
Hierarchical Inter-Domain Routing Protocolwith On-Demand ToS and Policy Resolution�Cengiz Alaettino�glu, A. Udaya ShankarInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, Maryland 20742CS-TR-3299June 20, 1994AbstractTraditional inter-domain routing protocols based on superdomains maintain either \strong"or \weak" ToS and policy constraints for each visible superdomain. With strong constraints,a valid path may not be found even though one exists. With weak constraints, an invaliddomain-level path may be treated as a valid path.We present an inter-domain routing protocol based on superdomains, which always �ndsa valid path if one exists. Both strong and weak constraints are maintained for each visiblesuperdomain. If the strong constraints of the superdomains on a path are satis�ed, then thepath is valid. If only the weak constraints are satis�ed for some superdomains on the path, thesource uses a query protocol to obtain a more detailed \internal" view of these superdomains,and searches again for a valid path. Our protocol handles topology changes, including node/linkfailures that partition superdomains. Evaluation results indicate our protocol scales well to largeinternetworks.Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-tecture and Design|packet networks; store and forward networks; C.2.2 [Computer-Communication Net-works]: Network Protocols|protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer NetworkRouting Protocols].� This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Departmentof Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. Theviews, opinions, and/or �ndings contained in this report are those of the author(s) and should not be interpreted asrepresenting the o�cial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, NSF,or the U.S. Government. Computer facilities were provided in part by NSF grant CCR-8811954.

Contents1 Introduction 12 Preliminaries 63 Superdomain-Level Views with Gateways 74 Edge-Costs and Topology Changes 105 View-Query Protocol 116 View-Update Protocol 147 Evaluation 157.1 Evaluation Model : 167.2 Application to Superdomain Query Protocol : 198 Related Work 249 Conclusion 26A Results for Other Internetworks 28

i

1 IntroductionA computer internetwork, such as the Internet, is an interconnection of backbone networks, regionalnetworks, metropolitan area networks, and stub networks (campus networks, o�ce networks andother small networks)1. Stub networks are the producers and consumers of the internetwork tra�c,while backbones, regionals and MANs are transit networks. Most of the networks in an internetworkare stub networks. Each network consists of nodes (hosts, routers) and links. A node that has alink to a node in another network is called a gateway. Two networks are neighbors when there isone or more links between gateways in the two networks (see Figure 1).
M

man G

regional D

backbone A

backbone B
backbone C

man F

man K

L

N
O

P
Q R

man H

regional EFigure 1: A portion of an internetwork. (Circles represent stub networks.)An internetwork is organized into domains2. A domain is a set of networks (possibly consistingof only one network) administered by the same agency. Domains are typically subject to policyconstraints, which are administrative restrictions on inter-domain tra�c [7, 11, 8, 5]. The policyconstraints of a domain U are of two types: transit policies, which specify how other domainscan use the resources of U (e.g. $0.01 per packet, no tra�c from domain V); and source policies,which specify constraints on tra�c originating from U (e.g. domains to avoid/prefer, acceptableconnection cost). Transit policies of a domain are public (i.e. available to other domains), whereassource policies are usually private.Within each domain, an intra-domain routing protocol is executed that provides routes betweensource and destination nodes in the domain. This protocol can be any of the typical ones, i.e.,next-hop or source routes computed using distance-vector or link-state algorithms. To satisfy1 For example, NSFNET, MILNET are backbones, and Suranet, CerfNet are regionals.2 Also referred to as routing domains or administrative domains.1

type-of-service (ToS) constraints of applications (e.g. low delay, high throughput, high reliability,minimum monetary cost), each node maintains a cost for each outgoing link and ToS. The intra-domain routing protocol should choose optimal paths based on these costs.Across all domains, an inter-domain routing protocol is executed that provides routes betweensource and destination nodes in di�erent domains, using the services of the intra-domain routingprotocols within domains. This protocol should have the following properties:(1) It should satisfy the policy constraints of domains. To do this, it must keep track of thepolicy constraints of domains [5].(2) An inter-domain routing protocol should also satisfy ToS constraints of applications. To dothis, it must keep track of the ToS services o�ered by domains [5].(3) An inter-domain routing protocol should scale up to very large internetworks, i.e. with a verylarge number of domains. Practically this means that processing, memory and communicationrequirements should be much less than linear in the number of domains. It should alsohandle non-hierarchical domain interconnections at any level [8] (e.g. we do not want tohand-con�gure special routes as \back-doors").(4) An inter-domain routing protocol should automatically adapt to link cost changes and node/linkfailures and repairs, including failures that partition domains [13].A Straight-Forward ApproachA straight-forward approach to inter-domain routing is domain-level source routing with link-stateapproach [7, 5]. In this approach, each router3 maintains a domain-level view of the internetwork,i.e., a graph with a vertex for every domain and an edge between every two neighbor domains.Policy and ToS information is attached to the vertices and the edges of the view.When a source node needs to reach a destination node, it (or a router4 in the source's domain)�rst examines this view and determines a domain-level source route satisfying ToS and policyconstraints, i.e., a sequence of domain ids starting from the source's domain and ending with thedestination's domain. Then packets are routed to the destination using this domain-level sourceroute and the intra-domain routing protocols of the domains crossed.For example, consider the internetwork of Figure 2 (each circle is a domain, and each thin line3 Not all nodes maintain routing tables. A router is a node that maintains a routing table.4 referred to as the policy server in [7] 2

is a domain-level interconnection). Suppose a node in d1 desires a connection to a node in d7.Suppose the policy constraints of d3 and d19 do not allow transit tra�c originating from d1. Everynode maintains this information in its view. Thus the source node can choose a valid path fromsource domain d1 to destination domain d7 avoiding d3 and d19 (e.g. thick line in the �gure).
d1 d2

d3

d4

d5 d6

d7 d8

d9 d10

d11
d12

d13
d14

d15

d16
d17

d18

d19
d20

d21

d22

d23
d24

d25

d26 d27 d28

Source

Destination

valid path

Figure 2: An example interdomain topology.The disadvantage of this straightforward scheme is that it does not scale up for large internet-works. The storage at each router is proportional to ND�ED, where ND is the number of domainsand ED is the average number of neighbor domains to a domain. The communication cost forupdating views is proportional to NR�ER, where NR is the number of routers in the internetworkand ER is the average router neighbors of a router (topology changes are ooded to all routers inthe internetwork).The Superdomain ApproachTo achieve scaling, several approaches based on hierarchically aggregating domains into superdo-mains have been proposed [16, 14, 6]. Here, each domain is a level 1 superdomain, \close" level 1superdomains are grouped into level 2 superdomains, \close" level 2 superdomains are grouped intolevel 3 superdomains, and so on (see Figure 3). Each router x maintains a view that contains thelevel 1 superdomains in x's level 2 superdomain, the level 2 superdomains in x's level 3 superdomain(excluding the x's level 2 superdomain), and so on. Thus a router maintains a smaller view thanit would in the absence of hierarchy. For the superdomain hierarchy of Figure 3, the views of two3

d1 d2

d3

d4

d5 d6

d7 d8

d9 d10

d11
d12

d13
d14

d15

d16
d17

d18

d19
d20

d21

d22

d23
d24

d25

d26 d27 d28

A

B
C

D

E

F
G

H

I

J

Source

Destination

valid path

level 1 superdomain

level 2 superdomain

level 3 superdomain

Figure 3: An example of superdomain hierarchy.routers (one in domain d1 and one in domain d16) are shown in Figures 4 and 5.
d3

d1 d2

B

C

G

JFigure 4: View of a router in d1. D

J

F

d15

d13
d14

d17
d16

d18Figure 5: View of a router in d16.The superdomain approach has several problems. One problem is that the aggregation resultsin loss of domain-level ToS and policy information. A superdomain is usually characterized by asingle set of ToS and policy constraints derived from the ToS and policy constraints of the domainsin it. Routers outside the superdomain assume that this set of constraints applies uniformly toeach of its children (and by recursion to each domain in the superdomain). If there are domainswith di�erent (possibly contradictory) constraints in a superdomain, then there is no good way ofderiving the ToS and policy constraints of the superdomain.The usual technique [16] of obtaining ToS and policy constraints of a superdomain is to obtaineither a strong set of constraints or a weak set of constraints5 from the ToS and policy constraints of5 \strong" and \weak" are referred to respectively as \union" and \intersection" in [16]4

the children superdomains in it. If strong (weak) constraints are used for policies, the superdomainenforces a policy constraint if that policy constraint is enforced by some (all) of its children. Ifstrong (weak) constraints are used for ToS constraints, the superdomain is assumed to support aToS if that ToS is supported by all (some) of its children. The intention is that if strong (weak)constraints of a superdomain are (are not) satis�ed then any (no) path through that superdomainis valid.Each approach has problems. Strong constraints can eliminate valid paths, and weak constraintscan allow invalid paths. For example in Figure 3, d16 allows transit tra�c from d1 while d19 doesnot; with strong constraints G would not allow transit tra�c from d1, and with weak constraintsG would allow transit tra�c from d1 to be routed via d19.Other problems of the superdomain approach are that the varying visibilities of routers compli-cates superdomain-level source routing and handling of node/link failures (especially those that par-tition superdomains). The usual technique for solving these problems is to augment superdomain-level views with gateways [16] (see Section 3).Our ContributionIn this paper, we present an inter-domain routing protocol based on superdomains, which �ndsa valid path if and only if one exists. Both strong and weak constraints are maintained for eachvisible superdomain. If the strong constraints of the superdomains on a path are satis�ed, thenthe path is valid. If only the weak constraints are satis�ed for some superdomains on the path, thesource uses a query protocol to obtain a more detailed \internal" view of these superdomains, andsearches again for a valid path.We use superdomain-level views with gateways and a link-state view update protocol to handletopology changes including failures that partition superdomains. The storage cost is O(logND �logND) without the query protocol. We demonstrate the scaling properties of the query protocolby giving evaluation results based on simulations. Our evaluation results indicate that the queryprotocol can be performed using 15% extra space.Our protocol consists of two subprotocols: a view-query protocol for obtaining views ofgreater resolution when needed; and a view-update protocol for disseminating topology changesto the views. 5

Several approaches to scalable inter-domain routing have been proposed, based on the super-domain hierarchy [1, 14, 16, 9, 6], and the landmark hierarchy [18, 17]. Some of these approachessu�er from loss of ToS and policy information (and hence may not �nd a valid path which exists).Others are still in a preliminary stage. (Details in Section 8.)One important di�erence between these approaches and ours is that ours uses a query mechanismto obtain ToS and policy details whenever needed. In our opinion, such a mechanism is neededto obtain a scalable solution. Query protocols are also being developed to enhance the protocolsin [9, 6]. Reference [2] presents protocols based on a new kind of hierarchy, referred to as theviewserver hierarchy (more details in Section 8).A preliminary version of the view-query protocol was proposed in reference [1]. That versiondi�ers greatly from the one in this paper. Here, we augment superdomain-level views with gate-ways. In [1], we augmented superdomain-level views with superdomain-to-domain edges (details inSection 8). Both versions have the same time and space complexity, but the protocols in this paperare much simpler conceptually. Also the view-update protocol is not in reference [1].Organization of the paperIn Section 2, we present some de�nitions used in this paper. In Section 3, we de�ne the view datastructures. In Section 4, we describe how views are a�ected by topology changes. In Section 5, wepresent the view-query protocol. In Section 6, we present the view-update protocol. In Section 7,we present our evaluation model and the results of its application to the superdomain hierarchy.In Section 8, we survey recent approaches to inter-domain routing. In Section 9, we conclude anddescribe cacheing and heuristic schemes to improve performance.2 PreliminariesEach domain has a unique id. Let DomainIds denote the set of domain-ids. Each node has aunique id. Let NodeIds denote the set of node-ids. For a node x, we use domainid(x) to denotethe domain-id of x's domain.The superdomain hierarchy de�nes the following parent-child relationship: a level i, i > 1,superdomain is the parent of each level i � 1 superdomain it contains. Top-level superdomains6

have no parents. Level 1 superdomains, which are just domains, have no children. For any twosuperdomains X and Y , X is a sibling of Y i� X and Y have the same parent. X is an ancestor(descendant) of Y i� X = Y or X is an ancestor (descendant) of Y 's parent (child).Each router maintains information about a subset of superdomains, referred to as its visiblesuperdomains. The visible superdomains of a router x are (1) x's domain itself, (2) siblings of x'sdomain, and (3) siblings of ancestors of x's domain. In Figure 3, the visible superdomains of arouter in d1 are d1; d2; d3;B; C;G; J (these are shown in Figure 4). Note that if a superdomain Uis visible to a router, then no ancestor or descendant of U is visible to the router.Each superdomain has a unique id, i.e. unique among all superdomains regardless of level. LetSuperDomainIds denote the set of superdomain-ids. DomainIds is a subset of SuperDomainIds.For a superdomain U , let level(U) denote the level of U in the hierarchy, let Ancestors(U) denotethe set of ids of ancestor superdomains of U in the hierarchy, and let Children(U) denote the setof ids of child superdomains of U in the hierarchy.For a router x, let VisibleSuperDomains(x) denote the set of ids of superdomains visible fromx. We extend the above de�nitions by allowing their arguments to be nodes, in which case the nodestands for its domain. For example, if x is a node in domain d, Ancestors(x) denotes Ancestors(d).3 Superdomain-Level Views with GatewaysFor routing purposes, each domain (and node) has an address, de�ned as the concatenation of thesuperdomain ids starting from the top level and going down to the domain (node). For example inFigure 3, the address of domain d15 is G:E:d15, and the address of a node h in d15 is G:E:d15:h.When a source node needs to reach a destination node, it �rst determines the visible superdo-main in the destination address and then by examining its view determines a superdomain-levelsource route (satisfying ToS and policy constraints) to this superdomain. However, since routersin di�erent superdomains maintain views of di�erent sets of superdomains, this superdomain-levelsource route can be meaningless at some intermediate superdomain's router x because the nextsuperdomain in this source route is not visible to x. For example in Figure 4, superdomain-levelsource route hd2; B;G; Ci created at a router in d2 becomes meaningless once the packet is in G,where C is not visible. 7

The usual technique of solving this problem is to augment superdomain-level views with gate-ways and edges between these gateways.De�ne the pair U :g to be an sd-gateway i� U is a superdomain and g is a node that is in U andhas a link to a node outside U . Equivalently, we say that g is a gateway of U .De�ne hU :g; hi to be an actual-edge i� U :g is an sd-gateway, h is a gateway not in U , and thereis a link from g to h.De�ne hU :g; hi to be a virtual-edge i� U :g and U :h are sd-gateways and g 6= h (note that theremay not be a link between g and h).hU :g; hi is an edge i� it is an actual-edge or a virtual-edge. An edge hU :g; hi is also said to bean outgoing edge of U :g. De�ne edges of U :g to be the set of edges outgoing from U :g. De�ne edgesof U to be the set of edges outgoing from any gateway of U .Let Gateways(U) denote the set of node-ids of gateways of U . Let Edges(U :g) denote the edgesof U :g. Note that we never use \edge" as a synonym for link.A gateway g of a domain can generate many sd-gateways, speci�cally, U :g for every ancestor Uof g's domain such that g has a link to a node outside U . A link hg; hi where g and h are gatewaysin di�erent domains, can generate many actual-edges; speci�cally, actual-edge hU :g; hi for everyancestor U of g's domain such that U is not an ancestor of h's domain.For the internetwork topology of Figure 2, the corresponding gateway-level connections areshown in Figure 6 where black rectangles are gateways. For the hierarchy of Figure 3, gatewayg in Figure 6 generates sd-gateways d16:g, E:g, and G:g. The link hg; hi in Figure 6 generatesactual-edges hd16:g; hi, hE:g; hi, hG:g; hi.To a router, at most one of the sd-gateways generated by a gateway g is visible, namely U :gwhere U is an ancestor of g's domain and U is visible to the router. At most one of the actual-edgesgenerated by a link hg; hi between two gateways in di�erent domains is visible to the router, namelyedge hU :g; hi where U :g is visible to the router. None of the actual-edges are visible to the routerif g and h are inside a visible superdomain. For example in Figure 3, of the actual-edges generatedby link hg; hi, only hG:g; hi is visible to a router in d1, and only hd16:g; hi is visible to a router ind16.A router maintains a view consisting of the visible sd-gateways and their outgoing actual- andvirtual-edges. An edge hU :g; hi in the view of a router connects the sd-gateway U :g to the sd-8

d1 d2

d3

d4

d5 d6

d7 d8

d9 d10

d11
d12

d13
d14

d15

d16

d17

d18

d19
d20

d21

d22

d23
d24

d25

d26 d27 d28

gateway h gateway g

Figure 6: Gateway-level connections of internetwork of Figure 2.gateway V :h such that V :h is visible to the router. For the superdomain-level views of Figures 4and 5, the new views are shown in Figures 7 and 8, respectively.
B

C

G

J

d1 d2

d3

gateway G:g

gateway B:h

Figure 7: View of a router in d1. D

J

F

d13
d14

d15

d16

d17

d18

gateway d16:g

gateway D:h

Figure 8: View of a router in d16.The view of a router x contains, for each superdomain U that is visible to x or is an ancestorof x, the strong and weak constraints of U and a set referred to as Gateways&Edgesx(U). Thisset contains, for each gateway y of U , the edges of U :y and their costs. The reason for storinginformation about ancestor superdomains is given in Section 5. The cost �eld is used to satisfy ToSconstraints and is described in Section 4. The timestamp �eld is described in Section 6. Formally,the view of x is de�ned as follows: 9

V iewx: View of x.= fhU; strong constraints(U); weak constraints(U); Gateways&Edgesx(U)i :U 2 VisibleSuperDomains(x) [Ancestors(x) gwhereGateways&Edgesx(U): Sd-gateways and edges of U .= fhy; timestamp; fhz; costi : hU :y; zi 2 Edges(U :y)gi : y 2 Gateways(U) g.ToS and policy constraints can also be speci�ed for each sd-gateway and edge. Our protocolscan be extended to handle such constraints, but we have not done so here in order to keep theirdescriptions simple.A superdomain-level source route is now a sequence of sd-gateway ids. With this de�nition, itis easy to verify that whenever the next superdomain in a superdomain-level source route is notvisible to a router, there is an actual-edge (hence a link) between the router and the next gatewayin this route.4 Edge-Costs and Topology ChangesA cost is associated with each edge. The cost of an edge equals a vector of values if the edge is up;each cost value indicates how expensive it is to cross the edge according to some ToS constraint.The cost equals 1 if the edge is an actual-edge and it is down, or the edge is a virtual-edge hU :g; hiand h can not be reached from g without leaving U .Since an actual-edge represents a physical link, its cost can be determined from measured linkstatistics. The cost of a virtual-edge hU :g; hi is an aggregation of the cost of physical links inU and is calculated as follows: If U is a domain, the cost of hU :g; hi is calculated as the maxi-mum/minimum/average cost of the routes within U from g to h [4]. For higher level superdomainsU , the cost of hU :g; hi is derived from the costs of edges between the gateways of children super-domains of U .Link cost changes and link/node failures and repairs correspond to cost changes, failures andrepairs of actual- and virtual-edges. Thus the attributes of edges in the views of routers must beregularly updated. For this, we employ a view-update protocol (see Section 6).10

Link/node failures can also partition a superdomain into cells, where a cell of a superdomainis de�ned to be a maximal subset of nodes of the superdomain that can reach each other withoutleaving the superdomain. Superdomain partitions can occur at any level in the hierarchy. Forexample, suppose U is a domain and V is its parent superdomain. U can be partitioned into cellswithout V being partitioned (i.e. if the cells of U can reach each other without leaving V). Theopposite can also happen: if all links between U and the other children of V fail, then V becomespartitioned but U does not. Or both U and V can be partitioned. In the same way, link/noderepairs can merge cells into bigger cells.We handle superdomain partitioning as follows: A router detects that a superdomain U ispartitioned when a virtual-edge of U in the router's view has cost 1. When a router forwardsa packet to a destination for which the visible superdomain, say U , in the destination address ispartitioned into cells, a copy of the packet is sent to each cell by sending a copy of the packet toeach gateway of U ; the id U in the destination address is \marked" in the packet so that subsequentrouters do not create new copies of the packet for U .5 View-Query ProtocolWhen a source node wants a superdomain-level source route to a destination, a router in its domainexamines its view and searches for a valid path (i.e. superdomain-level source route) using thedestination address6. We refer to this router as the source router. Even though the source routerdoes not know the constraints of the individual domains that are to be crossed in each superdomain,it does know the strong and weak constraints of the superdomains. We refer to a superdomainwhose strong constraints are satis�ed as a valid superdomain. If a superdomain's weak constraintsare satis�ed but strong constraints are not satis�ed, then there may be a valid path through thissuperdomain. We refer to such a superdomain as a candidate superdomain.A path is valid if it involves only valid superdomains. A path cannot be valid if it involvesa superdomain which is neither valid nor candidate. We refer to a path involving only valid andcandidate superdomains as a candidate path.6 We assume that the source has the destination's address. If that is not the case, it would �rst query the nameservers to obtain the address for the destination. Querying the name servers can be done the same way it is donecurrently in the Internet. It requires nodes to have a set of �xed addresses to name servers. This is also su�cient inour case. 11

If the source router's view contains a candidate path hU0:g00 ; . . . ; U0:g0n0 ; U1:g10 ; . . . ; U1:g1n1 ; � � � ;Um:gm0 ; . . . ; Um:gmnm i to the destination (and does not contain a valid path), then for each candi-date superdomain Ui on this path, the source router queries gateway gi0 of Ui for the internal view ofUi. This internal view consists of the constraints, sd-gateways and edges of the child superdomainsof Ui.When a router x receives a request for the internal view of an ancestor superdomain U , itreturns the following data structure:IViewx(U): Internal view of U at router x.= fhV; strong constraints(V); weak constraints(V); Gateways&Edgesx(V)i 2 V iewx :V 2 Children(U)gIt is to simplify the construction of IViewx(U) that we store information about ancestor su-perdomains in the view of router x. Instead of storing this information, router x could constructIViewx(U) from the constraints, sd-gateways and edges of the visible descendants of U . We didnot choose this alternative because the extra information does not increase storage complexity.When the source router receives the internal view of a superdomain U , it does the following:(1) it removes the sd-gateways and edges of U from its view; (2) it adds the sd-gateways and edgesof children superdomains in the internal view of U ; and (3) searches for a valid path again. If thereis still no valid path but there are candidate paths, the process is repeated.For example, consider Figure 3. For a router in superdomain d1 (see Figure 7), G is visible andis a candidate domain. The internal view of G is shown in Figure 9, and the resulting merged viewis shown in Figure 10. The valid path through G (visiting d16 and avoiding d19) can be discoveredusing this merged view (since the strong constraints of E are satis�ed).Consider a candidate route to a destination: hU0:g00 ; . . . ; U0:g0n0 ; U1:g10 ; . . . ; U1:g1n1 ; � � � ;Um:gm0 ; . . . ; Um:gmnm i. If superdomain Ui is partitioned into cells, it may re-appear later in thecandidate path (i.e. for some j 6= i, Uj = Ui). In this case both gateways gi0 and gj0 are queried.Timestamps are used to resolve conicts between the information reported by these gateways.The view-query protocol uses two types of messages as follows:� (RequestIView; sdid; gid; s address; d address)12

E

FFigure 9: Internal view of G. B

C

J

d1 d2

d3

E

FFigure 10: Merged view at d1.Sent by a source router to gateway gid to obtain the internal view of superdomain sdid.s address is the address of the source router. d address is the address of the destinationnode (of the desired route).� (ReplyIView; sdid; gid; iview; d address)where iview is the internal view of superdomain sdid, and other parameters are as in theRequestIView message. It is sent by gateway gid to the source router.The state maintained by a source router x is listed in Figure 15. PendingReqx is used toavoid sending new request messages before receiving all outstanding reply messages. WV iewx andPendingReqx are allocated and deallocated on demand for each destination.The events of router x are speci�ed in Figure 15. In the �gure, * is a wild-card matching anyvalue. TimeOutx event is executed after a time-out period from the execution of Requestx event toindicate that the request has not been satis�ed. The source host can then repeat the same requestafterwards.The procedure searchx uses an operation \ReliableSend(m) to v", wherem is the message beingsent and v is either an address of an arbitrary router or an id of a gateway of a visible superdomain.ReliableSend is asynchronous. The message is delivered to v as long as there is a sequence of uplinks between u and v.7 (Note that an address is not needed to obtain an inter-domain route to agateway of a visible superdomain.)Router Failure Model: A router can undergo failures and recoveries at anytime. Weassume failures are fail-stop (i.e. a failed router does not send erroneous messages). When a routerx recovers, the variables WV iewx and PendingReqx are lost for all destinations. The cost of eachedge in V iewx is set to1. It becomes up-to-date as the router receives new information from other7 This involves time-outs, retransmissions, etc. It requires a transport protocol support such as TCP.13

routers.6 View-Update ProtocolA gateway g, for each ancestor superdomain U , informs other routers of topology changes (i.e.failures, repairs and cost changes) a�ecting U :g's edges. The communication is done by oodingmessages. The ooding is restricted to the routers in the parent superdomain of U , since U isvisible only to these routers.Due to the nature of ooding, a router can receive information out of order from a gateway. Inorder to avoid old information replacing new information, each gateway includes increasing timestamps in the messages it sends. Routers maintain for each gateway the highest received timestamp (in the timestamp �eld in V iewx), and discard messages with smaller timestamps. Timestamps do not have to be real-time clock values.Due to superdomain partitioning, messages sent by a gateway may not reach all routers withinthe parent superdomain, resulting in some routers having out-of-date information. This out-of-dateinformation can cause inconsistencies when the partition is repaired. To eliminate inconsistencies,when a link recovers, the two routers at the ends of the link exchange their views and ood any newinformation. As usual, information about a superdomain U is ooded over U 's parent superdomain.The view-update protocol uses messages of the following form:� (Update; sdid; gid; timestamp; edge-set)Sent by the gateway gid to inform other routers about current attributes of edges of sdid:gid.timestamp indicates the time stamp of gid. edge-set contains a cost for each edge.The state maintained by a router x is listed in Figure 16. Note that AdjLocalRoutersx orAdjForeignGatewaysx can be empty. IntraDomainRTx contains a route (next-hop or source)8 forevery reachable node of the domain. We assume that consecutive reads of Clockx returns increasingvalues.Routers also receive and ood messages containing edges of sd-gateways of their ancestor su-perdomains. This information is used by the query protocol (see Section 5). Also the highesttimestamp received from a gateway g of an ancestor superdomain is needed to avoid exchanging8 IntraDomainRTx is a view in case of a link-state routing protocol or a distance table in case of a distance-vectorrouting protocol. 14

the messages of g in�nitely during ooding.The events of router x are speci�ed in Figure 16. We use Ancestori(U) to denote the superdomain-id of the ith ancestor of U , where Ancestor0(U) = U . In the view-update protocol, a node u usessend operations of the form \Send(m) to v", where m is the message being sent and v is thedestination-id. Here, nodes u and v are neighbors, and the message is sent over the physical linkhu; vi. If the link is down, we assume that the packet is dropped.7 EvaluationIn the superdomain hierarchy (without the query protocol), the number of superdomains in a viewis logarithmic in the number of superdomains in the internetwork [10].9 However, the storagerequired for a view is proportional not to the number of superdomains in it but to the number ofsd-gateways in it. As we have seen, there can be more than one sd-gateway for a superdomain ina view.In fact, the superdomain hierarchy does not scale-up for arbitrary internetworks; that is, thenumber of sd-gateways in a view can be proportional to the number of domains in the internetwork.For example, if each domain in a superdomain U has a distinct gateway with a link to outside U ,the number of sd-gateways of U would be linear in the number of domains in U .The good news is that the superdomain hierarchy does scale-up for realistic internetwork topolo-gies. A su�cient condition for scaling is that each superdomain has at most logND sd-gateways;this condition is satis�ed by realistic internetworks since most domain interconnections are \hier-archical connections" i.e. between backbones and regionals, between regionals and MANs, and soon. In this section, we present an evaluation of the scaling properties of the superdomain hierarchyand the query protocol. To evaluate any inter-domain routing protocol, we need a model in whichwe can de�ne internetwork topologies, policy/ToS constraints, inter-domain routing hierarchies,and evaluation measures (e.g. memory and time requirements). We have recently developed sucha model [3]. We �rst describe our model, and then use it to evaluate our superdomain hierarchy.Our evaluation measures are the amount of memory required at the routers, and the amount of9 Even though the results in [10] were for intra-domain routing, it is easy to show that the analysis there holdsfor inter-domain routing as well. 15

time needed to construct a path.7.1 Evaluation ModelWe �rst describe our method of generating topologies and policy/ToS constraints. We then describethe evaluation measures.Generating Internetwork TopologiesFor our purposes, an internetwork topology is a directed graph where the nodes correspond todomains and the edges correspond to domain-level connections. However, an arbitrary graph willnot do. The topology should have the characteristics of a real internetwork, like the Internet.That is, it should have backbones, regionals, MANS, LANS, etc.; there should be hierarchicalconnections, but some \non-hierarchical" connections should also be present.For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-area domains and providers as class 2 domains, and campus and local-area domains as class 3domains. A (strictly) hierarchical interconnection of domains means that class 0 domains areconnected to each other, and for i > 0, class i domains are connected to class i � 1 domains.As mentioned above, we also want some \non-hierarchical" connections, i.e., domain-level edgesbetween domains irrespective of their classes (e.g. from a campus domain to another campusdomain or to a backbone domain).In reality, domains span geographical regions and domain-level edges are often between do-mains that are geographically close (e.g. University of Maryland campus domain is connected toSURANET regional domain which are both in the east coast). We also want some edges that arebetween far domains. A class i domain usually spans a larger geographical region than a class i+1domain. To generate such interconnections, we associate a \region" attribute to each domain. Theintention is that two domains with the same region are geographically close.The region of a class i domain has the form r0:r1: � � � :ri, where the rj 's are integers. Forexample, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of aclass i domain as a class i region.Note that regions have their own hierarchy which should not be confused with the superdomainhierarchy. Class 0 regions are the top level regions. We say that a class i region r0:r1: � � � :ri�1:ri16

is contained in the class i� 1 region r0:r1: � � � :ri�1 (where i > 0). Containment is transitive. Thusregion 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.
A B C D E F G H I

J K
L

M
N

O

P

Q

1

1.1

1.2

1.2.1
1.2.2

1.2.1.1 1.2.1.2 1.2.1.3
1.2.2.1

2

Figure 11: RegionsGiven any pair of domains, we classify them as local, remote or far, based on their regions.Let X be a class i domain and Y a class j domain, and without loss of generality let i � j. Xand Y are local if they are in the same class i region. For example in Figure 11, A is local toB;C; J;K;M;N;O; P , and Q. X and Y are remote if they are not in the same class i region butthey are in the same class i� 1 region, or if i = 0. For example in Figure 11, some of the domainsA is remote to are D;E; F , and L. X and Y are far if they are not local or remote. For examplein Figure 11, A is far to I .We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local17

(remote, or far).We use the following procedure to generate internetwork topologies:� We �rst specify the number of domain classes, and the number of domains in each class.� We next specify the regions. Note that the number of region classes equals the number ofdomain classes. We specify the number of class 0 regions. For each class i > 0, we specify abranching factor, which creates that many class i regions in each class i� 1 region. (That is,if there are two class 0 regions and the class 1 branching factor equals three, then there aresix class 1 regions.)� For each class i, we randomly map the class i domains into the class i regions. Note thatseveral domains can be mapped to the same region, and some regions may have no domainmapped into them.� For every class i and every class j, j � i, we specify the number of local, remote and faredges to be introduced between class i domains and class j domains. The end points of theedges are chosen randomly (within the speci�ed constraints).� We ensure that the internetwork topology is connected by ensuring that the subgraph of class0 domains is connected, and each class i domain, for i > 0, is connected to a local class i� 1domain.� Each domain has one gateway. So all neighbors of a domain are connected via this gateway.This is for simplicity.Choosing Policy/ToS ConstraintsWe chose a simple scheme to model policy/ToS constraints. Each domain is assigned a color: greenor red. For each domain class, we specify the percentage of green domains in that class, and thenrandomly choose a color for each domain in that class.A valid route from a source to a destination is one that does not visit any red intermediatedomains; the source and destination domains are allowed to be red.This simple scheme can model many realistic policy/ToS constraints, such as security constraintsand bandwidth requirements. It cannot model some important kinds of constraints, such as delaybounds. 18

Computing Evaluation MeasuresThe evaluation measures of most interest for an inter-domain routing protocol are its memory, timeand communication requirements. We postpone the precise de�nitions of the evaluation measuresto the next subsection.The only analysis method we have at present is to numerically compute the evaluation measuresfor a variety of source-destination pairs. Because we use internetwork topologies of large sizes, itis not feasible to compute for all possible source-destination pairs. We randomly choose a setof source-destination pairs that satisfy the following conditions: (1) the source and destinationdomains are di�erent stub domains, and (2) there exists a valid path from the source domain to thedestination domain in the internetwork topology. (Note that the straight-forward scheme wouldalways �nd such a path.)7.2 Application to Superdomain Query ProtocolWe use the above model to evaluate our superdomain query protocol for several di�erent super-domain hierarchies. For each hierarchy, we de�ne a set of superdomain-ids and a parent-childrelationship on them.The �rst superdomain hierarchy scheme is referred to as child-domains. Each domain d (re-gardless of its class) is a level-1 superdomain, also identi�ed as d. In addition, for each backbone d,we create a distinct level-4 superdomain referred to as d-4. For each regional d, we create a distinctlevel-3 superdomain d-3 and make it a child of a randomly chosen level-4 superdomain e-4 suchthat d and e are local and connected. For each MAN d, we create a distinct level-2 superdomaind-2 and make it a child of a randomly chosen level-3 superdomain e-3 such that d and e are localand connected. Please see Figure 12.We next describe how the level-1 superdomains (i.e. the domains) are placed in the hierarchy.A backbone d is placed in, i.e. as a child of, d-4. A regional d is placed in d-3. A MAN d is placedin d-2. A stub d is placed in e-2 such that d and e are local and connected. Please see Figure 12.The second superdomain hierarchy scheme is referred to as sibling-domains. It is identicalto child-domains except for the placement of level-1 superdomains corresponding to backbones,regionals and MANs. In sibling-domains, a backbone d is placed as a sibling of d-4. A regional dis placed as a sibling of d-3. A MAN d is placed as a sibling of d-2. Please see Figure 13.19

backbone A

regional E

regional B

man C

D

man F

backbone G

A−4

B−3

C−2

F−2

E−3

G−4

Figure 12: child-domains
backbone A

regional E

regional B

man C

D

man F

backbone G

A−4

B−3

C−2

F−2

E−3

G−4

Figure 13: sibling-domainsThe third superdomain hierarchy scheme is referred to as leaf-domains. It is identical to child-domains except for the placement of level-1 superdomains corresponding to backbones and regionals.20

In leaf-domains, backbones and regionals are placed in some level-2 superdomain, as follows. Aregional d, if superdomain d-3 has a child superdomain e-2, is placed in e-2. Otherwise, a new level-2 superdomain d-2 is created and placed in d-3. d is placed in d-2. A backbone d, if superdomaind-4 has a child superdomain f -3, is placed in the level-2 superdomain containing the regional f .Otherwise, a new level-3 superdomain d-3 is created and placed in d-4, a new level-2 superdomaind-2 is created and placed in d-3. d is placed in d-2. Please see Figure 14.Note that in leaf-domains, all level-1 superdomains are placed under level-2 superdomains.Whereas other schemes allow some level-1 superdomains to be placed under higher level superdo-mains.
backbone A

regional E

regional B

man C

D

man F

backbone G

A−4

B−3

C−2

F−2

E−3

G−4

Figure 14: leaf-domainsThe fourth superdomain hierarchy scheme is referred to as regions. In this scheme, the super-domain hierarchy corresponds exactly to the region hierarchy used to generate the internetworktopology. That is, for a class 1 region x there is a distinct level 5 (top level) superdomain x-5. Fora class 2 region x.y there is a distinct level 4 superdomain x:y-4 placed under level 5 superdomainx-5, and so on. Each domain is placed under the superdomain of its region. Please see Figure 11.21

Results for Internetwork 1The parameters of the �rst internetwork topology, referred to as Internetwork 1, are shown inTable 1.Class i No. of Domains No. of Regions10 % of Green Domains Edges between Classes i and jClass j Local Remote Far0 10 4 0.80 0 8 6 01 100 16 0.75 0 190 20 01 26 5 02 1000 64 0.70 0 100 0 01 1060 40 02 200 40 03 10000 256 0.20 0 100 0 01 100 0 02 10100 50 03 50 50 50Table 1: Parameters of Internetwork 1.Our evaluation measures were computed for a (randomly chosen but �xed) set of 100,000 source-destination pairs. For a source-destination pair, we refer to the length of the shortest valid path inthe internetwork topology as the shortest-path length, or spl in short. The minimum spl of thesepairs was 2, the maximum spl was 15, and the average spl was 6.84.For each source-destination pair, the set of candidate paths is examined in shortest-�rst orderuntil either a valid path was found or the set was exhausted and no valid paths were found.For each candidate path, RequestIView messages are sent to all candidate superdomains on thispath in parallel. All ReplyIView messages are received in time proportional to the round-triptime to the farthest of these superdomains. Hence, total time requirement is proportional to thenumber of candidate paths queried multiplied by the round-trip time to the farthest superdomainin these paths. Let msgsize denote the sum of average RequestIView message size and average10Branching factor is 4 for all region classes. 22

Scheme No query needed Candidate Paths Candidate Superdomainschild-domains 220 3.31/13 7.35/38sibling-domains 220 3/10 6.17/22leaf-domains 219 6.31/24 15.94/66regions 544 3.70/12 7.79/30Table 2: Queries for Internetwork 1.ReplyIViewmessage size. The number of candidate superdomains queried times msgsize indicatesthe communication capacity required to ship the RequestIView and ReplyIView messages.Table 2 lists for each superdomain scheme the average and maximum number of candidate pathsand candidate superdomains queried. As apparent from the table, sibling-domains is superior toother schemes and leaf-domains is much worse than the rest. This is because in leaf-domains, evenif only one domain d in a superdomain U is actually going to be crossed, all descendants of Ucontaining d may need to be queried to obtain a valid path (e.g. to cross backbone A in Figure 14,it may be necessary to query for superdomain A-4, then B-3, then C-2).Initial view size Merged view sizeScheme in sd-gateways in superdomains in sd-gateways in superdomainschild-domains 964/1006 42/60 1089/1282 100/298sibling-domains 1167/1269 70/99 1470/2190 148/337leaf-domains 963/1006 40/60 1108/1322 130/411regions 492/715 85/163 1042/2687 158/369Table 3: View sizes for Internetwork 1.Table 3 lists for each superdomain scheme the average and maximum of the initial view sizeand of the merged view size. The initial view size indicates the memory requirement at a routerwithout using the query protocol (i.e. assuming the initial view has a valid path). The merged viewsize indicates the memory requirement at a router during the query protocol (after �nding a valid23

path). The memory requirement at a router is O(view size in number of sd-gateways�EG) whereEG is the average number of edges of an sd-gateway. Note that the source does not need to storeinformation about red and non-transit domains in the merged views (other than the ones alreadyin the initial view). The numbers for the merged view sizes in Table 3 take advantage of this.As apparent from the table, leaf-domains, child-domains and regions scale better than sibling-domains. There are two reasons for this. First, placing a backbone (regional or MAN) domain d as asibling to d-4 (d-3 or d-2) doubles the number of level 4 (3 or 2) superdomains in the views of routers.Second, since these domains have many edges to the domains in their associated superdomains, theend points of each of these edges become sd-gateways of the associated superdomains. Note thatregions scales much superior to the other schemes in the initial view size. This is because mostedges are local (i.e. contained within regions), thus contained completely in superdomains. Hence,their end points are not sd-gateways.Overall, the child-domains and regions schemes scale best in space, time and communicationrequirements. We have repeated the above evaluations for two other internetworks and obtainedsimilar conclusions. The results are in Appendix A.8 Related WorkIn this section, we survey recently proposed inter-domain routing protocols that support ToS andpolicy routing for large internetworks.Nimrod [6] and IDPR [16] use the link-state approach with domain-level source routing toenforce policy and ToS constraints and superdomains to solve scaling problem. Nimrod is still ina design stage. Both protocols su�er from loss of policy and ToS information as mentioned in theintroduction. A query protocol for Nimrod is being developed to obtain more detailed policy, ToSand topology information.BGP [12] and IDRP [14] are based on a path-vector approach [15]. Here, for each destinationdomain a router maintains a set of paths, one through each of its neighbor routers. ToS and policyinformation is attached to these paths. Each router requires O(ND �ND �ER) space, where NDis the average number of neighbor domains for a domain and NR is the number of routers in theinternetwork. For each destination, a router exchanges its best valid path with its neighbor routers.However, a path-vector algorithm may not �nd a valid path from a source to the destination even24

if such a route exists [16]11 (i.e. detailed ToS and policy information may be lost). By exchanging kpaths to each destination, the probability of detecting a valid path for each source can be increased.But to guarantee detection, either all possible paths should be exchanged (exponential number ofpaths in the worst case) or source policies should be made public and routers should take this intoaccount when exchanging routes. However, this �x increases space and communication requirementsdrastically.IDRP [14] uses superdomains to solve the scaling problem. It exchanges all paths betweenneighbor routers subject to the following constraint: a router does not inform a neighbor routerof a route if usage of the route by the neighbor would violate some superdomain's constraint onthe route. IDRP also su�ers from loss of ToS and policy information. To overcome this problem,it uses overlapping superdomains: that is, a domain and superdomain can be in more than oneparent superdomain. If a valid path over a domain can not be discovered because the constraintsof a parent superdomain are violated, the same path may be discovered through another parentsuperdomain whose constraints are not violated. However, handling ToS and policy constraintsin general requires more and more combinations of overlapping superdomains, resulting in morestorage requirement.Reference [9] combines the bene�ts of path-vector approach and link-state approach by havingtwo modes: An NR mode, which is an extension of IDRP and is used for the most common ToSand policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS andpolicy requests. This study does not address the scalability of the SDR mode. Ongoing work bythis group considers a new SDR mode which is not based on IDPR.Reference [19] suggests the use of multiple addresses for each node, one for each ToS and Policy.This scheme does not scale up. In fact, it increases the storage requirement, since a router maintainsa route for each destination address, and there are more addresses with this scheme.The landmark hierarchy [18, 17] is another approach for solving scaling problem. Here, eachrouter is a landmark with a radius, and routers which are at most radius away from the landmarkmaintain a route for it. Landmarks are organized hierarchically, such that radius of a landmarkincreases with its level, and the radii of top level landmarks include all routers. Addressing and11 For example, suppose a router u has two paths P1 and P2 to the destination. Let u have a router neighbor v,which is in another domain. u chooses and informs v of one of the paths, say P1. But P1 may violate source policiesof v's domain, and P2 may be a valid path for v. 25

packet forwarding schemes are introduced. Link-state algorithms can not be used with the landmarkhierarchy, and a thorough study of enforcing ToS and policy constraints with this hierarchy hasnot been done.In [1], we provided an alternative solution to loss of policy and ToS information that is perhapsmore faithful to the original superdomain hierarchy. To handle superdomain-level source routingand topology changes, we augmented each superdomain-level edge (U; V) with the address of an\exit" domain u in U and an \entry" domain v in V . To obtain internal views, we added foreach visible superdomain U the edges from U to domains outside the parent of U . Surprisingly,this approach and the gateway-level view approach have the same memory and communicationrequirements. However, the �rst approach results in much more complicated protocols.Reference [2] presents interdomain routing protocols based on a new kind of hierarchy, referredto as the viewserver hierarchy. This approach also scales well to large internetworks and doesnot lose detail ToS and policy information. Here, special routers called viewservers maintain theview of domains in a surrounding precinct. Viewservers are organized hierarchically such thatfor each viewserver, there is a domain of a lower level viewserver in its view, and views of toplevel viewservers include domains of other top level viewservers. Appropriate addressing and routediscovery schemes are introduced.9 ConclusionWe presented a hierarchical inter-domain routing protocol which satis�es policy and ToS con-straints, adapts to dynamic topology changes including failures that partition domains, and scaleswell to large number of domains.Our protocol achieves scaling in space requirement by using superdomains. Our protocol main-tains superdomain-level views with sd-gateways and handles topology changes by using a link-stateview update protocol. It achieves scaling in communication requirement by ooding topologychanges a�ecting a superdomain U over U 's parent superdomain.Our protocol does not lose detail in ToS, policy and topology information. It stores both astrong set of constraints and a weak set of constraints for each visible superdomain. If the weakconstraints but not the strong constraints of a superdomain U are satis�ed (i.e. the aggregation hasresulted in loss of detail in ToS and policy information), then some paths through U may be valid.26

Our protocol uses a query protocol to obtain a more detailed \internal" view of such superdomains,and searches again for a valid path. Our evaluation results indicate that the query protocol can beperformed using 15% extra space.One drawback of our protocols is that to obtain a source route, views are merged at or priorto the connection setup, thereby increasing the setup time. This drawback is not unique to ourscheme [7, 16, 6, 9]. There are several ways to reduce this setup overhead. First, source routesto frequently used destinations can be cached. Second, the internal views of frequently queriedsuperdomains can be cached at routers close to the source domain. Third, better heuristics tochoose candidate paths and candidate superdomains to query can be developed.We also described an evaluation model for inter-domain routing protocols. This model can beapplied to other inter-domain routing protocols. We have not done so because precise de�nitions ofthe hierarchies in these protocols are not available. For example, to do a fair evaluation of IDPR[16],we need precise guidelines for how to group domains into superdomains, and how to choose betweenthe strong and weak methods when de�ning policy/ToS constraints of superdomains. In fact, theseprotocols have not been evaluated in a way that we can compare them to the superdomain hierarchy.References[1] C. Alaettino�glu and A. U. Shankar. Hierarchical Inter-Domain Routing Protocol with On-DemandToS and Poicy Resolution. In Proc. IEEE International Conference on Networking Protocols '93, SanFransisco, California, October 1993.[2] C. Alaettino�glu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol andits Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.[3] C. Alaettino�glu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. InProc. IEEE INFOCOM '94, Toronto, Canada, June 1994. To appear.[4] A. Bar-Noy and M. Gopal. Topology Distribution Cost vs. E�cient Routing in Large Networks. InProc. ACM SIGCOMM '90, pages 242{252, Philadelphia, Pennsylvania, September 1990.[5] L. Breslau and D. Estrin. Design of Inter{Administrative Domain Routing Protocols. In Proc. ACMSIGCOMM '90, pages 231{241, Philadelphia, Pennsylvania, September 1990.[6] I. Castineyra, J. N. Chiappa, C. Lynn, R. Ramanathan, and M. Steenstrup. The Nimrod Routing Archi-tecture. Internet Draft., March 1994. Available by anonymous ftp from research.ftp.com:pub/nimrod.[7] D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-1102, Network InformationCenter, May 1989.[8] D. Estrin. Policy requirements for inter Administrative Domain routing. Request for Comment RFC-1125, Network Information Center, November 1989.27

[9] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACMSIGCOMM '92, pages 40{52, Baltimore, Maryland, August 1992.[10] L. Kleinrock and F. Kamoun. Hierarchical Routing for Large Networks. Computer Networks and ISDNSystems, (1):155{174, 1977.[11] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, NetworkInformation Center, September 1989.[12] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). Request for Comment RFC-1105,Network Information Center, June 1989.[13] R. Perlman. Hierarchical Networks and Subnetwork Partition Problem. Computer Networks and ISDNSystems, 9:297{303, 1985.[14] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Available from the author., 1992. T.J. WatsonResearch Center, IBM Corp.[15] K. G. Shin and M. Chen. Performance Analysis of Distributed Routing Strategies Free of Ping-Pong-Type Looping. IEEE Transactions on Computers, 1987.[16] M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Request for Comment RFC-1478,Network Information Center, July 1993.[17] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRECorporation, McLean, Virginia, 1987.[18] P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. InProc. ACM SIGCOMM '88, August 1988.[19] P. F. Tsuchiya. E�cient and Robust Policy Routing Using Multiple Hierarchical Addresses. In Proc.ACM SIGCOMM '91, pages 53{65, Zurich, Switzerland, September 1991.A Results for Other InternetworksResults for Internetwork 2The parameters of the second internetwork topology, referred to as Internetwork 2, are the same asthe parameters of Internetwork 1 but a di�erent seed is used for the random number generation.Our evaluation measures were computed for a set of 100,000 source-destination pairs. Theminimum spl of these pairs was 1, the maximum spl was 14, and the average spl was 7.13.Table 5 and Table 4 shows the results. Similar conclusions as in the case of Internetwork 1 hold.Results for Internetwork 3The parameters of the third internetwork topology, referred to as Internetwork 3, are shown inTable 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and moreclass 3 domains are red. Hence, we expect bigger view sizes in number of sd-gateways.28

Scheme No query needed Candidate Paths Candidate Superdomainschild-domains 205 4.52/20 10.22/47sibling-domains 205 3.01/8 6.50/21leaf-domains 205 8.80/32 21.34/82regions 640 3.52/10 7.85/28Table 4: Queries for Internetwork 2.Initial view size Merged view sizeScheme in sd-gateways in superdomains in sd-gateways in superdomainschild-domains 958/1012 43/60 1079/1269 118/306sibling-domains 1153/1283 72/101 1480/2169 160/324leaf-domains 956/1009 41/58 1095/1281 156/387regions 624/1024 110/231 1356/3578 206/435Table 5: View sizes for Internetwork 2.Our evaluation measures were computed for a set of 100,000 source-destination pairs. Theminimum spl of these pairs was 1, the maximum spl was 11, and the average spl was 5.95.Table 8 and Table 7 shows the results. Similar conclusions as in the cases of Internetwork 1and 2 hold.
12Branching factor is 4 for all domain classes. 29

Class i No. of Domains No. of Regions12 % of Green Domains Edges between Classes i and jClass j Local Remote Far0 10 4 0.85 0 8 7 01 100 16 0.80 0 190 20 01 50 20 02 1000 64 0.75 0 500 50 01 1200 100 02 200 40 03 10000 256 0.10 0 300 50 01 250 100 02 10250 150 503 200 150 100Table 6: Parameters of Internetwork 3.
Scheme No query needed Candidate Paths Candidate Superdomainschild-domains 142 3.99/29 7.70/43sibling-domains 142 2.95/10 5.39/22leaf-domains 142 9.65/70 18.99/103regions 676 3.47/17 6.25/21Table 7: Queries for Internetwork 3.30

Initial view size Merged view sizeScheme in sd-gateways in superdomains in sd-gateways in superdomainschild-domains 2160/2239 43/60 2354/2647 107/348sibling-domains 2365/2504 72/101 2606/3314 148/356leaf-domains 2159/2236 41/58 2386/2645 160/648regions 1107/1644 110/231 1850/3559 194/436Table 8: View sizes for Internetwork 3.
31

Variables:V iewx: Dynamic view of x.WV iewx(d address): Temporary view of x. d address is the destination address.Used for merging internal views of superdomains to the view of x.PendingReqx(d address): Integer. d address is the destination address.Number of outstanding request messages.Events:Requestx(d address) fExecuted when x wants a valid domain-level source routegallocate WV iewx(d address) := V iewx; allocate PendingReqx(d address) := 0;searchx(d address);wheresearchx(d address)if there is a valid path to d address in WV iewx(d address) thenresult := shortest valid path;deallocate WV iewx(d address); P endingReqx(d address);return result;else if there is a candidate path to d address in WV iewx(d address) thenLet cpath = hU0:g00; . . . ; U0:g0n0 ; U1:g10; . . . ; U1:g1n1 ; � � � ; Um:gm0 ; . . . ; Um:gmnm ibe the shortest candidate path;for Ui in cpath such that Ui is candidate doReliableSend(RequestIView; Ui; gi0; address(x); d address) to gi0PendingReqx(d address) := PendingReqx(d address) + 1;elsedeallocate WV iewx(d address); P endingReqx(d address);return failure;endifendifT imeOutx(d address) fExecuted after a time-out period and PendingReqx(d address) 6= 0.gdeallocate WV iewx(d address); P endingReqx(d address);return failure;Figure 15: view-query protocol: State and events of a router x. (Figure continued on next page.)32

Receivex(RequestIView; sdid; x; s address; d address)ReliableSend(ReplyIView; sdid; x; IViewx(U); d address) to s address;Receivex(ReplyIView; sdid; gid; iview; d address)if PendingReqx(d address) 6= 0 then fNo time-out happenedgPendingReqx(d address) := PendingReqx(d address)� 1;fmerge internal viewgdelete hsdid; �; �; �i from WV iewx;for hchild; scons; wcons; gateway-seti in iview doif :9hchild; �; �; �i 2WV iewx theninsert hchild; scons; wcons; gateway-seti in WV iewx;elsefor hgid; ts; edge-seti in gateway-set doif 9hgid; timestamp; �i 2 Gateways&Edgesx(child) ^ ts > timestamp thendelete hgid; �; �i from Gateways&Edgesx(child);endif;if :9hgid; �; �i 2 Gateways&Edgesx(child) theninsert hgid; ts; edge-seti to Gateways&Edgesx(child);endifendifif PendingReqx(d address) = 0 then fAll pending replies are receivedgsearchx(d address);endifendif Figure 15: view-query protocol: State and events of a router x. (cont.)
33

Constants:AdjLocalRoutersx: (� NodeIds). Set of neighbor routers in x's domain.AdjForeignGatewaysx: (� NodeIds). Set of neighbor routers in other domains.Ancestori(x): (� SuperDomainIds). ith ancestor of x.Variables:V iewx: Dynamic view of x.IntraDomainRTx : Intra-domain routing table of x. Initially contains no entries.Clockx : Integer. Clock of x.Events:Receivex(Update; sdid; gid; ts; edge-set) from senderif 9hgid; timestamp; �i 2 Gateways&Edgesx(sdid) ^ ts > timestamp thendelete hgid; �; �i from Gateways&Edgesx(sdid);endif;if :9hgid; �; �i 2 Gateways&Edgesx(sdid) thenfloodx((Update; sdid; gid; ts; edge-set));insert hgid; ts; edge-seti to Gateways&Edgesx(sdid);update parent domainsx(level(sdid) + 1);endifwhereupdate parent domainsx(startinglevel)for level := startinglevel to number of levels in the hierarchy dosdid := Ancestorlevel(x);if x 2 Gateways(sdid) thenedge-set := aggregate edges of sdid:x using V iewx; IntraDomainRTx and links of x;timestamp = Clockx;floodx((Update; sdid; x; timestamp; edge-set));delete hx; �; �i from Gateways&Edgesx(sdid);insert hx; timestamp; edge-seti to Gateways&Edgesx(sdid);endifDo Updatex fExecuted periodically and upon a change in IntraDomainRTx or links of xgupdate parent domainsx(1)Link Recoveryx(y) fhx; yi is a link. Executed when hx; yi recovers.gfor all hsdid; �; �; �i in V iewx doif 9i : Ancestori(y) = Ancestor1(sdid) thenfor all hgid; timestamp; edge-seti in Gateways&Edgesx(sdid) doSend((Update; sdid; gid; timestamp; edge-set)) to y;endiffloodx(packet)for all y 2 AdjLocalRoutersx doSend(packet) to y;for all y 2 AdjForeignGatewaysx ^ 9i : Ancestori(y) = Ancestor1(packet:sdid) doSend(packet) to y;Figure 16: view-update protocol: State and events of a router x.34

