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1 Introduction

Tra�c modeling is an important component of the design of any communication

network. This is even more crucial for emerging networks which are expected to

operate in high speed and high bandwidth environments. As the design of a network

depends to a great extent on the type of tra�c it is expected to carry, it is essential

to characterize the tra�c that the network is expected to carry. In the absence

of tra�c models the only way to validate and re�ne a network design would be to

simulate the network using real life tra�c sources. For any meaningful conclusion

to be reached the simulation must be repeated for a lot of such real tra�c sources,

and in the end we still cannot be sure whether we have "covered all the cases".

This is were tra�c models come in very handy for they allow a parametrization of

the essential characteristics of the network loads. So by generating the tra�c under

these tra�c models for a range of their parameters and then running simulations for

each of these generated sources we can say with greater con�dence that the network

has been tested under all the di�erent tra�c variations possible.

A good tra�c model is one which is able to capture the characteristics of the

tra�c, as accurately as possible, with a minimum number of parameters. The

most important characteristics of a tra�c model that have a bearing on network

performance are (i) correlation and (ii) burstiness. Correlation is that between

bit rates at di�erent time instants, and burstiness refers to the fact that time instants

during which the number of bits generated is high tend to occur in clusters. High
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burstiness in the source means that we can expect rather large intervals of time

during which the source will have a high rate. These will be interspersed with time

intervals during which the source has a low bit rate. Burstiness can be often be

considered as a manifestation of positive correlation.

A high degree of burstiness and/or correlation in the input tra�c can manifest

itself through (i) large packet delays and (ii) bu�er over
ow at the switch nodes

(and hence cell loss). It is essential that the tra�c model used in simulations

accurately re
ects these tra�c characteristics. Only then will a network design

based on this model be able to take care of all the eventualities mentioned above.

A good survey of many of these issues is contained in [?]. Here we concentrate

on tra�c models which are planning to use in conjunction with the OPNET model

of ALAX.

2 Types of Tra�c models

Tra�c models basically fall into two categories: (i) short range dependent models

and (ii) long range dependent models. Both short and long range dependence refer

to properties of wide{sense stationary stochastic processes (i.e., time series which

have a constant mean and a covariance function which depends only on the time

di�erence.) Speci�cally, let X = fXt; t = 0; 1; 2; : : :g be a scalar process. We de�ne

its mean m and covariance function r by

m(t) � E [Xt] and r(s; t) � E [XsXt]�m(t)m(s); s; t = 0; 1; : : : (2.1)

The scalar process X = fXt; t = 0; 1; 2; : : :g is said to be wide{sense stationary

process if

m(t) = m(0) and r(s; t) = r(jt� sj); s; t = 0; 1; : : : (2.2)

In other words, the mean function is constant and the covariance function depends

on the arguments s and t only through the di�erence jt� sj.

Short range dependent models (SRD): The de�ning characteristic of this

class of wide{sense stationary models is the summability of the covariance function,

i.e.,
1X

h=0

r(h) <1 (2.3)

However a lot of short range dependent models which are often cited in the literature

satisfy a much stricter property, namely they have an exponentially decaying
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covariance function . This exponentially decaying covariance function implies that

the lengths of packets generated at two time instants very far apart will not be

correlated. The rate of the exponential decay can often be expressed as a function

of the parameters de�ning the model. Classical models such as autoregressive and

Markov models are short range dependent; in fact they all have an exponentially

decaying covariance function.

Long range dependent models (LRD) : A wide{sense stationary stochastic

process is said to be LRD if the covariance function is not summable, i.e.,

r(h) =
1X

h=0

diverges: (2.4)

This non-summability of the correlations captures the intuition behind long-range

dependence, namely that though the high lag correlations might be individually

small, their cumulative e�ect counts and gives rise to features which are drasti-

cally di�erent from SRD processes. Any process with a hyperbolically decaying

covariance function, namely

r(k) � k�D (k !1) with 0 < D < 1 (2.5)

satis�es this criterion. In fact this much stricter condition is often cited in the

literature (albeit erroneously) as the de�nition of a LRD process. This hyperbolic

decay, being much slower than an exponential decay, also intuitively emphasizes the

notion of long range dependence: Two packets generated at two time instants very

far apart may still have a considerable amount of correlation. Examples of long

range dependent models are the Fractional Gaussian Noise model [?, ?, ?] and

the model based on the M=G=1 queue (to be discussed later).

Self{similar processes are a class of processes which are often used to generate

LRD series. Formally, a scalar stochastic process Y = fYt; t � 0g is said to be a

self{similar process with self{similar parameter H if fYat; t � 0g and faHYt; t � 0g

have identical �nite dimensional probability distributions. Mathematics apart, a

self{similar process basically looks the same on any time scale with the absolute

time scale playing no distinguishing role. A self{similar process can be made to

display long range dependence by suitable choice of the parameters de�ning the

particular self{similar model.

In recent years increasing evidence has accumulated that points to the (asymp-

totically) self{similar nature of aggregate packet streams in a wide range of currently

working packet networks, e.g., Ethernet LANs [?, ?, ?], VBR tra�c [?], WAN tra�c
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[?, ?]. This self{similarity manifests itself most crisply through a long{range depen-

dence e�ect [?, ?] which is characterized by the autocorrelation of the tra�c process

obeying a power law (in the lag time). Long{range dependent processes are inher-

ently non{Markovian, and have the property that while long{term correlations are

individually small, they nevertheless accumulate in the long run to create scenarios

which are drastically di�erent from those produced by more traditional, typically

Markovian in nature, short{range dependent models.

This established presence of long{range dependence over a wide range of time

scales in packet tra�c processes is expected to have a signi�cant impact on queueing

performance when such processes are o�ered to a muliplexer. In fact, if LRD tra�c

is passed through a network designed only for SRD tra�c, it can have a drastic

e�ect in terms of cell loss and cell delay. Networks to be engineered for LRD tra�c

in general will have to be designed very di�erently from networks required to carry

only SRD tra�c; for instance they might need larger bu�ers at the switching nodes,

faster processing for a given delay, etc.

3 Models considered for the ALAX simulation

For the purpose of designing the ALAX, we have developped the following models in

the OPNET environment: (i)Markov{modulated Poisson processes (MMPP);

(ii) Autoregressive (AR){Markov hybrid processes [?]; and (iii) LRD processes

based on the M=G=1 queue. Models (i){(ii) are SRD while (iii) is LRD. We are

using these source models in simulations which are currently being run in conjunction

with the OPNET model for the ALAX in order to evaluate performance.

4 Markov{Modulated Poisson Processes

Markov{modulated Poisson processes are driven by an underlying continuous{time

�nite{state Markov chain with rate matrix R � (r(i; j)) which is assumed to be

ergodic (i.e., irreducible and positive recurrent). Associated with each state i =

1; : : : ;m, there is a Poisson process with parameter �i > 0. The corresponding

Markov{modulated Poisson process is de�ned as follows: As long as the underlying

Markov chain is in state i, events (or arrivals) are generated according to a Poisson

process with rate �i. Each arrival of the Poisson process is considered as a packet

arrival (the packets are of �xed size). Basically what happens is the following: (i)
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The underlying Markov chain enters state i; (ii) It stays in state i for an amount

of time Ti which is exponentially distributed with parameter r(i; i)�1. During this

period packets (of constant size) arrive according to a Poisson process of rate �i;

(iii) At the end of the time interval of length Ti, the underlying Markov chain jumps

to state j (i 6= j) with probability pij given by

pij �
r(i; j)

P
k 6=i r(i; k)

; i 6= j (4.6)

(with the natural convention pii = 0.)

Let p = (p(1); : : : ; p(m)) denote the vector of steady{state probabilities for the

underlying Markov chain with rate matrix R. The vector p solves the equation

pR = 0 and p(1) + : : : + p(m) = 1: (4.7)

Then, the average rate of this source is given by

�av =
mX

i=1

�ip(i) (4.8)

We have considered two implementations for simulating this model: One imple-

mentation is an exact representation of the model but is computationally intensive.

The second implementation trades o� accuracy for savings in computation. Assume

that the chain is in state i and that it is going to stay there for time Ti. During this

period events are generated according to a Poisson process with rate �i. The two

implementations essentially di�er in the way this Poisson process is generated.

Implementation 1: Start with t = 0; the process has just entered state i and

will stay there for a time interval Ti.

(i) Generate � , a random variable which is exponentially distributed with pa-

rameter 1=�i. This is basically the interarrival time of the Poisson process.

(ii) Wait for an amount of time � , and at the end of this interval generate a

packet; this is the Poisson arrival)

(iii) Set t = t+ � . If t < Ti goto (i); else stop.

The problem with this approach is that if the rate of the Poisson process is

very high, the interarrival time will be correspondingly small. This will result in a

lot of interrupts being generated when the simulation is run in OPNET and hence

will slow down the simulation. Also when the Poisson rate is very high it might
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be unnecessary to implement the arrival process at such a detailed level such that

every arrival takes place exactly at the time it is supposed to occur. An alternative

would be choose some quantization time scale � and make all the arrivals which

were supposed to occur in that time interval to arrive in one batch at the end of the

interval �. Clearly, as � increases we save more and more in terms of computation

but lose out on the accuracy of the model.

Implementation 2: Start at t = 0; the process has just entered state i and

will stay there for a time interval Ti.

(i) Wait for a time �. At the end of this time interval generate N packets with N

distributed according to a Poisson distributed random variable with rate � � �i�,

i.e.,

P [N = n] = exp�� �n=n! (4.9)

(ii) Set t = t+ �. If t < Ti, then go back to (i); else stop.

5 An AR{Markov hybrid process

This model, which was proposed in [?], is a good SRD model for VBR video tra�c.

The bit rate creation pattern for a VBR source is basically modeled by a three{state

Markov chain (Fig 1). The states 2 and 3 correspond to a scene change, while the

time spent in state 1 corresponds to the time spent in a particular scene. As long

as a particular scene is being displayed the chain stays in state 1. Whenever there

is a scene change (which happens with probability p), the chain goes sequentially

through states 2 and 3, before returning to state 1. It then stays in state 1 until

the next scene change. This model basically generates a discrete time sequence

fX(n); n = 0; 1; : : :g where X(n) is interpreted as the number of bits produced by

a slotted source in the nth time slot.

In state 1 the output is produced as a sum of two �rst order AR processes (2{AR

process). The autocorrelation of a VBR source shows a sharp drop at low lags and a

slow decay at higher lags. The exponentially decaying autocorrelation function of a

single �rst order AR process was found to be insu�cient to model this behavior. The

autocorrelation function of a 2{AR process is basically the sum of 2 exponentials.

It was found that with two exponentials there was su�cient freedom to choose the

parameters of these exponentials so as to approximate the autocorrelation of the
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VBR video source to a reasonably good extent.

To see this, recall that a �rst order AR process is represented as

X(n) = aX(n� 1) + bw(n); n = 0; 1; : : : (5.10)

where fw(n); n = 0; 1; : : :g is a Gaussian noise process and a; b are �xed parameters.

Therefore a 2{AR process can be represented as

X(n) =
2X

i=1

Xi(n); n = 0; 1; : : : (5.11)

where fXi(n); n = 0; 1; : : :g, i = 1; 2, are �rst order AR processes, say

X(n) = aiX(n� 1) + biwi(n); i = 1; 2; n = 0; 1; : : : (5.12)

The autocorrelation of a 2{AR process is given by

Cr(h) =
2X

i=1

ahi b
2
i

(1� a2i )
; h = 0; 1; : : : (5.13)

while the mean and variance are given by

E [X] =
2X

i=1

aibi
(1� ai)

�(i) (5.14)

and

�2 =
2X

i=1

b2i
(1� a2i )

(5.15)

where �(i) denotes the mean of the noise process fwi(n); n = 0; 1; : : :g, i = 1; 2.

Knowing the values of the mean and variance of the orginal source and its au-

tocorrelation for two di�erent lags (h), we can solve the above equations to get the

values of ai and bi, i = 1; 2.

The states 2 and 3 were introduced to model the bit rate increment e�ects during

scene changes. These are modeled as a Gaussian processes with a �xed mean and

variance.

The average rate for this model is given by the formula

Rateav = p(1)E [X] + p(2)�2 + p(3)�3 (5.16)

where

p(1) = (1 + 2p)�1 and p(2) = p(3) = p(1 + 2p)�1 (5.17)

are the steady{state probabilities for the underlying Markov chain. Also, E [X] is

the mean rate of the AR{2 process, while �2 and �3 are the means of the Gaussian

processes in states 2 and 3, respectively.
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6 A LRD process based on a M jGj1 model

The M jGj1 model provides a method for generating a self-similar process. Indeed,

by suitable choice of one of its de�ning parameters, viz. �, it can be made to display

long range dependence, a fact which appeared to have been mentioned �rst by Cox

in [?]. Additional details are available in [?].

This process is a discrete{time process, in the sense that every �T units of time

the process generates a number which is interpreted as the number of bits generated

by the discrete{time source at that particular time instant. So basically this source

generates a sequence fN(n�T ); n = 0; 1; : : :g.

More precisely, consider the following queueing system (Fig.2): Time is slotted

with �T being the length of a time slot, and customers arrive to the system according

to a Poisson process with rate �. Upon arrival customers are o�ered to an in�nite

server group, and the required service times are i.i.d. �nite mean random variables

{ let � denote the generic service time random variable (expressed in number of

time slots) and let G denote its probability distribution.

As there is an unlimited number of servers, any incoming packet is immediately

assigned a server (the packets do not have to wait for service), and begins service

in the next time slot following its arrival. Such a queueing construct is represented

by M jGj1, where M refers to the exponential interarrival times (of the Poisson

arrivals), G refers to a general service distribution and 1 refers to the number of

servers (unlimited in this case).

Here, we assume that the generic service time � (when expressed in terms of

number of slots) has a a Pareto distribution with parameter � > 0, say

P (� > r) = (r + 1)��; r = 0; 1; : : : (6.18)

We take 1 < � < 2 to ensure that � has a �nite �rst moment.

The number of busy servers at any instant t � 0 is denoted by N(t), and we

write

N(n) � N(n�T ); n = 0; 1; : : : (6.19)

so thatN(n) is simply the number of busy servers at times n�T; n = 0; 1; 2; : : :. It can

be shown that in steady state the random variables fN(n); n = 0; 1; : : :g constitute

the LRD sequence we set out to generate for it has the following properties:

(i) For each n = 0; 1; 2; : : :, the random variable N(n) is a Poisson random vari-

able with parameter �dE [�] where �d is de�ned by ��T .
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(ii) Its covariance structure is given by

r(h) � r(t; t+ h) = �dE
�
(� � h)+

�
; t; h = 0; 1; : : : (6.20)

where the quantities are �nite under the �nite moment assumption made earlier for

�. The above equation can be written as

r(h) = �d
X

n=h+1

n��; h = 0; 1; : : : (6.21)

Using this (??) it can be shown that

lim
h!1

r(h)

h��1
= �d(�� 1)�1: (6.22)

In particular, this limit implies the self{similar nature of the process fN(n); n =

0; 1; : : :g. A similar limit for a process with an exponentially decaying correlation

function would be zero. The parameter � controls the burstiness of the source. It

is related to another parameter called the Hurst parameter H (which is commonly

used to de�ne burstiness in LRD sources) through the relation

H = 1�
1

2
(�� 1) =

1

2
(3� �): (6.23)

Note that 0:5 < H < 1 if 1 < � < 2, whence the process fN(n); n = 0; 1; : : :g

exhibits long range dependence. In [?] the M jGj1 model was shown to occur in a

very natural manner: An aggregate tra�c model was constructed by superposing a

large number of on{o� sources with Pareto distributed activity periods, and shown

in the limit to coincide with the M jGj1 model discussed here.

The average number of bits per unit time is given by E [N(n)] (which is indepen-

dent of n in steady state). Therefore, from (i) we immediately get that the average

rate is given by

Rateav = ��T:E [�] (6.24)

It has been found that low activity scenes like video conferencing or videophone

have a lower value of H than high activity scenes such as TV shows or motion

pictures. Typically low activity scenes can be characterized by a value of H in the

range of (0:5; 0:75), while values of H from 0.75 to 1.0 correspond to high activity

scenes.

Since computer simulations require everything to be discrete, the continuous{

time arrival process will have to be somehow discretized. However in our case it
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turns out that this discretization can be done without any loss of accuracy. This

is because since we are interested only in time instants n�T , the continuous arrival

process can be equivalently taken to be a discrete process with the arrivals occuring

at only discrete time instants. The number of arrivals at these time instants is then

Poisson distributed with parameter ��T . In the simulations we keep track of the

number of busy servers through an array. The ith entry in this array stores the

residual time that has to elapse before that particular server completes service (this

is updated every �T time units). A free server has an entry of zero in this array.

Though theoretically the number of servers can be unlimited, the array size can in

practice only be �nite. The only way to get around this problem is to de�ne an

array size that is su�ciently large, so that for the range of parameters that we wish

to simulate the number of busy servers never goes beyond the declared array size.

A value of 106 was found to be su�cient in our case, were the LRD source has a

rate of the order of 104. The simulation model has a provision for a scaling factor

which multiplies the number of bits generated at each time instant by a prespeci�ed

factor. With this provision the model can be scaled to any desired bit rate.

This source has been used to model a VBR source in our simulations. A VBR

source generates bits every 1/30th of a second, so that �T = 1=30 and the rate of

the source will be in the Megabits range.
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