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The N = 1 superfield formalism in four-dimensions is well formulated and understood, yet

there remain unsolved problems. In this thesis, superfield actions for free massless and massive

higher spin superfield theories are formulated in four dimensions. The discussion of massless models

is restricted to half integer superhelicity. These models describe multiplets with helicities (s, s−

1/2) where s is an integer. The investigation of massive models covers recent work on superspin-

3/2 and superspin-1 multiplets. Superspin-3/2 multiplets contain component fields with spins

(2, 3/2, 3/2, 1) and superspin-1 multiplets contain component fields with spins (3/2, 1, 1, 1/2).

The super projector method is used to distinguish supersymmetric subspaces. Here, this method

is used to write general superspace actions. The underlying geometrical structure of superspace

actions is elucidated when they are written in terms of super projectors. This thesis also discusses

the connection between four-dimensional massive theories and five-dimensional massless theories.

This connection is understood in non-supersymmetric field theory but has not been established

in superspace. A future direction of the five-dimensional models would involve finding an anti-

de Sitter supergravity background. In order to construct this model using the knowledge gained

from this thesis, an understanding of the Casimir operators of four-dimensional anti-de Sitter

superspace would be necessary. These Casimir operators have not yet appeared in the literature

and are presented in this thesis.
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Chapter 1

Introduction

Supersymmetry plays a significant role in our understanding of physics beyond the standard model.

There are two ways of studying supersymmetric theories, standard field theory methods and su-

perspace methods. Standard field theory methods, also known as component methods, can be

employed to write theories with supersymmetric multiplets. In these formulations the supersym-

metry algebra must be checked by explicit calculation. The second way is to work in superspace,

where supersymmetry is manifest. The difference between the two approaches is similar to the

difference between using the 4-vector or the 3-vector formulations of electromagnetism. Although,

both approaches are equivalent, certain problems can be solved more efficiently in one formalism

versus the other.

This thesis focuses on using the superspace approach to construct higher spin, s > 1, ac-

tions. There are two reasons why superspace is the more efficient approach to writing actions

for higher spin theories. First, the superspace formulation produces actions that are comparatively

shorter than component formulations. This benefit will be invaluable as the number of auxiliary

fields grows in higher spin theories. Higher spin theories contain both propagating fields and aux-

iliary fields, and are therefore more complicated then regular theories even at the classical level.

Supersymmetric higher spin multiplets contain the usual higher spin propagating and auxiliary

fields associated with the fermionic and bosonic sectors, as well as new auxiliary fields that are

necessary for a supersymmetric description. This proliferation of fields means that higher spin

supersymmetric component actions will contain a large number of terms and in general will be

unwieldy. The superspace description replaces these large actions by comparatively short expres-

sions written in terms of functions of the superspace coordinates, called superfields. The second

reason why superspace is more efficient is that superfields solve the question of auxiliary fields at

least for one supersymmetry, N = 1, in four dimensions. A general understanding of the structure

and uniqueness of the auxiliary field sector of supersymmetric theories remains a fundamental

problem[1]. The construction of supersymmetric theories in the component approach involves
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solving the auxiliary field problem as well as getting the correct dynamics. Superfields naturally

contain all auxiliary fields that are necessary to close the supersymmetry algebra. Thus, finding

the correct dynamics is the only problem that needs to be solved in the superspace approach.

Higher spin quantum field theories are non-renormalizable, but higher spin theories can still

be defined classically as representations of the Poincaré algebra. In the same sense, higher spin

supersymmetric theories can be defined as representations of the Poincaré superalgebra. There are

two reasons to work in this general direction. A purely academic reason is that the construction

of higher spin supersymmetric field theories remains an unsolved problem in field theory. A more

popular reason would be to give some insight into superstring theory. Superstring theory predicts

an infinite tower of massive higher spin interacting supersymmetric quantum states. The results

of this thesis can shed light on the complexity of such a theory. For example, one of the off-shell

superspin-3/2 theories discussed in this thesis contains four vectors, three scalars, one 2-form,

and one traceless rank two tensor(the massive graviton), and it seems likely that this list would

nearly double at the superspin-5/2 level. Even using superfields, the task of writing actions for

superspin> 3/2 has proven intractable at this point in time. The level of difficulty and complexity

that arises for these classical actions with one higher spin multiplet must be considered trivial when

compared to superstring theory. It has been conjectured that the off-shell formulation of eleven-

dimensional supergravity contains 32,768 bosonic and 32,768 fermionic degrees of freedom[1], and

this theory only represents the low energy limit of string theory. It seems that any knowledge of

higher spin supersymmetric models will be helpful in the future.

High spin theories have a long history that started in 1939, when M. Fierz and W. Pauli

wrote the action that corresponds to a massive spin-2 representation of the Poincaré algebra. 30

years later, actions for free arbitrary higher spin massive[17] and massless[16] theories were written.

Since then, a large amount of work has been done on interacting higher spin theories and higher

spin theories in curved spacetime backgrounds [18] - [32]. Massless higher spin theories contain

off-shell fields with spin s and s − 2, whereas, massive theories contain off-shell fields with spins

s, s − 2, s − 3, . . . , 0. Thus, massless theories require one auxiliary field while massive theories
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require s − 1 auxiliary fields. The supersymmetric massless arbitrary spin theories were found

using gauge invariance as a guide[28].1 In chapter 3, the work of [28] on massless half integer

arbitrary high spin theories is reformulated in terms of superspace projection operators. Research

in supersymmetric massive higher spin theories has only recently begun [5, 6]. The main focus of

chapter 4 is to review and extend this work.

It is also well known that massless actions in five dimensions can be mapped into massive

actions in four dimensions. Although five-dimensional theories using N = 1 superfields have been

relatively popular recently, [7] - [14], there has been no explanation of a correspondence to massive

four-dimensional theories. The authors of [13] came closest to this connection by deriving a massive

theory that is related to the massless five-dimensional theory in [10], but they did not understand

how the two models were related. Chapter 5, explores this relationship by first dimensionally

reducing the five-dimensional theory from [10]. The reduced theory is then shown to be equivalent

to the four-dimensional massive theory of [13]. Two new massless five-dimensional theories are

postulated by applying the reverse of dimensional reduction to the new massive superspin-3/2

models derived in chapter 4. The creation of higher dimensional models from existing lower

dimensional models is usually termed dimensional oxidation.

The main results of this thesis are contained in a set of six superspace actions. There are four

new versions of free massive models. Three new versions of massive superspin-3/2 models are given

in equations (4.29), (4.53), and (4.63). The last two theories are relatively important, since they

complete the list of massive extensions of the three minimal linearized supergravities. One new

version of superspin-1 is given in equation (4.85). Two new versions of massless five-dimensional

linearized supergravity models are given in equations (5.124) and (5.156). These two theories are

created by dimensional oxidization starting directly from (4.53) and (4.63). A few other results are

worth mentioning. First, the gauge variation of the most general local action for arbitrary higher

spin superfields without compensating superfields is given in equation (3.40). Another important

result is the list of field strengths for these theories, equations (3.55)-(3.59). Finally, at the end of

1It is interesting to note that N = 0 massive theories were found in 1974, 4 years before massless theories.
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the last chapter the Casimir operators for four-dimensional AdS superspace are given.

This thesis begins with a mathematic review of general superspace concepts in chapter

2. More specific introductory material is presented at the beginning of each subsequent chapter.

The review material is largely based on introductory texts [2, 3, 4, 27] and is meant to guide

the interested reader through the minimal subset of material needed to understand the technical

chapters.
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Chapter 2

Mathematical Background

This chapter introduces all mathematical concepts that will be necessary for derivations in the

following chapters. Notations and conventions are taken mainly from [2] and are given in passing as

part of the discussion. Superspace is motivated from general field theory concepts and the Poincaré

superalgebra is derived based on this analysis. Much attention is given to the representation theory

of the Poincaré superalgebra. In particular, the on-shell equations that determine massive and

massless representations of superfields are derived. Superspace integration theory is reviewed and

some simple superspace actions are discussed.

2.1 Poincare Superalgebra

This section is dedicated to introducing the concept of superspace. A discussion of superspace

must begin with spinor representation theory. Spinors are representations of the Lorentz algebra

and their representations differ greatly depending on the spacetime dimension, unlike bosons. The

Lorentz algebra is:

[Mab,Mcd] = ηadMbc − ηacMbd + ηbcMad − ηbdMac , (2.1)

where Mab is the generator of boosts and rotations and ηab is the spacetime metric. The most

obvious representation of this algebra is given by the differential operatorMab(x) := (xa∂b−xb∂a).

Mab(x) is a representation ofMab that acts on the space of fields. A representation of (2.1) that

acts on the space of bosonic tensors is (Mab)c
d := (ηcaδb

d − ηcbδa
d). Here matrix multiplication

over the vector valued indices c and d is assumed. (Mab)c
d is an adjoint matrix representation of

the Lorentz algebra. The spinor representation is also realized as a matrix and is easily constructed

by using the Dirac or “gamma” matrices which are defined through the Dirac algebra:

{γa, γb} = −2ηabI . (2.2)

It is a short exercise to show that (Mab)α
β := 1

4 [γa, γb]αβ also satisfies the Lorentz algebra. The

objects that are transformed by (Mab)α
β under Lorentz rotations are spinors. Note that the sign
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in front of the metric is convention. Changing this sign does not change the fact that (Mab)α
β is

a representation of the Lorentz algebra.

The construction of an explicit matrix realization of (2.2) is necessary to work with spinors.

There are two important properties of the Dirac matrices that have serious consequences for spinors

in various dimensions. The first property is the irreducible matrix dimension, which is the smallest

spinor representation. In general, the Dirac algebra is solved by matrices that have dimension

d = 2b
D
2 c. The floor operation in the exponent pairs spacetime dimensions together. This paring

leads to the general feature that in even spacetime dimensions the 2b
D
2 c-dimensional matrices are

reducible. In even dimensions there always exists a matrix, γD+1, that anti-commutes with the

set of Dirac matrices and therefore can be used to construct a projection operator and reduce the

representation to 1
22b

D
2 c. The reality of the 2b

D
2 c-dimensional matrices is the second important

property and is determined by the signature of the metric. A complex spinor has twice as many

degrees of freedom as a real or Majorana spinor. Thus, there is the opportunity to reduce the

number of real degrees of freedom of the spinor to 1
22b

D
2 c, if the projection operator is real. This

actually occurs in 4n+ 2 dimensions and explains the different types of N = 2 supersymmetry in

two and ten dimensions.

The irreducible spinor representation in four dimensions can be constructed using the 2x2

Pauli matrices as a basis:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 ,

→ σiσj = δijI + iεijkσk . (2.3)

Matrices that are larger than two dimensions can be constructed by using the outer product

notation σi ⊗ σj . The outer product notation can be realized as placing σj in every entry of σi,

for example:

σ3 ⊗ σ2 =

 σ2 0

0 −σ2

 . (2.4)
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The outer product structure is respected under multiplication:

(σ2 ⊗ σ3) · (σ1 ⊗ σ2) = σ2σ1 ⊗ σ3σ2 = −σ3 ⊗ σ1 . (2.5)

Taking the metric, ηab, to be mostly plus:

ηab =



−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1


, (2.6)

the Dirac algebra is satisfied by four-dimensional matrices:

(γa)α
β = (σ1 ⊗ I, iσ2 ⊗ σ1, iσ2 ⊗ σ2, iσ2 ⊗ σ3) Weyl Basis ,

(γa)α
β = (−iσ2 ⊗ σ1, σ2 ⊗ σ2, σ1 ⊗ I, σ3 ⊗ I) Real Basis . (2.7)

Since the Weyl basis is block diagonal it is obvious that the four-dimensional Dirac matrices are

reducible. On the other hand, the real basis means that Majorana spinors can also be defined. The

only question is if the projection respects the reality. The projection matrices can be constructed

using the matrix γ5 = − i
4!ε

abcdγaγbγcγd which anti-commutes with (γa) and squares to +1. The

projection matrices are:

P± :=
1
2
(I ± γ5) , (2.8)

In the real basis γ5 is purely imaginary, so P+
∗ = P−, Thus, conjugation does not commute

with the projection and the irreducible spinor in D = 4 is a two-component complex spinor or a

four component Majorana spinor. The two component spinor representation is the easiest with

which to calculate and will be used throughout this thesis. Complex conjugation maps between

the two chiralities. Projecting and then conjugating the Majorana spinor shows how the complex

irreducible representation coincides with the Majorana spinor:

(P+Ψ)∗ = P+ ∗Ψ∗ = P−Ψ . (2.9)

Thus, the Majorana spinor is a four component object that holds a 2-component irreducible spinor

and its conjugate.
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In order to set up the standard formalism of superspace in D = 4, some more notation is

necessary. The non-zero projections of the Dirac matrices are defined as the sigma matrices of [2]:

P+γ
aP− =: (σa)αα̇ , P−γ

aP+ =: (σ̃a)α̇α . (2.10)

On the surface the dotted index can be thought of as keeping track of the orthogonality of the

projected subspaces P+P− = 0. It is natural to contract spinors to make invariant objects and since

spinors should anti-commute the spinor metric should be anti-symmetric. In the two-dimensional

spinor space the Levi-Cevita tensor is the only anti-symmetric tensor. It is defined under the

conventions of [2] as:

εαβ = −εβα , ε12 = −1 ,

εαβ = −εβα , ε12 = 1 ,

εαβε
γδ = −δαγδβ

δ + δβ
γδα

δ , (2.11)

Raising and lowering of spinor indices is defined by:

Ψα = εαβΨβ , χα = εαβχ
β . (2.12)

These definitions imply:

εδαεγβεαβ = −εδγ . (2.13)

The opposite chirality Levi-Cevita tensor εα̇β̇ is defined through conjugation , i.e (εαβ)∗ = εα̇β̇ .

Conjugation of products of spinors inverts the order, (χαψβ)∗ = ψ̄β̇χ̄α̇. The projected Dirac

algebra takes the form:

(σaσ̃b + σbσ̃a)α
β = −2ηabδα

β ,

(σ̃aσb + σ̃bσa)α̇
β̇ = −2ηabδ

α̇
β̇ , (2.14)

and the Fierz identities become:

Tr(σaσ̃b) = (σa)αα̇(σ̃b)α̇α = −2ηab ,

(σa)αα̇(σ̃a)β̇β = −2δαβδβ̇
α̇ ,
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σaσ̃bσc = (ηacσb − ηbcσa − ηabσc) + iεabcdσ
d ,

σ̃aσbσ̃c = (ηacσ̃b − ηbcσ̃a − ηabσ̃c)− iεabcdσ̃
d , (2.15)

The sigma matrices are also related by raising indices:

εαβεα̇β̇(σa)ββ̇ = (σ̃a)β̇β . (2.16)

All of these identities and relations will be used without comment in the rest of this thesis.

In superspace it is convenient to convert all vector indices into spinor indices using the

sigma matrices. This is accomplished by contracting all vector indices with sigma matrices and

separating out the irreducible spin-tensor representations. The vector is just:

V α̇α := (σ̃b)α̇αV b . (2.17)

So a pair of undotted and dotted indices represents a vector and it is natural to use the notation

a := αα̇. A rank two tensor is a better example. A rank two tensor has the following decomposition

in the vector space:

Tab = T̃ab +Xab +
1
4
ηabT , (2.18)

here T̃ab is symmetric and traceless, Xab is antisymmetric, and T is the trace of Tab. Contracting

with sigma matrices Tab becomes:

Tαα̇ββ̇ =
1
4
(T(αβ)(α̇β̇) + εαβεα̇β̇T

γ
γ

γ̇
γ̇ + εαβT

γ
γ(α̇β̇) + εα̇β̇T(αβ)

γ̇
γ̇) . (2.19)

The symmetrization and anti-symmetrization notation (αβγ · · ·) and [ab · · ·] does not contain any

factorials, therefore, (αβ) = αβ + βα and [ab] = ab − ba. The explicit writing of factorials is

the only difference between the notation in this thesis and [2]. The Levi-Cevita tensors in (2.19)

appear through the identity:

Xαβ −Xβα = εαβX
γ

γ . (2.20)

The ability to replace pairs of anti-symmetric spinor indices with Levi-Cevita symbols is one

reason why D = 4 superspace is so successful. In higher dimensions, anti-symmetric pairs of
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indices carry larger spacetime tensor representations, and, along with the larger spinor dimension,

make superspace formulations in higher dimensions quite complicated. Substitution of (2.18) into

(2.19) shows the peculiar equivalence of spinor tensors to vector tensors:

T(αβ)(α̇β̇) = (σa)(α(α̇(σb)β)β̇)Tab = (σa)(α(α̇(σb)β)β̇)T̃ab ,

T γ
γ

γ̇
γ̇ = Tr(σ̃aσb)Tab = −2T ,

T(αβ)
γ̇

γ̇ = εβ̇α̇(σa)(αα̇(σb)β)β̇Tab = εβ̇α̇(σa)(αα̇(σb)β)β̇Xab . (2.21)

So an anti-symmetric rank two vector tensor is equivalent to a symmetric rank two spin tensor.

Another tensor that will show up in this thesis is the Weyl tensor, which is the propagating degree

of freedom for a spin-2 particle. The Weyl tensor is traceless and has the following symmetries:

Cabcd = Ccdab = −Cbacd = −Cabdc , C[abc]
d = 0 , (2.22)

and can be written as a completely symmetric rank four spin tensor:

Cabcd = εα̇β̇εγ̇δ̇Cαβγδ + εαβεγδCα̇β̇γ̇δ̇ . (2.23)

A nontrivial check of this is that the number of components of each tensor are equal. The rank

four vector tensor, Cabcd has ten components:

	 = 20− 10 = 10 , (2.24)

whereas the rank four tensor, Cαβγδ has five complex components:

= 5 . (2.25)

In later chapters, it will be necessary to introduce tensors with large numbers of symmetric indices.

These indices will be denoted by placing the number of symmetric indices in parenthesis. In this

notation the Weyl tensor becomes Cα1α2α3α4= Cα(4). The spin tensor notation begins to put

bosons and fermions on the same footing by using the same language to describe these fields, but

supersymmetry requires that both types of fields are treated equally.

Supersymmetry is a symmetry between bosons and fermions. The most basic of these objects

are the complex scalar field, ϕ, and the Weyl spinor ψα. In order to write some transformation that
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facilitates this symmetry a spinor parameter ζα must be introduced. The simplest transformation

of ϕ is:

δζϕ = ζαψα . (2.26)

Since propagating fermions have mass dimension 3
2 , the only possibility for the supersymmetry

variation of ψα is:

δζψα = −2iζ̄α̇∂aϕ . (2.27)

The commutator of two of these transformations acting on ϕ is:

[δζ1 , δζ2 ]ϕ = −2i(ζα
2 ζ̄

α̇
1 − ζα

1 ζ̄
α̇
2 )∂aϕ . (2.28)

These simple supersymmetry transformations seem to close onto the partial derivative or momen-

tum generator, but the commutator acting on the spinor reveals a problem:

[δζ1 , δζ2 ]ψβ = −2i(ζα
2 ζ̄

α̇
1 − ζα

1 ζ̄
α̇
2 )∂α̇βψα . (2.29)

This is almost in same form as (2.28), except that the free index β is on the partial derivative and

not on ψα. A short manipulation puts the commutator acting on ψβ into the form:

[δζ1 , δζ2 ]ψβ = −2i(ζα
2 ζ̄

α̇
1 − ζα

1 ζ̄
α̇
2 )∂aψβ − 2i(ζ2β ζ̄

α̇
1 − ζ1β ζ̄

α̇
2 )∂α̇

γψγ . (2.30)

The first term is now of the form (2.28), but the second term looks like the equation of motion

for ψ̄α̇. This is an extremely fundamental result in supersymmetry. It has nothing to do with the

simplicity of this derivation. If ψα is on-shell, e.g. it obeys the equation of motion ∂α̇
γψγ = 0, then

the simple transformations close properly on all of the fields in this example. The supersymmetry

algebra closes on-shell.

There are some problems with a definition of supersymmetry that closes on-shell. Quan-

tum fields are integrated over arbitrary values of momentum, not just values that correspond to

propagating states. So supersymmetric quantum field theories need to be defined off-shell. An-

other problem is that the equations of motion are different depending on the theory. This means

that the supersymmetry transformations must be engineered for each theory. In other words, a
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supersymmetry that is implemented on-shell is model dependent. This is not a problem for any

one specific model, but if the goal is to understand the fundamentals of supersymmetry, a model

independent formulation is necessary.

One way to make the ϕ, ψα system model independent is to add another scalar field, F . F

is a field with mass dimension 2, and it shows up in the transformation of the spinor:

δζψα = −2iζ̄α̇∂aϕ+ ζαF . (2.31)

The addition of F does not change (2.28). The transformation of F can be discerned from the

commutator acting on ψα:

[δζ1 , δζ2 ]ψβ = −2i(ζα
2 ζ̄

α̇
1 − ζα

1 ζ̄
α̇
2 )∂α̇αψβ − 2i(ζ2β ζ̄

α̇
1 − ζ1β ζ̄

α̇
2 )∂α̇

γψγ + ζ2βδ1F − ζ1βδ2F , (2.32)

⇒ δF = 2iζ̄α̇∂α̇
γψγ . (2.33)

This algebra closes properly on F:

[δζ1 , δζ2 ]F = −2i(ζ̄α̇
2 ζ

α
1 − ζ̄α̇

1 ζ
α
2 )∂aF . (2.34)

The auxiliary field F has allowed a description of supersymmetry that closes off-shell and is model

independent. The supersymmetry algebra consistently closes into the partial derivative on all fields

in the multiplet. The abstract algebra takes the form:

[δζ1 , δζ2 ] = −2i(ζ̄α̇
2 ζ

α
1 − ζ̄α̇

1 ζ
α
2 )∂a . (2.35)

This algebra would be more useful if it was written in terms of abstract generators. The partial

derivative can be replaced by the momentum generator Pa = −i∂a. The variation, δζ , can be

replaced by a spinor valued generator:

δζ =: iζαQα + iζ̄α̇Q
α̇
, (2.36)

so that δζ preserves reality and (Qα)∗ = −Qα̇. The algebra for the generator Qα can be deduced

by substituting (2.36) into (2.35):

[δζ1 , δζ2 ] = ζα
1 ζ

β
2 {Qα, Qβ}+ ζ̄1α̇ζ̄2β̇{Q

α̇
, Q

β̇}+ (ζ̄2α̇ζα
1 − ζ̄1α̇ζα

2 ){Qα, Qα̇} , (2.37)
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and comparing this to (2.35). The full Poincaré superalgebra is:

{Qα, Qα̇} = 2Pa ,

{Qα, Qβ} = 0 , {Qα̇, Qβ̇} = 0 , [Jαβ ,J γ̇δ̇] = 0 ,

[Jαβ ,Jγδ] = i
2

{
εαγJβγ + εαδJβγ + εβγJαδ + εβδJαγ

}
,

[J α̇β̇ ,J γ̇δ̇] = i
2

{
εα̇γ̇J β̇γ̇ + εα̇δ̇J β̇γ̇ + εβ̇γ̇J α̇δ̇ + εβ̇δ̇J α̇γ̇

}
,

[Jαβ , Pc] = i
2 (εγαPβγ̇ + εγβPαγ̇) , [J̄α̇β̇ , Pc] = i

2 (εγ̇α̇Pγβ̇ + εγ̇β̇Pγα̇) ,

[Jαβ , Qγ ] = i
2 (εγαQβ + εγβQα) , [Jαβ , Qγ̇ ] = 0 ,

[J α̇β̇ , Qγ̇ ] = i
2 (εγ̇α̇Qβ̇ + εγ̇β̇Qα̇) , [J α̇β̇ , Qγ ] = 0 . (2.38)

Pa is the usual translation generator and Jab has been written in spin tensor notation through:

Jαβ = − 1
8 (σ[aσ̃b])αβJab , (2.39)

and Qα and Qα̇ are the supersymmetry generators.

2.2 On-shell Spin States of Irreducible Representations

This section focuses on determining the spin states that make up irreducible on-shell massless

and massive representations of the Poincaré superalgebra. An easy way to do this is to choose

a Lorentz frame and use fermionic harmonic oscillator representations. The derivation presented

here is taken from [3], where the representation theory for arbitrary numbers of supersymmetry is

discussed. For massless representations, P a = (p, 0, 0, p), and the algebra becomes:

{Qα, Qα̇} = 2(I + σ3)αα̇p . (2.40)

The only non-zero relation is {Q1, Q1̇} = 4p. The vacuum, |λ > with helicity λ, is annihilated by

all generators accept Q1̇. Q1̇ anti-commutes with itself, so its square is zero and the states are:

|λ > , Q1̇|λ > . (2.41)
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Thus, an on-shell irreducible massless representation of supersymmetry contains two states. One

of helicity λ and another of helicity λ − 1
2 . The helicity of Q1̇ can be determined by noting that

on-shell:

{∂αβ̇Q
β̇
, ∂βα̇Q

β} = +2i∂a = 0 ,

⇒ ∂αβ̇Q
β̇

= 0 , (2.42)

which is the correct supplementary condition for a helicity − 1
2 field.

The massive representations are determined using pa = (m, 0, 0, 0) with which the algebra

becomes:

{Qα, Qα̇} = 2(I)αα̇m . (2.43)

The vacuum, |s > with spin s, is annihilated by Qα. The spin states are:

|s > , Qα̇|s > , Q
α̇
Qα̇|s > . (2.44)

|s > can be raised only twice since QαQβQγ = 0. The first excited state can be reduced with

respect to s. If s = 0, this state has spin 1
2 . If s 6= 0, the irreducible tensor combinations are s± 1

2 ,

corresponding to the addition of spin angular momentum. Thus, an on-shell irreducible massive

representation of supersymmetry contains four states with spins-(s, s± 1
2 , s) for s 6= 0 and (0, 1

2 , 0)

for s = 0.

2.3 Superspace

The Poincaré superalgebra has a field representation over a space that contains the usual spacetime

coordinates. The anti-commuting nature of the supersymmetry generators cannot be accounted for

by the usual bosonic momentum and position coordinates. It is necessary to use anti-commuting

momentum and position coordinates. This is done by introducing Grassmann variables, θα, and

their derivatives, ∂α such that:

∂αθ
β = δα

β , ∂αθβ = δβ
α , θαθβ = −θβθα , ∂α∂β = −∂β∂α ,

∂̄α̇θ̄
β̇ = δβ̇

α̇ , ∂̄α̇θ̄β̇ = δβ̇
α̇ , θ̄α̇θ̄β̇ = −θ̄β̇ θ̄α̇ , ∂̄α̇∂̄β̇ = −∂̄β̇ ∂̄α̇ , (2.45)
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where the contravariant and covariant partial derivatives are related by ∂α = −εαβ∂β and ∂̄α̇ =

−εα̇β̇ ∂̄
β̇ . The spacetime variables xa and the anti-commuting variables θα and θ̄α̇ define superspace.

Superfields are functions of the Grassmann and bosonic coordinates. Since products of more than

two anti-commuting coordinates vanish, i.e. θαθβθγ = 0, a superfield has a finite taylor expansion

in the Grassmann coordinates:

V (x, θ, θ̄) = A(x) + θαλα(x) + θ̄α̇χ̄
α̇(x) + θαθαE(x) + θ̄α̇θ̄

α̇F (x)

+θαθ̄α̇Va(x) + θαθ̄α̇θ̄
α̇ψα(x) + θ̄α̇θ

αθαη̄
α̇(x) + θαθαθ̄α̇θ̄

α̇D(x) . (2.46)

There is one subtlety in the question of the conjugation of the Grassmann derivatives. To see this

equate ∂̄α̇V to (∂αV )∗:

∂̄α̇V = −(−1)ε(V )λ̄α̇ +O(θ, θ̄) = (∂αV )∗ = (λα +O(θ, θ̄))∗ = λ̄α̇ +O(θ, θ̄) ,

⇒ (∂αV )∗ = −(−)ε(V )∂̄α̇V . (2.47)

In this expression ε(V ) equals 0 if V is bosonic and 1 if V is fermionic. With the coordinates

and partial derivatives in hand, superfield representations of the Poincaré superalgebra can be

constructed. By dimensional analysis Qα is proportional to ∂α and θ̄α̇∂a. A combination of these

terms that satisfies the superalgebra and has the property (Qα)∗ = −Qα̇ is:

Qα = i∂α + θ̄α̇∂a , Qα̇ = −i∂̄α̇ − θα∂a . (2.48)

The boost and rotation generator takes the form:

Jαβ = − i
4x(α

β̇∂β)β̇ + i
2θ(α∂β) − iMαβ ,

J α̇β̇ = − i
4x(α̇

β∂β̇)β + i
2 θ̄(α̇∂̄β̇) − iMα̇β̇ , (2.49)

where it is understood that the Lorentz generator Mαβ acts only on external superfield indices.

There is no restriction on the external index structure of superfields.

Superfields naturally contain multiplets of fermionic and bosonic fields. Since irreducible

representations of the Poincaré superalgebra contain at most two bosons and two fermions, a gen-

eral superfield is not an on-shell irreducible representation. Another observation about superfields
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is that the mass dimension of the component fields changes at each level of the Taylor series ex-

pansion. This fact places supersymmetric auxiliary fields, i.e. F , naturally into the superfield

description of supersymmetry.

2.4 Covariant Spinor Derivatives

The expansion of a superfield in powers of θα and θ̄α̇ reveals too many regular fields to describe

irreducible supersymmetric multiplets. There must be some consistent way to project irreducible

multiplets out of superfields. If there exists an operator that anti-commutes with the supersymme-

try generator Qα, it could be used to label the irreducible representations contained in a general

superfield. Such an operator exists and can be found by taking the other linearly independent

combination of the terms that make up Qα:

Dα := ∂α + iθ̄α̇∂a , Dα̇ := −∂̄α̇ − iθα∂a . (2.50)

It is easy to check that the D’s have the following properties:

{Dα, Dα̇} = −2i∂a , (2.51)

{Dα, Dβ} = 0 , {Dα̇, Dβ̇} = 0 , (2.52)

{Dα, Qβ} = 0 , {Dα, Qα̇} = 0 . (2.53)

The duplication of the Q algebra by the D algebra seems relatively trivial. It is important to

make the distinction that the Q’s exist as abstract supersymmetry generators, where as, the D’s

are a byproduct of the field representation and only exist in superspace. Thus, the Q’s must be

understood as fundamental objects and the D’s as differential operators. If the D operators are

taken to be abstract generators then the abstract algebra of D’s and Q’s would be an N = 2

supersymmetry algebra. When passing to a field representation from the N = 2 algebra, another

set of N = 2 D’s would appear in the superfield space.

The supersymmetry transformation of Dα acting on some superfield is:

[δζ , DαV (x, θ, θ̄)] = DαδζV (x, θ, θ̄)
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= Dα(iζαQα + iζ̄α̇Q
α̇
)V (x, θ, θ̄)

= (iζαQα + iζ̄α̇Q
α̇
)DαV (x, θ, θ̄) . (2.54)

The object DαV (x, θ, θ̄) transforms properly, or covariantly, under supersymmetry and is therefore

a superfield. This means that any object constructed out of some combination of covariant spinor

derivatives, partial derivatives and superfields is again a superfield.

Before the covariant spinor derivatives can be put to use, some notation and identities are

in order. The notation for the square of the covariant spinor derivative is:

D2 := DαDα , D
2

:= Dα̇D
α̇
, (2.55)

which can be used with (2.52) to find:

DαDβ = 1
2εαβD

2 , Dα̇Dβ̇ = − 1
2εα̇β̇D

2
. (2.56)

The following list of the most useful identities is derived using (2.51):

[D2, Dα̇] = −4i∂aD
α , [D

2
, Dα] = 4i∂aD

α̇

{D2, D
2} − 2DαD

2
Dα = 16 ,

D2D
2
D2 = 16 D2 , D

2
D2D

2
= 16 D

2

[D2, D
2
] = −4i∂a[Dα, Dα̇] ,

DαD
α̇
Dα = − 1

2{D2, D
α̇} . (2.57)

For future reference, the superspace conjugation rules are:

(DαV )∗ = (−1)ε(V )Dα̇V
∗ , (D2V )∗ = D

2
V ∗ . (2.58)

Also, the order of all fermions is inverted under conjugation:

(ψαχβ θ̄α̇)∗ = θαχ̄β̇ψ̄α̇ . (2.59)
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The covariant spinor derivative can be used to covariantly project out the component fields

in the superfield expansion (2.46). Dα and Dα̇ are approximately ∂α and ∂̄α̇, and can be used

strip off the θ’s in the expansion. Once a derivative is applied, θ and θ̄ must be set to zero. Setting

θ = θ̄ = 0 will be denoted by a vertical bar |. The projection of (2.46) is:

V | = A , DαV | = λα , Dα̇V | = χ̄α̇ ,

D2V | = −4E , D
2
V | = −4F , [Dα, Dα̇]V | = 2Va ,

DαD
2
V | = −4σα , Dα̇D

2V | = −4ρ̄α̇ , D2D
2
V | = 32G . (2.60)

The last three components are not the same as in the original expansion (2.46). This arises

because the D’s are not purely spinor derivatives. The last three components are related by field

redefinitions to those in the expansion. This can be seen by noting:

DαV | = ∂αV | , D2V | = −∂α∂αV | ,

Dα̇V | = −∂̄α̇V | , D
2
V | = −∂̄α̇∂̄

α̇V | ,

[Dα, Dα̇]V | = −[∂α, ∂̄α̇]V | ,

DαD
2
V | = −∂α∂̄α̇∂̄

α̇V | − 2i∂a∂̄
α̇V | . (2.61)

The simplicity of this operation should not be taken for granted. Defining components in any

particular theory is an art form. The last three components can be defined in several different

ways just by themselves. Also, derivatives, or masses can be used on the lower components in

order to use them to shift the higher components. Further, in massive theories, inverse masses can

be used to shift the lower components by the higher components.

Since the fermionic coordinates are complex, it pays to use some simple complex analysis

on the superfields. A well defined operation is to use superfields that depend only on one of
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the complex coordinates, say θα. Unfortunately, this type of superfield does not remain purely a

function of θ after a supersymmetry transformation:

δζV (x, θ, 0) 6= X(x, θ, 0) (2.62)

A supersymmetrically invariant way to define a holomorphic superfield is Dα̇Φ = 0. The superfield

Φ will satisfy this constraint after a supersymmetry transformation, (2.54). Superfields vanishing

under Dα̇ are called chiral and superfields vanishing under Dα are called anti-chiral. The meaning

of the nomenclature becomes clear at the component level:

Φ| = ϕ , DαΦ| = ψα , − 1
4D

2Φ| = F , (2.63)

since a chiral field has a spinor of only one chirality. In the particle physics community, theories

involving only one type of chirality are called chiral. TypeIIB supergravity or TypeIIB superstrings

are chiral theories.

The existence of chiral superfields in four dimensions is rather significant. Constraints in

geometrical descriptions of supergravity can be understood as chirality preserving. Furthermore,

the renormalization properties of super Yang-Mills theories are governed by the fact that the

superpotential is a holomorphic function of chiral fields.

2.5 On-shell Massive Irreducible Representations

Constraints for massive representations can be found rather easily by noting that is invertible

on-shell since = m2. In particular, the third line in (2.57) implies the partition of unity:

I =
1

16m2
D

2
D2 +

1
16m2

D2D
2 − 1

8m2
DαD

2
Dα . (2.64)

A small amount of effort reveals that these three terms are orthogonal and square to themselves.

Thus, they satisfy the projector algebra, PiPj = δijPj . This means that massive representations

can be decomposed with respect to these operators. The first two projectors are the identity on

chiral and anti-chiral fields, respectively. This means, that a chiral field is already fully reduced

with respect to massive representation theory. A chiral superfield with spin s has component fields
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(s, s ± 1
2 , s). The third projector is a more complicated. It selects out what are called linear

superfields. Linear superfields vanish when acted upon by D2 and D
2
. Linearity ensures that the

third projector is unity on these representations, which follows from (2.64). The complication can

be seen from the component expansion of the linear spinor superfield:

Ψα| = λα DαΨβ | = Aαβ Dα̇Ψα| = Ba [Dα, Dα̇]Ψβ | = ψaβ . (2.65)

Decomposition of the Lorentz indices gives a scalar from the trace of Aαβ and another spinor from

the trace of ψaβ . Note that this is not the case for the scalar linear superfield. This means that

the simple linear constraint is not good enough to deal with superfields having external indices.

There are two consistent choices of constraints that imply linearity. DαΨα = 0 or D(αΨβ) = 0

both imply D2Ψα = 0. If the constraint is DαΨα = 0, the components are:

Ψα| = λα , D(αΨβ)| = Aαβ , Dα̇Ψα| = Ba , [D(α, Dα̇]Ψβ)| = ψaβ . (2.66)

This is the superspin-1 representation with spin content ( 1
2 , 1, 1,

3
2 ). The alternative constraint

gives the components:

Ψα| = λα , DαΨα| = A , Dα̇Ψα| = Ba , [Dα, Dα̇]Ψα| = ψα̇ , (2.67)

which has spins (0, 1
2 ,

1
2 , 1) and is therefore a superspin- 1

2 representation.

The constraints DαΨα = 0 and D(αΨβ) = 0 can be derived from the linear projector by

multiplying a general superfield with s indices, Ψα(s), by the projector and decomposing some

indices:

− 1
8m2

DβD
2
DβΨα(s) = − 1

8m2

[ 1
(s+ 1)!

DβD
2
D(βΨα(s)) −

s

(s+ 1)!
D(αs

D
2
DβΨα(s−1))β

]
. (2.68)

This equation shows how there are two subspaces within the linear subspace for superfields with all

dotted indices. The subspaces for which DαΨαsα(s−1) = 0 and D(αΨβ(s)) = 0 are called transversal

linear and longitudinal linear, respectively. This derivation only reveals the subspaces associated

with linear superfields with indices of only one chirality. The constraints that govern irreducible

representations can always be determined by finding the eigenvalues of the superspin operator:

C = m4
{
Y (Y + 1)I + (− 1

8m2
)( 3

4 + B)DαD
2
Dα

}
, (2.69)
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where Y is one-half of the total number of external spinor indices and B has the following properties:

B2 = − 1
8m2

Y (Y + 1)DαD
2
Dα −B ,

−8m2B = DαD
2
Dα B = B DαD

2
Dα ,

B =
1

4m2
(MαβP

β
α̇ −Mα̇β̇Pα

β̇)[Dα, D
α̇
] . (2.70)

It is also assumed in (2.69) that the superfield obeys the usual non supersymmetric supplementary

condition ∂aVa... = 0 if it has at least one pair of dotted and undotted indices. For example, the

constraints that select the superspin- 3
2 representation contained in the real vector superfield Ha

can be obtained by acting with the superspin operator. Assuming Ha to be linear, since the chiral

part is superspin-1, the casimir operator acting on Ha becomes:

CHa = m4
{

11
4 + B

}
Ha = m4( 11

4 + 1)Ha −
1

8m2

{
DαD

2
DγHγα̇ + c.c.

}
. (2.71)

Further constraining Ha to be transversal, DαHa = 0, the superspin eigenvalue is:

CHa = m4 15
4 Ha = m4 3

2 ( 3
2 + 1)Ha . (2.72)

Therefore, Ha satisfies a massive irreducible representation of the Poincaré superalgebra if it is

constrained to be transverse linear and obeys the massive D’Alembertian:

DαHa = 0 , ( −m2)Ha = 0 . (2.73)

One of the main goals of this thesis is to construct actions that reproduce these superspin- 3
2

constraints as equations of motion.

2.6 On-shell Massless Irreducible Representations

Massless representations are complicated by the fact that is no longer invertible. This means

that there is no partition of unity and also no projectors. The constraints that are implied by

= 0 must be determined completely from algebraic considerations. The following derivation

will yield a set of constraints that must be satisfied by a massless representation. Contracting two

partial derivatives on the basic covariant spinor derivative equation, (2.51), leads to:

{∂αβ̇D
β̇
, ∂βα̇D

β} = +2i∂a = 0 . (2.74)
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This means that ∂αβ̇D
β̇

= 0 on massless physical states. The D-algebra identities (2.57) show

that ∂αβ̇D
β̇

=− i
4 [D

2
, Dα]. D2 = 0 on physical states as well. This can be seen by analyzing the

following operator:

−2i∂aD
2 = {Dα, Dα̇}D2 = DαDα̇D

2 = Dα[Dα̇, D
2] = 0 . (2.75)

Since a massless particle should have energy, i.e. P0 6= 0, then this means D2 = D
2

= 0 for

massless states. The list of constraints that determine irreducibility in superspace are:

D2 = 0 , D
2

= 0 ,

∂αβ̇D
β̇

= 0 , ∂βα̇D
β = 0 . (2.76)

These constraints and the usual constraints for massless representations of the Poincaré algebra:

= 0 , ∂cVγα(A−1)α̇(B) = 0 , ∂cVα(A)γ̇α̇(B−1) = 0 , (2.77)

completely define the massless irreducible representations of the Poincaré superalgebra. The last

two equations in (2.77) exist as long as A ≥ 1 and B ≥ 1, respectively. They are called sup-

plementary conditions and are necessary to diagonalize the Lorentz spin Casimir operator. The

constraints can be solved for superfields of any index structure. This section closes with three

examples of massless representations.

Consider first the chiral scalar superfield, Φ. Being chiral, this field already satisfies D
2
Φ =

∂αβ̇D
β̇
Φ = 0. Since 4i∂βα̇D

βΦ = Dα̇D
2Φ, Φ must also satisfy D2Φ = 0. Assuming Φ has satisfied

these conditions it has the component structure:

Φ| = ϕ DαΦ| = ψα (2.78)

which are the helicity states 0 and 1
2 .

Next take the chiral spinor Wα. Being chiral Wα solves the same constraints as Φ, but Wα

must also satisfy the supplementary condition, a long with the linearity constraint:

∂γγ̇Wγ = 0 , D2Wα = 0 . (2.79)
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If Wα is transverse linear, these two constraints are satisfied. The component structure of Wα

takes the form:

Wα| = λα , D(αWβ)| = fαβ , (2.80)

containing the helicity states 1
2 and 1. This is the supersymmetric Maxwell multiplet (remember

that fαβ ∼ Fab). This multiplet is the starting point for supersymmetric Yang-Mills theory.

The final example is the chiral rank 3 spin tensor Wαβγ . The same reasoning applies to this

field as in the Wα case. The components are:

Wαβγ | = fαβγ , D(αWβγδ)| = Cαβγδ , (2.81)

with helicity states 3
2 and 2, corresponding to the gravitino and graviton. Here fαβγ is the curl of

the gravitino and Cαβγδ is the Weyl tensor in spinor notation, see (2.23).

2.7 Superspace Actions

The previous sections have introduced superfields and the equations that govern their physics. If

supersymmetry were purely a classical phenomenon equations of motion would suffice to study

supersymmetry. If supersymmetry exists, it is at high energy and is quantum mechanical. This

motivates the construction of action principles that can be used to quantize superfields. This

section introduces integration over anti-commuting variables and promotes the usual spacetime

measure to a superspace measure. The dynamics of several actions are analyzed. The derivation

of component actions from superspace actions is also discussed.

In general, integration can be defined over anti-commuting variables. The differentials, dθα

and dθ̄α̇, are placed in the integration measure in the only Lorentz invariant possibility, d2θ =

1
4ε

αβdθαdθβ and d2θ̄ = 1
4εα̇β̇dθ̄

α̇dθ̄β̇ . An integral should be invariant under the change of variables

θα = θ′α + εα. Integrating over the general superfield from (2.46):∫
d2θd2θ̄V (θ, θ̄) =

∫
d2θ′d2θ̄′

(
θ′2θ̄′2D + θ′2θ̄α̇

′(2ε̄α̇D + η̄α̇) + · · ·
)
, (2.82)

shows that only the highest component of V is invariant under the change of variables. Thus,

the lower components of V should have no bearing on this integral since they can be shifted to
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arbitrary values. Next, look at Gauss’s Law:

∫
d2θd2θ̄∂2∂̄2V (θ) = V (θ)|∂ = 0 , (2.83)

which is zero because there is no boundary for the anti-commuting space. Explicitly, plugging the

expansion for V (θ) into this expression yields:

∫
d2θd2θ̄∂2∂̄2V (θ) = 16D

∫
d2θd2θ̄ = 0 , (2.84)

showing that the volume of the anti-commuting space is zero. The same result holds for integration

over one Grassmann variable,
∫
dζ = 0. These results mean that an integral vanishes unless all

of the differentials are multiplying their corresponding coordinates. This removes the arbitrary

shifting problem for the lower components in (2.82), since these terms vanish. The integral of V

becomes:

∫
d2θd2θ̄V (θ, θ̄) = D

∫
d2θd2θ̄(θ2θ̄2) . (2.85)

This last integral is conventionally set to 1. This convention makes the action of integration

formally equal to the action of the derivative, e.g.:

∫
d2θθ2 = 1

4ε
αβ

∫
dθαdθβθ

2 = 1 ∼ 1
4∂

α∂αθ
2 = 1 . (2.86)

There is a hidden sign coming from the conventions of (2.45). The full superspace integral is then

defined as:

∫
d8z =

∫
d4xd2θd2θ̄ = 1

16

∫
d4x∂α∂α∂̄α̇∂̄

α̇ . (2.87)

From (2.61), the limit as θ goes to zero of a D operator is equivalent to replacing all D’s by ∂

operators up to spacetime derivatives. Thus, the superspace integration measure can be written

as:

∫
d8zV = 1

16

∫
d4x(D2D

2
V )| = 1

16

∫
d4x(D

2
D2V )| . (2.88)

It is also consistent to have purely chiral measures:

∫
d6z =

∫
d4xd2θ ,

∫
d6z̄ =

∫
d4xd2θ̄ , (2.89)
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which act on chiral and anti-chiral Lagrangians, respectively. This possibility follows from (2.88)

after integrating over half of d8z:∫
d8zL = − 1

4

∫
d6zD

2L . (2.90)

The chiral Lagrangian − 1
4D

2L is integrated over the chiral measure. This may seem trivial, but

it allows the introduction of purely chiral Lagrangians that have no interpretation as D
2L.

The functional variation of a general superfield follows from general functional analysis:

δV (z′) =
∫
d8zδV (z)δ8(z − z′) =

∫
d8zδV (z)

δV (z′)
δV (z)

,

⇒ δV (z′)
δV (z)

= δ8(z − z′) . (2.91)

where δ8(z) = δ4(x)θ2θ̄2 is the superspace delta function. Chiral superfields have different varia-

tions:

δΦ(z′) =
∫
d8zδΦ(z)δ8(z − z′) =

∫
d6zδΦ(z)(− 1

4D
2
δ8(z − z′)) =

∫
d6zδΦ(z)

δΦ(z′)
δΦ(z)

,

δΦ(z′)
δΦ(z)

= − 1
4D

2
δ8(z − z′) = δ+(z, z′) , (2.92)

where δ+(z, z′) is the chiral delta function. External indices on superfields are dealt with in the

same fashion as external indices on fields. The superspace measures and super functional variation

are all that is needed to construct actions in superspace. This section ends with some simple

examples that give equations of motion that are equivalent to the constraints derived in sections

2.5 and 2.6.

If a the lowest component of a chiral superfield is to represent a propagating scalar field,

then it must have mass dimension 1. The superspace measure d8z has mass dimension −2; −4

from d4x and +2 from d2θd2θ̄. This means that there is a unique quadratic action for the chiral

scalar superfield:

S[Φ,Φ] =
∫
d8zΦΦ . (2.93)

Using (2.92), the equation of motion for Φ is:

δS[Φ,Φ]
δΦ

= − 1
4

∫
d8zD

2
δ8(z − z′)Φ = − 1

4D
2
Φ = 0 , (2.94)
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which is exactly what is needed for a chiral field to satisfy the massless constraints (2.76). Since

the mass dimension of the chiral measure is -3, a mass parameter, m, affords the opportunity to

write another term in the action:

Sm[Φ,Φ] =
∫
d8zΦΦ + 1

2m

∫
d6zΦΦ + 1

2m

∫
d6z̄ΦΦ . (2.95)

Here the equation of motion for Φ is:

δSm[Φ,Φ]
δΦ

= − 1
4D

2
Φ− 1

4m

∫
d6zD

2
δ8(z − z′)Φ

= − 1
4D

2
Φ +m

∫
d8zδ8(z − z′)Φ

= − 1
4D

2
Φ +mΦ = 0 . (2.96)

Multiplying this equation by D2 and substituting it into the conjugate equation leads to:

( −m2)Φ = 0 . (2.97)

Thus, the action Sm[Φ,Φ] represents a massive superspin-0 irreducible representation. The com-

ponent action of this theory is obtained by replacing the measure as in equation (2.88) and using

the component definitions (2.63):

Sm[Φ,Φ] = + 1
16

∫
d4xD2D

2
(ΦΦ)| − 1

8m

∫
d4xD2(ΦΦ)| − 1

8m

∫
d4xD

2
(ΦΦ)|

= + 1
16

∫
d4x(D2ΦD

2
Φ + ΦD2D

2
Φ + 2DαΦDαD

2
Φ)|

− 1
4m

∫
d4x(ΦD2Φ +DαΦDαΦ)| − 1

4m

∫
d4x(ΦD

2
Φ +Dα̇ΦD

α̇
Φ)|

=
∫
d4x

{
ϕ ϕ̄− i

2ψ
α∂aψ

α̇ − 1
4mψ

αψα − 1
4mψ̄α̇ψ̄

α̇ + FF +mϕF +mϕ̄F
}

(2.98)

With m = 0, this action corresponds to a massless scalar and spinor. The equation of motion for

F is F = 0. With m 6= 0 the equation of motion for F is F + mϕ = 0. Upon substitution the

action becomes:

=
∫
d4x

{
ϕ( −m2)ϕ̄− i

2ψ
α∂aψ

α̇ − 1
4mψ

αψα − 1
4mψ̄α̇ψ̄

α̇
}

(2.99)

The auxiliary fields have been integrated out of this action. The action (2.98) has off-shell su-

persymmetry and obeys the abstract Poincaré superalgebra, where as, (2.99) has on-shell super-

symmetry and obeys the algebra given by (2.28) and (2.30). The most striking observation about
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superspace actions is that a superspace action containing 3 terms is equivalent to the off-shell

action containing 7 terms. Superfields are at least an efficient way of packaging supersymmetric

theories and arguably the only way to discuss more complicated supersymmetric models.

The real scalar superfield, V = V , has at the highest spin component a real vector. The

gauge invariance of this massless vector field can be incorporated at the superfield level:

δV = − i
2 (Λ− Λ) , Dα̇Λ = 0 . (2.100)

Projecting the vector component of this equation gives:

δVa = 1
2δ[Dα, Dα̇]V | = − i

4 [Dα, Dα̇](Λ− Λ)|

= +1
2∂a(Λ + Λ)| = ∂aα , (2.101)

which is the correct gauge transformation for the vector field. Since Va(x) should have mass

dimension +1, V (z) must have dimension 0. There are two possible terms that can be written

for a real scalar superfield of mass dimension 0; V DαD
2
DαV and V {D2, D

2}V . The latter is not

gauge invariant so the action is:

S[V ] = 1
8

∫
d8zV DαD

2
DαV (2.102)

The equation of motion is 1
4D

αD
2
DαV = 0. If a chiral spinor superfield is defined as Wα =

− 1
4D

2
DαV , then the equation of motion is the appropriate constraint equation for a massless

irreducible representation. Before calculating the component action, it pays to analyze the gauge

transformations of the first few components of V :

δV | = − i
2 (Λ− Λ)| , δDαV | = − i

2DαΛ| , δD2V | = − i
2D

2Λ| . (2.103)

These components transform directly into components of Λ that are not the gauge parameter α

and are therefore purely algebraic. An algebraic gauge transformation means that there exists

a gauge in which these components are zero. Algebraic gauge choices of this nature are called

Wess-Zumino gauges. Wess-Zumino gauges occur whenever there is gauge freedom in a superfield

theory. Taking the last two components as:

λα = − 1
4D

2
DαV | , D = 1

32{D2, D
2}V | , (2.104)
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the component action becomes:

S[V ] =
∫
d4x

{
− 1

4F
abFab − iλα∂aλ̄

α̇ + 2D2
}

. (2.105)

A massive theory can be obtained by simply adding a mass term:

Sm[V ] =
∫
d8z

{
1
8V D

αD
2
DαV +m2V 2

}
. (2.106)

The equation of motion now reads:

1
4D

αD
2
DαV + 2m2V = 0 . (2.107)

Taking D2 on this equation yields D2V = 0 and the equation of motion becomes:

(−2 + 2m2)V = 0 , (2.108)

thus, forming an irreducible massive superspin- 1
2 representation. Going to components in this

theory is harder since the mass term ruins the gauge invariance and therefore there is no Wess-

Zumino gauge. With the following definitions:

1
mB = V | , 1

mχα = DαV | , 1
mG = − 1

4D
2V | ,

Va = 1
2 [Dα, Dα̇]V | , λα = − 1

4D
2
V | ,

D = 1
16D

αD
2
DαV | , (2.109)

and a little determination the component action is:

Sm[V ] =
∫
d4x

{
− 1

4F
abFab − 1

2m
2V aVa − 1

2∂
aB∂aB − 1

2m
2B2

−iλα∂aλ̄
α̇ − iχα∂aχ̄

α̇ −m(λαχα + λ̄α̇χ̄
α̇) + 2GG+ 2(D + 1

2B)2
}

. (2.110)

The first two terms are the Proca Lagrangian for a massive vector field, and there is a Dirac mass

term for the spinors. This action contains eleven terms and the superfield action only contained

two.
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This section ends with a description of linearized supergravity. Finding massive extensions

of this theory is one of the main goals of this thesis. Linearized supergravity is described by a real

vector field Ha = Ha and a chiral scalar σ. The action takes the form:

SSUGRA[Ha, σ] =
∫
d8z

{
1
8H

aDβD
2
DβHa − 3σσ̄ + 1

48 ([Dα, Dα̇]Ha)2

−(∂aH
a)2 + 2i(σ − σ̄)∂aH

a
}

, (2.111)

and has the following gauge invariance:

δHa = Dα̇Lα −DαLα̇ , δσ = − 1
12D

2
DαLα . (2.112)

The curl of the equation of motion for Ha is:

−i∂γ̇
(α

(δSSUGRA[Ha, σ]
δHβ)γ̇

)
= DγWγαβ = 0 , (2.113)

with

Wαβγ := i
3!8D

2
∂γ̇
(αDβHγ)γ̇ . (2.114)

This is the correct equation for Wαβγ to propagate. A few words should be said about supergravity.

The superfields Ha and σ are called prepotentials. These superfields are prepotentials in the

sense that they are potentials relative to the usual potentials that are geometrically defined to

describe supergravity. For instance, the potential for gravity is the metric field, gab. If gravity

could be written by replacing gab with ∂(aBb), Ba would be the prepotential. Although this

seems preposterous, it actually occurs in superspace. Further, the chiral superfield σ is called a

compensating superfield. Without σ, the gauge invariance (2.112) would correspond to conformal

supergravity. The lowest component of σ shares the scale invariance of the trace of the metric in

Ha. There is a Wess-Zumino gauge in which the scale transformation parameter is used to set

σ| = 0. This removes the scale transformation that could be used on the trace of the metric.

This concludes the mathematical introduction to flat superspace. The Poincaré superalgebra

was derived and superfield representations were discussed. Superspace integration theory was

defined and used to construct basic actions that lead to the constraint equations that determine

massless and massive irreducible representations of the Poincaré superalgebra.
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Chapter 3

Half-Integer Massless Arbitrary Superspin Actions

This chapter is devoted to deriving classical actions for free massless superfields with half-integer

superspin. Massless half-integer superspin-Y multiplets have component fields with helicities Y + 1
2

and Y . Superprojectors will be used to construct the actions. Using the language of superprojectors

is beneficial in two ways. First, the action takes on a geometrical interpretation, based on the

various irreducible subspaces of the real vector superfield Ha. Second, the orthogonality of the

superprojectors, simplifies many of the manipulations in the next chapter on massive theories.

Section 3.1 explains how to construct the general quadratic action for the real tensor superfield

Ha(s) and then express this action in terms of superprojectors. Section 3.2, develops the massless

free theories by imposing gauge invariance and introducing compensating superfields.

3.1 Geometric Actions

This section begins with a derivation of a general action which is local and quadratic in a tensor

valued real superfield Ha(s)(x, θ, θ̄)(i.e. Ha(s)= Ha1···as
). Ha(s) is irreducible on all 2s spinor

indices. This superfield contains highest component spin of s + 1. Once the general action is

established, it is rewritten in terms of the super projection of the superfield with one vector index,

Ha . Although the action describes the dynamics of the superfield Ha(s) with s vector indices,

it will be shown that application of superprojectors to a single vector index of the superfield is

sufficient to describe an appropriate dynamical set of equations. Furthermore, using the 3s+2 set

of superprojectors specific for each Ha(s), would hardly allow a general description for all spins.

3.1.1 General Action

In order to make a general statement about higher spin theories, the types of terms that can exist

in a superspace action must be enumerated. The mass dimension of the superfield Ha(s) is set

to zero, which gives the highest spin component mass dimension 1. This means that the mass

dimension of the superspace integration measure can only be canceled by four covariant spinor
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derivatives. Thus, the general action is fourth order in spinor covariant derivatives. At first this

seems daunting, since there are a priori ∼ 24 terms plus various Lorentz contractions. It is also

rather complicated to prove the linear independence of some set of terms using only the covariant

derivative algebra. It seems necessary to find some simple way of organizing all possible terms

and finding an acceptable set of linearly independent terms. The following considerations show

that all possible fourth order differential operators can be encompassed by a set of seven Lorentz

irreducible operators. This set is further reduced by requiring that the action is real and does not

violate parity. The final action for Ha(s) contains five linearly independent terms.

There are six possible fourth order operators. Separated into Lorentz irreducible pieces they

are:

DαDβDα̇Dβ̇ = − 1
4εαβεα̇β̇D

2D
2
, (3.1)

Dα̇Dβ̇DαDβ = − 1
4εαβεα̇β̇D

2
D2 , (3.2)

DαDα̇Dβ̇Dβ = − 1
4εα̇β̇D(αD

2
Dβ) − 1

4εαβεα̇β̇D
γD

2
Dγ , (3.3)

Dα̇DαDβDβ̇ = +1
4εαβD(α̇D

2Dβ̇) −
1
4εαβεα̇β̇D

γD
2
Dγ , (3.4)

DαDα̇DβDβ̇ = 1
4D(αD(α̇Dβ)Dβ̇) −

1
8εαβD(α̇D

2Dβ̇) + 1
8εα̇β̇D(αD

2
Dβ)

+ 1
8εαβεα̇β̇(DγD

2
Dγ +D2D

2
) , (3.5)

Dα̇DαDβ̇Dβ = 1
4D(α̇D(αDβ̇)Dβ) − 1

8εαβD(α̇D
2Dβ̇) + 1

8εα̇β̇D(αD
2
Dβ)

+ 1
8εαβεα̇β̇(DγD

2
Dγ +D

2
D2) . (3.6)

Note that (DαD
2
Dα)∗= Dα̇D

2D
α̇
. Thus, there are only seven linearly independent fourth

order Lorentz irreducible operators, namely; DγD
2
Dγ , D2D

2
, D

2
D2, D(αD

2
Dβ), D(α̇D

2Dβ̇),

D(α̇D(αDβ̇)Dβ), D(αD(α̇Dβ)Dβ̇). The next step is to construct the general action and determine
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if this list is diminished because of parity violations or equivalence under integration by parts.

The action is assumed to be real and quadratic in the real pseudo tensor valued superfield Ha(s).

The action is also assumed not to violate parity. A few comments on the parity operator, P , are

in order. Parity changes all chiralities, thus PDα = Dα̇ and PD2 = −D2
. Furthermore, since

P [Dα, Dα̇] = −[Dα, Dα̇], Ha(s) must be understood to be a pseudo tensor so that the physical

component field, gab(s) := [Dα, Dα̇]Hb(s)|, is a tensor. Taking into account real and imaginary

coefficients, the operators in the previous paragraph form an action with one real coefficient, w,

and three imaginary coefficients; x, y, z:

SGen[Ha(s)] =
∫
d8z

{
Ha(s)

(
wDγD

2
Dγ + xD2D

2
+ x∗D

2
D2

)
Ha(s)

+Hac(s−1)
(
yD(αD(α̇Dβ)Dβ̇) + y∗D(α̇D(αDβ̇)Dβ)

)
Hbc(s−1)

+Hac(s−1)
(
zD(αD

2
Dβ)H

β
α̇c(s−1) − z

∗D(α̇D
2Dβ̇)H

β̇
αc(s−1)

)}
. (3.7)

The first term is standard even with s = 0. The imaginary parts of x, y, and z all violate parity,

thus these coefficients are real. Even at the level of integration by parts, x and y are constrained

to be real. The action becomes:

SGen[Ha(s)] =
∫
d8z

{
Ha(s)

(
wDγD

2
Dγ + x{D2, D

2}
)
Ha(s)

+2yHac(s−1)D(αD(α̇Dβ)Dβ̇)Hββ̇c(s−1)

+Hac(s−1)
(

+ zD(αD
2
Dβ)H

β
α̇c(s−1) − zD(α̇D

2Dβ̇)H
β̇
αc(s−1)

)}
. (3.8)

This is the most general quadratic superfield action for a pseudo tensor Ha(s). Although it contains

only four real coefficients, it is in a rather useless form. This action can be polished further by

writing it in terms of the more canonical fourth order operators.

For this action to be more useful from the perspective of the literature, it is necessary to

show where the canonical fourth order operators ∂a∂b and [Dα, Dα̇][Dβ , Dβ̇ ] fit into this description
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of the action. Rewriting the action with the canonical operators is just like changing basis vectors

in a vector space. The canonical operators can be written in terms of the operators in (3.8):

Hac(s−1)∂a∂bH
b
c(s−1) = Hac(s−1)

[
− 1

8D(αD(α̇Dβ)Dβ̇) −
1
2εαβεα̇β̇

]
Hb

c(s−1) , (3.9)

Hac(s−1)[Dα, Dα̇][Dβ , Dβ̇ ]Hb
c(s−1) = Hac(s−1)

[
+ 1

2D(αD(α̇Dβ)Dβ̇) + 2εαβεα̇β̇

+ 1
2εα̇β̇D(αD

2
Dβ) − 1

2εαβD(α̇D
2Dβ̇) + εαβεα̇β̇D

γD
2
Dγ

]
Hb

c(s−1) . (3.10)

Noting that all {D2, D
2} terms can be replaced via {D2, D

2} = 2DαD
2
Dα + 16 , the basis

can be chosen so that the canonical operators, ∂a∂b and [Dα, Dα̇][Dβ , Dβ̇ ], can be substituted

for xD(αD(α̇Dβ)Dβ̇), and zD(αD
2
Dβ)H

β
α̇c(s−1) − zD(α̇D

2Dβ̇)H
β̇
αc(s−1). The action then takes the

canonical form:

SGen[Ha(s)] =
∫
d8z

{
α1H

a(s)DγD
2
DγHa(s) + α2H

a(s) Ha(s)

+α3H
ac(s−1)∂a∂

bHbc(s−1) + α4H
ac(s−1)[Dα, Dα̇][Dβ , D

β̇
]Hbc(s−1)

}
. (3.11)

(3.11) is the general action quadratic inHa(s). It is local and parity preserving. This action contains

only four real coefficients. One of these coefficients can be absorbed into the normalization of Ha(s)

and will be chosen canonically in later sections.

3.1.2 Superprojectors

Although the action SGen is in a standard form, it would be more useful to construct the higher

spin actions, with the knowledge of which terms contained the highest component spins. The

off-shell projectors mentioned in equation (2.64) provide a geometric solution to elucidating the

structure of this action. Once the action is written in terms of superprojectors, the coefficients

that specify the highest spin part of the action can be determined. This is exactly the procedure

used in [34] to show how the new massless theory derived in [5] fits in with the known forms of

linearized supergravity.
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To begin, the decomposition of general tensor valued superfields must be obtained. Acting

on a superfield with a set of one type of spinor index Vα(s) with the now off-shell identity, (2.64),

leads to:

IVα(s) = ( 1
16

−1D
2
D2 + 1

16
−1D2D

2 − 1
8

−1DβD
2
Dβ)Vα(s) . (3.12)

The third term can be reorganized by noting the tableaux relation:

⊗ = ⊕ , (3.13)

which can be written in terms of the tensor Vα(s) and Dβ as:

DβVα(s) = 1
(s+1)!D(βVα(s)) + s

(s+1)!εβ(αs
DγVα(s−1))γ . (3.14)

Using this result, the identity becomes:

IVα(s) = 1
16

−1D
2
D2Vα(s) + 1

16
−1D2D

2
Vα(s)

− 1
8(s+1)!

−1DβD
2
D(βVα(s)) + s

8(s+1)!
−1D(αs

D
2
DγVα(s−1))γ . (3.15)

Viewing this as an expansion of V α in terms of a set of chiral superfields, the first two terms

have superspin s
2 and the last two terms have superspin s+1

2 and s−1
2 . This decomposition can be

applied to superfields of any index type by noting that the following operator is invertible off-shell:

4α̇
α = − 1

2 ∂α̇
α 4α̇

β4β
β̇ = δβ̇

α̇ . (3.16)

This operator allows the conversion of an index of one type of chirality into the other. Thus, the

superprojector decomposition of the vector valued superfield Ha, can be obtained by converting

one spinor index on Ha and proceeding with the decomposition of the object with two undotted

indices. The invertible conversion of Ha is defined as:

4β
α̇Ha = 1

2Vαβ − 1
2εαβV ,

⇒ Vαβ = 4(β
α̇Hα)α̇ , V = 4aHa . (3.17)
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Since there are two irreducible spin tensors, Vαβ and V , the super projection must be evaluated

on both of these pieces:

IHa = 1
24α̇

βIVαβ − 1
24aIV

= 1
24α̇

β
(

1
16

−1D
2
D2Vαβ + 1

16
−1D2D

2
Vαβ

− 1
8·3!

−1DγD
2
D(γVαβ) + 2

8·3!
−1D(αD

2
DγVβ)γ

)

− 1
24a

(
1
16

−1D
2
D2 + 1

16
−1D2D

2 − 1
8

−1DβD
2
Dβ

)
V , (3.18)

Upon converting back to Ha using (3.17), the super projection becomes:

IHa = 1
2

−2∂α̇
β
{

1
16{D

2
, D2}∂(α

β̇Hβ)β̇

− 1
4·3!D

γD
2
D(γ∂α

β̇Hβ)β̇ + 1
4·3!D(αD

2
Dγ

(
∂β)

β̇Hγβ̇ + ∂γ
β̇Hβ)β̇

)}

− 1
2∂a

−2
(

1
16{D

2
, D2} − 1

8D
βD

2
Dβ

)
∂dHd . (3.19)

Taking Ha to be real, five orthogonal projection can be extracted from this equation. There are

three that are transverse, or have no divergence:

(ΠT
1 )a

bHb := 1
32

−2∂α̇
β{D2

, D2}∂(α
β̇Hβ)β̇ , (3.20)

(ΠT
1/2)a

bHb := 1
8·3!

−2∂α̇
βD(αD

2
Dγ(∂β)

β̇Hγβ̇ + ∂|γ|
β̇Hβ)β̇) , (3.21)

(ΠT
3/2)a

bHb := − 1
8·3!

−2∂α̇
βDγD

2
D(γ∂α

β̇Hβ)β̇ , (3.22)

and two that are longitudinal:

(ΠL
0 )a

bHb := − 1
32∂a

−2{D2
, D2}∂cHc , (3.23)

(ΠL
1/2)a

bHb := 1
16∂a

−2DβD
2
Dβ∂

cHc . (3.24)
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This process can be continued to construct the projections of all high spin superfields. Surprisingly,

these five projectors are all that is needed to make a thorough investigation of massless and massive

half-integer superspin theories.

Using the expressions for the superprojectors, the general action, (3.11), can be rewritten.

The following calculations can be performed by inserting the identity and gathering the non-zero

terms. The first term is the sum of the linear projectors:

α1H
ab(s−1)DγD

2
DγHab(s−1) = −8α1H

ac(s−1) (ΠT
3/2 + ΠT

1/2 + ΠL
1/2)a

bHbc(s−1) . (3.25)

The second term is the identity off-shell and is therefore the sum of all five projectors:

α2H
a Ha(s) = α2H

ac(s−1) (ΠT
3/2 + ΠT

1 + ΠT
1/2 + ΠL

1/2 + ΠL
0 )a

bHbc(s−1) . (3.26)

The third term is only partial derivatives, so it must be a sum of longitudinal superprojectors:

α3H
ac(s−1)∂a∂

bIHbc(s−1) = −2α3H
ac(s−1)(ΠL

1/2 + ΠL
0 )a

bHbc(s−1) . (3.27)

The final term, the double commutator, is formidable. The chiral transverse superprojector, ΠT
1 ,

trivially vanishes under this operator. The longitudinal linear superprojector, ΠL
1/2, vanishes since

[Dα, Dα̇]∂a ∝ [D2, D
2
] multiplies a linear operator. Further, the transverse projector, ΠT

3/2 van-

ishes because of the clash between the triple symmetrization and the antisymmetry of DαDβ . The

other chiral superprojector is also trivial:

α4H
ad(s−1)[Dα, Dα̇][Dβ , D

β̇
](ΠL

0 )b
cHcd(s−1) = 8α4H

ac(s−1)(ΠL
0 )a

bHbc(s−1) . (3.28)

The only non-trivial calculation involves ΠT
1/2:

α4H
ad(s−1)[Dα, Dα̇][Dβ , D

β̇
](ΠT

1/2)b
cHcd(s−1)

= −12iα4H
ae(s−1) [Dα, Dα̇]( −2 1

8·3! )D
βD

2
Dδ∂(β

γ̇Hδ)γ̇e(s−1) ,

= −24α4H
ac(s−1) (ΠT

1/2)a
bHbc(s−1) . (3.29)

The second line above is the middle line in an ∼ 8 line calculation and is shown just to give

some direction to the interested reader. The final answer for the super projection of the double
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commutator is:

α4H
ac(s−1)[Dα, Dα̇][Dβ , D

β̇
]Hbc(s−1) = α4H

ac(s−1)(8ΠL
0 − 24ΠT

1/2)a
bHbc(s−1) . (3.30)

Having decomposed all four terms with superprojectors, the super projected action can be written:

SGen[Ha(s)] =
∫
d8zHac(s−1)

(
[−8α1 + α2]ΠT

3/2 + α2ΠT
1 + [−8α1 + α2 − 24α4]ΠT

1/2

+[−8α1 + α2 − 2α3]ΠL
1/2 + [α2 − 2α3 + 8α4]ΠL

0

)
a

bHbc(s−1) . (3.31)

It is interesting to note a few things about the form of this action. First, there are four unknown

coefficients, one of which can be absorbed into Ha(s). Second, a little linear algebra shows that it is

impossible to set the coefficients such that there is only one superprojector. This is a consequence of

the construction, since it starts by using only local operators and one superprojector by itself is not

local. Another method for deriving this action would be to sum all superprojectors with arbitrary

coefficients and demand locality. It seems that this method would involve intense calculations and

not use the orthogonality of the superprojectors efficiently.

It is canonical to set α1 = − 1
16 which can be thought of as absorbing α1 into the definition

of Ha. Further, in what follows, α2 = 0, so that the ΠT
1 superprojector is absent. The use of the

superprojector, ΠT
1 , in a gauge theory implies the existence of an unconstrained 2-form superfield.

Although a theory of this nature may have some utility, it certainly does not describe an irreducible

representation of supersymmetry.

3.2 Massless Actions

To generate free massless superfield representations starting with the general action, it is necessary

to impose gauge invariance. The highest component of the superfield should transform like the

linearized version of gravity with more indices. So the gauge transformation is just the obvious

extension of linearized supergravity:

δHa(s) = 1
s!D(α̇s

L|α(s)|α̇(s−1)) − 1
s!D(αs

Lα(s−1))α̇(s) . (3.32)
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This gauge transformation is precisely that which leaves invariant the highest superspin projection

of Ha(s):

ΠT

s+
1
2
Ha(s) ∼ −(s+1)∂α̇1

β1 · · · ∂α̇s

βsDγD
2
D(γ∂

β̇1
β1
· · · ∂ β̇s

βs
Hα(s))β̇(s) . (3.33)

The propagating superfield-strength is buried in this projection:

Wα(2s+1) :=
i

8(2s+ 1)!
D

2
D(αs+1∂αs+2

β̇1 · · · ∂α2s+1
β̇sHα(s))β̇(s) . (3.34)

The action (3.31) is by no means gauge invariant. In fact, every term has non-zero gauge trans-

formation. This is not the case for supergravity, when s = 1, since (3.33) is a term in the action.

This will become clear in the following analysis.

The gauge transformations of each term in the action are:

δ(Hab(s−1) ΠL
0Hab(s−1)) = i

4s∂aH
ab(s−1)D

2
DγLγb(s−1)

− i
4s (s− 1)∂aH

ab(s−1) −1D
2
Dδ∂δβ̇s−1

∂cLb(s−2)βs−1c + c.c. , (3.35)

δ(Hab(s−1) ΠL
1/2Hab(s−1)) = − i

4s∂aH
ab(s−1)DγD

2
Lγb(s−1)

+ i
4s (s− 1)∂aH

ab(s−1) −1DδD
2
∂δβ̇s−1

∂cLcb(s−2)βs−1 + c.c. , (3.36)

δ(Hab(s−1) ΠT
1/2Hab(s−1)) = 1

24s (2s+ 1)[Dα, Dα̇]Hab(s−1)DγD
2
Lγb(s−1)

−i (s−1)
12s ∂aH

ab(s−1) −1DδD
2
∂δβ̇s−1

∂cLb(s−2)βs−1c + c.c. , (3.37)

δ(Hab(s−1) ΠT
3/2Hab(s−1)) = (s−1)

3!s

{
1
2 [Dα, Dα̇]− i3∂a

}
Hab(s−1)DγD

2
Lγb(s−1)

− i(s−1)
3!s ∂aH

ab(s−1) −1DγD
2
∂γβ̇s−1

∂dLβ̇(s−2)β(s−1)d + c.c. . (3.38)

The equation:

T(αΓβ(p)) = p!TαΓβ(p) + pT(β1Γβ2···βp)α , (3.39)
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is helpful to untangle some indices. Setting s = 1 in equations (3.35-3.38), reveals a peculiar

structure. With s = 1, these equations state that the gauge variations of non-local objects are

actually local. It should be noted that for arbitrary s, the combinations of these terms that exist

in the action (3.31) will lead to an overall local gauge transformation of the action.

To create a gauge invariant action it is necessary to introduce compensating superfields

whose gauge transformations cancel these contributions. The compensating superfields will be

enumerated in the following section. There are only two known formulations for higher spin

theories[2, 28]. These theories are stated based on gauge invariance and there has not been a

procedure that proves that the two formulations are the only possibilities. It will be interesting to

see if the superprojector method can clarify this structure or produce any new structures.

3.2.1 Compensating Superfields

The compensating superfields are responsible for canceling the gauge variation of the general action

(3.31) which is:

∫
d8z

{
− i

s (8α4 − 2α3)∂aH
ab(s−1)

[
(s− 1)iDβ̇s−1

∂cLβ̇(s−2)β(s−1)c −
1
4D

2
DγLγb(s−1)

]

+
[
( 1
2sα3 − 1

8 )i∂a +
(

1
16 −

(2s+1)
s α4

)
[Dα, Dα̇]

]
Hab(s−1)DγD

2
Lγb(s−1) + c.c.

}
. (3.40)

This result is quite nice. Written in this fashion, the gauge variation contains both longitudinal

and transversal linear terms coupled to derivatives of Ha(s). There is one chiral term, but the

gauge variation of a chiral superfield will not be able to cancel the linear variations. This suggests

the addition of complex linear compensating superfields. Further, proceeding by using the most

general definitions of these compensating fields, will guarantee that all possibilities are enumerated.

The first compensating field is called longitudinal complex linear and couples to the diver-

gence of Ha(s). The second is called transversally complex linear and couples through the com-

mutator and partial derivative combination. Thus, two compensating superfields are introduced;

transversally linear Γa(s−1) and longitudinally linear Ga(s−1). These complex linear superfields are
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constrained:

D
β̇
Γa(s−2)ββ̇ = 0 , (3.41)

D(β̇Gα̇(s−1))α(s−1) = 0 . (3.42)

In accordance with their definitions, both superfields lie in the kernel of D
2

but not D2, hence the

distinction complex. The compensating superfields can have the following gauge transformations

consistent with (3.41) and (3.42):

δΓa(s−1) = aD
γ̇
D2Lγ̇a(s−1) + bD

2
DβLβa(s−1) , (3.43)

δGa(s−1) = c
(s−1)! i∂

dD(α̇s−1Lα̇(s−2))α(s−1)d + dD
2
DβLβa(s−1) . (3.44)

These gauge transformations are exactly what is needed to construct the full gauge invariant

action. There are two steps to completing the action. First, the coupling terms are written such

that they cancel the terms in (3.40). Second, the kinetic terms for the compensating fields must be

determined. Throughout this process it will be necessary to fix the free coefficients α3, α4, a, b, c,

and d.

The coupling terms take the form:

SCoupling =
∫
d8z

{
+ i

s (8α4 − 2α3)∂aH
ab(s−1)Gb(s−1)

−4
[
( 1
2sα3 − 1

8 )i∂a +
(

1
16 −

(2s+1)
s α4

)
[Dα, Dα̇]

]
Hab(s−1)Γb(s−1) + c.c.

}
. (3.45)

This coupling implies that c = (s− 1) and a = − 1
4 , which is the canonical normalization. Further,

in order to remove the chiral part of the gauge transformation the coefficients must obey the

following equation:

1
4s

(
8α4 − 2α3

)(
4d+ 1

)
− b

(
2
sα3 − 8(2s+1)

s α4

)
= 0 , (3.46)

which is really two equations, since irreducibility requires that only one compensator be used.

Removing Ga by setting 8α4− 2α3 = 0 implies that b = 0. Keeping Ga(s−1) and removing Γa(s−1)

by setting α3 = s
4 and 16(2s+ 1)α4 = s implies that d = − 1

4 .
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All that is left is to find suitable kinetic terms. The additional terms take the form:

SComp =
∫
d8z

{
eGb(s−1)Gb(s−1) + fGb(s−1)Gb(s−1) + f∗G

b(s−1)
Gb(s−1)

+gΓb(s−1)Γb(s−1) + hΓb(s−1)Γb(s−1) + h∗Γ
b(s−1)

Γb(s−1)

}
. (3.47)

Looking first at the theory containing only Ga(s−1), the gauge transformation of the coupling and

kinetic terms is

Gb(s−1)
{[

1
4(2s+1) + e

4

]
D2D

α̇
Lb(s−1)α̇ +

[
(s−1)
(2s+1) + e(s− 1)

]
i∂aDβs−1Lβ(s−2)β̇(s−1)a

[
− (s2−1)

s(2s+1) + 2f(s− 1)
]
i∂aDβ̇s−1

Lβ(s−1)β̇(s−2)a + c.c.
}

, (3.48)

thus e = −(2s + 1)−1 and f = + (s+1)
2s(2s+1) . All coefficients have been set and there is a unique

description with the longitudinally linear compensating superfield. Moving now to the action in-

volving the transversally linear compensator. The antichiral parts of DDδH or DDδH multiplying

Γ have zero volume in superspace, but the chiral parts do not and can not be canceled by the gauge

variations of the Γ kinetic terms. This is connected to having set the coefficient b = 0. So the

chiral parts of DDδH and DDδH must vanish separately. This can be checked by multiplying by

the chiral projector:

D
2
D2DαD

α̇
δHab(s−1) = 0 ,

D
2
D2D

α̇
DαδHab(s−1) 6= 0 . (3.49)

Thus, α3 must be used to remove the second term above, hence α3 = 0. The gauge transformation

of the coupling and kinetic terms is:

∫
d8zΓ

b(s−1)
{(

(s+1)
4s + h∗

2

)
DαD

2
Lb(s−1)α − 1

4

(
1 + g

)
D

α̇
D2Lb(s−1)α̇

}
+ c.c. , (3.50)

so the coefficients are g = −1 and h = − (s+1)
2s . All coefficients have been set and there is a unique

transversal linear theory.
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In summary, two higher spin massless actions have been constructed. The first contains a

longitudinal linear compensating superfield and has the following action:

SLong[Ha(s), Gb(s−1)] =
∫
d8z

{
Hac(s−1)

(
[ 12 ]ΠT

3/2 + [ 12 − 3s
2(2s+1) ]Π

T
1/2

+[12 − s
2 ]ΠL

1/2 − s2

(2s+1)Π
L
0

)
a

bHbc(s−1) − is
(2s+1)∂aH

ab(s−1)
(
Gb(s−1) −Gb(s−1)

)

− 1
2(2s+1)

(
Gb(s−1)Gb(s−1) − (s+1)

s Gb(s−1)Gb(s−1) + c.c.
)}

, (3.51)

and the second contains a transversally linear compensating superfield with the following action:

STrans[Ha(s),Γb(s−1)] =
∫
d8z

{
Hac(s−1) 1

2

(
ΠT

3/2 + ΠT
1/2 + ΠL

1/2

)
a

bHbc(s−1)

− 1
2H

ab(s−1)
(
DαDα̇Γb(s−1) −Dα̇DαΓb(s−1)

)

− 1
2

(
Γb(s−1)Γb(s−1) + (s+1)

s Γb(s−1)Γb(s−1) + c.c.
)}

. (3.52)

These actions are invariant under the following gauge transformations:

δΓa(s−1) = − 1
4D

γ̇
D2Lγ̇a(s−1) , (3.53)

δGa(s−1) = (s−1)
(s−1)! i∂

dD(α̇s−1Lα̇(s−2))α(s−1)d − 1
4D

2
DβLβa(s−1) , (3.54)

and are known to be equivalent through a dual auxiliary action super functional [2]. The deriva-

tion in this chapter reproduces the known results for massless higher spin theories. It would be

interesting to perform a more general analysis in which the variation (3.40) is canceled by the

simultaneous addition of both Γb(s−1) and Gb(s−1). It seems that the theories of this nature would

be higher spin theories coupled to some lower spin matter.

There is a way to analyze the on-shell properties of these theories by working solely in

superspace. First, superfield-strengths are written and Bianchi identities that relate derivatives

of the superfield-strengths are found. Then the theory is placed on-shell. The non-vanishing

superfield-strengths should form irreducible massless representations of the Poincaré superalgebra.

The superfield-strengths are:

Wα(2s+1) :=
i

8(2s+ 1)!
D

2
D(αs+1∂αs+2

β̇1 · · · ∂α2s+1
β̇sHα(s))β̇(s) , (3.55)
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GL
ac(s−1) :=

1
(s!)2

{
(ΠT

3/2 + [1− 3s
(2s+1) ]Π

T
1/2 + [1− s]ΠL

1/2 − 2s2

(2s+1)Π
L
0 )(α(α̇

bH|b|γ(s−1))γ̇(s−1))

+ is
(2s+1)∂(α(α̇

(
Gγ(s−1))γ̇(s−1)) −Gγ(s−1))γ̇(s−1))

)}
, (3.56)

TL
β(s−1)β̇(s−2)

:=
is(s− 1)!
(2s+ 1)

D
β̇s−1

∂aHab(s−1) −
(s− 1)!
(2s+ 1)

D
β̇s−1

Gb(s−1)

+
(s+ 1)(s− 1)!
s(2s+ 1)

D
β̇s−1

Gb(s−1) , (3.57)

GT
ac(s−1) :=

1
(s!)2

{
(ΠT

3/2 + ΠT
1/2 + ΠL

1/2)(α(α̇
bH|b|γ(s−1))γ̇(s−1))

− 1
2

(
D(αD(α̇Γγ(s−1))γ̇(s−1)) −D(α̇D(αΓγ(s−1))γ̇(s−1))

)}
, (3.58)

T
T

α̇b(s−1) := − 1
4D

2
DαHab(s−1) +

1
s!
D(α̇Γβ̇(s−1))β(s−1) +

(s+ 1)
s · s!

D(α̇Γβ̇(s−1))β(s−1)

}
, (3.59)

where T and L superscripts pertain to the transverse and longitudinal formulations. All superfield-

strengths except Wα(2s+1) are proportional to equations of motion and therefore vanish on-shell.

Thus, it would only be necessary to find one Bianchi identity that relates DβWβα(2s) to derivatives

of the other superfield-strengths to prove that this is the propagating superfield-strength. If both

G and Γ were used to write a gauge invariant action there would probably be a new superfield-

strength which contains both of these fields. If this new superfield-strength is not proportional to

the equations of motion, it would constitute a propagating degree of freedom.

This concludes the superprojector derivation of arbitrary higher superspin massless models.

The superprojector analysis has given insight into the general structure of these models. In particu-

lar, the transversal formulation, (3.52), contains only linear superprojectors, while the longitudinal

model, (3.51), contains all linear superprojectors plus the longitudinal chiral superprojector. A

list of superfield-strengths has been presented but has not been analyzed on-shell. It seems that

the superfield-strengths, except for Wα(2s+1), have not appeared in the literature and constitute a

new result.
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Chapter 4

Massive Higher Superspin Actions

This chapter is dedicated to reviewing the known massive higher superspin models and to deriving

new models. Massive superspin-Y multiplets have spins Y − 1
2 , Y, Y and Y + 1

2 . Sections 4.1.1

reviews the massive non-supersymmetric spin-2 theory developed in 1939[15]. Section 4.1.2, de-

scribes the known superspin- 3
2 massive superfield theories and uses the superprojectors to derive

three new versions of the superspin- 3
2 theory. Section 4.2.1 reviews the non-supersymmetric mas-

sive gravitino. Section 4.2.2 ends this chapter with a review of the known superspin-1 action and

a derivation of another version of this model.

4.1 Massive Half-Integer Superspin Actions

This section discusses models with massive gravitons as their highest spin component field. Four-

dimensional massive models of this kind can be used to represent the non-zero modes of higher

dimensional supergravity theories. This makes massive superspin- 3
2 models particularly useful

for doing phenomenology in extra dimensions. This section will review the general method of

constructing higher spin massive models. Superprojectors will be used to construct superspace

actions and several new models will be derived.

4.1.1 Massive Graviton

The basic concepts used to construct integer spin massive theories with no supersymmetry will

be reviewed by working through the spin-2 model. Although supersymmetric theories contain

both fermionic and bosonic fields, in superspace half-integer superspin theories are described using

bosonic valued superfields. Thus, the methods developed for bosonic field theories are directly

applicable at the superfield level to half-integer superspin superfield theories.

Consider the completely symmetric and traceless bosonic field with s vector indices, Xa(s).

This field will be an on-shell massive representation of the Poincaré algebra if the following equa-
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tions are satisfied:

∂aXab(s−1) = 0 , ( −m2)Xa(s) = 0 . (4.1)

This section describes a procedure used to derive action formulations that lead to these equations

as a consequence of the equations of motion. First, the general action is written using arbitrary

coefficients. Then, the equations of motion are analyzed and the coefficients are determined such

that (4.1) are satisfied. In the case that these steps are insufficient to generate the action, a new

auxiliary field is added to the theory and the two steps are repeated. The auxiliary field should

carry no propagating degrees of freedom and thus vanish on-shell. The cases of spin-1 and spin-2

are enough to illustrate this procedure.

The massive photon is described by a vector field Aa. The general action has three terms.

One coefficient can always be fixed by re-scaling one field. The mass term on the propagating field

will be canonically set to − 1
2 to ensure a factor of −m2 in the field equation. The general action

is:

SProca[Aa] =
∫
d4x

{
1
2α1A

a Aa + 1
2α2A

a∂a∂bA
b − 1

2m
2AaAa

}
, (4.2)

where α1 and α2 are real coefficients. In general, it is assumed that the fields are well behaved at

infinity. So integration by parts can be performed without keeping track of the boundary terms.

The Euler-Lagrange equations become:

δS
δΦk

− ∂a δS
δ∂aΦk

=
δS
δΦk

= 0 , (4.3)

since any terms proportional to ∂aΦk can be integrated by parts to become terms proportional to

Φk. For the massive spin-1 action (4.2) the field equation is:

δSProca

δAa
= α1 Aa + α2∂a∂

bAb −m2Aa = 0 . (4.4)

The divergence of the field equation is:

∂a δSProca

δAa
= (α1 + α2) ∂aAa −m2∂aAa = 0 , (4.5)

which implies that Aa has no divergence if α1 = −α2. With this choice, (4.4) becomes:

α1 Aa −m2Aa = 0 , (4.6)
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and by taking α1 = 1, both conditions for Aa to be a spin-1 representation have been fulfilled.

The off-shell Lagrangian with fixed coefficients is:

SProca = 1
2

∫
d4x

{
Aa Aa −Aa∂a∂bA

b −m2AaAa

}

=
∫
d4x

{
− 1

4F
abFab − 1

2m
2AaAa

}
. (4.7)

This example showcases the general procedure nicely. There are two distinct mechanisms that are

working together to yield the desired effect. First, some terms that are linearly independent in

the field equation (4.4), become equivalent in the divergence of the field equation (4.5). Second,

the mass term allows first order derivatives of the field to appear in the divergence of the field

equation (4.5). Setting the coefficients such that the linearly independent terms cancel under the

divergence, allows the mass term to set an on-shell first-order differential constraint. Higher spin

theories work the same way, accept for the addition of auxiliary fields.

To illustrate how to use the auxiliary field, it is sufficient to examine the massive spin-2

field, or massive graviton. An irreducible massive spin-2 field is described by a symmetric traceless

rank two tensor, Hab. The general action is:

Ss=2[Hab] =
∫
d4x

{
1
2β1H

ab Hab + 1
2β2H

ab∂a∂
cHbc − 1

2m
2HabHab

}
, (4.8)

where β1 and β2 are real coefficients. The equation of motion comes from the variation with respect

to a symmetric traceless tensor, for which the appropriate functional variation is:

δHab(x)
δHcd(y)

= ( 1
2δ(c

aδd)
b − 1

4η
abηcd)δ4(x− y) . (4.9)

The field equation is then:

δSs=2[Hab]
δHab

= β1 Hab + β2
1
2∂(a∂

cHb)c − β2
1
4ηab∂

c∂dHcd −m2Hab = 0 . (4.10)

Two successive divergences of the field equation are:

∂b δSs=2[Hab]
δHab

= (β1 + 1
2β2) ∂bHba + 1

4β2∂a∂
b∂cHbc −m2∂bHab = 0 , (4.11)

and

∂a∂b δSs=2[Hab]
δHab

= (β1 + 3
4β2) ∂a∂bHba −m2∂a∂bHab = 0 . (4.12)
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There is no way to set β1 and β2 such that the divergence of Hab vanishes, without setting both

coefficients to zero. Although the two kinetic terms have become equivalent after two divergences of

the field equation, which allows the possibility of ∂a∂bHab = 0, there is no way to set the coefficients

to remove the divergence of Hab to yield a propagating spin-2 field. Some other mechanism must

be used.

The key to implementing the auxiliary field, is to observe that if the second divergence of

Hab were zero, then the scenario would resemble the massive photon. To this end, a scalar auxiliary

field, ϕ, is introduced and coupled directly to the second divergence of Hab. The general action

for both fields is:

SFierz−Pauli[Hab, ϕ] = Ss=2[Hab] +
∫
d4x

{
ϕ∂a∂bHab + 1

2β3ϕ ϕ+ 1
2β4m

2ϕϕ
}

, (4.13)

where the coefficient of the coupling term has been absorbed into the definition of ϕ. β3 and β4

are real coefficients. The field equations are now:

δSFierz−Pauli[Hab, ϕ]
δHab

= β1 Hab + β2
1
2∂(a∂

cHb)c − β2
1
4ηab∂

c∂dHcd

−m2Hab + ∂a∂bϕ− 1
4ηab ϕ = 0 , (4.14)

δSFierz−Pauli[Hab, ϕ]
δϕ

= ∂a∂bHab + β3 ϕ+ β4m
2ϕ = 0 . (4.15)

The coefficients are first set to eliminate ϕ, so that it truly is auxiliary. Solving for ∂a∂bHab in

(4.15) and substituting into the second divergence of (4.14) leads to:

0 =
[
− β3(β1 + 3

4β2) + 3
4

]
2ϕ+

[
β3 − β4(β1 + 3

4β2)
]
m2 ϕ+ β4m

4ϕ , (4.16)

Setting the coefficients β3 = 3
4 (β1+ 3

4β2)−1 and β4 = β3(β1+ 3
4β2)−1 leaves only β4m

4ϕ = 0, forcing

ϕ into auxiliary status. For consistency, (4.15) must still be satisfied, so ∂a∂bHab = 0. Now, if β2 =

−2β1, (4.11) implies that ∂aHab = 0, and the equation of motion now reads (β1 −m2)Hab = 0,

so β1 = 1. The full action is:

SFierz−Pauli[Hab, ϕ] =
∫
d4x

{
1
2H

ab Hab −Hab∂a∂
cHbc −m2HabHab

47



+ϕ∂a∂bHab − 3
4ϕ ϕ+ 3m2ϕϕ

}
. (4.17)

It is a simple exercise to define a symmetric rank two tensor gab := Hab + bηabϕ, and show that for

some choice of real coefficient b, the Fierz-Pauli action can be written completely in terms of gab.

The procedure of writing the general Lagrangian, fixing coefficients and guessing auxiliary

fields gets mapped directly into superspace. The only difference is the added complication of the

covariant spinor derivatives. In the next section, superprojectors are used to simplify calculations.

The superprojectors come in handy especially when superfield equations are substituted into one

another. The orthogonality of the superprojectors simplifies these calculations.

4.1.2 Superspin-3/2 Actions

This section reviews how the superspace projectors can be used to simplify the analysis of the

superspin- 3
2 cases that are known in the literature. Also, a new version of superspin- 3

2 is derived

that couples the propagating superfield Va to the auxiliary superfield V ′ using the commutator of

spinor derivatives instead of the partial derivative. Because of this coupling, the auxiliary superfield

V ′ must have positive charge under parity. Two other superspin- 3
2 versions are derived. These two

theories correspond to the massive analog of new-minimal linearized supergravity and the recently

discovered “new”-new-minimal linearized supergravity of [5].

The general action is taken from chapter 3 with α2 = 0, plus a mass term:

S
Y =

3
2
[Va] =

∫
d8z

{
α1V

aDβD
2
DβVa + α3V

a∂a∂
bVb

+α4V
a[Dα, Dα̇][Dβ , Dβ̇ ]V b − 1

2m2V aVa

}
. (4.18)

In terms of superprojectors this becomes:

S
Y =

3
2
[Va] =

∫
d8z

{
V a

(
[−2α3 + 8α4]ΠL

0 + [−8α1 − 2α3]ΠL
1/2

+[−8α1 − 24α4]ΠT
1/2 − 8α1ΠT

3/2

)
Va − 1

2m2V aVa

}
. (4.19)

As in the case of the spin-2 field, this action can not generate the constraints:

( −m2)Va = 0 , DαVa = 0 , D
α̇
Va = 0 , ∂aVa = 0 , (4.20)
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which make Va an irreducible superspin- 3
2 representation of the Poincaré superalgebra. It turns out

that there are several ways to couple an auxiliary superfield to Va and get the correct dynamics.

The original models of [5] use mV ∂aVa, with V = V . Using another real superfield V ′ the coupling

can be mV ′[Dα, D
α̇
]Va. Since PVa = −Va, this coupling would mean that V ′ has positive parity,

whereas, V had negative parity. The m in the coupling can also be replaced by covariant spinor

derivatives. Using m → D2 and a real auxiliary superfield P the coupling is PD2∂aVa. This

coupling was considered in [13] and corresponds to a massive extension of linearized old-minimal

supergravity, and is related to the five-dimensional theory in [10]. There are two more versions of

linearized supergravity[34], so it is fair to assume that there are massive theories associated with

each of them. A chiral spinor auxiliary superfield χα and the coupling Dβχβ [Dα, D
α̇
]Va leads

to a massive extension of new-minimal linearized supergravity. Another chiral spinor λα and the

coupling Dβλβ∂
aVa leads to the massive extension of “new”-new-minimal linearized supergravity.

All of these possibilities will be considered in what follows.

Starting with the V ′ theory the auxiliary action takes the form:

SAux[Va, V
′] =

∫
d8z

{
mγ̃V ′[Dα, D

α̇
]Va + 1

2V
′
(
δ1 + δ2{D2, D

2}+ δ3m
2
)
V ′

}
, (4.21)

where γ̃, δ1, δ2, and δ3 are real coefficients. The equations of motion are:

δ

δV a

(
S

Y =
3
2
[Va] + SAux[Va, V

′]
)

= 2
[
(−2α3 + 8α4)ΠL

0 + (−8α1 − 2α3)ΠL
1/2

−8α1ΠT
3/2 + (−8α1 − 24α4)ΠT

1/2

]
Va −m2Va + γ̃m[Dα, Dα̇]V = 0 , (4.22)

δ

δV ′

(
S

Y =
3
2
[Va] + SAux[Va, V

′]
)

= γ̃m[Dα, D
α̇
]Va + (δ1 + δ2{D2, D

2}+ δ3m
2)V ′ = 0 . (4.23)

Contracting the commutator of covariant derivatives on (4.22) allows the substitution of (4.23)

and elimination of V ′. Only two of the super projections of Va are nonzero under this operation:

[Dα, D
α̇
]ΠL

0 Va = 1
16

−1{D2, D
2}[Dα, D

α̇
]Va ,

[Dα, D
α̇
]ΠT

1/2Va = − i
4

−1DαD
2
Dδ∂ β̇

(α Vδ)β̇ . (4.24)

The second relation does not allow the substitution of (4.23), thus it must be removed:

α4 = − 1
3α1 . (4.25)
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With these coefficients set, the contraction of [Dα, D
α̇
] on (4.22) leads to the following relations:

δ1 − 24γ̃2 = 0 ,

(−2α3 + 8α4)(δ1 + 16δ2) = 0 ,

−δ2 − 2γ̃2 + 1
8 (−2α3 + 8α4)δ3 = 0 , (4.26)

so that V ′ = 0. The vanishing of the auxiliary superfield implies [Dα, D
α̇
]Va = 0. With this

constraint it is possible to generate the equations (4.20), by analyzing the contraction of Dα on

(4.22). Of the only non-zero superprojectors, ΠT
3/2 vanishes under this operator and:

DαΠL
1/2Va = − i

8
−1D2Dα̇∂bV

b , (4.27)

which must be removed, thus:

α3 = −4α1 . (4.28)

This clears up the ambiguity in (4.26) and implies that DαVa = 0. Obtaining the Klein-Gordon

equation reveals that α1 = − 1
16 . After absorbing γ̃ into V ′, the action becomes:

S
Y =

3
2
[Va, V

′] =
∫
d8z

{
V a

(
− 1

3ΠL
0 + 1

2ΠT
3/2

)
Va − 1

2m
2V aVa

+mV ′[Dα, D
α̇
]Va + V ′(12 − 3

4{D2, D
2} − 6m2)V ′

}
. (4.29)

The two other actions with massive couplings come from the auxiliary action:

SAux[Va, V ] =
∫
d8z

{
mγV ∂aVa + 1

2V
(
δ1 + δ2{D2, D

2}+ δ3m2
)
V

}
, (4.30)

where γ, δ1, d2 and δ3 are real coefficients. The δ coefficients in this example should not be

confused with the δ coefficients in the V ′ example. The equations of motion are:

δ

δV a

(
S

Y =
3
2
[Va] + SAux[Va, V ]

)
= 2

[
(−2α3 + 8α4)ΠL

0 + (−8α1 − 2α3)ΠL
1/2

−8α1ΠT
3/2 + (−8α1 − 24α4)ΠT

1/2

]
Va −m2Va − γm∂aV = 0 , (4.31)

δ

δV

(
S

Y =
3
2
[Va] + SAux[Va, V ]

)
= γm∂aVa +

(
δ1 + δ2{D2, D

2}+ δ3m2
)
V = 0 . (4.32)
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The divergence of (4.31) allows the substitution of (4.32). Only the longitudinal superprojections

are non-zero under the divergence:

∂aΠL
0 Va = 1

16
−1{D2, D

2}∂cV
c (4.33)

∂aΠL
1/2Va = − 1

8
−1DδD

2
Dδ∂cV

c (4.34)

Both of these relations allow the substitution of (4.32), and do not need to be removed at this

point. Setting V = 0 in the divergence of (4.31) leads to:

δ1(8α1 + 2α3) = 0 ,

(−2α3 + 8α4)(δ1 + 16δ2) = 0 ,

−2δ3(−2α3 + 8α4) + 16δ2 + δ1 + 2γ2 = 0 ,

+2δ3(8α1 + 2α3) + δ1 + 2γ2 = 0 . (4.35)

With this, V = ∂aVa = 0 and all longitudinal projections are eliminated. To fully reduce Va, the

contraction of Dα on (4.31) is performed. In this calculation the only superprojector that remains

is ΠT
1/2 and it is non-zero under this operation, thus, it must be removed α4 = − 1

3α1. There are

now two solutions according to (4.35):

1. α3 = −4α1 , δ1 = −2γ2 , δ2 = +1
8γ

2 , δ3 = + 3
16γ

2α1
−1 , (4.36)

2. α3 = − 4
3α1 , δ1 = 0 , δ2 = − 1

8γ
2 , δ3 = − 3

16γ
2 . (4.37)

These are the solutions previously found in [5].

Massive Extension of Old-Minimal Supergravity

The action for old-minimal linearized supergravity contains Va and a chiral compensator Σ:

SOld−Min[Va,Σ] =
∫
d8z

{
V a (− 1

3ΠL
0 + 1

2ΠT
3/2)Va − i(Σ− Σ)∂aVa − 3ΣΣ

}
. (4.38)

It would be nice to return to the this action when m = 0. So the auxiliary action should be

proportional to m or some other auxiliary superfields. It is impossible to get the correct dynamics
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unless the chiral superfield is replaced with a potential. The simplest potential is a real scalar

superfield, Σ = − 1
4D

2
P . The mass terms for this theory are:

Sm[Va, P ] =
∫
d8z

{
− 1

2m
2V aVa + 1

2δm
2P 2

}
, (4.39)

where δ is a real coefficient. The equations of motion are:

δ

δV a

(
SOld−Min[Va, P ] + Sm[Va, P ]

)
=

[
ΠT

3/2 − 2
3ΠL

0

]
Va −m2Va + i∂a(Σ− Σ) = 0 , (4.40)

δ

δV

(
SOld−Min[Va, P ] + Sm[P ]

)
= + i

4D
2
∂aVa − i

4D
2∂aVa − 3

16{D2, D
2}P + δm2P = 0 . (4.41)

The equation of motion for P implies that DαD
2
DαP = 0 and therefore {D2, D

2}P = 16 P .

Substituting (4.41) into the real part of the contraction of D2∂a on the equation of motion of Va

implies that P = 0 if δ = 9
2 . The vanishing of P sets ΠL

0 Va = 0 and equation (4.40) then implies

∂aVa = 0 and DαVa = 0. The full action is:

SY =3/2[Va, P ] =
∫
d8z

{
V a (− 1

3ΠL
0 + 1

2ΠT
3/2)Va − i(Σ− Σ)∂aVa

−3ΣΣ− 1
2m

2V aVa + 9
4m

2P 2
}

, (4.42)

which is exactly the action presented in [13]. This action represents a massive extension of lin-

earized old-minimal supergravity and is directly associated to the dimensional reduction of the

five-dimensional action of [10].

Massive Extension of New-Minimal Supergravity

With the knowledge of how to extend old-minimal supergravity, it should be possible to create

a massive extension of new-minimal supergravity. New-minimal supergravity is described by the

vector valued superfield Va and a real linear compensating superfield U . Since U has mass dimension

1, it is not possible to write a mass term for this superfield. Introducing a chiral spinor potential

for U :

U = Dαχα +Dα̇χ
α̇ , (4.43)
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allows a mass term for the compensator. The action for linearized new-minimal supergravity is:

SNew−Min[Va,U ] =
∫
d8z

{
V a (−ΠT

1/2 + 1
2ΠT

3/2)Va + 1
2U [Dα, Dα̇]V a + 3

2U2
}

. (4.44)

The only possible mass terms are:

Sm[Va, χα] = − 1
2m

2

∫
d8zV aVa + 1

2γm
2

∫
d6zχαχα + 1

2γ
∗m2

∫
d6z̄χ̄α̇χ̄

α̇ . (4.45)

The equations of motion are:

δ

δV a

(
SNew−Min[Va,U ] + Sm[Va, χα]

)
=

[
ΠT

3/2 − 2ΠT
1/2

]
Va −m2Va + 1

2 [Dα, Dα̇]U = 0 , (4.46)

δ

δχα

(
SNew−Min[Va,U ] + Sm[Va, χα]

)
= 1

8D
2
Dα[Dβ , Dβ̇ ]V b + 3

4D
2
DαU +m2γχα = 0 . (4.47)

Because U is linear, (4.46) implies that Va is linear, D2Va = 0. It does not seem possible to use the

normal algorithm of substitution followed by elimination of the auxiliary superfield in this case.

This inability to use the standard procedure in superspace is a hint as to why constructing models

with superspin greater than 3
2 is so hard. Although the standard procedure does not work, it is

possible to show that D
α̇
Va ∝ χα, both of these quantities will vanish on-shell, so this is not a

contradictory statement. To prove this proportionality, first contract D
α̇

on (4.46) and use the

following identities:

D
2
Dβ [Dα, Dα̇]V a = 2iD

2
Dα∂(α

α̇Vβ)α̇ , (4.48)

D
α̇
ΠT

1/2Va = − i
8D

2
Dδ∂(α

β̇Vδ)β̇ = − 1
16D

2
Dβ [Dα, Dα̇]V a , (4.49)

to arrive at:

+ 1
8D

2
Dβ [Dα, Dα̇]V a + 3

4D
2
DαU −m2D

α̇
Va = 0 . (4.50)

Substituting the first two terms with (4.47) leads to:

γχα +D
α̇
Va = 0 . (4.51)

Substituting for U in (4.47) by plugging (4.51) back in yields:

+ 1
8D

2
Dα[Dβ , Dβ̇ ]V b − 3

4
1
γD

2
Dα[DβD

β̇ − γ
γ∗D

β̇
Dβ ]Vb +m2γχα = 0 . (4.52)
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This means that χα will vanish if γ is real and γ = 6. Equation (4.51) implies that Va is irreducible

when χα vanishes. This means that ΠT
3/2Va = Va and the Klein-Gordon equation is obtained from

(4.46). The full action is:

SY =3/2[Va, χα] =
∫
d8z

{
V a (−ΠT

1/2 + 1
2ΠT

3/2)Va + 1
2U [Dα, Dα̇]V a + 3

2U2

− 1
2m

2V aVa

}
+ 3m2

∫
d6zχαχα + 3m2

∫
d6z̄χ̄α̇χ̄

α̇) . (4.53)

This result is remarkable for three reasons. First, this action is a completely new result. It has

never appeared in the literature. Second, the existence of this action gives more support to the

idea that it is possible to take the kinetic terms for a known massless theory and simply add mass

terms to obtain the massive theory. This had only recently been seen for old-minimal and until now

had not been corroborated for new-minimal. This insight will guide the construction of the higher

superspin massive actions. Third, by reversing the dimensional reduction procedure, it is possible

to perform dimensional oxidation and create a new massless five-dimensional theory. This theory

will be dual to the theory that is related to old-minimal. Instead of containing a five-dimensional

gauge 1-form, it will contain a five-dimensional gauge 2-form. The dimensional oxidation will be

discussed in section 5.3.2.

Massive Extension of “New”-New-Minimal Supergravity

With the success of writing massive versions of old and new minimal it is only natural to look

for a massive extension of the “new”-new-minimal theory first described in [5]. This theory has

the same superfield content as new-minimal. The distinction between the two occurs in the gauge

transformation of the compensator:

δU = i
12 (DαD

2
Lα −Dα̇D

2L
α̇
) . (4.54)

The action for “new”-new-minimal linearized supergravity is:

Sν2−Min[Va, U ] =
∫
d8z

{
V a ( 1

2ΠT
3/2 + 1

3ΠL
1/2)Va + U∂aV

a + 3
2U

2
}

. (4.55)
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As in the case of new-minimal, a chiral spinor superfield potential is used:

U = iDαλα − iDα̇λ̄
α̇ , (4.56)

which allows the following mass terms to be added to the action:

Sm[Va, λα] = − 1
2m

2

∫
d8zV aVa + 1

2δm
2

∫
d6zλαλα + 1

2δ
∗m2

∫
d6z̄λ̄α̇λ̄

α̇ . (4.57)

The equations of motion are:

δ

δV a

(
Sν2−Min[Va, U ] + Sm[Va, λα]

)
= 2 ( 1

2ΠT
3/2 + 1

3ΠL
1/2)Va − ∂aU −m2Va = 0 , (4.58)

δ

δλα

(
Sν2−Min[Va, U ] + Sm[Va, λα]

)
= + i

4D
2
Dα∂bV

b + 3
4 iD

2
DαU + δm2λα = 0 . (4.59)

It is possible to derive an identity between λα and D
α̇
Va as in the new-minimal case. This can be

proven by using the identity:

D
α̇
ΠL

1/2Va = i
8D

2
Dγ∂bV

b , (4.60)

in the contraction of D
α̇

on (4.58). This leads to:

− 1
3δm

2λα −m2D
α̇
Va = 0 , (4.61)

which means that if λα vanishes, Va is irreducible. Substituting this result into (4.59) yields:

+ i
4D

2
Dα∂bV

b + 1
δ

9
4D

2
Dα(DβD

β̇
+ δ

δ∗D
β̇
Dβ)Vb + δm2λα = 0 . (4.62)

Thus, if δ = 18, λα vanishes and the full action is:

SY =3/2[Va, λα] =
∫
d8z

{
V a ( 1

2ΠT
3/2 + 1

3ΠL
1/2)Va + U∂aV

a + 3
2U

2

− 1
2m

2V aVa

}
+ 9m2

∫
d6zλαλα + 9m2

∫
d6z̄λ̄α̇λ̄

α̇ . (4.63)

This action is a new result and will be oxidized to produce a five-dimensional massless action in

the next chapter.

This concludes the discussion of massive half-integer superspin models. Three new superspin-

3
2 models have been constructed. The action (4.29) corresponds to a gauge fixed massless theory
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when m = 0 and also contains a real scalar auxiliary superfield. This theory stands in contrast

to the original two theories published in [5], which have real pseudo scalar superfields. The two

actions (4.53) and (4.63) represent massive extensions of linearized supergravity theories. When

m = 0 these theories correspond to non-gauge fixed massless theories. This distinction makes

these theories more interesting phenomenologically, since they can be related to five-dimensional

massless theories.

This section shows that it is possible to write massive extensions of massless theories in

superspace. There are three subtleties that complicate the construction of theories with superspin

greater than 3
2 . The first subtlety is in the choice of the potential of the compensating superfield

of the massless theory, e.g. Σ= − 1
4D

2
P . In higher superspin theories the choice of potential is

not always obvious. Second, direct substitution of the auxiliary superfield equation of motion did

not work in the final two examples. This makes the procedure for solving the equations of motion

more of an art than a algorithm. Third, the number of auxiliary fields in non-supersymmetric

theories is not equal between massless and massive theories with spin higher than 2. This means

that for theories with superspin greater than 3
2 , new auxiliary multiplets must be introduced. The

considerations in this section shed no light on this problem. These three points make it extremely

difficult to construct higher superspin theories. I have attempted to construct a superspin- 5
2 theory

using the longitudinal formulation of massless 5
2 . I used a spinor potential for the longitudinal

compensator. It seems that this spinor superfield potential must be coupled through a Dirac mass

term, i.e. mψαυα, to an auxiliary spinor superfield. It seems that this auxiliary superfield must

be further coupled to a chiral auxiliary superfield. I also attempted to construct a massless five-

dimensional theory that could be reduced to four dimensions superspin- 5
2 , hoping to use gauge

invariance as a guide. In both of these attempts, the proliferation of superfields and complication

of the equations of motion have proven to be an insurmountable challenge for publication in one

graduate career.
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4.2 Massive Integer Superspin Actions

Massive integer superspin models have spinors as the highest spin component fields. This means

that the superfields that are used to describe these models are also spinor valued. The equations

of motion associated with spinor superfields are relatively complicated compared to their bosonic

counterparts. It seems that there are some subspaces in spinor valued superfield equations that

are not as intuitive. This point will be discussed at the end of this section when a new version of

superspin-1 is presented. This section first reviews the massive gravitino or Rarita-Schwinger field

in order to show that the method of auxiliary fields also works for spinors. After this brief review,

the known superspin-1 model is presented and a new version is derived.

4.2.1 Massive Gravitino

A massive spin- 3
2 representation is described with the irreducible fermion field Ψαβα̇. This field is

symmetric in αβ, so the functional variation is:

δΨαβα̇(x)
δΨγδβ̇(y)

= 1
2δ(γ

αδδ)
βδβ̇

α̇δ4(x− y) . (4.64)

For higher spin fermions, the massive representations are governed by the Rarita-Schwinger equa-

tion and vanishing divergence:

− i
2∂(β

β̇Ψα)α̇β̇ +mΨαβα̇ = 0 , ∂aΨαβα̇ = 0 . (4.65)

An action containing only Ψaβ is insufficient to produce these equations and an auxiliary spinor

field must be introduced, χα. The general action is:

S[Ψaβ , χα] =
∫
d4x

{
− iΨaγ∂γ

γ̇Ψaγ̇ + 1
2mΨαβγ̇Ψαβγ̇ + 1

2mΨα̇β̇γΨ
α̇β̇γ

+Ψαβγ̇∂αγ̇χβ + Ψα̇β̇γ∂
α̇γχ̄β̇ + αiχα∂aχ̄

α̇ + βmχαχα + β∗mχ̄α̇χ̄
α̇
}

, (4.66)

where α and β are respectively real and complex coefficients. The coefficients on the first three

terms are fixed to produce (4.65) when χα = 0, and the coefficient of the fourth and fifth terms

has been absorbed into the normalization of χα. The equations of motion are:

δ

δΨaβ
S[Ψaβ , χα] = − i

2∂(β
β̇Ψα)α̇β̇ +mΨαβα̇ + 1

2∂α̇(αχβ) = 0 , (4.67)
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δ

δχα
S[Ψaβ , χα] = −∂bΨbα + iα∂aχ̄

α̇ + 2βmχα = 0 . (4.68)

After plugging (4.68) into the divergence of (4.67), χα can be set to zero if α = 3 and β = −3.

When χα = 0, Ψaβ has no divergence and the constraints (4.65) are satisfied. The final action

takes the form:

SRarita−Schwinger =
∫
d4x

{
− iΨαβα̇∂α

γ̇Ψβα̇γ̇ + 1
2mΨαβγ̇Ψαβγ̇ + 1

2mΨα̇β̇γΨ
α̇β̇γ

+Ψαβγ̇∂αγ̇χβ + Ψα̇β̇γ∂
α̇γχ̄β̇ − 3iχα∂aχ̄

α̇ + 3mχαχα + 3mχ̄α̇χ̄
α̇
}

. (4.69)

4.2.2 Superspin-1 Actions

In this section, the known superspin-1 action is presented and analyzed. A new version is then

derived that uses a real scalar auxiliary superfield instead of the chiral scalar auxiliary superfield.

The theory of [6] is described by a physical spinor superfield Vα and a chiral auxiliary superfield

Φ. The following equations are required for Vα to be an irreducible superspin-1 representation:

D
2
Vα = 0 DαVα = 0 i∂aV

α̇
+mVα = 0 (4.70)

The action from [6] is:

SY=1[Vα,Φ] =
∫
d8z

{
− V αDα̇DαV

α̇
+m(V αVα + V α̇V

α̇
) + γV αD

2
Vα

+γ∗V α̇D
2V

α̇ − 1
2ΦΦ− 1

2ΦDαVα − 1
2ΦDα̇V

α̇
}
− m

4

∫
d6zΦ2 − m

4

∫
d6z̄Φ

2
, (4.71)

where γ is a complex coefficient. The equations of motion are:

δ

δV α

(
SY=1[Vα,Φ]

)
= −Dα̇DαV

α̇
+ 2mVα + 2γD

2
Vα + 1

2DαΦ = 0 , (4.72)

δ

δΦ

(
SY=1[Vα,Φ]

)
= +1

8D
2
DαVα + 1

8D
2
Φ− m

2 Φ = 0 . (4.73)

The first constraint in (4.70) follows directly from (4.72) independent of how Φ behaves. Contract-

ing the operator 1
16D

2
Dα on (4.72) and substituting (4.73) proves that Φ is auxiliary:

0 = 1
4D

2
[− 1

8D
2Φ + m

2 Φ]− m
8 D

2
Φ + m2

2 Φ + 1
2 Φ = +m2

2 Φ . (4.74)

58



This means that D
2
DαVα = 0. The second constraint in (4.70) is obtained by contracting Dα on

(4.72):

0 = −DαDα̇DαV
α̇

+ 2mDαVα = +1
2{D2, Dα̇}V

α̇
+ 2mDαVα = +2mDαVα . (4.75)

Now the equation of motion (4.72) becomes:

+2i∂aV
α̇

+ 2mVα = 0 , (4.76)

which is the final constraint in (4.70). Thus, the action (4.71) describes a superspin-1 irreducible

representation of the Poincaré superalgebra. When m = 0, this action is the massless gravitino

multiplet that uses a chiral compensating superfield[40]. There is another version of the massless

gravitino multiplet that uses a real scalar compensating superfield, H[41, 42, 43]. It is natural to

ask if this theory has a massive extension. The kinetic terms are given by:

S
‖
(1,

3
2 )

[Vα,H] =
∫
d8z

{
DαV

α̇
Dα̇Vα − 1

4D
α̇
V αDα̇Vα − 1

4DαV α̇D
αV

α̇

− 1
16HD

αD
2
DαH − 1

4D
2
DαHVα − 1

4D
2Dα̇HV

α̇
}

, (4.77)

and the only possible mass terms are:

Sm[Vα,H] =
∫
d8z

{
mV αVα +mV α̇V

α̇
+ αm2H2 +mH

(
βDαVα + β∗Dα̇V

α̇
)}

. (4.78)

α and β are respectively real and imaginary coefficients, and the coefficient on the first and second

terms is fixed according to (4.70). The equations of motion are:

δ

δV α

(
S‖

(1,
3
2 )

[Vα,H] + Sm[Vα,H]
)

= −Dα̇DαV
α̇

+ 1
2D

2
Vα + 2mVα

− 1
4D

2
DαH − βmDαH = 0 , (4.79)

δ

δH

(
S‖

(1,
3
2 )

[Vα,H] + Sm[Vα,H]
)

= − 1
8D

αD
2
DαH + 1

4D
αD

2
Vα + 1

4Dα̇D
2V

α̇

+βmDαVα + β∗mDα̇V
α̇ + 2αm2H = 0 . (4.80)
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This system of equations is considerably more complicated than any of the previous examples.

One reason for this added complexity is the massive coupling between H and Vα, i.e. the terms

proportional to β. A few quick observations can simplify the analysis. First, multiplying (4.79)

and (4.80) by D
2

yields:

D
2
Vα = β

2D
2
DαH , (4.81)

D
2
DαVα = −2α

βmD
2
H . (4.82)

Plugging these relations into the contraction of Dα on (4.79) leads to:

mDαVα = − 1
8 (β + β∗ − 1)DαD

2
DαH + β

2

(
1 +

α

|β|2
)
mD2H . (4.83)

Substituting these three results into (4.80) gives:

0 = − 1
8 (1− β − β∗)2DαD

2
DαH + 1

2m
(
1 +

α

|β|2
)
[β2D2 + (β∗)2D

2
]H + 2αm2H (4.84)

proving that H is auxiliary if β + β∗ = 1 and α = −|β|2. The final action takes the form:

SY =1[Vα,H] =
∫
d8z

{
DαV

α̇
Dα̇Vα + 1

4V
αD

2
Vα + 1

4V α̇D
2V

α̇ − 1
4V

αD
2
DαH − 1

4V α̇D
2D

α̇
H

− 1
16HD

αD
2
DαH +mV αVα +mV α̇V

α̇ − |β|2m2H2 +mH
(
βDαVα + β∗Dα̇V

α̇
)}

, (4.85)

where β + β∗ = 1. This result is interesting because the imaginary part of β has not been

determined. Also, the superfield redefinition Vα → Vα + δ
mD

2
Vα can be used to change the

coefficients of the second through fifth terms. Thus, the general theory is parameterized by the

imaginary part of β and the complex coefficient of the superfield redefinition, δ.

4.3 Massive Discussion

This concludes the chapter on higher superspin free massive irreducible representations of the

Poincaré superalgebra. Four new actions have been presented. The action (4.85) is a new version

of superspin-1 which has Vα as the physical superfield. This model is new because the chiral scalar

compensator, Φ, has been replaced with a real scalar compensator, H. The model is parameterized
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by one real coefficient and one complex coefficient. Three new versions of the original superspin- 3
2

models presented in [5] were found. The first is given in (4.29). This model is different than the

models of [5] because it contains a real scalar auxiliary superfield as opposed to a real pseudo

scalar superfield. The two new theories that are the most interesting are the massive extensions

of new-minimal and “new”-new-minimal supergravity. The massive extension of new-minimal

supergravity is given in (4.53) and contains a chiral spinor auxiliary superfield. The “new”-new-

minimal massive extension is given in (4.63) and also contains a chiral spinor auxiliary superfield.

The difference between these two theories lies solely in the choice of superprojectors used in the

kinetic terms for Va. Interestingly, the superspin- 3
2 theories contain no continuous parameters

unlike the superspin-1 models.

The massive extensions of the supergravities or (2, 3/2) multiplets are interesting in the

sense that these theories can be related to massless theories in one dimension higher. The next

chapter is devoted to exploring this connection in light of the two new theories (4.53) and (4.63).

It will be shown that there are two new versions of linearized five-dimensional supergravity. These

two theories could have a profound affect on the phenomenology of extra dimensions.
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Chapter 5

Dimensional Reduction and Oxidation in N=1 Superspace

This chapter begins with a discussion of the geometric approach to gauge theory for non supersym-

metric theories, including gravity. Then, using the same general ideas, discusses super geometry.

Super geometry gives a natural interpretation of the superfield-strengths that are found in super-

symmetric gauge theories and supergravity. The differential geometry used in this introduction can

be used in any dimension and for any extension of supersymmetry. Therefore, the five-dimensional

superfield-strengths that will be found in the technical part of this chapter can be understood from

a super geometric point of view. For this reason it is necessary to have some understanding of how

to create gauge theories from differential geometry.

In non-supersymmetric particle physics it is easy to construct an action for a gauge theory.

The gauge group is chosen, a covariant derivative is constructed and kinetic terms are determined

using gauge invariance. In superspace this procedure is not as straightforward for two reasons.

First, there are more differential operators. The spacetime gauge covariant derivative may be easy

to understand, but how the spinor derivatives are made into gauge covariant objects is not obvious.

Second, although it may be relatively simple to construct linearized theories in superspace by

embedding component fields into superfields, the non-linear versions can not be easily constructed

in this fashion. A consistent method for producing actions for gauge theories comes from differential

geometry.

This chapter discusses the differential geometry of non-supersymmetric gauge theory and

gravity. Using the same methods, supersymmetric gauge theory and supergravity are then dis-

cussed. These methods give a general understanding of the superfield-strengths that will be de-

rived in the technical part of this chapter on five-dimensional linearized supergravity. In particular,

the new superfield-strengths associated with five dimensions will stand out. The new superfield-

strengths can be understood as originating from the fifth direction of the covariant vector derivative

∇5 and the extra covariant spinor derivative ∇−
α . The latter being necessary for supersymmetry

in five dimensions, since the spinors are four component complex objects, or Dirac spinors.
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This chapter is organized into three sections. The first section 5.1, discusses spacetime

geometry for non-Abelian gauge theory and gravity. The second section 5.2, works through su-

persymmetric non-Abelian theories and old-minimal supergravity. The third section 5.3, describes

the relation of the massive extensions of four-dimensional supergravities from chapter 4 to five-

dimensional supergravities. The five-dimensional theories related to new-minimal and “New”-new-

minimal supergravity are new results and may have interesting implications for phenomenology.

5.1 Spacetime Geometry

This section is a review of spacetime geometry. Non-Abelian gauge theory and gravity are dis-

cussed. In general, the algebra of some set of linearly independent differential operators is consid-

ered. A good understanding of spacetime geometry is necessary in order to work with superspace

geometry, which is significantly more complicated.

5.1.1 Non-Abelian Gauge Theory

The general covariant derivative is a combination of the normal partial derivative and a gauge

transformation:

∇a = ∂a +Ai
at

i , (5.1)

where Aa is the well known vector potential. ti are the generators of the gauge group, and

the coupling constant has been absorbed into the definition of Aa for now. Information about

geometry comes from examining parallel transport about a closed curve. This gets mapped into the

commutator of two covariant derivatives [∇a,∇b]. If∇a and ti are the only operators in this theory,

then this commutator must be proportional to a covariant derivative or a gauge transformation:

[∇a,∇b] = Tab
c∇c + Fab

iti , (5.2)

Tab
c is the torsion and Fab

i is the field-strength. Expanding the covariant derivative using (5.1)

shows that the torsion is zero and the field-strength can be expressed in terms of the vector
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potential:

Fab
k = ∂[aA

k
b] +Ai

aA
j
bf

ijk , (5.3)

where the structure constants are defined by [ti, tj ] = f ijktk. Actions are constructed by squaring

the field-strengths and using the covariant derivative in place of the flat derivative:

SY M =
∫
d4x

{
− 1

4Fab
iF abi − i

2ψ
α∇aψ̄

α̇ +∇aφ∇aφ̄
}

. (5.4)

The covariant derivatives, under commutation, satisfy a lie algebra and therefore obey the Jacobi

identity:

[∇a, [∇b,∇c]] + [∇b, [∇c,∇a]] + [∇c, [∇a,∇b]] = 0 . (5.5)

The Jacobi identity yields the Bianchi identity for the field-strength:

[∇a, F
i
bct

i] + [∇b, F
i
cat

i] + [∇c, F
i
abt

i] = 1
2∇[aFbc]

iti = 0 . (5.6)

Although the Bianchi identities play a small role in the understanding of non-supersymmetric

gauge theory, they will be in-disposable in superspace.

5.1.2 Gravity

Gravity is a more complicated gauge theory because the momentum and Lorentz rotation genera-

tors are gauged. Since translations occur in the curved spacetime and rotations occur in the tangent

space to the spacetime, the spacetime manifold and its tangent space must be distinguished. Ro-

man letters from the middle of the alphabet are reserved for the manifold and are called curved

indices. Roman letters from the beginning of the alphabet are reserved for the tangent space and

are called flat indices. To incorporate spinors and supersymmetry it is necessary to work in the

vierbein formalism, where the metric is replaced by the frame fields ea
m:

gmn(x) = em
a(x)ηaben

b(x) . (5.7)

The spacetime dependence of the frame fields will be suppressed throughout the rest of this docu-

ment. The flat(curved) metric to raise and lower flat(curved) indices. em
a is also used to convert
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between flat and curved tensors. Sticking to the analog of non-Abelian gauge theory, the covariant

derivative is a sum of a translation and Lorentz rotation:

∇a = ea
m∂m + 1

2ωab
cMc

b . (5.8)

Thus, the vierbein is the gauge field for the diffeomorphism group and the spin connection, ωab
c,

is the gauge field for the tangent space Lorentz rotations. Expanding the commutator of covariant

derivatives over these two generators leads to:

[∇a,∇b] = Tab
c∇c +Rabc

dMd
c , (5.9)

Tab
c is the torsion tensor and Rabc

d is the Riemann curvature tensor. So the curvature tensor is the

field-strength corresponding to gauging Lorentz transformations in the tangent space. Expanding

the covariant derivatives in the commutator yields expressions for the torsion and curvature in

terms of the potentials:

Tab
c = cab

c − ω[ab]
c , (5.10)

cab
c = e[a

m(∂meb]
n)en

c , (5.11)

Rab
ef = 1

2e[a
m(∂mωb]

ef )− 1
2cab

cωc
ef − 1

2ω[a
ecωb]c

f . (5.12)

Note that Ma
b only acts on flat indices and has the vector space representation: (Ma

b)c
d =

ηcaη
bd− δadδc

b. The anholonomity cabc is introduced to simplify the notation. Non-Abelian gauge

theory is only described by the gauge vector fields and gravity should only involve the metric or

vierbein. It is necessary to remove the spin connection so it does not become a propagating degree

of freedom. This can be accomplished by setting the torsion to zero. This constraint relates the

spin connection directly to derivatives of the vierbein. This can be proven by subtracting and

adding two cyclic permutations of (5.10):

0 = cabc − ω[ab]c − cbca + ω[bc]a + ccab − ω[ca]b ,

→ ωabc(e) = 1
2 (+cabc − cbca + ccab) . (5.13)
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Setting the torsion to zero is called a conventional constraint. Conventional constraints involve

removing redundant degrees of freedom from a geometry. Noting the mass dimension of the

curvature tensor, it can be used in an action:

SGrav−Matt =
∫
d4xe−1

{
ηabRacb

c(e)− i
2ψ

α∇aψ̄
α̇ +∇aφ∇aφ̄

}
. (5.14)

This action is good, but is not general enough to add gauge fields. This minimal coupling is not

correct since the gauge symmetry is local. The gauge symmetry should be added into the definition

of the covariant derivative from the beginning:

∇a = ea
m∂m + 1

2ωab
cMb

c +Ai
at

i . (5.15)

The commutator becomes:

[∇a,∇b] = Tab
c∇c +Rabc

dMd
c + F i

abt
i . (5.16)

The addition of the non-Abelian gauge group does not affect the torsion and curvature, since the

generators, ti have no action on the other gravity potentials. The field-strength is:

Fab
i = e[a

m∂mA
i
b] − cab

cAc
i +Aa

jAb
kf jki . (5.17)

So the coupling of gravity to Yang-Mills should take the form:

SG−Y M =
∫
d4xe−1gacgbdFab

iFcb
i (5.18)

A good review of these concepts is given in [4]. What is most important from this derivation is

the fact that the torsion constraint must be imposed in order to remove the independence of the

spin connection. Constraints are fundamental to the geometric description of gauge theories. In

superspace, constraints are used to distinguish between different types of supergravities. Thus, the

difference between old and new minimal supergravity can be stated concisely by listing both sets

of constraints. In the literature the constraints are often the only description of the supergravity

that is given, making these papers inaccessible to those who do not understand the geometric

description of gauge theories.
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5.2 Superspace Geometry

The same procedure can be followed for constructing geometries in superspace. In superspace

things are more complicated. There are three covariant derivatives ∇a, ∇α, ∇α̇. This leads to

three times as many potentials as in normal spacetime. The potentials are also superfields, which

means that these super geometries contain a large amount of field content. The fundamental role

of constraints to strip away these excess degrees of freedom is a major tool in constructing super

geometries.

There are two ways of looking at super geometry. They are both consistent, and depending

on the problem they both can give insight into the solution of the geometry. The first perspective

follows the previous section. Commutators of covariant derivatives are expanded in terms of the

potentials and the superfield-strengths are analyze. The second perspective involves analyzing

the superspace Bianchi identities. This procedure gives valid information after constraints have

been set because the identities are no longer algebraic identities. It turns out that in superspace,

the Bianchi identities of constrained algebras can not be solved using the potentials defined in

the covariant derivatives. The potentials must be replaced by derivatives of prepotentials. This

singular property makes super geometry a rich and complicated mathematical structure.

5.2.1 Supersymmetric Non-Abelian Gauge Theory

To construct the non-Abelian supersymmetric gauge theory, all supersymmetric covariant deriva-

tives are extended to gauge covariant derivatives:

∇α = Dα − iΓi
αt

i , (5.19)

∇α̇ = Dα̇ − iΓ
i

α̇t
i , (5.20)

∇a = ∂a − iΓi
at

i , (5.21)

here the conjugate spinor derivative is consistent because (ti)∗ = −ti. The super vector superfield

gauge potential Γi
A has been used so that there is no confusion with the usual gauge potential

Ai
a. The super vector notation means: A = { a, α, α̇ }. This notation is extremely convenient.
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Supervector notation does not specify the spinor representation and, therefore, can be applied to

any dimension. In super vector notation the covariant derivatives look like the non-supersymmetric

covariant derivatives:

∇A = DA − iΓi
At

i , (5.22)

with Da := ∂a and Γi
α̇ = Γ

i

α̇. In order to talk about super Lie algebras, it is necessary to define

graded symmetrization of two super vectors objects:

X[AYB) = XAYB − (−)ε(A)ε(B)XBYA , (5.23)

where ε(A) = 0 for bosons and ε(A) = 1 for fermions. For spinor indices this is symmetric

and for vector-vector or vector-spinor this is antisymmetric. In supervector notation, the graded

commutator of two covariant derivatives is:

∇[A∇B) = [∇A,∇B} = TAB
C∇C − iF i

ABt
i . (5.24)

In the spacetime non-Abelian gauge theory case, the torsion was identically zero, something dif-

ferent occurs in superspace. Plugging in the covariant derivatives and using the anholonimity for

the simple covariant derivatives:

[DA, DB} = CAB
CDC , (5.25)

leads to:

TAB
C = CAB

C , (5.26)

FAB = D[AΓB) − iΓ[AΓB) − CAB
CΓC , (5.27)

where the simplifying notation FAB = F i
ABt

i and ΓA = Γi
At

i has been used. This result is not

so obvious and only looks simple because of the notation. In particular, super non-Abelian gauge

theory picks up the torsion of simple superspace. Also, the field-strength looks strangely similar

to the spacetime non-Abelian field-strength coupled to gravity (5.17).

In the mathematical introduction, see (2.102), it was shown that a vector field can be

modeled with a real scalar superfield. It seems plausible to look for a consistent way to constrain

68



the superfield-strength to reduce the degrees of freedom contained in ΓA, to some real scalar

superfield. Since the anholonimity has one nonzero entry Cαα̇
c = −2i(σc)αα̇ the Fαα̇ piece in

(5.27) will contain Γa algebraically. Setting the conventional constraint Fαβ̇ = 0 allows for Γa to

be solved in terms of the spinor superpotential:

0 = Fαβ̇ = DαΓβ̇ +Dβ̇Γα − iΓαΓβ̇ − iΓβ̇Γα + 2iΓαβ̇ . (5.28)

This constraint establishes an algebraic relation between Γa and Γα. The same situation occurred

in spacetime gravity when the spin connection was written in terms of the frame fields. This is a

conventional constraint and removes a vector superfield worth of degrees of freedom. The algebra

can be constrained even more by requiring that the notion of a chiral superfield still makes sense on

arbitrary representations of the gauge group. Constraints of this nature are called representation

preserving constraints:

∇αΦ = 0 ⇒ [∇α,∇β}Φ = FαβΦ = 0 . (5.29)

This constraint leads to:

0 = Fαβ = D(αΓβ) − iΓ(αΓβ) , (5.30)

which can be solved if Γα = Γi
αt

i = ie−ΩDαe
Ω. Ω is shorthand for Ωiti. The proof is a little tricky

and it should be noted that Dα only acts on Ωi:

Fαβ = iD(α

[
e−ΩDβ)e

Ω
]

+ ie−Ω
[
D(αe

Ω
]
e−Ω

[
Dβ)e

Ω
]

= i
[
D(αe

−Ω
][
Dβ)e

Ω
]
− ie−ΩeΩ

[
D(αe

−Ω
][
Dβ)e

Ω
]

= 0 . (5.31)

This is solution that represents all of the super potentials in terms of the super pre-potential Ω,

which is a complex scalar superfield. This means that this theory still contains one extra vector

field which can be removed by further constraining the pre-potential to be either real or imaginary.

Taking another look at the form of Γa from (5.28) and using the solution for Γα reveals:

−2iΓa = DαΓβ̇ +Dβ̇Γα − iΓαΓβ̇ − iΓβ̇Γα
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= ieΩDαDα̇e
−Ω + ie−ΩDα(eΩeΩ)Dα̇e

−Ω + c.c. (5.32)

Note that (Γα)∗ = −Γ
i

α̇t
i = −Γα̇, and (Ω)∗ = −Ω

i
ti = −Ω. From here it is obvious that the gauge

choice Ω = −Ω is a pure gauge configuration. No such simplification occurs for the gauge choice

Ω = Ω. This gauge choice means that the pre-potential is real, Ωj = Ω
j

= V j .

To recapitulate, two superfield-strengths have been constrained to vanish. Fa = 0 is a

conventional constraint. This constraint relates Γa to Γα. Fαβ = 0 is a representation preserving

constraint, allowing the definition of gauge covariant chiral superfields. Removing this superfield-

strength allows the connection Γi
α to be written in terms of a complex superfield Ωi, the pre-

potential. Finally, the real part of Ωi represents a pure gauge configuration. This allows the gauge

fixing such that Ωi is purely imaginary, leaving only one real scalar gauge pre-potential superfield

V . At this point, the values of the connections can be substituted into the remaining superfield-

strengths and the algebra can be completely determine. Instead of completing this analysis, it is

more instructive to look at this algebra from the perspective of the Bianchi identities to see how

the superfield-strengths are determined.

Once the constraints Fαβ = Fa = 0 have been set, the Bianchi identities are no longer

algebraic identities. They imply constraints on the remaining superfield-strengths. The super

Bianchi identities are:

(−)AC [[∇A,∇B},∇C}+ (−)BA[[∇B ,∇C},∇A}+ (−)CB [[∇C ,∇A},∇B} = 0 , (5.33)

and once constraints have been set it is important that these equations can be satisfied without

setting all superfield-strengths to zero. The Bianchi identity with undotted spinor indices vanishes

identically. Taking two undotted and one dotted index gives:

0 = [[∇α,∇β},∇γ̇}+ [[∇γ̇ ,∇(α},∇β)} = 0− 2i[∇γ̇(β ,∇α)} , (5.34)

⇒ F(αβ)γ̇ = 0 . (5.35)

So only the part antisymmetric in αβ of Faβ remains. This part of Faβ is usually written as:

Faβ = εαβiW α̇ . (5.36)
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The Bianchi identity with two undotted and one vector index leads to:

0 = [[∇α,∇β},∇c}+ [[∇c,∇(α},∇β)} = 0− i[W γ̇ , εγ(β∇α)} = +iεγ(β∇α)W γ̇ , (5.37)

which means that Wα must be a gauge covariant chiral superfield. This is the same type of

superfield-strength that was discussed after (2.102) for supersymmetric Maxwell theory. Finally,

the Bianchi identity with one of each type of index yields:

2iFαβ̇c − iεγ̇β̇∇αWγ − iεγα∇β̇W γ̇ = 0 . (5.38)

Tracing this equation on all spinor indices and recalling the symmetry of the vector-vector superfield-

strength leads to:

∇αWα −∇α̇W
α̇

= 0 , (5.39)

which then implies:

Fab = − 1
4εαβ∇(α̇W β̇) −

1
4εα̇β̇∇(αWβ) . (5.40)

Thus, the two constraints Fαβ = 0 and Fa = 0, have completely constrained all superfield-strengths

in terms of Wα. Further, the superfield-strength Wα can be solved in terms of the prepotential

V i. The full algebra can now be written:

[∇α,∇β} = 0 , [∇α,∇α̇} = −2i∇a ,

[∇a,∇β} = εαβW α̇ , [∇a,∇b} = −iFab . (5.41)

If too many constraints had been set, this process would have led to equations of motion or all

superfield-strengths would have vanished. If too few constraints had been set, there would have

been more then one independent superfield-strength. Outstanding problems in higher dimensional

supergravity revolve around finding the appropriate constraints and their solutions in terms of

prepotentials.

Before examining the U(1) case, the general super Yang-Mills action can be written. By

dimensional analysis the only possibility is WαWα under a chiral measure. Coupling to supersym-

metric covariantly chiral matter Φ± leads to:

SY M =
∫
d6zWαWα +

∫
d8z[Φ+Φ+ + Φ−Φ−] +

∫
d6zW (Φ+,Φ−) + c.c. . (5.42)
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The function W (Φ+,Φ−) is the famous superpotential that determines all of the wonderful phases

in SQCD. It is protected from perturbative corrections since it is under the chiral measure. Finally,

the component action is obtained by replacing the measures with the simple superspace density

projector using covariant derivatives: d4θ = 1
16∇2∇2

and d2θ = − 1
4∇2 taking care to use the

algebra (5.41) when pushing derivatives around.

After linearizing and specializing to U(1) many of the results are simpler. First, the solution

for Γα simplifies to:

Γαt = ie−V tDαe
V t = iDαV t . (5.43)

Plugging this into the solution for Γa gives:

−2iΓa = −i[Dα, Dα̇]V , (5.44)

and the non-zero superfield-strengths can be calculated easily:

Faβ = ∂aΓβ −DαΓa = − 1
2εαβD

2Dα̇V . (5.45)

So Wα ∼ iD
2
DαV which is what was derived chapter 2. Plugging this solution into the definitions

of the covariant derivatives yields:

∇α = Dα +DαV t , ∇α̇ = Dα̇ −Dα̇V t ,

∇a = ∂a − i
2 [Dα, Dα̇]V t . (5.46)

These derivatives satisfy the algebra (5.41). The component action for the kinetic term is:

∫
d6zWαWα = − 1

4

∫
d4x(2∇2W β |Wβ |+ 1

2∇(αWβ)|∇(αW β)|+∇αWα|∇βWβ |) . (5.47)

Two observations are necessary in order to define components. First, the lowest component of Fab

is the usual component field-strength and equation (5.40) implies:

1
2∇(αWβ)| = εα̇β̇Fab| =: −2fαβ . (5.48)

Second, taking ∇β on (5.39) gives the relation:

− 1
2∇2Wβ + 2i∇βα̇W

α̇
= 0 (5.49)
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So the component ∇2Wα| is just a covariant derivative on the lowest component of W α̇| =: 1
2 λ̄α̇,

which is called the gaugino. The auxiliary field is defined by DαWα| = d. With these component

definitions, the final form of the component action is:

=
∫
d4x(− i

2λ
β∇bλ

β̇ − 1
2F

abFab + d2) , (5.50)

where the following identities have been used for the component field-strength:

− 1
2F

abFab = fαβfαβ + f̄ α̇β̇ f̄α̇β̇∫
d4xfαβfαβ =

∫
d4xf̄ α̇β̇ f̄α̇β̇ (5.51)

In this section, supersymmetric non-Abelian gauge theory has been constructed from a

geometric standpoint. The main point is that there are two ways to look at the geometry. The

first is based on the potentials. Superfield-strengths are constrained and the potentials are solved

in terms of prepotentials. The second view is based on the consistency of the Bianchi identities.

The constraints remove entire superfield-strengths and set non-trivial differential constraints on the

non-zero superfield-strengths. All of this structure weighs heavily on the form of the component

action, since the algebra of covariant derivatives is used when projecting the superfield action

into components. In supergravity, the relationship between the algebra and component action is

even more intertwined. This is because the supergravity density projector is not just the simple

replacement of the measure with covariant derivatives. But in normal gravity the measure is

replaced by d4x
√
g so a similar complication is to be expected in supergravity.

5.2.2 Old-Minimal Supergravity

In this section, old-minimal supergravity is constructed following the same reasoning as in the

non-Abelian gauge theory case. This time the Lorentz generators are gauged along with super

diffeomorphisms. The covariant derivatives take the form:

∇A = EA
MDM + 1

2ωAγ
δMδ

γ = EA + ωA . (5.52)

The commutator is expanded using the diffeomorphism and Lorentz rotation generators:

[∇A,∇B} = TAB
C∇C + 1

2RABγ
δMδ

γ . (5.53)
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The torsion and curvatures can be written in terms of the potentials. The torsion is all that is

necessary to set all of the constraints:

TAB
C = CAB

C − ω[AB)
C ,

[EA, EB} = CAB
CEC , CAB

C = E[A(EB)
M )EM

C , (5.54)

The super vector notation is deceiving when used with the super spin connection. As can be

seen in (5.52), ωAB
C has the same index structure of Mαβ on the last two indices, not the full

super vector structure. In ordinary gravity a constraint was set to remove the spin connection as

a degree of freedom. The super spin connection can also be completely removed. The following

torsion contain the spin connection algebraically:

Tαβ
γ = Cαβ

γ − ω(αβ)
γ ,

Tαb
γ = Cαb

γ + ωbα
γ ,

Tαβ̇
γ̇ = Cαβ̇

γ̇ − ωαβ̇
γ̇ ,

Tαb
c = Cαb

c − ωαb
c ,

T[ab]
c = C[ab]

c − ω[ab]
c . (5.55)

Setting these torsion to zero completely determines the super spin connection in terms of the super

anholonomity. The algebra must be constrained further, because there are still two many degrees

of freedom in the frame superfields, EA. In particular, there are two many fields that could be

component vierbeins. A closer look at the super anholonomity equation:

[Eα, Eα̇} = Cαα̇
βEβ + Cαα̇

β̇Eβ̇ + Cαα̇
bEb , (5.56)

reveals that Eb can be solved for in terms of Eα if Cαα̇
d is a constant. The only Lorentz covariant

constant with this index structure is δαβδα̇
β̇ . Thus, the final conventional constraint is:

Tαα̇
b = −2iδαβδα̇

β̇ = Cαα̇
b . (5.57)

The constraints (5.55)=0 and (5.57) are the conventional constraints of supergravity. They leave

only the fields EM
α as unconstrained degrees of freedom.
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The final step is to impose the representation preserving constraints. The requirement that

covariantly chiral superfields exist means:

∇αΦ = 0 , 0 = [∇α,∇β}Φ = Tαβ
c∇cΦ + Tαβ

γ̇∇γ̇Φ ,

⇒ Tαβ
c = 0 , Tαβ

γ̇ = 0 . (5.58)

With these last two constraints the spin-spin anholonomity equation reads:

[Eα, Eβ} = Cαβ
γEγ (5.59)

This means that Eα form a closed set under graded commutation. For this reason, a result from

differential geometry, Frobenius’s theorem, can be used to write the solution to this equation. If

there exists some set of q vector fields Vi on some p-dimensional manifold such that [Vi, Vj ] =

Cij
kVk, then Frobenius’s theorem allows these vector fields to be written in terms of the flat

derivative ∂m:

Vi = Ai
jeU∂je

−U U = Um∂m (5.60)

This can be applied directly to superspace equations. The manifold is the supermanifold with

partial derivatives ∂µ and ∂m, and the vector fields are Eα. So q runs over the spinor index and p

runs over the full set of indices. Thus, Frobenius’s theorem implies:

Eα = Aα
µeUDµe

−U , U = Um∂m + UµDµ + U µ̇Dµ̇ (5.61)

This solution looks much like the non-Abelian gauge theory solution found in the previous section.

Here U is a super diffeomorphism gauge transformation like Ω for non-Abelian gauge theory. Aα
µ

must have non-zero determinant and is usually factored into a scalar Ψ and unimodular matrix

Nα
µ:

Eα = ΨNα
µeUDµe

−U , (5.62)

It turns out there is a gauge where Nα
µ = δα

µ, and U α̇ = U α̇ = 0, leaving only Ψ and Ua.

These superfields are the prepotentials and represent the pre-geometry of supergravity. Finding

this pre-geometry is one of the main problems in higher dimensional supergravity.
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This derivation actually generates conformal supergravity. To get Einstein supergravity, the

algebra must be constrained further:

Tαb
c = 0 . (5.63)

This entire super torsion was not previously removed, just Tα(β
γ̇

γ)γ̇ = 0. This final constraint

effectively replaces the scalar Ψ with a covariantly chiral scalar ϕ. Thus, the pre-geometry of

Einstein supergravity is represented by a vector superfield and a chiral scalar superfield. The

off-shell structure of supergravity is completely determined by this pre-geometry.

With the full set of constraints the algebra becomes:

{∇α,∇α̇} = −2i∇a , {∇α,∇β} = −4RMαβ ,

[∇α,∇b] = iεαβ(R∇β̇ +Gγ
β̇∇γ −∇γGδ

β̇Mγδ + 2W β̇
γ̇δ̇Mγ̇δ̇) + i∇β̇RMαβ ,

[∇a,∇b] = εα̇β̇

(
− iGβ

γ̇∇αγ̇ + 1
2∇αR∇β + 1

2∇αGβ
γ̇∇γ̇ +Wαβ

γ∇γ ,

+ 1
4 (∇2 − 8R)RMαβ +∇αWβ

γδMγδ − 1
2∇α∇

γ̇
Dβ

δ̇Mγ̇δ̇

)
+ c.c. . (5.64)

The closure of this algebra under the Bianchi identities implies:

Ga = Ga , Wαβγ = 3!W(αβγ) ,

∇α̇R = 0 , ∇α̇Wαβγ = 0 ,

∇α̇
Ga = ∇αR ,

∇αWαβγ = i
2∇(α

α̇Gβ)α̇ , (5.65)

Since the entirety of the technical part of this chapter deals with linearized theory, it is instructive

to discuss the linearization of this algebra. Linearized supergravity is written in terms of the

vector superfield Ha and the chiral compensator σ and the flat covariant derivatives. These are

the linearized prepotentials in a particular gauge. The superfield-strengths that are used to write

the algebra can be written in terms of the prepotentials as:

R = − 1
4D

2
σ + i

6D
2
∂aHa ,
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Ga = i∂a(σ̄ − σ) + 1
8D

βD
2
DβHa − 1

24 [Dα, Dα̇][Dβ , Dβ̇ ]Hb + ∂a∂bH
b ,

Wαβγ = i
3!8D

2
∂(α

γ̇DβHγ)γ̇ , (5.66)

These equations solve the Bianchi identities. The supergravity action is simply the integration of

the super determinant of the frame superfields over the superspace:

∫
d8zE−1L . (5.67)

With L = 1, after some gauge fixing and other various field redefinitions this action can be written

in terms of the prepotentials as:

∫
d8z(ϕe−2iH ϕ̄)(1 · e2i

←−
H )Ê− 1

3 . (5.68)

In this expression H = Ha∂a and:

1 · e2i
←−
H = 1 + 2iHa←−∂ a + 1

2 (2i)2(Ha←−∂ aH
b)←−∂ b + · · · . (5.69)

When linearized this action becomes:

SSUGRA =
∫
d8z

{
1
8H

aDβD
2
DβHa − 3σσ̄ + 1

48 ([Dα, Dα̇]Ha)2

−(∂aH
a)2 + 2i(σ − σ̄)∂aH

a
}

(5.70)

The equations of motion with respect to Ha and σ are:

Ga = 0 , R = 0 . (5.71)

Using these equations of motion the final Bianchi identity becomes:

DαWαβγ = 0 (5.72)

This is the correct equation for propagating helicity-2 and helicity- 3
2 component fields. The rest

of this chapter is devoted to describing linearized supergravity in five dimensions using four-

dimensional N = 1 superspace. Many of the superfield-strengths and Bianchi identities encoun-

tered in the next sections will bare a striking resemblance to the four-dimensional objects discussed

in this section.
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5.3 Five-dimensional Supergravities

Consistent dimensional reductions from properly constrained five-dimensional superalgebras are

not known. A significant amount of information about higher dimensional theories can be gained

by working at the linearized level using four-dimensional covariant derivatives. In particular,

completely off-shell descriptions of higher dimensional supergravities are not known. Thus, writing

higher dimensional theories on the supersymmetric 3-brane, gives insight into the off-shell structure

of those theories. Further, theories that are written covariantly with respect to the full higher

dimensional supersymmetry or even Lorentz invariance can still be used for phenomenological

purposes (i.e. brane-world scenarios[11]).

Although this section deals with five-dimensional supersymmetric systems, five-dimensional

supersymmetry and five-dimensional Lorentz invariance will be discarded. That is, only the four-

dimensional subset of the five-dimensional supersymmetry and Lorentz invariance will remain

covariant. The analysis begins in section 5.3.1 with the dimensional reduction of the known five-

dimensional supergravity into a massive four-dimensional theory, which is shown to be the massive

extension of old-minimal supergravity. The final two chapters reverse the method of dimensional

reduction to obtain two new versions of five-dimensional supergravity. Obtaining higher dimen-

sional theories from lower dimensional theories is sometimes called oxidization. The new theory

associated with new-minimal supergravity is particularly interesting because it contains a physical

2-form gauge potential as opposed to a gauge 1-form, which makes it the leading candidate for

dimensional reductions of string and M-theory.

5.3.1 Dimensional Reduction to Old-Minimal

The five-dimensional supergravity model from [10] is governed by the following action:

S5DOld−Min[Va, P,Ψα, T ] =
∫
dx5SOld−Min[Va, P ]− 1

2

∫
d9z

{[
T (Σ− i∂aV

a) + c.c.
]

− 1
2

[
DαΨα +Dα̇Ψ

α̇ − ∂5P
]2

+
[
∂5Va − (Dα̇Ψα −DαΨα̇)

]2}
, (5.73)
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where Σ = − 1
4D

2
P . This action is invariant under the gauge transformations:

δVa = Dα̇Lα −DαLα̇ , δP = DαLα +Dα̇L
α̇
, (5.74)

δΨ = ∂5Lα − 1
4DαΩ , δT = ∂5Ω . (5.75)

Taking ∂5 = m, disregarding the extra integration and changing the minus sign on the T terms

gives:

SY =3/2[Va, P,Ψα, T ] = SOld−Min[Va, P ]− 1
2

∫
d8z

{[
− T (Σ− i∂aV

a) + c.c.
]

− 1
2

[
DαΨα +Dα̇Ψ

α̇ −mP
]2

+
[
mVa − (Dα̇Ψα −DαΨα̇)

]2}
. (5.76)

The extra minus sign is necessary to keep gauge invariance since ∂5 picks up a minus sign upon

integration by parts, where as, m acts as a constant. It is possible to put extra minus signs on the

last two squares in the action instead of the T terms, but this theory would lead to the wrong sign

in the Klein-Gordon equation, i.e. ( +m2)Va = 0 . The action (5.76) with Ψα = 0 and T = 0

is the massive extension of old-minimal supergravity discussed in chapter 4.1.2. In fact (5.76) is

exactly the same action. This can be seen in two ways. The gauge transformations for Ψα and T

are now algebraic. This means that there is a gauge where Ψα = 0 and T = 0. Alternatively, Ψα

and T can be eliminated by performing superfield redefinitions. This is a much more interesting

viewpoint, because it is an operational method that can be reversed. The reversal of this procedure,

dimensional oxidation, will be used in the following sections. First, T is removed by shifting Ψα:

Ψα → Ψα − 1
4mDαT , (5.77)

and then Ψα is removed by shifting Va and P :

Va → Va + 1
m (Dα̇Ψα −DαΨα̇) ,

P → P + 1
mD

αΨα + 1
mDα̇Ψ

α̇
. (5.78)

These superfield redefinitions are the same form as the gauge transformations of the massless

theories. This means that the dimensional oxidation procedure should begin by shifting all super-
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fields by their massless gauge transformations. The second step is to shift the newly introduced

superfield by another superfield. This second step will require a little ingenuity.

5.3.2 Dimensional Oxidation from New-Minimal

Two steps are necessary to perform dimensional oxidation from the massive extension of new-

minimal. First, the the superfields Va and χα are shifted according to their massless gauge invari-

ance:

Va → Va − 1
mDα̇Ψα + 1

mDαΨα̇ , (5.79)

χα → χα − 1
4mD

2
Ψα − i

mD
2
DαV . (5.80)

The second term in the shift of χα accounts for the added gauge invariance which occurs from

using χα instead of U . With this shift the action takes the form:

SY =3/2[Va, χα,Ψα, V ] = SNew−Min[Va, χα]− 1
2

∫
d8z

[
mV a − (D

α̇
Ψα −DαΨ

α̇
)
]2

+3
{∫

d6z
(
mχα − iD2

DαV − 1
4D

2
Ψα

)2

+ c.c
}

(5.81)

This action is invariant under δΨα = mLα and δV = mL. The second step is to shift the new

fields Ψα and V . This shift corresponds to a new gauge freedom. This means that the next new

superfield compensates for this gauge freedom. To find this new superfield, general terms are added

to the gauge transformations; δΨα = mLα + Λα and δV = mL+ Ω̃. The variation of (5.130) with

respect to Λα and Ω̃ is:

δΩ̃,ΛSY =3/2[Va, χα,Ψα, V ] =
∫
d8z

{
Ψα(− 1

2D
2
Λα +D

α̇
DαΛα̇ − 6iD

2
DαΩ̃)−Dα̇V

a(mΛα)

+χα(6mΛα + 24imDαΩ̃) + 1
2V (6iDαD

2
Λα − 6iDα̇D

2Λ
α̇ − 48DαD

2
DαΩ̃) + c.c.

}
, (5.82)

A solution to this variation can be found by taking Λα = DαΛ̃ and then decomposing the two

scalar gauge parameters Λ̃ and Ω̃ into chiral, anti-chiral and linear pieces:

Λ̃ = Λc + Λa + Λ , Dα̇Λc = 0 , DαΛa = 0 , D2Λ = D
2
Λ = 0 ,

Ω̃ = Ω + Ω + ΩL , Dα̇Ω = 0 , D2ΩL = 0 , ΩL = ΩL . (5.83)
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Plugging these back into (5.82) leads to the following set of constraints:

0 = DαD
2
Dα(i(Λ− Λ)− 8ΩL) , 0 = D

2
Dα(i(Λ− Λ)− 12ΩL) ,

0 = DαD
2
Λc . (5.84)

The First two constraints imply that Λ is real and that ΩL = 0. The third constraint means that

the chiral part of Λ vanishes, Λc = 0. So the gauge parameters satisfy Λα = DαΛ with Λ = Λ and

D2Λ = 0 and Ω̃ = Ω + Ω with DαΩ = 0. With this solution the left over variation of the action is:

δΩΛSY =3/2[Va, χα,Ψα, V ] =
∫
d8z

{
(6χα −Dα̇V

a)(mΛα) + c.c.
}

, (5.85)

which can be canceled easily by adding a real linear superfield X with gauge transformation

δX = mΛ. The massive gauge invariant action takes the form:

SY =3/2[Va, χα,Ψα, X] = SY =3/2[Va, χα,Ψα] +
(
[Dα, Dα̇]V a + 6U

)
X . (5.86)

The final five-dimensional action is obtained from this action by replacing m with ∂5 and getting

the minus signs correct to regain gauge invariance. The final answer is:

S5D New−Min =
∫
dx5SNew−Min[Va, χα] + 3c

{∫
d7z

[
∂5χ

α − iD2
DαV − 1

4D
2
Ψα

]2

+ c.c.
}

+c
∫
d9z

{
− 1

2

[
∂5V

a − (D
α̇
Ψα −DαΨ

α̇
)
]2

−
(
[Dα, Dα̇]V a + 6U

)
X

}
, (5.87)

where c is a real constant that will be fixed by analyzing the theory on-shell. This action is

invariant under:

δχα = 1
4D

2
Lα + iD

2
DαL , L = L ,

δΨα = ∂5Lα +DαΛ , Λ = Λ , D2Λ = 0 ,

δX = ∂5Λ , X = X , D2X = 0 ,

δV = ∂5L+ Ω , Dα̇Ω = 0 . (5.88)

There are two ways to prove that this theory really does represent linearized five-dimensional

supergravity. One way is to calculate the component action and eliminate all auxiliary fields.

Another way is to work solely in superspace, by analyzing the superfield-strengths on-shell and

showing that the only propagating degrees of freedom are those of five-dimensional supergravity.
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This method was applied to the five-dimensional extension of old minimal supergravity in [12] and

will be used in this thesis.

The first step in proving that (5.87) is five-dimensional supergravity is to enumerate all

possible superfield-strengths:

Wαβγ = i
3!8D

2
D(α∂β

α̇Vγ)α̇ , (5.89)

Ga := (−2ΠT
1/2 + ΠT

3/2) Va + 1
2 [Dα, Dα̇]U , (5.90)

G′
a := ∂2

5Va − ∂5Dα̇Ψα + ∂5DαΨα̇ − [Dα, Dα̇]X , (5.91)

Tα := + 1
8D

2
Dα[Dβ , Dβ̇ ]V b + 3

4D
2
DαU , (5.92)

T ′
α := −6∂2

5χα + 6i∂5D
2
DαV + 3

2∂5D
2
Ψα − 3

2D
2
DαX , (5.93)

λα := 6∂5χα − 6iD
2
DαV − 1

2D
2
Ψα + ∂5D

α̇
Va +D

α̇
DαΨα̇ , (5.94)

λ := −48DαD
2
DαV − 24i∂5D

αχα + 24i∂5Dα̇χ
α̇ + 6iDαD

2
Ψα − 6iDα̇D

2Ψ
α̇
, (5.95)

Fαβ := 3
2D

2
D(αΨβ) + 1

2D(αD
2
Ψβ) −D(αD

α̇
Dβ)Ψα̇

+4i∂5∂(α
α̇Vβ)α̇ + ∂5[D(α, D

α̇
]Vβ)α̇ , (5.96)

F ′
αβ := − 1

8D
2
D(αΨβ) − 1

8D(αD
2
Ψβ) + 1

4D(αD
α̇
Dβ)Ψα̇

− i
2∂5∂(α

α̇Vβ)α̇ + ∂5D(αχβ) − iD(αD
2
Dβ)V . (5.97)

This is quite a long list, but there are about the same number of superfield-strengths here as for the

old-minimal theory in [12]. The second step is to list several Bianchi identities. These identities are

relations between various derivatives of the superfield-strengths. It is assumed that these relations

would be obtained by the dimensional reduction of a manifestly supersymmetric five-dimensional

superalgebra. A partial list is:

∂aGa = 0 , (5.98)
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D(αλβ) − 1
2Fαβ − 6F ′

αβ = 0 , (5.99)

D
α̇
Ga − Tα = 0 , (5.100)

D
α̇
G′

a − ∂5λα − T ′
α = 0 , (5.101)

D
2
Fαβ +D

2
D(αλβ) = 0 , (5.102)

+ 4i
3 D

αFαβ + 8iD
α̇
Dαλα̇ − 2iD2λα + 4iDαD

α̇
λα̇ +Dαλ = 0 , (5.103)

−i∂α̇
β( 1

4Fαβ + 2F ′
αβ) + i∂α

β̇(+ 1
4F α̇β̇ + 2F

′
α̇β̇)− 2∂5Ga = 0 , (5.104)

DβDα̇(Fαβ + 12F ′
αβ) + 4i∂aD

βλβ +Dα̇D
2λα + 2D2Dα̇λα − c.c. = 0 , (5.105)

∂5( 1
4Fαβ + 2F ′

αβ) + 1
3D(αT

′
β) − 1

4 [D(α, D
γ̇
]G′

β)γ̇ = 0 . (5.106)

These Bianchi identities in conjunction with the equations of motion will give the proper dimen-

sionally reduced component equations of motion for five-dimensional linearized supergravity with

a gauge 2-form. The equations of motion are simply:

δ

δV a

(
S5D New−Min

)
= Ga + cG′

a = 0 , (5.107)

δ

δχα

(
S5D New−Min

)
= Tα + cT ′

α = 0 , (5.108)

δ

δΨα

(
S5D New−Min

)
= λα = 0 , (5.109)

δ

δV

(
S5D New−Min

)
= λ = 0 , (5.110)

δ

δX

(
S5D New−Min

)
⇒ Tα = 0 . (5.111)

On-shell, the only non-zero linearly independent superfield-strengths are Wαβγ , Ga and Fαβ which

are now irreducible four-dimensional transverse linear representations:

DαGa = D
2
Fαβ = DαFαβ = 0 . (5.112)
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From [12] these superfield-strengths constrained in this manner are enough to describe the graviton

and gravitino. The only question that remains is to show that the 3-form field-strength obeys the

appropriate equations. The appropriate equations are the dimensionally reduced 3-form Bianchi

identity and equation of motion. The Bianchi identity for a five-dimensional 3-form, ∂[ABBCD], in

SL(2, C) notation breaks into two relations:

∂[aBbcd] = 0 → ∂aBa = 0 , (5.113)

∂[aBbc]5 − 2∂5Babc = 0 → i∂δ
β̇ b̄δ̇β̇ − i∂δ̇

βbδβ + ∂5Bd = 0 , (5.114)

where Ba := 1
3!ε

abcdBbcd and Bab5 = 2εαβ b̄α̇β̇ + 2εα̇β̇bαβ . These Bianchi identities are mimicked

in (5.98) and (5.104). The equation of motion for a five-dimensional 3-form, ∂AGABC = 0, also

breaks into two equations in SL(2, C) notation:

∂aBab5 = 0 → i∂δ
β̇ b̄δ̇β̇ + i∂δ̇

βbδβ = 0 , (5.115)

∂aBabc + ∂5Bbc5 = 0 → 2∂5bαβ − i
2∂(α

γ̇Bβ)γ̇ . (5.116)

These equations of motion follow from the identities (5.105) and (5.106) when the theory is taken

on-shell. This allows the unknown coefficient c to be fixed. Defining the component 2-form as:

bαβ := ( 1
4Fαβ + 2F ′

αβ)| , (5.117)

and comparing (5.105) and (5.106) to (5.115) and (5.116) leads to the the component definition of

Ba:

Ba := −2Ga| , Ba := 2G′
a . (5.118)

The equation of motion for Va, (5.107), relates these two superfield-strengths by Ga = −cG′
a

therefore c = 1. From this point some more Bianchi identities are needed to prove that Wαβγ

propagates, but for an initial analysis these results can be taken as proof of the consistency of this

theory. The full list of on-shell components can be taken as:

Cαβγδ := D(αWβγδ)| , (5.119)
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Cαβγα̇ := 1
2 [D(α, Dα̇]Fβγ)| , Cαβα̇β̇ := 1

2 [D(α, D(α̇Gβ)β̇)| , (5.120)

f
(+)
αβγ := Wαβγ | , (5.121)

f
(−)
αβα̇ := D(αGβ)α̇| , f̄

(−)
αβγ := D(αFβγ)| , f̄

(+)
αβα̇ := Dα̇Fαβ | , (5.122)

Ba := −2Ga| , bαβ := ( 1
4Fαβ + 2F ′

αβ)| . (5.123)

The higher components of Ga and Fαβ are the dimensionally reduced parts of the five-dimensional

Weyl tensor (5.120) and the curl of the five-dimensional gravitino (5.122). The dimensional reduc-

tion using SL(2, C) notation of these component objects is discussed thoroughly in [12] and will

not be reproduced in this document.

This concludes the presentation of the five-dimensional version of new-minimal supergravity.

The full action is:

S5D New−Min =
∫
d9z

{
V a (−ΠT

1/2 + 1
2ΠT

3/2)Va + 1
2U [Dα, Dα̇]V a + 3

2U2

− 1
2

[
∂5V

a − (D
α̇
Ψα −DαΨ

α̇
)
]2

−
(
[Dα, Dα̇]V a + 6U

)
X

}

+3
{∫

d7z
[
∂5χ

α − iD2
DαV − 1

4D
2
Ψα

]2

+ c.c.
}

. (5.124)

The main difference between this theory and the five-dimensional version of old-minimal is the form

of the radion multiplet. The radion multiplet contains the g55 component of the metric, which

holds information about the size of the extra dimension and therefore is of phenomenological

importance. In the old minimal theory the radion multiplet is the chiral scalar superfield T . In

new-minimal it is a real linear superfield X. It seems that the radion multiplet mimics the form

of the compensator used in the base four-dimensional supergravity. To check this logic the next

section discusses the five-dimensional extension of “New”new-minimal supergravity.
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5.3.3 Dimensional Oxidation from New-New-Minimal

The superfields of the massive new-new-minimal theory, Va and λα are shifted according to their

massless gauge transformations:

Va → Va − 1
mDα̇Ψα + 1

mDαΨα̇ , (5.125)

λα → λα − 1
12mD

2
Ψα − 1

mD
2
DαV . (5.126)

These field redefinitions lead to the following massive gauge invariant action:

SY =3/2[Va, λα,Ψα, V ] = Sν2−Min[Va, λα]− 1
2

∫
d8z

[
mV a − (D

α̇
Ψα −DαΨ

α̇
)
]2

+9
{∫

d6z
(
mλα −D2

DαV − 1
12D

2
Ψα

)2

+ c.c
}

. (5.127)

It is necessary to add more gauge invariance for the new superfields, δΨα = mLα + Λα and

δV = mL+ Ω̃. The gauge variation of (5.130) under the arbitrary Λα and Ω̃ transformations is:

δΩ̃ΛSY =3/2[Va, λα,Ψα, V ] =
∫
d8z

{
Ψα

(
1
2D

2
Λα +D

α̇
DαΛα̇ − 6D

2
DαΩ̃

)
−Dα̇V

a(mΛα)

+ 1
2V

(
72DαD

2
DαΩ̃ + 6DαD

2
Λα + 6Dα̇D

2Λ
α̇
)

+ λα
(
6mΛα + 72mDαΩ̃

)
+ c.c.

}
, (5.128)

The solution to the vanishing of this variation is almost the same as the new minimal case. Ω̃ is

again purely chiral Ω̃ = Ω + Ω where Dα̇Ω = 0. Λα is replaced by Λα = iDαΛ where Λ = Λ and

D2Λ = 0. The main difference between this solution and that for new-minimal is the peculiar,

but necessary, factor of i in Λα. Under these transformations, the gauge variation of (5.130) only

contains two terms:

δΩ̃ΛSY =3/2[Va, λα,Ψα, V ] =
∫
d8z

{
−Dα̇V

a(miDαΛ) + λα
(
6miDαΛ

)
+ c.c.

}
. (5.129)

These terms can be canceled by adding a real linear superfield, Y , with gauge transformation

δY = mΛ. The expanded massive gauge invariant action is now:

SY =3/2[Va, λα,Ψα, V ] = Sν2−Min[Va, λα] +
∫
d8z

{
− 1

2

[
mV a − (D

α̇
Ψα −DαΨ

α̇
)
]2
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+(2∂aV
a + 6U)Y

}
+ 9

{∫
d6z

(
mλα −D2

DαV − 1
12D

2
Ψα

)2

+ c.c
}

. (5.130)

The oxidation is completed by changing m to ∂5 and switching some minus signs. The five-

dimensional action is:

S5D ν2 Min =
∫
dx5Sν2−Min[Va, λα] + c

∫
d9z

{
− 1

2

[
∂5V

a − (D
α̇
Ψα −DαΨ

α̇
)
]2

−(2∂aV
a + 6U)Y

}
+ 9c

{∫
d7z

(
∂5λ

α −D2
DαV − 1

12D
2
Ψα

)2

+ c.c
}

, (5.131)

and is gauge invariant under the following transformations:

δVa = Dα̇Lα −DαLα̇ ,

δλα = 1
12D

2
Lα +D

2
DαL ,

δΨα = ∂5Lα + iDαΛ , Λ = Λ , D2Λ = 0 ,

δY = ∂5Λ , Y = Y , D2Y = 0 ,

δV = ∂5L+ Ω + Ω Dα̇Ω = 0 . (5.132)

Knowledge of the superfield-strengths and their Bianchi identities is crucial, in order to fix the

unknown coefficient c. The full set of superfield-strengths is:

Wαβγ := i
3!8D

2
D(α∂β

α̇Vγ)α̇ , (5.133)

Ga := 2 ( 1
2ΠT

3/2 + 1
3ΠL

1/2)Va − ∂aU , (5.134)

G′
a := ∂2

5Va − ∂5(Dα̇Ψα −DαΨα̇) + 2∂aY , (5.135)

Tα := + i
4D

2
Dα∂bV

b + 3
4 iD

2
DαU , (5.136)

T ′
α := −18∂2

5λα + 3
2∂5D

2
Ψα − 3

2 iD
2
DαY + 18∂5D

2
DαV , (5.137)

λ′α := + 1
2D

2
Ψα +D

α̇
DαΨα̇ + ∂5D

α̇
Va + 6∂5λα − 6D

2
DαV (5.138)

λ := 72DαD
2
DαV − 72∂5D

αλα + 6DαD
2
Ψα + c.c. (5.139)
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Fαβ := 1
4D

2
D(αΨβ) − 1

4D(αD
2
Ψβ) − 1

2D(αD
α̇
Dβ)Ψα̇ + i∂5∂(α

α̇Vβ)α̇ , (5.140)

F ′
αβ := 1

2D
2
D(αΨβ) − ∂5D

α̇
D(αVβ)α̇ + 6∂5D(αλβ) − 6D(αD

2
Dβ)V . (5.141)

These superfield-strengths obey this partial list of Bianchi identities:

Fαβ − 1
2F

′
αβ + 1

2D(αλ
′
β) = 0 , (5.142)

DαFαβ − 1
24Dβλ+ 1

4D
2λ′β + 1

2DβD
β̇
λ̄′

β̇
+D

β̇
Dβλ̄

′
β̇

= 0 , (5.143)

D
2
Fαβ + 1

2D
2
D(αλ

′
β) = 0 , (5.144)

D
α̇
G′

a − ∂5λ
′
α − 1

3T
′
α = 0 , (5.145)

∂5Fαβ − i∂(α
α̇G′

β)α̇ = 0 , (5.146)

∂α
β̇F β̇α̇ + ∂α̇

βFβα = 0 , (5.147)

DαWαβγ + i
2∂(β

α̇Gγ)α̇ = 0 , (5.148)

− 1
4D

2
D(αFβγ) + 24∂5Wαβγ = 0 . (5.149)

The identities (5.146) and (5.147) are the dimensionally reduced Bianchi identities of a five-

dimensional 2-form field-strength[12]. This means that Fβα and Ga contain the component 2-form

field-strength. The equations of motion can be written in terms of the superfield-strengths:

δ

δV a

(
S5D ν2 Min

)
= Ga + cG′

a = 0 , (5.150)

δ

δλα

(
S5D ν2 Min

)
= Tα + cT ′

α = 0 , (5.151)

δ

δΨα

(
S5D ν2 Min

)
= λ′α = 0 , (5.152)

δ

δV

(
S5D ν2 Min

)
= λ = 0 , (5.153)
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δ

δY

(
S5D ν2 Min

)
⇒ Tα = 0 . (5.154)

There are three non-zero linearly independent superfield-strengths on-shell Wαβγ , Fαβ and Ga.

The Bianchi identities (5.143-5.145) mean that both Fαβ and Ga are transversal linear superfields

on-shell. The coefficient c can be determined by taking some derivatives of the equation of motion

for Va, (5.150), to obtain the five-dimensional D’Alembertian acting on Wαβγ :

i

8 · 3!
D

2
D(α∂β

β̇
(
Gγ)β̇ + cG′

γ)β̇

)
=

(
+ c∂2

5

)
Wαβγ , (5.155)

where the Bianchi identities (5.146), (5.148), and (5.149) have been used. This proves that this

theory cannot be be five-dimensionally Lorentz invariant unless c = 1. The final action with no

unknown coefficients is:

S5D ν2 Min =
∫
dx5Sν2−Min[Va, λα] + c

∫
d9z

{
− 1

2

[
∂5V

a − (D
α̇
Ψα −DαΨ

α̇
)
]2

−(2∂aV
a + 6U)Y

}
+ 9c

{∫
d7z

(
∂5λ

α −D2
DαV − 1

12D
2
Ψα

)2

+ c.c
}

, (5.156)

This action differs from the old-minimal model in the same way as the new-minimal five-dimensional

theory. The radion multiplet is a real linear scalar superfield, Y . Of course, this theory contains

a five-dimensional gauge 1-form just like the old-minimal.

5.4 Five-dimensional Discussion

Two new theories representing linearized five-dimensional supergravity were presented in this

chapter. The actions are given in equations (5.124) and (5.156). In both cases the off-shell

superfield-strengths were enumerated and partial lists of Bianchi identities were given. The un-

known coefficient c was fixed using purely superspace methods which rely on the knowledge of the

superfield-strengths and their Bianchi identities. This coefficient represents the fact that dimen-

sionally reduced actions can break into separate gauge invariant pieces, and does not signify a lack

of understanding.

This chapter yields important information about the off-shell structure of higher dimensional

supersymmetric theories. The most obvious observation is that many of the superfield-strengths
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have the same mass dimension and index structure. The primed superfield-strengths G′
a and T ′

α

are good examples. Both of these superfield-strengths are duplicates of the usual four-dimensional

superfield-strengths. This means that in higher dimensional theories there are multiple copies of

auxiliary fields off-shell, even in Wess-Zumino gauge. Another rather striking observation is the

appearance of the low mass dimension superfield-strength λα. By dimensional analysis, there are

only two places in which this superfield-strength can appear in a covariant derivative algebra. It

must appear as a super torsion with either of the following index structure:

Tα̃β̃
γ̃ , Tα̃A

B , (5.157)

where α̃ is a five-dimensional spinor index. In four dimensions, both of these torsion are set to zero

in Einstein supergravity. In dimensions greater than four, the vanishing of both of these torsion

will probably lead to an on-shell covariant derivative algebra.

Perhaps that most interesting result of this thesis is the five-dimensional extension of new-

minimal supergravity (5.124). This theory contains a component 3-form field-strength which is

required by supersymmetry in five dimensions. The 3-form is not simply coupled to supergravity,

it is an essential part of the supergravity multiplet. This theory is related to the low energy

limits of superstring theory and M-theory, which both contain higher rank forms as part of their

background supergravity multiplets.

Two directions come to mind to push this analysis further. It should be possible to connect

this N = 1 analysis to the usual covariant higher dimensional analysis. The explicit dimensional

reduction of a fully covariant five-dimensional super covariant derivative algebra should lead to

the superfield-strengths and Bianchi identities presented in this chapter. Alternatively, it may be

possible to find the algebra associated with the extra five-dimensional supersymmetry that is not

manifest in the N = 1 formulations. In this sense, the full five-dimensional off-shell theory can be

constructed using methods analogous to component constructions of supersymmetric theories.

The second direction is to develop a five-dimensional AdS supergravity background using

N = 1 superfields. It seems likely that the dimensional oxidation method could be used to create

this theory once a massive AdS theory is written in four dimensions. A concrete understanding of
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N = 1 AdS flat superspace would be necessary for such an endeavor. While the covariant derivative

algebra of N = 1 AdS superspace is known, the Casimir operators that define the supersymmetric

representation theory are not known. There is a way to construct these operators based on the

formulation given in [35]. The analogue of the D’Alembertian is:

C2 = − 2
|µ|2

PaPa − 4JαβJαβ − 4Jα̇β̇Jα̇β̇ + 1
µ̄QαQα + 1

µQα̇Qα̇
, (5.158)

where the operators Pa, Jαβ , and Qα satisfy the AdS superalgebra:

[Qα,Qα̇} = 2Pa , (5.159)

[Qα,Qβ} = −4iµ̄Jαβ , [Qα,Pb} = −εαβµ̄Qβ̇ , (5.160)

[Pa,Pb} = −2i|µ|2
(
εα̇β̇Jαβ + εαβJα̇β̇

)
, (5.161)

[Jαβ ,Qγ} = i
2εγ(αQβ) , [Jαβ ,Pc} = i

2εγ(αPβ)γ̇ , (5.162)

[Jαβ , Jγδ} = i
2εγ(αJβ)δ + i

2εδ(αJβ)γ . (5.163)

The parameter µ is related to the curvature of the spacetime. The analogue of the superspin

operator is much more complicated:

C4 = +Σ1βΣβ
1Σ1δΣδ

1 + Σ1β̇Σβ̇
1Σ1δΣδ

1 + Σ1βΣβ
1Σ1δ̇Σ

δ̇
1 + Σ1β̇Σβ̇

1Σ1δ̇Σ
δ̇
1

−Σ1βΣβ
γΣγ

δΣδ
1 − Σ1β̇Σβ̇

γΣγ
δΣδ

1 − Σ1βΣβ
γΣγ

δ̇Σ
δ̇
1 − Σ1β̇Σβ̇

γΣγ
δ̇Σ

δ̇
1

−Σ1βΣβ
γ̇Σγ̇

δΣδ
1 − Σ1β̇Σβ̇

γ̇Σγ̇
δΣδ

1 − Σ1βΣβ
γ̇Σγ̇

δ̇Σ
δ̇
1 − Σ1β̇Σβ̇

γ̇Σγ̇
δ̇Σ

δ̇
1

+
{

+ Σα
1Σ1γΣγ

δΣδ
α + Σα

1Σ1γΣγ
δ̇Σ

δ̇
α + Σα

1Σ1γ̇Σγ̇
δΣδ

α + Σα
1Σ1γ̇Σγ̇

δ̇Σ
δ̇
α

+Σα
βΣβ

1Σ1
δΣδ

α + Σα
βΣβ

1Σ1
δ̇Σ

δ̇
α + Σα

β̇Σβ̇
1Σ1

δΣδ
α + Σα

β̇Σβ̇
1Σ1

δ̇Σ
δ̇
α

−Σα
βΣβ

γΣγ
δΣδ

α − Σα
βΣβ

γΣγ
δ̇Σ

δ̇
α − Σα

βΣβ
γ̇Σγ̇

δΣδ
α − Σα

βΣβ
γ̇Σγ̇

δ̇Σ
δ̇
α

−Σα
β̇Σβ̇

γΣγ
δΣδ

α − Σα
β̇Σβ̇

γΣγ
δ̇Σ

δ̇
α − Σα

β̇Σβ̇
γ̇Σγ̇

δΣδ
α − Σα

β̇Σβ̇
γ̇Σγ̇

δ̇Σ
δ̇
α

+Σα
β̇Σβ̇

γ̇Σγ̇
1Σ1

α + Σα
β̇Σβ̇

γΣγ
1Σ1

α + Σα
βΣβ

γ̇Σγ̇
1Σ1

α + Σα
βΣβ

γΣγ
1Σ1

α

−Σα
1Σ1γΣγ

1Σ1
α − Σα

1Σ1γ̇Σγ̇
1Σ1

α + (α→ α̇)
}

, (5.164)
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where the Σ objects are defined as:

Σαβ = −i2Jαβ , Σα̇β̇ = −i2Jα̇β̇ , (5.165)

Σa = i√
µµ̄Pa , (5.166)

Σ1α = i√
2µ̄Qα , Σ1α̇ = − 1√

2µQα̇ . (5.167)

After writing the Casimir operators in terms of supercovariant derivatives, the constraints that

determine the irreducible representations of the AdS superalgebra on superfields can be determined.

Then superspace actions can be constructed that lead to these constraints on-shell. There may

also be a question pertaining to the superspace integration measure, since the spacetime is curved.

The density projector can be easily solved by using the ectoplasmic integration theorem [36][37]

or superspace normal coordinates [38] or both [39]. Both ectoplasmic integration and normal

coordinate expansions are state of the art superspace techniques that use only the super covariant

derivative algebra as the basis for calculating.
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