP enrollment may influence economies of scale of participants.
In addition, the large amount of cropland retirement in certain region may influence
local farmland market per se. Such a region-level effect may also occur in the com-
modity market where a sharp decline in crop production raises output prices thereby
attracting more production (price feedback effect) in the same region and/or elsewhere.
Moreover, program participants may reallocate input resources to increase the inten-
sity of crop production at margin. Identifying these sources of slippage is equivalently
important and will be investigated in the future.
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age is one of the primary concerns. Voluntary based programs to preserve biodiversity and

reduce deforestation may have also experienced similar backward incentives. For instance,

the Sloped Land Conversion Program, a Chinese nationwide cropland setaside program

implemented in 1999, has a similar objective to the CRP to achieve poverty alleviation

and ecological service enhancement.2 Also, a similar type of payments-for-environmental-

services programs has been recently launched in a number of other developing countries in

Latin America and Asia to conserve standing forests (Mayrand and Paquin 2004).

To understand the nature of the problem, the CRP mechanism is outlined in the next sec-

tion. Section 3 revisits the Wu’s land substitution model that explains how CRP enrollment

affects farm’s land allocation behavior. Section 4 presents description of data and estima-

tion issues related to section 5, where identification strategies are demonstrated. Estimation

results and discussion are provided in section 6. Section 7 concludes.

The Conservation Reserve Program
The CRP was established in the Food Security Act of 1985 as a long-term federal cropland

retirement program that operates on a voluntary basis. In contrast to previous setaside

programs with the objective of crop supply control and farm income support, its main aim is

to mitigate environmental degradation caused by excessive use of environmentally sensitive

agricultural lands. The primary concern was to protect farmland from soil erosion, but after

amendments in 1990 and 1996 more targets were added on broader environmental benefits

such as improvement of air and water quality and restoration of wildlife habitat. Since

it was implemented in 1986, this has been one of the largest land conservation programs

2See similarities and differences in the two programs in Lohmar, et al. (2007).
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worldwide in terms of scale and cost.3 CRP impacts on regional ecosystems seem to be

evident.4

This program offers eligible farmers an opportunity to retire part or all of their crop-

lands from production in exchange for an annual rental payment. The contract requires

holding land out of production for 10 to 15 years, in contrast with previous setaside farm-

land programs which were annual. Participants are obligated not to use enrolled land in

any agricultural production activities during this period, but instead to maintain them with

certain conservation practices such as grass introduction and forestation with cost-sharing

payments of up to 50 percent for practice installation and up to $10 per acre for mainte-

nance.

Although CRP participation is voluntary, potential participants must first meet several el-

igibility conditions and then enter an auction mechanism to compete with other applicants

in each general signup period. Producers must have been the owner, operator, or tenant

of potentially qualifiable croplands for at least twelve months prior to the closing date of

the CRP signup period.5 An eligible farmer can submit their cropland parcel(s) into the

CRP if the offered parcels satisfy physical land criteria. For the first nine CRP signups in

1986-1989, highly erodible cropland and cropland in wetland or near water body were only

CRP eligible.6 In addition to the farm-level land quality condition, regional-level geologi-

3With about 1.7 billion dollars being allocated to CRP annually, according to the report by
the Economic Research Service (ERS), 34 million acres of cropland had been retired as
of 1997. This accounts for almost 8 percent of the total U.S. cropland in 1997 (Vesterby,
2003). This is about as large as the size of world annual deforestation rate during the
last decade (Food and Agriculture Organization of the United Nations, 2010).

4It is estimated that the current amount of retirement mitigates 626 million tons of annual
soil erosion from cropland (Anderson and Magleby, 1997). Another report estimates
that CRP enrolled lands also contribute considerably to wildlife restoration, generating
$428 million of recreational value from wildlife per year (Feather, Hellerstein, and
Hansen, 1999).

5Tenants are allowed to submit their rented land with certain agreement with their
landowners. In fact, a fair amount of CRP acreage is observed from rental land.

6Erodibility was initially measured by the Land Capability Classes (LCC) which catego-
rizes soil quality into eight classes (class VIII being most sensitive to erodibility) with
sub-classes of (e) erosion, (w) excess wetness, (s) problems in the rooting zone, and (c)
climatic limitations. A parcel of land became eligible if it belonged to VI to VIII or II
to V with a predicted annual erosion rate greater than certain level. This was altered
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cal characteristics were added to the eligibility criteria after 1990. As a result of the Food,

Agriculture, Conservation, and Trade (FACT) Act of 1990, the National Conservation Pri-

ority Areas (NCPAs) and State Conservation Priority Areas (SCPAs) were established in

1991 to conserve environmentally sensitive areas. Areas that were first designated as NC-

PAs are the Chesapeake Bay, Long Island Sound, and Great Lakes regions.7 SCPAs have

been established over time to increase CRP enrollment in locations that are sensitive to wa-

ter, air and wildlife quality within a state. Another physical criterion pertains to cropping

history. Eligible lands must have been cropped in two of the five most recent crop years.8

Once all the eligibility criteria are met, a qualified farmer submits an offer to the bidding

process with a rental payment bid for each offered parcel. Before 1990, the offered rental

payment was subject to a confidential maximum acceptable bid cap set by the federal ad-

ministrating agency. The bid cap was initially determined based on an average cash rent for

cropland in the multicounty areas with similar farm production and land characteristics.9

Bids were accepted if they were at or below the bid cap at multicounty level. The bidding

mechanism changed after 1990. The multicounty average bid cap was replaced by a county

average soil-specific agricultural rental rate of land. In addition to the bid cap, the con-

fidential ranking system, the so-called environmental benefit index (EBI) was introduced.

Each parcel of offered land is scored according to its physical and geological characteris-

tics as well as submitted rental payment. Bids are gathered at national level and accepted

in a descending order from the highest EBI score until the targeted enrollment acres in

by the Erodible Index (EI) after 1987 that qualified land as highly erodible if the EI
was above 8. This was subsequently relaxed in the 1990 and 1996 Farm Bill. Land
eligibility conditions for CRP signups are listed in table 1.

7The Federal Agriculture Improvement and Reform (FAIR) Act of 1996 added the Prairie
Pothole region and the Longleaf Pine region in 1997 and 1998, respectively. The bound-
ary information on the NCPAs is provided by the Farm Service Agency (FSA) upon
request. Some of the NCPAs can be also found from the EPA’s “Surf Your Watershed”
webpage, http://cfpub.epa.gov/surf/locate/index.cfm.

8After the amendment in the Farm Security and Rural Investment Act of 2002, eligible
land is required to have cropped four of the past six years.

9For the first three signups in 1986, bid cap calculation accounted for rents not only for
dryland cropland but also for irrigated cropland, so areas with higher share of irrigated
acres had a relatively high bid cap.
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each signup are filled up (Anderson and Magleby, 1997).10 Upon acceptance, each county

has the uniform cap on total CRP acres no more than 25 percent of total county cropland

acres.11 Thus, offered parcels that could secure the bid are even rejected when the county

total CRP acres have already reached the cap.

Accepted lands must be retired from production activities and utilized for conservation

practices in return for rental payment for the duration of the CRP contract. A CRP contract

generally becomes effective from the following cropping year once an offer is accepted.

A Model of Farmland Allocation
In this study, I investigate one of the slippage mechanisms posited by Wu (2000). Namely,

CRP participants would convert some noncropland into crop production following en-

rollment of some cropland. This land substitution is induced by the law of diminishing

marginal returns to cropping (denoted by C) and noncropping (N) activities.12

Suppose that the farm has three segments of land: high-quality ĀH , medium-quality ĀM

and low-quality land ĀL, and chooses to allocate each of them between the two activities

by the amount of Ai j (for i = H,M,L, j =C,N). Suppose also that all high-quality land is

allocated for crop production because the return from crop production is always larger in

high-quality land, whereas low-quality land generates higher return from non-cropping ac-

tivities or the conversion cost of low-quality land into crop production outweighs its return.

Allocation of medium-quality land is allocated between cropland AMC and noncropland

AMN based on market conditions and farm characteristics.

Let πC(ĀH ,AMC;pC,w,φ) and πN(AMN ; ĀL,pN ,w,φ) represent the restricted profit func-

tions for the cropping and non-cropping activities, respectively, where p is a vector of ex-

10For details of the EBI point system, see the Appendix III in Lehmann (2005).
11The maximum allowable county acreage is set in order to avoid potential negative ef-

fects on the agriculturally-dependent local economies (US General Accounting Office,
1989). However, this limit can be waived by the FSA admission unless such effects are
expected.

12I define cropping activities as crop production including rotation activities, while non-
cropping activities are defined as any other land use such as grazing on pasture and
forest.
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pected output prices of the cropping and non-cropping activities, w is a vector of variable

input prices, and φ denotes farm characteristics. They are assumed to be concave and twice

differentiable in choice variables. The farmer’s maximization problem can be given by

(1) max
AMC,AMN

{πC(ĀH ,AMC;pC,w,φ)+πN(AMN ; ĀL,pN ,w,φ);AMC +AMN = ĀM}.

Optimal allocation of AMC and AMN is then determined by the following equilibrium con-

dition of their corresponding marginal returns,

(2) r̃ =
∂πC(ĀH , ÂMC;•)

∂AMC
=

∂πN(ÂMN , ĀL;•)
∂AMN

,

where r̃ is an implicit rental rate of land at equilibrium, and ÂMC and ÂMN denote optimal

cropland and noncropland acreage of medium-quality land, respectively. Figure 1 depicts

the relationship in equation (2).

Suppose now that a CRP signup begins and medium-quality cropland is eligible for en-

rollment.13 An eligible farm then submits a sealed bid of rCRP with acreage of ACRP in the

competitive auction if rCRP is above the reservation price of farmland r̃. Conditional on

acceptance of the bid, a contract becomes effective and enrolled CRP acres of ACRP are set

aside from any production activities in the following crop year. Because ACRP is taken out

of medium-quality cropland acreage ÂMC, the marginal condition in equation (2) changes

as

(3)
∂πC(ĀH , ÂMC−ACRP;•)

∂AMC
>

∂πN(ÂMN , ĀL;•)
∂AMN

.

Bacause the farm has the diminishing marginal return from crop production, this induces

reallocation of farmland by converging land from the non-cropping to cropping activities

by acreage AS. This slippage mechanism is explained by the following new equilibrium

13Recall that only highly erodible cropland is CRP eligible.
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condition, as given by

(4) r∗ =
∂πC(ĀH , ÂMC−ACRP +AS;•)

∂AMC
=

∂πN(ÂMN−AS, ĀL;•)
∂AMN

,

where r∗ is an implicit rate of land at re-equilibrium. The mechanism is illustrated in figure

2. As a result, the net impact of CRP enrollment is offset by the ratio of AS/ACRP.

In this study, the testable hypothesis of slippage identifies a rate of slippage, (i.e., =

AS/ACRP). It is clear from figure 2 that a slippage rate is affected by the relative curvature

of the cropping and non-cropping supply functions. Slippage AS gets larger if the acreage

response for the cropping activities is relatively inelastic. For instance, relatively inelastic

cropland supply can be characterized by price and income support programs. Payments

of these programs were linked to commodity prices prior to the 1996 FAIR Act, program

participants were likely less responsive to market prices. On the other hand, relatively

elastic demand for non-cropping activities can stem from the large share of economically

marginal land. Marginal land is frequently converted in and out of crop production as

commodity prices fluctuate.

Data
Data Description

To test farm-level slippage, I obtain individual farm information on CRP enrollment, pro-

duction activities and operator demographics from the U.S. Census of Agriculture longi-

tudinal micro files. The Agricultural Censuses are conducted every five years which es-

sentially cover all U.S. farmers.14 Access to this confidential data is permitted under an

agreement with the USDA National Agricultural Statistics Service (NASS). Farm samples

in 1982, 1987, and 1992 are connected to create unbalanced panel data. In addition to the

14U.S. Department of Agriculture defines a “farm” if farm operation produces at least
$1,000 of agricultural products. Each of the Censuses consists of about 1.5 million
farm observations out of roughly 2 million U.S. farms.
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Censuses, commodity price data are used to account for market influences on the farm pro-

duction decision. Monthly futures prices of commodities are obtained from the Chicago

Board of Trade (CBOT),15 and state-level price indexes are provided by the ERS.16 Land

quality data and CRP administration data are also obtained, respectively, from the Natural

Resources Inventory (NRI) and the ERS.17

Sample Selection

The Census longitudinal micro data mainly have three advantages to examine the Wu’s land

substitution effect. Firstly, the Censuses are available before and after the first implemen-

tation of the CRP in 1986, so that I can utilize exogenous variation explaining differences

in the change in land use between CRP participants and non-participants. Secondly, both

cross-sectional and time variations allow for identifying the causal impact of CRP im-

plementation on farm’s land use. For the analysis of CRP enrollment and the associated

change in farmland use, the two-year panel of 1982-1987 and 1987-1992, and the long

panel of 1982-1992 are used for 48 consecutive states. To examine the change in crop pro-

duction activities, the analyses focus only on farm observations that exist over the panel

periods. Thirdly, detailed farmland ownership information permits one to select farm ob-

servations that record no farmland transactions over the periods. I restrict the sample to

farms with the fixed operating farmland size over Census years. The restricted sample can

thus single out the CRP-induced farmland substitution effect between farms and isolate the

slippage effect underlying within-farm land substitution in response to CRP enrollment.

For the purpose of estimating the treatment effect of CRP enrollment, I further limit the

sample by eliminating observations located in counties where the share of highly erodible

land (HEL) is nearly zero. The county-level HEL distribution is estimated from the NRI

15Available commodities from the CBOT during the 1982-1992 period include
corn, soybeans, wheat, and cattle. For more details about data, refer to
http://www.cmegroup.com/market-data/datamine-historical-data/.

16I owe special thanks to Eldon Ball and Sun Ling Wang for making this data available.
17I am grateful to Daniel Hellerstein for generously providing me with the refined NRI

data and corresponding statistical codes.
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parcel-level data.18 The definition of CRP-eligible HEL cropland changes over time. For

the 1982-1987 panel sample, the county-level HEL cropland is estimated based on the land

eligibility criteria in the first three CRP signups conducted in 1986, because CRP lands

enrolled in the 1987 cropping year are determined in the previous year. As documented

in table 1, the eligibility criteria in the first three signups follow the LCC. Similar sample

adjustment is made for the other panel periods based on the time-varying CRP-eligible land

criteria.

The sample selection procedures delineated above may introduce selection bias. First,

because only continuous farm observations over two or three consecutive Census years

are used, the parameter of interest would be biased if the decision of exit or stay in farm

production is correlated with the CRP enrollment and cropland conversion decisions. For

instance, using the same Census longitudinal data, Key and Roberts (2007) find some evi-

dence that supports a positive relationship between past (non-CRP) farm subsidy payments

and subsequent farm business survival. Although it is unclear whether the farm survival

decision is also correlated with the CRP enrollment decision, such a potential bias can be

mitigated by conditioning on subsidy payments and farm operator characteristics in the

pre-CRP year. The second source of sample selection bias could arise from the fact that

the 1987 and 1992 Census of Agriculture did not collect almost all of farms that cease

agricultural production activities by retiring whole farmland in the CRP.19 Table 2 suggests

18The NRI is a panel survey of land use and physical land characteristics on non-Federal
lands. It was conducted in the years of the Agricultural Censuses from 1982 to 1997
over 48 contiguous states, but data were collected from land parcels instead of farm op-
eration units. Data include approximately 844,000 land parcels. County total HEL
acres are then computed by taking a weighted sum of parcels that are qualified as
HEL by definition in footnote 6. It is noted that the county-level estimates from the
NRI data may not be accurate because of the nature of the data sampling procedure.
Notwithstanding, correlation between the eligibility estimates and the FSA’s adminis-
trative CRP enrollment data is high about 0.7, implying that the estimates could be a
proxy to explain county-level enrollment variation.

19Strictly speaking, the definition of the “whole-farm CRP” includes farms with all crop-
land enrolled in the CRP in which less than $1,000 of agricultural products other than
crops are produced and sold. In fact, a few number of such whole-farm CRP observa-
tions that have non-crop products such as livestock more than or equal to $1,000 were
collected in the 1987 and 1992 Censuses. I drop those farms from estimation in order
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that acres retired by these “whole-farm” CRP enrollees are non-negligible.21 Omission of

the whole-farm CRP observations would generate a biased estimate of interest if some un-

derlying factors that determine the farm’s decision to retire all or part of farmland in the

CRP also affect subsequent cropland conversion. To condition out this retirement effect, I

analyze determinants of whole-farm CRP enrollees by using the 1992-1997 Census panel

data where the 1997 Census started to collect such farm observations.22 Logit estimation

results reported in table 3 suggest that small-scale and less profitable operators are more

likely to retire entire cropland in the CRP. Also, older farmers with longer farm operation

as well as operators who report off-farm work as their principal occupation and work more

off-farm are likely to become whole-farm enrollees. Assume that these determinants re-

main constant over time, the potential sample selection bias in the 1982-1992, 1982-1987

and 1987-1992 panel analyses could be avoided by conditioning on these variables. This

procedure can allow me to estimate the slippage effect of partial-farm CRP participants.

Because the sample is further restricted by grain farms due to availability of futures com-

modity prices, the final sample consists of 12,074 of grain farms. These farms used about

3 million acres of active cropland in 1982. Summary statistics of the Census data are pro-

vided in table 4.

Empirical Strategy
Identification

Several econometric techniques are used to identify the causal relationship of CRP enroll-

ment and slippage pertaining to in-farm land substitution. An identified assumption of the

to focus on pure slippage from partial-farm CRP participants.20 Estimation exercise
including those whole-farm CRP observations confirms that their slippage contribution
is merely zero.

21Roughly 20% of the U.S. CRP acres are enrolled by whole-farm CRP enrollees.
22Logit regression was conducted by assigning one for whole-farm CRP observations in

1997 and zero for partial-farm CRP observations in 1997 and regressing on the base-
year explanatory variables in 1992. Results are similar to findings in the ERS report
about CRP farm characteristics (Sullivan, et al., 2004).
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slippage estimate is verified by farm fixed effects, time-varying county fixed effects, and

selection-on-observables. These could eliminate effects of unobservables that are poten-

tially correlated with both the CRP participation decision and subsequent farmland reallo-

cation. Farm-level cross-sectional and time variations of farm characteristics allow me to

employ those techniques.

The parameter of interest is obtained by a regression of cropped acreage on acreage

enrolled in the CRP, as given by

(5) AC
it = α0 +α1ACRP

it +α2Āit + εit ,

where, given farm size Āit , farm i allocates AC
it acres for cropping activities while ACRP

it

acres are retired in the CRP at year t, α0 is an intercept, εit is an error term, and the

parameter of interest α1 measures a proportional change in cropped acreage in response

to acreage enrolled in the CRP. If there is no slippage, then α1 = −1, whereas α1 > −1

indicates the presence of slippage. A key assumption to obtain a consistent estimate of α1

is E[ACRP
it εit |Āit ] = 0. Because CRP participation is voluntary and thus CRP acres are not

randomly assigned, endogeneity of the CRP enrollment and crop production decisions is

one of the issues that violate this assumption. Nevertheless, the slippage estimate may not

suffer from this endogeneity due to the timing of enrollment. In general, a CRP contract

becomes effective in October once an offer is accepted. This implies that enrolled CRP

acres for cropping year t are predetermined in the previous year, thereby making the CRP

decision recursive unless there exists intertemporal dependence thorough the error term.

However, serial correlation likely exists, because the irreversible CRP decision adheres

to the farm’s return to future production through farm’s underlying parameters such as en-

trepreneur skill and farm productivity. These farm characteristics, denoted by ui, are usually

unobserved by econometricians, so that we likely fail to satisfy the identifying assumption

because E[ACRP
it (ui)(ui + εit)] 6= 0. For example, Roberts and Bucholtz (2005) indicate
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positive association between the frequency of CRP enrollment and a rate of noncropland

conversion to cropland in areas with relatively low land quality. Land quality distribution is

an important factor that determines farmland allocation among different activities. A farm

with more high-quality of land is likely to stay in crop production whereas a farm with eco-

nomically marginal land is sensitive to surrounding environment such as commodity prices

and weather. At the same time, land quality may be highly correlated with land erodibility,

which is one of the CRP eligibility conditions and therefore increase the likelihood of CRP

enrollment. In addition to land quality, likely unobserved operator’s management quality

and natural risk attitude may also be determinants of both the CRP participation and crop

production decisions. A high-skilled operator is more likely to continue crop production,

so they may not get incentive for land retirement. On the other hand, they may intend to

enroll in the CRP as a source of additional income from high erodible but unproductive un-

used land. Moreover, a more risk-averse farm may decide to enroll in the CRP to secure a

future stream of certain rental payment. But such a farm would operate relatively low-level

production activities. As a result, unobserved management skill and risk attitude would

cause a bias on the slippage incidence although the direction of confounding effects from

these operator characteristics is ambiguous. Influences of such time-invariant unobserved

heterogeneity can be controlled by using farm fixed effects.

In addition, I include year fixed effects, time-varying county fixed effects and observable

farm-level production characteristics to minimize any other potential confounding effects

on the parameter of interest from time-varying unobserved heterogeneity. Year fixed effects

capture the macro-economic shocks to farm production at time t, while time-varying county

fixed effects can account for any time-varying regional effects influencing the farm’s pro-

duction decision, such as the change in region-specific policies, output and input markets,

and weather.

Introducing the fixed effect for farm i, fi, the fixed effect for year t, θt , the county-

year fixed effect in county j in year t, C jt , and a vector of covariates of individual farm
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characteristics, Xit in equation (5) yields

(6) AC
it = α0 +α1ACRP

it +α2Āit +Xitα3 + fi +C jt +θt + εit ,

where the identifying assumption is replaced by E[ACRP
it εit |Āit ,Xit ,θt , fi,C jt ] = 0. This

proves the OLS estimate of α1 to be consistent.

Yet, one may wonder whether the CRP decision is truly predetermined as well as whether

the aforementioned sets of fixed effects and time-variant observable farm characteristics

fully account for confounding effects from unobservables. The identifying assumption

may be still invalid if the CRP decision is highly correlated with past crop production

activities, which in turn are likely correlated with current crop production activities through

εit . This is likely true because CRP participation is contingent on the cropping history. The

summary statistics of the sample in table 4 seems to indicate their association (that is,

CRP participants have larger cropped acres in the base year). This potential pre-enrollment

heterogeneity bias could be more problematic particularly in presence of other government

payment programs affecting the production decision with a similar eligibility condition to

the CRP’s. A participation level in the price and income support programs in the 1980s

and early 1990s is constrained by base acres that are generally determined by the 5-year

average of cropping history.

These concerns can be assessed by conditioning on base-year heterogeneity among CRP

participants and non-participants. Taking first-difference of equation (6) over the Census

panel years enables me to include the pre-enrollment (base-year) farm characteristics, as

given by

(7) ∆AC
it = α1∆ACRP

it +∆Xitα3 +Xibα4 +∆C jt +∆ θt +∆εit ,
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where the delta represents the first-difference operator between the period t and t-5 (or t-10

for the 1982-1992 panel analysis), ∆θt becomes the common intercept for all farms, and Xib

denote a vector of base-year farm characteristics. Note also that given observations with

fixed farm size, first-differencing eliminates the impact of the potential farmland transac-

tions decision induced by CRP enrollment. Accordingly, the identifying assumption can be

rewritten such that E[∆ACRP
it ∆εit |∆Xit ,Xib,∆C jt ,∆θt ] = 0.

Finally, for the 1987-1992 panel data, additional source of bias may stem from violation

of the strict exogeneity assumption. This is because the cropping history becomes endoge-

nous in the subsequent CRP signups after 1986. For instance, the CRP enrolled acreage

in the first CRP signup in 1986 is contingent on cropped acreage prior to the CRP, but the

CRP eligibility status in 1990 can be controlled by farmers by increasing crop production

in 1986-1989. This future option effect turns out that E[∆ACRP
it εi,1987] 6= 0 for t = 1992. But

this can be avoided by additionally conditioning on pre-CRP-period variables that can char-

acterize the farm’s inherent crop production capacity. Hence, the identifying assumption for

the 1987-1992 panel data can be rewritten as E[∆ACRP
it ∆εit |∆Xit ,Xib,Xi,1982,∆C jt ,∆θt ] = 0.

Variable Construction

Dependent variable

A dependent variable is defined as the change in acres in cropping activities net CRP acres.

As depicted in figure 3, the Censuses categorize farmland acres into cropland, woodland,

pastureland and rangeland, and all other land (land in house lots, roads, ponds, wasteland,

etc.). Cropland acres are further decomposed into six subcategories: crop harvested, crop

failed, cultivated summer fallow, used for cover crops, idled, and used for pasture and

grazing. Among these, acres for cropping activities can be defined as the sum of cropland

harvested, crop failed, summer fallowed and used for cover crops, as indicated by orange
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color in figure 3.23 From cropping acres, CRP acres are subtracted to create net cropped

acres for CRP participants.

Measurement errors in the dependent variable

Data on CRP enrollment acres introduce two measurement errors on the dependent vari-

able. The measurement errors on the dependent variable would not affect the parameter

of interest unless the corresponding explanatory variable and the dependent variable are

correlated. I explain below why the measurement errors on the dependent variable matter

in this exercise. First, the Censuses specify that CRP acres belong to the category of either

cropland used for cover crops or idled. However, cropland used for cover crops is also

counted as part of cropped acres. Thus, constructing the dependent variable by the simple

difference between cropped acres and CRP acres generate the measurement error that is

also correlated with CRP-enrolled acres. Second, some observations seem to double-count

cropped and CRP-enrolled acres on the same parcel of land. This attributes to the fact that

the Census data are collected at the end of the calendar year (and recorded as of December

31), whereas the CRP contract starts at the beginning of crop year (generally October).

For instance with the 1982-1992 panel data, CRP acres which are supposed to be binding

in the 1993 land use are rather counted as the 1992 land use, because the corresponding

CRP contract becomes effective on October 1, 1992. Until the contract date, the contracted

land parcels are free from land use restriction, so they can be used for production activities.

Therefore, those parcels can be counted twice in the 1992 Census data as both cropped

acres and acres enrolled in the CRP. These issues are taken into account in constructing

CRP-net cropped acres as follows.

First, I subtract CRP acres from cover-crop acres. If the computed value turns out neg-

ative, it is assigned zero. This truncated value is then added to the sum of cropland acres

23That is, this definition takes crop rotation into consideration.
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harvested, crop failed, and cultivated summer fallow. This can be given as

CroppedAcres = Harvested +Failed +SummerFallow+

+Max((CoverCrops−CRP),0).
(8)

Derived acres represent a lower bound of the CRP-net cropped acres because the maximum

amount of potential CRP acres is subtracted from the current cover-crop cropland acres.

Hence, the slippage estimate with this definition of a dependent variable also indicates a

lower bound. Note that, for the 1987-1992 panel, the lower bound estimate is fully justified

only for the sub-sample with no base-year CRP enrollment (i.e., the lower bound estimate

can be guaranteed only for new participants after 1987).

Next, the measurement error from double-counting the following crop year’s CRP en-

rollment is eliminated by dropping such erroneous observations from estimation. The con-

structed dependent variable in equation (8) fails to exclude such CRP acres, resulting in the

potentially upward bias of a slippage estimate. I build the following criteria to endeavor

to minimize this measurement error in the currently available Census data format. First, I

calculate the excess acreage of CRP by subtracting acres in the CRP-potential categories

of land use from total CRP acres. Although CRP land is defined as part of cropland used

for cover crops and idled, it is often observed in the Census data that CRP acres exceed

acres used for cover crops and idled. In fact, it appears that the current CRP acres also

belong to woodland, pastureland and rangeland, or all other land categories, as indicated

by green color in figure 3. This should stem from the CRP eligibility condition of cropping

history. Because land is eligible for the CRP after two years of cropping activities in the

previous five years, currently CRP-enrolled acres are not confined by currently cropped

acres. Therefore, the excess CRP acreage is calculated as

ExcessCRPAcres =CRPAcres− (CoverCrops+ Idled+

+Pasture+Woodland +OtherLand).
(9)
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If this excess CRP acreage is positive, then it indicates the least evidence of double-

counting. Such observations are dropped from estimation. Despite that the criteria may

still leave some more double-counting observations, I find that a dropping rate for e.g., the

1982-1992 panel data is about 6% of the sample size of CRP participants, which is larger

than an actual enrollment rate of 1992 CRP contracts during the 1986-1992 signups (less

than 5%). Hence, this procedure reasonably reduces the measurement error from double-

counting.

Independent variable

Several time-varying farm production characteristics are added as covariate to minimize

the potential impacts of unobservables on the parameter of interest.

First of all, cropland conversion is affected by exogenous market shocks of output and

input prices. Time-varying county fixed effects can account for them only if farms within a

county have the identical elasticity. Because the farm’s production decision is determined

inherently to location-specific soil and climatic properties and they could vary even within

a county, farms would respond to prices of certain sets of outputs and inputs unique to their

farmland capacity. To account for this heterogeneous response by farm production type,

I classify farms into a similar type of commodity production by following the six-digit

Standard Industrial Classification (SIC) code.24 The interaction term of the county-year

and SIC fixed effects is then included in regression assuming that a similar type of farms in

the same region is likely subject to a similar choice set of commodities and input types.

Another variation in farm’s response to the output price change may stem from farm-

land quality as argued by Roberts and Bucholtz (2005). Farms with more economically

marginal land endowment may be more sensitive to market conditions. To account for this

farmland-specific response pattern to commodity prices, I use futures contract prices of

24Refer to http://www.osha.gov/pls/imis/sic_manual.html for a list of the SIC. The Agri-
cultural Censuses contain farm’s SIC information.
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major crops and livestock products at a planting period. Monthly average futures prices in

March for corn and September for winter wheat are obtained to represent expected prices

at the planting period.25 They are deflated by state-level output price index to allow for

regional variation over time. Then, a variable reflecting farm-specific output price change

is created by multiplying the change in the deflated futures prices by the beginning year’s

sales shares of respective crops and livestock products. Because the historical data of out-

put futures prices are available only for corn, soy beans, and wheat, and cattle, I use for

estimation grain farm observations whose major crop sales come from either corn, soy

beans, or wheat. The differential price impact among heterogeneous farmland quality can

be further explained by proxy by adding the interaction term of the farm-specific output

price change and base-year yield of respective crops.

In addition to the market impacts, effects of other government subsidy programs are

taken into consideration. Prior to 1996, agricultural production was supported by defi-

ciency payments and commodity loan programs to stabilize crop prices. Program partic-

ipants thus gained benefits by reducing a production risk. To refrain from excess supply

as a result of risk reduction, the programs limited an amount of enrolled acreage and also

required payment recipients to annually set-aside a certain proportion of farmland. Also,

the program enrollment level was determined based on a five-year planting history, so that

program participants were motivated to maintain their production level. As a result, the

current production level of the participants are closely tied to the payment level that is

also correlated with past production level. But the past production level also affects the

CRP enrollment level as one of the eligibility conditions. To control for the association

between farm’s crop production and production support program participation, annual se-

25The construction of expected prices follows Holt, (1999). Monthly average futures prices
in March for harvest-time futures contracts are taken from the December CBOT con-
tract for corn and spring wheat and the November CBOT contract for soybeans. For
winter wheat, monthly average futures prices in the previous September are taken from
the July CBOT contract.
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taside acreage information under these government programs is used as an indicator of the

participation level.26

Another time-varying farm variation that affects cropland conversion attributes to tech-

nological change through capital accumulation. The change in production technology may

also affect the CRP participation decision as it likely changes marginal returns to produc-

tion. Irrigation is one of the most effective technologies to improve productivity to induce

production expansion. I control for the change in irrigated acres to capture the impact of

technological change.27

Finally, several base-year farm characteristics are added as covariates to mitigate the

potential of sample selection bias as discussed in Section 4.2 as well as to account for

pre-enrollment farm heterogeneity. Several pre-CRP-period farm characteristics are also

controlled for to avoid the violation of the strict exogeneity assumption for the 1987-1992

panel data. Farm size, per-acre sales, acres in cropland, pastureland, woodland and irriga-

tion, and operator’s age, operation experience, principal occupation and off-farm working

status are included. Summary statistics for grains farms are provided in table 4.

Estimation Results
I estimate the model for three time periods: 1982-1987, which covers the first CRP signup;

1987-1992, which covers subsequent signups; and 1982-1992, the same period used by Wu

(2000) and Roberts and Bucholz (2005). The analysis with the 1982-1992 long panel data

has advantages. Because the CRP signups started in 1986, farm information in the 1982

Census is exogenous to any CRP-induced changes. Also, the long panel can enable one

to observe the farm’s long-term adjustment motive in production activities as a result of

26One might worry about the potential for additional simultaneity bias because program
participation and crop production are jointly determined. Nevertheless, inclusion of
aforementioned fixed effects and exogenous output price changes can control for time-
varying factors that affect the change in a program participation rate.

27A potential simultaneity bias between irrigation technology adoption and cropland use
can be avoided by conditioning on time-varying county fixed effects, as they control for
exogenous weather shocks that influence irrigation technology adoption.
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CRP enrollment. Moreover, the same 1982-1992 period is used by the Wu’s and Roberts

and Bucholtz’s analyses, so results can be comparable to their aggregate estimation results.

In contrast, the shorter panels allow me to see whether a slippage rate changed as the

program expanded its coverage. The 1982-1987 short panel is of particular interest in

analyzing instantaneous impact of first CRP implementation. Results from the three panel

data analysis are integrated for robustness check.

Due to data limitation on commodity futures prices as mentioned in section 5.2, I use

corn, soy, wheat, and other cash grain farms defined by six-digit SIC codes. To better

capture the output price effects, I restrict the sample whose base-year sales share of corn,

soy, and wheat products cover a majority of total sales. This may be a sensible approach

as farm’s production activities should be most influenced by the majority of their products.

To see how this sample attrition affects the slippage estimate, robustness check will be

provided in section by adding non-grain farm observations.28

Results from the 1982-1992 Panel Data

First, I show how the parameter estimate of interest varies in absence of farm fixed effects.

Table 5 provides regression results from pooled OLS and random effects estimation based

on equation (5). Cropped acreage is regressed on CRP acreage with or without additional

covariates. A notable difference is observed in the OLS coefficient estimates of CRP acres

among specifications. With the random effects model the estimates become relatively sta-

ble. Because the parameter of interest is not robust among specifications and also because

they are not able to include base-year farm characteristics which would further influence

the estimate, those techniques may not yield a reliable estimate of slippage incidence.

Table 6 presents estimation results from the farm fixed effects model based on equation

(7). The change in cropped acreage is regressed on the change in CRP acreage with or with-

28I also exclude CRP participants that break their contracts during the periods (i.e., more
CRP acres enrolled in the 1987 Census than in the 1992 Census), because these cases
cannot be properly identified. Such observations account for only 10% of participants
in the sample.
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out additional covariates. Also, for each of the regressions, a set of fixed effects–county-

year fixed effects and the interaction of county-year and SIC fixed effects–are included in

addition to farm fixed effects. Slippage seems evident in table 6. There is about 14% of

land conversion from noncropland to cropland if farm fixed effects are included in column

(1) (i.e., -1 - (-0.861)). The slippage estimate is fairly stable even with additional covari-

ates in columns (2) and (3). This indicates that once unobserved farm characteristics are

eliminated by farm fixed effects, additional covariates barely affect the slippage estimate.29

The slippage estimate is also robust with county-year fixed effects and its interaction with

SIC fixed effects as in columns (4)-(9). These findings suggest that conditional on farm

fixed effects, the slippage estimate is likely orthogonal to unobserved heterogeneity. This

also provides a firm support for the supposition that the CRP participation decision is pre-

determined. This finding is reasonable particularly because the currently used sample only

includes grain farms with a similar crop pattern, so that farms within a county or within a

county and a production type are likely homogeneous to time-varying shocks.

Besides the slippage estimate, coefficient estimates of the other covariates can validate

the specification used for estimation. The three price change variables reasonably capture

an economic incentive of the farm’s crop production decision when the base-year controls

are included. As expected, crop and livestock prices create opposing effects on cropping

activities. In addition, farms with low productivity (that is, lower average grain yield)

are more sensitive to the change in commodity prices.30 These estimates become hardly

significant with county-year and SIC fixed effects in column (9), suggesting that these fixed

effects reasonably account for the farm’s heterogeneous response to price shocks.

The other two time-varying observables (i.e., indicators of commodity support program

participation and technology adoption) also have the expected signs and notable influence

29I also conducted the same estimation with acreage share variables that adjust potential
heteroskedasticity due to farm operation size, and results are almost identical.

30Note that the price change variables are weighted by output values, so the magnitude of
their estimates does not reflect the actual price elasticity.
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on land allocation. The coefficient of the change in setaside acreage moves significantly

when the base-year variables are included. This indicates that commodity support program

participation is highly correlated with past production activities. Nevertheless, it rarely

affects the slippage estimate. The coefficient of the change in irrigated acreage changes to

some extent when county-year fixed effects and its interaction with SIC fixed effects. This

indicates that some county-level time-varying factors affect irrigation technology adoption

and such an effect varies across farm type. Again, irrigation does not affect the slippage

estimate.31

In addition to the mean estimate of slippage, the rich farm-level panel data offers an op-

portunity to further examine farm’s heterogeneous response to the CRP program in multiple

dimensions: across region, type and size of farm operation, and timing of CRP enrollment.

Table 7 provides some evidence that could concrete the incidence of slippage underlying

in-farm land substitution . Panel A examines the relationship between slippage and par-

ticipation in the production support programs. Production support program participants

are likely less responsive to market prices and therefore have relatively inelastic cropland

demand. It appears that an average slippage rate is larger by about 10 percentage points

for CRP enrollees who also participated in the production support programs. This points

out the potential ineffectiveness of the land retirement program in conjunction with other

market-distorted policies enhancing crop production activities. Panel B presents a marked

difference in the slippage estimate by farm groups with different shares of cropped acres

in 1982. Slippage is statistically and economically significant for grain farms with a larger

share of uncropped land, indicating that farms with the excess capacity of conversion are

more flexible in the land allocation decision and thus likely to give rise to slippage. This

result suggests that additional restrictions on the rest of land use for participants and/or

31For instance, weather conditions in 1982 and 1992 differ significantly. Rough estimates
of U.S. average temperature and precipitation from the data in Schlenker and Roberts
(2009) indicate more temperature variation (hotter summer and colder winter) in 1982
than in 1992 and fewer precipitation during the 1982 crop season. Larger uncertainty
in the production decision influences irrigation technology adoption.
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introduction of penalty points reflecting the share of noncropland in the current auction

mechanism can hinder such a backward incentive offsetting the program benefits.

Table 8 reports region-specific slippage estimates. Definition of three regions is identical

to the one used in Wu (2000) and Roberts and Bucholtz (2005). Most CRP-concentrated

five Midwest regions–Corn Belt, Lake States, Northern and Southern Plains and Mountain–

are used to estimate the region-specific slippage incidence relative to the other regions.32

Results in table 8 present different slippage estimates across the regions. During the 1982-

1992 period, largest slippage was present in Southern Plains regions (about 35%), and Corn

Belt, Lake Sates, Northern Plains and Mountain regions experienced the less amount of

CRP-induced land conversion (10%, 15%, 15%, and 14%, respectively). These estimates

in Corn Belt, Lake Sates, and Northern Plains are numerically comparable to the Wu’s

(30%, 19%, and 11%) and Roberts and Bucholtz’s (17%, 11%, and 22%).33 However, my

estimates present the sole evidence of the in-farm land substitution effect, whereas theirs

indicate aggregate impacts of CRP enrollment through multiple channels.34

Table 9 provides the relationship between the slippage rate and several other farm oper-

ation types. Panel A exhibits different slippage rates by operating farmland size. Panel B

also shows differences by farm operation type and sales size. These results inform three

unique findings. First, combining these two results reveal that small-scale and likely less ef-

ficient full-time farms contribute most to slippage incidence. Next, despite that small-scale

farm participants give rise to the highest slippage rate as seen in panel A, larger farms

32A Corn Belt region includes Illinois, Indiana, Iowa, Missouri and Ohio, Lake States in-
clude Michigan, Minnesota and Wisconsin, Northern Plains include Kansas, Nebraska,
North Dakota and South Dakota, South Plains include Oklahoma and Texas, and Moun-
tain region includes Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah,
and Wyoming. For the other region category, see http://www.ers.usda.gov/briefing/
arms/resourceregions/resourceregions.htm.

33The slippage estimates of Roberts and Bucholtz presented here are OLS estimates.
34Despite the reliability of estimates, their aggregate estimates could account not only for

the land substitution effect but for the price feedback effect and the land transactions
effect. Also, both whole-farm and partial-farm CRP participants are included in their
estimates, while my estimate only takes into account contribution from partial-farm
CRP participants.
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also contribute to slippage at a steady rate over 10 percentage points, thereby causing more

slippage acres. In fact, average acres enrolled in the CRP are much larger for larger-scale

farms as provided in column (3). In addition, it is interesting to note that part-time farms in

small-scale production contribute to negative slippage although statistically not significant.

In other words, CRP participation possibly induces recreational farms to retire additional

land from crop production. This may be a sign of positive spillover from an environmental

conservation policy in presence of altruistic preferences.

Another advantage of the three-year panel data enables one to differentiate the CRP

enrollment impact by different signup periods. CRP participants during the 1982-1992

period are categorized by: (i) 1982-1987 enrollees who enrolled in the CRP only prior to

1987; (ii) 1987-1992 enrollees who enrolled in the CRP only after 1987; and (iii) 1982-

1992 enrollees who enroll in the CRP in both of the 1982-1987 and 1987-1992 periods

(i.e., more than one enrollments). Estimates are reported in table 10. A slippage rate is

similar for one-time enrollees in the 1982-1987 period (13.7%) and the 1987-1992 period

(12.2%).35 In contrast, slippage is clearly larger (28.2%) for participants enrolling multiple

times. This could suggest that the slippage problem got worse as farmers became more

familiar with the program and squeezed more rents from the policy.

Results from the 1982-1987 and 1987-1992 Panel Data

Table 11 reports estimation results from separate estimation of the 1982-1987 and 1987-

1992 short panel data. A mean slippage rate for new enrollees decreases by 12% (from

24.5% to 12.5%) from the 1982-1987 to 1987-1992 periods. This implies that the initial

CRP signups in 1986 induce more slippage. This could stem from the flawed program de-

sign in early signups. That is, in the first three signups in 1986, the maximum allowable

35A slightly larger slippage rate in the early signup period may indicate two things: long-
term adjustment effect and mechanism pitfalls. It could imply that participants could
adjust their farmland allocation more flexibly (i.e., more slippage) in the longer time
period after enrollment. Or it could result from the flawed program design in early
signups as discussed in the nect section.
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rental payment was determined based on average cash rents for cropland across collections

of counties with homogeneous characteristics. However, farms are likely heterogeneous

even within a county, therefore uniform pricing should have given low-productive partici-

pants an incentive to overbid. Also, the region-average cash rents included rents for both

non-irrigated and irrigated cropland. Since cash rents for irrigated land are clearly higher

than dryland, this spurred dryland farms to enroll in the program to enjoy the miss-specified

rent. The region-specific slippage rates in column (1)-(2) in table 12 partly support the ev-

idence of this policy misspecification. Areas except the Corn Belt and Lake States regions

experienced sizable fluctuation in the slippage incidence before and after the ammendment

of the rental payment mechanism. In fact, these areas covered the majority of U.S. irrigated

land at that time.

Slippage from All Farm Observations

Although the assessments thus far result from the restricted sample of grain farms, we

saw in table 6 that inclusion of time-varying county fixed effects and SIC fixed effects

could account for farm’s heterogeneous response to market shocks. Provided that this is a

legitimate assumption also for non-grain farms, table 13 provides regression results without

price covariates for all operating farms (with fixed farmland size) during the 1982-1992

period. It is found that the slippage estimate for non-grain farms (that is, the sum of the

estimate of CRP acreage change and its interaction with the non-grain indicator) changes

to some degree with different sets of fixed effects and covariates. A marked change in the

estimate is observed when the base-year farm characteristics are controlled for. Slippage

is significantly larger for non-grain farms by about 25% than grain farms in column (6) in

table 13 . In particular, a remarkable rate of slippage (about 47%) attributes to livestock

farms as seen in column (7). This may pertain to the excess capacity of conversion as argued

above, because farms that primarily produce livestock products likely own/rent larger share
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of marginal cropland. This also indicates that the non-grain farm’s land allocation decision

is strongly tied with initial land use constraints.

Conclusion
This article tests one unique source of slippage caused by in-farm land substitution from

noncropland to cropland as a result of farmland retirement in the U.S Conservation Re-

serve Program (CRP). With the farm-level panel data I can utilize cross-sectional and time

variation of detailed individual farm characteristics to identify the causal relationship of

CRP enrollment and subsequent slippage through in-farm land substitution. An identified

assumption of the slippage estimate is verified by farm fixed effects, time-varying county

fixed effects, and selection-on-observables. These could eliminate effects of unobservables

that are potentially correlated with both the CRP participation and subsequent farmland

reallocation decisions.

The in-farm slippage effect is examined for the three different time periods: 1982-1987,

1987-1992, and 1982-1992. Overall, slippage seems evident and fairly robust among spec-

ifications when farm fixed effects reasonably account for unobserved heterogeneities. It is

found that an average partial-farm CRP participant converts about 14% of noncropland to

cropping activities after CRP enrollment. Moreover, the rich farm-level panel data also of-

fers an opportunity to further examine farm’s heterogeneous response to the CRP program

across regions, farm production and operator types, and the timing of CRP enrollment. Re-

sults show that a rate of slippage incidence varies not only across region but also across

time. I also find that the slippage rate increases for participants enrolling in the multiple

CRP signups, suggesting that the slippage problem got worse as farmers became more fa-

miliar with the program and squeezed more rents from the policy. Moreover, participants

with a larger share of uncropped land contribute more to slippage, indicating that farms

with the excess capacity of conversion are more flexible in the land allocation decision and

thus likely to give rise to slippage. This result suggests that additional restrictions on the
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rest of land use for participants and/or introduction of penalty points reflecting the share of

noncropland in the current auction mechanism can hinder such a backward incentive off-

setting the program benefits. Finally, the simplest solution to avoid slippage from idle land

conversion seems to expand the mechanism that encourages farms to retire whole farmland,

as operated by programs like the Wetland Reserve Program and Agricultural Easements.

It is important in this regard to carefully reinvestigate both the environmental effectiveness

and the cost effectiveness of the CRP.

Results indicate that any program of this kind is likely to generate some offsetting behav-

ior, with farmers shifting crop production to previously uncropped land in response to sub-

sidized land setasides. Attention may be particularly given to developing countries where a

number of cropland and forest conservation program have been recently launched. Poorer

farmers may have relatively price inelastic demand for crop production activities because

no substitutable income activities are available, hence such a program would induce larger

incentive to convert noncropland (uncultivated land or non-harvested forest) into cropland.

Knowledge about the mechanisms by which and whom slippage occurs should help poli-

cymakers devise programs with features designed to avoid or mitigate slippage incentives,

especially by taking the heterogeneity of potential participants into account.

Besides the impact of CRP enrollment on cropland conversion during the 1982-1992

period, further research opportunities are available with the Agricultural Census data for

the 1992-2002 period. It is interesting to examine whether the trends I observe for 1982-

1992 in the constant farm size sample carry over from the 1992-2002 period. Another

interesting question departs from the partial equilibrium setting where the land substitution

mechanism within a farm causes slippage. That is to look at that possibility to identify

the other source of slippage caused by cross-farm land substitution in presence of the local

farmland market. This can be conducted by using variation of farm size change over the

Census periods. Preliminary results show strong correlation between land transactions and
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CRP enrollment, and interestingly the impact of such association on cropland conversion is

asymmetric by the type of land transactions (i.e., seller or buyer as well as owner or renter).
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Table 1: Conservation Reserve Program Signup Periods and Eligibility Criteria

Signup Type Dates Eligibility Criteria* Contract Acres

1 General March 3-14, 1986 A-B 753,668

2 General May 5-16, 1986 A-B 2,771,660

3 General August 4-15, 1986 A-C 4,703,379

4 General February 9-27, 1987 A-D 9,478,599

5 General July 20-31, 1987 A-D 4,442,719

6 General February 1-19, 1988 A-F 3,375,364

7 General July 18-31, 1988 A-F 2,604,901

8 General February 6-24, 1989 A-H 2,462,382

9 General July 17 - August 4, 1989 A-H 3,329,893

10 General March 4-15, 1991 A-C,E,G,I-K 475,175

11 General July 8-19, 1991 A-C,E,G,I-K 998,211

12 General June 15-26, 1992 A-C,E,G,I-K 1,027,444

Source: USDA (2008)
* Eligibility Criteria:
A. Land capability classes 6 - 8
B. Land capability classes 2 - 5 with predicted average annual erosion rate greater than 3T
C. Land capability classes 2 - 5 with predicted average annual erosion rate greater than 2T and
with gully erosion
D. Land with EI > 8 and predicted average annual erosion rate greater than T
E. Land for filter strips alongside wetlands, streams, or other water bodies
F. Land for tree planting-eligible when 1/3 of field meets criteria A or Class 2-5 soil with predicted
average annual erosion rate greater than 2T
G. Land having evidence of scour erosion caused by out-of-bank water flows
H. Wetland as follows:

Cropped wetland of at least 6 acres
A field of which 1/3 or more is cropped wetland
A field of 6 to 9 acres on which wetlands are present

I. Land in designated national conservation priority areas
Chesapeake Bay Region
Great Lakes Region
Long Island Sound Region

Land in designated State water quality priority areas
Public wellhead protection area established by EPA
Hydrologic Unit Areas approved by the Secretary
Land located in areas designated as Clean Water Act “319” priority areas

J. Lands to be established in specified eligible practices, including filter strips, riparian buffers,
windbreaks, grass waterways, and salt tolerant grasses

Wetland eligibility suspended
K. Land with an EI > 8, regardless of the predicted annual erosion rate relative to T
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Table 2: The Number of Omitted Whole-Farm CRP Places and Partial-Farm
CRP Observations in the 1992 Census of Agriculture, Selected States

Agricultural places excluded
by farm definition with acres

in the CRP (Whole-Farm CRP)
Farms with acres

in the CRP (Partial-Farm CRP)

Geographic
areas Number

Land in
places
(acres)

Land in
CRP

(acres) Number

Land in
farms
(acres)

Land in
CRP

(acres)

United States 66,716 11,676,115 6,705,082 166,278 159,830,072 22,792,319

Alabama 2,314 591,878 159,842 2,922 1,886,069 270,179

Colorado 620 296,313 256,408 2,890 7,841,347 1,325,574

Georgia 2,647 608,468 158,060 4,168 2,687,461 304,625

Idaho 503 179,096 136,706 1,919 2,762,605 545,880

Illinois 3,230 297,093 168,075 8,547 4,421,225 465,026

Indiana 3,260 275,385 148,066 4,843 1,869,523 214,051

Iowa 5,978 677,405 475,843 17,703 7,884,008 1,294,635

Kansas 2,359 433,833 361,183 14,786 18,159,808 2,278,157

Kentucky 2,308 264,268 124,302 4,193 1,349,657 270,166

Michigan 2,098 196,336 109,392 2,937 1,097,895 130,652

Minnesota 5,443 811,547 530,605 11,548 5,822,189 907,213

Mississippi 3,396 776,059 257,071 3,435 2,169,800 325,499

Missouri 4,185 561,327 353,119 10,380 5,271,974 1,038,935

Montana 582 376,448 313,288 3,957 14,919,550 2,159,530

Nebraska 1,319 223,148 188,878 8,083 9,133,820 989,126

North Dakota 1,277 384,726 326,623 8,615 13,335,245 2,120,670

Ohio 2,321 216,402 121,644 3,643 1,260,035 162,509

Oklahoma 929 185,398 151,689 4,678 5,371,738 827,597

South Dakota 620 154,938 135,477 6,124 10,442,626 1,300,085

Tennessee 3,140 399,213 159,049 3,393 1,363,890 207,684

Texas 3,970 1,123,267 963,392 9,914 14,761,094 2,473,797

Virginia 874 119,820 27,597 1,617 729,867 61,222

Washington 418 233,193 200,144 1,877 4,863,907 742,155

Wisconsin 5,253 536,515 238,182 8,261 2,308,351 359,072

Source: Appendix B in the U.S. Census of Agriculture 1992
Notes: The data for “whole farm” CRP places are not complete for all States. The census
mail list was developed from sources which indicated the farm had agricultural production
activity. It was not designed to cover all “whole farm” CRP places. Therefore, the data
for these places are limited to what was reported in the census and have not been adjusted
to account for nonresponse, incomplete coverage, and reporting errors.
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Table 3: Logit Regression Results for Determinants of Whole-Farm CRP Enrollees in
1997

Independent variables (1) (2) (3) (4) (5) (6)

Operator’s age 0.055*** 0.048*** 0.049*** 0.048*** 0.035*** 0.034***

Years of operation -0.013*** -0.008*** -0.008*** -0.007*** -0.006*** -0.005***

Principal job is farming -1.170*** -1.107*** -1.109*** -1.087*** -0.936*** -0.922***

Number of off-farm working days -0.001*** -0.001*** -0.001*** -0.001*** -0.001***

Log of total farmland -0.249*** -0.260*** -0.310*** -0.108*** -0.159***

Share of land owned -0.001 -0.001 -0.001 -0.001 -0.001

Per acre return -0.001*** -0.001*** -0.001*** -0.001*** -0.001***

Total subsidy 0.001*** 0.001*** 0.001*** 0.001***

Log of land rented-in -0.181*** -0.180***

Log of land rented-out 0.093*** 0.085***

Constant -4.319*** -2.606*** -2.576*** -3.868*** -2.506*** -3.512***

County fixed effects NO NO NO YES NO YES

Observations 99386 96188 96188 96111 96188 96111

Pseudo R2 0.09 0.10 0.10 0.11 0.13 0.14

Note: Logit estimation is conducted with the 1992-1997 Census panel data to examine the deter-
minants of CRP enrollment by retiring either whole farmland or part of farmland. A dependent
variable indicates whether CRP participants in 1997 retire whole farmland (= 1) or not. The
“whole-farm CRP” farms are defined as farms that enroll all cropland in the CRP and produce less
than $1,000 of agricultural products other than crops. Initial year farm characteristics in 1992 are
used as explanatory variables. ***, ** and * indicate significant difference from zero at the 99th,
95th and 90th percentiles, respectively.
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Table 4: Summary Statistics: All Sample Farms and Grain Farms in the 1982-1992 Panel

Sample farm group All Operating Farms Grain Farms

Number of Observations N = 80699 N = 3456 N =10823 N = 1251

Non-CRP CRP Non-CRP CRP

(1) (2) (3) (4)

Change in net-CRP cropped acres -0.6 -71.4 -1.6 -94.9

(47.0) (161.0) (49.6) (186.4)

Change in CRP acres 0.0 87.4 0.0 107.3

(0.0) (147.2) (0.0) (180.9)

Change in setaside acres in commodity
support programs

-0.1 -3.9 -0.4 -5.5

(7.1) (20.8) (14.0) (26.7)

Change in irrigated acres -0.4 -2.0 -0.2 -1.9

(32.4) (39.9) (21.3) (35.0)

Cropped acres 61.3 222.5 161.3 304.1

(138.7) (321.2) (242.1) (425.3)

Pastureland and rangeland acres 128.8 156.5 32.8 99.8

(5030.6) (639.4) (129.9) (271.7)

Woodland acres 12.3 19.9 9.1 20.1

(163.8) (170.2) (72.3) (248.5)

Setaside acres in commodity
support programs

0.9 7.2 3.6 10.7

(7.9) (23.7) (15.1) (31.2)

Irrigated acres 7.5 10.3 8.4 10.5

(61.4) (68.0) (60.5) (70.6)

Total farmland acres 213.9 424.8 218.7 455.8

(5096.3) (843.9) (349.3) (706.7)

Years of operation 17.7 22.2 20.2 21.7

(12.1) (12.2) (12.6) (12.5)

Principal job is farming (= 1) or not 0.4 0.7 0.5 0.6

(0.5) (0.5) (0.5) (0.5)

Number of off-farm working days 123.5 85.7 116.6 97.2

(104.6) (101.5) (104.9) (103.1)

Operator’s age 51.6 52.4 51.4 51.8

(11.9) (11.1) (12.1) (11.4)

Per-acre sales of agricultural
products

1015.5 169.8 136.5 105.8

(20832.8) (380.2) (90.0) (77.3)

Note: Data are from confidential U.S. Census of Agriculture microfiles. Mean estimates are reported with the
standard deviations in parenthesis, where estimates are weighted by the Census response weight. Variables
in bold indicate base-year variables in 1982. The sample consists of farms which: continued to exist during
the 1982-1992 Census period; had no land transactions during the panel period; and were located in counties
with CRP-eligible acres. Columns 1 and 2 contain summary statistics for all operating farms. Columns 3 and
4 contain summary statistics for sample grain farms used in the analysis.
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Table 5: Regression Results for Grain Farms from the 1982-1992 Long Panel Data with Pooled OLS
and Random Effects Models

Pooled OLS model Random effects model

(1) (2) (3) (4) (5) (6) (7) (8)

CRP acres -0.870 -0.757 †† -0.953 -0.890 -0.862 † † † -0.833 † † † -0.821 † † † -0.805 † † †

(0.120) (0.111) (0.090) (0.083) (0.049) (0.055) (0.055) (0.056)

Total farmland acres 0.595 *** 0.537 *** 0.615 *** 0.569 *** 0.594 *** 0.583 *** 0.573 *** 0.556 ***

(0.031) (0.036) (0.027) (0.030) (0.036) (0.037) (0.030) (0.030)

Setaside acres in
commodity support
programs

3.502 *** 2.295 *** 0.629 *** 0.735 ***

(0.530) (0.393) (0.187) (0.155)

Irrigated acres 0.123 *** 0.160 *** 0.224 *** 0.271 ***

(0.036) (0.040) (0.047) (0.059)

Futures price of grains -0.013 ** 0.012 -0.009 0.019 *

(0.006) (0.010) (0.009) (0.011)

Futures price of cattle -2.041 *** -1.671 *** -1.806 *** -1.402 ***

(0.117) (0.122) (0.144) (0.129)

Futures price of
grains X grain yields

0.001 *** 0.001 *** 0.001 *** 0.001 ***

(0.0001) (0.0001) (0.0002) (0.0001)

County-year fixed effects NO NO YES YES NO NO YES YES

SIC fixed effects NO NO YES YES NO NO YES YES

Observations 24148 24148 24148 24148 24148 24148 24148 24148

Adjusted R2 0.78 0.82 0.87 0.88 0.78 0.80 0.73 0.75

Note: A dependent variable is cropped acreage. Cropped acreage is computed as the sum of cropland harvested,
failed, summer fallowed and used for cover crops, net CRP acres. Heteroskedasticity-robust standard errors are
reported in parenthesis. For the coefficient of CRP acreage, † † †, ††, and † indicate significant difference from
-1 at the 99th, 95th and 90th percentiles, respectively. For the coefficient of the other covariates, ***, ** and *
indicate significant difference from zero at the respective percentiles.

35



Table 6: Regression Results for Grain Farms from the 1982-1992 Long Panel Data with the Farm Fixed
Effects Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Change in CRP acres -0.861 † † † -0.857 † † † -0.854 † † † -0.853 † † † -0.850 † † † -0.856 † † † -0.855 † † † -0.854 † † † -0.864 † † †

(0.046) (0.047) (0.055) (0.047) (0.047) (0.042) (0.052) (0.053) (0.048)

Change in setaside
acres in commodity
support programs

0.083 1.106 *** 0.145 1.209 ** 0.083 1.102 ***

(0.161) (0.429) (0.152) (0.304) (0.166) (0.347)

Change in irrigated
acres

0.314 *** 0.341 *** 0.389 *** 0.419 *** 0.491 *** 0.532 ***

(0.103) (0.102) (0.111) (0.108) (0.128) (0.130)

Change in the futures
price of grains

0.064 0.107 * 0.006 0.091 -0.057 0.007

(0.052) (0.064) (0.051) (0.048) (0.099) (0.091)

Change in the futures
price of cattle

0.170 -0.678 * 0.479* * -0.530 * 0.440 -0.626

(0.277) (0.361) (0.246) (0.317) (0.312) (0.390)

Change in the futures
price of grains X grain
yields

-0.001 -0.003 *** -0.0004 -0.003 *** -0.0003 -0.002 *

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001)

Base-year farm
characteristics NO NO YES NO NO YES NO NO YES

Farm fixed effects YES YES YES YES YES YES YES YES YES

County-year fixed effects NO NO NO YES YES YES YES YES YES

SIC fixed effects NO NO NO NO NO NO YES YES YES

Observations 12074 12074 12074 12074 12074 12074 12074 12074 12074

Adjusted R2 0.50 0.51 0.55 0.60 0.61 0.65 0.58 0.59 0.63

Note: A dependent variable is the change in cropped acreage over 1982-1992. See notes to table 5 for the definition of
cropped acres. Heteroskedasticity-robust standard errors are reported in parenthesis. For the coefficient of the CRP acreage
change, † † †, ††, and † indicate significant difference from -1 at the 99th, 95th and 90th percentiles, respectively. For the
coefficient of the other covariates, ***, ** and * indicate significant difference from zero at the respective percentiles.
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Table 7: Slippage Estimates from the 1982-1992 Long Panel by Production Support Program
Participation and Base-Year Cropped Acreage Share

Coefficient Estimate Slippage Rate

Share of CRP
Participants out of
1251 Observations

(1) (2) (3)

A. By Production Support Program
Participation

Non-participants -0.907 †† 9.3% ** 21%

(0.039)

Participants 0.098 19.1%** 79%

(0.092)

B. By Cropped Acreage Share in 1982

50% ≤ Share of cropped acres -0.956 † 4.4% * 82%

(0.024)

Share of cropped acres < 50% 0.383 *** 42.7%*** 18%

(0.103)

Note: In panel A, a slippage rate is estimated by subsidy recipient status in 1992 by including the
interaction of the CRP acreage change and the 1992 setaside acreage dummy variable (with non-recipients
as a reference). In panel B, a slippage rate is estimated by groups of different cropped acreage shares over
total farmland in 1982 by including the interaction of the CRP acreage change and indicator variables
of categorical groups. The sample is divided into two groups: (i) cropped acreage share in 1982 is above
50% (as a reference) and (ii) below 50%. Estimation is conducted with full specification, i.e., with all
covariates and all sets of fixed effects. A dependent variable is the change in cropped acreage over 1982-
1992. See notes to table 5 for the definition of cropped acres. Heteroskedasticity-robust standard errors
are reported in parenthesis. Column (1) reports coefficient estimates of CRP acreage change and its
interaction terms with respective group indicator variables. Slippage rates in column (2) are computed
from those estimated coefficients. † † †, ††, and † indicate significant difference from -1 at the 99th, 95th
and 90th percentiles, respectively. Column (3) reports the share of CRP participants in each category
out of 1251 observations. ***, ** and * indicate significant difference from zero at the 99th, 95th and
90th percentiles, respectively.
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Table 8: Slippage Estimates from the 1982-1992 Long Panel
by Region

Coefficient Estimate Slippage Rate

(1) (2)

Other Regions -0.976 2.4%

(0.081)

Corn Belt 0.072 9.7%***

(0.082)

Lake States 0.129 15.4%***

(0.084)

Northern Plains 0.128 15.3%***

(0.087)

Southern Plains 0.324 34.9%*

(0.202)

Mountain 0.119 14.3%

(0.117)

Total 13.6%

Note: Region-specific slippage rates are estimated by including
the interaction of the CRP acreage change and region indicator
variables (with other regions as a reference). The Corn Belt region
includes Illinois, Indiana, Iowa, Missouri and Ohio, the Lake States
include Michigan, Minnesota and Wisconsin, the Northern Plains
include Kansas, Nebraska, North Dakota and South Dakota, the
South Plains include Oklahoma and Texas, and the Mountain re-
gion includes Arizona, Colorado, Idaho, Montana, Nevada, New
Mexico, Utah, and Wyoming. Estimation is conducted with full
specification, i.e., with all covariates and all sets of fixed effects.
A dependent variable is the change in cropped acreage over 1982-
1992. See notes to table 5 for the definition of cropped acres.
Heteroskedasticity-robust standard errors are reported in paren-
thesis. Column (2) reports coefficient estimates of CRP acreage
change and its interaction terms with respective group indicator
variables. Slippage rates in column (3) are computed from those
estimated coefficients. † † †, ††, and † indicate significant difference
from -1 at the 99th, 95th and 90th percentiles, respectively. ***,
** and * indicate significant difference from zero at the 99th, 95th
and 90th percentiles, respectively.
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Table 9: Distribution of Slippage Estimates from the 1982-1992 Long Panel by Farm
Types

Coefficient Estimate Slippage Rate

Mean acres
enrolled

in the CRP

(1) (2) (3)

A. By Farm Size (Acreage)

Farmland < 100 acres -0.734 † † † 26.6% *** 19.1

(0.093)

100 acres ≤ Farmland < 250 acres -0.118 14.8% *** 46.3

(0.095)

250 acres ≤ Farmland < 500 acres -0.136 13.0% *** 97.8

(0.100)

500 acres ≤ Farmland -0.131 13.5% ** 260.5

(0.111)

B. By Farm Type and Farm Size (Sales)

Part-time farm with
sales < $10,000

-1.103 -10.3% 33.4

(0.179)

Part-time farm with
sales ≥ $10,000

0.148 4.5% 77.1

(0.188)

Full-time farm with
sales < $10,000

0.365 * 26.2% ** 56.3

(0.210)

Full-time farm with
$10,000 ≤ sales < $50,000

0.263 16.0% *** 125.0

(0.186)

Part-time farm with
sales ≥ $50,000

0.241 13.8% * 194.6

(0.194)

Note: Panel A and panel B report slippage estimates by two different farm size definitions. In panel A,
the slippage estimate is allowed to vary across farmland size (with the smallest farmland size group as
a reference). In panel B, the slippage estimate is allowed to vary across operator’s principal occupation
and farm sales categories (with smaller non-farm farms as a reference). Estimation is conducted with
full specification, i.e., with all covariates and all sets of fixed effects. A dependent variable is the
change in cropped acreage over 1982-1992. See notes to table 5 for the definition of cropped acres.
Heteroskedasticity-robust standard errors are reported in parenthesis. Column (1) reports coefficient
estimates of CRP acreage change and its interaction terms with respective group indicator variables.
Slippage rates in column (2) are computed from those estimated coefficients. Column (3) reports
mean acreage enrolled in the CRP for each group. † † †, ††, and † indicate significant difference from
-1 at the 99th, 95th and 90th percentiles, respectively. ***, ** and * indicate significant difference
from zero at the 99th, 95th and 90th percentiles, respectively.
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Table 10: Distribution of Slippage Estimates from the 1982-1992 Long Panel by CRP Signup
Periods

Coefficient Estimate Slippage Rate

Mean acreage
enrolled

in the CRP

CRP Enrollment Period (1) (2) (3)

Enrollment during 1986 -0.873 †† 13.7%** 94.1

(0.057)

Enrollment during 1987-91 -0.055 12.2%* 101.9

(0.069)

Enrollment during 1986 and 1987-91 0.145 28.2%*** 164.5

(0.091)

Note: An enrollment-specific slippage rate is estimated by including the interaction of the CRP acreage
change and indicator variables of the enrollment status of CRP participants. The enrollment status
is classified into three categories: (i) 82-87 enrollees who enrolled in the CRP only prior to 1987 (ref-
erence); (ii) 87-92 enrollees who enrolled in the CRP only after 1987; and (iii) 82-92 enrollees who
enrolled in the CRP during both of the 1982-1987 and 1987-1992 periods. Estimation is conducted
with full specification, i.e., with all covariates and all sets of fixed effects. A dependent variable is the
change in cropped acreage over 1982-1992. See notes to table 5 for the definition of cropped acres.
Heteroskedasticity-robust standard errors are reported in parenthesis. Column (1) reports coefficient
estimates of CRP acreage change and its interaction terms with respective group indicator variables.
Slippage rates in column (2) are computed from those estimated coefficients. Column (3) reports mean
acreage enrolled in the CRP for each group. † † †, ††, and † indicate significant difference from -1 at the
99th, 95th and 90th percentiles, respectively. ***, ** and * indicate significant difference from zero at
the 99th, 95th and 90th percentiles, respectively.
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Table 11: Regression Results for Grain Farms from the 1982-1987
and 1987-1992 Panel Data

Panel Period 1982-1987

1987-1992
with only
new CRP 1982-1992

(1) (2) (3)

Change in CRP acres -0.755 † † † -0.875 † † † -0.864 † † †

(0.093) (0.043) (0.048)

Farm characteristics YES YES YES

Base-year farm characteristics YES YES YES

Farm fixed effects YES YES YES

County-year fixed effects YES YES YES

SIC fixed effects YES YES YES

Observations 28286 18504 12074

Adjusted R2 0.33 0.69 0.63

Note: Estimation results from 1982-1987 and 1987-1992 panel data are com-
pared with the 1982-1992 estimation result. Estimation is conducted with full
specification, i.e., with all covariates and all sets of fixed effects. A dependent
variable for each panel data is the change in cropped acreage over the respec-
tive panel period. See notes to table 5 for the definitions of cropping acreage.
The 1987-1992 panel data analysis in column (2) uses only participants en-
rolling after 1987 to avoid the measurement error of the dependent variable
as discussed in section 5.2. Heteroskedasticity-robust standard errors are re-
ported in parenthesis. For the coefficient of the CRP acreage change, † † †,
††, and † indicate significant difference from -1 at the 99th, 95th and 90th
percentiles, respectively. For the coefficient of the other covariates, ***, **
and * indicate significant difference from zero at the respective percentiles.
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Table 12: Trend of Regional Slippage Incidence during the 1982-
1992 Period

Panel Period 1982-1987

1987-1992
with only
new CRP 1982-1992

(1) (2) (3)

Corn Belt 16.3%*** 15.1%*** 9.7% ***

Lake States 19.7%*** 23.0%*** 15.4%***

Northern Plains 17.5%*** 7.8% 15.3%***

Southern Plains 29.6%*** 43.8%*** 34.9%*

Mountain 28.3%*** 14.9% 14.3%

Other regions 37.4%*** 1.1% 2.4%

Total 24.5%*** 12.5%*** 13.6%

Note: Region-specific slippage rates are computed from each of the 1982-
1987, 1987-1992, and 1982-1992 panel data estimations by including the
interaction of the CRP acreage change and region indicator variables.
The Corn Belt region includes Illinois, Indiana, Iowa, Missouri and Ohio,
the Lake States include Michigan, Minnesota and Wisconsin, the North-
ern Plains include Kansas, Nebraska, North Dakota and South Dakota,
the South Plains include Oklahoma and Texas, and the Mountain re-
gion includes Arizona, Colorado, Idaho, Montana, Nevada, New Mexico,
Utah, and Wyoming. Estimation is conducted with full specification, i.e.,
with all covariates and all sets of fixed effects. A dependent variable is
the change in cropped acreage over 1982-1992. See notes to table 5 for
the definition of cropped acres. The 1987-1992 panel data analysis in
column (2) uses only participants enrolling after 1987 to avoid the mea-
surement error of the dependent variable as discussed in section 5.2. ***,
** and * indicate significant difference from zero at the 99th, 95th and
90th percentiles, respectively.
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Table 13: Regression Results for All Farms from the 1982-1992 Long Panel Data

(1) (2) (3) (4) (5) (6) (7)

Change in CRP acres -0.863 † † † -0.856 † † † -0.854 † † † -0.859 † † † -0.856 † † † -0.865 † † † -0.859 † † †

(0.045) (0.047) (0.055) (0.051) (0.051) (0.046) (0.043)

Change in CRP acres
X Non-grain farms

0.094 0.113 * 0.267 *** 0.098 0.110 0.247 ***

(0.064) (0.066) (0.080) (0.065) (0.067) (0.074)

Change in CRP acres
X Non-grain crop
farms

0.093

(0.121)

Change in CRP acres
X Livestock farms

0.319 ***

(0.078)

Farm characteristics NO YES YES NO YES YES YES

Base-year farm characteristics NO NO YES NO NO YES YES

Farm fixed effects YES YES YES YES YES YES YES

County-year fixed effects NO NO NO YES YES YES YES

SIC fixed effects NO NO NO YES YES YES YES

Observations 84155 84155 84155 84155 84155 84155 84155

Adjusted R2 0.24 0.25 0.32 0.35 0.35 0.42 0.43

Note: A dependent variable is the change in cropped acreage over 1982-1992. See notes to table 5 for the definition
of cropped acres. Heteroskedasticity-robust standard errors are reported in parenthesis. For the coefficient of the
CRP acreage change, † † †, ††, and † indicate significant difference from -1 at the 99th, 95th and 90th percentiles,
respectively. For the coefficient of the other covariates, ***, ** and * indicate significant difference from zero at the
respective percentiles.
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Figure 1: Farmland allocation decision for medium-quality land 
 

 
 

 

 

 

  

 

 

 

 

 

 
Figure 2: Impact of CRP enrollment on subsequent land allocation for medium-quality land 
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Figure 3: Land use categories in the Census of Agriculture 
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Essay II

Aggregate and Farm-Level Productivity Growth
in Tobacco: Before and After the Quota Buyout

abstract

This study examines the distortionary effects of agricultural policy on farm productivity by
examining the response of U.S. tobacco farmers’ productivity to the quota buyout of 2004.
We focus on the impact of distortionary policy, i.e., the tobacco quota, by decomposing
aggregate productivity growth into the contribution of farm-level productivity growth and
the contribution of reallocation of resources among tobacco growers. We find that the ag-
gregate productivity of Kentucky tobacco farms grew 44% between 2002 and 2007. The
elimination of quota rental costs and reallocation of resources, including entry and exit,
accounted for most of the post-buyout productivity growth. It is also noted that the aggre-
gate productivity of Kentucky tobacco farms vary across farm characteristics and locations.
This highlight the importance of using highly disaggregated data to uncover the sources of
aggregate productivity growth.
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AGGREGATE AND FARM-LEVEL PRODUCTIVITY GROWTH

IN TOBACCO: BEFORE AND AFTER THE QUOTA BUYOUT

BARRETT E. KIRWAN, SHINSUKE UCHIDA, AND T. KIRK WHITE

We examine the distortionary effects of agricultural policy on farm productivity by examining the
response of U.S. tobacco farmers’ productivity to the quota buyout of 2004. We focus on the impact
of distortionary policy, i.e., the tobacco quota, by decomposing aggregate productivity growth into the
contribution of farm-level productivity growth and the contribution of reallocation of resources among
tobacco growers.We find that the aggregate productivity of Kentucky tobacco farms grew 44% between
2002 and 2007. The elimination of quota rental costs and reallocation of resources, including entry and
exit, accounted for most of the post-buyout productivity growth.

Key words: Tobacco; Quotas; Aggregate Productivity Growth; Reallocation.

JEL codes: Q18, Q12, O47.

The Tobacco Transition Act of 2004 ended a
66-year-old federal farm program and replaced
it with...nothing. The Transition Act, also
known as the tobacco quota buyout, was a
rapid and complete market liberalization: from
one growing season to the next, U.S. tobacco
production went from a policy environment
of severe restrictions on production to a free
market regime. Such a large and seemingly
permanent policy change provides an oppor-
tunity to study the full effects of distortionary
economic policy. In this article we seize this
opportunity by analyzing the effects of the
buyout on aggregate productivity growth in
tobacco production.We focus on a single major
tobacco-producing state: Kentucky.1

Under the federal tobacco program, the
USDA annually set an aggregate limit on vir-
tually all domestic tobacco production and
supported the prices received by U.S. tobacco

Barrett E. Kirwan is an assistant professor in the Department of
Agricultural and Consumer Economics at the University of Illinois.
Shinsuke Uchida is a PhD candidate in the Department of Agri-
cultural and Resource Economics at the University of Maryland.
T. Kirk White is an economist with USDA’s Economic Research
Service (ERS). The views expressed are those of the authors and
should not be attributed to ERS or USDA. The results in this paper
have been screened to insure that no confidential information is
revealed. The authors wish to thank two anonymous reviewers and
David Hennessy, Erik Lichtenberg, and Jim MacDonald for com-
ments and suggestions,and Jim Burt for many disclosure avoidance
reviews.

1 Kentucky produces more tobacco than any state other than
North Carolina. We focus on Kentucky and not North Car-
olina because estimates of tobacco quota rental rates are readily
available for Kentucky for the period of interest.

growers. In addition, in most states, tobacco
quota could not be sold or leased across county
lines. These and other restrictions of the quota
program limited growers’ ability to efficiently
allocate land and other resources for tobacco
production. The quotas were a source of eco-
nomic rents for quota owners, but they were
also a major expense for growers, many of
whom leased some if not all of their quota.
Economic theory predicts that removing the
restrictions imposed by the quota program
frees farmers to allocate resources to tobacco
production more efficiently.To what extent has
reallocation occurred? To what extent did real-
location of resources contribute to productivity
growth in tobacco production after the buyout?

Previous economic research has studied the
effects of the quota buyout. For example,
Brown, Rucker, and Thurman (2007) analyzed
the distortionary effects of the quota program
and used county-level data and simulations
to predict the effects of the quota buyouts
on production. They calibrated their simula-
tion models with historical data and predicted
that in the medium run tobacco production
would increase. In fact, tobacco production
decreased. Dohlman, Foreman, and Da Pra
(2009) report that after the 2004 buyout har-
vested acreage for burley leaf and flue-cured
leaf fell by 30 and 25-percent, respectively
(although flue-cured production subsequently
recovered). Brown, Rucker, and Thurman
(2007) acknowledge that “the exit of some
tobacco growers” was a complicating issue to

Amer. J. Agr. Econ. 94(4): 838–853; doi: 10.1093/ajae/aas019
Published online May 7, 2012

Published by Oxford University Press on behalf of the Agricultural and Applied Economics Association 2012.
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their analysis. Such a large number of grower
exits changed sectoral dynamics so much that a
well-calibrated tobacco-sector forecast model
provided substantially incorrect forecasts.

In this article we focus on the total factor
productivity of tobacco growers in Kentucky
before and after the buyout. We use data from
the 1997, 2002, and 2007 Censuses of Agricul-
ture, linked longitudinally at the farm level. In
contrast to previous research,the panel we con-
struct allows us to decompose the effects of
the buyout into the contributions of farms that
continued producing tobacco and the contribu-
tions of entrants into and exiters from tobacco
production.

Methodologically, we combine the aggre-
gate productivity growth decompositions of
Diewert and Fox (2010) and Petrin and
Levinsohn (2010), adapted to the context of
tobacco production in Kentucky before and
after the quota buyout. The Petrin and Levin-
sohn approach allows us to decompose the
aggregate productivity growth (APG) of con-
tinuing farms into the contributions of farm-
level technical efficiency growth and APG due
to reallocation of resources among continu-
ing farms. The Diewert and Fox index number
approach allows us to separately account for
the contributions of continuing farms versus
entering and exiting farms.

We find that the aggregate productivity of
Kentucky tobacco farms decreased by 7.1%
between 1997 and 2002 and increased by
44% between 2002 and 2007. Reallocation of
resources played an important role in aggre-
gate productivity growth. About 22 percentage
points of the 44% post-buyout increase in
aggregate productivity in Kentucky tobacco
production was due to reallocation of inputs
among continuing farms and entry into and
exit from tobacco production among exist-
ing farms. The combined contributions of the
elimination of quota rental costs and reallo-
cation of resources accounted for most of the
post-buyout aggregate productivity growth of
Kentucky tobacco farms.

The Tobacco Quota Program, the Quota
Buyout, and Trends in Kentucky Tobacco
Production

Under the federal tobacco program, growers
had to own or lease marketing quota in order to
sell tobacco. Allocated by the federal govern-
ment when the program started in 1938, quota

was an asset with its own market, but it was
not completely freely tradable. The program
applied to the two major types of tobacco, bur-
ley and flue-cured. Each crop had unique rules.
Here we discuss the burley program because
burley makes up the vast majority of the value
of tobacco production in Kentucky, where this
article focuses.2 Womach (2003) provides an
overview of the program for both burley and
flue-cured tobacco.

The quota program placed both geographic
and temporal restrictions on the allocation of
land and other resources to tobacco produc-
tion. Starting in 1991, burley growers could
buy or lease quota separately from the land on
which the tobacco was grown. In most states,
including Kentucky, burley quota could not
be sold or leased across county lines. Quota
could only be sold or leased to active growers.
However, it could be inherited, and it could be
retained by inactive growers. In the final years
of the program, most quota was not owned
by active growers (Womach 2004). Quota had
to be used by the owner or leased to another
grower in 2 out of 3 years or be forfeited.

In Kentucky, the average quota lease rate
increased from about 27 cents per pound in
1997 to about 59 cents per pound in 2002.
These averages obscure wide variation in quota
lease prices across Kentucky counties, reflect-
ing the county-level variation in marginal costs
of tobacco production. Quota lease prices
ranged from 5 to 48 cents per pound in 1997 and
from 25 to 85 cents per pound in 2002.3 Over
the same period, the average (nominal) price
of tobacco in Kentucky increased only slightly
from $1.90 per pound in 1997 to $2.02 per
pound in 2002.4 Thus quota rental costs were a
significant and increasing fraction of the price
of tobacco. The large across-county variation
in quota lease prices also provides some evi-
dence of the extent to which the quota program
distorted tobacco production decisions. In the
absence of restrictions on the across-county
trade of quota, we would expect tobacco pro-
duction to be reallocated to counties with lower

2 Prior to the buyout in 1997 and 2002, respectively 96% and
91% of the value of tobacco produced in Kentucky was from bur-
ley tobacco, with fire-cured and dark tobacco accounting for the
rest. By 2007, fire-cured and dark tobacco accounted for the 24%
of the value of Kentucky tobacco production, with burley account-
ing for the remaining 76%. See the NASS Quickstats website at
http://www.nass.usda.gov/QuickStats.

3 We thankWill Snell of the University of Kentucky for providing
us with his unofficial estimates of the quota lease prices for every
Kentucky tobacco-producing county over the period 1991–2004.

4 See the NASS Quickstats website: http://quickstats.nass.
usda.gov.
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marginal costs until quota lease prices were
equalized across counties (Rucker, Thurman,
and Sumner 1995).

The design of the quota buyout also likely
affected production decisions. Quota owners
received $7 per pound of quota. Importantly,
growers who produced tobacco between 2002
and 2004 received an additional $3 per pound
of quota–the so-called “grower benefit.” Var-
ious proposed versions of the quota buyout
were discussed in policy circles and tobacco
communities years in advance of the Transi-
tion Act. In light of these facts, it seems likely
that, in order to capture the grower benefit,
some quota owners continued or even entered
tobacco production instead of renting out their
quota in 2002.

Because of increasing foreign competition
and decreasing domestic demand, U.S. tobacco
production declined steeply between 1997 and
2002.5 Kentucky followed the national trend,
with the number of Kentucky farms with
tobacco sales decreasing from 46,792 in 1997
to 29,253 in 2002.6 After the buyout, demand
for tobacco products in the U.S. continued to
decline, and the cost of inputs to production
such as hired labor and fuel increased. Net
exports of U.S. tobacco leaf increased after the
buyout, in part because the price of U.S. leaf
declined when the effective price support of
the quota program was removed (Dohlman,
Foreman, and DaPra 2009). However, after the
buyout the number of tobacco farms continued
to decline, both nationally and in Kentucky. By
2007, there were only 8,113 tobacco farms in
Kentucky.

A Brief Review of Reallocation and
Aggregate Productivity Growth
Decompositions

Hulten (1978) shows that in a perfectly compet-
itive economy with no distortions, adjustment
costs, or other frictions, aggregate productivity
growth is equal to the weighted sum of
enterprise-level technical efficiency growth
rates,i.e.,aggregate technical efficiency growth.
In a seminal paper,Baily,Hulten,and Campbell

5 Domestic demand for tobacco leaf declined for a variety of rea-
sons, including health concerns associated with tobacco products,
increasing state and Federal excise taxes on tobacco products, and
increased restrictions on smoking in public (Dohlman, Foreman,
and DaPra 2009).

6 These are USDA’s published totals. See the NASS Quickstats
website: http://quickstats.nass.usda.gov.

(1992, BHC hereafter) define aggregate pro-
ductivity growth as the weighted sum of
plant-level technical efficiencies. Then they
decompose this index into the output-share-
weighted sum of the growth rates of plant-level
technical efficiency (the “within” component),
and the technical-efficiency-weighted sum of
the changes in plant-level output shares (the
“between” component). The between compo-
nent is usually interpreted as measuring the
contribution of reallocation to aggregate pro-
ductivity growth. Several other authors refine
the BHC decomposition to include additional
terms in the decomposition (Griliches and
Regev 1995; Olley and Pakes 1996; Foster,
Haltiwanger, and Krizan 2001). All of these
decompositions share the feature that aggre-
gate productivity is defined as the weighted
sum of plant-level (or firm-level) productivity.

All of the BHC-like decompositions share
a common problem. As emphasized by Petrin
and Levinsohn (2010, P-L hereafter), in an
economy in competitive equilibrium with no
distortions, adjustment costs, or other frictions,
further reallocation of resources does not con-
tribute to aggregate productivity growth. In
other words,in such an economy,the“between”
component in a BHC decomposition does
not measure the contribution of reallocation
to aggregate productivity growth. Both P-L
and Basu and Fernald (2002) point out that
when there are adjustment costs or markups
over marginal cost or other distortions (such
as taxes, subsidies, or quotas), (i) aggregate
productivity growth is generally not equal to
aggregate technical efficiency growth and (ii)
reallocation of resources can contribute to
aggregate productivity growth. These theoret-
ical results imply that in an economy in which
markups or distortions such as taxes or subsi-
dies or quotas are important, the BHC index
misses an important component of aggregate
productivity growth. Recent empirical results
using manufacturing data from the U.S., Japan,
and Chile show that the difference between
aggregate productivity growth and the growth
rate of a BHC type of index can be quite large
(Petrin, White, and Reiter 2011; Kwon, Narita,
and Narita 2009; Petrin and Levinsohn 2010).

Growing empirical and theoretical liter-
atures have highlighted the importance of
resource reallocation for aggregate produc-
tivity growth (Melitz 2003; Bernard et al.
2003; Lentz and Mortensen 2008; Petrin,
White, and Reiter 2011). Recent studies by
Restuccia and Rogerson (2008) and Hsieh
and Klenow (2009) have also found that
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within-industry heterogeneity in distortions
(e.g., taxes or subsidies) may have impor-
tant effects on aggregate total factor produc-
tivity. Both within-industry heterogeneity in
distortions (because of restrictions on leas-
ing quota across counties) and reallocation
of resources were clearly important features
of Kentucky tobacco production in the years
before and after the quota buyout. In light of
these facts, we use an aggregate productivity
decomposition that accounts for the role of
heterogeneous distortions and reallocation in
determining the aggregate productivity growth
of Kentucky tobacco farms, namely the P-L
decomposition.

The Petrin-Levinsohn Decomposition

Petrin and Levinsohn (2010) show how to
decompose aggregate productivity growth into
the separate contributions of firm-level tech-
nical efficiency growth and the reallocation
of each factor of production across firms. We
apply the P-L methodology, except that we
adapt it to U.S. tobacco production before and
after the quota buyouts. We follow the dis-
cussion of the theory in P-L. For the purpose
of explaining the theory, we assume that all
tobacco farms only produce tobacco.7 Each
farm i’s production technology can be repre-
sented as8

(1) Qi = F(Xi, Mi, ωi).

where Xi = (Xi1, . . . , XiK) is a vector of primary
input usage (land, labor, buildings and machin-
ery) on farm i and Mi = (Mi1, . . . , MiJ) is the
vector of intermediate inputs (fertilizer, agri-
cultural chemicals, seeds, fuel, etc.). Finally, ωi
is the level of farm i’s technical efficiency.

Here we adapt the P-L framework for the
purpose of measuring the aggregate productiv-
ity of tobacco farms under the quota program.
P-L defines aggregate productivity change as
the change in aggregate final demand minus the
change in aggregate costs, where a firm’s final
demand Yi is its output Qi minus the portion
of its output that is used as intermediate input

7 In the data many tobacco farms also produce other crops
and/or livestock. We discuss how we deal with multi-output farms
in the measurement section below.

8 Petrin and Levinsohn (2010) allow for fixed costs of production,
which are subtracted from output. Here we abstract from fixed
costs.

by all other firms: Yi = Qi − ∑
j Mji, where Mji

denotes output from firm i used as intermediate
input at firm j. If we sum across all firms,
aggregate final demand is equal to aggregate
value-added. Since we are focusing on a single
industry (tobacco production) and we do not
observe the final demand for tobacco farms’
output, we can write this industry’s aggregate
productivity change as the change in the aggre-
gate output of the industry minus the change in
aggregate costs:

dAP ≡
∑

i

PidQi −
∑

i

∑
k

WikdXik(2)

−
∑

i

∑
j

PijdMij

−
∑

i

RidQuotai,

where the summation is over Kentucky
tobacco farms. Pi denotes the price of farm
i’s tobacco, and thus

∑
i PidQi is equal to

the instantaneous change in aggregate output
holding prices constant. Wik is the marginal
cost of the kth primary input and dXik is the
instantaneous change in the use of that primary
input at farm i. Pij is the price of intermediate
input j at farm i, and dMij is the instantaneous
change in the use of that input. The last term
on the right side of equation (2) captures the
direct cost of renting quota, where Ri is the
rental rate of quota for farm i, and dQuotai
is i’s change in quota usage. For farms that
own quota for all of the tobacco that they sell,
Ri captures the opportunity cost at the mar-
gin of not renting out their quota. Quotas can
have an indirect effect on aggregate productiv-
ity by driving a wedge between value marginal
products and marginal costs. At the level of
the entire economy, the quota rents themselves
are just a redistribution of wealth from renters
to owners, and do not directly affect aggre-
gate productivity.9 However, as noted above,
by the end of the tobacco program, most quota
was not owned by growers, and quota rental
was a significant cost for tobacco growers.
Since we are analyzing aggregate productivity
at the level of the tobacco production indus-
try, we include changes in these quota rental
costs as part of our measure of aggregate
productivity.

9 We thank Tom Vukina for pointing this out.
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P-L shows that if the farm-level production
function F is differentiable, then the change in
aggregate productivity in equation (2) can be
decomposed as:

dAP =
∑

i

∑
k

(
Pi

∂F
∂Xk

− Wik

)
dXik(3)

+
∑

i

∑
j

(
Pi

∂F
∂Mj

− Pj

)
dMij

−
∑

i

RidQuotai +
∑

i

Pidωi,

Equation (3) decomposes the change in
aggregate productivity into the contributions
of, respectively, reallocation of primary and
intermediate inputs, the reallocation of quota,
and farm-level technical efficiency change. The
first two double-summation terms on the right
side of equation (3) measure the contributions
of reallocation of primary (X) and intermedi-
ate (M) inputs. Within these terms, the expres-
sions Pi

∂F
∂Xk

− Wik and Pi
∂F
∂Mj

− Pj are gaps or
wedges reflecting the difference between the
farm’s value marginal product and its marginal
cost for each input. If the value marginal prod-
uct is equal to the marginal cost for every
input on every farm, then reallocation of inputs
will not contribute to aggregate productivity
change. In this case, in the absence of quota
rental costs, the change in aggregate produc-
tivity is just the price-weighted sum of the
changes in farm-level technical efficiencies:
dAP = ∑

i Pidωi. However, if there are gaps
between the value marginal products and the
marginal costs for any of the inputs, then reallo-
cation also contributes to aggregate productiv-
ity change. Note that the P-L decomposition
does not force us to take a stand on what
is causing the gaps between marginal prod-
ucts and marginal costs. If there are gaps for
any reason, then the first two double summa-
tions in equation (3) measure the contribu-
tion of reallocation to aggregate productivity
change. In the case of Kentucky tobacco pro-
duction before the buyout, quota lease prices
varied widely across counties, suggesting that
restrictions on reallocating quota across coun-
ties drove wedges been marginal products and
marginal costs.

If we divide equation (2) by the aggregate
value-added of the industry and do a bit of
algebra, we obtain the following equation for

aggregate productivity growth (APG):

APG =
∑

i

DidlnQi(4)

−
∑

k

∑
i

DicikdlnXik

−
∑

j

∑
i

DicijdlnMij

−
∑

i

ciqdlnQuotai

where Di = PiQi∑N
i=1 PiYi

is the Domar (1961)

weight, cik = WikXik
PiQi

is the revenue share of pri-

mary input k, cij = PijMij

PiQi
is the revenue share

of intermediate input j, and ciq = RiQuotai
PiQi

is the
revenue share of quota rental costs.The Domar
weight takes into account the fact that some
of farm i’s output will contribute to aggregate
productivity growth because it will be used as
intermediate input in other industries.

If we divide both sides of equation (3)
by the aggregate value-added of the indus-
try and do some more algebra, then aggregate
productivity growth in equation (4) can be
decomposed as:

APG =
∑

i

Di

∑
k

(εik − cik)dlnXik(5)

+
∑

i

Di

∑
j

(εij − cij)dlnMij

−
∑

i

DiciqdlnQuotai

+
∑

i

Didlnωi,

where Di is the Domar weight, εik and εij
are the elasticities of output with respect to
primary and intermediate inputs, cik = WikXik

PiQi

and cij = PjMij

PiQi
are the respective farm-specific

revenue shares for primary and intermedi-
ate inputs, and dlnωi is the growth rate of
farm i’s technical efficiency, where the base
is Qi: dlnωi ≡ dωi

Qi
. Equation (5) decomposes

aggregate productivity growth into the con-
tributions of, respectively, reallocation of pri-
mary and intermediate inputs, the reallocation
of quota, and farm-level technical efficiency
growth. Now the gap expressions εik − cik and
εij − cij represent differences between the out-
put elasticities and the revenue-shares, but the
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intuition is the same as for the aggregate pro-
ductivity change decomposition (equation 3):
if markups, subsidies, quotas, or other distor-
tions drive a wedge between an input’s value
marginal product and its marginal cost, then
reallocation will contribute to aggregate pro-
ductivity growth.

Discrete-Time Approximation and Dealing
with Entry and Exit

The Petrin and Levinsohn (2010) theory is
developed in continuous time. In the real
world, data is collected at discrete intervals.
We could approximate equation (4) with a
Törnqvist index, which has many desirable
properties (Diewert 1976). However, the
Törnqvist index cannot be used to calculate
the contribution of entering or exiting farms,
since it is impossible to compute farm-level
growth rates for farms that are observed
in only one of the two consecutive periods.
Entering and exiting tobacco farms made up
a significant portion of the changes in total
tobacco production, and so it is important for
us to account for those farms when measuring
aggregate productivity growth.

Diewert and Fox (2010, D-F hereafter)
develop a multilateral index number approach
to measuring the contribution of entering and
exiting firms to aggregate productivity growth.
Since tobacco farms produce multiple outputs
and use multiple inputs,we would ideally define
farm-level productivity using the farm’s entire
vector of input and output prices and quan-
tities. Unfortunately we do not observe all
these prices and quantities–for most inputs we
only observe expenditures. In this situation
D-F suggest constructing firm-level “approx-
imate output and input aggregates” using
(deflated) revenues and costs. For simplicity
of exposition we continue to assume that each
farm has only one output. Thus for each farm
i, approximate productivity in year t, �it is:

(6) �it = PitQit∑
k WiktXikt + ∑

j PijtMjit

+RitQuotait

where all the variables on the right side are
defined above.10

10 In practice we deflate the revenues and expenditures in
equation (6) using state-level price indexes. Here we abstract from
deflators for simplicity of exposition.

Using this definition of farm-level productiv-
ity, an approximation of aggregate productiv-
ity is:

(7) APt =
∑

i PitQit∑
i

(∑
k WiktXikt + ∑

j PijtMjit

+ RitQuotait

)
where the outer summations are over all farms
active in year t. Intuitively, this measures
aggregate productivity as aggregate revenues
over aggregate primary and intermediate input
costs and quota rental costs.11

Let costit denote farm i’s costs in
year t: costit = ∑

k WiktXikt + ∑
j PijtMjit +

RitQuotait . Aggregate productivity in year t
can be decomposed as:

(8) APt =
∑
i∈C

sit�it +
∑
i∈E

sit�it

where sit = costit∑
i costit

is farm i’s share of aggregate
costs in year t, C denotes the set of farms that
continued from t − 5 to t, and E denotes the set
of farms that entered between t − 5 and t. Simi-
larly,we can decompose aggregate productivity
in year t − 5 as:

(9) APt−5 =
∑
i∈C

si,t−5�i,t−5 +
∑
i∈χ

si,t−5�i,t−5

where again C denotes the set of farms
that continue from t − 5 to t, and χ is the
set of farms that exit between t − 5 and t.
ApproximateAPG is then computed as (APt −
APt−5)/APt−5. Combining equations (8) and
(9) and rearranging terms yields:

APGt(10)

=
[∑

i∈C

(sit�it − si,t−5�i,t−5)

]
/APt−5

+
⎡⎣∑

i∈E

sit�it −
∑
i∈χ

si,t−5�i,t−5

⎤⎦/APt−5

The first line of (10) approximates the contri-
bution of continuing farms to APG, and the

11 Note that if we use equation (7) to derive the change in aggre-
gate productivity resulting from an infinitesimal change in all of the
inputs, holding prices constant, the result is equation (2).
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second line approximates the contribution of
farms identified as entrants and exits.

For continuing farms in the pre-buyout
period, the P-L decomposition of APG into
reallocation and technical efficiency growth
in equation (5) can be approximated by the
following Törnqvist index:

APGCt(11)

=
∑
i∈C

Dit

[∑
k

(εikt − cikt)�lnXikt

+
∑

j

(εijt − cijt)�lnMijt

⎤⎦
−

∑
i∈C

Ditciqt�lnQuotait

+
∑
i∈C

Dit�lnωit

where for any variable z, zit = zit+zi,t−5

2 , � is the
first difference operator, and C denotes the
set of continuing tobacco farms. In the post-
buyout period, we drop the quota rental costs
in equation (11) for the same reason we exclude
entrants and exits. After the buyout, all farms
had zero quota,so we cannot measure the (neg-
ative) growth rate of quota for these farms.
Substituting equation (11) into equation (10),
for 1997–2002 we have:

APGt =
∑
i∈C

Dit

[∑
k

(εikt − cikt)�lnXikt(12)

+
∑

j

(εijt − cijt)�lnMijt

⎤⎦
−

∑
i∈C

Ditciqt�lnQuotait

+
∑
i∈C

Dit�lnωit +
∑
i∈C

Uit

+
⎡⎣∑

i∈E

sit�it −
∑
i∈χ

× si,t−5�i,t−5

⎤⎦ /APt−5

where the residual term for continuers∑
i∈C Uit is the difference between the D-F

APG approximation and the P-LAPG approx-
imation for continuers:∑

i∈C

Uit(13)

≡
[∑

i∈C

(sit�it − si,t−5�i,t−5)

]
/APt−5

−
∑
i∈C

Dit

[∑
k

(εikt − cikt)�lnXikt

+
∑

j

(εijt − cijt)�lnMijt

⎤⎦
+

∑
i∈C

Ditciqt�lnQuotait

−
∑
i∈C

Dit�lnωit

Intuitively, the
∑

i∈C Uit term accounts for the
fact that the index of aggregate productiv-
ity in equation (10) includes changes in rel-
ative prices of inputs and output, whereas
the Törnqvist approximation for continuers
in equation (11) holds these prices constant.
Equations (12) and (13) apply to the pre-
buyout period. When we decompose APG for
2002–2007, we drop the quota reallocation
term,

∑
i∈C Ditciqt�lnQuotait , from equations

(12) and (13). As a result, for 2002–2007, the∑
i∈C Uit term also accounts for the fact the

D-F decomposition in equation (10) includes
changes in the costs of quota, but the P-L
decomposition for continuers (for 2002–2007)
does not.

To measure the contribution of each term
to APG in equation (12), we calculate revenue
shares, cikt and cijt , and cost shares sit separately
for each farm in each year. To measure the out-
put elasticities εikt and εijt and the growth rate
of farm-level technical efficiency, we estimate
production functions, as described in the next
section.

Production Function Estimation

We assume Kentucky tobacco farms’ produc-
tion technology can be approximated by a
translog production function. Specifically, we
estimate the following by OLS, OLS with
county fixed effects, and using the Levinsohn
and Petrin (2003, L-P hereafter) estimator,
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which attempts to address the input endo-
geneity issues pointed out by Marschak and
Andrews (1944):12

lnQit(14)

= β0 +
∑

κ

βκlnZiκt +
∑

κ

βκ(lnZiκt)
2

+ 1
2

∑
κ

∑
l �=κ

βκl lnZiκt lnZilt + uit

where Q is output of farm i in year t, Ziκt is
primary or intermediate input κ, and uit is an
error term. For inputs, we use land (acres har-
vested), labor (including hired, contract and
operator labor), capital, intermediates, and live-
stock expenses. The output elasticity for input
κ is then derived as:

(15)
∂lnQ
∂lnZκ

= βκ +
∑

l

βκl lnZilt

Note that this allows the output elasticity to
vary across farms and across years. Given a
set of production function parameter estimates,
our estimate of the log of technical efficiency of
farm i in year t is the estimated intercept plus
the residual: lnωit = β̂0 + ûit . We use lnωit and
the estimated output elasticities in equation
(15) to compute the APG decomposition in
equation (12).

Tobacco Sector Dynamics

The buyout led to a major restructuring of
tobacco production. The total number of Ken-
tucky tobacco farms declined precipitously
from 31,082 in 2002 to 8,113 in 2007.13 At the

12 In order to take account of differences in weather that might
affect productivity, we also estimated specifications in which we
included county-level measures of rainfall and degree-days. How-
ever, the weather data had little effect on our production function
estimates.

13 Our estimate of the total number of Kentucky tobacco farms
in 2007 matches the USDA’s published count for farms with har-
vested tobacco acres. In 1997 and 2002, our totals are slightly
different from the published totals for two reasons. First, published
Agricultural Census totals reflect adjustments for undercoverage,
but the adjustments for undercoverage have changed over time.
Continuing farms that appear in two consecutive Censuses may
have different weights in the published totals,but we have to choose
a single weight for each farm. This also explains why the final num-
bers for 1997–2002 do not exactly match the initial numbers for
2002–2007. Second, our total tobacco farm counts in 1997 and 2002
are slightly different from the published totals because of difficulty
matching longitudinal identifiers between 1997 and 2002,a problem
affecting about 1% of our sample.

same time, the average tobacco farm size in
Kentucky more than doubled between 2002
and 2007. These dramatic changes indicate
the magnitude of the distortion caused by
tobacco quotas. We begin to get a sense of
the reallocative process and extensive distor-
tions by examining the changes in farm number
and size.

We investigate the structural change in
tobacco production by selecting Kentucky
farms in the 1997, 2002, and 2007 Censuses
of Agriculture that harvested tobacco in one
or more of these years. For each time period,
we classify farms into five categories: farm
entrants, tobacco entrants, farm exits, tobacco
exits, and continuers. Consider, for example,
the dynamics between 1997 and 2002. Tobacco
farms which are in the data in 1997 are defined
as farm exits if they disappear from the sam-
ple in 2002 or “tobacco exits” if they continue
farming but do not produce tobacco in 2002.
Similarly, tobacco farms which are in our sam-
ple in 2002 are defined as farm entrants if
they are not in our sample in 1997 or “tobacco
entrants” if they were in the data but did not
produce tobacco in 1997. Farms in our sample
that produced tobacco in both 1997 and 2002
are continuers.

Table 1 shows the dynamics in two periods,
1997–2002 and 2002–2007, for farms in Ken-
tucky that produced tobacco in 1997, 2002, or
2007.14 Columns 1 and 3 report the dynam-
ics for all farms in the sample over the two
time periods, respectively. Columns 2 and 4
report the dynamics for just those farms that
produced tobacco during the indicated time
period. The farm exit rate was constant at
about 40% in both intervals, but the tobacco
exit rate jumped from 22% between 1997–
2002 to 43% between 2002–2007. The table
suggests that the transformation was more
subtle than merely a mass exodus. For exam-
ple, although 25,789 farms stopped producing
tobacco between 2002 and 2007, the Censuses
of Agriculture indicate that 2,820 farms began
producing tobacco. Eighty percent of these
entrants (2,290 farms) appeared to be new
farms, and 20% (530 farms) were active farms
that (re)entered tobacco production.15

14 These include all farms that produced any type of tobacco.
Unfortunately the Census of Agriculture does not distinguish
between types of tobacco.

15 Because farm identifiers in the Agricultural Censuses some-
times change due to operator turnover or consolidation, it seems
likely that some of the farms we identify as entrants and exits were
in fact continuing farms that changed identifiers from one Census
to the next. However, this is not the case for the 530 farms that
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Table 1. Numbers of Continuing, Entering, and Exiting Kentucky Tobacco Farms, 1997–2002
& 2002–2007

(1) (2) (3) (4)

1997–2002 2002–2007

Tobacco Tobacco
Operating Producing Operating Producing

Farms Farms Farms Farms

Initial 53,649 51,309 42,306 31,082
Farm Exits Number 20,818 20,773 16,790 12,547

% Initial (39) (40) (40) (40)
Tobacco Exits Number 11,512 13,242

% Initial (22) (43)
Continuers Number 32,831 19,024 25,516 5,293

% Initial (61) (37) (60) (17)
% Final {80} {65} {84} {65}

Tobacco Entrants Number 2,179 530
% Final {7} {7}

Farm Entrants Number 8,229 8,034 4,770 2,290
% Final {20} {27} {16} {28}

Final 41,060 29,237 30,286 8,113

Note: Operating farms consist of all KY farms that produced tobacco in any of the years 1997, 2002, or 2007. Data source: U.S. Census of Agriculture. Parenthesis
() indicate proportion of initial farm numbers. Curly brackets {} indicate proportion of final farm numbers.

The relative characteristics of surviving
tobacco growers, entrants, and exiters illustrate
the ways in which the tobacco-sector dynamics
changed following the buyout. Table 2 shows
our estimates of the average tobacco acreages
and farm sizes before and after the quota buy-
out. Average tobacco acres harvested on farms
that produced tobacco in both 1997 and 2002
decreased 36 percent, even though the aver-
age size of these farms increased from 82 to 95
acres.16 Interestingly,average tobacco yields on
these continuing farms also decreased slightly.
Farms that produced tobacco in both 2002 and
2007 tended to be larger, and their average
tobacco acreage increased from 8.7 to 12.2.The
average tobacco acreage share of these farms
increased somewhat,and their average tobacco
yield increased significantly from 2,079 to 2,247
pounds per acre. The third and seventh rows
of table 2 show that farms that exited tobacco
production between 1997 and 2002 or between

were in both the 2002 and 2007 Censuses (with the same identifier
in both years), and produced tobacco in 2007 but not in 2002. Some
of these “entrants” in 2007 may have been existing tobacco farms
that were unable to obtain quota in 2002 because quota owners
were using their quota to take advantage of the grower benefit. We
also found similar rates of entry and exit using other data sources.
We provide a detailed description of our robustness checks in a
supplementary appendix online.

16 In comparison, total U.S. burley acreage fell 47 percent
between 1997 and 2002.

2002 and 2007 tended to be smaller than con-
tinuers in the same year, both in terms of farm
size and tobacco acreage, and they tended to
have lower tobacco yields.

The difference between pre- and post-
buyout dynamics may, in part, be due to
farmers who started growing tobacco simply
to claim the grower’s benefit in the buyout.
Notably, entrants between 1997 and 2002 had
lower yields in 2002 than exiters did in 1997. In
contrast, the entrants between 2002 and 2007
were significantly larger, more productive,
and harvested more than double the tobacco
acreage. Finally, more than 87 percent of the
1997–2002 entrants exited tobacco production
after the buyout.

Clearly a significant amount of acreage allo-
cated to tobacco production in Kentucky was
reallocated among farms in the years after
the quota buyout. Under the tobacco pro-
gram, growers could not easily shift tobacco
production across counties in Kentucky. After
the buyout, tobacco acreage shifted from east-
ern to central and western Kentucky, with
every county in the Eastern district decreas-
ing acreage, and some counties in the cen-
tral and western districts increasing acreage.
The Eastern district had the highest aver-
age production costs in 2002. However, the
relationship between production costs and
post-buyout tobacco acreage growth was not
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Table 2. Tobacco Acreage and Farm Size of Continuers, Entrants, and Exits, Kentucky Tobacco
Farms, 1997-2007

Mean Mean Mean Mean
(s.d.) of (s.d.) of (s.d.) of (s.d.) of
Tobacco Total Acreage Tobacco

Panel Acreage Acreage Share of Yield
Period Group Harvested Harvested Tobacco (lbs./acre)

1997 to 2002 Continuers (1997) 7.2 82.0 0.40 1964.8
(11.4) (280.0) (0.40) (588.2)

Continuers (2002) 4.6 94.8 0.31 1909.8
(8.1) (317.2) (0.40) (656.0)

Exiters (1997) 4.8 52.7 0.48 1874.0
(7.4) (185.6) (0.44) (606.6)

Entrants (2002) 4.1 84.3 0.38 1821.3
(6.8) (268.1) (0.43) (684.7)

2002 to 2007 Continuers (2002) 8.7 171.9 0.26 2079.1
(12.9) (507.6) (0.36) (625.4)

Continuers (2007) 12.2 179.1 0.29 2247.1
(21.2) (522.5) (0.36) (661.7)

Exiters (2002) 3.5 74.2 0.35 1837.9
(5.6) (232.6) (0.42) (668.0)

Entrants (2007) 11.0 120.0 0.37 2154.4
(18.3) (292.6) (0.40) (697.2)

Sources: 1997, 2002, and 2007 Censuses of Agriculture (long and short forms). Standard deviations in parentheses.

monotonic.17 Economic theory predicts that
quota rental rates should be higher in coun-
ties with lower marginal costs of produc-
tion (Rucker, Thurman, and Sumner 1995).
The pairwise correlations between county-
level quota rental rates in 1997, 2002, and
2004 and the 2002–2007 county-level growth
of tobacco acreage are, respectively, 0.30, 0.19,
and 0.40. Taken together, the evidence on geo-
graphic variation in tobacco acreage growth,
quota rental prices, and production costs sug-
gests that although costs of production were an
important part of the story, they do not explain
all of the reallocation of tobacco acreage. To
fully understand how the reallocation affected
aggregate productivity growth, we also need to
take account of the reallocation of inputs other
than land. We turn to this growth accounting
next.

Estimation Results

Table 3 shows our estimates of the output
elasticities for Kentucky tobacco farms. They
are evaluated at the sample mean for each of
the three aforementioned production function

17 We provide more detailed analysis of tobacco acreage shifts
and production costs by county and district in a supplemental online
appendix.

Table 3. Mean Output Elasticities, Kentucky
Tobacco Farms, 1997–2007

(1) (2) (3)
OLS with
County
Fixed Levinsohn

Input OLS Effects & Petrin

Land 0.216 0.229 0.224
(0.006) (0.006) (0.006)

Intermediates 0.531 0.519 0.482
(0.005) (0.006) (0.007)

Capital 0.098 0.090 0.088
(0.006) (0.006) (0.024)

Labor 0.324 0.288 0.306
(0.012) (0.012) (0.011)

Livestock 0.064 0.062 0.063
(0.001) (0.001) (0.002)

Sources: 1997, 2002, and 2007 Censuses of Agriculture
Note: All observations in 1997, 2002, and 2007 are pooled to estimate the pro-
duction functions. Sample size is 33,827. The table shows output elasticities
evaluated at the sample mean. Robust standard errors in parentheses.

estimators. Robust standard errors are shown
in parentheses. The parameter estimates are all
statistically significant at standard significance
levels,and the estimates are remarkably similar
across all three estimators. Kentucky tobacco
farms seem to exhibit increasing returns to
scale in this period.18

18 We also estimated a Cobb-Douglas specification of the pro-
duction function, which constrains the coefficients on the squared
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Table 4. Aggregate Productivity Growth Decompositions, Kentucky Tobacco Farms, 1997-2007

1997–2002 2002–2007

Fixed Fixed
OLS Effects L-P OLS Effects L-P

APG Component (1) (2) (3) (4) (5) (6)

Aggregate Productivity
Growth −7.1% −7.1% −7.1% 44.4% 44.4% 44.4%

Input
Reallocation 3.3% 3.3% 3.5% 7.9% 7.6% 8.3%

Quota
Reallocation 6.3% 6.3% 6.3% na na na
Technical Efficiency
Growth −10.1% −10.2% −10.5% −6.3% −6.0% −6.7%
Residual 12.7% 12.8% 12.9% 22.7% 22.7% 22.7%

Farm
Entry & Exit −23.2% −23.2% −23.2% 6.2% 6.2% 6.2%

Tobacco
Entry & Exit 4.1% 4.1% 4.1% 13.9% 13.9% 13.9%

Sources: 1997, 2002, and 2007 Censuses of Agriculture.
Note: Residual for 2002–2007 includes elimination of quota rental costs.
na = not applicable.

Table 4 shows our estimates of aggregate
productivity growth and its decomposition for
Kentucky tobacco farms for 1997 to 2002 and
2002 to 2007 using equation (12). Columns
(1)-(3) report the OLS, fixed effects, and
Levinsohn-Petrin estimates, respectively, for
1997–2002 aggregate productivity growth. The
D-F APG measure shows that the aggre-
gate productivity of Kentucky tobacco farms
decreased by 7.1% between 1997 and 2002.19

The second row shows the total contribution of
input reallocation among continuing tobacco
farms. Using the L-P estimator (column 3),
we find that this reallocation contributed 3.5
percentage points to aggregate productivity
growth. The third row shows the direct con-
tribution of the reallocation of quota among
continuing farms, holding quota rental prices
constant. Continuing tobacco farms reduced
their tobacco production over this period (see
table 2), so they also reduced their usage of
quota, directly contributing 6.3 percentage to
APG. Aggregate technical efficiency growth of

and interaction terms in equation (14) to equal zero. The estimated
output elasticities are similar. However, an F-test strongly rejects
the hypothesis that the squared and interaction terms in (14) are
jointly zero. We present the Cobb-Douglas estimates in the online
supplemental appendix.

19 According to the USDA Agricultural Productivity Accounts,
total factor productivity for all Kentucky farms fell by 4.3% from
1997 to 2002.

continuing farms contributed −10.5 percent-
age points.The fifth row shows that the residual
term specified in equation (13) accounted for
12.9 percentage points of APG. In the sixth
and seventh rows, we disentangle the con-
tributions of farm entrants/exits and tobacco
entrants/exits, respectively, as defined in the
previous section.20 From 1997 to 2002 we find
that net farm entry contributed −23.2 percent-
age points to aggregate productivity growth.
On the other hand, net tobacco entry con-
tributed 4.1 percentage points to APG. The
estimates using OLS and county fixed effects
(columns 1 and 2) are essentially the same,
except that the L-P estimator attributes slightly
more positive growth to input reallocation
and slightly more negative growth to technical
efficiency decline among continuing tobacco
farms.

Negative aggregate productivity growth
between 1997 and 2002–especially the large
contributions of farm net entry and negative
technical efficiency growth among continuers–
warrants some explanation. The “grower ben-
efit” in the quota buyout created incentives
for farmers to become/remain tobacco grow-
ers. The results of these incentives can be seen
in the anomalous characteristics of tobacco

20 To the extent that our “farm entry” and “farm exit” mea-
sures are capturing changes in farm identifiers, those “entrants”
and “exits” are all accounted for by the sixth row of the table.
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entrants between 1997 and 2002, as noted
in the previous section and in table 2. This
may explain the large negative contribution
of farm net entry, as quota owners entered
tobacco production to take advantage of the
grower benefit. The grower benefit also pro-
vided an incentive for tobacco growers to con-
tinue production when they otherwise might
have exited. Since the grower benefit was the
same (per pound of tobacco) for all growers,
it was more likely to affect the exit deci-
sion of less profitable growers. Profitability
and productivity tend to be positively corre-
lated, so less productive growers may have
continued producing in 2002–2004 so that they
could receive the grower benefit. Growers
who were planning to exit once the quota
program ended also had little incentive to
make productivity-enhancing investments in
their tobacco enterprise in the years leading
up to the buyout. Thus anticipation of the
quota buyout may have lowered the aggregate
productivity of tobacco growers between 1997
and 2002.

Columns (4)–(6) of table 4 showAPG and its
decomposition for 2002 to 2007 using equation
(12). In stark contrast to the earlier period, we
find that the aggregate productivity of Ken-
tucky tobacco farms grew by 44% between
2002 and 2007. As expected, after the quota
buyout, input reallocation among continuing
tobacco farms contributed positively, adding
8.3 percentage points to aggregate productiv-
ity growth according to the L-P estimator. As
noted above, we cannot separately measure
the direct APG contribution of the elimina-
tion of quota, because all farms had zero quota
after the buyout. Aggregate technical effi-
ciency growth among continuing tobacco grow-
ers contributed −6.7 percentage points. The
residual term for continuers, which includes
the contribution of eliminating quota, was the
most important factor, accounting for 22.7 per-
centage points of our APG measure. Farm
net entry contributed 6.2 percentage points to
aggregate productivity growth as smaller, less
productive farms exited and larger, more pro-
ductive farms entered. Finally, existing farms
that entered or exited tobacco production con-
tributed 13.9 percentage points to APG after
the buyout. Once again, the results for the
OLS and the county fixed effects estimators
(columns 4 and 5) are similar.

Aggregate productivity growth of 44%
between 2002 and 2007 implies an average
annual productivity growth rate of about 7.6%.
Although this is quite high, it is not implausible

given the distortions tobacco growers faced
before the buyout and the large, rapid consol-
idation of resources that occurred afterwards.
Between 2002 and 2007, the total number of
tobacco-producing farms in Kentucky declined
by 74%, and the average tobacco acreage
per tobacco-producing farm increased 168%–
from 4.4 acres per farm in 2002 to 11.8 in
2007. To put this into perspective, the aver-
age acreage size of all U.S. farms increased
by “only” 96% between 1982 and 2002 (Key
and Roberts 2007). Over the same period,
according to the USDA Agricultural Produc-
tivity Accounts, U.S. agricultural productivity
increased by 38%.21 The production function
estimates in table 3 indicate that tobacco farms
faced increasing returns to scale. Before the
buyout, the restrictions on inter-county trans-
fers of quota prevented some growers from
taking advantage of these returns to scale. Fur-
thermore, in the final years of the tobacco
program quota rental prices in Kentucky aver-
aged 30% of the price of burley leaf, and in
some major tobacco-producing counties the
price of quota rental was as much as 40% of the
price of burley leaf. As table 4 shows, the resid-
ual term including the elimination of quota
rental costs accounted for half of total APG
between 2002 and 2007.

Negative technical efficiency growth among
continuing farms between 2002 and 2007 also
deserves an explanation. As noted above,
our measure of farm-level technical efficiency
growth is the residual from a regression of
deflated revenue on similarly deflated inputs.
This implies that our measure of farm-level
technical efficiency growth includes measure-
ment error due to the differences between
the growth rates of the prices of tobacco and
other outputs and the growth rate of the output
price index. In particular, after the buyout the
price of burley tobacco fell faster than the out-
put price index, adding negative measurement
error to our estimates of technical efficiency
growth.22

21 Of course, returns to scale do not explain all of the produc-
tivity growth of U.S. farms between 1982 and 2002, but the same is
true of Kentucky tobacco farms–other factors also affected aggre-
gate productivity growth. The point of this comparison is that the
massive reallocation of resources in Kentucky tobacco production
happened very quickly after the buyout. To see a similar realloca-
tion of resources at the more aggregated level, one has to look at a
longer time frame.

22 This type of measurement error does not affect our estimate
of overall APG–it only affects the decomposition of APG into
technical efficiency growth versus reallocation.
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Figure 1. Productivity growth of Kentucky tobacco farms 2002–2007, by county

Sensitivity Analysis

The APG decomposition allows us to account
for the contribution of each geographic region
to aggregate productivity growth. Figure 1
shows the contribution of each county to
the aggregate productivity growth of tobacco
farms between 2002 and 2007 using equation
(10). Most counties in eastern Kentucky con-
tributed little to aggregate productivity growth,
whereas many central and western counties
contributed positively. This is consistent with
economic intuition–we expect to see more
aggregate productivity growth in counties to
which resources are being reallocated.

Tobacco Specialization

We have selected farms that produced tobacco
between 1997 and 2007. Most Kentucky
tobacco farms also produce other products.
Although the Agricultural Census data does
not allow us to distinguish between inputs
(other than land) used for tobacco versus other
crops, it does allow us to distinguish between
outputs. Farms that were less dependent on
tobacco revenue might have responded dif-
ferently to the quota buyout, or might have
affected aggregate productivity growth in dif-
ferent ways. To test this hypothesis, we divided
Kentucky tobacco farms into three groups
based on the share of their sales coming
from tobacco: less than 50%, 50 to 90%, and
greater than 90%.23 Row 1 of table 5 shows
the percentages of our sample accounted for
by each group in each period. As shown in
table 2, after the buyout Kentucky tobacco

23 For continuing farms, the tobacco sales share is from the base
year (e.g., 2002 for farms that continue from 2002 to 2007).

farms diversified. The least tobacco-dependent
group increased from 41 to 47% of the sam-
ple, and the most tobacco-specialized group
decreased from 31 to 25% of the sample.

For each tobacco sales share group, we com-
puted its contribution to the total APG of
tobacco farms and to each component of the
P-L decomposition.24 Between 1997 and 2002,
tobacco farms with less than 50% of their sales
from tobacco contributed (positive) 6.2 per-
centage points to APG, counterbalancing the
−6.1 percentage points contributed by farms
with tobacco sales shares of 90% or more. The
least tobacco-dependent farms may have been
better able to reduce their tobacco acreage
in the face of increasing quota rental costs
leading up to the buyout. Our results are con-
sistent with this hypothesis–quota reallocation
among highly tobacco-specialized continuing
farms contributed less than 1 percentage point
to APG, compared to 2.6 and 2.8 percentage
points for the less tobacco-dependent groups.
After the buyout, tobacco farms with less than
50% of their sales from tobacco accounted
for almost all of the APG of tobacco farms
over that period. The least-specialized group
contributed more to total APG after the buy-
out in part simply because they accounted
for a larger share of both tobacco produc-
tion and the total production of tobacco farms.
For the least tobacco-specialized farms, the
direct effect of the elimination of quota rental
costs (plus the price change residual) was the
most important factor in APG after the buy-
out, contributing 19.6 percentage points. The

24 Columns 1-3 of table 5 sum to column 3 of table 4. Columns
4-6 of table 5 sum to column 6 of table 4.
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Table 5. Aggregate Productivity Growth Decomposition by Tobacco Sales Share, Kentucky
Tobacco Farms, 1997–2007

1997–2002 2002–2007

< 50% 50–90% > 90% < 50% 50–90% > 90%
(1) (2) (3) (4) (5) (6)

Proportion of Sample 41% 28% 31% 47% 27% 25%

APG Component

Aggregate Productivity
Growth 6.2% −7.2% −6.1% 43.1% 2.6% −1.2%

Input
Reallocation 1.9% 1.6% 0.0% 5.1% 2.2% 1.0%

Quota
Reallocation 2.6% 2.8% 0.9% na na na
Technical Efficiency
Growth −4.1% −3.1% −3.2% −3.4% −2.1% −1.1%
Residual 7.1% 2.6% 3.1% 19.6% 2.8% 0.3%

Farm
Entry & Exit −5.3% −10.9% −7.1% 4.4% 2.6% −0.8%

Tobacco
Entry & Exit 4.1% −0.3% 0.2% 17.4% −0.9% −0.6%

Sources: 1997, 2002, and 2007 Censuses of Agriculture.
na = not applicable.

second most important factor was the contribu-
tion of tobacco entry/exit, accounting for 17.4
percentage points.

As noted above, our estimates of farm-level
technical efficiency growth include measure-
ment error due to differences between the
growth rates of the prices of tobacco and other
outputs and the growth rate of the output
price index. Since the price of tobacco dropped
more than the output price index after the buy-
out, more specialized tobacco farms are more
affected by this negative measurement error.
Our results are consistent with this hypothesis.
The unweighted average of technical efficiency
growth of the most tobacco-specialized farms
was more negative than the unweighted aver-
age of the least tobacco-dependent farms.25

Conclusions

We study the impact of the U.S. tobacco
quota program and the 2004 quota buyout on
the aggregate productivity growth of tobacco

25 Although less tobacco-dependent farms contributed more to
the decline in aggregate technical efficiency after the buyout, this
was entirely because these farms accounted for a larger share of
the total production of tobacco farms.

farms in Kentucky. We find that aggregate
productivity decreased by 7.1% between 1997
and 2002, but grew by 44.4% between 2002
and 2007. Between 1997 and 2002, technical
efficiency growth of continuing tobacco farms
contributed about −10.5 percentage points to
aggregate productivity growth, while realloca-
tion of resources among continuing tobacco
farms contributed 3.5 percentage points; net
exit contributed −19.1 percentage points.
Reduction and reallocation of the quota rental
costs of continuing tobacco farms (holding
prices constant) directly contributed 6.3 per-
centage points. A residual term which accounts
for changes in relative prices contributed the
remaining 12.9 percentage points. Between
2002 and 2007, technical efficiency growth of
continuing tobacco farms contributed −6.7
percentage points. Reallocation among contin-
uing tobacco farms contributed 8.3 percentage
points, and net entry between 2002 and 2007
contributed 20.1 percentage points. A residual
term,which in this case includes the elimination
of quota rental costs,accounted for the remain-
ing 22.7 percentage points. After the buyout,
tobacco production shifted from eastern to
western Kentucky. Although the number of
tobacco farms decreased in every county, total
tobacco acreage increased in some western
counties.
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Although our empirical results are generally
consistent with economic theory, we interpret
our measurements of entry and exit with some
caution. Although we have conducted several
robustness checks using different datasets and
alternative definitions of entry and exit, we
still find a surprising number of “new farms”
entering tobacco production during a period
in which the demand for U.S. burley tobacco
leaf was in decline. Further research and bet-
ter data on the entry and exit of tobacco farms
(and farm entry and exit more generally) may
be needed.

Our finding that resource reallocation
(including entry and exit) made a large contri-
bution to aggregate productivity growth con-
trasts with previous research on aggregate
productivity growth in U.S. agriculture. Using
aggregate state-level data,Ball et al. (1999) find
that resource reallocation across states had lit-
tle effect on aggregate productivity growth in
agriculture. To the extent that resource real-
location is occurring within states more than
across states, our results highlight the impor-
tance of using highly disaggregated data to
study the sources of aggregate productivity
growth. Our results also show the importance
of using an aggregate productivity decomposi-
tion that allows for gaps between marginal rev-
enue products and marginal costs. In tobacco
production,these gaps were probably the result
of the quota program, which in most states
(including Kentucky) did not allow quota to
be reallocated across counties. In other indus-
tries,these gaps could exist because of markups,
adjustment costs,subsidies,or other distortions.
To the extent that agricultural production–
in the U.S. or anywhere–can be character-
ized as a sector in which subsidies, quotas, or
other distortions are important, reallocation
of resources probably plays an important role
in aggregate productivity growth in the entire
sector.
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AJAE Appendix: “Aggregate and Farm-level Productivity Growth in Tobacco:
Before and After the Quota Buyout"

This supplemental appendix provides detailed descriptions of the data that we use in the

article. The appendix also includes robustness checks for our measures of entry and exit and

estimates of entry, exit, reallocation, and production costs by county and district. Finally,

we provide robustness checks for our production function estimates.

We use confidential farm-level data from the Censuses of Agriculture for 1997, 2002,

and 2007. We also use county-level estimates of burley tobacco quota rental rates in Ken-

tucky obtained from Will Snell at the University of Kentucky. We use USDA price indexes

for farm inputs and output, and capital rental rates for farm machinery from the Bureau

of Labor Statistics (BLS). In the Agricultural Censuses, we observe individual farms, and

we use a numeric farm-level identifier, the POID, to link these farms longitudinally across

censuses. For each farm, in each census year we observe tobacco revenue and pounds and

acres of tobacco harvested. We also observe the revenue from other crops and livestock

and acres harvested of other crops. On the input side, we observe farm-level total expendi-

tures on chemicals, fertilizer, utilities, fuel, livestock expenses, contract labor, hired labor,

seeds/transplants, machinery, the total value of land and buildings, and the number of days

the operator(s) worked off the farm.

For the aggregate productivity growth estimates and their decompositions we use farm-

level revenues and expenditures and farm-level input and output quantities. Except for

land, we substitute real revenues or expenses for quantities. The lack of availability of

price indexes for some variables also dictates that we combine some real variables. To

be consistent, we combine the corresponding nominal expenditures as well. This gives

us a single output and five inputs to production: land, capital, labor, livestock, and other

intermediate inputs. We describe how we construct each variable.

Our measure of farm-level revenue is the total value of sales of all commodities on the

farm. Although we select farms that grow tobacco, very few Kentucky tobacco farms pro-
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duce only tobacco. To obtain a measure of farm-level output Qit , we deflate farm-level

sales of all commodities by USDA’s state-level price index for total sales of farm products

in Kentucky. The price indexes, used to construct the USDA state-level productivity ac-

counts, were provided by Eldon Ball and Sun Ling Wang of USDA’s Economic Research

Service. For more information about the construction of these price indexes and the USDA

productivity accounts, see http://www.ers.usda.gov/Data/AgProductivity/.

Our measure of land input (land) is acres of crops harvested. To obtain a measure of the

farm-level cost of land, we multiply the farm’s acres of crops harvested by the farm-specific

rental rate for land, which we calculate from total acres rented divided by total farmland

rental expenditures, both from the Agricultural Census. If the farm does not rent any land,

then we multiply the acres of crops harvested by the average rental rate for all tobacco

farms in the county.

To compute real labor input (labor), we deflate labor expenditures by the region-specific

farm labor wage rate available from the USDA’s National Agricultural Statistics Service

(NASS). We then combine this hired labor input with the operator’s own labor. For live-

stock expenses (livestock), we use nominal livestock production expenses (which includes

the cost of purchased feed). To obtain a quantity measure, we deflate this by the USDA/ERS

state-specific price index.

We combine several detailed input measures into a single measure of intermediate inputs

(intermediates): fertilizer, agricultural chemicals, seeds/transplants, fuel, and utilities. For

fertilizer, we deflated nominal expenditures by the USDA/ERS state-level fertilizer price

index for Kentucky. Likewise, for real agricultural chemicals and seeds/transplants, we

deflate nominal expenditures by state-specific price indexes for these inputs. For real fuel

and utilities expenditures, we deflate nominal expenditures on these inputs by the state-

specific prices of gas and electricity, available from NASS and the U.S. Energy Information

Administration (EIA), respectively.
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Our final measured input to production is farm machinery and equipment. To compute

the real input, we divide the total value of farm machinery and equipment (observed in the

Agricultural Census) by the state-specific price index for farm machinery and equipment

from the USDA productivity accounts. To compute the cost of this type of capital, we

multiply the farm-level real value by the Bureau of Labor Statistics’ annual rental rates for

farm tractors and for agricultural machinery (excluding tractors) for NAICS industries 111

and 112 (crop and animal production).

Although quota is not an input to production, during the tobacco program, leasing quota

was a cost of production. To measure farm-level quota rental costs, we multiply the farm’s

pounds of tobacco harvested by Will Snell’s estimates of the county- and year-specific

quota rental rates for burley tobacco in Kentucky.

Sample Selection and Sample Weights

To estimate the micro-level productivity of tobacco farms, in 1997 and 2002 we restrict

the sample to farms that received the Agricultural Census long-form questionnaire, since

only the long form asks about production costs in those years. For 1997, we include in

our estimation sample all tobacco farms that responded to the long-form questionnaire.

For 2002 and 2007 we take a slightly different approach to sample selection. Tobacco

acreage and prices declined substantially over this period (Dohlman, Foreman, and Da Pra

2009). In light of these facts, reallocation of resources out of tobacco production was

potentially important for aggregate productivity growth. If tobacco farms stop producing

tobacco entirely, and the land and other resources formerly used for tobacco production

are reallocated for production of other crops, then ignoring these farms would produce a

downward biased estimate of their contribution to aggregate productivity growth. In light of

this fact, for 2002 we select all farms in the 2002 long-form sample that produced tobacco

in that year or in 1997. In the aggregate productivity growth decompositions, farms in our

sample that produced tobacco in 1997 but not in 2002 are counted as exits, and farms that
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produced tobacco in 2002, but not in 1997 are counted as entrants. Likewise, for 2007, we

select all farms that produced tobacco in 2007 or in 2002 and entrants and exits are defined

in the same way.

Because the long-form sample is randomly chosen within each Census year, some con-

tinuing farms will appear in the long-form sample in one Census, but not in the subsequent

Census. For these continuing farms, we cannot compute farm-level productivity growth

rates. We can only compute farm-level productivity growth for continuing farms that ap-

pear in two consecutive long-form samples. When we compute farm-level and aggregate

productivity growth, we appropriately modify the Domar weights in equations (11), (12),

and (13) in the article to include the long-form sampling weights. This means we represent

the population of continuing tobacco farms by weighting the continuing farms by the prod-

uct of their long-form survey weights in the relevant years. Similarly, when we compute

aggregate productivity using the Diewert and Fox index in equations (10) and its decompo-

sition in equations (12) and (13) in the article, we weight the farm-level cost shares sit by

their long-form survey weights in the relevant years.

Measuring Entry and Exit

In the Agricultural Census data, we link farms longitudinally using a numeric identifier, the

POID. This allows us to identify continuing farms as well as entrants and exits. However,

the POID does not allow us to distinguish between a farm that appeared or disappeared in

the data versus a farm that changed numerical identifiers. We investigate the magnitude of

these possibly spurious entries/exits in several ways.

First, we use Farm Service Agency (FSA) Commodity Credit Corporation payment data

to identify all tobacco-producing farms in Kentucky in 2000-2002. We then use these FSA

administrative data to compare tobacco farm entry/exit rates with the Census data. In the

FSA data, the exit rate of tobacco farms in Kentucky between 2000 and 2002 is 24.9%.

Multiplying by 2.5 to get the 5-year change, the rate is 62.2%–basically the same as the
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1997-2002 exit rate that we found in the Agricultural Census, which was 62% (including

farm exits and tobacco exits). The entry rate in the FSA data between 2000 and 2002 is

14.3%. Multiplied by 2.5, the 5-year entry rate is 35.8%–just slightly higher than the 34%

entry rate (including farm entrants and tobacco entrants) from the Agricultural Census.

Second, we calculate the Kentucky tobacco farm entry/exit rates for 2002-2007 using

FSA Compliance data, which the FSA uses to ensure that program participants abide by

the various program restrictions. The total number of Kentucky tobacco farms in the FSA

data is higher than in the Agricultural Census (36,500 in 2002 and 9,342 in 2007), prob-

ably because the FSA uses a different definition of a farm than the Agricultural Census

does. However, the entry and exit rates are very similar to what we calculated from the

Agricultural Censuses. The FSA exit rate from 2002 to 2007 is 85%, and the entry rate is

41%–close to the 83% exit rate and the 35% entry rate that we calculated from the Agri-

cultural Censuses. The FSA data and the Agricultural Census are collected by different

agencies and they use different farm identifiers. The fact that we obtain such similar en-

try and exit rates from these two different data sources increases our confidence in our

estimates.

Third, using the 2008 Agricultural Resource Management Survey (ARMS) tobacco-

specific sample, we also estimate that 23.7% of Kentucky tobacco operators in 2008 had

been producing tobacco less than 7 years (indicating they started after 2002), and 18.8%

had been producing less than 5 years (meaning they started after 2004). The ARMS to-

bacco farm sample was designed to produce a representative sample of tobacco growers,

but it was not necessarily designed to produce a representative sample of tobacco entrants.

The average tobacco acreage of Kentucky burley entrants in the ARMS was 18.4 acres,

and for dark tobacco entrants, the average was 25.4 acres. These numbers are much higher

than the average tobacco acreage of 11.0 for all Kentucky entrants in the 2007 Agricultural

Census and 12.2 for continuers. Therefore we suspect that the 2008 ARMS tobacco farm
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sample undersamples smaller tobacco entrants. This would explain why the entry rates in

the 2008 ARMS are lower than those calculated from the 2007 Agricultural Census.

Entry, Exit, and Reallocation by County and District

As noted in the article, under the tobacco program, growers could not shift tobacco quota

across counties in Kentucky. After the quota buyout we would expect production to shift

from counties with higher marginal costs to counties with lower marginal costs. Figure 1

shows a map of Kentucky with the changes from 2002 to 2007 in total tobacco acreage

harvested in each county, computed from published Agricultural Census data. After the

buyout, tobacco acreage shifted from eastern to western Kentucky, with every county in

the Eastern region decreasing acreage, and many counties in the two western districts in-

creasing acreage. We also checked the county-level estimates of change in tobacco acreage

between 2002 and 2007 against the FSA Compliance data. Figure 2 presents the results

from the FSA data. Although the acreage change pattern is not exactly the same as in

figure 1, it is remarkably similar.

We also examine geographic variation in net exit after the buyout. Figure 3 plots location

within the state against the percentage change in the county’s tobacco acres–where we have

plotted the districts from west to east (left to right in the graph). The size of each bubble

is proportional to the net number of farms that exited tobacco production between 2002

and 2007. The graph shows a greater number of net exits (bigger bubbles) in the eastern

districts than in the western, as one would expect from legitimate entries and exits.

In the article we argue that higher costs of production in eastern Kentucky are part of

why tobacco acreage was reallocated from eastern Kentucky to the central and western

districts of the state. Here we supplement that argument with evidence on per-acre costs

of production. The first row of table 1 shows average total costs per acre (excluding quota

rental costs) for all Kentucky tobacco farms, by agricultural statistical district in 2002.1

Comparing figure 3 to table 1, we see that to some extent the post-buyout reallocation
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of tobacco acreage was associated with costs of production. The Eastern district–which

decreased tobacco acreage in every county between 2002 and 2007–had the highest average

total costs per acre in 2002. However, the relationship between 2002 costs of production

and subsequent tobacco acreage growth is not monotonic. Furthermore, the total per-acre

costs in the different districts have not remained constant relative to one another. Between

2002 and 2007, per-acre costs increased much more in the two western districts.2 By 2007,

average per-acre costs in the Purchase district were higher than per-acre costs in the three

easternmost districts.

Cobb-Douglas Production Function Estimates

In the main article we estimated a translog production function. We also tried estimating

a Cobb-Douglas production function, which constrains the squared terms and interaction

terms in the translog to equal zero:

lnQit = α0 + ε̃alnAit + ε̃nlnNit + ε̃klnKit + ε̃mlnMit + ε̃llnLit +uit(1)

where Q is real revenues of farm i in year t, A is acres harvested, N is labor input, including

hired, contract and operator labor, K is capital, M is intermediate inputs, L is livestock ex-

penses, and the ε̃ j’s are the output elasticities of each of the inputs. We estimated equation

(1) by OLS, OLS with county fixed effects, and using the Levinsohn and Petrin (2003)

estimator. Table 2 presents the results. In general the estimated output elasticities are quite

similar to the estimates from the translog production function. The main differences are

that the labor coefficient estimates are higher in the Cobb-Douglas specification.
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Notes

1Our measure of production costs includes the costs of intermediate inputs (fertilizer,

other chemicals, seeds/transplants, fuel), land, labor, capital, and livestock expenses from

the Census of Agriculture. Labor costs include reported expenses for hired and contract

labor, as well as the imputed value of operator labor. The cost of land includes rental

expenses as well as the imputed value of operator-owned land.

2Note that the figures in table 1 are in nominal dollars, so they do not measure changes

in real costs over time. The point of table 1 is to compare relative costs across districts in

the same year.
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Figures

Figure 1. Change in total tobacco acreage in Kentucky, 2002-2007, by county. Source:

Censuses of Agriculture. Note: Districts are outlined by bold lines.
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Figure 2. Change in total tobacco acreage in Kentucky, 2002-2007, by county. Source:

USDA’s Farm Service Agency (FSA) Compliance data.
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Figure 3. Change in total tobacco acreage and tobacco farms in Kentucky, 2002-2007,

by county. Source: Censuses of Agriculture. Note: The change in total tobacco acres

in the vertical axis is in thousands of acres.
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Tables

Table 1. Average Per Acre Costs of Production, by Agricultural Statistical District,

Kentucky Tobacco Farms

District

Purchase Midwestern Central Northern Bluegrass Eastern

2002

Total 748 716 623 941 702 1311

Hired labor 29 22 16 26 24 39

Fertilizer 27 32 21 27 20 14

Fuel 19 22 14 23 18 21

2007

Total 1473 1102 844 693 770 1233

Hired labor 149 72 30 32 42 42

Fertilizer 89 80 54 40 39 58

Fuel 51 46 33 30 30 35

Sources: 2002 and 2007 Censuses of Agriculture

Note: units are dollars per acre.
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Table 2. Production Function Parameter Estimates, Kentucky Tobacco Farms, 1997-

2007

(1) (2) (3)

OLS with Levinsohn

Input OLS County Fixed Effects & Petrin

Land 0.178 0.196 0.174

(0.006) (0.006) (0.008)

Intermediates 0.538 0.510 0.459

(0.007) (0.007) (0.009)

Capital 0.152 0.145 0.125

(0.006) (0.006) (0.015)

Labor 0.504 0.473 0.463

(0.011) (0.011) (0.011)

Livestock 0.041 0.040 0.043

(0.001) (0.001) (0.002)

Sources: 1997, 2002, and 2007 Censuses of Agriculture

Note: All observations in 1997, 2002, and 2007 are pooled.

to estimate the production fucntions. Sample size is 33,827.

Robust standard errors in parentheses.
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Essay III

Structural Change and the Aggregate
Productivity Growth of U.S. Crop Farms

abstract

This study examines the relationship between farm size and productivity growth. In the
past several decades, crop production in the U.S. has shifted to larger farms. During the
same period, crop productivity has fairly improved. While these two events seem clearly
associated, no studies have fully uncovered the link between them. Using farm-level lon-
gitudinal data from the Censuses of Agriculture from 1987-2007 enables us to decompose
aggregate productivity growth (APG) by farm size, but also by farm entry/exit and by tech-
nology/reallocation. We have three main findings. First, productivity growth is clearly
non-uniform among farm sizes. Between 1987 and 2007, virtually all of the aggregate pro-
ductivity growth of crop farms came from farms with annual sales of more than $500,000.
These farms account for only 8% of U.S. crop farms. A closer look at the APG con-
tributions to productivity growth from surviving farms confirms the findings for all crop
farms: the productivity of mid-size farms has barely increased, and the productivity of
smaller farms has fallen. Finally, the relative importance of technical efficiency growth and
resource reallocation varies over time. Technical efficiency growth seems to be a larger
source of APG for large farms between 1987 and 1997, whereas reallocation across all
sales classes contributes more to APG between 1997 and 2007. Overall, our finding pro-
vides the concrete evidence that farm consolidation has been strongly associated with the
productivity growth of U.S. crop farms. Our finding that resource reallocation through farm
consolidation is nontrivial for the APG of crop farms highlights the usefulness of farm-level
panel data for studying structural changes and APG.

JEL Classification Codes: Q18, Q12, O47.
Keywords: Structural Change, Crop Farms, Productivity Growth.
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Introduction
In recent decades crop production in the U.S. has been shifting to larger crop enterprises

and larger crop farms (Hoppe, MacDonald, and Korb 2010; MacDonald 2011; White and

Hoppe 2012). Over the same period, U.S. agricultural productivity has increased tremen-

dously.1 For example, White and Hoppe (2012), show that for several major field crops,2

between 1992 and 2007 the acre-weighted median enterprise size increased between 52

and 100 percent, depending on the crop. White and Hoppe (2012) also show that for these

same crops, the share of the total value of production accounted for by large and very large

farms (sales of $500,000 or more in 2009 dollars), increased from 22 percent in 1991 to 54

percent in 2009. These shifts of production to larger farms continue an earlier trend docu-

mented by, e.g., Hoppe, MacDonald, and Korb (2010) and MacDonald, Korb, and Hoppe

(2013).

While crop farm size increases and the aggregate productivity growth of U.S. crop farms

are positively correlated, few empirical studies measure the contribution of shifts in farm

size to aggregate productivity growth. Many studies find either that productivity differs

among farm sizes or that farm productivity changes over time (e.g., Maietta 2000; Morrison

et al. 2004; Mosheim and Lovell 2009), but do not show that the rate of productivity growth

differs across farm sizes.3 If shifts in crop farm size contributed to aggregate productiv-

ity growth, one may also wonder how this structural change contributes to the aggregate

productivity growth (APG) of crop farms. Do larger farms use resources more efficiently

than smaller farms? Or did the larger farms adopt technologies that caused their productiv-

ity to grow faster than that of smaller farms? State-level analyses (e.g., Ball et al. (1999),

Huffman and Evenson (2001), Acquaye, Alston, and Pardey (2003) and Ahearn, Yee, and

Korb (2005)) do not capture the relationships between farm size and APG through those

1For example, between 1987 and 2007, total agricultural productivity increased by 33 percent. See the
USDA productivity accounts, available on the internet at http://www.ers.usda.gov/Data/AgProductivity/.

2The crops are corn, soybeans, barley, oats, rice, sorghum, wheat, peanuts, and cotton.
3Moreover, these studies use the fairly small sample sizes, which prevents further disaggregation.
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channels. Aggregate data may mask considerable within-state variation in farm production

activities over time.

This study uses farm-level longitudinal data from the quinquennial Censuses of Agri-

culture from 1987 to 2007. These data enable us to disaggregate crop farm APG by farm

size class. In sum, the purpose of our study is to offer the quantitative measures of the

magnitude, direction, and channels of APG among farm sizes in U.S. crop production.

The rest of the paper is organized as follows. We first review methodologies to compute

APG and then explain the methodology applied in this article. Next, we provide a descrip-

tion of Agricultural Census data and U.S. crop farm trends. Then we discuss the estimation

results and finally, we conclude.

Literature Review on Aggregate Productivity Growth
Decompositions
There are two strands of literature on aggregate productivity decompositions. In the first

strand, beginning with the seminal paper by Baily, Hulten, and Campbell (1992, BHC

hereafter), aggregate productivity growth is decomposed into the output-share-weighted

sum of plant-level technical efficiency growth rates (defined as the “within" term), and the

technical-efficiency-weighted sum of the changes in establishment-level output shares, (the

“between" term) which is usually interpreted as the contribution of reallocation to aggre-

gate productivity growth (e.g., Griliches and Regev 1995; Olley and Pakes 1996; Foster,

Haltiwanger, and Krizan 2001). All of the BHC-like decompositions assume a perfectly

competitive economy with no distortions, adjustment costs, or other frictions. However, in

the presence of distortions–for example, agricultural subsidies–BHC-like decompositions

do not properly measure the contribution of resource reallocation to aggregate productivity

growth (Basu and Fernald 2002; Petrin and Levinsohn 2010).

Petrin and Levinsohn (2012, P-L hereafter) proposes an alternative APG decomposition

that correctly measures the contribution of reallocation to APG in the presence of distor-
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tions, adjustment costs, and other market frictions. P-L and some other recent empirical

studies (Petrin, White, and Reiter 2011; Kwon, Narita, and Narita 2009) used plant-level

manufacturing data for the U.S., Japan, and Chile and found large differences between

APG and the growth rate of a BHC-like index. Studies by Restuccia and Rogerson (2008)

and Hsieh and Klenow (2009) also found that within-industry heterogeneity in distortions

(e.g., taxes or subsidies) may have important effects on aggregate total factor productivity.

The P-L approach calculates aggregate productivity growth as a weighted average of

farm-level growth rates of inputs and technical efficency, and thus requires observations

for each farm in two consecutive periods. However, a significant number of farms appear

to enter or exit between Censuses of Agriculture, so the impact of these entries and exits

on APG is non-negligible (Kirwan, Uchida, and White 2012). Kirwan, Uchida, and White

(2012, KUW hereafter) combine the P-L approach and the index number approach devel-

oped by Diewert and Fox (2010, D-F hereafter) which accounts for the contributions of

entering and exiting farms, to measure the aggregate productivity of tobacco farms in Ken-

tucky between 1997 and 2007. In this paper we apply the KUW method to decompose the

APG of all U.S. crop farms. In the following section, we describe the KUW methodology

in detail.

The KUW Decomposition
First we describe how the P-L approach decomposes aggregate productivity growth (APG)

into the separate contributions of farm-level technical efficiency growth and the reallocation

of resources across farms. 4 The production technology for each farm can be described by:

Qi = F(Xi,ωi).(1)

where Qi is the output of farm i, Xi = (Xi1, . . . ,XiK) is a vector of primary input usage (land,

labor, buildings and machinery) and intermediate input usage (fertilizer, agricultural chem-

4In this section we borrow heavily from the exposition in KUW.
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icals, seeds, fuel, etc.).5 Farm i’s technical efficiency is indexed by ωi. In P-L, aggregate

productivity change is defined as the change in aggregate final demand minus the change

in aggregate costs, where firm i’s final demand Yi is Qi minus the part of Qi used as inter-

mediate input (M) by all other firms j: Yi = Qi−∑ j M ji. For now we assume that crop farm

outputs are not used as inputs by other crop farms, so crop farms’ aggregate productivity

change can be written as the price-weighted change in the aggregate output of crop farms

minus the marginal cost-weighted change in aggregate inputs:

dAP≡ ∑i PidQi−∑i ∑k WikdXik,(2)

where the summation is over all crop farms. Pi is the price of farm i’s output, and ∑i PidQi

is the instantaneous change in aggregate crop farm output holding prices constant. Wik

denotes the marginal cost of the kth input and dXik is the instantaneous change in the use of

that input at farm i. Substituting equation (1) into (2), the change in aggregate productivity

can be decomposed as:

dAP = ∑i ∑k(Pi
∂F

∂Xik
−Wik)dXik +∑i Pidωi,(3)

where the double-summation on the right side of equation (3) measures the contribution of

reallocation, and the second summation, ∑i Pidωi, measures the contribution of technical

efficiency change.6 The technical efficiency term represents the contribution to APG com-

ing from farms producing more output, holding inputs constant. The reallocation term mea-

sures the APG contribution from changes in input reallocation across farms (irrespective of

within-farm changes in technical efficiency). Within the reallocation term, the expression

Pi
∂F

∂Xik
−Wik is the gap between the farm’s value marginal product and its marginal cost for

5Petrin and Levinsohn (2010) distinguish between primary and intermediate inputs. Since this distinction
plays no role in our analysis, we simplify the exposition by using the same notation for both types of
inputs.

6We normalize ∂F
∂ω

= 1.
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input k. With perfectly competitive firms facing no adjustment costs or other frictions or

distortions, marginal revenue products will equal marginal costs, and thus in equilibrium

further reallocation will not contribute to changes in aggregate productivity. In the context

of U.S. crop farms, gaps between marginal revenue products and marginal costs might ex-

ist because of taxes, farm subsidies, costs of adjusting land, capital or labor inputs, credit

constraints, or perhaps other frictions or distortions. If the gap for input k is more positive

(or less negative) for farm i than for some other farm j, then a reallocation of input k from

farm j to farm i contributes positively to aggregate productivity.

Dividing equation (2) by the aggregate value-added of all crop farms and doing some

algebra, we obtain the following expression for the APG of crop farms:

APG = ∑i DidlnQi−∑k ∑i DicikdlnXik,(4)

where Di =
PiQi

∑
N
i=1 PiQi

is the Domar (1961) weight and cik =
WikXik
PiQi

the cost of input k as a

share of the farm’s revenue. Dividing both sides of equation (3) by the aggregate value-

added of crop farms, doing a bit more algebra, and substituting the result in equation (4),

we obtain the following APG decomposition:

APG = ∑i Di ∑k(εik− cik)dlnXik +∑i Didlnωi,(5)

where εik is the elasticity of output with respect to input k, dlnXik is the growth rate of

input k on farm i, and dlnωi is the growth rate of farm i’s technical efficiency, with base

Qi: dlnωi ≡ dωi
Qi

. The double summation gives the APG contribution of reallocation of

inputs and the second summation term is the contribution of farm-level technical efficiency

growth. The intuition for the reallocation term is the same as for the reallocation term in

equation (3): if the gap between the output elasticity and the cost share for input k is more

positive (or less negative) for farm i than for farm j, then reallocation of input k from farm i
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to farm j will contribute positively to APG. Note that while the variables in the reallocation

term may be correlated with the farm’s technical efficiency, they are not the same thing. In

other words, the APG contribution of reallocation from farm j to farm i does not directly

depend on the relative technical efficiencies of those two farms.7

As noted by P-L, the decomposition in equation (5) can be approximated by a Törnqvist

index. However, we cannot measure the APG contribution of entering or exiting farms

with a Törnqvist index, because it requires measurements in two consecutive periods for

each farm. As we show below, we find a significant number of entering and exiting crop

farms in the Census of Agriculture, so we want to account for these farms in our APG

measure. The D-F multilateral index number approach provides a way of measuring the

APG contribution of entering and exiting farms. In the ideal case, D-F measures a farm’s

productivity using its entire vector of inputs and outputs and their prices. However, in the

Census of Agriculture, for most inputs we only observe expenditures. In the absence of

a complete set of prices and quantities, D-F suggest using deflated revenues and costs to

construct farm-level “approximate output and input aggregates." Following KUW, for each

farm i, we approximate productivity in year t by:

Πit =
PitQit

∑k WiktXikt
,(6)

where P, Q, W , and X are as defined above.8 Using equation (6) to approximate farm-level

productivity, an approximation of aggregate productivity is:

APt = ∑i
∑k WiktXikt

∑i ∑k WiktXikt
Πit =

∑i PitQit
∑i ∑k WiktXikt

,(7)

7This is why the “between" term in BHC-like decompositions does not measure the contribution of reallo-
cation to APG.

8For simplicity, here we assume that each farm has only one output and we abstract from inflation. In the
empirical analysis we use farm-level revenues, and we deflate revenues and expenditures in equation (6)
with state-level price indexes.
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where the outer summations are over all crop farms in year t. This approximates aggregate

productivity with aggregate revenues divided by aggregate input costs. Note that if we

differentiate (7), we get equation (2), the definition of aggregate productivity change. D-F

also show that aggregate productivity in year t can be decomposed as:

APt = ∑i∈C sitΠit +∑i∈E sitΠit ,(8)

where sit =
∑k WiktXikt

∑i ∑k WiktXikt
is farm i’s share of the total costs of all crop farms active in year t;

C is the set of farms that remained active from year t−5 to year t; and E is the set of farms

entering between years t−5 and t. Aggregate productivity in year t−5 can be decomposed

as:

APt−5 = ∑i∈C si,t−5Πi,t−5 +∑i∈χ si,t−5Πi,t−5,(9)

where χ is the set of farms exiting between years t− 5 and t. Approximate APG can be

computed as (APt−APt−5)/APt−5. Combining equations (8) and (9) we have:

APGt = [∑i∈C(sitΠit− si,t−5Πi,t−5)]/APt−5

+[∑i∈E sitΠit−∑i∈χ si,t−5Πi,t−5]/APt−5.
(10)

The first line of (10) gives continuing farms’ approximate APG contribution, and the second

line is the APG contribution of net entry/exit. For continuing farms in year t− 5, the P-L

decomposition of APG into reallocation and technical efficiency growth in equation (5) can

be approximated by the following Törnqvist index:

APGCt = ∑i∈C Dit [∑k(ε ikt− cikt)∆lnXikt

+∑i∈C Dit∆lnωit ,
(11)
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where for any variable z, zit =
zit+zi,t−5

2 , ∆ denotes the first differences operator, and C is the

set of continuing farms. Substituting equation (11) into equation (10) yields:

APGt = ∑i∈C Dit ∑k(ε ikt− cikt)∆lnXikt

+∑i∈C Dit∆lnωit +∑i∈C Uit

+[∑i∈E sitΠit−∑i∈χ si,t−5Πi,t−5]/APt−5,

(12)

where the term ∑i∈C Uit is the difference between the D-F APG approximation and the P-L

APG approximation for continuers:

∑i∈C Uit ≡ [∑i∈C(sitΠit− si,t−5Πi,t−5)]/APt−5

−∑i∈C Dit ∑k(ε ikt− cikt)∆lnXikt

−∑i∈C Dit∆lnωit .

(13)

We call this the “approximation residual" for continuers. The ∑i∈C Uit term accounts for

the fact that the index of aggregate productivity in equation (10) includes changes in rel-

ative prices of inputs and output, whereas the Törnqvist approximation for continuers in

equation (11) holds these prices constant. Ideally we would hold these prices constant for

all farms, since our goal is to measure the growth in crop farms’ aggregate output minus the

growth in inputs used to produce those outputs. However, we cannot hold farm-level prices

constant for entering or exiting crop farms. Thus the KUW decomposition is a compromise

between two conflicting goals: including all crop farms in the sample and holding prices

constant across two consecutive periods. To measure the contribution of each term to APG

in equation (12), we calculate revenue shares cikt and cost shares sit separately for each

farm in each year. To measure the output elasticities εikt and the growth rate of farm-level

technical efficiency, we estimate production functions, as described in the next section.

Production Function Estimation
We assume crop farms’ technology can be approximated by a translog functional form:
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lnQit = β0 +∑k βklnXikt +∑k βk(lnXikt)
2

+1
2 ∑k ∑l 6=k βkllnXikt lnXilt +uit ,

(14)

where Q is output of farm i in year t, Xikt is input k, and uit is an error term. For inputs,

we use land (acres harvested), labor (including hired, contract and operator labor), capi-

tal, and intermediates (including fertilizer, pesticides, fuel, seeds/transplants, and livestock

expenses). We derive the output elasticity for input k as:

∂ lnQ
∂ lnXik

= βk +∑l βkllnXilt .(15)

This allows the output elasticities to vary across farms and over time. We estimate the

parameters of the production function using OLS, OLS with county fixed effects, and the

Levinsohn and Petrin (2003, L-P hereafter) estimator.9 Given a set of production function

parameter estimates, our estimate of the log of technical efficiency of farm i in year t is

the estimated intercept plus the residual: lnωit = β̂0 + ûit . We use lnωit and the estimated

output elasticities to calculate the APG decomposition in equation (12).

Data Description
We use confidential farm-level data from the quinquennial Censuses of Agriculture for

1987-2007. By using numeric farm-level identifiers, we link farms longitudinally across

censuses. We then select “crop farms", defined as a farm with the positive total value of

production (TVP) of any crops. To construct variables for estimation, we follow KUW’s

variable construction.10 For each farm we observe TVP from livestock and crops and acres

9The L-P estimator is designed to address the well-known input endogeneity problem pointed out by
Marschak and Andrews (1944). It corrects for the simultaneous determination of inputs and unobserved
productivity shocks by using a proxy variable. In agriculture, input choices are likely correlated with
weather shocks after the planting period. We therefore use seed input as a proxy, which is determined at
the beginning of production.

10The supplemental appendix in KUW provides a more detailed description.
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harvested for crops. We also observe farm-level expenditures on chemicals, contract labor,

hired labor, fertilizer, fuel, seeds/transplants, utilities, livestock expenses, machinery, and

the total value of land and buildings, and the number of days the operator(s) worked off

the farm. For the production functions estimated in equation (14) we construct farm-level

output and input quantity variables by substituting real revenues and expenses, except for

land.11 To construct the real values of farm output, labor and capital, we deflate the cor-

responding nominal variables with USDA price indexes for output and labor and capital

rental rates for farm machinery from the Bureau of Labor Statistics. The other inputs —

chemicals, fertilizer, seeds/transplants, utilities, and livestock expenses — are combined

into a single measure of intermediate inputs after deflating by the corresponding USDA

state-specific price indexes. This gives us a single output and four inputs to production:

land, capital, labor, and intermediate inputs. For the APG estimates and their decomposi-

tions in equation (12) we compute the share variables for these four inputs from TVP and

expenditures.

U.S. Crop Farm Dynamics in the Census of Agriculture
Table 1 shows the total number of crop farms and the percentage of crop farms by size class

in each census year from 1987 to 2007. The total number of crop farms fluctuated between

about 820,000 and 907,000. The increase in the number of farms classified as crop farms

between 1992 and 1997 is due to the administrative change from the SIC classification

system to the NAICS system in 1997.12 In 2007, NASS expanded the sampling frame for

the Census of Agriculture to increase the coverage of small farms. This expansion explains

the large increase in the total number of crop farms between 2002 and 2007. In table 1, we

classify farms into 5 size classes based on each farm’s TVP.13

11The relative prices included in these measures of inputs and outputs may proxy for quality.
12In 1997, the Census Bureau collected the data based on the SIC system, but estimates were published under

the NAICS system. If we classify farms based on the SIC system, there were only 836,333 crop farms
in 1997, instead of 897,572. For consistency, we use the SIC based farm sample for estimation with the
1992-1997 data, while using the NAICS based farm sample with the 1997-2002 data.

13All dollar figures are in 1996 dollars.
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The percentage of crop farms in the categories with TVP less than $10,000 and between

$100,000 and $250,000 remains stable between 1987 and 2007, while the percentage of

crop farms in the intermediate category with TVP between $10,000 and $100,000 declined

steadily, from a total of about 45% of farms to about 34%. Over the same period, the per-

centage of crop farms in the next largest size class (TVP between $250,000 and $500,000)

more than doubled from 3% to 8%, and the percentage of farms in our largest size class

quadrupled, from 2% to 8%.14 These patterns are consistent with previous research show-

ing that increasing shares of crop production and the value of crop production shifted to

larger farms and larger crop enterprises over the past 2 decades (Hoppe, MacDonald, and

Korb 2010; MacDonald 2011; White and Hoppe 2012).

Although the total number of crop farms has been relatively stable in recent decades,

this masks a significant amount of turnover at the farm level, at least in the data. Previous

research has documented a significant amount of farm entry and exit in U.S. agriculture.

Using the longitudinally-linked Censuses of Agriculture from 1978 to 1997, Hoppe and

Korb (2006) found that 5-year exit rates for all U.S. farms over this period were between

33 and 40%. Using the same data, Ahearn, Korb, and Yee (2009, AKY hereafter) find

that 5-year entry rates for all U.S. farms varied between 32 and 39% over the same period.

Table 2 presents our estimates of 5-year crop farm entry and exit rates by size class from the

1987-2007 Censuses of Agriculture. 15 Although we extend the analysis to 2002 and 2007

14Given that many small farms were added to sampling frame in the 2007 Agricultural Census, the actual
increase in the share of these two large farm categories was probably greater than 9 percentage points.

15As in AKY and KUW, we create longitudinal linkages and define entry and exit rates in the Census of
Agriculture based on farm-level numeric identifiers. For the 1987-1992 and 1992-1997 linkages we use
the Census File Number (CFN). After 1997, when USDA’s NASS started collecting the Census of Agri-
culture, the CFN was replaced by the POID. We use the POID for 1997-2002 and 2002-2007 longitudinal
linkages. If a crop farm appears in the Census in year t, but that farm’s numeric identifier does not appear
in the Census in year t+5, we define that as a farm exit. Likewise, if a crop farm appears in the Census in
year t, but that farm’s identifier did not appear in the Census in year t−5, we define that as a farm entry.
As noted in AKY, the numeric identifiers in the Census can change for a variety of reasons. If a farm’s
ownership changes, either because the owner dies or sells the farm, the numeric identifier may change or
it may stay the same. For example, if an inherited farm is split into two farms, the resulting farms may get
two new idenfiers. In this case the split would appear as an exit and two entrants. To take another exam-
ple, a farm that is sold may be merged with an existing farm. If the resulting larger farm keeps one of the
original identifiers, this would appear as an exit with no corresponding entry. Unfortunately the Census of
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and focus only on crop farms, our findings are broadly consistent with previous research.

The overall crop farm entry and exit rates over this period were relatively stable, ranging

from 35 to 40% for entry and 40 to 44% for exit.16 By sales class, the entry and exit rates

range from 20 to 50%. The exit rate is always higher than the entry rate for farms with total

value of production between $10,000 and $500,000. Until 2002, both the entry and exit

rates tend to decline with farm size for farms with TVP less than $500,000. Between 2002

and 2007, entry and exit rates declined uniformly with farm size. In summary, the data

show more turnovers in smaller farm operations. Also, the net exit rate declines with farm

size, except for the 2002-2007 period. Overall the results in tables 1 and 2 are consistent

with previous evidence of U.S. crop farm consolidation over time.

Estimation Results
Table 3 shows our estimates for the elasticities in (15) using the LP estimator, evaluated at

the sample mean for each 5-year panel.17 The output elasticity for land is somewhat higher

in 2002-2007 compared to earlier years. Otherwise the estimates are stable over time.

The top row of table 4 shows our estimates of the APG of crop farms (the left side

of equation 10) for each 5-year period from 1987 to 2007. We observe that aggregate

productivity decreased by 1.1% between 1987 and 1992 and by 3.7% between 1997 and

2002. In contrast, aggregate productivity increased by 3.1% between 1992 and 1997 and by

Agriculture does not allow us to distinguish between mergers and splits of existing operations as opposed
to farm operations simply going out of business or the entry of entirely new operations. However, we can
still measure the aggregate contribution of these types of farms dynamics — entries, exits, merges, and
splits — to productivity growth. If entrants and “new" farms resulting from a split are aggregately more
(less) productive than farms that exited and the original farms that split, then these farms will contribute
positively (negatively) to our measure of APG.

16We calculate entry and exit rates within each 5-year panel using a consistent definition of crop farms. As
noted above, in 1997 the Census of Agriculture was collected under the SIC system but published under
the NAICS system, so in 1997 farms were given and SIC code as well as a NAICS code. For the 1992-
1997 entry and exit rates in table 2 we included farms classified as crop farms under the SIC system. For
the 1997-2002 panel, we used farms classified as crop farms under the NAICS system.

17Estimations are conducted by pooling observations for each of the four panels. We also estimated the
production function in (14) by OLS, OLS with county fixed effects, and LP with state fixed effects, and
all of these with weather variables (temperature and rainfall) to account for unobservable shocks which
may influence input choices. The output elasticity for land tends to be slightly higher when we include
state or county fixed effects, but the other estimates are remarkably robust across estimators.
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10.1% between 2002 and 2007. Whether these findings are surprising or not remains open

to discussion. The USDA/ERS aggregate total factor productivity estimates for all U.S.

farms show positive growth during the corresponding four periods.18 However, our sample

includes only crop farms, while the USDA productivity accounts represent all farms, in-

cluding livestock farms. More importantly, these aggregate estimates mask a great deal of

heterogeneity at the farm level. The last 6 rows of table 4 show our estimates of the APG

contribution of the farms in each of 6 size classes.19 Small and intermediate size crop farms

— those with TVP less than $500,000 — contributed negatively to APG in every 5-year

period between 1987 and 2007. In contrast, large farms with TVP between $500,000 and

$1 million contributed positively except between 1997 and 2002. Farms with TVP over $1

million accounted for most of the APG between 1987 and 2007.

These findings highlight an important limitation of previous research on the aggregate

productivity growth of U.S. farms. Productivity growth is not uniform across farm size

classes. Crop productivity growth between 1987 and 2007 has come primarily from farms

with TVP more than $500,000, which account for less than 8% of U.S. crop farms. On the

other hand, farms with TVP less than $500,000 have contributed negatively to productivity

growth over this period.

Next, we show the relative contributions of continuing farms (farms that continue from

one census to the next) and entering/exiting farms to APG as defined in equation (12).

Column 1 in table 5 shows the contributions of farms continuing crop production from one

census to the next. This column represents the first two rows of equation (12). Column 2

shows the APG contribution of entering and exiting crop farms in the last row of equation

(12). Column 3 reproduces the total APG estimates from table 4. Each of the 4 panels of

the table present the APG contributions from crop farms by size class. Within each panel

18See the USDA productivity accounts at http://www.ers.usda.gov/Data/AgProductivity/.
19Since larger farms account for a large sales share of crop production (over 50% in 1997, 2002 and 2007),

we have further divided the largest size class into farms with TVP between $500,000 and $1 million and
farms with TVP greater than $1 million.
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we have collapsed the bottom 3 size classes in table 4 into one category — farms with total

value of production less than $250,000. Note also that the first 4 rows within each 5-year

panel add up to the “All crop farms" row for the same 5-year period. For continuing farms,

we classify the farm based on its total value of production in the ending year of the panel.

So a farm with TVP of $249,000 in 1987 and $251,000 in 1992 (all in 1996 dollars) would

be classified in the higher size class.

The disaggregated results in table 5 are similar to the more aggregated results in table

4. That is, larger farms contributed positively to aggregate productivity growth in every

period, whether we look at continuing large farms or net entry of large farms. In addition,

we find in most cases that, within the same sales class, continuing farms contribute more to

productivity growth than the net entries do. This seems reasonable given that in all but the

smallest size class, most farms are continuers (see table 2).

Finally, we discuss the relative importance of technical efficiency growth and resource

reallocation for APG. Table 6 shows our results for the APG decomposition for continuing

crop farms into the contributions of technical efficiency growth and resource reallocation,

as defined in the first two rows of equation (12). We provide the lower and upper bounds

of the contributions of technical efficiency growth and reallocation in columns 1 and 2,

respectively, because we cannot measure price change effects in the P-L APG estimates

represented by the residual term (i.e., the U term in equation (12)). Column 3 reproduces

the total APG estimates for continuing farms from column 1 of table 5. For example,

column (1) in the first row of the table 6, [-9.9%, -1.6%], shows the possible range of the

technical efficiency growth contribution of the smallest class of farms between 1987 and

1992.

In most cases the bounds for the APG contributions of both technical efficiency growth

and reallocation both cross zero. Nevertheless, two contrasting findings are worth not-

ing. First, the relative importance of each source of aggregate productivity growth varies

over time. Technical efficiency growth seems a more important source of APG between
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1992 and 1997, while reallocation seems more important between 1997 and 2007. Second,

technical efficiency growth seems to be a larger source of APG for larger farms between

1987 and 1997, while resource reallocation across all sales classes contribute more to APG

between 1997 and 2007.

The importance of resource reallocation within and between farms is further observed

by separately looking at ∆lnXikt in equation (12). Table 7 shows the average growth rate

of the four inputs by sales class in 1987-2007. Overall, the use of intermediate and capital

inputs has increased steadily, whereas farmland size has remained stable and labor input

has decreased. This is consistent with the conventional wisdom that crop production has

changed from labor-intensive farming to the farming with the heavier use of machinery,

chemical materials and fertilizer. Input use by sales class provides the additional finding

that farmland has been concentrated to larger farms. This finding with the results in table 4,

5 and 6 indicates that farm consolidation has been strongly associated with the productivity

growth of U.S. crop farms. In contrast, the smallest farms seem to have attempted to

introduce capital and material intensive production activities on shrinking acreage. These

findings are one of our major contributions to the literature because either the methodology

of aggregate productivity estimation with BHC-like decompositions or the state-level data

analysis is not able to reveal such reallocation behaviors within and between farms.

Conclusions
In the past several decades, crop production in the U.S. has shifted to larger farms. Dur-

ing the same period, the aggregate productivity of crop farms has also grown significantly.

While these two events seem clearly associated, no studies have fully uncovered the link

between them. Using farm-level longitudinal data from the Censuses of Agriculture from

1987-2007 enables us to decompose the aggregate productivity growth (APG) of crop farms

into the separate contributions from net entry/exit, technical efficiency growth, and reallo-

cation for each of several farm size classes.
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We have three main findings. First, productivity growth is clearly non-uniform among

farm sizes. Between 1987 and 2007, virtually all of the aggregate productivity growth of

crop farms came from farms with annual sales of more than $500,000. These farms account

for only 8% of U.S. crop farms. In contrast, the overall APG contributions of farms with

sales less than $500,000 to crop productivity growth are negative. A closer look at the

APG contributions to productivity growth from surviving farms confirms the findings for

all crop farms: the productivity of mid-size farms (annual sales between $250,000 and

$500,000) has barely increased, and the productivity of smaller farms has fallen. Finally,

the relative importance of technical efficiency growth and resource reallocation varies over

time. Technical efficiency growth seems to be a larger source of APG for large farms

between 1987 and 1997, whereas reallocation across all sales classes contributes more to

APG between 1997 and 2007. Overall, our finding provides the concrete evidence that

farm consolidation has been strongly associated with the productivity growth of U.S. crop

farms.

Our finding that resource reallocation through farm consolidation is nontrivial for the

APG of crop farms highlights the usefulness of farm-level panel data for studying structural

changes and APG. Since farm-level productivity is positively correlated with farm-level

profitability through resource reallocation, our findings also suggest one of the proximate

causes of structural change in U.S. crop production: larger farms tend to be more profitable.
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Tables

Table 1. Percentage of U.S. Crop Farms by Size Class, 1987-2007

1987 1992 1997 2002 2007

Total Number of Crop Farms 904,490 858,396 897,572 819,684 907,205

Total Value of Production (TVP)

0 < TVP <=$10,000 38% 35% 33% 33% 38%

$10,000 < TVP <= $100,000 45% 43% 41% 40% 34%

$100,000 < TVP <=$250,000 12% 14% 14% 14% 13%

$250,000 < TVP <= $500,000 3% 5% 7% 8% 8%

TVP > $500,000 2% 3% 4% 5% 8%

Notes: Crop farms were farms classified as such based on the SIC system until

1992 and based on the NAICS system for 1997-2007.
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Table 2. Entry and Exit Rates of U.S. Crop Farms by Size Class, 1987-2007

1987-92 1992-97 1997-02 2002-07

Overall Entry 35% 37% 38% 40%

Exit 41% 39% 44% 40%

Total Value of Production (TVP)

0 < TVP <=$10,000 Entry 42% 47% 40% 51%

Exit 49% 46% 51% 46%

$10,000 < TVP <=$100,000 Entry 32% 34% 30% 34%

Exit 38% 37% 43% 39%

$100,000 < TVP <=$250,000 Entry 25% 26% 24% 23%

Exit 28% 30% 36% 32%

$250,000 < TVP <= $500,000 Entry 23% 24% 23% 21%

Exit 26% 26% 33% 27%

TVP > $500,000 Entry 28% 28% 26% 20%

Exit 30% 29% 32% 20%

Notes: The entry rate for each 5-year panel is the percentage of crop farms in the

size class in the final year of a panel which could not be linked to a farm in the

previous Census. The exit rate is the percentage of crop farms in a size class in the

initial year of a panel that could not be linked to a farm in the subsequent Census.

See footnote 13 for calculation of entry/exit rates under different industry classification

systems of SIC and NAICS.

Sources: 1987-2007 Censuses of Agriculture.
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Table 3. Mean Output Elasticities, U.S. Crop Farms, 1987-2007

Input 1987-92 1992-97 1997-02 2002-07

Land 0.041 0.054 0.068 0.134

(0.001) (0.001) (0.001) (0.001)

Intermediates 0.676 0.640 0.648 0.657

(0.001) (0.002) (0.002) (0.002)

Capital 0.107 0.082 0.096 0.079

(0.003) (0.004) (0.004) (0.003)

Labor 0.231 0.261 0.268 0.223

(0.001) (0.001) (0.001) (0.001)

The table shows output elasticities evaluated at the sample

mean for each 5-year panel. Robust standard errors in parentheses.

Sources: 1987-2007 Censuses of Agriculture.
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Table 4. Aggregate Productivity Growth Contributions by Size Class, U.S. Crop

Farms, 1987-2007

1987-92 1992-97 1997-02 2002-07

Total -1.1% 3.1% -3.7% 10.1%

Total Value of Production (TVP)

0 < TVP <=$10,000 -0.7% -0.4% -0.4% -0.6%

$10,000 < TVP <=$100,000 -2.7% -1.6% -2.3% -2.5%

$100,000 < TVP <=$250,000 -1.5% -0.5% -2.1% -2.3%

$250,000 < TVP <= $500,000 -0.01% -0.1% -1.4% -0.3%

$500,000 < TVP <= $1 million 1.1% 1.2% -0.6% 3.7%

TVP > $1 million 2.7% 4.5% 3.0% 12.2%

Sources: 1987-2007 Censuses of Agriculture.
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Table 5. Aggregate Productivity Growth Contributions from Continuing and Net En-

try Farms by Size Class, U.S. Crop Farms, 1987-2007

Continuous Entry Total

Farms & Exit APG

Years Size Class (1) (2) (3)

1987-92 TVP <= $250,000 -2.5% -2.4% -4.9%

$250,000 < TVP <= $500,000 -0.04% 0.03% -0.01%

$500,000 < TVP <= $1 million 0.6% 0.6% 1.1%

TVP > $1 million 1.5% 1.2% 2.7%

All crop farms -0.5% -0.7% -1.1%

1992-97 TVP <= $250,000 -0.1% -2.4% -2.5%

$250,000 < TVP <= $500,000 0.2% -0.3% -0.1%

$500,000 < TVP <= $1 million 0.7% 0.5% 1.2%

TVP > $1 million 2.4% 2.1% 4.5%

All crop farms 3.2% -0.2% 3.1%

1997-02 TVP <= $250,000 -0.5% -4.2% -4.8%

$250,000 < TVP <= $500,000 -0.1% -1.3% -1.4%

$500,000 < TVP <= $1 million 0.02% -0.6% -0.6%

TVP > $1 million 2.7% 0.4% 3.0%

All crop farms 2.0% -5.8% -3.7%

2002-07 TVP <= $250,000 -3.8% -1.6% -5.5%

$250,000 < TVP <= $500,000 -0.8% 0.5% -0.3%

$500,000 < TVP <= $1 million 2.3% 1.5% 3.7%

TVP > $1 million 9.0% 3.1% 12.2%

All crop farms 6.7% 3.5% 10.1%

Sources: 1987-2007 Censuses of Agriculture.
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Table 6. Aggregate Productivity Growth Decomposition by Size Class, U.S. Crop

Farms, 1987-2007

Technical APG Continuous

Efficiency from Farms

Growth Reallocation APG

Years Size Class (1) (2) (3)

1987-92 TVP <= $250,000 [ -9.9%, -1.6% ] [ -0.9%, 7.4% ] -2.5%

$250,000 < TVP <= $500,000 [ -0.5%, 2.1% ] [ -2.1%, 0.4% ] -0.04%

$500,000 < TVP <= $1 million [ -0.3%, 2.1% ] [ -1.5%, 0.9% ] 0.6%

TVP > $1 million [ 0.7%, 3.7% ] [ -2.2%, 0.8% ] 1.5%

All crop farms [ -10.0%, 6.3% ] [ -6.7%, 9.5% ] -0.5%

1992-97 TVP <= $250,000 [ -1.7%, -1.3% ] [ 1.2%, 1.6% ] -0.1%

$250,000 < TVP <= $500,000 [ 0.7%, 1.1% ] [ -0.9%, -0.5% ] 0.2%

$500,000 < TVP <= $1 million [ -0.02%, 2.4% ] [ -1.7%, 0.7% ] 0.7%

TVP > $1 million [ 5.7%, 6.7% ] [ -4.3%, -3.3% ] 2.4%

All crop farms [ 5.1%, 8.5% ] [ -5.3%, -1.9% ] 3.2%

1997-02 TVP <= $250,000 [ -9.3%, -4.2% ] [ 3.6%, 8.7% ] -0.5%

$250,000 < TVP <= $500,000 [ -1.8%, -1.4% ] [ 1.3%, 1.7% ] -0.1%

$500,000 < TVP <= $1 million [ -0.6%, -0.4% ] [ 0.5%, 0.6% ] 0.02%

TVP > $1 million [ -0.7%, 3.5% ] [ -0.8%, 3.4% ] 2.7%

All crop farms [ -8.0%, -6.8% ] [ 8.9%, 10.1% ] 2.0%

2002-07 TVP <= $250,000 [ -15.4%, -5.9% ] [ 2.0%, 11.5% ] -3.8%

$250,000 < TVP <= $500,000 [ -3.3%, -1.5% ] [ 0.7%, 2.5% ] -0.8%

$500,000 < TVP <= $1 million [ -0.6%, -0.2% ] [ 2.4%, 2.9% ] 2.3%

TVP > $1 million [ -2.4%, 8.7% ] [ 0.3%, 11.4% ] 9.0%

All crop farms [ -10.5%, -9.9% ] [ 16.6%, 17.2% ] 6.7%

Sources: 1987-2007 Censuses of Agriculture.
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Table 7. The Average Growth Rate of Inputs by Size Class, U.S. Crop Farms, 1987-

2007

Inter-

Farmland mediates Capital Labor

Years Size Class (1) (2) (3) (4)

1987-92 TVP <= $250,000 -7.2% -4.5% -4.1% -23.7%

$250,000 < TVP <= $500,000 13.3% 27.5% 19.3% -4.3%

$500,000 < TVP <= $1 million 18.6% 37.9% 24.5% 8.3%

TVP > $1 million 19.9% 40.5% 32.8% 23.5%

All crop farms 1.6% 9.7% 6.2% -13.5%

1992-97 TVP <= $250,000 -9.8% -12.3% -8.8% -22.4%

$250,000 < TVP <= $500,000 9.8% 18.5% 16.6% 3.1%

$500,000 < TVP <= $1 million 17.4% 29.2% 20.5% 14.3%

TVP > $1 million 20.5% 35.2% 17.0% 16.5%

All crop farms 2.4% 6.7% 5.0% -6.3%

1997-02 TVP <= $250,000 -7.8% -1.9% -1.6% -22.4%

$250,000 < TVP <= $500,000 6.3% 18.4% 18.0% -22.6%

$500,000 < TVP <= $1 million 15.0% 36.6% 29.3% -7.4%

TVP > $1 million 19.1% 55.7% 37.0% 11.2%

All crop farms 4.0% 18.9% 14.8% -14.7%

2002-07 TVP <= $250,000 -8.1% 16.6% 8.4% -9.0%

$250,000 < TVP <= $500,000 0.2% 35.1% 13.9% -8.6%

$500,000 < TVP <= $1 million 6.1% 41.9% 20.0% -0.6%

TVP > $1 million 14.0% 46.7% 25.7% 14.6%

All crop farms -1.4% 27.9% 13.6% -4.4%

Sources: 1987-2007 Censuses of Agriculture.
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