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ABSTRACT

A single server queue with general service time distribution is considered when
the input is a Markov modulated Poisson process (MMPP). An algorithmic solution
to the transform of the stationary delay and queue length distributions is summa-
rized, and recursive closed-form expressions are obtained for the moments of these
distributions. The numerical implementation of these results is discussed in detail
with particular reference to an algorithm due to Lucantoni and Ramaswami [11] and
its accelerated version due to Ramaswami [19]. This algorithm is shown to be an
efficient tool in the matrix-analytic solution of many stochastic models, as various
steps for saving considerable amounts of unnecessary computations are identified.
A special case of the model where the service time distribution is of phase type is
discussed and the stationary queue length distribution at arbitrary times is obtained
in matriz-geometric form. Finally, the matrix-geometric and the M/G/1 approaches
are compared through this special case.
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Bell Laboratories, Holmdel, N.J., as a summer student during the summer of 1986. This research was also supported
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1. INTRODUCTION

The basic motivation behind the work reported in this paper is to explore
the computational aspects of matrix-analytic solution techniques in the study of
many probabilistic models arising in applications. These methods were pioneered
by Neuts and have been applied successfully to solve many stochastic models {7, 10-
15]. Central to the matrix-analytic approach is the entrywise minimal nonnegative

solution of non-linear matrix equations of the form
(o0} o0
G= A,G" or R=) R"A,. (1.1)
n=0 n=0

Several iterative algorithms for solving these matrix equations are reviewed in the
Appendix. For the M/G/1 type queues such as the PH/G/1 and the MM PP/G/1
queues, an efficient and numerically stable algorithm to compute these matrices
without having to compute and store the matrices {A,}§° was given in the work of
Lucantoni and Ramaswami [11]. In this paper, insights gained on the behavior of
this algorithm through numerical studies are reported. In view of these observations,
a simple extension based on linear extrapolation is proposed for the computation of
the G matrix. This minor extension leads to a new stopping criterion and results
in considerable amounts of savings in the computations for a given accuracy.

This paper illustrates the above mentioned methodology and algorithmic re-
sults by studying both the analytical and computational aspects of the stationary
waiting time and the queue length distributions for MM PP/G/1 queueing sys-
tems. The MM PP/G/1 queue is a single server system with general service time
distribution where the arrivals are modeled by a Markov modulated Poisson Pro-
cess (MMPP); the first-come-first-served (FCFS) service discipline is enforced. The
MMPP is a doubly stochastic Poisson process whose rate is determined by the state
of a continuous-time Markov chain, and it has great appeal in its applicability in
modeling many problems [6, 7).

The MM PP/G/1 queue is a special case of the more general N/G/1 queue
studied by Ramaswami [17]. Most of the analytical results mentioned here can
also be obtained directly from the results obtained in [17] by specializing the N-
process to a MM PP. However, the simplicity of the MM PP/G /1 queue leads to
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closed-form expressions in the recursive calculation of higher order moments of the
above-mentioned distributions.

This paper is organized as follows. In Section 2, the queueing model is described
and equations describing the transition probability matrix are obtained. In Section
3, an algorithm from reference [7] is briefly outlined to compute the distributions
of the virtual waiting time and of the waiting time seen by an arriving customer.
In Section 4, transforms of the queue length distributions at departure epochs and
at arbitrary times are obtained. In both Sections 3 and 4, recursive expressions
are given for all the moments of these distributions. Section 5 contains various
insights obtained through numerical experimentation of the Lucantoni-Ramaswami
algorithm on the MM PP/G /1 queue. An accelerated version of this algorithm due
to Ramaswami is also discussed and numerical comparisons are made. Finally, in
Section 6, the stationary queue length distribution and its first two moments are
obtained at an arbitrary time in the special case where the service time distribution
is of phase type. Computational requirements in this special case are also discussed
and compared with the algorithm available for the general service distributions.

A word on the notation used hereafter: The r X r identity matrix is denoted by
I, and the r x 1 column vector of ones is denoted by e,, while the 1 X » dimensional
row vector with zero entries is denoted by 0,.. The notation O is used for the
zero matrix with appropriate dimensions. Also, the spectral radius of matrix X is

denoted by sp(X) and “T” is used to denote the transpose operator.

2. THE MODEL

Consider an m-state irreducible continuous-time Markov chain with infinitesi-
mal generator matrix S and the stationary probability distribution vector 7. When
the Markov chain is in state ¢, 1 < ¢ < m, the arrivals are Poissonian with rate
A; and fed into a FCFS single server queue whose service times are independent
and identically distributed with common distribution function H(-). Let A be the
m X 1 column vector with ¢** component ;. The k** moment of the service time
distribution about the origin is denoted by u¥) and the m x m diagonal matrix
with elements A; along the diagonal is denoted by A. It is assumed that the system

parameters are such that the queueing system is a stable one, i. e., tAp(? < 1. Let
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{mn : m > 0} denote the successive departure epochs, with 75 = 0, and define X (¢)
and J(t) to be the number of customers in the system and the phase of the M M PP
at time t%, respectively. The sequence {(X(74),J(T0),Tn41 — T) : n > 0} form
a semi-Markov sequence on the state space {0,1,...} x {1,...,m} with transition
probability matrix Q(-) given by

By(z) Bi(z) Ba(z)

A0($) Al(x) Az(.’v)
O A()(CL') Al(m)

Q(x) = (o) (o) AO(SL’) . L. 9 z Z 07 (2.1(1)
where the m X m block entries are given by
T
An() =/ P(n,t) dH(t), n=0,1,-, >0, (2.1b)
0
Bp(z) =U x Ay(2), n=01,---, z2>0, (2.1¢c)

with
Pii(n,t) = P{X(t)=n, J(t) =7j|X(0)=0, J0)=1}, 1<ij<m, (2.1l¢)

and

U(z) = /0 " P, Adt. (2.1d)

The operator * in equation (2.1c) is the matrix convolution operator. By using
standard techniques [8], the matrices P(n,t) can be shown to satisfy the following

Chapman-Kolmogorov equations

dP(n,t) _

dt

{P(n,t)(S—A)+P(n~ LOA, ifn=1,2--,
(2.2)

P(0,¢)(S - A) if n = 0.

3. STATIONARY WAITING TIME DISTRIBUTIONS
An algorithm to compute the distributions of the virtual waiting time and of the
waiting time seen by an arriving customer is given in [7]. For sake of completeness,

the steps of this algorithm are briefly outlined below.

-3 -



. Compute the m x m irreducible stochastic matrix G' and its stationary prob-
ability vector g. The G matrix is the entrywise minimal nonnegative solution
of the non-linear matrix equation G = }.° j A,G", with 4, := A,(c0). For
1 < 14,5 £ m, G;; denote the probability that a busy period starting with the
MMPP in phase ¢ ends in phase j. The matrix G is a key ingredient in ob-
taining most quantities of interest such as the busy period and waiting time
characteristics and is studied extensively by Neuts [14]. An iterative procedure
for computing the matrix G was given by Lucantoni and Ramaswami [11] and
is discussed in Section 5.

. Compute the m x m stochastic matrix A := Y72 An = [;° e°* dH(t). Here,
for 1 < ¢,5 < m, A;; is the probability that a service time ends with the
MM PP in phase j given that the service began in phase <.

. Compute the m X m stochastic matrix U := U(o0) = (A — §)"1A. For 1 <
1,7 £ m, U;; is the probability that the first arrival to a busy period arrives
with the MM PP in phase j given that the last departure from the previous
busy period departed with the M M PP in phase 1.

. Compute the m X 1 column vectors
B =pu® (xTX)em + (8 + emm) ™ (A = I,)A

and

M’ = (Im -G+ emg)[Im —A+ €mng — ﬂg]—l €m -

For 1 < i < m, the i*" components B; and p; are the expected number of
arrivals during a service that began in phase 7 and the expected number of
departures during a busy period that began in phase ¢, respectively.

. Compute the 1 x m row vector 2o = (dUpu)~'d, where the m X 1 row vector d is
such that dUG = d and de,, = 1, with the interpretation that the :** component
of z¢ is the stationary probability that a departure leaves the system empty with
the MM PP in phase :.

. Compute the 1 X m row vector yo = (7)) zo (A—S)~! where the i** component
of yo is the stationary probability of the system being empty and that the phase
of the MM PP is i at an arbitrary time.
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7. The Laplace-Stieltjes transform (LST) of the virtual delay distribution is given
by W(s)e,, where

. syo [sIm + 5 — A+ AH(s)]™' if s> 0,
W(s) = { (3.1)

T if s =0,

and H(-)is the LST of H(-). The i** component of W(z), the inverse transform
of the 1 X m row vector W(s), is the joint probability that at an arbitrary time
the MM PP is in phase ¢ and that a virtual customer who arrived at that time
would wait less than or equal to z time units before entering service.

8. Finally, the waiting time distribution W,(+) seen as by an arrival is given by

Wa(z) = (7 A) T W(2)X. (3.2)

The first two moments of the virtual waiting time distribution are available in
[7]. Here, in view of the equations (3.1) and (3.2) recursive expressions are given for
calculating arbitrary moments of the waiting time distributions. Let p be the traffic

intensity given by p = 7 Au(V), and pose

. W (0) ifn=0,
wn .=

LW (s) gy =120
Lemma 3.1 The moments of the virtual waiting time distribution are given by

EW™) = (=1)"W™e,,
(_1)n+1 (33(1)

-\ ) My Y =1.92. ...
(n+1)(1_p)[(n+1)ﬂ/ n+cn+1] , 1 72)

where the 1 X m vectors {c,}5° and {d,}{° are defined by

N ymym) (™ T —9.3...
Cn: 7;2( D™u (m)W , n=2,3
[r(Ln — pMA) ~ Yo (S +emm)™!, ifn=1
dy = o
[nW(”‘l)(Im — DAY + an] (S +emm)t, ifn=23,---.
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The 1 X m vectors {W(")}g" in these definitions are calculated by the relations
WO =r WO = (~1)WEW" 1 —d, n=1,2,---. (3.3b)
Proof: Rewrite equation (3.1) as
W(s)[s[-}—S—A-}—AI?(s)] =8y, $>0,

and differentiate it n times. Upon letting s — 0% in the resulting relation and using

the definition of ¢,

_ yo — 7[Lm — p(VA], ifn=1,
wmg = (3.4)

—aW DL, = pWA] = A, ifn=23,---.

Add W™e,,7 to both sides of equation (3.4). Noting that 7($ + enm)™t = 7
and using the definition of d, give equation (3.3b) for n = 1,2,.-.-. Equation
(3.3b) is trivially true for n = 0 since W(0) = 7. Now replace » with n + 1 in
(3.4) and premultiply by e,,, the desired result (3.3a) is readily obtained after some
simplifications. M

The moments of the stationary waiting time distribution as seen by an arbitrary

arrival now follows from equation (3.2) and are given by

EW™M =(-1)"(xN)Tw™ X, n=1,2,.... (3.5)

4. THE STATIONARY QUEUE LENGTH DISTRIBUTIONS

In this section, results from the reference [17] are specialized to obtain equations
satisfied by the transforms of the stationary queue length distributions at points of
departures and at arbitrary times. These equations are then used to generate closed
form recursive expressions to obtain the moments of these distributions.

Let the stationary queue length density at a departure point be denoted by the
row vector z which is partitioned into 1 X m row vectors as ¢ := (2o, 21, . ..), where
the i**, 1 < i < m, component of z is the joint probability that at a departure

epoch there are k customers in the system and that the M M PP is in phase i. The
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vector z is the invariant probability vector of the irreducible stochastic matrix Q(o0)

and thus satisfies the equations
rQ(oo)=2, rTex=1. (4.1)

Equation (4.1) can be rewritten in terms of the block entries as

k+1

mk:xOBk+Zm1Ak—l+l9 k:()al,"' ’ (42)
=1

where By, := By(00), k= 0,1,---. Multiplication of equation (4.2) by the complex

number z* and summing over k = 0,1,- -+, yield the equation
X(z)[2lm — A(2)] = 2o [2U — I,] A(2) , 2| <1, (4.3)

where

(oo} o0
X(z):= Z 2, 2* and A(z) := Z Azt , |z < 1.
k=0 k=0
From equation (2.1b) it easily follows that
A(z) = / P(z,0)dH (1) , (4.4)
0

where

P(z,t) := Z P(k,t) 2%, 2| < 1.
k=0.

In view of equation (2.2), P(z,t) satisfies the following differential equation

dpf;’t) = P(5,8)(S— A) 4 2P(5,)A , 1> 0
P(z,0)= I, ,

which is readily solved to yield

P(z,t) = 5~=2A 1.1 < 1 and t>0. (4.5)
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Therefore, the matrix A(z) of equation (4.3) is given by
A(z) = / HAS-0-I gy o<1 (4.6)
0

Next, an explicit expression is obtained for the quantity X(17) = Y72, Tk,
which is needed in the computation of the moments of the queue length distribution.

Letting z — 1~ in equation (4.3) yields
X(AT)[Im — Al =20 [U - In] A . (4.7)

Note by the definition of the stochastic matrix A and the row vector 7 that 7 is
also the stationary probability vector of A. Addition of 7 = (X (17 )e,) ™ to both
sides of the equation (4.7) readily yields

X(17) = 20(U — Ip)A(L, — A+ eqmm) ™ 47,

through the use of the fact that n(I,, — A + enm)™! = =. Invertibility of the
stochastic matrix (I, — A 4 e, 7) is shown in Kemeny and Snell, [9, p. 100].
Simplicity of the equation (4.3) allows a recursive computation of the moments

of the queue length distribution at departure epochs. To that end, pose
X0 = X(17), A = A, n=0

X0V i= E5 B ey AW = TR e, =12,

The results from the next lemma can be proved by using arguments similar to the

ones in the proof of Lemma 3.1.

Lemma 4.1 The moments of the queue length distribution at departure epochs are

given by
BX") = X e (4.8a)
1
= mina-pnt DdnAD 4 20Vs1 = coyilem, n=1,2,---,

where the m X m matrices {V,}§{° and the 1 X m vectors {c,}{° and {d,}{° are
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defined by

Vi, = (U - Im)A(n) + nUA(n—l) ’ n=12,---,
0 if n=1,

Cp =

S (P XA i =23,

m=2

dp = [zoVn + ¢n — nX(”“l)(Im — A(l))](Im —A4e,m)l, n=1,2,..-.
The 1 x m vectors {X™1}$° in these definitions are calculated as

XO:=x17), XM™W=EX"“Wr+d,, n=1,2,---. (4.8b)

Let the stationary queue length density at an arbitrary time be denoted by the
row vector y which is also partitioned into 1 X m row vectors as ¥ := (Yo, Y1, - ),

where
(yk)iztE%P[X(t)zk, J(t)=1|X(0)=Fk, J(0)=4], 1 <4,¢' <m, kk'=0,1,---.
The following result is a special case of Theorem 3.3.18 of [17, p. 246] and can be

obtained using the Key Renewal Theorem [2].

Lemma 4.2 The generating function Y (2) = 3 re, yk2" is given by

(A1 - 2)X(2)[(1-2)A= 8", ifo<z<1,
Y(z)= (4.9)

T, ifz=1.

Use of equation (4.9) and calculations similar to the ones made in the proof of

Lemma 3.1 give the following result.

Lemma 4.3 The moments of the stationary queue length distribution at arbitrary

times are given by
EY™) = Y™e,, . n=1,2,---, (4.10a)
= B(X™) ~ n [XOD — (mA) YDA (S + enm) A
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d"Y(z)

where the 1 x m vectors Y (") := i lz=1-> n=0,1,---, are given by
T ifn=0,
vy —
n ()X YDA (S + em) L+ E(Y™)r, ifn=1,2,---

(4.100)

5. IMPLEMENTATION DETAILS — EXTENSIONS AND COMPAR-
ISONS

The central item in the algorithm outlined in Section 3 is the so-called G’ matrix
introduced by Neuts [14]. An efficient and numerically stable way of computing the
G matrix, without having to evaluate the integrals in (3.1), is given in the work
of Lucantoni and Ramaswami [11]. This algorithm is based on the randomization
technique of Grassman [3] and can be applied to the matrix-analytic solution of
many stochastic models. A sub-Newton scheme is later incorporated to this algo-
rithm by Ramaswami [19] to improve its rate of convergence. In this section an
extrapolation method is suggested for these algorithms based on the insights gained
through numerical studies. Although this proposed extension is a minor addition to
the existing algorithms, it has been observed to improve their efficiency considerably

especially when their convergence rates are slow.
THE RANDOMIZATION ALGORITHM

This above mentioned algorithm of Lucantoni and Ramaswami is called the
Randomization Algorithm (RA) in the rest of this paper and uses the following

theorem in Cinlar [2].

Theorem 5.1 Let S be the infinitesimal generator of an m-state Markov process
and suppose that —S; < 0 < oo for 1 < i < m. Then the transition function

P(t) = exp(St) may be written as
e (8™ .,
P(t) = Ze gtTIX , (51)
n=0
where K is the stochastic matriz I, +0~185.
For the model described in Section 2, the RA can be given as
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M = (L + 075 = M) H + 67 Gy, n=0,1,...,  (5.2)

Gk+1:Z7nH1(cn)7 k=0,1,...,
n=0

where Gy = O, HYY = L., k = 0,1,---, 8 = maxjcicm(Ai — Si) and
Yo = fooo e"oz%g?ld}[(:v), n = 0,1,---. It is shown in [11] that the sequence Gy
converges monotonically to G. Note that +,, is the probability that a service time
has n epochs of a Poisson process with rate 8. In some useful special cases where
the service distribution is either phase type or deterministic, 4, may be computed
recursively without numerical integration. These two cases are mentioned below.

1. When H(-) is deterministic with mass a, then

—ba fa
Yo = € 6 ) 'Yn:?')'n—l n:1327"' . (53)

2. When H(-) is of phase type with representation (o, A), it is shown by Neuts [14,
pp. 59, 60] that {7,}¢° has discrete phase density with representation (3, B)
given by

B =6a(6l,, — A, B=600I,—-A)" (5.4a)

and
Bmt1 = amyr + (8L, — A)71A°, B° = (61, — A)~1A°. (5.4b)

For the notation and the proof of this result, the reader is referred to [14]. The

probabilities {y,}¢° can then be computed by the recursion
Yo = a1 + (DAY, v =nn+ 1A% n=1,2,---. (5.5q)
where

77(0) =6 a, 77(" + 1) = 77(”)3, n=0,1,---. (5‘5b)

In practice the index n in iteration (5.2) is truncated at some positive integer
value N. In view of the probabilistic interpretation of -y, the truncation index N

can be chosen to satisfy Y o. ., ¥n < €.
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MODIFIED NEWTON-KANTOROVICH SCHEME (MNK)

The following modification is proposed by Ramaswami [19] to improve the rate
of convergence of the RA. For this scheme, called RA_MNK hereafter, the two
auxiliary substochastic matrices A;, 7 = 1,2, are needed. These matrices are given
in [11] by

[ee]
A= kY

n=t

where the matrices K gn) are recursively defined by K (()0) =1, KZ(O) =0, and

KD = g4 0718 - M),
(5.6)
K& = KM+ 0715 - A+ KM 07IA, n>0,i=1,2.

Having computed G4q from the RA given in equation (5.2), the MNK step is now
obtained by setting
Zk+1 = (I b Al)_l(Gk+1 - G;c) (57(1)

and updating G431 by
Gr1+ A1Zk41 + A2(GrZiy1 + Zi41Gr) = Gryr - (5.7b)

The RA_MNK scheme then proceeds by using this new Gi41 in equation (5.2) to
get the next iterate G'pyo. It is shown in [19] that this scheme also converges to the

G matrix.
PROPOSED EXTENSION BASED ON LINEAR EXTRAPOLATIONS

The algorithms RA and RA_MNK are stopped when all the entries in the
successive iterates of the G matrix are within a small number, say ¢, of each other,
i. e.,

(202X (Grr)ig = (Gr)isl <e. (5.8)

Computational experience has shown that when the convergence rate is slow (when
p is large), even when the successive iterates satisfy (5.8), say at iteration K, the

matrix G can be far away from the limiting G matrix, i. e., Gi; — (G );; can be
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as much as 102 to 10* times ¢ for some i and j depending on p. However, the rows
of Gk, when considered as vectors, were observed to be almost colinear with the
corresponding rows of the G matrix. Therefore, the most recent iterates, Gx and
G k-1, can be used to obtain an approximation G% to the stochastic matrix G by

linear extrapolation, i. e.,
Gk =Gk +L[Gk ~ Gk-1], (5.9)

where L is a diagonal matrix so that the matrix G} is stochastic. Computational
experience has shown that even when G is far away (relative to €) from being a
stochastic matrix, G is typically much closer to G' and use of G} leads to much
more accurate results in the calculation of the performance measures of interest.
The above observations suggest that if G is the stochastic matrix obtained
from the linear extrapolation of Gy and Gg_q, then for the same ¢, the stopping

criterion

 Jpex [(Gry1)is — (GR)ijl <€, (5.10)

should be satisfied at an iteration K™ which is much smaller than K, and G%.
should be closer to G' than G'i. Indeed, the stochastic matrix G%. were observed
to be much closer to G than Gk in all the numerical examples performed, and the
number of iterations K* was much smaller than K especially for large values of p.
Note that the computation of the matrices G} from G and G_1, k > 1, requires
only of order m? additional operations, whence do not have a significant effect on

the total CPU time, especially for large m, since each iteration is of order Nm?>.
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NUMERICAL EXAMPLES

These claims are supported through many numerical examples, some of which
are included in Table 5.1, where the RA and the RA_MNK schemes are also com-
pared with and without the proposed extrapolations. The numerical examples in
Table 5.1 correspond to the MM PP/D/1 queue where the service times are chosen
as 4msec, 6msec, 8msec, 10msec, 11%msec and 3%msec for Examples 5.1.1-5.1.6,
respectively. The input process is the superposition of m — 1 identical two-state
Markov processes with states denoted by 1 and 0 and the transition rate from state
1 to state j is denoted by r;;, ¢,7 = 0,1. When the process is in state i it produces
Poisson arrivals with rate A’, i = 0,1. The input process is therefore an m state
M M PP with a tridiagonal generator matrix S and arrival rates A; given by

Siic1= (1= Drio,  Sii = —Yii~1 — Sii41,

Siit1 = (m —1)rey, N =AM =14+ X(m—-i), for 1<i<m.
Note that the state of the M M PP denotes the number of the component processes
that are in state 1, with states 1 and m of the M M PP corresponding to the situation
where all the Markov processes are in state 0 and in state 1, respectively. The
following numerical values are used in all there examples: r9; = 2.5618, rig =
1.586, A% = 0.00349, \! = 57.416.

In Table 5.1, K and K* denote the number of iterations required to satisfy
the stopping criterions (5.8) and (5.10), respectively. The expected value of the
virtual waiting time is displayed for comparison. The other computed performance
measures have shown a typical behavior. Here, FW and EW™ correspond to the
expected virtual waiting time obtained using the stopping criterions (5.8) and (5.10),

respectively.
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TABLE 5.1

Example 5.1.1.

RA

RA_MNK

Example 5.1.2.

RA

RA_MNK

Example 5.1.3.

RA

RA_ MNK

Example 5.1.4.

RA

RA_MNK

Example 5.1.5.

RA

RA_MNK

Example 5.1.6.

RA

RA_MNK

m=35, p=0.351302,

€

103
103
107
10~°

10-3
10~
10-7
10-°

m=3. p=0.526953,

€

10—3
10~8
107
103
105
107

m =05, p=10.7026045,

€

103 78
10— 138
10-3 198
107 320
103 59
104 99
10~5 139
107 219
m=2>5, p=0.878255H6,
€ K
103 115
104 261
10~5 422
10-3 93
10—4 194
105 302
m=2>5. p=0.995356,
103 127
10—4 475
10~5 1539
103 111
10—4 396
10-5 1255
m =12, p = 0.805067,
10~3 132
10—4 250
108 367
10-3 102
104 178
10~ 254

K
20
42

64
85

15
29
44
58

K

49
109
171

36
76
116

K

e, =10"7 (N =9).

EW CPU

3.73625¢-3 1.9
1.67364e-3 3.5
1.65464e-3 4.9
1.65446e-3 6.3

3.00642¢-3 1.9
1.66853e-3 3.0
1.65457¢-3 4.2
1.65446e-3 5.5

€y = 10~7 (N = 11).

EW CcPU

1.72419¢-2 4.6
1.25098e-2 9.4
1.24560e-2 143

1.56773e-2 41
1.24871e-2 7.7
1.24560e-2 115

EW CPU

9.56070e-2 8.2
8.22618e-2 14.0
8.09259%¢-2 20.2
8.07750e-2 32.2

9.04182¢-2 6.7
8.17241e-2 108
8.08685e-2 14.8
8.07745e-2 23.0

EW CPU

0.558680 11.5
0.520344 24.6
0.516074 451

0.544938 121
0.518730 243
0.515912 37.0

ey = 1077 (N = 15).

21.9231 14.3
21.8414 52.5
21.8175 170.4
21.8998 15.0
21.8349 50.5

21.8157 155.8
€y = 10~7 (N = 13).
7.86920e-2 118.4

6.03862e-2  220.0
5.86599e-2 327.8

7.06491e-2 106.9
5.96593e-2 187.0
5.85873e-2 264.9

ey =107 (N = 13).

€&y = 107 (N = 14).

K*

14
30
50
70

11
22
35
48

K*

29
70
112

22
49
77

K*

38
60
82
126

29
43
58
86

K*

35
54
72

27

51

32
47
62

24
35
45

49
93
138

39
68
97

Ew*

1.68891e-3
1.65542¢-3
1.65447e-3
1.65445e-3

1.67773e-3
1.65499¢-3
1.65446e-3
1.65445¢-3

EW*

1.26234e-2
1.24573e-2
1.24557e-2

1.25645¢-2
1.24567e-2
1.24557e-2

Ew*
8.10129e-2
8.07974e-2
8.07759¢-2
8.07735e-2

8.09121e-2
8.07884e-2
8.07749e-2
8.07735e-2

Ew*

0.515955
0.515631
0.515603

0.515794
0.515619
0.515601

21.8105
21.8102
21.8102

21.8104
21.8102
21.8102

5.91192e-2
5.85371e-2
5.84762e-2

5.88454e-2
5.85077e-2
5.84731e-2

CPU

1.4
2.5

5.1

1.6
2.4
3.6
44

CPU

2.8
6.1
9.2

27
5.0
7.6

CPU

4.2
6.1
8.3
12.4
3.7
49
6.5
9.2

3.9
5.5
71

3.5
50
6.2

456
84.9
120.5

45.6
741
102.2
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The following observations immediately follow;

o For a given ¢, K* is about 35-95% less than K in Table 5.1 both for the RA
and the RA_MNK schemes. Note that the extrapolations resulted in savings
both in the number of iterations and in the CPU times for all values of p. The
amount of savings increased with p; For the low utilization of Example 5.1.1
savings of approximately 35-40% were obtained, while savings by a factor of up

to 25 were possible for the very high utilization of Example 5.1.5, both in RA
and RA_MNK.

More importantly, the performance measures obtained either from RA or
RA_MNK without using the extrapolations were inaccurate for larger values
of € (1073, 10~* and even 107%). On the other hand, the extrapolations re-
sulted in much more accurate results in the performance measures for the same
¢ values. It is clearly seen from Table 5.1 that, generally EW™ were accurate
up to n digits after the decimal, where n = log(¢). The same behavior can
also be seen for the average queue lengths in the last column of Table 6.1. The
value of € used with the new stopping criterion thus provide direct information
on the accuracy obtained in the calculation of the performance measures. On
the other hand, the stopping criterion (5.8) gave no direct information on the
accuracy desired in the calculation of the performance measures. Therefore,
the use of the stopping criterion (5.10) also saves considerable amounts of CPU

time by avoiding unnecessary iterations in order to obtain a desired accuracy.

e The algorithm RA_MNK required approximately 15-25% fewer number of it-
erations and 0-15% less CPU time than the RA, both with and without the
extrapolations. Note that although the RA_MNK scheme was always faster
than the RA, in some cases the corresponding CPU times were comparable due
to the additional computations in the MNK step. The RA_MNK scheme also

resulted in slightly more accurate performance measures.

FURTHER COMMENTS

Next, the effect of the choice of ¢, is considered. In Table 5.2 ¢¢ is set to 1073
and EW™ is displayed for different values of €, for the Example 5.1.4 (resp. Example
5.1.5). The entries in the table are obtained from the RA (used with the proposed
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extrapolations), however similar results are also observed for the RA_MNK. The
probabilities v,,1 < n < N, are normalized to sum to one. This normalization
seems to improve the accuracy in the obtained performance measures especially for
large €.

TABLE 5.2

Example 5.2.1: m=25, p=0.526953 ¢g =107°.

€ K* N EwW*

1072 69 5 0.013167
103 70 6 0.012622
10—4 70 8 0.012463
10-° 70 9 0.012458
10-8 70 10 0.012457
1077 70 11 0.012457

Example 5.2.2: m=235, p=_0.8782556 €g=10"5.

€ K* N EwW*

102 73 7 0.516296
10-3 72 8 0.515802
104 72 10 0.515614
1075 72 11 0.515605
10-6 72 13 0.515603
10-7 72 14 0.515603

The figures in Table 5.2 indicate that, although the performance slightly de-
grades as €, is increased, the “inaccuracy” in calculating the {7, }§° seems to have a
surprisingly small effect and up to 50% savings can be obtained in the computation
time in cases when precision is not of primary concern. Also, comparison of the last
two rows in both examples shows that savings of 20-25% can be obtained without

compromising on the accuracy.

Considerable savings in computation time can also be gained in cases where the

S matrix is sparse. However, the computation time per iteration will still approxi-

mately grow with m® since the matrices H}(cn) and G, in equation (5.3) will not be

sparse even when the matrix S is sparse.
. . . (k) d* A(2)
Finally, the computation of the matrices A" := 2|, _;-, £k =0,1,- -, used
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in equation (4.8), is discussed. Equation (4.6) and Theorem 5.1 yield

A<k>=/ tFeStAHE) AY, k=01,
0

- (5.11)
= Z 7£Lk) I(n Ak ’

n=0

with

k = e e (60)"
(k) =/ th e i—dH(t), n=0,1,-, and k=0,1,--, (5.12)
0 .

where # and the matrix K are given in Theorem 5.1. It is plain that
27#:) :#(k)7 k= 0,1,---. (513)
n=0

In view of equation (5.11), once v,, = 77(10), n = 0,1,---, is calculated either by

numerical integration or through the recursions given by equations (5.4) and (5.5),

7,(1'“), n=20,1,---, k=1,2,---, can be obtained recursively by

(k) - ntl G-y

vy 5 Tntl n=0,1,--- and k=1,2,---, (5.14)

and equation (5.13) can be used as a truncation criteria.

6. SPECIAL CASE: THE MMPP/PH/1 QUEUE

In this section the service time distribution is specialized to be of phase type.
The stationary queue length distribution at arbitrary times is obtained in matriz-
geometric form, and simple expressions are given for the first two moments of this
distribution. The stationary waiting time distribution for GI/PH/1 queue was
derived in the work of Ramaswami and Lucantoni, [18, Thm. 1], and will not be
repeated here.

Let the service distribution have irreducible phase representation (o, Q) of order
l, where o is the 1 x [ row vector of initialization probabilities and @ is the [ x I

matrix of transition rates among the transient phases of the phase distribution.
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Also, denote the I X 1 column vector of absorption rates to the absorbing phase by
Q°.
A natural state space F for this system is given by
(0, 1) ifk=0,1<i<m,
E=

(kyi,7) fk=1,2,---,1<i<m, 1 <5<,
where k indicates the buffer size, while ¢ and j represent the state of the MM PP
and the phase of the server, respectively. The service phase is not defined when
the queue is empty. Since two events cannot occur simultaneously (with positive
probability), it is an easy exercise to show that the underlying continuous-time
Markov chain is irreducible.

The stationary queue length density at an arbitrary time is again denoted by
the row vector y which is partitioned as y := (yo,¥1,-..), where g is 1 X m and yy,
k=1,2,...,are 1 xIm vectors and correspond to the stationary probabilities of the
states in lexicographical order. The corresponding infinitesimal generator matrix P

then takes the form

S—A A®a 0 0 0 O
I,®Q° A1 4 0 0 0
P= 0 Ay Ay Ay 0 0 - |, (6.1)

0 0 Ay A1 Ag O

where the Im x Im matrices Ag, 0 < k < 2, are given by
A0:A®I1, AI:(S'—A)EBQa A2:Im®Q0a'

Here ® and @ denote the Kronecker product and the Kronecker sum, respectively,
[1].

In order to obtain the stationary queue length distribution in matrix-geometric
form, let the /m X I'm matrix R be the minimal nonnegative solution to the matrix-
quadratic equation

R*Ay+RA;1 +As =0, (6.2)
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First, for a stable system, all the eigenvalues of R are shown to be inside the open

unit disc.

Lemma 6.1 The MMPP/PH/1 queueing system is stable if and only if sp(R) < 1.

Proof: Since P := Ag+ A; + Ay = S®(Q+Q%a), the matrix P is irreducible owing
to the irreducibility of the matrices S and @ + Q%a. Therefore sp(R) < 1 if and
only if pAoein < pAsei,, where the 1 x Im row vector p is the stationary vector
of P [14, p. 83]. From the structure of P it is easy to see that p = 7 ® ¢ where
the 1 X [ row vector ¢ is the stationary probability vector of the matrix (Q 4+ Q%a).

Therefore, the statement of the Lemma follows since
pAs e = qQ° = ef fective service rate

and similarly

pAoeim = T = ef fective arrival rate.

1

S—A AR«
Lemma 6.2 The matriz Z := is an irreducible generator
I, ® QO A1 + RA,

matriz.

Proof: Post multiplication of Z by e(;p4m) after some simplifications yield

OT
z €(im+m) = 0 )
R(em ® Q%) -~ A® e

But since
0/ = (R*Az + RAy + Ao)ern = (Iim — R)[A® e, — R(em ® Q%))

and sp(R) < 1, the equation [A ® ¢, — R(en, ® Q°)] = 07 holds. Therefore, each
row of the matrix Z sum to zero. On the other hand, by the definitions of the block
entries of the matrix Z, its off-diagonal entries are all non-negative and the matrix Z

is a generator matrix. Irreducibility of the Z matrix follows from the irreducibility
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of the phase representation (o, @) and of the matrix S, and from the non-negativity

of the matrix R. |

The following matriz-geometric form of the stationary probability vector y
now follows from Theorem 1.5.1. of [14, p. 25] and the normalization condition
> he1 Yk€im + Yoem =1 .

Theorem 6.3 Let zyp and 2, be 1 X m and 1 X Im row vectors, respectively, such

that the vector z := (29, 21) is the unique positive solution to the equations

2Z = Opmiim) 2€(imtm) = 1. (6.3)

Then, the stationary probability vector y = (yo,¥1,...) has the following matrix-

geometric form

n=c’'z, (6.4)
=y ¥, k=1,2,--,

with
c=z0em + 21 (Iim — R) e . (6.5)

In this special case, the matrix-geometric nature of the solution yields the
moments of the queue length distribution in a much simpler form. Although in
principle, higher order moments can also be obtained, only the first two moments

are given here.

Corollary 6.4 The first two moments of the stationary queue length distribution at

arbitrary times are given by

E(Y)=y(Iim — R) e , (6.6a)
E(Y?) = yi(Lim + R) (Iim — R) > 1 . (6.6b)
Proof: The following equalities can be shown by direct computation;
o0
S ERET (I — R): = I, (6.7a)
k=1
S KR (I ~ R =L + R (6.70)
k=1
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Equation (6.6a) now follows from equations (6.4), (6.7a) and Lemma 6.1 since

o0 o0
E(Y)= Z kykeim =11 Y kR e
k=1 k=1
= yl(Ilm - R)_zelm .
Similarly, the second moment follows from equations (6.4), (6.7b) and Lemma 6.1 .

.

Note for the M/M/1 case that R = p and (6.6) reduces to the well-known

expressions

p p’
FO0 =t T

NUMERICAL IMPLEMENTATION

The matrix R of equation (6.2) can be computed by using any of the algorithms
summarized in the Appendix by replacing the upper limit in the summation for n
by 2. The comments following equation (5.6) for the computation of the G' matrix
also apply to these algorithms. However, since the matrix R is not stochastic, the
extrapolation (5.9) and the stopping criterion (5.10) cannot be employed to the R
matrix calculations in general. Therefore, in order to obtain reasonable accuracy e
must be chosen sufficiently small and this may require huge number of iterations,
especially for large utilizations.

However, in this quadratic case, the extension proposed in Section 5 can also be
used in the computation of the R matrix, in view of the results obtained by Latouche
[10]. In summary, Latouche’s paper establishes several useful relationships between
the matrices R and G for the quadratic case. In particular, Latouche shows that, if
the matrices R and G are the minimal nonnegative solutions to the matrix quadratic

equations

R= Ao+ RA + R*4s,  and G = Ao+ A,G + G, (6.8)
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then
R=Ao(I—- A - AOG)_I, and G=(I-A4;— RAz)_lAz . (6.9)

In view of this result, the matrix R can also be computed first by computing
the G matrix with any of the algorithms (A.i)-(A.iv) of the Appendix together with
the proposed extrapolation technique, and then obtaining R from the first equation
in (6.9). Note for the MM PP/PH/1 queue that, the matrix R is of dimension mil.

An alternative approach is not to use the special structure of the service time
distribution and solve an equation of the form (1.1) for a G' matrix using the ran-
domization algorithm given by equation (2.5). Although, the equation is of order
N after truncation, the matrix G is only of dimension m. Iowever, the analysis
of the stationary probabilities for the M/G/1 type queues is much less transparent
and the results cannot be put in as concise and explicit a form as in the matrix-
geometric method [14]. The numerical discussion below aims to shed some light in
providing guidelines in choosing the appropriate methodology in cases where both
are applicable. Numerical results for the M/G/1 approach corresponds to the RA
when used with the stopping criterion (5.10), called RA .z, hereafter.

The first-order computational requirements of the algorithms (see Appendix),

per iteration, for the MM PP/PH/1 model are
SS and MSS : 3(Im)3, MNK : 8§(Im)?, RA : 2Nm?3.

One would compare the computational complexities of the matrix-geometric and the
M/G/1 approaches by comparing N to [3. However, the results of Table 6.1 shows
that even when [ is small, the M/G/1 approach yields far less number of iterations
and gives much more accurate results compared to any of the algorithms (A.i)-(A.iv).
Furthermore, as before, the number of iterations in RA did not increase with the
utilization p (although N slightly did), making the M/G/1 approach especially
superior at higher utilizations. In Table 6.1, the notation X and Xz, denote the
algorithm X when used with the stopping criterion (5.8) and (5.10), respectively.
The numbers in Table 6.1 for algorithms (A.i)-(A.iv) also compares these algo-
rithms with each other as well as the effect of the proposed extrapolation method

on these algorithms. For further examples and comparisons the reader is refered to
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[5]. It is concluded in [5] that for small values of N, the MSS.,;, is to be prefered
over the MNK,.¢ due to the relative effect of the overhead in the MNK scheme.
The comparison of the first order operation count per iteration given above and
the number of iterations required for convergence in each scheme in Table 6.1 also
supports this claim. Therefore, the M/G/1 approach (RA) is compared only to
MSS¢z¢ in the following discussion; Note that for N ~ %13, the RA ..+ and the
MSSez¢r have approximately the same operation count per iteration. In Examples
6.1.2-6.1.4, even when [ = 2, MSS.;+ and RA..4 required about the same CPU
time per iteration. However, the number of iterations in RA.;;, were far less than
the number of iterations in MSS.z¢r. RAcyt, gave the same accuracy in the average
queue length, F(QL), with savings by a factor of approximately 25 (resp. 5) in
Examples 6.1.1-6.1.3 (resp. in Example 6.1.4). In Example 6.1.5, although RA ¢,
required about 3.5 times more CPU time per iteration than MSS.us,, it resulted
in savings in the number of iterations by a factor of 20, thus yielding savings by a
factor of approximately 6 in CPU time. In Examples 6.1.7 and 6.1.8 since | = 1,
the MSS..¢, required much less CPU time (approximately by a factor of 20), but
even this is offset by the huge difference in the number of iterations; a factor of 20
and 140 in Example 6.1.7 and Example 6.1.8, respectively. On the other hand, in
Example 6.1.6 where [ = 4, the MSS, ¢, required about 3 times more CPU time per
iteration. Note also in this example that one gets the same accuracy in RA ¢, in
about 20 times fewer number of iterations, i. e., savings by a factor of 60 in CPU
time. Potential savings that can be obtained by choosing RA..¢ over MSS,;, for

larger values of [ is no further elaborated but left to the readers imagination!
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TABLE 6.1

(1) Sseztra

(ii) MSS,

—logyo(€) (i)

Example 6.1.1.
m=2, =2,
N=18. p=0.768.

Example 6.2.2.
m=2, 1=2,
N=13, p=0.987.

Example 6.1.3.
m=2, =2,

N=13. p=0.875.

Example 6.1.4.
m=2, 1=2,
N=11, p=0.767.

Example 6.1.5.
m=2, 1=2,
N=41, p=0.880.

Example 6.1.6.
m=2, =4,
N=35, p=0.888.

Example 6.1.7,
m=2, |=1,
N=28, p=0.833.

Example 6.1.8.
m=2, |=1,

N=32. p=0.980.

~N o Ut Ww

49
161
423
853

163
655
1431

100
395
789

50
132
321

114
466
961

110
440
668

73
186

78
381
1313

(iii) MSS.zir,

(i)

86
315
437
559

420
1220
1636

85
149
213

24
57
91

93
163
232

93
163
232

71
119

259
707
1169

(iv) MNK,

7 of iter.
(iii) (iv) (v)
15 77 13
120 263 112
229 362 203
349 460 300
77 378 74
371 1059 349
709 1413 649
50 51 47
113 131 102
177 186 157
14 22 13

44 51 40

77 80 69

54 83 51
122 144 111
192 204 171
53 83 50
122 143 110
192 173 140
47 53 39

95 88 73

59 207 54
271 530 234
707 860 554

(vi)

10
17
20
20

26
40
a7

11
14

18
28

15
22

16
22

(V) MNKez:tr ’

(i)

40.096
26.905
26.815
26.799

93.458
89.582
89.430

6.5371
6.5006
6.5000

3.2676
3.2122
3.2117

7.2496
7.2091
7.2083

6.9253
6.8855
6.8857

5.0092
5.0001

51.742
50.068
50.001

(Vi) RAeth .

E(QL)

(i)

22.972
26.746
26.792
26.797

80.952
89.293
89.385

6.4897
6.4999
6.5000

3.1497
3.2110
3.2116

7.1974
7.2082
7.2083

6.8748
6.8855
6.8856

4.9962
5.0000

46.433
49.959
50.000

(iii)

29.028

26.842 26.756

26.803
26.798

91.723
89.475
89.405

6.5099
6.5001
6.5000

3.2611
3.2122
3.2116

7.2187
7.2084
7.2083

6.8963
6.8857
6.8856

5.0038
5.0000

51.224
50.036
50.004

(iv)

23.583

26.793
26.797

82.060
89.308
89.386

6.4915
6.4999
6.5000

3.1584
3.2111
3.2116

7.1988
7.2082
7.2083

6.8764
6.8855
6.8856

4.9972
5.0000

47.354
49.991
50.000

(v)

29.162
26.835

26.802

26.798

91.585
89.466
89.403

6.5085
6.5001
6.5000

3.2620
3.2122
3.2117

7.2172
7.2084
7.2083

6.8948
6.8857
6.8856

5.0027
5.0000

51.079
50.028
50.000

(vi)

26.797
26.797

26.797

26.797

89.395
89.395
89.395

6.5000
6.5000
6.5000

3.2126
3.2116
3.2116

7.2083
7.2083
7.2083

6.8856
6.8856
6.8856

5.0000
5.0000

50.000
50.000
50.000
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The above discussion of the results in Table 6.1 indicates that even when the
number of service phases is small there is computational advantage in ignoring the
special structure of the service time distribution and using the M/G/1 approach.
It should be reminded however that, as already indicated above, both the waiting
time and the queue length distribution calculations are much simpler in the matrix-
geometric case once the R matrix is obtained. In the M/G/1 approach, as given
here in Section 3 for the M M PP/G /1 queue, these distributions are typically given
in terms of the transform equations, whence Laplace and Z transform inversions
are needed. Since the transform inversion methods require considerable CPU times,
especially when accuracy is of primary concern, the decisions must be based on the
number of distribution points and the degree of accuracy desired in these distribu-
tions. However, for the MM PP/G /1 queue, Lemmas 3.1 and 4.1 gives the moments
of the queue length and the waiting time distributions recursively in a fraction of
the time required to compute the G matrix without having to compute the inverse
transforms and the matrices {A4,}§°. Also, an alternative approach in which an R
matrix that satisfies equation (6.4) but not (6.2) is obtained explicitly in terms of

the system parameters is presented in [4] for the MM PP/PH/1/K queue.
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APPENDIX
REVIEW OF THE ITERATIVE ALGORITHMS

In this Appendix, iterative algorithms available for finding the matrices G and
R in equation (1.1) are briefly surveyed. Although the discussion is given here for
the G' matrix, these algorithms apply mutatis mutandis to the calculation of the R
matrix. It is assumed that p < 1, or equivalently, that the matrix G is stochastic.

(A.i.) Successive Substitutions (SS): It is shown in [12] that the sequence of
matrices {G}§° obtained by

[e e}
Go=0, Gru=)» A.Gr, k>0, (A.1)
n=0

is non-decreasing and converges to the G’ matrix. The convergence rate of this direct
iterative scheme is R-linear, and can be extremely slow when p is close to one.

(A.ii.) Modified Successive Substitutions (MSS): In cases where the matrix
(I — A1) is well conditioned, there is computational advantage in using the iteration

GO = 0 9 Gk+1 = (I— Al)_l (Ao + z AnGz> 9 k 2 0 (AQ)

n=2

Note that, since the matrix A; is substochastic, (I — A;)~! exists. It can easily be
shown that the sequence of matrices {G}§° obtained from MSS is componentwise
larger then the corresponding matrices obtained from SS. Therefore, although MSS
requires ¢ matrix inversion it converges in fewer number of iterations. It is reported
in [19] that MSS results in about 20% savings compared to SS.

(A.iii.) Newton-Kantorovich Method (NK): The Gateaux derivative [16] of
the mapping F(X) =X — Y 7, A, X" at X is given by the linear map

oo n—1
[F'(X)): U U= > AXUX 1

n=1 =0
It is shown in [13] that F'(X ) is a non-negative matrix. Furthermore, for O < X < G
(componentwise), F'(X) is an isotone so that the operator F is order-convez. It

then follows by the Monotone Convergence Theorem [16, p. 45] that the Newton-
Kantorovich scheme for (1.1) given by

Go =0, Gk+1 =Gy — [F,(Gk)]_l F(Gk), k>0,

converges monotonically to G. The iterates {G}§° can equivalently be obtained by
the iteration [13, 19]

Go =0, Gry1 =G+ Y, >0, (A.3.a)
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where Y}, is the unique solution to the linear system

oo n-1

Ye=—F(G)+ Y Y AGLYGr ™ k>0, (A.3.D)

n=0 =0

The numerical results in Neuts [13] indicate that despite the faster rate of conver-
gence, the NK scheme is more time consuming than the first two schemes, as the
system in (A.3.b) needs to be solved at every iteration. Therefore, this scheme is
not considered in this paper.

(A.iv.) Modified Newton-Kantorovich Scheme (MNK): The following mod-
ification is proposed by Ramaswami [19] for the NK scheme in order to avoid the
solution of the linear system in (A.3.b).

Go=0, Gry1 =G+ Yy, (A4a)
where
Y, = —F(Gk) + A 7, + Ag(Zk(;'k + Gka) R (A4b)
with
Zy = ~(I — A1) F(Gy) E>0. (Ad.c)

The algorithm (A.4) corresponds to truncating the summation in (A.3.b) at n = 2
and using the estimate Zj, of Yy instead of solving the linear system. It is shown in
[19] that the MNK scheme also converges monotonically to G.
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