Hierarchical Inter-Domain Routing Protocol
with On-Demand ToS and Policy Resolution®

Cengiz Alaettinoglu, A. Udaya Shankar

Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland
College Park, Maryland 20742

CS-TR-3299

June 20, 1994

Abstract

Traditional inter-domain routing protocols based on superdomains maintain either “strong”
or “weak” ToS and policy constraints for each visible superdomain. With strong constraints,
a valid path may not be found even though one exists. With weak constraints, an invalid
domain-level path may be treated as a valid path.

We present an inter-domain routing protocol based on superdomains, which always finds
a valid path if one exists. Both strong and weak constraints are maintained for each visible
superdomain. If the strong constraints of the superdomains on a path are satisfied, then the
path 1s valid. If only the weak constraints are satisfied for some superdomains on the path, the
source uses a query protocol to obtain a more detailed “internal” view of these superdomains,
and searches again for a valid path. Our protocol handles topology changes, including node/link
failures that partition superdomains. Evaluation results indicate our protocol scales well to large
internetworks.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—packel networks; store and forward networks; C.2.2 [Computer-Communication Net-
works]: Network Protocols—protocol architecture; C.2.m [Routing Protocols]; F.2.m [Computer Network
Routing Protocols].

*

This work is supported in part by ARPA and Philips Labs under contract DAS(G60-92-0055 to Department
of Computer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. The
views, opinions, and/or findings contained in this report are those of the author(s) and should not be interpreted as
representing the official policies; either expressed or implied, of the Advanced Research Projects Agency, PL, NSF,
or the U.S. Government. Computer facilities were provided in part by NSF grant CCR-8811954.

Contents

8

9

Introduction

Preliminaries

Superdomain-Level Views with Gateways
Edge-Costs and Topology Changes
View-Query Protocol

View-Update Protocol

Evaluation
7.1 Evaluation Model e e
7.2 Application to Superdomain Query Protocol 0oL

Related Work

Conclusion

A Results for Other Internetworks

10

11

14

15
16
19

24

26

28

1 Introduction

A computer internetwork, such as the Internet, is an interconnection of backbone networks, regional
networks, metropolitan area networks, and stub networks (campus networks, office networks and
other small networks)!. Stub networks are the producers and consumers of the internetwork traffic,
while backbones, regionals and MANs are transit networks. Most of the networks in an internetwork
are stub networks. Each network consists of nodes (hosts, routers) and links. A node that has a
link to a node in another network is called a gateway. Two networks are neighbors when there is

one or more links between gateways in the two networks (see Figure 1).

N——

O
™

backhone B\

Figure 1: A portion of an internetwork. (Circles represent stub networks.)

An internetwork is organized into domains*. A domain is a set of networks (possibly consisting
of only one network) administered by the same agency. Domains are typically subject to policy
constraints, which are administrative restrictions on inter-domain traffic [7, 11, 8, 5]. The policy
constraints of a domain U are of two types: transit policies, which specify how other domains
can use the resources of U (e.g. $0.01 per packet, no traffic from domain V'); and source policies,
which specify constraints on traffic originating from U (e.g. domains to avoid/prefer, acceptable
connection cost). Transit policies of a domain are public (i.e. available to other domains), whereas
source policies are usually private.

Within each domain, an intra-domain routing protocolis executed that provides routes between
source and destination nodes in the domain. This protocol can be any of the typical ones, i.e.,

next-hop or source routes computed using distance-vector or link-state algorithms. To satisfy

! For example, NSFNET, MILNET are backbones, and Suranet, CerfNet are regionals.

2 Also referred to as routing domains or administrative domains.

type-of-service (ToS) constraints of applications (e.g. low delay, high throughput, high reliability,
minimum monetary cost), each node maintains a cost for each outgoing link and ToS. The intra-
domain routing protocol should choose optimal paths based on these costs.

Across all domains, an inter-domain routing protocol is executed that provides routes between
source and destination nodes in different domains, using the services of the intra-domain routing
protocols within domains. This protocol should have the following properties:

(1) It should satisfy the policy constraints of domains. To do this, it must keep track of the
policy constraints of domains [5].

(2) An inter-domain routing protocol should also satisfy ToS constraints of applications. To do
this, it must keep track of the ToS services offered by domains [5].

(3) An inter-domain routing protocol should scale up to very large internetworks, i.e. with a very
large number of domains. Practically this means that processing, memory and communication
requirements should be much less than linear in the number of domains. It should also
handle non-hierarchical domain interconnections at any level [8] (e.g. we do not want to
hand-configure special routes as “back-doors”).

(4) An inter-domain routing protocol should automatically adapt to link cost changes and node/link

failures and repairs, including failures that partition domains [13].

A Straight-Forward Approach

A straight-forward approach to inter-domain routing is domain-level source routing with link-state
approach [7, 5]. In this approach, each router® maintains a domain-level view of the internetwork,
i.e., a graph with a vertex for every domain and an edge between every two neighbor domains.
Policy and ToS information is attached to the vertices and the edges of the view.

When a source node needs to reach a destination node, it (or a router? in the source’s domain)
first examines this view and determines a domain-level source route satisfying ToS and policy
constraints, i.e., a sequence of domain ids starting from the source’s domain and ending with the
destination’s domain. Then packets are routed to the destination using this domain-level source
route and the intra-domain routing protocols of the domains crossed.

For example, consider the internetwork of Figure 2 (each circle is a domain, and each thin line

? Not all nodes maintain routing tables. A router is a node that maintains a routing table.
* referred to as the policy server in [7]

is a domain-level interconnection). Suppose a node in d1 desires a connection to a node in d7.
Suppose the policy constraints of d3 and d19 do not allow transit traffic originating from d1. Every
node maintains this information in its view. Thus the source node can choose a valid path from

source domain d1 to destination domain d7 avoiding d3 and d19 (e.g. thick line in the figure).

valid path

Source.

Figure 2: An example interdomain topology.

The disadvantage of this straightforward scheme is that it does not scale up for large internet-
works. The storage at each router is proportional to Np X Fp, where Np is the number of domains
and Fp is the average number of neighbor domains to a domain. The communication cost for
updating views is proportional to Np X Er, where Np is the number of routers in the internetwork
and Fp is the average router neighbors of a router (topology changes are flooded to all routers in

the internetwork).

The Superdomain Approach

To achieve scaling, several approaches based on hierarchically aggregating domains into superdo-
mains have been proposed [16, 14, 6]. Here, each domain is a level 1 superdomain, “close” level 1
superdomains are grouped into level 2 superdomains, “close” level 2 superdomains are grouped into
level 3 superdomains, and so on (see Figure 3). Each router # maintains a view that contains the
level 1 superdomains in z’s level 2 superdomain, the level 2 superdomains in &’s level 3 superdomain
(excluding the 2’s level 2 superdomain), and so on. Thus a router maintains a smaller view than

it would in the absence of hierarchy. For the superdomain hierarchy of Figure 3, the views of two

valid path

level 1 superdomain
level 2 superdomain

level 3 superdomai

Figure 3: An example of superdomain hierarchy.

routers (one in domain d1 and one in domain d16) are shown in Figures 4 and 5.
Figure 4: View of a router in d1. Figure 5: View of a router in d16.

The superdomain approach has several problems. One problem is that the aggregation results
in loss of domain-level ToS and policy information. A superdomain is usually characterized by a
single set of ToS and policy constraints derived from the ToS and policy constraints of the domains
in it. Routers outside the superdomain assume that this set of constraints applies uniformly to
each of its children (and by recursion to each domain in the superdomain). If there are domains
with different (possibly contradictory) constraints in a superdomain, then there is no good way of
deriving the ToS and policy constraints of the superdomain.

The usual technique [16] of obtaining ToS and policy constraints of a superdomain is to obtain

either a strong set of constraints or a weak set of constraints® from the ToS and policy constraints of

5
“strong” and “weak” are referred to respectively as “union” and “intersection” in [16]

the children superdomains in it. If strong (weak) constraints are used for policies, the superdomain
enforces a policy constraint if that policy constraint is enforced by some (all) of its children. If
strong (weak) constraints are used for ToS constraints, the superdomain is assumed to support a
ToS if that ToS is supported by all (some) of its children. The intention is that if strong (weak)
constraints of a superdomain are (are not) satisfied then any (no) path through that superdomain
is valid.

Each approach has problems. Strong constraints can eliminate valid paths, and weak constraints
can allow invalid paths. For example in Figure 3, d16 allows transit traffic from d1 while d19 does
not; with strong constraints G would not allow transit traffic from d1, and with weak constraints
G would allow transit traffic from d1 to be routed via d19.

Other problems of the superdomain approach are that the varying visibilities of routers compli-
cates superdomain-level source routing and handling of node/link failures (especially those that par-
tition superdomains). The usual technique for solving these problems is to augment superdomain-

level views with gateways [16] (see Section 3).

Our Contribution

In this paper, we present an inter-domain routing protocol based on superdomains, which finds
a valid path if and only if one exists. Both strong and weak constraints are maintained for each
visible superdomain. If the strong constraints of the superdomains on a path are satisfied, then
the path is valid. If only the weak constraints are satisfied for some superdomains on the path, the
source uses a query protocol to obtain a more detailed “internal” view of these superdomains, and
searches again for a valid path.

We use superdomain-level views with gateways and a link-state view update protocol to handle
topology changes including failures that partition superdomains. The storage cost is O(log Np X
log Np) without the query protocol. We demonstrate the scaling properties of the query protocol
by giving evaluation results based on simulations. Our evaluation results indicate that the query
protocol can be performed using 15% extra space.

Our protocol consists of two subprotocols: a view-query protocol for obtaining views of
greater resolution when needed; and a view-update protocol for disseminating topology changes

to the views.

Several approaches to scalable inter-domain routing have been proposed, based on the super-
domain hierarchy [1, 14, 16, 9, 6], and the landmark hierarchy [18, 17]. Some of these approaches
suffer from loss of ToS and policy information (and hence may not find a valid path which exists).
Others are still in a preliminary stage. (Details in Section 8.)

One important difference between these approaches and ours is that ours uses a query mechanism
to obtain ToS and policy details whenever needed. In our opinion, such a mechanism is needed
to obtain a scalable solution. Query protocols are also being developed to enhance the protocols
in [9, 6]. Reference [2] presents protocols based on a new kind of hierarchy, referred to as the
viewserver hierarchy (more details in Section 8).

A preliminary version of the view-query protocol was proposed in reference [1]. That version
differs greatly from the one in this paper. Here, we augment superdomain-level views with gate-
ways. In [1], we augmented superdomain-level views with superdomain-to-domain edges (details in
Section 8). Both versions have the same time and space complexity, but the protocols in this paper

are much simpler conceptually. Also the view-update protocol is not in reference [1].

Organization of the paper

In Section 2, we present some definitions used in this paper. In Section 3, we define the view data
structures. In Section 4, we describe how views are affected by topology changes. In Section 5, we
present the view-query protocol. In Section 6, we present the view-update protocol. In Section 7,
we present our evaluation model and the results of its application to the superdomain hierarchy.
In Section 8, we survey recent approaches to inter-domain routing. In Section 9, we conclude and

describe cacheing and heuristic schemes to improve performance.

2 Preliminaries

Fach domain has a unique id. Let DomainIds denote the set of domain-ids. Each node has a
unique id. Let NodeIds denote the set of node-ids. For a node z, we use domainid(z) to denote
the domain-id of x’s domain.

The superdomain hierarchy defines the following parent-child relationship: a level ¢, ¢ > 1,

superdomain is the parent of each level ¢ — 1 superdomain it contains. Top-level superdomains

have no parents. Level 1 superdomains, which are just domains, have no children. For any two
superdomains X and Y, X is a sibling of Y iff X and Y have the same parent. X is an ancestor
(descendant) of Y iff X = Y or X is an ancestor (descendant) of ¥’s parent (child).

Each router maintains information about a subset of superdomains, referred to as its visible
superdomains. The visible superdomains of a router z are (1) z’s domain itself, (2) siblings of z’s
domain, and (3) siblings of ancestors of z’s domain. In Figure 3, the visible superdomains of a
router in d1 are d1,d2,d3, B,C, G, J (these are shown in Figure 4). Note that if a superdomain U
is visible to a router, then no ancestor or descendant of U is visible to the router.

Each superdomain has a unique id, i.e. unique among all superdomains regardless of level. Let
SuperDomainIds denote the set of superdomain-ids. DomainIds is a subset of SuperDomainIds.
For a superdomain U, let 1evel(U) denote the level of U in the hierarchy, let Ancestors(U) denote
the set of ids of ancestor superdomains of U in the hierarchy, and let Children(U) denote the set
of ids of child superdomains of U in the hierarchy.

For a router z, let VisibleSuperDomains(z) denote the set of ids of superdomains visible from

We extend the above definitions by allowing their arguments to be nodes, in which case the node

stands for its domain. For example, if # is a node in domain d, Ancestors(z) denotes Ancestors(d).

3 Superdomain-Level Views with Gateways

For routing purposes, each domain (and node) has an address, defined as the concatenation of the
superdomain ids starting from the top level and going down to the domain (node). For example in
Figure 3, the address of domain d15 is G.F.d15, and the address of a node h in d15 is G.F.d15.h.

When a source node needs to reach a destination node, it first determines the visible superdo-
main in the destination address and then by examining its view determines a superdomain-level
source route (satisfying ToS and policy constraints) to this superdomain. However, since routers
in different superdomains maintain views of different sets of superdomains, this superdomain-level
source route can be meaningless at some intermediate superdomain’s router x because the next
superdomain in this source route is not visible to z. For example in Figure 4, superdomain-level
source route (d2, B, G, C') created at a router in d2 becomes meaningless once the packet is in G,

where (' is not visible.

The usual technique of solving this problem is to augment superdomain-level views with gate-
ways and edges between these gateways.

Define the pair U:g to be an sd-gateway iff U is a superdomain and g is a node that is in U and
has a link to a node outside U. Equivalently, we say that ¢ is a gateway of U.

Define (U:g, h) to be an actual-edge iff U:g is an sd-gateway, h is a gateway not in U, and there
is a link from ¢ to h.

Define (U:g, h) to be a virtual-edge iff U:g and U:h are sd-gateways and g # h (note that there
may not be a link between g and h).

(U:g,h) is an edge iff it is an actual-edge or a virtual-edge. An edge (U:g,h) is also said to be
an outgoing edge of U:g. Define edges of U:g to be the set of edges outgoing from U:g. Define edges
of U to be the set of edges outgoing from any gateway of U.

Let Gateways(U) denote the set of node-ids of gateways of U. Let Edges(U:g) denote the edges
of U:g. Note that we never use “edge” as a synonym for link.

A gateway g of a domain can generate many sd-gateways, specifically, U:g for every ancestor U
of ¢’s domain such that ¢ has a link to a node outside U. A link (g, k) where g and h are gateways
in different domains, can generate many actual-edges; specifically, actual-edge (U:g,h) for every
ancestor U of ¢’s domain such that U is not an ancestor of h’s domain.

For the internetwork topology of Figure 2, the corresponding gateway-level connections are
shown in Figure 6 where black rectangles are gateways. For the hierarchy of Figure 3, gateway
¢ in Figure 6 generates sd-gateways d16:g, F:g, and G:g. The link (g,h) in Figure 6 generates
actual-edges (d16:g,h), (F:g,h), (G:g,h).

To a router, at most one of the sd-gateways generated by a gateway g is visible, namely U:g
where U is an ancestor of g’s domain and U is visible to the router. At most one of the actual-edges
generated by a link (g, h) between two gateways in different domains is visible to the router, namely
edge (U:g, h) where U:g is visible to the router. None of the actual-edges are visible to the router
if g and h are inside a visible superdomain. For example in Figure 3, of the actual-edges generated
by link (g, h), only (G:g,h) is visible to a router in d1, and only (d16:¢, h) is visible to a router in
d16.

A router maintains a view consisting of the visible sd-gateways and their outgoing actual- and

virtual-edges. An edge (U:g,h) in the view of a router connects the sd-gateway U:g to the sd-

gateway h gateway g

Figure 6: Gateway-level connections of internetwork of Figure 2.

gateway V:h such that V:h is visible to the router. For the superdomain-level views of Figures 4

and 5, the new views are shown in Figures 7 and 8, respectively.

gateway d16:g

gateway B:h

gateway G:g

Figure 7: View of a router in d1. Figure 8: View of a router in d16.

The view of a router & contains, for each superdomain U that is visible to z or is an ancestor
of x, the strong and weak constraints of U and a set referred to as Gatewaysé Fdges,(U). This
set contains, for each gateway y of U, the edges of U:y and their costs. The reason for storing
information about ancestor superdomains is given in Section 5. The cost field is used to satisfy ToS
constraints and is described in Section 4. The timestamp field is described in Section 6. Formally,

the view of z is defined as follows:

View,. View of x.
= {(U, strong_constraints(lU), weak_constraints(U), Gatewaysé&Edges, (U)) :

U € VisibleSuperDomains(z) U Ancestors(z) }
where

GatewayséFdges, (U). Sd-gateways and edges of U.
= {{y, timestamp, {(z, cost) : (U:y,z) € Edges(U:y)}): y € Gateways(U) }.

ToS and policy constraints can also be specified for each sd-gateway and edge. Our protocols
can be extended to handle such constraints, but we have not done so here in order to keep their
descriptions simple.

A superdomain-level source route is now a sequence of sd-gateway ids. With this definition, it
is easy to verify that whenever the next superdomain in a superdomain-level source route is not
visible to a router, there is an actual-edge (hence a link) between the router and the next gateway

in this route.

4 Edge-Costs and Topology Changes

A cost is associated with each edge. The cost of an edge equals a vector of values if the edge is up;
each cost value indicates how expensive it is to cross the edge according to some ToS constraint.
The cost equals oo if the edge is an actual-edge and it is down, or the edge is a virtual-edge (U:g, h)
and h can not be reached from g without leaving U.

Since an actual-edge represents a physical link, its cost can be determined from measured link
statistics. The cost of a virtual-edge (U:g,h) is an aggregation of the cost of physical links in
U and is calculated as follows: If U is a domain, the cost of (U:g,h) is calculated as the maxi-
mum/minimum/average cost of the routes within U from ¢ to h [4]. For higher level superdomains
U, the cost of (U:g,h) is derived from the costs of edges between the gateways of children super-
domains of U.

Link cost changes and link/node failures and repairs correspond to cost changes, failures and
repairs of actual- and virtual-edges. Thus the attributes of edges in the views of routers must be

regularly updated. For this, we employ a view-update protocol (see Section 6).

10

Link/node failures can also partition a superdomain into cells, where a cell of a superdomain
is defined to be a maximal subset of nodes of the superdomain that can reach each other without
leaving the superdomain. Superdomain partitions can occur at any level in the hierarchy. For
example, suppose U is a domain and V is its parent superdomain. U can be partitioned into cells
without V' being partitioned (i.e. if the cells of U can reach each other without leaving V). The
opposite can also happen: if all links between U and the other children of V fail, then V' becomes
partitioned but U does not. Or both U and V can be partitioned. In the same way, link/node
repairs can merge cells into bigger cells.

We handle superdomain partitioning as follows: A router detects that a superdomain U is
partitioned when a virtual-edge of U in the router’s view has cost co. When a router forwards
a packet to a destination for which the visible superdomain, say U, in the destination address is
partitioned into cells, a copy of the packet is sent to each cell by sending a copy of the packet to
each gateway of U; the id U in the destination address is “marked” in the packet so that subsequent

routers do not create new copies of the packet for U.

5 View-Query Protocol

When a source node wants a superdomain-level source route to a destination, a router in its domain
examines its view and searches for a valid path (i.e. superdomain-level source route) using the
destination address®. We refer to this router as the source router. Even though the source router
does not know the constraints of the individual domains that are to be crossed in each superdomain,
it does know the strong and weak constraints of the superdomains. We refer to a superdomain
whose strong constraints are satisfied as a valid superdomain. If a superdomain’s weak constraints
are satisfied but strong constraints are not satisfied, then there may be a valid path through this
superdomain. We refer to such a superdomain as a candidate superdomain.

A path is valid if it involves only valid superdomains. A path cannot be valid if it involves
a superdomain which is neither valid nor candidate. We refer to a path involving only valid and

candidate superdomains as a candidate path.

6 We assume that the source has the destination’s address. If that is not the case, it would first query the name
servers to obtain the address for the destination. Querying the name servers can be done the same way it is done
currently in the Internet. It requires nodes to have a set of fixed addresses to name servers. This is also sufficient in
our case.

11

If the source router’s view contains a candidate path (Up:go,, - - -, Uo:go,, - Ur:g1g5 -, Urign,,,, « -
Un9mo»- - > Un'Gm,,) to the destination (and does not contain a valid path), then for each candi-
date superdomain U; on this path, the source router queries gateway g;, of U; for the internal view of
U;. This internal view consists of the constraints, sd-gateways and edges of the child superdomains
of U;.

When a router z receives a request for the internal view of an ancestor superdomain U, it

returns the following data structure:

IView,(U). Internal view of U at router z.

= {(V, strong_constraints(V'), weak_constraints(V), Gatewaysé&Ldges, (V)) € View, :

V € Children(U)}

It is to simplify the construction of [View,(U) that we store information about ancestor su-
perdomains in the view of router x. Instead of storing this information, router z could construct
IView,(U) from the constraints, sd-gateways and edges of the visible descendants of U. We did
not choose this alternative because the extra information does not increase storage complexity.

When the source router receives the internal view of a superdomain U, it does the following;:
(1) it removes the sd-gateways and edges of U from its view; (2) it adds the sd-gateways and edges
of children superdomains in the internal view of U; and (3) searches for a valid path again. If there
is still no valid path but there are candidate paths, the process is repeated.

For example, consider Figure 3. For a router in superdomain d1 (see Figure 7), GG is visible and
is a candidate domain. The internal view of G is shown in Figure 9, and the resulting merged view
is shown in Figure 10. The valid path through G (visiting d16 and avoiding d19) can be discovered
using this merged view (since the strong constraints of F are satisfied).

Consider a candidate route to a destination: (Up:go,,- - -, U090, Urig1gs - Urign,, 5 <o s
Unimos-- > UniGm,,). If superdomain U; is partitioned into cells, it may re-appear later in the
candidate path (i.e. for some j # ¢, U; = U;). In this case both gateways g;, and g;, are queried.

Timestamps are used to resolve conflicts between the information reported by these gateways.

The view-query protocol uses two types of messages as follows:

o (RequestIView, sdid, gid,s.address,d_address)

12

Figure 9: Internal view of G. Figure 10: Merged view at d1.

Sent by a source router to gateway gid to obtain the internal view of superdomain sdid.
s_address is the address of the source router. d_address is the address of the destination
node (of the desired route).

¢ (ReplyIView,sdid, gid,iview,d_address)

where iview is the internal view of superdomain sdid, and other parameters are as in the
RequestIView message. It is sent by gateway gid to the source router.

The state maintained by a source router z is listed in Figure 15. PendingReq, is used to
avoid sending new request messages before receiving all outstanding reply messages. WView, and
PendingReq, are allocated and deallocated on demand for each destination.

The events of router @ are specified in Figure 15. In the figure, * is a wild-card matching any
value. TimeQut, event is executed after a time-out period from the execution of Request, event to
indicate that the request has not been satisfied. The source host can then repeat the same request
afterwards.

The procedure search, uses an operation “ReliableSend (m) to v”, where m is the message being
sent and v is either an address of an arbitrary router or an id of a gateway of a visible superdomain.
ReliableSend is asynchronous. The message is delivered to v as long as there is a sequence of up
links between u and ».” (Note that an address is not needed to obtain an inter-domain route to a
gateway of a visible superdomain.)

Router Failure Model: A router can undergo failures and recoveries at anytime. We
assume failures are fail-stop (i.e. a failed router does not send erroneous messages). When a router
x recovers, the variables WView, and PendingReq, are lost for all destinations. The cost of each

edge in View, is set to co. It becomes up-to-date as the router receives new information from other

T This involves time-outs, retransmissions, etc. It requires a transport protocol support such as TCP.

13

routers.

6 View-Update Protocol

A gateway g, for each ancestor superdomain U, informs other routers of topology changes (i.e.
failures, repairs and cost changes) affecting U:g’s edges. The communication is done by flooding
messages. The flooding is restricted to the routers in the parent superdomain of U, since U is
visible only to these routers.

Due to the nature of flooding, a router can receive information out of order from a gateway. In
order to avoid old information replacing new information, each gateway includes increasing time
stamps in the messages it sends. Routers maintain for each gateway the highest received time
stamp (in the timestamp field in View,), and discard messages with smaller timestamps. Time
stamps do not have to be real-time clock values.

Due to superdomain partitioning, messages sent by a gateway may not reach all routers within
the parent superdomain, resulting in some routers having out-of-date information. This out-of-date
information can cause inconsistencies when the partition is repaired. To eliminate inconsistencies,
when a link recovers, the two routers at the ends of the link exchange their views and flood any new
information. As usual, information about a superdomain U is flooded over U’s parent superdomain.

The view-update protocol uses messages of the following form:

e (Update, sdid, gid, timestamp, edge-set)

Sent by the gateway gtd to inform other routers about current attributes of edges of sdid:gid.
timestamp indicates the time stamp of gid. edge-set contains a cost for each edge.

The state maintained by a router z is listed in Figure 16. Note that AdjLocalRouters, or
AdjForeignGateways, can be empty. IntraDomainRT, contains a route (next-hop or source)® for
every reachable node of the domain. We assume that consecutive reads of C'lock, returns increasing
values.

Routers also receive and flood messages containing edges of sd-gateways of their ancestor su-
perdomains. This information is used by the query protocol (see Section 5). Also the highest

timestamp received from a gateway ¢ of an ancestor superdomain is needed to avoid exchanging

8 ImtraDomainRT, is a view in case of a link-state routing protocol or a distance table in case of a distance-vector
routing protocol.

14

the messages of g infinitely during flooding.

The events of router are specified in Figure 16. We use Ancestor;(U) to denote the superdomain-
id of the ith ancestor of U, where Ancestorg(U) = U. In the view-update protocol, a node u uses
send operations of the form “Send(m) to v”, where m is the message being sent and v is the
destination-id. Here, nodes u and v are neighbors, and the message is sent over the physical link

(u,v). If the link is down, we assume that the packet is dropped.

7 Evaluation

In the superdomain hierarchy (without the query protocol), the number of superdomains in a view
is logarithmic in the number of superdomains in the internetwork [10]. However, the storage
required for a view is proportional not to the number of superdomains in it but to the number of
sd-gateways in it. As we have seen, there can be more than one sd-gateway for a superdomain in
a view.

In fact, the superdomain hierarchy does not scale-up for arbitrary internetworks; that is, the
number of sd-gateways in a view can be proportional to the number of domains in the internetwork.
For example, if each domain in a superdomain U has a distinct gateway with a link to outside U,
the number of sd-gateways of U would be linear in the number of domains in U.

The good news is that the superdomain hierarchy does scale-up for realistic internetwork topolo-
gies. A sufficient condition for scaling is that each superdomain has at most log Np sd-gateways;
this condition is satisfied by realistic internetworks since most domain interconnections are “hier-
archical connections” i.e. between backbones and regionals, between regionals and MANs, and so
on.

In this section, we present an evaluation of the scaling properties of the superdomain hierarchy
and the query protocol. To evaluate any inter-domain routing protocol, we need a model in which
we can define internetwork topologies, policy/ToS constraints, inter-domain routing hierarchies,
and evaluation measures (e.g. memory and time requirements). We have recently developed such
a model [3]. We first describe our model, and then use it to evaluate our superdomain hierarchy.

Our evaluation measures are the amount of memory required at the routers, and the amount of

® Even though the results in [10] were for intra-domain routing, it is easy to show that the analysis there holds
for inter-domain routing as well.

15

time needed to construct a path.

7.1 Evaluation Model

We first describe our method of generating topologies and policy/ToS constraints. We then describe

the evaluation measures.

Generating Internetwork Topologies

For our purposes, an internetwork topology is a directed graph where the nodes correspond to
domains and the edges correspond to domain-level connections. However, an arbitrary graph will
not do. The topology should have the characteristics of a real internetwork, like the Internet.
That is, it should have backbones, regionals, MANS, LANS, etc.; there should be hierarchical
connections, but some “non-hierarchical” connections should also be present.

For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-
area domains and providers as class 2 domains, and campus and local-area domains as class 3
domains. A (strictly) hierarchical interconnection of domains means that class 0 domains are
connected to each other, and for ¢ > 0, class ¢ domains are connected to class ¢ — 1 domains.
As mentioned above, we also want some “non-hierarchical” connections, i.e., domain-level edges
between domains irrespective of their classes (e.g. from a campus domain to another campus
domain or to a backbone domain).

In reality, domains span geographical regions and domain-level edges are often between do-
mains that are geographically close (e.g. University of Maryland campus domain is connected to
SURANET regional domain which are both in the east coast). We also want some edges that are
between far domains. A class ¢ domain usually spans a larger geographical region than a class ¢+ 1
domain. To generate such interconnections, we associate a “region” attribute to each domain. The
intention is that two domains with the same region are geographically close.

The region of a class ¢ domain has the form rg.rq.---.rj, where the r;’s are integers. For
example, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of a
class ¢« domain as a class ¢ region.

Note that regions have their own hierarchy which should not be confused with the superdomain

hierarchy. Class 0 regions are the top level regions. We say that a class ¢ region rg.rq.---.ri_1.ri

16

is contained in the class i — 1 region ro.ry.---.rij_1 (where 7 > 0). Containment is transitive. Thus

region 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.

Figure 11: Regions

Given any pair of domains, we classify them as local, remote or far, based on their regions.
Let X be a class ¢ domain and Y a class j domain, and without loss of generality let 7 < j. X
and Y are local if they are in the same class ¢ region. For example in Figure 11, A is local to
B,C,J,K,M,N,O,P,and (). X and Y are remote if they are not in the same class ¢ region but
they are in the same class ¢ — 1 region, or if ¢ = 0. For example in Figure 11, some of the domains
A is remote to are D, F, F,and L. X and Y are far if they are not local or remote. For example
in Figure 11, A is far to [.

We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local

17

(remote, or far).

We use the following procedure to generate internetwork topologies:

We first specify the number of domain classes, and the number of domains in each class.
We next specify the regions. Note that the number of region classes equals the number of
domain classes. We specify the number of class 0 regions. For each class ¢ > 0, we specify a
branching factor, which creates that many class ¢ regions in each class ¢ — 1 region. (That is,
if there are two class 0 regions and the class 1 branching factor equals three, then there are
six class 1 regions.)

For each class ¢, we randomly map the class ¢ domains into the class ¢ regions. Note that
several domains can be mapped to the same region, and some regions may have no domain
mapped into them.

For every class ¢ and every class j, j > 7, we specify the number of local, remote and far
edges to be introduced between class ¢ domains and class 7 domains. The end points of the
edges are chosen randomly (within the specified constraints).

We ensure that the internetwork topology is connected by ensuring that the subgraph of class
0 domains is connected, and each class ¢« domain, for ¢ > 0, is connected to a local class ¢ — 1
domain.

Each domain has one gateway. So all neighbors of a domain are connected via this gateway.

This is for simplicity.

Choosing Policy/ToS Constraints

We chose a simple scheme to model policy /ToS constraints. Each domain is assigned a color: green

or red. For each domain class, we specify the percentage of green domains in that class, and then

randomly choose a color for each domain in that class.

A walid route from a source to a destination is one that does not visit any red intermediate

domains; the source and destination domains are allowed to be red.

This simple scheme can model many realistic policy/ToS constraints, such as security constraints

and bandwidth requirements. It cannot model some important kinds of constraints, such as delay

bounds.

18

Computing Evaluation Measures

The evaluation measures of most interest for an inter-domain routing protocol are its memory, time
and communication requirements. We postpone the precise definitions of the evaluation measures
to the next subsection.

The only analysis method we have at present is to numerically compute the evaluation measures
for a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it
is not feasible to compute for all possible source-destination pairs. We randomly choose a set
of source-destination pairs that satisfy the following conditions: (1) the source and destination
domains are different stub domains, and (2) there exists a valid path from the source domain to the
destination domain in the internetwork topology. (Note that the straight-forward scheme would

always find such a path.)

7.2 Application to Superdomain Query Protocol

We use the above model to evaluate our superdomain query protocol for several different super-
domain hierarchies. For each hierarchy, we define a set of superdomain-ids and a parent-child
relationship on them.

The first superdomain hierarchy scheme is referred to as child-domains. Each domain d (re-
gardless of its class) is a level-1 superdomain, also identified as d. In addition, for each backbone d,
we create a distinct level-4 superdomain referred to as d-4. For each regional d, we create a distinct
level-3 superdomain d-3 and make it a child of a randomly chosen level-4 superdomain e-4 such
that d and e are local and connected. For each MAN d, we create a distinct level-2 superdomain
d-2 and make it a child of a randomly chosen level-3 superdomain e-3 such that d and e are local
and connected. Please see Figure 12.

We next describe how the level-1 superdomains (i.e. the domains) are placed in the hierarchy.
A backbone d is placed in, i.e. as a child of, d-4. A regional d is placed in d-3. A MAN d is placed
in d-2. A stub d is placed in e-2 such that d and e are local and connected. Please see Figure 12.

The second superdomain hierarchy scheme is referred to as sibling-domains. It is identical
to child-domains except for the placement of level-1 superdomains corresponding to backbones,
regionals and MANs. In sibling-domains, a backbone d is placed as a sibling of d-4. A regional d
is placed as a sibling of d-3. A MAN d is placed as a sibling of d-2. Please see Figure 13.

19

A-4
backbone A
B-3

Figure 12: child-domains

backbone G

Figure 13: sibling-domains

The third superdomain hierarchy scheme is referred to as leaf-domains. 1t is identical to child-

domains except for the placement of level-1 superdomains corresponding to backbones and regionals.

20

In leaf-domains, backbones and regionals are placed in some level-2 superdomain, as follows. A
regional d, if superdomain d-3 has a child superdomain e-2, is placed in e-2. Otherwise, a new level-
2 superdomain d-2 is created and placed in d-3. d is placed in d-2. A backbone d, if superdomain
d-4 has a child superdomain f-3, is placed in the level-2 superdomain containing the regional f.
Otherwise, a new level-3 superdomain d-3 is created and placed in d-4, a new level-2 superdomain
d-2 is created and placed in d-3. d is placed in d-2. Please see Figure 14.

Note that in leaf-domains, all level-1 superdomains are placed under level-2 superdomains.
Whereas other schemes allow some level-1 superdomains to be placed under higher level superdo-

mains.

backbone G

Figure 14: leaf-domains

The fourth superdomain hierarchy scheme is referred to as regions. In this scheme, the super-
domain hierarchy corresponds exactly to the region hierarchy used to generate the internetwork
topology. That is, for a class 1 region x there is a distinct level 5 (top level) superdomain z-5. For
a class 2 region x.y there is a distinct level 4 superdomain z.y-4 placed under level 5 superdomain

x-5, and so on. Each domain is placed under the superdomain of its region. Please see Figure 11.

21

Results for Internetwork 1

The parameters of the first internetwork topology, referred to as Internetwork 1, are shown in

Table 1.

Class 7 || No. of Domains | No. of Regions'® | % of Green Domains | Edges between Classes i and j
Class 7 | Local | Remote | Far

0 10 4 0.80 0 8 6 0
1 100 16 0.75 0 190 20 0
1 26 5 0

2 1000 64 0.70 0 100 0 0
1 1060 40 0

2 200 40 0

3 10000 256 0.20 0 100 0 0
1 100 0 0

2 10100 50 0

3 50 50 50

Table 1: Parameters of Internetwork 1.

Our evaluation measures were computed for a (randomly chosen but fixed) set of 100,000 source-
destination pairs. For a source-destination pair, we refer to the length of the shortest valid path in
the internetwork topology as the shortest-path length, or spl in short. The minimum spl of these
pairs was 2, the maximum spl was 15, and the average spl was 6.84.

For each source-destination pair, the set of candidate paths is examined in shortest-first order
until either a valid path was found or the set was exhausted and no valid paths were found.
For each candidate path, RequestIView messages are sent to all candidate superdomains on this
path in parallel. All ReplyIView messages are received in time proportional to the round-trip
time to the farthest of these superdomains. Hence, total time requirement is proportional to the
number of candidate paths queried multiplied by the round-trip time to the farthest superdomain

in these paths. Let msgsize denote the sum of average RequestIView message size and average

1%Branching factor is 4 for all region classes.

22

Scheme No query needed | Candidate Paths | Candidate Superdomains
child-domains 220 3.31/13 7.35/38
sibling-domains 220 3/10 6.17/22
leaf-domains 219 6.31/24 15.94/66
regions 544 3.70/12 7.79/30

Table 2 lists for each superdomain scheme the average and maximum number of candidate paths

Table 2: Queries for Internetwork 1.

it may be necessary to query for superdomain A-4, then B-3, then C-2).

ReplyIView message size. The number of candidate superdomains queried times msgstze indicates

the communication capacity required to ship the RequestIView and ReplyIView messages.

and candidate superdomains queried. As apparent from the table, sibling-domains is superior to
other schemes and leaf-domains is much worse than the rest. This is because in leaf-domains, even
if only one domain d in a superdomain U is actually going to be crossed, all descendants of U

containing d may need to be queried to obtain a valid path (e.g. to cross backbone A in Figure 14,

Initial view size

Merged view size

Scheme in sd-gateways | in superdomains | in sd-gateways | in superdomains
child-domains 964/1006 42/60 1089/1282 100/298
sibling-domains 1167/1269 70/99 1470/2190 148/337
leaf-domains 963/1006 40/60 1108/1322 130/411
regions 492/715 85/163 1042/2687 158/369

Table 3 lists for each superdomain scheme the average and maximum of the initial view size

Table 3: View sizes for Internetwork 1.

23

and of the merged view size. The initial view size indicates the memory requirement at a router
without using the query protocol (i.e. assuming the initial view has a valid path). The merged view

size indicates the memory requirement at a router during the query protocol (after finding a valid

path). The memory requirement at a router is O(view size in number of sd-gateways X E¢) where
F¢ is the average number of edges of an sd-gateway. Note that the source does not need to store
information about red and non-transit domains in the merged views (other than the ones already
in the initial view). The numbers for the merged view sizes in Table 3 take advantage of this.

As apparent from the table, leaf-domains, child-domains and regions scale better than sibling-
domains. There are two reasons for this. First, placing a backbone (regional or MAN) domain d as a
sibling to d-4 (d-3 or d-2) doubles the number of level 4 (3 or 2) superdomains in the views of routers.
Second, since these domains have many edges to the domains in their associated superdomains, the
end points of each of these edges become sd-gateways of the associated superdomains. Note that
regions scales much superior to the other schemes in the initial view size. This is because most
edges are local (i.e. contained within regions), thus contained completely in superdomains. Hence,
their end points are not sd-gateways.

Overall, the child-domains and regions schemes scale best in space, time and communication
requirements. We have repeated the above evaluations for two other internetworks and obtained

similar conclusions. The results are in Appendix A.

8 Related Work

In this section, we survey recently proposed inter-domain routing protocols that support ToS and
policy routing for large internetworks.

Nimrod [6] and IDPR [16] use the link-state approach with domain-level source routing to
enforce policy and ToS constraints and superdomains to solve scaling problem. Nimrod is still in
a design stage. Both protocols suffer from loss of policy and ToS information as mentioned in the
introduction. A query protocol for Nimrod is being developed to obtain more detailed policy, ToS
and topology information.

BGP [12] and IDRP [14] are based on a path-vector approach [15]. Here, for each destination
domain a router maintains a set of paths, one through each of its neighbor routers. ToS and policy
information is attached to these paths. Each router requires O(Np x Np x FEg) space, where Np
is the average number of neighbor domains for a domain and Npg is the number of routers in the
internetwork. For each destination, a router exchanges its best valid path with its neighbor routers.

However, a path-vector algorithm may not find a valid path from a source to the destination even

24

if such a route exists [16]!! (i.e. detailed ToS and policy information may be lost). By exchanging &
paths to each destination, the probability of detecting a valid path for each source can be increased.
But to guarantee detection, either all possible paths should be exchanged (exponential number of
paths in the worst case) or source policies should be made public and routers should take this into
account when exchanging routes. However, this fix increases space and communication requirements
drastically.

IDRP [14] uses superdomains to solve the scaling problem. It exchanges all paths between
neighbor routers subject to the following constraint: a router does not inform a neighbor router
of a route if usage of the route by the neighbor would violate some superdomain’s constraint on
the route. IDRP also suffers from loss of ToS and policy information. To overcome this problem,
it uses overlapping superdomains: that is, a domain and superdomain can be in more than one
parent superdomain. If a valid path over a domain can not be discovered because the constraints
of a parent superdomain are violated, the same path may be discovered through another parent
superdomain whose constraints are not violated. However, handling ToS and policy constraints
in general requires more and more combinations of overlapping superdomains, resulting in more
storage requirement.

Reference [9] combines the benefits of path-vector approach and link-state approach by having
two modes: An NR mode, which is an extension of IDRP and is used for the most common ToS
and policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS and
policy requests. This study does not address the scalability of the SDR mode. Ongoing work by
this group considers a new SDR mode which is not based on IDPR.

Reference [19] suggests the use of multiple addresses for each node, one for each ToS and Policy.
This scheme does not scale up. In fact, it increases the storage requirement, since a router maintains
a route for each destination address, and there are more addresses with this scheme.

The landmark hierarchy [18, 17] is another approach for solving scaling problem. Here, each
router is a landmark with a radius, and routers which are at most radius away from the landmark
maintain a route for it. Landmarks are organized hierarchically, such that radius of a landmark

increases with its level, and the radii of top level landmarks include all routers. Addressing and

1 For example, suppose a router u has two paths P1 and P2 to the destination. Let u have a router neighbor v,
which is in another domain. u chooses and informs v of one of the paths, say P1. But P1 may violate source policies
of v’s domain, and P2 may be a valid path for v.

25

packet forwarding schemes are introduced. Link-state algorithms can not be used with the landmark
hierarchy, and a thorough study of enforcing ToS and policy constraints with this hierarchy has
not been done.

In [1], we provided an alternative solution to loss of policy and ToS information that is perhaps
more faithful to the original superdomain hierarchy. To handle superdomain-level source routing
and topology changes, we augmented each superdomain-level edge (U, V') with the address of an
“exit” domain » in U and an “entry” domain » in V. To obtain internal views, we added for
each visible superdomain U the edges from U to domains outside the parent of U. Surprisingly,
this approach and the gateway-level view approach have the same memory and communication
requirements. However, the first approach results in much more complicated protocols.

Reference [2] presents interdomain routing protocols based on a new kind of hierarchy, referred
to as the viewserver hierarchy. This approach also scales well to large internetworks and does
not lose detail ToS and policy information. Here, special routers called viewservers maintain the
view of domains in a surrounding precinct. Viewservers are organized hierarchically such that
for each viewserver, there is a domain of a lower level viewserver in its view, and views of top
level viewservers include domains of other top level viewservers. Appropriate addressing and route

discovery schemes are introduced.

9 Conclusion

We presented a hierarchical inter-domain routing protocol which satisfies policy and ToS con-
straints, adapts to dynamic topology changes including failures that partition domains, and scales
well to large number of domains.

Our protocol achieves scaling in space requirement by using superdomains. Qur protocol main-
tains superdomain-level views with sd-gateways and handles topology changes by using a link-state
view update protocol. It achieves scaling in communication requirement by flooding topology
changes affecting a superdomain U over U’s parent superdomain.

Our protocol does not lose detail in ToS, policy and topology information. It stores both a
strong set of constraints and a weak set of constraints for each visible superdomain. If the weak
constraints but not the strong constraints of a superdomain U are satisfied (i.e. the aggregation has

resulted in loss of detail in ToS and policy information), then some paths through U may be valid.

26

Our protocol uses a query protocol to obtain a more detailed “internal” view of such superdomains,
and searches again for a valid path. Our evaluation results indicate that the query protocol can be
performed using 15% extra space.

One drawback of our protocols is that to obtain a source route, views are merged at or prior
to the connection setup, thereby increasing the setup time. This drawback is not unique to our
scheme [7, 16, 6, 9]. There are several ways to reduce this setup overhead. First, source routes
to frequently used destinations can be cached. Second, the internal views of frequently queried
superdomains can be cached at routers close to the source domain. Third, better heuristics to
choose candidate paths and candidate superdomains to query can be developed.

We also described an evaluation model for inter-domain routing protocols. This model can be
applied to other inter-domain routing protocols. We have not done so because precise definitions of
the hierarchies in these protocols are not available. For example, to do a fair evaluation of IDPR[16],
we need precise guidelines for how to group domains into superdomains, and how to choose between
the strong and weak methods when defining policy /ToS constraints of superdomains. In fact, these

protocols have not been evaluated in a way that we can compare them to the superdomain hierarchy.

References

[1] C. Alaettinoglu and A. U. Shankar. Hierarchical Inter-Domain Routing Protocol with On-Demand
ToS and Poicy Resolution. In Proc. IEEE International Conference on Networking Protocols ’93, San
Fransisco, California, October 1993.

[2] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol and
its Evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,
University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.

[3] C. Alaettinoglu and A. U. Shankar. Viewserver Hierarchy: A New Inter-Domain Routing Protocol. In
Proc. IEEFE INFOCOM ’94, Toronto, Canada, June 1994. To appear.

[4] A. Bar-Noy and M. Gopal. Topology Distribution Cost vs. Efficient Routing in Large Networks. In
Proc. ACM SIGCOMM ’90, pages 242-252 Philadelphia, Pennsylvania, September 1990.

[5] L. Breslau and D. Estrin. Design of Inter—Administrative Domain Routing Protocols. In Proc. ACM
SIGCOMM °90, pages 231-241, Philadelphia, Pennsylvania, September 1990.

[6] I. Castineyra, J. N. Chiappa, C. Lynn, R. Ramanathan, and M. Steenstrup. The Nimrod Routing Archi-
tecture. Internet Draft., March 1994. Available by anonymous ftp from research.ftp.com: pub/nimrod.

[7] D.D. Clark. Policy routing in Internet protocols. Request for Comment RFC-1102, Network Information
Center, May 1989.

[8] D. Estrin. Policy requirements for inter Administrative Domain routing. Request for Comment RFC-
1125, Network Information Center, November 1989.

27

[9] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture. In Proc. ACM
SIGCOMM 92, pages 40-52, Baltimore, Maryland, August 1992.

[10] L. Kleinrock and F. Kamoun. Hierarchical Routing for Large Networks. Computer Networks and ISDN
Systems, (1):155-174, 1977.

[11] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, Network
Information Center, September 1989.

[12] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). Request for Comment RFC-1105,
Network Information Center, June 1989.

[13] R. Perlman. Hierarchical Networks and Subnetwork Partition Problem. Computer Networks and ISDN
Systems, 9:297-303, 1985.

[14] Y. Rekhter. Inter-Domain Routing Protocol (IDRP). Available from the author., 1992. T.J. Watson
Research Center, IBM Corp.

[15] K. G. Shin and M. Chen. Performance Analysis of Distributed Routing Strategies Free of Ping-Pong-
Type Looping. IFEE Transactions on Computers, 1987.

[16] M. Steenstrup. An Architecture for Inter-Domain Policy Routing. Request for Comment RFC-1478,
Network Information Center, July 1993.

[17] P. F. Tsuchiya. The Landmark Hierarchy: Description and Analysis, The Landmark Routing: Ar-

chitecture Algorithms and Issues. Technical Report MTR-87W00152, MTR-87TW00174, The MITRE
Corporation, McLean, Virginia, 1987.

[18] P. F. Tsuchiya. The Landmark Hierarchy:A New Hierarchy For Routing In Very Large Networks. In
Proc. ACM SIGCOMM 88, August 1988.

[19] P. F. Tsuchiya. Efficient and Robust Policy Routing Using Multiple Hierarchical Addresses. In Proc.
ACM SIGCOMM 91, pages 53-65, Zurich, Switzerland, September 1991.

A Results for Other Internetworks

Results for Internetwork 2

The parameters of the second internetwork topology, referred to as Internetwork 2, are the same as

the parameters of Internetwork 1 but a different seed is used for the random number generation.
Our evaluation measures were computed for a set of 100,000 source-destination pairs. The

minimum spl of these pairs was 1, the maximum spl was 14, and the average spl was 7.13.

Table 5 and Table 4 shows the results. Similar conclusions as in the case of Internetwork 1 hold.

Results for Internetwork 3

The parameters of the third internetwork topology, referred to as Internetwork 3, are shown in
Table 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more

class 3 domains are red. Hence, we expect bigger view sizes in number of sd-gateways.

28

Scheme No query needed | Candidate Paths | Candidate Superdomains
child-domains 205 4.52/20 10.22/47
sibling-domains 205 3.01/8 6.50/21
leaf-domains 205 8.80/32 21.34/82
regions 640 3.52/10 7.85/28

Table 4: Queries for Internetwork 2.

Initial view size Merged view size
Scheme in sd-gateways |in superdomains |in sd-gateways |in superdomains
child-domains 958/1012 43/60 1079/1269 118/306
sibling-domains| 1153/1283 72/101 1480/2169 160/324
leaf-domains 956,/1009 41/58 1095/1281 156/387
regions 624/1024 110/231 1356/3578 206/435

Table 5: View sizes for Internetwork 2.

Our evaluation measures were computed for a set of 100,000 source-destination pairs. The
minimum spl of these pairs was 1, the maximum spl was 11, and the average spl was 5.95.

Table 8 and Table 7 shows the results. Similar conclusions as in the cases of Internetwork 1

and 2 hold.

12Branching factor is 4 for all domain classes.

29

Class ¢ || No. of Domains | No. of Regions'? | % of Green Domains | Edges between Classes ¢ and j
Class j | Local | Remote | Far
0 10 4 0.85 0 8 7 0
1 100 16 0.80 0 190 20 0
1 50 20 0
2 1000 64 0.75 0 500 50 0
1 1200 100 0
2 200 40 0
3 10000 256 0.10 0 300 50 0
1 250 100 0
2 10250 150 50
3 200 150 100
Table 6: Parameters of Internetwork 3.
Scheme No query needed | Candidate Paths | Candidate Superdomains
child-domains 142 3.99/29 7.70/43
sibling-domains 142 2.95/10 5.39/22
leaf-domains 142 9.65/70 18.99/103
regions 676 3.47/17 6.25/21

Table 7: Queries for Internetwork 3.

30

Initial view size

Merged view size

Scheme in sd-gateways |in superdomains |in sd-gateways |in superdomains
child-domains 2160/2239 43/60 2354/2647 107/348
sibling-domains| 2365/2504 72/101 2606/3314 148/356
leaf-domains 2159/2236 41/58 2386/2645 160/648
regions 1107/1644 110/231 1850/3559 194/436

Table 8: View sizes for Internetwork 3.

31

Variables:
View,. Dynamic view of z.

WView,(d-address). Temporary view of x. d_address is the destination address.
Used for merging internal views of superdomains to the view of z.

Pending Req,(d_address). Integer. d_address is the destination address.
Number of outstanding request messages.

Events:
Request,(d_address) {Executed when z wants a valid domain-level source route}
allocate WViewy(d-address) := View,; allocate PendingReq,(d_address) := 0;
searchy(d_address);

where
searchy(d_address)
if there is a valid path to d_address in WView,(d_address) then
result := shortest valid path;
deallocate WView,(d-address), PendingReq,(d_address);
return result;
else if there is a candidate path to d_address in WView,(d_address) then
Let epath = (Uo:go,, - - -, Uoigo, s Urigrg, -, Urigi, s = s Umigmes -+, UniGm,,)
be the shortest candidate path;
for U; in cpath such that U; 1s candidate do
ReliableSend(RequestIView, U;, ¢;,, address(x), d_address) to g;,
PendingReq,(d_address) := PendingReq;(d_address) + 1;
else
deallocate WViewy(d-address), PendingReq,(d_address);
return failure;
endif
endif

TimeOut,(d_address) {Executed after a time-out period and PendingReq,(d-address) # 0.}
deallocate WView,(d_address), PendingReq,(d_address);

return failure;

Figure 15: view-query protocol: State and events of a router z. (Figure continued on next page.)

32

Receivey (RequestIView, sdid, x, s.address, d_address)
ReliableSend(ReplyIView, sdid, x, [View,(U), d_address) to s_address;

Receive, (ReplyIView, sdid, gid, iview, d_address)
if PendingReq,(d_address) # 0 then {No time-out happened}
Pending Req,(d_address) := Pending Req,(d_address) — 1;
{merge internal view}
delete (sdid, *, *,*) from WView,;
for {child, scons, wcons, gateway-set) in iview do
if =3(child, *,*, *) € WView, then
insert {child, scons, weons, gateway-set) in WView,:;
else
for {gid, ts, edge-set) in gateway-set do
if I(gid, timestamp, *) € Gateways&FEdges,(child) A ts > timestamp then
delete (gid, *, *) from Gateways&FEdges,(child);
endif;
if =3{gid, *, *) € Gateways&Edges,(child) then
insert {(gid, ts, edge-set) to Gateways&Edges,(child);
endif
endif
if PendingReq,(d_address) = 0 then {All pending replies are received}
searchy(d_address);
endif
endif

Figure 15: view-query protocol: State and events of a router z. (cont.)

33

Constants:
AdjLocalRouters,. (C Nodelds). Set of neighbor routers in z’s domain.
AdjForeignGateways,. (C Nodelds). Set of neighbor routers in other domains.
Ancestor;(z). (C SuperDomainIds). ith ancestor of x.

Variables:
View,. Dynamic view of z.
IntraDomain BT, . Intra-domain routing table of z. Initially contains no entries.
Clock, : Integer. Clock of z.

Events:
Receive, (Update, sdid, gid, ts, edge-set) from sender

if I{gid, timestamp, *) € Gateways&FEdges,(sdid) A ts > timestamp then
delete (gid, *, *) from Gateways&Fdges,(sdid);

endif;

if =3{gid, *, *) € Gateways&iEdges,(sdid) then
flood, ((Update, sdid, gid, ts, edge-set));
insert {(gid, ts, edge-set) to Gateways&FEdges,(sdid);
update_parent_domains,(level(sdid) + 1);

endif

where
update_parent_domains, (startinglevel)
for level := startinglevel to number of levels in the hierarchy do

sdid := Ancestori.yei(2);

if # € Gateways(sdid) then
edge-sel := aggregate edges of sdid:x using View,, IntraDomainRT, and links of z;
timestamp = Clock,;
flood, ((Update, sdid, x, timestamp, edge-set));
delete (z, #, *) from Gateways&FEdges,(sdid);
insert {(x, timestamp, edge-set) to GatewayséFEdges,(sdid);

endif

Do_Update, {Executed periodically and upon a change in IntraDomainRT, or links of '}

update_parent_domains, (1)

Link_Recoveryy (y) {{z,y) is a link. Executed when {z,y) recovers.}
for all (sdid, *, *, *) in View, do
if 3¢ : Ancestor;(y) = Ancestor;(sdid) then
for all (gid, timestamp, edge-set) in Gateways&FEdges,(sdid) do
Send((Update, sdid, gid, timestamp, edge-set)) to y;
endif

Floody(packet)
for all y € AdjLocalRouters, do
Send(packet) to y;
for all y € AdjForeignGateways, A Ji: Ancestor;(y) = Ancestor;(packet.sdid) do
Send(packet) to y;

Figure 16: view-update protocol: State and events of a router z.

34

