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The rapid degradation of conventional material piling is one of the major 

problems in the bridge and civil infrastructure industry. Conventional construction 

materials have major disadvantages that increase their maintenance cost and reduce 

their service life especially in aggressive environments. The use of advanced 

composite materials such as Fiber Reinforced Polymers (FRPs) offers a better 

alternative to conventional building materials in terms of strength, weight, durability, 

and life cycle cost. 

Integral abutment bridges are a special type of bridges that are built without 

bearings or expansion joints. These bridges are usually subjected to cycles of 

expansion and contraction that causes horizontal movements of the pile foundations. 

Accommodating such movements requires some flexibility in the piling system. Fiber 



 

reinforced composites (FRPs) have the strength and flexibility and can be custom 

designed as needed. An extensive literature and market survey indicated that 

composite materials are increasingly being considered for use in civil infrastructure 

applications ranging from the retrofit and rehabilitation of buildings and bridges to the 

construction of new structural systems. Very little research has been conducted on 

FRPs as piling materials. The current research investigates the use of fiber reinforced 

composites as piling materials for jointless bridges.  

Three-dimensional finite element models were developed and analyzed using 

the multi purpose FEM package ANSYS. The models were built to take into 

consideration multiple design parameters including the non-linear behavior of soil and 

concrete and the orthotropic behavior of unidirectional composites. Investigation 

results showed that FRP composites are good candidates for use in piling systems. 

Because of their flexibility in both geometrical shaping and layer lay-up, FRPs provide 

more options to designers to come up with suitable systems based on their needs. A 

new pile section is introduced to be used with or without concrete filling. The section 

consists of two flanges and a double web to allow flexibility in controlling the size of 

concrete filling between the webs. Analysis results showed that flexibility of the 

geometry of the new pile section and the flexibility of tailoring multi-layered 

unidirectional FRP composites make the pile customizable for best performance. FRP 

composites lend themselves to be optimized to achieve desired properties. The study 

showed that favorable stiffness and stress results can be obtained for composite piles 

in integral abutment bridges by optimizing the section’s geometry while keeping a 

fixed cross-sectional area. 
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CHAPTER 1  

INTRODUCTION 

1.1  STATEMENT OF THE PROBLEM 

The rapid degradation of conventional material piling is a problem in the bridge 

and infrastructure industry especially in aggressive environments. The corrosion of steel 

and deterioration of concrete and timber piling costs millions of dollars each year in 

repairs and reconstruction. Fiber reinforced composites (FRPs) are the newest 

construction materials that have been introduced to the construction market recently. The 

use of FRPs in rehabilitation and retrofitting of existing structures has achieved a 

remarkable success in the past decades. Post strengthening of a structure in service 

becomes essential when its safety and serviceability become suspicious and no longer 

guaranteed.  

Integral abutment bridges are subjected to cycles of expansion and contraction 

that cause horizontal movements of the pile foundations. The amount of movement 

depends on bridge length and temperature extremes in the bridge location. 

Accommodating such movements requires some flexibility in the piling system. Fiber 

reinforced composites have the strength and flexibility and can be custom designed as 

needed  
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Studies on FRP composites as piling materials showed some signs of 

encouragement that pushed researchers to proceed in that field. Extensive research 

programs have been performed in several institutes and research centers in the United 

States (Lampo 1998a and Hardcore 1997). Experimental investigations of FRP composite 

piles under different types of loading showed that composites are highly competitive to 

conventional piling materials. Their unique properties such as light weight, specific 

strength (the yield strength divided by the density) and resistance to corrosion and 

chemicals make them well suited for certain applications.  

Fiber reinforced composites offer a wide range of properties because of the 

variety in their constituents, the fibers and the matrix. Reinforcing fibers can be produced 

from different types of materials that have a wide range of strength and stiffness. 

Reinforcement fibers are available in various forms, such as woven fabrics, tows or 

roving. The reinforcement fibers are combined with the resin material in a variety of 

forms to create the laminate.  

The lack of information on the history of composites as structural materials places 

many obstacles that block their wide use in the market. The long term performance of 

these materials has to be tested and demonstrated in order for the construction industry to 

accept them as alternate construction materials  

1.2 BACKGROUND 

Piles are structural members used in transferring loads from structures founded on 

soft soils to hard strata below the ground surface. They were used in prehistorical times to 

support buildings founded on weak soils. The demand on pile foundations has increased 

in the last century especially for bridges and other massive constructions. Conventional 
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piles are commonly made of concrete, steel, timber or a combination of them. Because of 

their outstanding mechanical properties and reasonable initial cost, reinforced concrete 

and H-steel piles are still the most popular in use. Also their long clean history and the 

support of the extensive studies that have been performed on concrete and steel as piling 

materials have kept them dominant in the construction market.  

In spite of their superior properties, conventional piling materials are still 

encountering some serious problems especially in aggressive environments. Surface 

treated timber pilings are usually subjected to organic attack in marine environments that 

causes disposal problems upon replacement. On the other hand, chloride attack on 

reinforced concrete members and corrosion of steel elements are major sources of piling 

damage. Lampo et. Al. (1998) estimated an annual expenditure of $1 billion because of 

pile deterioration in marine and waterfront structures. 

Recently, the construction industry has introduced Fiber Reinforced Polymer 

(FRP) composites as an alternative construction material to current conventional piling 

materials. They have been successfully used in beam and column wrapping as well as in 

some bridge structures. 

Fiber reinforced composites offer perfect characteristics especially on the basis of 

weight. They have a very low density when compared to metals and reinforced concrete. 

Because of their high strength to weight ratio characteristics, they used in the aerospace 

industry for spacecraft and airplane parts. The use of composite material in civil 

engineering was started a few years ago and is still very limited due to the shortage in 

knowledge of the long-term behavior of these materials.  
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1.3 OBJECTIVES AND SCOPE 

The primary objective of this research is to investigate the feasibility of using 

fiber reinforced composites as piling materials and their application in integral abutment 

bridges. The use of conventional piling materials in aggressive environments is usually 

accompanied by the problem of deterioration and corrosion which reduces the life of the 

structure and increases the life-cycle cost. The new piling material will provide an 

alternative solution to resolve this problem and is expected to lower the life-cycle cost of 

the structure. Because of the nature of their chemical composition, FRP composites are 

expected to withstand severe environmental conditions. The study will take into account 

the current market experience in using such materials in bridge applications. 

The lack of adequate research history on FRPs as a construction material has kept 

them from being a major competitive construction material. Also their high initial cost is 

another major factor. In spite of some disadvantages, fiber reinforced composites are still 

very strong candidates when considering the overall life-cycle cost of the structure in 

aggressive environments. Extensive studies are needed to investigate the feasibility of 

using FRP materials for piles in integral abutment bridges. 

From an engineering point of view, a well designed structure is expected to satisfy 

safety and serviceability requirements. On the other hand, economy is the other major 

consideration in a satisfactorily engineered structural design. Safety can be achieved by 

designing the structure according to the required specifications. Serviceability can be 

achieved by designing the structure to meet serviceability specifications. Finally, 

economy also can be achieved by minimizing the cost of the structure and raising its 

efficiency over its expected life of service.  
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Fiber reinforced composites have the capability of being optimized by tailoring 

the fibers to the direction of best performance. The optimization process always increases 

the composite efficiency when fibers are arranged appropriately to the desired direction. 

Mechanical properties for a composite section will vary dramatically when the fibers 

orientation changes in any layer. The section is considered optimally designed when 

appropriate fiber orientations are selected  

Similar studies to those done on concrete and steel piles are now necessary for 

FRP composite piles. Fiber composite materials have different properties and behavior 

compared to steel and concrete. Concrete and steel are isotropic materials, and they have 

similar properties in all directions. On the other hand, fiber reinforced composites are 

non-isotropic materials. Since composites consist of fibers embedded in a resin matrix, 

the mechanical properties are direction-dependent such that the properties in the fiber 

direction are different from those in the transverse direction.  

This study will focus on selecting a pile configuration that fits the desired 

requirements and then optimizing that configuration for best performance and lowest 

cost.  

Objectives summary 

1. Study the ability of fiber reinforced composites as piling materials. 

2. Design a new pile section that fits the bridge and soil conditions. 

3. Optimize the pile section for best performance. 

4. Study the behavior of the composite pile in terms of stresses and stiffness. 

5. Apply the new pile in integral abutment bridges. 
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1.4 THESIS ORGANIZATION 

Chapter 2 talks about the advantages of composite materials and explains why 

they are preferred over conventional materials in some construction applications. It also 

presents the different applications of fiber reinforced composites as piling and structural 

materials in the construction industry with some facts about those applications.  

Chapter 3 presents the theory of fiber reinforced composite in terms of stress-

strain relations, mechanical and material properties. It also discusses the basic 

composition of composites regarding their basic constituents such as fiber and resin 

types.  

Chapter 4 talks about pile analysis and soil-pile interaction behaviors. Different 

approaches in the analysis of both axially and laterally loaded piles are presented.  

Chapter 5 talks about the finite element modeling of the soil-pile mechanism. It 

also presents the basic theory used by the ANSYS computer code.  

Chapter 6 talks about the behavior of piles and their constituent materials such as 

load-deflection and stress-strain behaviors.  

Chapter 7 includes the parametric study and the results of the finite element 

analysis for all models and discusses the effect of different parameters on composite 

piles. 

Chapter 8 talks about optimization and about its basic elements. It is also presents 

some optimization results for composite piles. 

Chapter 9 presents a short summary and conclusions of the market survey and the 

finite element analysis results. 
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CHAPTER 2  

COMPOSITE MATERIALS AND APPLICATIONS 

2.1 INTRODUCTION 

In recent years the construction industry has started using fiber-reinforced 

polymers (FRPs) which have some advantages over conventional materials. Fiber 

Reinforced Polymers have emerged as a potential solution to overcome some of the 

problems associated with structures built using conventional materials. Their specific 

strength and high resistance to corrosion and other electro-chemical reactions have made 

them attractive for some applications. During the last decade, there has been a surge of 

activities in the civil engineering research community to test and demonstrate the 

viability of these new materials for the construction of more durable structures and for the 

repair and strengthening of existing structures. 

Advanced composite materials were originally developed to be used in the 

defense and aerospace systems. They have been used in military and aerospace 

applications since 1940 to take advantage of their high strength, light weight, chemical 

resistance, good fatigue strength, and non-magnetic properties (Alampalli 1999). 

The use of FRPs in bridge construction has started recently to gain more 

popularity in the United States. Europe and Japan have been using FRPs in bridge 
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applications for many years. It has been used in a wide variety of new and old bridge 

projects (Alampalli 1999). Civil engineers are beginning to gain confidence and 

experience in applying this technology to civil structures (Tang 1999). 

2.2 FRP IN AEROSPACE INDUSTRY 

The aerospace industry has been utilizing fiber reinforced composite materials for 

its products for more than 50 years. Fiber reinforced composites also have very wide 

applications in spacecrafts. The weight reduction is the main reason for using such 

applications. Also their dimensional stability over a wide range of temperature range 

makes them favorable over other materials.  

Military aircraft manufacturers were among the beginners who introduced FRP 

composite materials to be a replacement for traditional materials. The designers realized 

the tremendous potential of composite materials, especially their high specific strength, 

stiffness and light weight. This has lead to a rapid acceleration in the development of 

advanced composites in military aircraft applications. Several composite structural 

elements were used in such applications such as horizontal and vertical stabilizers, flaps, 

wing skins, and other control surfaces (Gibson 1994).  

2.3 FRP COMPOSITES FOR BRIDGE APPLICATIONS 

Every year a large number of bridge structures are reaching their design service 

lives and need to be repaired or replaced. The major construction materials for bridge 

structures are still concrete and steel. The rapid deterioration of concrete and corrosion of 

steel, especially in aggressive environments, such as marine areas, reduces the designed 

service life of the bridge structure. The use of the same materials to repair or rehabilitate 
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the structure will not resolve the problem. A need for a long term, practical and 

economical solution is essential.  

New techniques in overcoming such problems have been utilized. The use of fiber 

reinforced polymer composites (FRPs) to replace the conventional materials in 

rehabilitating old and building new structures is becoming more common. FRP is the 

newest building material available in the market for large projects construction. The 

recent advancement in material technology and manufacturing techniques has made it 

easier to develop materials with the ability to satisfy conditions that could not be 

achieved by conventional materials. Confidence in the use of FRP composites in bridge 

engineering has increased in the last few years. This material has been widely used in 

retrofitting and rehabilitation of a wide variety of existing structures. 

2.3.1 STRUCTURAL CONSIDERATIONS 

High Strength 

FRP composites are made of a wide range of fiber/polymer combinations that      

provides a very high strength that can range from the strength of mild steel to stronger 

than prestressed steel tendons. The tensile strength of FRP composites comes from the 

fibers immersed in the plastic matrix. Fiber volume fraction and fiber orientation are two 

main factors in determining the strength of composite laminates. Fibers can be 

proportioned and oriented to give the strength in the desired direction.  

Corrosion Resistance 

Corrosion of steel is a major problem especially in salty soils and marine 

environments. FRP composites have the advantage over steel in corrosion resistance. The 

plastic matrix (resins) has the ability to withstand many chemical reactions as well as the 
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effect of acidic, salt and fresh water which are corrosive for ferrous metals (Engineering 

1997). 

Light Weight 

Fiber reinforced composites have very low densities compared to other 

construction materials like steel and concrete. Because of their high strength and low 

density, they provide very high specific strengths which are up to 60 times that of high 

strength steels (Engineering 1997). The specific strength of a material is the ratio of yield 

strength to its density.  

Fatigue Resistance 

Fiber composite materials offer fatigue resistance much better than conventional 

materials. The initial imperfections in composite materials such as broken fibers, 

delamination, matrix cracking, fiber debonding, voids, etc., can be much larger than 

corresponding imperfections in conventional metals such as cracks. However, the growth 

of damage in a metal is typically much more abrupt and hence potentially more 

dangerous than in a composite material (Jones 1999). 

Life-cycle costs 

While the initial cost of composite materials is usually higher than alternative 

construction materials, there are a number of economic considerations which make their 

use feasible and economic. Corrosion protection was mentioned as an area where 

composites are beneficial to the cost of maintenance. Many life-cycle costs could be 

eliminated or drastically reduced with the use of FRP composites. The costs associated 

with periodically repainting steel to protect it against corrosion are maintenance costs that 

would be eliminated if materials that did not require such coatings were used. The costs 
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of rehabilitating structures damaged by corrosion, such as blast cleaning of steel to 

remove corrosion products, would be eliminated with non-corrosive composite materials. 

In general, periodic maintenance of structures would be reduced and replacement costs 

would be delayed through greater use of FRP composites. Some FRPs could require 

coating protection for aesthetic reasons or for exceptionally harsh environments. 

Reduced environmental toxicity. 

Many of the building materials that we presently use are harmful to our 

environment in some way or another. Examples of such materials are lead-based paints, 

creosote and other petroleum products used in piling to kill or ward off marine borers and 

shipworms. The components of FRP materials are, for the most part, inert and will not 

leach into the environment. The use of conventional maintenance coatings on structures 

can be toxic to the environment. The use of FRP’s eliminates some of these hazardous 

chemicals. Pilings made from FRP materials do not rot nor are they attacked by marine 

organisms so there is no need to treat pilings with harmful chemicals such as creosote. 

Recycling. Many of the plastic materials that we use as food containers and composite 

components of automobiles can be recycled when no longer needed. These recycled 

plastics and glass fibers can be reused to make FRP composite components, thereby 

reducing the volume of waste we put in our landfills. Marine piles are currently being 

produced from recycled materials (Taylor 1994). High density polyethylene plastics that 

are recycled from milk jugs, juice containers, and detergent bottles are being combined 

with fiberglass pultruded reinforcing elements to produce these piles. As many as 15,000 

containers can be recycled into one 18-m (59-ft) pile. FRP composites themselves can be 
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recycled when their useful life is through. These components can be reprocessed to 

recover most of their original materials and the materials reused. 

2.4 REPAIR AND REHABILITAION OF EXISTING STRUCTRES 

Aging and deterioration of bridges and civil engineering structures has become a 

critical problem in the bridge industry. This problem is more severe in marine and 

industrial areas where the corrosion effects of salts on steel structural members are quite 

devastating. Also concrete in marine and industrial environments is highly susceptible to 

chloride attack. The repair and rehabilitation of these structures have become a major 

challenge to civil engineers.  

Strengthening of reinforced concrete members with externally bonded steel plates 

is one of the repair techniques used since the1960s. In spite of the extensive research that 

has been done regarding this technique, it still has some difficulties and disadvantages. 

The heavy weight of the steel plate and its high potential to corrosion makes it 

impractical for doing repair. Corrosion of steel at the adhesive interface will lead to a 

high cost in both installation and maintenance. Steel plates can be replaced by high-

strength fiber reinforced composite sheets. The main advantage of composite plates over 

steel plates is high strength-to-weight ratio, their excellent resistance to corrosion, and 

their nonmagnetic and nonconductive properties (M’Bazaa 1996) 

Sonti (1996) investigated the use of fiber reinforced plastic wraps to strengthen 

the glue laminated timber beams of a timber bridge. The study included three types of 

fiber systems (1) unidirectional carbon fiber sheets, (2) non-woven glass cloth, and (3) a 

woven glass cloth. A total of eight beams were tested, five wrapped and three unwrapped. 

An epoxy based adhesive was used in the wrapping process. The test results showed that 
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fiber orientation has a big effect on the strength and stiffness of the wrapped beams. 

Beams wrapped with fiber orientation perpendicular to the longitudinal axis of the beam 

gained higher strength and stiffness than other beams. It has been noticed that the failure 

of beams occurred outside the wrapped area or very close to the end portion of the 

wrapped area and never in the middle of the wrap. 

The strengthening of reinforced concrete beams with externally bonded composite 

laminates relies substantially upon the force transfer between concrete and composite 

material at the interface (Juvandes 1998). The performance of concrete beams 

strengthened with carbon fiber reinforced plastic (CFRP) laminates has been studied 

based on an experimental test performed in two series of reinforced concrete beams with 

externally bonded carbon-fiber-reinforced plastic laminates. Results showed that the 

strengthening techniques using CFRP sheets improves the ultimate load capacity and to a 

lesser extent in flexural stiffness.  

Confinement of concrete cylinders with carbon fibers sheets to improve ductility 

and strength was also investigated by Picher et al (1996). Deteriorated reinforced 

concrete columns can be strengthened either by adding longitudinal steel bars or by 

placing a steel jacket around the columns. Both methods are not effective in the long run 

because the corrosion problem will remain unresolved. Wrapping the deteriorated column 

with fiber reinforced composite sheets has more advantages than the steel jacket. Such 

advantages are high strength, low thickness and weight, and ease of construction. Results 

proved that fiber reinforced composite sheets improve the compressive strength and 

ductility of confined concrete cylinders. The fiber orientation within the composite sheets 

has a big effect on the axial stiffness of the confined cylinder.  
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Mirmiran et al (1996) discussed the use of multi-layer FRPs in confining concrete 

columns based on the fact that high performance concrete can be achieved by confining 

normal strength concrete and the fact that lateral confining pressure increases strength 

and ductility of concrete in the axial direction. As a part of that study, a composite 

column was proposed to be used as a form, protective jacket, confining member, and bi-

directional external reinforcement. The filament-wound tubular composite shell was a 

multi-layer angle-ply or normal axial wound pipe. Experimental test results showed that 

the strength of the standard concrete cylinder was tripled after being confined by the FRP 

composite shell.  

2.5 COMPOSITE MATERIALS FOR PILING 

Marine piling has been a common problem for structural engineers in that the 

wetting and drying due to storm activity and tidal fluctuations result in accelerated decay 

of steel, concrete and wood pilings. The use of composite materials in piling has started 

recently. Because of the lack of history, specifications and experience on composite 

materials, they are still somewhat controversial when they are considered as a 

construction material. Their short history as construction materials is one of the factors 

that limit their use.  

Concrete, steel, and timber, the traditional materials for piling exhibit many 

problems when used in corrosive soils and harsh environments. Millions of dollars are 

spent each year for maintenance and rehabilitation of concrete and steel piles. Fiber 

reinforced polymers have performance advantages over concrete and steel or timber. Also 

they can be custom designed to fit certain requirements and specifications. 
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In spite of their advantages over other materials, steel and concrete have 

disadvantages especially in harsh environments. As stated earlier, steel corrosion and 

concrete deterioration are the main problems. The reduction in the section area with time 

is a major problem that risks the safety of the structure. The use of composite materials 

(FRPs) can be an alternative solution for such problem.  

The use of FRP composite piles as a load bearing structure is still under extensive 

study. The lack of experience and history about such materials is a major concern. Also 

the high initial cost of composite materials is another important issue.  

The use of composite materials in piling structures started a few years ago. Most 

of its usage was by the navy as marine fenders. They showed better performance over 

other piles due to their high strength and durability. Composite piles have been installed 

in multiple locations of demonstration projects in the New York Metropolitan area. The 

Tiffany Street Pier was constructed entirely from recycled plastics (Iskandar 1998).  

Composite piles are also being used for bearing as well as fendering. A group of 

composite piles were driven in San Diego between September and November of 1996 

(Goldstik 1998). The piles were 14 in. in diameter and up to 80 ft in length with wall 

thickness of ½ in. They were driven using a regular diesel hammers. Their ultimate 

capacities exceeded 240 kips. It was found that these piles were capable of absorbing 

high energy when they are driven hollow. They have tensile strengths around 60 ksi and a 

compressive strength of 55 ksi with an axial wall stiffness of 3,000,000 psi. Their flexural 

stiffness can be increased by concrete filling before or after driving.  
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2.5.1 THE 69TH STREET COMPOSITE PIER 

The 587 ft long pier was located in the Bay Ridge, Brooklyn, New York with a 

total of fifty bents mainly of timber piles and reinforced concrete deck. Underwater 

surveys found that the timber piles were severely damaged because of a marine borer 

attack. The New York City then decided to replace the deteriorated pier and construct 

new pier. The construction company chose to reconstruct the pier with fiber reinforced 

composite piles. The selection of composites was due to their specific advantages over 

other traditional materials. The chosen material offers several advantages (Goldstick 

1998): durability, lower maintenance cost and lower life cycle cost. Also it has the 

flexibility to be manufactured in different shapes and it has the ability to be joined which 

led to lower construction cost and time.  

The construction engineering company selected the E-glass reinforcement in vinyl 

ester resin to maximize performance and reduce cost. The reinforcement fabrics were 

selected with the fibers tailored to the direction of maximum performance. Mechanical 

properties of the material used are shown in Table  2-1 . 
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Table  2-1: Mechanical properties of the composites used (Goldstick 1998). 

Material 
 

Property E-glass 
Unidirectional

E-glass 
Triaxial 

TVM 3408 

E-glass 
Quadraxial 
QM 5608 

Balsa 
15.5 pcf 

Balsa 
9.5 pcf 

E11 (Msi) 7.00 3.45 3.00 1.12 0.59 

E22 (Msi) 1.67 2.23 3.00 1.12 0.59 

E33 (Msi) 1.65 1.9 1.50 1.12 0.59 

Xt (ksi) 80.00 82.00 60.00 3.45 1.90 

Xc (ksi) 60.00 82.00 55.00 3.85 1.90 

 

Full scale field testing and laboratory tests proved new construction materials to 

be very competitive with conventional materials in terms of structural properties, 

durability, joinability, fabrication, and life cycle cost. The materials also are 

environmentally safer, UV stable and non-hazardous. 

2.5.2 CAPE MAY – LEWES FERRY DOLPHINS 

The Cape May – Lewes Ferry terminals are located in an area between New 

Jersey and Delaware. The breasting dolphins at the terminal require periodical 

maintenance and replacement for their timber piles. In a forward step towards reducing 

the cost, the owner and the river authority supported the use of high performance 

composite materials to replace the timber piles. The high performance composites offer 

high strength, corrosion and fatigue resistance, and flexibility to absorb energy when 

compared to timber, steel and concrete piles (Bryan 1998).  

The new piles manufactured by Hardcore-DuPont Composites of New Castle, 

Delaware were fiber glass tubes 18” in diameter filled with concrete. The pile shell was 
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made of woven E-glass fibers with vinyl ester resin. The SCRIMP (Seemann Composite 

Resin Transfer Molding) method, in which the resin is sucked into the reinforcing 

composite fabric, which is already laid up dry in the molds, through distribution channels 

and lamina, was used in manufacturing. Mechanical properties of piles used in the project 

are shown in the following table.  

Table  2-2: Mechanical properties of pile laminates (Bryan 1998) 

 

 

 

 

 

A test pile was driven in a local area near the project area. The pile then was 

loaded laterally to test the design data provided by the manufacturer. The pile sustained 

the test load without failure but with large deflection at the head. No apparent damage has 

been noticed after the pile was pulled out. The pile was then reused for other purposes in 

a different location.  

A second verification test was for the 10 - dolphin under impact loading. The 

newly constructed dolphin was subjected to 2100 metric tons impact load applied by one 

of the Ferry vessels. The dolphin was impacted four times and the test was recorded using 

high speed cameras mounted on marked targets at the dolphin. The test concluded that 

fiberglass piles have great potential to absorb impact energy due to their superior strength 

and corrosion resistance. Despite their high strength, fiberglass piles are flexible and light 

weight and do not drive well with impact hammers. It is recommended to drive them 

Property Kip/in.sq. 
Tensile Modulus 5,210 
Compressive Modulus 4,970 
Tensile Strength 75 
Compressive Strength 60 
In Plane Shear Strength 16 
Interlaminar Shear Strength 4 
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open with a vibratory hammer. Steel shoes can be used for unfilled piles in the areas of 

hard driving. 

Frank March and Marie Colturi (1998) discussed the market advancement for 

composite marine piling in the United States. They reported an estimate of $4.7 billion to 

be spent by the U.S. Department of Transportation on the shore side facilities’ 

construction and modernization before 1999. The estimated cost for system deteriorations 

of the marine waterfront structures is about $2 billion a year. The authors’ 

recommendations were to take advantage of fiber reinforced composites to replace 

traditional materials for marine constructions. The new materials have the strength and 

capability to withstand anticipated impacts without over stressing and deflections to 

absorb energy of impacts. The life cycle cost of these materials is competitive for several 

reasons and reported by them as follows: 

• Initial cost 

• Driving/installation costs 

• Administrative cost of purchasing/engineering 

• Inspection costs 

• Maintenance costs 

• Removal costs 

• Disposal costs 

• Environmental overhead costs 

• Lifetime/ frequency or replacement. 
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2.5.3 THE CPAR PROGRAM 

In a cooperative effort between the U.S. Army Corps of Engineers’ Construction 

Productivity Advancement Research (CPAR) Program’ and other agencies and academic 

institutions, a research program has been initiated by the Center for Plastics Recycling 

Research at Rutgers University to develop, test, and demonstrate high-performance 

polymer composite fender, load bearing, and sheet piles for marine civil engineering 

applications. The program was a form of competition between manufacturers to develop 

innovative designs for high-performance polymer composite piles for waterfront 

applications. The selected products for development during that competition were 

analyzed and tested. Products with best potential to meet the performance criteria have 

been installed at selected demonstration sites.  

Several manufacturers participated in the competition with different types of 

composite pilings. The products developed and tested under this competition involved 

both reinforced thermoplastic and thermoset resins with different forms of glass fibers 

reinforcements ( i.e. continuous fibers or roving, chopped fibers, and cloths or mats) 

(Lampo 1998).  

Composite piles in the program were mostly of circular cross-sectional composite 

shells, hollow or filled with concrete. Some other configurations such as a tic-tac-toe FRP 

pile encased with high density polyethylene (HDPE) plastic shell are also included. Fully 

recycled plastic matrix reinforced with FRP reinforcing bars was also available.  

The candidate piling products in the program underwent a series of laboratory 

tests to see if they meet the performance target goals. Five different fender piling 
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products; five different load bearing pilings; and three different sheet pile products were 

selected for testing. A summary of the laboratory tests is shown in the table below.  

Table  2-3: Summary of laboratory test for piles in competition (Lampo 1998a). 

Pile type Tests 

Fender 

Flexural test to determine EI.  

Cold bending (flexural) test to evaluate fracture potential in cold 

conditions. Cold radial compression test to evaluate behavior in a crushing 

mode. 

Bearing 
Flexural test to determine EI (for buckling).  

Compression to determine compressive strength and load capacity.  

Creep measurement. 

Sheet Flexural test to determine EI and bending strength. 

 Determine potential for built-up structures (to increase moment of inertia). 

 

Three types of laboratory tests were conducted on piles. The tests were selected 

upon the recommendations of the research team based on the types of loading situations 

and weather conditions that these piles may be subjected to. 

1. Radial Compression test “Screening”, at –40 deg. F (-40 deg. C), 100 percent/minute 

Strain Rate. This test was to evaluate the pile capacity of energy absorption without 

causing any permanent damage to the pile. Fender piles are usually used in the ports to 

protect structures from ship impacts. This experiment is meant to evaluate usefulness in 

an installation where a boat impinges on a pile backed by a concrete slab.  

Samples were tested on a full cross section at a radial compression strain rate of 

100 percent per minute. The piles were loaded to failure, or past 20 percent strain, 

whichever came first. A summary of the test results is shown in the following table. 
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Table  2-4: Summary of average results for cold radial compression tests on fender pile 
specimens (Lampo 1998a). 

Company 
Name 

NO. of 
piles 
tested 

Initial 
Slope of 

F/D* curve 
(lb/in) 

Force at 
Failure 

Displacement 
at failure (in) 

Energy 
Absorbed 

(lb-ft) 

Indication 
of Failure 

Lancaster 
Composite 1 120,718 9,435 0.29 23 Yes 

Creative 
Pultrusions  
Type 1 

1 6,513 20,750 1.34 595 Yes 

Creative 
Pultrusions  
Type 1 
Skewed 

2 8,222 975 0.32 15.5 Yes 

Creative 
Pultrusions  
Type 2 

2 7,850 50,000+ 1.10 590+ No 

Creative 
Pultrusions  
Tyep2 
Skewed 

2 4,806 7,875 1.40 311 Yes 

Trimax 
 3 346,710 22,728 0.28 44 Yes 

Seaward 4 317,151 18,237 0.18 26 Yes 
Hardcore 
Type 1 3 584 492 ---- 12 No 

Hardcore 
Type 2 4 1,727 1,150 ---- 29 1-yes 

3-no 
Hardcore 
Type 3 4 4,871 2,875 2.23 71 Yes 

Wood, new 
chemically 
treated 

3 1,503,125 80,438 0.39 42 Yes 

 
* F/D : Force/ Displacement 
 

2. Flexural Test to Determine EI. The resistance of piles to bending forces is an important 

engineering issue. Stiffness in fender piles is a very important property relative to energy 

absorption. The bending stiffness of a pile or column is dependent on the elastic modulus 

and the moment of inertia of the cross section. This test was performed on two different 

categories of fender piles: a long span with a minimum length of 22 ft and a short span of 

10 ft length with a pile diameter of 12 to 16-in.. Testing was performed on long and short 
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spans to estimate the error associated with using the less expensive (shorter span) and 

testing to correlate properties. The test also included recycled plastic reinforced pile and 

the fiber reinforced concrete filled pile. Results showed that all the composite piles tested 

at long spans exceeded the target EI of 600x106 lb-sq in.. Short span results of recycled 

plastic reinforced pile showed a reduction in EI when compared to long span results.  A 

36 percent decrease in EI for a short span has been noticed. On the other hand, the fiber 

reinforced concrete filled piles showed better results.  

In load bearing piles, stiffness is also an important issue regarding resistance to 

buckling during pile driving or when the pile is in service. Flexural testing was also 

performed on load bearing piles similar to that done on fender piles. No results have been 

reported on this test. 

3. Compression testing of load bearing piles. This test is also performed on both the 

reinforced recycled matrix pile and the FRP concrete filled piles. Five feet long test 

specimens were used to minimize the possibility of buckling. Compression was 

conducted until specimen failure or until reaching the machine load limit. Test results 

showed that some piles satisfied the performance goals and reached the design limit and 

others failed to reach that goal. 
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Table  2-5: Bearing pile compressive test results (Lampo 1998a). 

Manufacturer Compressive 

failure load, 

kips 

Cross-

sectional area, 

sq-in 

Compressive 

failure stress, 

ksi 

Modulus , 

E  

psi x 106 

Creative 

Pultrusions 

248.5 14 17.8 5.1 

Hardcore 

Composites 

765.6 148.5 5.15 0.85 

Lancaster 

Composite 

>856 130 >6.58 1.15 

Seaward 

International 

>856 201 >4.26 0.55 

 
 

4. Cold Flexural Test. This experiment is meant to evaluate whether a piling in a system 

designed for bending will be subject to fracture at small strains at low temperatures. A 

piling that is excessively brittle at low temperatures is undesirable and would not be able 

to absorb significant berthing energy. Because of size restrictions in the controlled low-

temperature (–20 °F) testing room, the ASTM recommended 16:1 length: diameter (L:D) 

ratio could not be met, and shorter (10-ft) spans must be tested. 

Practically, for all of the mechanical property testing of fender pilings, excellent 

correlation (within 10 percent) was found when multiple samples were tested in any 

given experiment. 

The test results showed different variations in the mechanical properties under the 

different tests for the different types of piles. The tic-tac-toe pile which is mainly flat 

composite plates joined at 90 degrees as shown in Figure  2-1 did not satisfy the required 
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load limits in the compression test. The pile failed at a lower load but did take higher 

stress before failure than other piles in the program. This low capacity is because of the 

smaller cross sectional area compared to other piles. The overall performance of this pile 

was much better than others. A pile from Seaward international which is a recycled 

plastic matrix reinforced with FRP bars did satisfy the load carrying capacity and did not 

fail even at the limit of the testing machine but with lower stress capacity compared to 

Creative Pultrusions pile.  

 

Figure  2-1: Tic-tac-toe pile of Creative Pultrusions. 

Composite materials (FRP) have the advantage of high strength and durability. Its 

ability to corrosion resistance and other chemical attacks gives it the advantage of lasting 

longer than steel and concrete. Low stiffness is one of the major problems that 

accompanied the use of FPRs in pile structures.  

Piles in bridges are subjected to different kinds of forces: axial forces due the 

weight of the superstructure and the vehicles, lateral forces due to temperature changes 

and impact and braking forces of the vehicles and soil and earth pressure in the 

substructure. To overcome the problem of lack of stiffness of composite materials, the 

hybridization technique can be used by combining the FRP with another stiff material 

like steel or concrete.  

HDPE cover

tic-tac
toe FRP
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Flexural testing of the standard Hardcore Composites tubular piling was 

performed at the ATLSS Multidirectional Laboratory at Lehigh University. Specimens 

were tested filled with concrete. The nominal concrete strength was 4000 psi. Each 

specimen was tested in three-point bending with a 16:1 span to diameter ratio. Load was 

applied at mid-span. 

 

Figure  2-2: Three-point bending test (HardCore). 

Testing protocol consisted of loading to 25% of predicted maximum deflection at 

a rate of two inches per minute; return to zero; load to 50% of predicted maximum 

deflection; return to zero; then finally test to failure. Table  2-6 lists the ultimate flexural 

properties of the standard tubular piling. 

 

 



 27

Table  2-6: Flexural Data: Fiberglass Tubular Piling (Hardcore). 

Specimen  
No. 

Bending Stiffness, 
EI (lb-in2) 

Ultimate Bending  
Moment (in-lb) 

1 4.49 x 108 1.15 x 106 

2 9.78 x 108 2.04 x 106 

3 1.38 x 109 2.80 x 106 

4 1.76 x 109 3.43 x 106 

5 4.59 x 109 5.66 x 106 

6 5.78 x 109 7.60 x 106 

 

2.5.4 THE NELP PROGRAM 

This program was initiated in support of the Navy Environmental Leadership 

Program (NELP) and Tetra Tech EM inc. to evaluate the using of fiberglass and steel 

reinforced pilings installed in several naval station locations. Two types of piling were in 

the study: fiberglass –reinforced and steel-reinforced. The fiberglass pilings consist of a 

foamed plastic in the core reinforced with fiberglass bars incased in a dense plastic shell 

from the outside. The plastic inner core is made of 100 percent recycled plastic obtained 

from recycled plastic materials, such as plastic milk jugs. The fiberglass reinforcing bars 

are arranged in a concentric pattern within the inner core of the plastic piling and extend 

the entire length of the piling (Tetra 1999). The plastic piling evaluation focused on 

assessing the plastic piling durability, strength, cost, and environmental integrity.  

The main objectives of this program were to provide plastic piling users with the 

necessary technical information that enables them to assess and evaluate the piling 

applicability for different sites. Plastic pilings have many performance characteristics 
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over traditional pilings, such as their high capacity of energy absorption and capability of 

reserving capacity even after yielding.  

The study included two types of plastic pilings: fiberglass reinforced and steel 

reinforced piles. The fiberglass reinforced plastic piles which are manufactured by 

Seaward International consists of an outer skin of high density plastic and inner core of 

100% recycled plastic matrix.  

2.6 HYBRIDIZATION TECHNIQUE 

A hybrid pile system consists of a concrete section that is reinforced with an FRP 

shape. The FRP shape can be in the form of a filament-wound shell or tube, plate, panel, 

or pultruded section. The most common characteristics of hybrid systems are as follows: 

(a) the FRP shape acts as permanent form for concrete, (b) reinforcement for concrete is 

provided externally and solely by the FRP shape, (c) capacity and performance of the 

system both depend on the composite action between concrete and FRP, and (d) the 

system lends itself to optimization based on material properties of each component.  

Studies done in the past mostly dealt with steel, concrete and timber piles or their 

combinations. Due to the difference in material properties and structural behavior 

between FRPs and traditional materials, the results and findings of these studies may not 

be valid for the new materials. New studies and extensive research should be performed 

concerning the FRP materials and their applicability in bridge structures. The studies 

should include all factors that affect the safety and life of the structure.  



 29

2.7 COMPOSITE PILES IN THE MARKET 

As stated earlier, FRP composite piles have gained some acceptance in the 

construction market in the last few years. Their use has been limited to waterfront 

barriers, fender piles, and bearing piles for lightweight structures. 

Many manufacturers are currently producing FRP composite piles. Most of the 

products are made of glass fibers in a resin matrix. The most common glass fiber used in 

piling products is E-glass (lime aluminum borosilicate) because it has acceptable strength 

properties and reasonable price.  

Seaward International, Inc. 

 
Seaward International, Inc. produces high performance energy absorption and 

structural protection products for marine applications (Seaward). Their products include 

foam-filled marine fenders and buoy, plastic piling and timber. The marine fenders are 

manufactured using heat-laminated flexible resilient foam inside the fender and a high 

quality filament-reinforced polyurethane elastomer skin. The fenders are available in a 

wide variety of diameters and lengths, from the 2 ft x 4 ft (0.6 m x 1.2 m) to the tanker-

scaled 14 ft x 28 ft (4.3 m x 8.5 m). The company claims that all Seaward fenders meet 

the operational performance expectations the industry has grown to depend on. 

SEA GUARD Fenders are fabricated from closed-cell resilient foam that absorbs 

significant quantities of energy when compressed. The foam is protected by a thick, 

filament reinforced elastomer skin. The claim is that this construction offers a number of 

important features and advantages:  

• High energy absorption with low reaction force  

• Tough outer skin that won't snag hull protrusions or dock fittings  
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• Totally buoyant - won't sink if punctured  

• Burst resistance  

• Low maintenance  

• Reliable performance  

• Simple installation.  

SEAPILE and SEATIMBER composite marine products are plastic piling and 

timbers made from 100% recycled plastic, which provide alternatives to traditional 

chemically treated wooden piling and timbers.  

Reinforced with fiberglass rebar for added strength, SEAPILE and SEATIMBER 

Composite Marine Piling and Timbers are also abrasion resistant, and the plastic matrix 

incorporates ultraviolet inhibitors to ensure a long life. They are environmentally safe and 

are impervious to marine borers. 

Seaward's SEAPILE® composite marine piling is a high-performance, 

environmentally-friendly replacement for traditional wood piling. The piling has a round 

cross-section with diameters of 10 inch (250mm), 13 inch (330mm), and 16 inches 

(400mm). SEAPILE composite marine piling is made of plastic, which has been 

structurally reinforced with fiberglass reinforcing bars, making the product non-corrosive 

as well as impervious to marine borers. 
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Table  2-7: Composite piling specifications (Seaward) 

 

 

 

Piling Size 

(Diameter) 

Number and Size 

of Reinforcements 
Stiffness, EI 

Weight per  

foot (meter) 

in mm # in mm lb-in2 kN•m2 lb/ft kg/m 

10 250 6 1 25 2.25E+08 647 24 - 29 36 - 43 

10 250 6 1.25 32 3.06E+08 878 25 - 31 37 - 46 

10 250 6 1.375 35 3.54E+08 1017 26 - 32 38 - 47 

  

10 250 8 1 25 2.84E+08 817 25 - 30 37 - 45 

10 250 8 1.25 32 3.92E+08 1 125 26 - 32 39 - 48 

10 250 8 1.375 35 4.57E+08 1 311 27 - 33 40 - 49 

10 250 8 1.5 38 5.26E+08 1 509 28 - 35 42 - 51 

  

13 330 8 1 25 6.57E+08 1 886 39 - 48 59 - 72 

13 330 8 1.25 32 8.90E+08 2 556 41 - 50 61 - 75 

13 330 8 1.375 35 1.03E+09 2 959 42 - 51 62 - 76 

  

13 330 12 1 25 9.17E+08 2 633 41 - 50 61 - 74 

13 330 12 1.25 32 1.27E+09 3 639 43 - 53 64 - 79 

13 330 12 1.375 35 1.48E+09 4 243 45 - 55 66 - 81 

13 330 12 1.5 38 1.70E+09 4 883 46 - 57 69 - 84 

  

16 400 16 1 25 2.00E+09 5 746 61 - 74 90 - 111 

16 400 16 1.25 32 2.76E+09 7 911 64 - 78 95 - 117 

16 400 16 1.375 35 3.21E+09 9 210 66 - 81 98 - 120 

16 400 16 1.5 38 3.69E+09 10 584 68 - 83 101 - 124 
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Hardcore Composites 

 
The Hardcore Composites tubular pile was described earlier in this chapter. The 

pile mainly consists of a high strength fiber reinforced cylindrical shell that can be driven 

either with a driving shoe or be driven open-ended. Hardcore uses the Vacuum Assisted 

Resin Infusion Method (VARTM) in manufacturing their products. Piles produced in this 

method have less than 0.5% voids in the composite. Tubular piling products are available 

in standard size diameters from 10 to 18 inches. In addition to the standard sizes, custom 

size production is up to 60 inches in diameter with any shippable lengths. Table  2-8 lists 

the standard piling products of Hardcore composites.  

Table  2-8: Standard Composite Tubular Piling (Hardcore) 

Product 

Identification 

Nominal 

O.D. (in) 

Fiberglass Shell 

Thickness (in) 

Optional Acrylic Skin 

Thickness (in) 

10-2 10.00 0.182 0.030 

12-2 12.75 0.182 0.030 

12-3 12.75 0.273 0.030 

14-3 14.00 0.273 0.030 

18-3 18.13 0.273 0.040 

18-4 18.13 0.364 0.040 

 

The tubular piling of Hardcore composites is capable of carrying compressive, 

tensile, shear, and torsion loads. Axial load and bending moment capacity of the pile can 

be improved by using concrete filler in the pile. The inner surface of the tube can be 

roughened to develop mechanical interlock between the concrete and the piling 
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composite material. Results of flexural testing of the standard Hardcore Composites 

tubular piling filled with concrete of a 4000 psi nominal strength are listed in Table  2-9. 

Table  2-9: Fiberglass tubular piling flexural data (Hardcore) 

Product 

Identification 

Bending Stiffness, 

EI  

(lb-in2) 

Ultimate Bending 

Moment 

(in-lb) 

10-2 4.49 x 108 1.15 x 106 

12-2 9.78 x 108 2.04 x 106 

12-3 1.38 x 109 2.80 x 106 

14-3 1.76 x 109 3.43 x 106 

18-3 4.59 x 109 5.66 x 106 

18-4 5.78 x 109 7.60 x 106 

 

Lancaster Composites 

 
Lancaster Composites produces a composite pile similar to that of hardcore with a 

commercial name CP40. It consists of fiber reinforced polymer shell filled with high 

strength concrete core which acts compositely with the polymer shell. The FRP shell 

provides the necessary strength to resist tension and bending forces while the concrete 

core increases the compression capacity as well as flexural rigidity and protection for the 

pile from damage. Table  2-10 shows the mechanical properties of some of their products. 

Figure  2-3 shows a picture of piles installation in the field.   
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Figure  2-3: Lancaster Composites piling installation. 

 

Table  2-10: Physical properties of Lancaster composite piling 

Property Value 

Bending Stress 25,000 psi 

Bending Modulus 2.8x10 6 psi 

Compressive Stress 25,000 psi 

Compressive Modulus 2.8x10 6 psi 

Shear Stress 8,000 psi 

Water Absorption 0.07% 

Strain 0.09% 

Density 145 lbs/ft 3 
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According to Lancaster Composites, the composite pile CP40 has several benefits 

some of them are list below: 

• Cannot rust, rot, or corrode. Withstands harsh environments (salt, harsh 

chemicals, low temperatures, freeze/thaw, etc.) 

• Not subject to marine borer damage. 

• Low/No maintenance. 

• 75 year plus service life. 

• Reliable design loads. 

• Piles available in any length, any quantity. 

• Standard Sizes: 6", 8", 10", 12", 14", 16" OD’s. Continuous lengths up to 115 

feet. (Monopiles & columns up to 8’ OD available.) 

• Cost: Competitive with traditional materials of similar strength, corrosion 

resistance, and service life 

• Skin Friction / Capacity: Overwrap of glass roving wrapped into the lower section 

of the FRP tube during manufacture creates surface ridges, resulting in 

exceptional skin friction. 
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2.8 DRIVABLITY OF FRP COMPOSITE PILES 

Drivability is a major requirement for a pile to be accepted as a load carrying 

structure. A pile should have the ability to be driven to the designated depths without any 

damage or change in physical and mechanical properties. Material stiffness and strength 

are the major properties that usually determine the pile drivability.  

Hardcore composites conducted a test program on installation and loading of 

fiberglass tubular piling in New Castle, Delaware. A composite tubular piling is a 

cylindrical shell fabricated of high-strength fiber reinforced composite materials as 

shown in Figure  2-4. The outer surface of the shell can be coated with a rubber 

toughened, acrylic skin. The acrylic skin provides additional protection against abrasion, 

ultraviolet (UV) light, and chemicals. 

The inner surface is textured to create a mechanical lock with a filler material, 

usually concrete. The piling is molded, shipped and driven as a hollow shell and then is 

filled with concrete or other appropriate core material. If required, the piling can be filled 

with concrete at the factory and shipped as a complete unit. 

 

Figure  2-4: Hardcore piling. 
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The resulting structure is a piling system with approximately the same stiffness as 

timber piling, but is 4 times stronger and 15 times more energy absorbent. 

The project included installation, dynamic testing, and static load testing of 

Hardcore fiberglass tubular piles at a site on the premises of the Hardcore pile production 

plant (Hardcore 1997). A group of fifteen Hardcore piles in addition to steel and timber 

piles were driven to refusal in the test site. The steel and timber piles were included in the 

test program for comparison purposes only. The composite piles were made of an acrylic-

coated fiberglass shell with length from 15 ft to 60 ft and diameter of 10 in to 12 in.. The 

wall thickness was from 0.182 in. to 0.364 in. Pile installation was by using a pile driving 

crane with a 46ft-kips per blow hammer.  

The test piles were driven to depths from 6.5 to 32 feet before encountering 

refusal (12 blows or more per one inch) or exhibiting head damage. Half of the hollow 

piles were driven open-ended and the other half using a steel boot plate. The timber pile 

was driven to the full length of 42 feet. The steel pile was driven to a depth of 15 feet 

before the top of the pile was damaged by hard driving. Static load tests, in accordance 

with ASTM D-1143, were performed on 6 of the test piles. Load was applied 

incrementally from 3- to 10-tons with loading period of 2.5- to 15-minutes. Tests 

continued till reaching ultimate pile failure. The ultimate failure load was taken as the 

load at which the pile settlement continues to increase substantially without any load 

increment, the plunging failure load.  

Hardcore composite piles showed good performance in the test program. The test 

proved that these piles can be driven using the conventional driving equipment. In hard 

driving conditions “brooming” of the pile top may occur especially at refusal blow count. 
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Most piles in the test failed at the pile top because of brooming. Using thicker wall piles 

at the top or a pile cap with enclosure is recommended in hard driving conditions. 

Bending of long piles (40 to 70 feet) during installation at the midspan point was also 

observed. Using a restraining system is recommended during pile installation in hard 

soils so that it will support the pile against lateral movement. 

In a technical paper published in 2001, Ashford and Jakrapiyanun presented a review of 

several composite pile designs that are currently available in the market. Their study 

included driving analysis of six piles with different size and material properties. Two 

piles were conventional material pilings: square precast, prestressed concrete pile and 

steel pipe pile. The other four were FRP composite piles with different manufacturing 

techniques selected for comparison purposes. Pile types and material properties are listed 

in Table  2-11 as presented by the authors. 

Table  2-11: Piling material properties (Ashford et al 2001) 
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The driving analysis was performed on the test piles and concentrated on the axial 

stresses induced in each pile during driving and the ultimate bearing capacity of the pile 

based on penetration resistance. The study considered two soil profiles; the first profile is 

dense sand overlaid by soft clay layer where 90% of the total capacity was contributed by 

end bearing. The second profile was mainly a thick layer of stiff clay where only 10% of 

the total pile capacity was contributed by end bearing. 

Three different single acting diesel hammers were used: 

• Small hammer with 32 kN.m rated energy. 

• Medium hammer with 69 kN.m rated energy. 

• Large hammer with up to 153 kN.m rated energy. 

The study results were presented for all piles on an ultimate bearing capacity basis 

and penetration resistance as shown in Figure  2-5 below. The allowable driving stresses 

were not exceeded. 
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Figure  2-5 (a) 

 

Figure  2-5 (b) 
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Figure  2-5 (c) 

Figure  2-5: Ultimate bearing capacity as a function of penetration resistance for (a) 31-

kN.m Hammer; (b) 69-kN.m hammer; (c) 151-kN.m hammer (Ashford et al 2001). 

 

Iskander et al (2001) presented a review for the current market products of piles 

and piling materials, Figure  2-6. They performed a theoretical parametric study on the 

effect of various pile properties and soil conditions on the drivability of FRP composite 

piling in a typical waterfront site. The parametric study utilized the wave equation 

analysis of piles (WEAP) to investigate the influence of the different parameters on the 

drivability of composite piles. The findings and conclusions were summarized by the 

authors as follows: 
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• The modulus of elasticity and specific weight are the main factors that 

affect the drivability of polymeric materials, while drivability of stiffer 

materials is governed by the soil properties. 

• On theoretical basis, driving of polymeric piles is more efficient when 

using a single-acting steam hammer 

• Single –acting steam hammers appear to be more efficient than diesel 

hammers in driving polymeric piles as shown in Figure  2-7. 

 

Figure  2-6: Different pile configurations available in the market. 

 

Figure  2-7: Drivability of polymeric piles using different hammers (Iskander et al 2001). 

 

 

Plastic shell FRP shell
Plastic shell Plastic matrix
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FRP rebars Steel ring Concrete
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CHAPTER 3  
 

MECHANICS OF COMPOSITE MATERIALS 

3.1 INTRODUCTION  

A composite material is a combination of two or more materials different in form 

or composition on a macro scale and act as unit to perform a particular function. In civil 

engineering, an FRP composite can be defined as "A matrix of polymeric material that is 

reinforced by fibers or other reinforcing materials".  

Classical composites generally consist of a polymer matrix reinforced with fibers. 

A polymer matrix may have the form of polyester, vinylester, epoxy, phenolic, 

thermoplastic, etc. The reinforcement fibers can be made of glass, carbon, aramid, etc. 

Other terminology for composites include fiber-reinforced plastic, glass fiber reinforced 

plastic (GFRP), carbon fiber-reinforced plastics (CFRP), reinforced plastics (RP), and 

others.  

The use of composite materials was started about 50 years ago. Along the years 

composite materials proved to be extremely effective in high-performance applications 

where traditional materials have failed, especially in aggressive environments. 
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3.2 MATERIAL COMPOSITION 

From its definition, a composite material is a mix of more than one material 

combined together to form a new material with different properties and behavior. 

Generally, a composite material consists of reinforcement, resin, and core material.  

Fiber reinforced composite materials consist of fibers embedded in a resin matrix 

to act as a single unit. The constituent materials usually retain their physical and chemical 

identities in their new form. The new product will have improved properties with higher 

performance than if the constituents act separately. Fibers are principal components of 

the composite work as reinforcement that provide strength and stiffness to the composite. 

They have higher strength and stiffness than conventional materials or the bulk material 

that the fibers made were from. Resins which are used as a matrix to contain the fibrous 

reinforcement in a composite material are an organic polymer or prepolymer. The organic 

matrix may be a thermoset or a thermoplastic and may contain a wide variety of 

components or additives to influence handleability, processing behavior, and ultimate 

properties (Military 1997).  

Glass fibers are the most common materials used in reinforced plastics because of 

their relative strength and reasonable cost. Almost 90% of the reinforced plastics used are 

made of glass fibers. E-glass (lime aluminum borosilicate) is the most commonly used 

glass fibers. Typical E- glass fibers have a tensile strength of 500 ksi and an ultimate 

elongation of 4.8% (Eric 2000). Core materials are any materials that can physically 

separate strong, laminated skins and transmit shearing forces across the sandwich (Eric 

2000). 
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Fibers and resin are combined together to form a composite unit (lamina). A 

lamina is a single ply arrangement of unidirectional fibers in a matrix. The laminas are 

stacked together in different fiber orientations to form a laminate. The fibers work as 

reinforcement for the lamina. The resin serves to transmit loads between the plies.   

The basic mechanism in the fiber-resin system is that the resin which surrounds 

and bonds every fiber in the unit transmits the load to the fiber through shear stress τ as 

shown in Figure  3-1. Because of the tension force F, a shear stress acts on the outer 

surface of the fiber. This stress will cause a tensile stress σ within the fiber. The shear 

stress on the surface or the fiber is high near the ends of the fiber, and the tensile stress 

within the fiber is low. As the distance from the end increases, the shear stress decreases 

and the tensile stress increases. After a certain distance from the end, the shear stress 

becomes very small and the tensile stress reaches it maximum value.  

 

Figure  3-1: Load transfer between fiber and resin. 
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3.2.1 REINFORCING FIBERS 

Fibers are the major part of the fiber-reinforced composite material. They usually 

contribute more than 50% of the volume fraction of the composite structure and carry the 

major portion of the applied load. Reinforcement fibers have some superiority over other 

materials because of their high stiffness, strength and light weight. Fibers do not 

necessarily need to be used in a continuous form. They can be used in a continuous or 

discontinuous form in the composite as desired. When used as continuous reinforcement, 

they have to be aligned in the matrix with required percentage and direction.  

Different types are available for commercial use. The most common types are 

carbon, glass, Kevlar, and boron fibers. Table  3-1 lists some of these fibers with their 

physical and mechanical properties. 

3.2.1.1 GLASS FIBERS 

Glass fibers are the most commonly used fibers in composites reinforcement. 

They have relatively good strength and stiffness; besides, they are inexpensive compared 

to other types of fibers. Because of these characteristics, they account for almost 90% of 

the fibers used in the low-cost composite industry. Glass fibers are silica based materials 

in which silicone dioxide (SiO2) occupies more than 50-60% of the chemical composition 

of the fibers. They also contain other oxides like calcium, boron, sodium, aluminum, and 

iron. Table  3-2 shows the composition of some commonly used glass fibers. 
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Table  3-1: Typical values of fiber properties. 

 
 

Table  3-2: Chemical composition for glass by weight (Eric Green 2000) 
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Three types of glass fibers are available for commercial use. E-glass (Electrical) 

fibers is the most popular reinforcement used where high strength and chemical 

resistance’s needed. It is usually used in marine constructions because of its good 

resistance to corrosion and water degradation. S-glass (where S stands for strength) has 

better tensile strength and better fatigue resistance compared to E-glass. It has a limited 

use because its cost is about three to four times that of E-glass. C-glass (C for corrosion) 

has better corrosion resistance than other glasses and is limited to corrosion resistance 

applications.  

3.2.1.2 CARBON FIBERS 

Carbon or “graphite” fibers are strong light fibers containing at least 90% carbon 

usually produced by subjecting organic precursor fibers such as polyacrylonitrile (PAN) 

or rayon to a sequence of high temperature until the precursor converted to carbon by 

pyrolsis. Those kinds of fibers are the most dominant in the aerospace industry because 

of their high strength and stiffness of all commonly used fibers. Carbon fibers are very 

brittle materials; they usually fail at a very low strain when subjected to bending.  

The major factor that limits the widespread use of carbon fiber is the high cost. 

Carbon fiber costs approximately five to seven times the cost of glass fibers.  

3.2.2 RESINS  

Epoxy Resins 
Epoxy resins have the best performance in the resins family because they contain 

a reactive functional group in their molecular structure. They are used in advanced 

composite materials for structural and aerospace applications more than all other resins. 

That’s because of their several advantages over other resins such as their mechanical 
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properties, resistance to chemicals, and excellent adhesion with most fiber types. The 

only obstacles that limit their wide use are the high cost and long curing times.  

Polyester resins 
Polyester resins are the most economical and widely used resins in composites 

manufacturing. They can be produced in mass quantities with lower cost and a wide 

range of properties. Their rigidity can be controlled by the ratio of saturated to 

unsaturated acids.  

Vinyl ester resins 
Vinyl ester resins have moderate adhesive strengths compared to epoxy resins. 

They are prepared by the reaction of monofunctional unsaturated acid with a bisphenol 

diepoxide, then mixed with unsaturated monomer. They have the performance 

advantages of epoxies and handling properties of polyesters.  

3.3 RULES OF MIXTURE 

The properties of a composite laminate depend on the properties of its 

constituents: the resin and the fibers. The fibers’ material generally determines the 

mechanical properties of a composite laminate. Three types of fibers are being used in the 

composite industry. The most common used fibers are glass fibers. The following table 

shows different types of fibers and their mechanical properties. 

The mechanical properties of a composite are strongly influenced by the 

proportions and properties of the matrix and the fibers. The commonly used method in 

expressing constituents’ proportions is by volume fraction.  

The fiber volume fraction is defined as the ratio of the volume of fiber to the total 

volume,  
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volumetotal

fiber of volume
=fV  ( 3-1) 

and the matrix volume fraction is also given in a similar manner 

and as a result 

 1=+ mf VV  ( 3-2) 

 

 

Figure  3-2: Deformation of a composite element under axial tensile stress. 

 

For a composite element of initial length L loaded in 1- direction as show in 

Figure  3-2, an elongation of ∆L in the direction of loading has occurred. The strain in the 

composite can be given as 

 
L
L∆

=1ε  ( 3-3) 
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where ε1 applies to both the fiber and the matrix. Since both materials are isotropic and 

elastic then the stress-strain relation in the direction of fiber can be given as 

1.εσ ff E=  

1.εσ mm E=  

The total area on which stress is applies is the summation of the fibers area and matrix 

area 

mf AAA +=  

Then the total force on the composite element can be give as 

mmff AAAP σσσ +== 1  

Then   

)(11 mmff VEVE += εσ  

where 

A
A

V
A

A
V m

m
f

f ==   and    

and     111 εσ E=  

From that it can be found that  

 mmff VEVEE +=1  ( 3-4) 

This equation is known as the rule of mixtures for the apparent Young’s modulus 

of the composite material in the fibers direction (Jones 1999). 

The apparent modulus in the transverse direction can be calculated in a similar 

manner  

 
mffm

mf

EVEV
EE

E
+

=2  ( 3-5) 
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3.3.1 STRESS-STRAIN RELATIONS 

The stress strain relations for a composite material can be expressed using Hooke’s law 

 6,...,1,          == jiC jiji εσ  ( 3-6) 

where σi , and εi, are the stress and strain vectors respectively and Cij is the material 

elastic stiffness matrix.  

In orthotropic materials where there are two orthogonal planes of material 

symmetry, the stress-strain relations can be expressed with nine independent constants in 

the stiffness matrix in the form 
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 ( 3-7) 

This equation applies for an orthotropic material in a state of three-dimensional 

stresses. Composites are generally used in a form of plates or shells or members with a 

very small thickness compared to the two other dimensions, so a two dimensional 

analysis is recommended. A composite lamina can not withstand high stresses in the 

direction other than that of the fibers, so it is not practical to subject it to unnatural 

stresses such as σ3 (Jones 1999).  

The strain-stress relation can also be expressed in a similar manner according to 

Hooke’s law 

 6,...,1,          == jiS jiji σε  ( 3-8) 

where S is the compliance matrix which is the inverse of the stiffness matrix C. 
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In expanded form, equation ( 3-8) can be written in the following form 
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The compliance matrix for an orthotropic material in terms of engineering constants can 

be given as 
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 ( 3-10) 

Where  

E1, E2, and E3 = Young’s moduli in the 1, 2, and 3 directions respectively. 

νij = Poisson’s ratio, the ratio of the strain in the j-direction to the 

strain in the i direction when stresses applied in the i-direction. 

G12, G23, and G31= Shear moduli in the 1-2, 2-3, and 3-1 planes respectively. 

 

The stress strain relation for an orthotropic material in the principal material 

coordinates under plane stresses will have the form 



 54

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12

2

1

τ
σ
σ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

66

2212

1211

00
0
0

Q
QQ
QQ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12

2

1

γ
ε
ε

 ( 3-11) 
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or in other form 
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The previous equations can be applied for composites where the direction of 

fibers is in the direction of the applied forces. Composites in practical situations are used 

with multi-layer laminates. Any composite member will have multiple layers of fiber 

reinforced materials and each layer has its own fiber orientation.  

Figure  3-3 shows a composite lamina with the fibers rotated an angle θ from the  
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x-y axis. The stresses in the x-y direction can be related to the stresses in the fiber 

1-2 direction with a transformation matrix T, 

Figure  3-3: Composite lamina with fibers rotated an angle θ from the x-y plane. 
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 The stress transformation equation will have the form,  
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and the transformed strain 
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If a new matrix R is defined as follows 
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Then we can get 
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From equation ( 3-11) we have 
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By setting  

[ ] 11 ]][][][[][ −−= RTRQTQ  

and noting that 

TTRTR −− = ][]][][[ 1  

then 

[ ] TTQTQ −−= ]][[][ 1  

Finally the stress-strain relation in the x-y plane cab be written as 
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LAMINATE ANALYSIS 

Fiber composite materials are generally used as a stack of multiple layers in a 

form of a laminate. Each layer is assumed to have different fiber orientation than the 

adjacent one. 
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Figure  3-4: In-plane forces and moments on a flat laminate. 

 

Figure  3-5: A stack of different fiber oriented laminas. 

 

When a laminate is subjected to a bending moment, M, the stack of laminas will 

not have the same level of bending. Figure  3-4 shows a composite laminate subjected to 

in-plane forces and moments and Figure  3-5 shows its layout geometry. The laminate has 

a total thickness of H and N number of layers. The x-axis is passing through the mid 

surface of the section.  
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The total force and moment on the laminate in any direction can be obtained by 

integrating the stresses in each layer over the whole thickness H, 
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Forces and moments in other directions can be obtained in a similar way.  

The total load and moment vectors are given as 
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and the general equation that relates between forces, moments, middle-surface strains, 

and middle-surface curvature in a fiber reinforced composite laminate can be given as 
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where 

Aij, Bij, Dij are function of Qij and zk 

 



 60

∑
=

−− −=
N

k
kkkijij zzQA

1
1 )()(  

∑
=

−− −=
N

k
kkkijij zzQB

1
1

22 )()(
2
1  

∑
=

−− −=
N

k
kkkijij zzQD

1
1

33 )()(
3
1  

 

3.4 FAILURE CRITERIA 

Structural design is usually performed on the basis of comparing the stresses or 

strains due to the applied loads with allowable stress or strain capacity of the structural 

material. Structural failure will occur when the applied stresses exceed the allowable; at 

that point, the structural element cannot continue to perform its function. A failure 

criteria envelope that includes the allowable ranges of stress or strains is an important 

step in the design.  

The analysis of FRP composite structures is similar but more difficult than that of 

isotropic material structures. For most isotropic materials, like metals, where initial 

failure can be indicated by material yielding, the maximum stress criterion theory or von 

Mises yield criterion where commonly used. Fiber reinforced composites are neither 

isotropic, nor do they follow the yielding theory. Therefore, the current criteria of 

isotropic materials will not be valid for composite materials. Other failure criteria have to 

be employed instead.  

The difficulty in analysis of composite structures appears in stress variation 

through the laminate thickness. The composite laminate consists of multiple layers with 
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different fiber orientation in each layer. Therefore, the stress distribution in the layers will 

not be uniform through the laminate thickness even though it is subjected to uniform in-

plane loads. The material properties in orthotropic materials are directional dependent so 

that it is higher in the fiber direction than the other directions. The increase in laminate 

loading may cause some layers to reach their stress limit before other layers depending on 

the stacking sequence of the layers. Damage in those layers with stresses higher than 

allowable stress will appear in the form of, most probably, brittle failure.  

The other difficulty that may rise in the analysis of composite laminates is in the 

nature of the failure. Ductile materials such as steel which usually experience a failure 

that initiates in a form of local yielding at the points that have reached the stress limits. In 

composite materials which are composed of multiple unidirectional layers, the failure 

usually starts as a local failure in layers stressed beyond the allowable stress limits. The 

failure in most high performance unidirectional composite materials has been recognized 

as brittle failure (Gurdal 1999). 

A failure criterion is a set of mathematical equations usually derived from field or 

laboratory tests to predict possible failures. The criterion is then modified or adjusted to 

fit cases where experimental data are not available. Many failure theories have been 

proposed in the field of composites to predict failures of unidirectional lamina.  

3.4.1 MAXIMUM STRESS CRITERION 

In this criterion, failure will occur if one of the principal stress components 

exceeds the allowable strength of the material. Thus, for a failure not to occur, all the 

following conditions have to be satisfied. 
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tX≤1σ  tY≤2σ  

cX≥1σ  cY≥2σ  

 S≤12τ  

 

Where 

σ1 = Stress in the fiber direction 

σ2 = Stress perpendicular to the fiber direction 

τ12 = Shear stress 

Xt = Tensile strength in the fiber direction 

Xc = Compressive strength in the fiber direction 

Yt = Tensile strength in the transverse direction 

Yc = Compressive strength in the transverse direction 

S = Shear strength 

3.4.2 MAXIMUM STRAIN CRITERION 

The maximum strain failure criterion is similar to maximum stress criterion. This 

theory predicts failure when any of the principal material strains exceed the 

corresponding maximum allowable strain. The material will fail if at least one of the 

following conditions fails to satisfy.  

t11 εε ≤  t22 εε ≤  

c11 εε ≥  c22 εε ≥  

 γγ ≤12  

Where: 



 63

ε1 = Strain in the fiber direction 

ε2 = Strain perpendicular to the fiber direction 

γ12 = Shear strain 

ε1t = Maximum tensile strain in the fiber direction 

ε1c = Maximum compressive strain in the fiber direction 

ε2t = Maximum tensile stain in the transverse direction 

ε2c = Maximum compressive strain in the transverse direction 

γ = Maximum shear strain 

3.4.3 TSAI-HILL FAILURE CRITERION 

In the maximum stress and maximum strain failure theories, the stress and strain 

are assumed to act independently such that a failure will occur when any of the individual 

stresses or strains is not within the criterion limits. The Tsai-Hill approach is assuming an 

interaction between the three different stresses so that a failure criterion envelope is 

obtained by combinations of all element stresses. The Tsai-Hill criterion can be expressed 

as 
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3.4.4 TSAI-WU FAILURE CRITERION 

The Tsai-Wu or the tensor failure criterion predicts failure of orthotropic 

materials through stress interaction equality which has the form 
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 Where Fi ,Fij are stress coefficients and are defined as 
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where F12 is calculated from data available from biaxial strength tests. In the absence of 

such data, the value of F12 can be taken as (Mallick 1993) 
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3.5 MECHANICAL PROPERTIES 

Laminated composite materials are unique in that their mechanical properties are 

highly directional dependent. The mechanical properties of the reinforcing fibers usually 

dictate the lamina properties. In a unidirectional lamina, the stiffness and strength in the 

fiber direction are much higher than that in the perpendicular direction. In multi layer 

laminates, the mechanical properties in the weaker directions can be improved by using 

multi directional layers through the laminate thickness.  

Fiber reinforced composites can be made of a wide range of material properties. 

The basic constituents are the fibers and the resin with some other filler materials. As 

shown earlier in this chapter, fibers come from different sources with various stiffness 

and strength. Some selected mechanical properties for unidirectional composite materials 

are listed in appendix A, Table A-1 through Table A-3. 
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CHAPTER 4  

SOIL-PILE INTERACTION 

Piles are driven in weak soils to support heavy structures and transfer their loads 

to the surrounding soils. They are usually subjected to lateral forces and moments as well 

as axial forces. Unlike axial forces, which normally produce deformations in the direction 

of the pile axis, lateral forces may produce deformations in any direction of the pile. The 

design of pile foundations under lateral loads normally is governed by the maximum 

deflection of the pile.  

4.1 CLASSIFICATION OF PILES 

Piles can be classified in many ways, for example, by the material it’s made of, by 

method of load transfer, by amount of ground disturbance, by fabrication method, and by 

method of installation.  

• Pile material: piles can be made of different materials such as, concrete, steel, 

timber and composite. Traditional composite piles are made of steel and 

concrete or timber and concrete. 

• Method of load transfer: Piles can be classified according to the method of 

load transfer into; end-bearing piles, friction piles, combined end-bearing and 

friction piles, and laterally loaded piles.  
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• Amount of ground disturbance during installation: Large-displacement piles, 

small-displacement piles, and non-displacement piles. 

• Pile fabrication method: prefabricated or cast in place. 

• Method of installation, driven piles, bored piles and a combination of driven 

and bored piles (Prakash 1990). 

The main conventional materials for piling systems are steel, concrete, timber or a 

combination between them.  

4.2 CHOICE OF PILING METHOD AND ECONOMIC OF DESIGN 

Like any other structure, piles should be designed to satisfy certain requirements. 

From engineering point of view, the design of piles should be effective, such that, the 

chosen piles have to be practical, economical and have an adequate margin of safety.  

Pile foundations are different from other structures above the ground. Their 

design is always considered to be more conservative than other structures. Many factors 

are leading to this conservative design like the uncertainties in loads and in soil 

properties. The variability of soil in combination with unanticipated loads or subsequent 

soil movements can result in settlement problems over which the designer may have little 

control (Bowles 1996).  

Environmental effects are another important factor in the selection and design of 

pile foundations. Chemical attacks on piles in severe environments are a major factor in 

reducing expected life of service. The corrosion of steel surface, the deterioration of 

timber and the spoiling of concrete are major problems that affect piles. The loss of pile 

section due to such problems will result in reduction of load capacity. The continuous 

decrease in cross section with time will lead to a major failure of the structure.  
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4.3 SELECTION OF FOUNDATION 

The main factors that determine the selection of the type of piles are the bridge 

type and soil condition. The bridge type, including dimensions, type of bridge, and 

construction materials, dictates the design magnitude of loads and the allowable 

displacements and other performance criteria for the foundations. For example, a 

suspension bridge requires large lateral capacity for its end anchorage which can be a 

huge deadman, a high capacity soil or rock anchor system, a group of driven piles, or a 

group of large-diameter drilled shafts. Tower foundations of an over-water bridge require 

large compressive, uplift, lateral, and overturning moment capacities. The likely 

foundations are deep, large size footings using cofferdam construction, caissons, groups 

of large-diameter drilled shafts, or groups of a large number of steel piles. 

Surface and subsurface geologic and geotechnical conditions are other main 

factors in determining the type of bridge foundations (Chellis 1961). Subsurface 

conditions, especially the depths to the load bearing soil layer or bedrock, are the most 

crucial factors. Seismicity over the region usually dictates the design level of seismic 

loads, which is often the critical and dominant loading condition. A water bridge has 

limited options to choose from in terms of the type of foundations.  

Deformation compatibility of the foundations and bridge structure is an important 

consideration. Different types of foundations may behave differently; therefore, the same 

type of foundation should be used for one section of bridge structure. Diameters of the 

piles and inclined piles are two important factors to consider in terms of deformation 

compatibility. 
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4.4 DESIGN REQUIREMENTS FOR PILES 

Piles in bridge structures are designed according to the applied forces and loads 

transferred from the super structure and the surrounding soil. The selection of a suitable 

pile type for bridge foundations is normally based on several considerations of soil and 

water conditions; (1) availability of materials, (2) construction schedule, (3) substructure 

element to be supported, (4) loads to be transferred, (5) and overall economy. In addition, 

relevant characteristics of the various pile types should be taken into account since in 

many cases they may dictate the choice (Xanthankos 1995). The type of the bridge 

determines the design requirements of the pile.  

Piles should be designed for both axial and lateral loading conditions. The two 

principal design considerations for piles under axial loads are ultimate load capacity and 

settlement. The ultimate load capacity of a pile may be governed either by the structural 

capacity of the pile or the bearing capacity of the soil. Piles that are subjected to lateral 

loads must also be safe against ultimate failure of the soil or the pile, and excessive 

lateral deflections.  

Axially loaded piles may fail in compression or by buckling. Buckling may occur 

in long and slender piles that extend for the portion of their lengths through water or air. 

A scour of the soil around the piles could expose portion of their lengths and increase the 

likelihood of buckling. 

Laterally loaded piles will fail in flexure if the induced bending moment exceeds 

the moment capacity of the pile. The structural capacity of the pile is dependent on both 

the moment and axial load. 
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4.5 FORCES ACTING ON PILES 

Pile foundations are structural members that give support and transfer loads from 

one structure to another. A pile can be considered as a special type of column that carries 

axial and flexural loads but with different cases of boundary conditions. Generally, the 

column is a cast-in-place structure whereas the pile is a pre-cast or prefabricated element 

which requires handling, transporting, and driving. Due to the different circumstances 

that involve the whole process of pile construction, the design should include all factors 

affecting its durability and performance. 

Piles may be subjected to different kinds of forces during handling and while they 

are in service. Piles must be designed to handle loads without damage. 

(a) Crushing under the permanent design load 

(b) Crushing caused by impact force during driving 

(c) Bending stresses occurring during handling 

(d) Tension from uplift forces or from rebound during driving 

(e) Bending stresses due to horizontal forces 

(f) Bending stresses due to curvature in the pile 

(g) Column action for portions not receiving lateral support from the ground, but  

free standing in air, water, or very liquid mud. 

Also piles must have adequate surface area, in the case of friction piles, so that 

they will provide the highest contact area to transfer the loads from the pile to the 

surrounding soil (Chellis 1961). 
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4.5.1 AXIALLY LOADED PILES 

Piles are usually designed for full capacity which is the maximum load the pile can 

support without failure. The maximum allowable stress on a pile section should not 

exceed the allowable limits. A pile under axial compression may reach one of the 

following four limit states (Xanthakos 1995).  

1. Structural failure of the pile body such as crushing or yielding. 

2. Stability failure due to buckling. 

3. Bearing capacity failure of the soil under the pile 

4. Excessive pile settlement   

4.5.1.1 ECCENTRICITY AND BENDING IN PILES 

No pile is likely to be entirely straight. Any curvature causes bending stresses. It 

is important to give consideration to lateral as well as eccentric forces on piles, since 

stresses may increase rapidly from these causes when combined with stresses from direct 

axial loads (Chellis 1961). 

4.5.1.2 BUCKLING OF PILES 

An axially loaded pile may be subjected to buckling. The pile will buckle during 

service when the loading reaches or exceeds its critical buckling load. This case is rare 

but it may occur for end-bearing piles in soft soils or partially embedded piles. Also a pile 

may buckle during driving which may cause some deviation from the desired position. 

For piles subjected to buckling, the general differential equation that governs is 

based on the subgrade modulus of the soil and is given as 
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where  

 EI = flexural stiffness of the pile; 

 P  = axial load; and 

 K = soil subgrade modulus. 

 

 

The critical buckling load for an ideal pin ended column is given by the Euler equation: 
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4.5.2 LATERALLY LOADED PILES 

Lateral loads on piles usually come from different sources like wind pressure, 

horizontal live loads, earth and water pressure, and earthquake effects. Piles under lateral 

loads must be designed to withstand these loads or any combinations of loads without 

failing (Xanthakos 1995). Piles in groups are normally subjected to a combination of both 

axial and lateral loads. In the past, designers used to consider piles as axially loaded 

members only, and the lateral loads were assumed to be carried by batter piles. Current 

pile designers consider the full range of vertical (or battered) laterally loaded structural 

members, fully or partially embedded in the ground, as laterally loaded piles (Bowles 

1996). 

It has been found that the lateral support provided by any soil except the softest or 

most fluid is generally sufficient to prevent pile failure from buckling for the embedded 

portions. For portions in water or above the ground, unsupported, the pile should be 

designed as a column under direct loads unless lateral forces are present, in which case 

the design should include the lateral forces. 

The design of laterally loaded vertical piles is normally governed by the 

maximum allowed deflection or the structural capacity of the pile. It has been found that 

reaching the ultimate capacity of the soil is something unattainable or unacceptable 

because it requires considerable displacement. Thus, in designing a single pile or a group 

of vertical piles, the lateral deflection and the structural capacity of the pile not the soil 

should be the determining factors (Xanthakos 1995). 
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4.6 PILE SECTIONS 

Piles can be found in different types of cross sections as shown below. The most common 

shapes are the H-section for steel piles, circular sections for concrete piles and polygonal 

sections for prestressed piles.  

Polygon Circular Rectangular

H-section Circular 
with hole

Rectangular 
with hole

 

4.7 PILING MATERIALS 

The common used materials for piling are steel, concrete and timber. Because of 

their high performance as construction materials, they have been recommended over 

other materials.  

4.7.1 STEEL PILES  

Steel piles are normally used in the form of H or pipe piles. Steel has very high 

compressive and tensile strengths in addition to its high modulus of elasticity. It has a 

high capability of carrying heavy loads down to deep bearing strata. Steel piles have the 

advantages of high load capacity and ease of splicing so that they can be shipped in any 

required length. They also have the ability of being driven through different soil layers 

even soft rocks and hard material layers. 
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4.7.2 CONCRETE PILES  

Concrete is the most common traditional construction material used today. It has 

the ability to carry large axial forces and bending forces when reinforced with steel bars. 

Concrete members can be designed for the desired shape and strength. They are easy to 

drive and have the ability to withstand hard driving. Concrete piles are available in the 

main categories: 

1. Precast concrete piles. 

2. Cast-in place concrete piles 

3. Composite concrete piles. 

4.7.3 TIMBER PILES 

Timber piles are usually made of straight tree trunks after removing their 

branches. They are easy to cut, easy to handle and can last for long periods of time under 

normal environmental conditions. Timber piles can be found as round untrimmed logs or 

sawed square sections. They are usually used as friction piles in granular soils, sands, 

silts and clays 

4.8 SOIL-PILE BEHAVIOR  

Analysis and design of piles under the different types of loading usually start with 

the understanding of the soil-pile interaction process. Soils, in general, are non-

homogenous materials that are found in layers along the pile length and each layer may 

have different properties from the next layer. The soil-pile interaction will not have the 

same behavior along the pile shaft; therefore, variation in soil properties has to be taken 

into consideration. 
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Piles embedded in soil can be represented by beam-column elements with 

geometric and material nonlinear behavior. Soil-pile behavior can be classified into two 

categories; the first category is axial load-friction behavior, in which a unique 

relationship is assumed between the skin friction, shear stress, and the relative deflection 

between soil and the pile at each depth. The second category is lateral load-displacement 

behavior, in which the pile will be subjected to a lateral soil pressure if it is battered or 

has a lateral loading in form of shear or moment applied at the top. (Yang 1982).  

4.9 LOAD – DISPLACEMENT BEHAVIOR 

Soil behavior can be represented by a set of load-displacement curves to describe 

its response under different types of loadings. Three major categories of curves are 

usually used in this regard; each of them describes a single characteristic of the soil: 

lateral load-displacement (p-y) curves, load-slip (f-z) curves, and load-settlement (q-z) 

curves. The soil response in all three categories is assumed to be nonlinear. 

The modulus of subgrade reaction, which was originated by Winkler in 1867, is 

one of the most commonly used methods in pile analysis. In this method the surrounding 

soil to the embedded pile can be replaced by a series of vertical and lateral springs to 

represent both the longitudinal and lateral soil resistance. The spring properties are 

usually obtained from the load–displacements curves that represent the resistance force as 

a function of the displacement in the force direction.  

The derivation of load displacement curves has been performed through means of 

continuum mechanics and from correlations with results from real field experiments on 

instrumented loaded piles (Mosher et al 2000). The accuracy of such curves to represent a 
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particular pile behavior depends on the similarity between the pile in the study and the 

pile test model in terms of soil properties and loading conditions.  

4.9.1 LATERALLY LOADED PILES 

Piles are primarily designed to carry axial loading, but in several situations they 

are subjected to lateral displacements as well as shear and moment applied at the pile 

head. Therefore, the pile foundation has to be designed to sustain static and cyclic lateral 

loads. The problem of piles under lateral loading is much more complex than that of 

axially loaded piles. Axially loaded piles may be designed using simple static methods, 

while laterally loaded piles require, sometimes, the solution of the fourth-order 

differential equation because of their non-linear behavior. The problem also can be 

solved as a beam on elastic foundation with nonlinear soil-pile interaction behavior (p-y 

curves). Numerous studies have been conducted trying to investigate the behavior of 

laterally loaded piles. 

Figure  4-1 shows a schematic of a laterally loaded pile subjected to head shear 

and moment. Each point on the pile shaft will undergo a translation u in the x-direction 

and a rotation θ about the y-axis. The soil around the pile will also develop pressure p 

that resists the lateral displacement of the pile. 

The most common approaches generally used in calculating lateral load 

deflections are the following: (1) Subgrade reaction approach and (2) The elastic 

continuum approach.  
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Figure  4-1: Schematic of laterally loaded pile (Mosher 200). 

 

4.9.2 SUBGRADE REACTION METHOD  

The subgrade reaction approach is based on the Winkler soil model in which the 

continuous nature of the soil medium is ignored and replaced by a series of infinitely 

spaced unconnected springs. The soil medium around the pile can be replaced with an 

equivalent series of independent springs with spring modulus calculated from the p-y 

curve at each desired location. The spring constant kh which can be referred to as the 

modulus of subgrade reaction, can be written as 

 
y
pkh =  ( 4-1) 
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where 
=p  the soil reaction per unit length of the pile 

=y  pile deformation due to force p 

This linear equation has a constant value of the soil modulus kh at any point of the 

pile deformation curve. Because of the non-linearity of the load-deflection behavior of 

soil-pile system, this formula has to be modified to accommodate the actual behavior. 

The equation of a beam on elastic foundation then can be used to represent the soil-pile 

relation in its nonlinear form (Prakash 1990). 

 04
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yk
dx

yd h  ( 4-2) 

where E and I are the modulus of elasticity and the moment of inertia of the pile 

respectively.  

Another form of the subgrade reaction equation shown in the following equation 

was suggested by Palmer and Thompson (1948) 

 
n
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xkk ⎟
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⎜
⎝
⎛=  ( 4-3) 

where  

kh = value of kx at pile tip (x=L) 

=x  any point along the pile 

=n  a coefficient equal to or greater than zero and equals to 1 for sands and 

normally consolidated clays. 

 

Many other approaches have tried to account for the nonlinearity of the load-

displacement relationship in soil-pile problems. Kubo (1965) used a different form 
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relationship to represent the nonlinear behavior. The equation relates the deflection y with 

the load p and any depth x as follows: 

 nm ykxp =  ( 4-4) 

where k, m and n are experimentally determined coefficients ( Poulos 1980). 

4.9.3 LOAD-DISPLACEMENT CURVES 

The common approach in solving laterally loaded piles is through using p-y 

curves that represent the soil behavior under various loading. The p-y curves for laterally 

loaded piles can be established based on calculations from test results of instrumented 

full-scale piles. The p-y curves have to be fully nonlinear with respect to the distance 

variation along the pile axis, z and the pile deflection axis, y. Several factors may 

influence the accuracy of the p-y curves such as soil properties, number of tests, pile 

geometry, layers of soil, and nature of loading. Figure  4-2 shows a representation of a 

nonlinear p-y curves and their variation along the pile depth. 

Several approaches for constructing the p-y curves were presented in different 

publications. Cox et al (1971) performed a series of lateral load tests on instrumented 

full-scale piles to measure the bending moment along the pile shaft.  
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Figure  4-2: Nonlinear p-y curves for laterally loaded piles at various depths x. 

 

P-Y CURVES FOR PILES IN SOFT CLAY 

Matlock (1970) performed a series of lateral load tests on some instrumented 

12.75 inches diameter and 42 feet long steel pipe piles driven in clays and subjected to 

static loads.  

The lateral soil resistance was expressed in the following form  
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 ( 4-5) 

where 

pu = ultimate lateral soil resistance per unit length of the pile 
 

=50y  lateral movement of the soil corresponding to 50% of the ultimate 
lateral soil resistance. 
 

 y = lateral movement of the soil 
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The ultimate lateral resistance pu can be calculated as the smaller of  

 bcz
b
Jz

c
pu .`3 ⎟

⎠
⎞

⎜
⎝
⎛ ++=

γ  ( 4-6) 

 cbpu 9=  ( 4-7) 

where 

γ` = average effective unit weight from ground surface to p-y curve 

z = depth from ground surface to the p-y curve 

C = shear strength at depth z 

B =  width of pile 

J = constant taken as 0.5 for soft clay and 0.25 for medium clay 

The lateral displacement at 50% of the ultimate soil resistance can be calculated from the 

following equation 

   by 5050 5.2 ε=  ( 4-8) 

where 

ε50 = Strain at 50 percent of the ultimate strength from a laboratory stress-strain 
curve 

 

Typical values of ε50 are given in Table  4-1. 

 

Figure  4-3 shows the shapes of the p-y curves for static and cyclic loading 

recommended by Matlock (1970) for soft clays above the water table.  
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(a) Static loading 

 

 

(b) Cyclic loading 

Figure  4-3: Characteristic shapes of the p-y curves for soft clay below water table 

(Mosher 200). 
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Table  4-1: Representative values of undrained shear strength and ε50 

Consistency of clay (psf) 
Undrained shear strength 

psf 
ε50 

Soft 250-500 0.020 

Medium stiff 500-1000 0.010 

Stiff 1000-2000 0.007 

Very stiff 2000-4000 0.005 

Hard 4000-8000 0.004 

 

 

P-Y CURVES FOR PILES IN STIFF CLAYS BELOW WATER TABLE 

Results from field tests performed by Reese, Cox and Koop (1975) on 24 in. 50 ft 

steel pipe piles driven in stiff clay in Texas were employed to derive the p-y curves. The 

measured undrained shear strength of the clay ranged from about 1 ton per square foot at 

the ground surface to 3 tons per square foot at 12 feet depth. The p-y curves for short-

term static and cyclic loading can be calculated from a series of steps that end in the 

curve as shown in Figure  4-4 and Figure  4-5 respectively. 
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Figure  4-4: Characteristic shapes of p-y curves for static loading in stiff clay below water 
table. 

 

 

Figure  4-5: Characteristic shapes of p-y curves for cyclic loading in stiff clay below water 
table. 
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P-Y CURVES FOR PILES IN STIFF CLAYS ABOVE WATER TABLE 

Test results of instrumented drill shafts, 30 inch in diameter and 42 feet in length 

performed by Reese and Welch (1975). The p-y curve for the experimental results of 

static and cyclic load tests are shown in Figure  4-6 and Figure  4-7 respectively. 

 
Figure  4-6: Characteristic shape of p-y curve for static loading in stiff clay 

above the water table. 

 
Figure  4-7: Characteristic shape of p-y curves for cyclic loading in stiff clay above the 

water table. 
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P-Y CURVES FOR PILES IN SAND 

Experimental data for p-y curves of piles in sand were collected through a series 

of extensive tests performed on pipe piles driven in submerged sands (Reese 1983). The 

results were then adjusted to cover both sands below and above water table. The test piles 

were two steel pipes 24 inches in diameter driven into sand. The following steps show the 

procedure for computing the p-y curves as described by Reese, Cox, and Koop (1974). 

Figure  4-8 shows typical p-y curve in sands which usually consists of the 

following segments: 

 

SEGMENT Curve type Range of y Range of p p-y curve 

1 Linear 0 to yk 0 to pk ykxp )(=  

2 Parabolic yk to ym pk to pm n

m
m y

ypp ⎟⎟
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pp
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4 Linear uy≥  pu upp =  

 

Where ym and yu, pm and pu can be determined directly from soil parameters.  
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Figure  4-8: Characteristic shape of p-y curves in sand. 
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Pu=Minimum of (pst , psd) 
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The values of sA  and cA are in         Figure  4-9. 

60
bym =  

ssm pBp =   or  scm pBp =  

where sB and cB can be taken from Figure  4-10. 

Construct the initial straight-line portion of the p-y curves 

ykxp )(=  

where k can be found in Table  4-2. 

Table  4-2: Representative values of k in sand 

Relative density  Loose Medium Dense 

Recommended k for sand 

blow water table (lb/in3) 

20 60 125 

Recommended k for sand 

above water table (lb/in3) 

25 90 225 

The parabolic section of the p-y curves is given as 
nyCp /1=  

and the slope of the line between points m and u is 
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The power of the parabolic section is give by 
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The coefficient C  is as follows 
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        Figure  4-9: Values of coefficients cA and sA . 

 
Figure  4-10: Non-dimensional coefficient B for soil resistance versus depth. 
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4.9.4 AXIALLY LOADED PILES 

Piles normally used in groups such that the design capacity can be calculated 

based on single pile capacity. Axially loaded piles usually develop their carrying capacity 

by either bearing or skin friction along the soil-pile interface. In some situations, the pile 

capacity can be a combination of skin friction and end bearing at the pile tip.  

The ultimate compressive capacity, QT of a single pile under axial load parallel to 

its axis is the sum of the surface friction capacity of the shaft Qs, and the tip bearing 

capacity Qb.  

   bsT QQQ +=       ( 4-9) 

or in a conservative form, the ultimate axial capacity can be written as 

 WQQQ bsT −+=  ( 4-10) 

Where W is the weight of the pile.  

4.9.4.1 LOAD DISPLACEMENT CURVES 

Several approaches have been developed in the past to predict the pile load-

displacements curves behavior under axial compression. Mosher and Dawkins (2000) 

summarized some of the commonly used criteria of these curves. Based on a previous 

work done by Coyle and Castello (1981) and the results of load tests of prismatic pipe 

piles driven in sand, Mosher (1984) represented the load-slip relation as a hyperbolic 

curve as shown in Figure  4-11. The load is related to the displacement in terms of the 

initial slope of the curve kf and the ultimate side friction fmax, 

 

max

1
f
w

k

wf

f

+
=  ( 4-11) 
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Where kf  is a function of the angle internal friction and fmax is a function of 

relative depth and given in Table  4-3 and fmax is given in Figure  4-12.  

 

Table  4-3: Values of kf as a function of angle of internal friction of sand (Mosher) 

Angle of internal friction (degrees) kf (psf/in) 

28 – 31 6,000 – 10,000 

32 – 34 10,000 – 14,000 

35 – 38 14,000 – 18,000 
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Figure  4-11: f-w curve (Mosher 2000). 
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Figure  4-12: Values of ultimate side friction as a function of relative depth (Mosher 

2000). 

An other form of f-w curves has been proposed as a function of the ultimate side 

friction, fmax and the displacement required to develop that force, wc Vijayvergiya (1977). 

The relation has assumed to have some limitations on the values of fmax and wc or 

different types of soils. A typical f-w curve by this method is shown in Figure  4-13 

 
cc

w
w

w
w

f
f

−= 2
max

 ( 4-12) 
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Figure  4-13: f-w curves (Vijayvergiya 1977). 

 

4.9.5 THE MODIFIED RAMBERG OSGOOD MODEL 

Amde et al (1982), Greimann et al (1984), and Greinmann et al (1987) utilized an 

idealized model based on the modified Ramberg-Osgood formula to approximate the 

load-displacement curves for axially and laterally loaded piles. The required parameters 

for the model can be calculated from the soil and pile properties. This model can be used 

for the three types of curves with the appropriate soil parameters for each curve. The 

modified Ramberg-Osgood model has the following form, 

 
nn

u

h

y
y

yk
p 1

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

=  ( 4-13) 

with     
h

u
u k

p
y =  

where  
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kh = initial lateral stiffness 

p = generalized soil resistance 

pu = ultimate lateral soil resistance 

N = shape parameter 

y = generalized displacement 

 

This model has some advantages over other models and in addition it includes the 

hyperbola which is commonly used as a special case of the curve.  

The following tables present the different types of load-displacement curves for different 

types of soils. 

Table  4-4: Analytical forms of p-y curves 

 
Case 

 
n 

 
Pu (Use Lesser Value) 

 
kh 

 

Soft Clay, 

Static Load 

 

1.0 

BCP uu 9=  

BCx
B

x
C

P u
u

u )5.03( ++=
γ  

 

50y
pu  

 

Stiff Clay, 

Static Load 

 

1.0 

BCP uu 9=  

BCx
B

x
C

P u
u

u )5.03( ++=
γ  

 

50y
pu  

Very Stiff 

Clay, Static 

Load 

 

2.0 

BCP uu 9=  

BCx
B

x
C

P u
u

u )0.23( ++=
γ  

 

502y
pu  

 

 

Sand, 

Static Load 

 

 

3.0 

])([ µηγ ++−= apu kkBxP  

BkkkkxP aoppu )tan2( 23 −+= φγ  

βαη tantan ⋅= pxk  

)tan(tantan αφβµ −= oxk  

 

 

35.1
xJγ  



 95

Where: 

Cu = Undrained cohesion indicated for an unconsolidated undrained 

laboratory test 

B = Pile width 

γ  = Effective unit soil weight 

x  = Depth from soil surface 

φ  = Angle of internal friction 

pk  
φ
φ

sin1
sin1

−
+

=  

ak  
φ
φ

sin1
sin1

+
−

=  

α  
2
φ

=  for dense or medium sand 

3
φ

=  for loose sand 

β  
2

45 φ
+o  

J = 200 for loose sand 

= 600 for medium sand 

= 1500 for dense sand 

50y  Displacement at one-half ultimate soil reaction 

505.2 εB=  for soft and stiff clay 

500.2 εB=  for very stiff clay 

50ε  From laboratory triaxial test, or use 

= 0.02 for soft clay 

= 0.01 for stiff clay 

= 0.005 for very stiff clay 

(Axial strain at 0.5 times peak stress difference) 
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Table  4-5 - Analytical forms of f-z curves 

 

maxf , (klf) 

 

Case 

 

Basic f-z Curves 

Equations H Piles Others 

Clay,  

Static Load cc z
z

z
z

f
f

−= 2
max

 

The least of: 

uf cbd )(2 +  

af cbd )2(2 +  

)(2 afu cbdc +  

The lesser of: 

ag cl  

ucl  

Sand, 

Static Load cc z
z

z
z

f
f

−= 2
max

 

)2(04.0 fbdN +  gNl04.0  

Where: 

Cu Undrained cohesion of the clay soil 

0.1140.97 += N  (psf) 

Ca Adhesion between soil and pile 

ucα=  (psf) 

α  Shear strength reduction factor. 

N Average standard penetration blow count 

cz  Relative displacement required to develop fmax 

= 0.4 in. for sand 

= 0.25 in. for clay 

gl  Gross perimeter of the pile (ft.) 

d Section depth of H pile or diameter of pipe pile (ft.) 

fb  Flange width of H pile (ft.) 
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For pile tip-settlement (q-z) curves, the equations listed in Table  4-4 and Table 

 4-5 can be used to calculate the parameters kq, qmax and n. 

Table  4-6 - Analytical forms of q-z curves 

 

Case 

 

Basic q-z Curves Equations 

 

fmax, ksf 

 

Clay, Static Load 

3
1

max
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

cz
z

q
q  

uc9  

 

 

Sand, Static Load 

3
1

max
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

cz
z

q
q  

corrN8  

Where: 

corrN  Corrected standard penetration test (SPT) blow count at depth of 

pile tip 

N=  (uncorrected) if 15≤N  

)15(5.015 −+= N  if 15>N  

Cu Undrained cohesion of the clay soil 

0.1140.97 += N  (psf) 

N Average standard penetration blow count 

cz  Relative displacement required to develop qmax 

= 0.4 in. for sand 

= 0.25 in. for clay 
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Table  4-7 - Parameters used in the modified Ramberg-Osgood models  
for clay and sand 

 
Calculated 

 

 
Used 

 
 

Curve 
Type 

 
 

Soil 
Type 

 
hk  

 
n 

 
hk  

 
N 

Soft Clay 

50

669.0
y
Pu  

1.5 

50y
Pu  

1.0 

Stiff Clay 

50

915.0
y
Pu  

1.07 

50y
Pu  

1.0 

Very Stiff Clay 

50

539.0
y
Pu  

2.56 

502y
Pu  

2.0 

p-y 

Sand   
35.1
xJγ  

3.0 

f-z All Soils 

cz
fmax32.7  

1.33 

cz
fmax10  

1.0 

q-z All Soils 

cz
qmax32.7  

1.33 

cz
qmax10  

1.0 

 

4.10 PILES IN INTEGRAL BRIDGES 

Interest in using integral bridges has increased in the last two decades. Economy, 

reliability and strength are the main reasons of that interest. Integral (or jointless) bridges 

are bridges with no joints between the superstructure and the supporting abutments. The 

bridge girders are integrally built with the abutment to form a rigid connection. The 

structural elements of a typical abutment in an integral bridge usually consist of an 

abutment wall, two wing walls, and several supporting piles. The abutment walls and 

wing walls are usually reinforced concrete elements. The piles are made with either 

structural steel or pre-cast concrete. 
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Abutments in integral bridges are subjected to forces similar to those in bridges 

with expansion joints plus the horizontal forces resulting from thermal movements. The 

abutment is monolithically connected to the deck to eliminate constructing any expansion 

joint. Joints are provided to accommodate longitudinal movements in bridges. 

Longitudinal movements are caused by thermal forces due to temperature changes, 

horizontal earth pressure, soil movements, and vehicles braking forces. The abutment 

movements that are usually absorbed by the expansion joints in regular bridges will be 

transferred to the supporting piles as lateral forces in integral abutment bridges. Piles in 

such bridges manner should be designed to have some amount of flexibility to 

accommodate these movements. Integral abutment piles are recommended to be driven 

vertically in a single row to achieve the highest flexibility performance. Piles are 

preferred to be oriented so that the weak axis of bending will be perpendicular to the 

bridge axis. However, because of flange buckling potential, the total lateral movement 

that can be absorbed will be more limited than that of strong axis orientation bending.  

 

 

Figure  4-14: Sketch for an integral abutment. 
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Advantages of Jointless bridges 

Jointless bridges have many advantages when compared to bridges with joints and 

expansion bearings. In addition to their good performance in the field, they are also less 

expensive in terms of initial cost and long term maintenance. Bridge bearings and joints 

are continuously subjected wear and damage as a result of heavy impact traffic loads and 

temperature effects. Corrosion is also a major problem especially when waterproof joints 

start to leak and stop providing any protection for bearings and joints.  

4.11 COMPOSITE PILES FOR INTEGRAL BRIDGES 

Depending on the type of superstructure, span length, and boundary conditions of 

the bridge, different types of expansion joints and bearings are used in the field. It is 

found that expansion joints and bearings do not serve their intended purpose for several 

reasons: 

• Corrosion caused by deicing chemicals leaking through the joints. 

• Accumulation of debris and other foreign restricting the free joint movement. 

• Differential elevation at the joints causing additional impact forces. 

• High initial maintenance costs of joints and bearings. 

Integral abutments are structures connected to superstructure decks without joints, 

irrespective of the bridge length and the number of spans. The resulting restraining effect 

implies, therefore, that the abutment must be designed and constructed to resist and 

absorb any creep, shrinkage, and thermal movements of the superstructure. (Xanthakos 

1995). Engineering experience has proved that integral bridges are performing better than 
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jointed bridges with reduced initial and life cycle costs and also with minimal 

maintenance problems.  

Construction of integral bridges is simpler and faster than the construction of 

jointed bridges because they require fewer parts and less material and are less labor 

intensive. Also conversion of simply supported bridges into integral bridges has been 

successful and has been shown to improve the performance of the bridge.  

In spite of the many advantages of jointless bridges over jointed bridges, large 

numbers of new jointless bridges are not being built and large numbers of jointed bridges 

are not being converted to jointless bridges (Thippeswamy et al 1994). The reasons may 

be attributed to the following: 

• An inadequate understanding of integral bridge behavior under soil settlement, 

temperature, and earth pressure. 

• Limited performance data 

• Inadequate experimental and analytical evaluations 

• A lack of design and construction specifications. 

• A higher cost to convert jointed bridges to jointless bridges. 

Piles in bridges are the main factors in the stability of the bridge structure. The 

piles of integral abutment bridge are subjected to lateral movements caused by thermal 

expansion and contraction. Such piles can be treated as piles subjected to lateral loads. 

Dealing with such problems is not as easy as dealing with columns subjected to lateral 

loads. The problem of laterally loaded piles is complex because it involves the interaction 

between a semi-rigid structural element and the embedding soil. The complication is 



 102

because of the non-homogeneity of the soil. Most natural soils are non-homogeneous and 

can be disturbed as piles are installed.  

In spite of their strength, reliability and cost economy, steel and concrete, the 

traditional piling materials are associated with several problems when used as piling 

materials in corrosive soils and marine environments. The loss of section due to corrosion 

of steel and deterioration of concrete could cause a major problem because of the 

reduction in carrying capacity of the pile system. The gradual decrease in the carrying 

capacity of the pile system could lead to catastrophic failure of the bridge.  

Composites can be designed to perform according to the required specifications 

for piling in adverse environments. Composite materials such as fiber-reinforced 

polymers (FRPs) can offer performance advantages when compared to steel, concrete or 

timber. Their inherent performance advantages include corrosion resistance, high 

oriented-strength structural shapes, durability, and low maintenance. 

 

 



 103

 
CHAPTER 5  

FORMULATION OF THE NUMERICAL MODEL 

The finite element analysis was initially developed on a physical basis for the 

analysis of problems in structural mechanics, but it was realized later that this method can 

be applied to solutions for many other kinds of problems. The method is based on the 

principle of solving the problem by going from a small part to the whole. The whole 

medium of the problem is assumed to consist of a combination of small parts joined 

together to form the whole structure. The small parts (elements) then are assembled to 

reach the final solution. Solutions resulting from finite element analysis are not exact 

solutions. In many engineering problems a close form solution is hard to reach some 

times.  

5.1 ANALYSIS TOOLS 

Numerous finite element codes are available with high capabilities in handling 

very complicated structures. ANSYS is a multi-purpose software which has multiple 

finite element capabilities that range from simple linear static analysis to complex 

nonlinear, transient dynamic analysis. The ANSYS element library contains a wide range 

of element types that fit different types of structures. 
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Analysis using ANSYS can be performed in three major steps: 

1. Build the model (Preprocessing). 

2. Apply loads and obtain solutions (Solution). 

3. Review the results (Post Processing). 

5.2 BUILDING THE COMPUTER MODEL 

The main objective of finite element modeling is to create a mathematical 

representation of any engineering system that reflects the actual geometry and behavior 

of that system. The model should have similar boundary conditions and the same loading 

schemes so that it can serve as a physical prototype of the real system. Building finite 

element models in ANSYS requires familiarity with the ANSYS operating manual and 

the ANSYS element library. Each element in ANSYS has specific properties and 

behaviors to be defined according to the structure in the problem. 

Model generation by ANSYS can be approached through two different methods: solid 

modeling and the direct generation method. In solid modeling the model is defined 

geometrically by describing the general shape, boundaries, element shape and size 

However, in direct generation the user has to predefine all node locations and the shape, 

size and connectivity of each element. The first method is more powerful with more 

flexibility in meshing and the element generation. It is more appropriate for large 3-D 

models because it allows later modifications for the model geometry and facilitates the 

model management.  

The following sections describe the major steps in building a finite element model 

using ANSYS. 
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5.2.1 SELECTING THE COORDINATES SYSTEM 

ANSYS offers multiple coordinate systems that fit different shapes and 

geometries:  

• Global and local coordinate systems 

• A nodal coordinate system that defines the nodes, their directions and 

degrees of freedom. 

• An element coordinate system which describes the element results output 

and its material properties orientation. 

ANSYS has three built-in global coordinate systems that share the same origin: 

Cartesian, cylindrical, and spherical as shown in Figure  5-1. The appropriate coordinate 

system has to be chosen according to the geometry of the problem.  

 

Figure  5-1: Global coordinate system (Ansys). 

5.2.2 GENERATION OF THE SOLID MODEL 

As presented earlier, the element generation can be done in different ways; each 

of them has its own advantages. The solid modeling method is more convenient in such 

models because of its flexibility over other methods. Several major steps are 

recommended to follow in this approach starting with keypoints and ending with the final 

meshed model.  
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The following steps summarize the basic steps in the solid modeling approach: 

Step 1: Defining key points and lines 

Keypoints are the lowest order of the solid model entities which normally define 

the vertices of the model. The keypoints work as a foundation for the solid model that 

locates the position of the model in the global coordinate system. A key point in the 

global system can be defined by three major coordinates; X,Y, and Z.  

Step 2: Creating areas and volumes 

The next step is to create an area or a volume from the previously defined 

keypoints and lines. Lines will serve as the boundaries for the created areas and volumes. 

Volume and area elements can be created directly through keypoints and line generation 

can be skipped. Lines should be created when mapped meshing is desired. Figure  5-2 

shows an isometric view of an area created through keypoints and lines. 

 

Figure  5-2: Isometric view for an area defined by keypoints and lines. 
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Step 3: Defining element attributes 

Setting element attributes is necessary before generating elements and nodes from 

the solid model. Each element in the ANSYS library has specific properties and requires 

a set of attributes to be defined. The following attributes should be defined: 

• Element type: in which the required elements have to be specified and 

defined before the meshing process.  

• Real constants: The real constants usually describe the element 

geometrical properties such as thickness, area, inertia or fiber orientation 

angle and number of layers in the case of layered orthotropic materials. 

• Material properties: Provide the necessary material properties, like elastic 

modulus, shear modulus, and Poisson’s ratio. 

• Element coordinate system: To locate the element axis system that’s 

necessary for the output. 

Step 4: Mesh generation 

After setting all element types and attributes and before start meshing, it is 

required to set the mesh control. Two types of meshing are available: free and mapped 

meshing. Free meshing usually generated randomly without any restriction on the size 

and shape of the element. Mapped meshing is more restricted and done in a systematic 

way in terms of shape, size and elements pattern. ANSYS provides two mapped meshing 

options, quadrilateral and triangular elements. Figure  5-3 and Figure  5-4 show an 

illustration for a free and mapped meshed area. Figure  5-5 shows a sketch for the 

quadrilateral and triangular elements. 
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Figure  5-3: Mapped meshed area. 

 
     (a) Free meshing            (b) Mapped meshing 

Figure  5-4: Free and mapped meshed areas (Ansys). 

 

 
 (a) Quadrilateral     (b) Triangular 

Figure  5-5: Quadrilateral and triangular elements (Ansys). 
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Step 5: Applying loads and boundary conditions 

Applying loads and boundary conditions is part of the solution phase in ANSYS. 

All loading and boundary conditions have to be specified before running the solution 

process.  

5.3 ANALYSIS OF COMPOSITE MATERIALS 

The finite element code ANSYS allows modeling FRP composite by using special 

layered elements that have the capability to represent the actual structure with its 

different layers and fiber orientations. Modeling orthotropic composites is different from 

regular isotropic materials in terms of directional material properties and failure criteria 

for the different layers. Special care has to be taken when specifying the element 

configuration and its local axis system.  

Thin walled structures can be modeled using either a shell or solid element. The 

ANSYS library has two types of elements that can be used for layered structures. The 

first element is a 3-D structural, solid volume element with eight nodes, one at each 

corner. The second is a 3-D, 8-node structural shell element. The shell elements in the 

ANSYS library have 6 degrees of freedom at each node, three translational and 3 

rotational. The solid elements only have 3 translational degrees at each node. 

5.4 STRESS-STRAIN RELATIONSHIPS 

The stress-strain relation is defined as 

 { } [ ]{ }eD εσ =  ( 5-1) 

where : 
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{ } =σ  Stress vector = { }T
xzyzxyzyx σσσσσσ  

[ ] =D  Elasticity matrix 

{ }=eε  Elastic strain vector ={ } { }tεε −  

{ } =ε  Total strain vector ={ }T
xzyzxyzyx εεεεεε  

{ }=tε  Thermal strain vector. 

 
Figure  5-6: Stress tensors (Ansys). 

Equation ( 5-1) can be inverted and written in the following form: 

 { } { } [ ] { }σεε 1−+= Dt  ( 5-2) 

where  

 { } { }000zyx
t T αααε ∆=  ( 5-3) 

=xα  Thermal coefficient of expansion in the x- direction 

=∆T  REFTT −  

T= Current temperature 

=REFT  Reference temperature (strain –free) 
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where: 

=xE Young’s modulus in the x-direction 

=xyν Major Poisson’s ratio 

=yxν Minor Poisson’s ratio 

=xyG Shear modulus 
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In an explicit form, equation (5-3) can be written as, 
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Layered structural solid (SOLID46 ) 

 This element is designed to model layered thick shells or solids. It allows up to 

250 layers of different materials. The element has 8 nodes with three translational degrees 

of freedom for each node.  

 

 

Figure  5-7: Characteristic shape of SOLID46 element (Ansys). 

The element can be defined either by predefined nodal points or by meshing 

existing volumes. The element local x- axis is along the I-J side with the 

origin at node I. The y-axis is in the J-K direction and the z-axis is in the 

element thickness direction J-N. The element shape functions are given as 

follows: 
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and the stress-strain relationship is give as follows: 
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( 5-14) 

where: 

=jx,α  Coefficient of thermal expansion of layer j in the x –direction. 

=jxE ,  Young’s modulus of layer j in the x-direction 

=jxyG ,  Shear modulus of layer j in the x-direction 

=jxy ,ν  Poisson’s ratio of layer j in x-y plane 

=∆T  refTT −  

=T  Temperature at point being studied 

refT  Reference temperature 

 

Layered structural shell (Shell99) 

This is an 8 node element with 6 degrees of freedom at each node. The shape 

functions for this element are given as follows: 
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and the element strains and stresses are calculated as 

 { } { }ejmj uBT ][][=ε  ( 5-16) 

 { } [ ] { } { }( )j
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 { } { } j
T

jmje T σσ ][=  ( 5-18) 

where: 

{ }=eu Element displacement vector 

{ } =j
tε Thermal strain at layer j 

{ } =jeσ Stresses in element orientation 

 

The in-plane forces and out of plane moments are calculated as follows: 
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and the transverse shear forces are given as: 
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Figure  5-8: Stress output for Shell99 element (Ansys). 

where: 

=xT  In-plane force per unit length 
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=jx
t

,σ  Stress at top of layer j in element x direction 

=jx
b

,σ  Stress at bottom of layer j in element x direction 

=jt  Thickness of layer j 

=xM  x- moment per unit length 

=j
bz  z- coordinate for bottom layer j 

=j
tz  z- coordinate of top of layer j 

=z  Coordinate normal to shell, with z=0 being at shell midsurface 

=xN  Transverse x-shear force per unit length 

=jxz ,σ  Average transverse shear stress in layer j in element x-z plane 

5.5 SOIL-PILE MODEL 

As discussed in chapter 4 the soil pile interaction will be modeled using the 

subgrade reaction method that is based on the Winkler approach. The pile will be 

represented by a 3-D shell or solid elements connected to the nonlinear spring elements 

that represent the soil behavior.  

The ANSYS finite element model will be generated using the solid modeling 

method. It will start from bottom to top ending with the final meshed model.  
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Figure  5-9: 3-D solid model. 

The first model is a II section built up from solid sections connected to each other 

to work as one unit. Intersected volumes should share the keypoints and lines to work as 

a single unit. Unconnected areas or volumes will lead to a discontinuity in the model. To 

allow flexibility in section size and geometry, the section is built up of several volumes 

connected to each other through keypoints and lines. The second model has a circular 

cross-section generated using the cylindrical coordinates system. 

Meshing: 

The next step is the meshing process in which the created keypoints and areas are 

converted to nodes and elements. The mapped meshing is recommended in the present 

situation in which the areas will be divided into a uniform pattern of elements and nodes. 

This type of meshing gives more flexibility in node and element management. Mapped 

meshing on areas can be performed in several ways in ANSYS. One method is through 

the edge lines at each area as shown in the Figure  5-10. The line can be divided to the 
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required number of divisions such that parallel lines will have the exact number of 

divisions.  

 
Figure  5-10: Mapped meshing for lines. 

 

Figure  5-11: Mapped meshing for areas. 
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Soil springs: 

The nonlinear behavior of the soil around the pile will be represented by spring 

elements distributed all over the pile. The springs may have different properties at various 

depths depending on the type of soil. ANSYS has several multi purpose spring elements 

with different capabilities. COMBIN39 is a unidirectional element with nonlinear force-

deflection capability that fits different types of analysis. It can be define by the input of 

the force-deflection data points for both tension and compression sides. The force-

deflection curve can take up to 20 data point in ascending order. 

 

Figure  5-12: Force-displacement curves for spring elements (Ansys). 

The element stiffness matrix and load [vectors] are given as 
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Figure  5-13: Stiffness computation for spring elements (Ansys). 

where: 

=tgK Slope of the active segment from pervious iteration 

=1F Force in element from previous iteration 

 

A separate FORTRAN code was created to handle the creation of the spring load-

displacement curves. The ANSYS batch file that generates the solid model creates 

several output files that contain the numbers and locations of the nodes to be connected to 

the spring elements. These files then serve as an input for the FORTRAN code from 

which it generates the nonlinear spring curves for all specified locations. All generated 

spring data and their connectivity nodes will be saved in new output files to be used by 

the ANSYS batch file. The newly created files will be used by the ANSYS file to 

complete the model.  

Boundary conditions: 

The boundary conditions depend on the nature of the pile installation in the field. 

The embedded length of the pile will be continuously connected to horizontal springs 

representing the lateral soil resistance. The vertical movement of the pile will be 

restricted by equivalent frictional springs along the pile shaft. The pile tips have more 
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than situation depending on driving conditions and soil properties at that level. If the 

driving reached rocks or solid strata, the pile tip should be restrained against vertical 

settlement; otherwise, end bearing soil springs should be used.  

 

Applied loads: 

Vertical piles are designed to carry axial loading while [the] lateral load [is] 

carried by battered piles. In jointless bridges where the deck and girders are integrally 

built with the abutment, the vertical pile has to accommodate lateral loads in addition to 

the axial loads. The lateral loads can by applied as a horizontal force or in a form of 

lateral displacement at the pile head.  

A pile in an integral abutment bridge will carry three types of loads, namely: dead 

loads, lateral displacements, and live loads. The dead load is a permanent loading that has 

to be applied initially before any other load. The lateral displacements and live loads are 

unpredictable in terms of which load should come first. 
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CHAPTER 6  

BEHAVIOR OF PILES AND PILING MATERIALS  

Piles in jointless bridges are subjected to combined bending and axial forces while 

in service. The axial forces result from the bridge dead and live loads as well as traffic 

loads. The bending moments are due to the lateral deformations (movements) of the 

integral abutment as a result of thermal expansion and contraction. Such deformations 

induce additional stresses on the upper part of the pile which cause a reduction in the pile 

vertical carrying capacity as bending stresses increase. Piles in conventional jointed 

bridges are designed to carry axial loads only without any considerations for pile lateral 

head displacements. Additional design considerations have to be taken into account for 

piles in jointless bridges. 

The reduction in axial load carrying capacity of a bridge piling system is a very 

important factor when designing integral abutment bridges. The amount of stress 

resulting from lateral movements depends on several factors that include material and 

geometrical properties of the pile and the surrounding soil. Such properties are: bridge 

length, annual temperature range and thermal coefficients of the bridge materials and soil 

type. Another factor that has a major role in the amount of stresses is the pile section 

orientation. Axisymmetric sections, such as circular, have an infinite number of axes of 
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symmetry so that their geometrical properties are equal in all directions. Other types of 

sections have limited axis of symmetry such as polygonal, triangular and irregular 

sections. Those sections have their geometrical properties vary with the variation of the 

reference axis location within the section.  

Axial stresses in structural members depend only on the cross sectional area of the 

member. On the other hand, bending stresses depend on the section flexural rigidity of 

the member cross section. For example, rectangular sections subjected to bending about 

their weak axis will produce different stresses than if they bent about their strong axis.  

6.1 SELECTION OF PILES 

The two major factors that dictate the type and size of the pile to be used in a 

bridge are soil conditions and bridge type. Exploring the geotechnical conditions of the 

construction site provides essential information to the design engineer in terms of pile 

section and length selection. Soil type and conditions, especially the variation in its 

properties with depth, are the most crucial factors. Soil is a non-homogeneous material 

and has variable properties even within the same spot.  

Soil exists in different types and grades with different properties for each type. It 

has two major categories, cohesive and cohesionless soils. Each category is also divided 

in different grades depending on the unit weight, strength, and angle of internal friction. 

Sand is a cohesionless soil that is available in different grades and can be classified in 

three levels: loose, medium, and dense sand. Soil properties vary in density such that they 

increase as the density increases. Typical cohesionless soil properties are shown in Table 

 6-1 below. Cohesive soils are also available in different types and grades that range from 

very soft to very stiff clay as shown in Table  6-2. 
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Table  6-1: Cohesionless soil typical values (Amde et al 1982) 

Sand 
Natural unit 

weight 
lb/ft3 

Submerged unit 
weight 
lb/ft3 

Angle of 
friction 

Blow count, 
N 

Loose 90 –125 55 – 65 30 4 - 10 

Medium 110 – 130 60 – 70 35 10 – 30 

Dense 110 - 140 65 - 80 40 30 - 50 

 

Table  6-2: Cohesive soil typical values (Amde et al 1982) 

Clay Cohesion, Cu 
lb/ft2 

Natural unit 
weight 
lb/ft3 

Submerged unit 
weight 
lb/ft3 

Very stiff Over 3000 120 – 140 60 –80 

Stiff 1500 – 3000 115 – 135 55 – 75 

Firm 750 – 1500 105 – 125 45 – 65 

Soft 375 – 750 90 – 110 30 –50 

Very soft Under 375 90 – 100 30 40 

 

Pile size and dimensions usually are determined according to the allowable soil 

properties in terms of bearing capacity and surface friction. Load bearing piles are 

designed for maximum section capacity either for material or geometrical failure. An end 

bearing pile will fail when its maximum stress exceeds the allowable limit or when the 

applied load exceeds the allowable buckling load for unbraced slender piles. On the other 

hand, a friction pile fails when the applied load exceeds the pile shaft frictional capacity.  

The other factor that has a major role in determining the pile type and size is the 

bridge itself. The bridge type, length, dimensions, and construction materials strongly 

affect the decision in pile selection. In conventional bridges with expansion joints the 
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piles are designed to carry pure axial compression. In jointless bridges where thermal 

movements induce lateral deformations on the piling system, the pile should be designed 

for both axial and lateral loading.  

When designing piles for jointelss bridges, special considerations have to be taken 

for the thermal movements of the bridge abutment. The abutment has to be designed with 

a degree of flexibility to allow less resistance for the superstructure movements. The 

flexibility can be provided through the piling system such that the piles are installed in a 

single row with bending about their weak axis. This kind of pile orientation has an 

advantage in terms of flexibility in the direction of the movements.  

The most commonly used piles in integral abutment bridges are steel H-piles. 

Steel has a very high strength and durability with a reasonable cost when compared to 

other materials. Also the H-shape has the advantage in providing two axes of bending 

with a reasonable margin of bending flexibility between the two axes. When weak axis 

bending is desired, the H-pile is preferred over the reinforced concrete piles, which 

normally have round cross sections. The round or cylindrical pile does not provide weak 

and strong axis bending properties. The section has its properties equal in all directions.  

Pile size and cross-sectional dimensions should be selected by considering all 

factors that may affect the pile performance while in service. The first step after soil 

exploration is to determine the number of piles and the amount of load to be carried by 

each pile. Pile capacity is governed by the type of failure at the maximum load. The type 

of failure depends on the pile material, soil properties, and pile boundary conditions. 

Friction piles capacity is usually governed by the failure of the soil when the applied load 

exceeds the soil friction and bearing capacity. In end-bearing piles where the pile is 



 127

supported on hard strata, strength or geometrical failures of the pile material are always 

likely to happen.  

6.2 SELECTION OF PILE SECTIONS 

As discussed in the previous section, the pile cross-sectional properties have a 

major effect on the flexibility of the piles under lateral loads. The cross-section can be 

configured to provide the maximum flexibility while keeping the area unchanged. 

Rigidity, which is the inverse of flexibility, is measured as the combination of the 

section and material properties. The rigidity is defined in terms of section moment of 

inertia, I and the modulus of elasticity of the section material, E. Its value is equal to the 

product of both properties (EI). An increase in any of the value of either E or I will 

increase the rigidity and vise versa.  

Isotropic materials such as metals which have identical material properties in all 

directions have a constant value of E that can not be affected by material orientation. In 

such situations, the only way to control the section rigidity is through the section 

geometrical properties. Orthotropic materials, such as fiber reinforced composites have 

directional dependent material properties. The modulus of elasticity does not have a fixed 

value but varies within a range that is determined by the lowest and highest values of the 

material properties. This variation in properties within the same materials gives more 

flexibility to the designer to control the section rigidity. Unlike isotropic materials, where 

rigidity can be controlled only by the section properties, orthotropic materials allow 

rigidity control through both material and sectional properties.  



 128

6.3 FRP COMPOSITE PILES 

Fiber reinforced composites are not very stiff materials when compared to steel 

and other metals. Their stiffness depends on the stiffness of the individual constituents; 

fibers and matrix. Stiffness for fiber reinforced composites usually is calculated 

according to the rule of mixtures. As a result, the final stiffness for a composite mainly 

depends on the percentage or the volume fraction of each constituent. 

6.4  SOIL BEHAVIORS 

The non-linear soil behavior is represented according to the Ramberg-Osgood 

model which consists of a set of load-deflection curves describing the pile deflection 

behavior under applied loads. Figure  6-1 through Figure  6-3 illustrate the different load-

displacement curves for three grades of sands. The soil properties were listed in Table 

 6-1. 
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Figure  6-1: p-y curves for dense sand.  
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Figure  6-2: Axial load – friction (f-z) curves for typical properties of dense sand. 
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Figure  6-3: Axial load-bearing (q-z) curves for typical properties of dense sand. 
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It can be concluded that friction piles for integral abutment bridges are 

recommended to have cross sections that provide sufficient friction and bearing surfaces 

and allow the adequate flexibility to accommodate lateral thermal movements.  

The most commonly used piling for integral abutment bridges is HP piles. Steel is 

a stiff and strong material that is capable of carrying heavy structural loads with small 

section areas. The steel H piles got their name from their shape. The pile has the shape of 

the letter H that provides a major axis of symmetry which allows bending to be on a 

strong or weak axis. Integral abutment piles usually are oriented to bend about their weak 

axis to allow adequate flexibility for lateral movements.  

 

Analysis of HP 10x42 friction pile in cohesionless soils under combined axial 

loading and lateral movement shows that the pile is highly prone to failure from plastic 

hinge rather than soil failure. The formation of plastic hinge depends on the amount of 

stress resulting from the lateral movement and the vertical loads of the superstructure. 

The surrounding soil also has a major effect on the pile head stresses. The stiffer the soil, 

the more resistance there will be on the pile lateral movement and higher stresses will be 

generated.  

Figure  6-4 shows a comparison between the deflected shapes of an HP10x42 pile 

under the same lateral loading for different soil densities. As can be seen, the denser the 
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soil, the smaller the deflection. On the other hand, Figure  6-5 shows the stress variation in 

the same pile for different soil densities and under the same lateral displacement. It’s 

clear from the figure that the stresses increase as the soil gets denser. 
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Figure  6-4: Effect of soil density on the deflected shape under the same loading. 
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Figure  6-5: Effect of soil density on stress variation. 

6.5 STRESS-STRAIN MODELS FOR FRP CONFINED CONCRETE  

The behavior of concrete confined with FRP materials has been extensively 

researched during the last few years. Fiber-wrapping or encasement of plain concrete in 

FRP shells enhances the strength and ductility of concrete. Concrete members under 

compressive loading expand laterally as stress increases.  

The strength and elasticity of the composite shell has a dramatic effect on the 

behavior of the encased concrete. The concrete strength is mainly based on the strength 

of the composite shell. The behavior of FRP confined concrete has been studied by many 

researchers. Despite the extensive research effort spent on studying the FRP confined 
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concrete, a proper analytical tool to predict such behavior has not yet been established. 

Early investigation attempts tried to extend the models developed for steel confined 

concrete to be used for FRPs but later investigations showed that such assumption leads 

to inaccurate results.  

Most studies employed the well-known equation by Popovic and used by Mander 

(1988) for the confined concrete. The stress-strain model is illustrated in Figure  6-6 and 

based on equation ( 6-1). 
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and ' ' and cc ccf ε = confined peak strength and the corresponding strain, respectively. 

 
Figure  6-6: Stress-strain model for concrete confined by FRP (Bogdanovic 2002).  
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The peak stress of the FRP confined concrete is mainly dependent on the lateral 

confinement pressure. For cylindrical columns the peak value is given by  

 ' '
1cc c lf f k f= +  ( 6-2) 

 ' '
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and for rectangular columns, the peak stress is given by 

' ' (1 0.0572 )cc c lf f f= +  

' ' (1 0.280 )cc c lfε ε= +  
When the experimental values of cE and '

cε are not available, the values can be 

calculated theoretically from the following formulas 
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Where all values are given in Mega Pascal. 

The lateral confinement pressure for cylindrical shapes was derived by (Marques et al 

2004) as follows: 

 2
l j
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D

=  ( 6-6) 
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Figure  6-7: Lateral forces produced by confinement with rectangular and circular jackets 

(Marques 2004). 

And for rectangular shapes is given as 
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The lateral pressure of confinement in circular and rectangular sections is shown 

in Figure  6-7. 

Based on test results from concrete-filled FRP tubes, Samaan and Mirmiran 

(1998) utilized the four-parameter relationship of Richard and Abbott (1975) to develop 

and calibrate their FRP-confined concrete model. The model represents the bilinear 

response of FRP-confined concrete with equation ( 6-11). 
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Where εc and fc are the axial strain and stress of concrete, respectively; E1 and E2 are first 

and second slopes, respectively; fo is the reference plastic stress at the intercept of the 

second slope with the stress axis; and n=curve-shaped parameter that mainly controls the 

curvature in the transition zone (Samaan 1998). Figure  6-8 shows the basic parameters 

equation ( 6-11) expression. 
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Where 

D = Core diameter 

Ej= Modulus of elasticity of jacket in hoop direction 

fj = Jacket’s hoop strength 

fr= Confining pressure 

tj= Tube thickness 

f’cu= Ultimate strength of FRP-confined concrete 
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Figure  6-8: Parameters of bilinear confinement model. 

Figure  6-9 shows a comparison of the two confinement models through several 

stress-strain curve plots. As can be seen, Mirmiran’s bilinear model always has its second 

part ascending. Changing the curve parameters will only affect its slope. On the other 

hand, Mander’s model is non-linear and it can have its second portion descending when 

the confining jacket has low hoop strength. Also, it can be seen that the confinement 

strength strongly depends on the fiber directions in the composite shell. The confined 

concrete will show higher strength as the fiber goes towards the hoop direction. 
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Stress-strain models for concrete 
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Stress-strain models for concrete 
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Figure  6-9: Stress-Strain curves for FRP confined concrete. 

6.6 STRESSES IN FRP COMPOSITES  

The directional strengths have a similar scenario to that of elastic modulus in 

which the highest value is in the fiber direction and the lowest is in the perpendicular 

direction. According to the maximum strength theory, the off axis strength can be 

calculated 

 2
1 cosxσ σ θ=  (  6-18) 
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 2
2 sinxσ σ θ=  (  6-19) 

 12 cos sinxτ σ θ θ= −  ( 6-20) 
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Figure  6-10: Variation of failure stress with fiber orientation angle for glass and carbon 

epoxy. 

When the stresses on the principal material directions exceed a pre-defined value 

(failure criteria), then the failure has occurred to that layer. The failure criteria should be 
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defined for each material and in all directions. Figure  6-10 shows the variation of the 

failure stress with the fiber orientation angle θ. Any stress value above the lowest curve 

exceeds the allowable stress for the particular orientation. Hence, the design should be 

performed such that the stress in any material direction will be in the allowable zone. 

To accommodate the different types of stresses in a loaded FRP composite pile, 

the pile shell has to be designed with multiple layers with different fiber orientations. 

Since the pile is an axial compression member normally designed to carry axial 

compressive loads, the composite fibers should be oriented to provide the highest 

strength and stiffness. From the previous graphs, it has been shown that a unidirectional 

composite layer has its highest mechanical properties at a 0-degrees angle with respect to 

the loading direction. Laying up all layers to have their fibers in the direction of pile axis 

will improve its axial properties in terms of composite carrying capacity but, on the other 

hand it will weaken the confinement pressure on the concrete core.  

Failure in composites has different mechanisms than that in isotropic materials 

such as metals. In isotropic materials, the failure is predicted by comparing the stresses to 

the strengths or the allowable stresses. In this case there is no principal material direction 

and the material has the same properties in all directions. For orthotropic composite 

materials, such a method is not adequate because the failure mechanism and strength 

properties change with the fiber direction for any composite lamina. The failure stresses 

should be checked in all major directions for each layer. There are many different modes 

of failure and the number of material strengths required depends on the failure criteria to 

be applied. Usually 9 strength properties are required; tensile, compressive and shear 

strengths in the three principal material directions. Since composites are mostly used in 
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forms of thin layers, 2D stresses states are often sufficient for most applications which 

reduces the number from 9 to 5. Failure usually does not occur by yielding but rather by 

sudden fracture.  

6.7 BEHAVIOR OF LATERALLY LOADED COMPOSITE PILES 

Stiffness and flexibility are very important factors which have to be considered 

when designing piles for integral abutment bridges. The goal is always to minimize the 

resistance against the lateral movement of the bridge super structure. The lower the 

resistance against lateral movements, the less stress is induced on the bridge deck and the 

supporting piles.  

Piles according to their load-transfer method can be categorized in two types: 

friction piles, and bearing piles. Both types are assumed to have the same function, which 

is to support the structure and accommodate the vertical and lateral loadings. Several 

factors usually affect the lateral behavior of driven piles and will be discussed in the 

following sections of this chapter.  

6.7.1 FRICTION PILES 

Piles that develop their carrying capacity by side shear are called friction piles. 

The pile gains its resistance to settlement through the direct contact between the shaft and 

the surrounding soil. The ultimate friction capacity of a pile in a specific soil depends on 

the size of the contact area with the soil. The larger the contact area, the higher skin 

friction will be gained. As a result, skin friction piles should be designed with larger 

contact surface area than other types of piles. The ultimate load capacity of a friction pile 

under axial loading is the lesser of the compressive strength of the pile material and the 
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maximum load capacity of the soil-pile interface. In integral abutment bridges, where 

piles are subjected to combined axial and lateral loads, the pile may fail laterally as a 

result of surrounding soil failure.  

 Maximum lateral flexibility in piles is desired to accommodate the lateral bridge 

movements; the pile section should be selected to provide an adequate surface friction 

area with an acceptable amount of flexibility.  

6.7.2 END-BEARING PILES 

End bearing piles are piles that transfer their load through direct contact between 

the pile tip and the layer of hard strata located at a considerable depth below the base of 

the structure. This type of pile gains its carrying capacity from the penetration resistance 

of the soil at the pile tip. A model illustration of end-bearing piles is shown in Figure 

 6-11.  

 

 
Figure  6-11: End-bearing pile model. 



 143

6.8 AXIAL STRESSES AND DEFORMATIONS 

Vertical pile deformations under increasing loads are of major concern in bridge 

structures. The combined deformations that result from dead loads, live loads, and creep 

should be taken into consideration when designing pile foundations. The amount of 

bridge settlement should remain within the allowable design range so that the bridge 

surface stays leveled with the road elevation. The amount of deformation depends on the 

pile axial stiffness, i.e. the pile cross-sectional area and its material properties. Figure 

 6-12 shows the load-deformation curves for several piles of similar cross sections and 

different lengths subjected to the same loading scheme. 
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Figure  6-12: Load-deformation curves for different pile lengths. 
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Stresses in piles of integral abutment bridges are a combination of axial and 

bending stresses. Axial stresses are resulting from dead and live loads of the bridge 

structure. Dead load stresses are permanent and usually applied as soon as the super 

structure is installed. Axial load stresses are usually uniform and cover the whole length 

of the pile as shown in Figure  6-13.  
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Figure  6-13: Stress envelope for a pile under axial compression.  
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6.9 BENDING STRESSES 

Bending stresses result from the lateral movement of the pile head due to thermal 

expansion and contraction of the bridge deck. The stress magnitude depends on several 

factors which include: the pile lateral stiffness, amount of lateral displacement and soil 

stiffness. A pile with a circular cross-section filled with concrete as described in the 

following information sheet was analyzed under lateral head displacement only. The 

three major stresses in all layers are plotted and illustrated in Figure  6-14 through Figure 

 6-16. The bending stresses are not as uniform along the pile length as those of axial 

stresses. They vary from maximum at the pile head and decrease with depth, and then 

vanish at a certain depth. Figure  6-17 and Figure  6-18 also show the variation of bending 

stress at a point with different depths along the pile shaft. As can be seen, the stress 

behavior varies along the depth of the point in consideration.  
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Pile information sheet: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy 0.26 Yc -17.5 

  S 6.2 

 

Number of layers: 12 

Layer thickness: 0.025 in. 

Radius, R=4.88 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0] 

Filling: Plain concrete fc’=4 ksi 

Height = 20 ft 

Soil type: Very stiff clay 

Loading: 

Axial dead load:  No axial load 

Lateral head movement: 2 in. [steps 1to 12] 

 

R
   T

H H
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Figure  6-14: Development of the stress (σ1) due to lateral pile movement (bending only). 
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Figure  6-15: Development of  the stress (σ2) due to lateral pile movement (bending only). 
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Figure  6-16: Development of the shear stress (τ12) due to lateral pile movement (bending 
only). 
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Figure  6-17: Bending stresses (σ1) at different depths of the pile shaft due to lateral head 

movement (Compression side). 
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Figure  6-18: Bending stresses (σ1) at different depths of the pile shaft due to lateral head 

movement (Tension side). 
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CHAPTER 7  
 

NUMERICAL INVESTIGATION OF THE FRP PILE-SOIL 
INTERACTION 

This chapter presents the findings of finite element analyses on a series of FRP 

pile-soil models that were performed to investigate the behaviors of FRP piles under 

combined axial compression and bending moments. The investigation utilized all 

numeric parameters that may have effect on the pile-soil behavior.  

7.1 OBJECTIVES OF THE NUMERICAL INVESTIGATION 

The objectives of the study are to investigate the following: 

• The behaviors of fiber reinforced composites as a piling material. 

• The different types of stresses developed in the composite shell through out the 

different stages of loading. 

• The effect of the following parameters on stresses and pile behaviors: 

1. Soil type 

2. Concrete filling 

3. Material type 

4. Layer orientations 
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5. Cross-sectional area 

6. Predrilled hole 

7. Section geometry 

8. Dead load magnitude 

7.2 THE SOIL-PILE MODEL 

The computer model was developed using the ANSYS Parametric Design 

Language (APDL). APDL is a scripting language that one can use to automate common 

tasks or even build a model in terms of parameters (variables). APDL also encompasses a 

wide range of other features such as repeating a command, macros, if-then-else 

branching, do-loops, and scalar, vector and matrix operations. 

The model was built with maximum flexibility that allows all the necessary 

parameters to be changed for each single run. The following parameters were set to be 

variables: 

1. Pile height, H 

2. Pile dimensions; 

DS:   web height 

DS2: middle flange width 

DZ1: edge flange width 

T1:    flange thickness 

T2:    web thickness 

3. Soil type 

4. Concrete strength and stress-strain model. 

5. Number of FRP layers in each segment. 
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6. Layer thickness 

7. Mesh size in all directions for all segments. 

8. Composite material type 

9. Predrilled hole depth 

10. All loads and deformations. 

11. Cross-section geometry 
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7.3 MAXIMUM LOAD CAPACITY 

The carrying capacity of a load bearing pile can be dictated by several factors 

based on the provisions of its design. Pile failure may occur in different scenarios; 

material failure in which the pile materials reach its ultimate capacity, geometric failure 

(buckling) in which the pile becomes unstable to withstand any additional loads, and 

finally, excess pile deformations above the allowable design limits.  

In jointed bridges, lateral movements that result from thermal expansion and 

contraction of the bridge deck do not have a direct effect on the supporting piles. The 

expansion joints and bearings allow the bridge deck to move freely over the piers and 

abutments. The supporting piles in such systems will carry axial load only.  
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In integral abutment bridges the expansion joints and bearings will be eliminated 

for engineering purposes. Thermal movements of the bridge deck will transfer through 

the abutments to the supporting piles. As a result, the pile heads will move laterally to 

accommodate that movement.  

 The dead loads of the bridge structure are permanent and will be the first loads to 

be applied on the piles. As a result, the piles will be uniformly prestressed initially. The 

amount of the stress depends on the applied loads and the pile cross sectional properties. 

Moments resulting from pile head movement will produce bending stresses at the 

pile head. These stresses will be added to the existing compressive stresses resulting from 

bridge dead loads which are already applied on the pile. Addition of the two stresses will 

result in an increase at the compression stresses at the compression side of the bending 

and a decrease at the tension side of the bending as illustrated in Figure  7-1. 
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Figure  7-1: Combined stresses in a pile under dead loads and lateral movements. 
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Pile information: 

Composite type: Glass epoxy 

Property ksi Property ksi 
Ex 4500 Xt 90 
Ey 1100 Yt 3.9 
Gxy 550 Xc -80 
Vxy 0.26 Yc -17.5 
  S 6.2 
 

Number of layers: 12 

Layer thickness: 0.0208 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0] 

Filling: Plain concrete fc’=3 ksi 

Height = 20 ft 

Soil type: Dense sand 

Loading: 

Case 1: 

Axial load: 900 kips [steps 1 to 12] 

Case 2: 

Axial dead load: 300 kips [steps 1 to 4] 

Lateral load: 50 kips [steps 5 to 8] 

Axial live load: 200 kips [9 to 12] 

H H

 8 in
0.25

8
0.25

0.25

9 in.
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As can be seen in Figure  7-1, the axial dead loads will produce the compressive 

stress σD on the pile shaft. The lateral movements will produce bending stresses with 

values of σMT and σMC at the tension and compressive sides of the pile head respectively. If 

the bending tensile stress σMT is greater than the axial compressive stress σD, portions of 

the pile shaft will be subjected to tensile stresses, Figure  7-1(d). If σMT is less than σD then 

the pile shaft will stay under non-uniform compressive stresses, Figure  7-1(c). 

The same scenario will be repeated after applying the axial live loads. The pile 

may end with either two stress zones (tension and compression) or one non-uniform 

compression zone as shown in Figure  7-1 (d) and Figure  7-1 (c) respectively. 

According to the maximum stress failure criterion, the stresses in each layer 

should remain within the allowable stress limits during and after all load applications. 

Any stress value exceeding the allowable limit will lead to a layer failure. Therefore, the 

pile’s maximum load capacity can be defined as the amount of load a pile can carry 

before any stress component exceeds the assigned criteria.  

Structural elements made of composite materials do not have standard mechanical 

properties because of the variety of composite properties and different architecture for 

each element. Therefore, the maximum load capacity of a composite pile can be 

determined based on the geometrical, mechanical and architectural properties of the pile 

in consideration. 

To investigate the effects of lateral head movement on the axial capacity of load 

bearing piles, a pile model with the configuration described in the pile information sheet 

can be analyzed under two cases of loading: pure axial load up to failure, and axial load 
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plus lateral head movement up to 2 inches. The effects of all design parameters on the 

pile’s maximum load capacity will be discussed in the following sections. 

 Figure  7-2 presents an illustration for the envelopes of the three major stress 

components in all 12 layers at 900 kips axial compression load. It can be seen that the 

second stress component, σ2, has reached the allowable limit in one or more layers. The 

other two stress components, σ2 and τ12, did not reach any of the limits bounded by the 

failure criteria zone.  

Since the stress-strain behavior of the fiber reinforced composites is linearly 

elastic, then the stresses resulting from the different types of loading can be added using 

the principle of superposition. Therefore, the pile that reached the allowable stress limit at 

900 kips (shown in Figure  7-2) will not be able to take any more loading or bending. Any 

additional stresses from either the axial loading or the lateral movement will be added to 

the current stress values. An excess in the stresses beyond the allowable limit will lead to 

a pile failure.  

To accommodate the stresses from both the axial load and the lateral movements, 

the pile should be designed such that all stress components at any loading stage should 

stay within the allowable region. Figure  7-3 through Figure  7-5 show the stress envelopes 

for the three stress components in all layers at an axial load of 300 kips and lateral 

displacement up to 2.0 inches. Each graph has two envelopes: the first envelope is for the 

axial load and usually has a uniform shape over the length of the pile. The second 

envelope is for bending from the lateral movement which does not have a constant or 

uniform shape. It can be seen that the stresses at the upper portion of the pile increase as 

the lateral movement increases while the axial load remains constant. From 0 up to 1.5 
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inches of lateral movement, all stress components are still in the allowable zones, but, at 

2.0 inches the second stress component, σ2, exceeds the allowable limit at the tension side 

as can be seen in Figure  7-4. According to the “first layer failure” approach, the pile will 

have failed and will not be able to take any more loads. 
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Figure  7-2: Stress envelopes for a pile under axial compression only (Load=900 kips). 
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Figure  7-3: Effect of lateral movement on axial capacity, stress σ1. 
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Figure  7-4: Effect of lateral movement on axial capacity, stress σ2. 
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Figure  7-5: Effect of lateral movement on axial capacity, stress τ12. 
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The stress variation at a point for the two cases of loading is plotted for two 

different layers in the pile shell, as shown in Figure  7-6 and Figure  7-7. In the first figure, 

it can be seen that all stresses are within the allowable stress criteria and the layers are 

still capable of handling more loads. In the latter figure, the stresses in the pile with 900 

kips pure compression are still within the criteria, while the other pile of 300 kips axial 

load and 2 inches lateral movement has its layer number 9 exceeding the allowable stress.  

Stresses resulting from lateral movement of the pile head have a major effect on 

the axial capacity of an integral bridge pile. As soon as the pile head starts to move 

laterally, stresses begin to increase dramatically at the upper portion of the pile. The pile 

will be capable of carrying more axial loads as long as the stresses in all layers are within 

the allowable limits. If a stress component in one or more layers exceeds the allowable 

stress criterion, then the pile has failed.  
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Figure  7-6: Stress (σ1) development with time.  

 

  

Second stress component comparison
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Figure  7-7: Stress (σ2) development with time. 
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7.4 EFFECT OF THE DIFFERENT PARAMETERS ON THE BEHAVIOR OF 

LATERALLY LOADED PILES 

The behavior of driven piles under axial loading and bending moments depends 

on several factors that are related to the pile itself, the soil medium and the loading 

conditions. In the following sections a discussion of the effect of each parameter (factor) 

will be presented.  

7.4.1 SOIL TYPE 

Soil profile is one of the crucial factors that have major effects on the lateral 

behavior of piles in integral abutment bridges. Soil properties are represented by load-

displacement (P-∆) curves to simulate the vertical and lateral behavior of the soil-pile 

system. Generally, three factors have the most influence on the P-∆ curves that control 

the soil-pile interaction: the soil properties, the pile’s flexural rigidity, and the nature of 

loading. 

To study the effects of soil type on the soil-structure interaction, four different 

piles in different soil profiles were investigated. Two load configurations were utilized: 

(1) a combination of axial and lateral loads, and (2) a combination of axial load and a 

specified lateral head displacement. Figure  7-8 shows different plots of lateral 

deformation curves for identical piles driven in cohesion and cohesionless soils. The piles 

were assumed to be fully driven in each soil profile and were subjected to a specified 

vertical axial load as a dead load. After the application of the full dead load, the piles 

were subjected to an incremental (multi-step) lateral load at its top to represent the 

thermal expansion and contraction of the bridge deck. The pile heads were left free to 

move laterally for the purpose of measuring lateral stiffness of the soil-pile system. As 



 165

can be seen, the responses of the piles (which were subjected to the same load conditions) 

are different for each soil profile. The pile in the very stiff clay experienced higher lateral 

resistance than those in the other soils. The pile in the soft clay showed response to the 

lateral deformations at greater depth compared to the pile in stiff clay. A wider 

comparison of the same pile in other soils is presented in Figure  7-9. In this figure, the 

lateral responses of identical piles under similar loading conditions are plotted along the 

pile depth for different types of soils. The plots show clearly the effect of soil stiffness on 

the deflected shape of the pile. It has to be noted that the curves do not have the same x-

scale. 

Figure  7-10 shows the lateral deformation curves for the same piles subjected to 

axial load and lateral movements up to 2 inches. As can be seen from the curves, the 

piles’ responses to the lateral movement are not the same. The pile in the soft clay 

experienced the highest lateral deformation with the deepest point of fixation. The pile in 

the very stiff clay experienced the lowest lateral deformation and shallowest point of 

fixation. 
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Pile information: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 
Ey 1100 Yt 3.9 
Gxy 550 Xc -80 
Vxy 0.26 Yc -17.5 
  S 6.2 
 

Number of layers: 12 

Layer thickness: 0.0208 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0] 

Filling: Plain concrete fc’=3 ksi 

Height = 40 ft 

Soil type: Soft clay, Stiff clay, very stiff clay  
 and dense sand 

Loading: 

Case 1: 

Axial dead load: 300 kips [steps 1 to 6] 

Lateral load: 50 kips [steps 7 to 12] 

Case 2: 

Axial dead load: 300 kips [steps 1 to 4] 

Lateral displacement: 2 in. [steps 5 to 8] 

Axial live load: 200 kips [steps 9 to 12] 

H H

 8 in
0.25

8
0.25

0.25

9 in.
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Lateral displacement curves for piles in 
soft clays
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Lateral displacement curves for piles in 
stiff clays
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Lateral displacement curves for piles in 
very stiff clays
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Figure  7-8: Lateral displacement curves for a pile in different soil profiles under lateral 
load. 
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Lateral displacement curves for piles in 
in different soils
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Figure  7-9: Lateral displacement curves for a pile under horizontal force in different soil 

profiles. 
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Figure  7-10: Lateral displacement curves for a pile under constant displacement in 

different soil profiles. 
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The soil properties also have a major effect on the stresses developed on the 

deformed pile, mostly bending stresses. The deflected shape always gives an indication as 

to how large the resulting stresses will be in the pile shaft. The following figures present 

the stress variation profiles of a pile in different soils. The pile consists of a 12-layer 

composite shell with multiple orientation angles and is subjected to axial dead load and 

gradual lateral displacement at its top.  

Due to the massive output of the stress analysis of the multi-layered multi-

directional fiber reinforced composites, it will be difficult to present all output results. 

Instead, sample curves will be selected to show the behavior of the desired entity at some 

extreme locations; then an envelope curve will show the entire range of extreme values at 

all nodes in the finite element mesh. Each pile model has several hundreds of nodes and 

each node has multiple stress values; three of them are of interest. In addition, the 

composite shell consists of multiple layers with each layer having its own material 

directions. As a result, for each node we will have (12 layers x 3 directions = 36 stress 

values) at each load step.  

In Figure  7-11 and Figure  7-12 the actual and the normalized stress variations 

with time (load is time-dependent and increases with time) are plotted for two points at 

the extreme compression and tension locations of the pile section respectively. The two 

points are selected at the top of the pile (0-ft deep); the conjunction with the abutment 

usually has the highest stress values. The stress curves are plotted in the major material 

direction σ1 for a single layer (0-degree) which has its fibers in the direction of the pile 

axis. 
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Each curve of the set consists of three parts based on the load application 

sequence: dead load (DL), lateral movement (LM), and live load (LL), respectively, in 

the order of load application. As can be seen, the behavior of each portion of any of the 

curves is different for each loading stage. For illustration, if we consider the very stiff 

clay curve #1 in Figure  7-12, the dead load stresses are about 10% of the total 

compression stress at that point. Bending stresses from lateral movement of the pile head 

form about 70% and the remaining 20% are due to the live load effect. 

The break contribution to stress for each type of loading is not the same for all 

soil types. As can be seen, all piles showed equal dead load stresses at each soil profile 

because the dead load was applied as a pure axial compression before any lateral 

movement occurs. Stresses resulting from lateral movements show variable behavior for 

each soil profile. Stiffer soils showed higher bending stress rates compared to soft soils. 

This is because the bending stress is highly dependent on the stiffness of the soil medium 

around the pile. Also the concrete filling begins to develop cracks as soon as the bending 

moments reach the rupture moment. The bending stress behavior is not constant along the 

depth of the pile shaft. The stress value and rate at a point change with the depth and 

location of that point at the pile. Figure  7-13 shows the stresses along a series of points 

along the depth of the pile shaft for all soil profiles. It can be seen that each point has a 

different stress value from the other within the region in which bending moments have 
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effect. In the region where the bending moment starts to vanish, the stresses are about the 

same. 

Figure  7-14 through Figure  7-16 show the stress variation at three different 

locations along the pile depth. The stresses in the FRP shell are smaller at lower depth. 

Bending effects disappear gradually with depth until they reach a state of steady 

compression. Therefore, pile stresses in all soil profiles are very close in value at 10-ft 

depths as can be seen in Figure  7-16. 

Concrete stresses at a point and at a line over the pile length were also investigated as 

shown in Figure  7-17 and Figure  7-18 respectively. As can be seen, the stresses in 

concrete are directly proportional to the soil stiffness. Stiff soils, such as very stiff clays 

produced the highest concrete stresses in both tension and compression zones (curves 

#5). On the other hand, the lateral soil resistance for the piles in soft clays is the lowest 

and the bending stresses in the pile are very small, such that the concrete did not 

experience any tension cracks.    

The stress curve representation at a point is not adequate to reflect the actual 

behavior of the pile in analysis of multi-directional layered composite material structures. 

Each single layer has its own failure criteria based on the material type. All major stresses 

in each layer should be checked against failure.  

Figure  7-19 shows a group of stress envelopes for the major stress components 

along the pile depth for the different soil profiles. The stresses are plotted for all layers at 

each node and at load step 8 which includes the total dead load and the 2 in. lateral 

movement. It can be seen that all three stress components, σ1, σ2, and τ12, are increasing 

in the bending zone as the soil stiffness increases. The effect of soil stiffness on the crack 
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patterns in concrete is shown in Figure  7-20. The piles in stiff soils experienced major 

cracks in all directions of the upper portion, while the piles in medium soils had fewer 

cracks. 
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Figure  7-11: Stress variation with time at a point located at 0-ft from the top. 
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Figure  7-12: Normalized stress variation with time at a point located at 0-ft from the top. 



 173

 

Stress Curves for piles in 
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Figure  7-13: Stress variation along the depth of the pile shaft in both tension and 
compression sides. 
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Figure  7-14: Stress variation with time at a point located at 1-ft from the top.  
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variation of stress at point under stepped loading(3.5-ft deep)
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Figure  7-15: Stress variation with time at a point located at 3.5-ft from the top. 

 

variation of stress at point under stepped loading (10-ft deep)

0

2

4

6

8

10

12

14

-120 -100 -80 -60 -40 -20 0 20 40 60
Stress (ksi)

Lo
ad

 s
te

p

(1) very st. clay

(2) stif f  clay

(3) soft clay

(4) dense sand

(5) medium sand

Layer 1
σ1

 
Figure  7-16: Stress variation with time at a point located at 10-ft from the top. 
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variation of concrete stress at a point under stepped loading
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Figure  7-17: Stress variation with time in concrete at a point located at 0-ft from the top. 
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Concrete stress curves for piles in 
in different soils (Tension side)
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Figure  7-18: Stress variation in concrete along the depth of the pile shaft in both tension 
and compression sides. 
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Figure  7-19: Stress envelopes along the pile length for all layers at load step 8. 
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Figure  7-19: Stress envelopes along the pile length for all layers at load step 8 (cont’d). 
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Figure  7-20: Concrete crack patterns for piles in different soils. 
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7.4.2 CONCRETE FILLING 

Concrete is a stiff material when used in bulk volumes. Concrete stiffness is 

correlated to its strength. Concrete also is price competitive when compared to other 

construction materials such as steel. It can be used in conjunction with FRP materials in 

pile construction. Composite materials have a wide range of stiffness depending on the 

type and volume fractions of its constituents. It may range from the stiffness of the softest 

material to the stiffness of high strength steel. Price based comparison shows that 

concrete has much lower costs than FRP composites on volume or weight basis. For 

economical considerations, hybrid piles such as concrete-filled FRP tubes can provide 

very effective solutions for special types of applications.  

Designing piles for jointless bridges requires some coordination between the axial 

and lateral stiffnesses of the pile. While higher stiffness is always desirable in the pile 

axial direction, more flexibility is desired in the lateral direction. Axial stiffness of a 

compression member depends on its cross-sectional area and the stiffness of its 

constituent materials. On the other hand, lateral stiffness of a bending member depends 

on its moment of inertia in addition to the stiffness of the constituent materials. 

To investigate the effect of the concrete filling on the behavior of laterally loaded 

piles, three pile configurations were considered. The three piles have cross-sections as 

shown in the following pile information sheet. All of them have the same FRP cross-

sectional area and the same fiber structure. After subjecting all piles to the axial deal 

load, an incremental lateral displacement was applied allowing them to bend about their 

x-axes, as shown in the figure. The live load was then applied in an incremental process.  
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Piles information: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy 0.26 Yc -17.5 

  S 6.2 

 

Number of layers: 12  

Layer thickness: 0.0208 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0]  

Filling: Plain concrete fc’=3, 4, 5, 6, and 7 ksi 

Height = 20 ft  

Soil type: very stiff clay 

Loading: 

Axial dead load: 300 kips [steps 1 to 4] 

Lateral displacement: 2 inches [steps 5 to 8]  

Axial live load: 200 kips [steps 9 to 12] 
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The following figures show a comparison between hollow and concrete-filled 

piles in very stiff clay soil. All piles have the same size of composite shell but with 

different shape configurations for concrete filling purposes. The first pile is without 

filling, the second is half-filled with concrete and the third is totally filled as shown in the 

previous illustration.  

Figure  7-21 and Figure  7-22 show a comparison between the load-deformation 

curves of the three piles under identical loading conditions. The hollow pile experienced 

higher vertical deformation and fewer lateral deformations than those with the concrete 

filling. The vertical deformation is twice as much or more than that in the concrete filled 

pile. The concrete filling increased both the axial and lateral stiffness of the pile. 
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Figure  7-21: Load-deformation curves for a composite shell with different sizes of 

concrete fillings. 
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Lateral displacement curves for 
hollow and concrete filled piles
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Figure  7-22: Lateral displacement curves for hollow and concrete-filled piles. 

 

Concrete filling also has an effect on the load capacity of the pile and on the 

stresses developed in the FRP shell. Because of the change in both the axial and the 

lateral stiffness of the pile shaft, FRP stresses will vary with the size and the strength of 

the concrete filling. Figure  7-23 through Figure  7-25 show the variations of the three 

stress components at a point for the three piles after being subjected to the specified 

loading. As can be seen, the dead load compression stresses in the FRP layers decrease 

with the increase of the size of the concrete filling (load steps 1 to 4). In the lateral 

movement stage (load steps 5 to 8) the FRP stresses in the compression side of the pile 

decrease while the tension side stresses are increased. The increase in the axial stiffness 

of the pile shaft, as a result of concrete filling, increased the axial load capacity of the pile 
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shaft. The concrete filling also contributed in the load sharing with the FRP shell which 

explains the stress reduction in the compression side of the FRP layers. 

The concrete filling also increased the bending stiffness of the pile as well as the 

stresses in the FRP composite shell (compare curve 3b with 1b in Figure  7-23). The 

increase in bending stiffness should affect the stresses in both the tension and the 

compression sides in a similar manner.  

Figure  7-26 shows a group of stress envelopes for the three major stress 

components in the FRP shell along the length of the pile shaft. It can be seen that the 

concrete filling increased the tensile stresses and reduced the compressive stresses in the 

FRP layers. It is also can be noticed that the concrete filling did a significant reduction in 

the layers shear stresses τ12.  
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Figure  7-23: Variation of stress (σ1) at point for hollow and filled piles. 
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variation of FRP stresses at a point under stepped loading
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Figure  7-24: Variation of stress (σ2) at a point for hollow and filled piles. 
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Figure  7-25: Variation of shear stress (τ12) at a point for hollow and filled piles. 
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Figure  7-26: Major stress envelopes for all layers at load step 8. 



 186

The effect of concrete filling and its strength on the pile stresses was also 

investigated and illustrated in the following figures. Figure  7-27 shows the load 

deformation curves for an FRP composite pile filled with different grades of plain 

concrete under axial compression only. The curves show an increase in the pile 

deformation at the same load step as the concrete strength decreases. At the initial load 

steps, the load-deformation curves are linear and the deformation difference is very small 

compared to that at higher loads. At the plastic stage the deformation curves behave 

nonlinearly and the difference becomes larger. As can be seen from the figure, high 

strength concrete supports higher loads with less deformation. 

The variation of the first stress component σ1 in a 0o-layer node is also compared 

for the different concrete grades. At the extreme compression and tension sides, the 

variation in stresses developed in the composite layer is not significant. As can be seen 

from Figure  7-28 and Figure  7-29, the stresses at the initial 4 steps which represent the 

dead load application are in a very close range. This range started to get relatively wider 

as the lateral displacement is applied (steps 5 through 8) because the concrete started to 

reach its nonlinear deformation phase in which it will not take any more stresses as 

shown in Figure  7-30. It also shows that higher strength concrete has an advantage in 

stress capacity over those of lower strengths which results started to appear clearly in the 

same figure after step 4 of loading and in Figure  7-31 as well.  

Figure  7-30 and Figure  7-31 show the concrete stress at a point and at a line along 

the pile depth respectively, it can be seen that high strength concrete carries more 

compression loads than low strength concrete. The increase in concrete strength increased 

its stiffness. Higher stiffness produced higher bending stresses under lateral movements. 
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 Figure  7-27: Load-deformation curves for an FRP pile filled with different grades of 

plain concrete under axial compression.  
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Figure  7-28: Stress variation in the FRP at a point 0-ft from the pile’s top.  
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Figure  7-29: Stress variation in FRP at a point 0-ft from the pile’s top  
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Figure  7-30: Stresses in concrete at a point 0-ft from the pile’s top. 
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Figure  7-31: Compressive stresses in concrete at a line along the depth of the pile.  

 

7.4.3 MATERIAL TYPE 

Fiber reinforced composite materials can be custom manufactured to fit the 

customer’s need. It is usually made of two or more different materials combined in a 

certain manufacturing process. Due to the wide range of their constituents; resins and 

fibers, composites can be produced in an infinite number of mechanical properties. Even 

for the same composite commercial name, we can have products with many different 

mechanical properties. This implies that using any composite commercial name within 

this presentation will not assume that the properties of that composite are standard.  
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The stiffness of neither plain concrete nor fiber glass composites is as high as that 

of structural steel. As can be seen from the graphical comparison of material stiffness’ in 

Figure  7-32, the elastic modulus of steel is about six times or more than that of concrete 

and glass composites in the direction of fibers. Also comparing different grades of 

concrete with some glass composites shows that concrete elastic modulus is in a close 

range to that of polyester and vinyl ester glass composites. On the other hand, glass 

epoxy composites have higher values than those of concrete as shown in Figure  7-33. 

The minor axis elastic modulus Ey is much less than that of the major axis, Ex. As 

can be seen in the histogram of Figure  7-34, the elastic modulus in the perpendicular 

direction to the fibers Ey is very small even for the carbon epoxy. In unidirectional 

composites, the minor axis modulus reflects the matrix (resin) properties since there are 

no fibers in that direction. 
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Figure  7-32: Comparison of elastic modulus for composites, concrete and steel. 
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Material properties comparison in the strong direction
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Figure  7-33: Comparison of strong direction modulus of elasticity for different glass 

composites and plain concrete. 
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Figure  7-34: Comparison of weak direction modulus of elasticity for different glass 

composites and plain concrete. 
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The FRP elastic modulus data presented in the previous two histograms were 

based on unidirectional specimens measured in the fiber direction and perpendicular to 

the fiber direction. The elastic modulus in the direction perpendicular to the fiber 

direction is much less than that of the fibers direction. Figure  7-35 shows the variation of 

the elastic modulus of the specimen as the angle changes from 0 to 90o. As can be seen, at 

0-degree angle (at which the fibers are in the test direction) the composite specimens 

have a wide variation in the elastic modulus while at a 90-degree angle, the specimens 

have values within a very narrow range. This indicates that the minor axis modulus of 

elasticity (at a 90 degree angle) is based on the resin mechanical properties. 
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Figure  7-35: Variation of the elastic modulus with fiber orientation angle for different 

composite materials. 
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Piles information: 

Composite type:  

Material Ex Ey Gxy Vxy Xt Yt Xc Yc S 
Glass 
Polyester 

2400 1200 520 0.28 39.5 7. -34.2 -14.6 5.4 

Glass 
vinylester 

3000 1000 420 0.35 37.5 8 -37.5 -20 6 

Glass 
epoxy 

4500 1100 550 0.26 90 3.9 -80 -17.5 6.2 

Carbon 
epoxy 

20500 1500 1040 0.28 330 8.3 -209 -33 10.3 

 

Number of layers: 12  

Layer thickness: 0.0208 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0]  

 

Filling: Plain concrete fc’=3 ksi 

Height = 20 ft  

Soil type: dense sand 

Loading: 

Axial dead load: 300 kips [steps 1 to 4] 

Lateral displacement: 2 inches [steps 5 to 8]  

Axial live load: 200 kips [steps 9 to 12] 

H H
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The effects of material type on the deformations of laterally loaded piles are 

illustrated in Figure  7-36 and Figure  7-37. The two figures show the vertical and lateral 

deformation curves at a point and at a line along the pile depth respectively. Epoxy and 

carbon composites are stiffer than polyester and vinylester composites. High stiffness 

fibers increased both the pile’s axial and lateral stiffness. As can be seen, the carbon 

epoxy pile showed very small vertical deformations compared to the other three piles.  

Figure  7-38 and Figure  7-39 show the major layer stresses, σ1 and σ2, 

development at a point for a pile made of different composite materials in dense sand 

soil. The high stiffness of the carbon fibers produced higher compressive, tensile, and 

bending stresses as can be seen in the figures. The major axis modulus Ex for carbon 

epoxy composites is about 4 to 5 times that of glass composites. On the other hand, the 

minor axis modulus Ey is equal or less than that of fiber glass composites as shown 

Figure  7-34. As a result, the minor axis stresses which are shown in Figure  7-39 did not 

show a similar trend to that of the strong axis. The minor axis stresses in the carbon 

epoxy pile are the lowest among others made of glass composites. 

 Figure  7-40 shows two graphs for the stress components at both the tension and 

compression sides of the pile along its depth. As can be seen, the stresses do not have a 

constant trend along the pile depth. Stress curves for the different materials keep 

changing behaviors along the pile’s depth even at the same load step. They intersected 

more than once along the depth. 

Material properties also have a dramatic effect on the crack patterns of the 

concrete filling, Figure  7-41. Stiffer materials such as carbon epoxy will produce higher 

bending moments under lateral movements which reflect on the tensile and compressive 
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stresses of the concrete filling. Higher stresses will develop more concrete cracks which 

weaken the pile section and raise the stresses in the composite shell. 

Figure  7-42 shows the stress envelopes of the first stress component, σ1, for the 

different materials piles. It can be seen that the high material stiffness increased both 

bending and axial stresses in the pile. 
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Figure  7-36: Vertical deformation curves for piles made of different composite materials. 
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Figure  7-37: Lateral displacement curves for piles made of different composite materials. 
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Figure  7-38: Stress variation at a point for a pile made of different composite materials. 
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Figure  7-39: Stress variation at a point for a pile made of different composite materials. 

 

 

Stress curves of piles made of different 
composite materials (Compression Side)

-240

-190

-140

-90

-40

10

-150 -130 -110 -90 -70 -50 -30 -10 10

Stress σ1 (ksi)

D
ep

th
 (i

n)

(1) glass vinyl ester

(2) glass polyester

(3) glass epoxy

(4) carbon epoxy

1 234

compression 
side

  

Stress curves of piles made of different 
composite materials (Tension Side)

-240

-190

-140

-90

-40

10

-80 -60 -40 -20 0 20 40 60 80 100

Stress σ1 (ksi)

D
ep

th
 (i

n)

(1) glass vinyl ester
(2) glass polyester
(3) glass epoxy
(4) carbon epoxy

12 3 4

Tension 
side

 

Figure  7-40: Stress variation  along the whole depth for a pile made of different 
composite materials. 
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Figure  7-41: Crack patterns for piles with different composite shells. 
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Figure  7-42: Stress envelopes for piles made of different composite materials. 
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7.4.4 LAYER ORIENTATION 

In unidirectional laminas where a single composite layer has its fiber in one major 

direction, the stacking sequence of multiple layers has a major effect on the final design 

of the structure. The material properties in the fiber direction have higher magnitudes 

than those in the transverse direction. The variation between material properties in the 

fiber direction and the transverse direction depends on many factors such as: fiber type, 

resin type, and fiber volume fraction in the lamina. The lamina properties in the major x-

axis (direction of fibers) usually gain the reinforcement properties and in the minor y-axis 

(perpendicular to fiber direction) gain the matrix properties. 

To investigate the effect of fiber orientation on the pile and soil-pile behaviors, a 

hollow pile model with the configuration and loading described in the pile information 

sheet 1 was analyzed for vertical deformation comparison purposes. A total of seven 

models were analyzed with the following fiber structures: [0,0]6, [15,-15]6, [30,-30]6, 

[45,-45]6, [60,-60]6, [75,-75]6, [90,90]6. 

Figure  7-43 shows the load-deformation curves for all seven piles with their 

composite shells having the [θ,-θ]6 fiber structure in each case. The contribution of the 

composite shell on the stiffness of the pile depends on its fiber volume fraction. The 

higher the fiber volume in the loading direction, the higher the stiffness will be. As can be 

seen in the figure, the piles with the 0-degree fibers showed the highest stiffness and 

those with the 90-degree fibers showed the lowest stiffness. The axial deformations of the 

pile with the [90,90]6 structure are 10 times or more than that of the [0,0]6 fiber structure.  
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Pile information sheet 1: 

Composite type: Carbon epoxy 

Property ksi Property ksi 

Ex 20500 Xt 330 

Ey 1500 Yt 8.3 

Gxy 1040 Xc -209 

Vxy 0.28 Yc -33 

  S 10.3 

 

Number of layers: 12 

Layer thickness: 0.01667 in. 

Laminate structure:[0,0]6,[15,-15]6,[30,-30]6,[45,-45]6, 

[60,-60]6,[75,-75]6,[90,90]6 

Filling: hollow 

Height = 20 ft 

Soil type: Dense sand 

Axial dead load: 200 kips [steps 1 to 4] 

Lateral displacement: 2.in [steps 5 to 8] 

Axial live load: 200 kips [steps 9 to 12] 
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Pile information sheet 2: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy 0.26 Yc -17.5 

  S 6.2 

 

Number of layers: 12 

Layer thickness: 0.0208 in. 

Laminate structure: [90,90,75,-75,60,-60,45,-45,15,-15,0,0] 

Filling: Plain concrete fc’=3 ksi 

Height = 20 ft 

Soil type: Dense sand 

Axial dead load: 200 kips [steps 1 to 4] 

Lateral head movement: 2 in. [steps 5 to 8] 

Axial live load: 200 kips [steps 9 to 12] 
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Figure  7-44, Figure  7-45, and Figure  7-46 show the stress envelopes of the three 

major stress components for the pile with the [0,0]6 fiber structure. The pile in such 

configuration has the highest axial and lateral stiffness and the least axial deformations. 

Because all fibers were directed in one single direction, 0-degree, the pile experienced 

high shear stresses at higher loads as shown in Figure  7-46.  

The second model that used to study the variation of stresses in piles with 

different orientation layers is described in pile information sheet 2. The pile was loaded 

with the three types of loading in a total of 12 steps. Results of stress analysis at a point 

and along the pile depth for the different layers are presented in Figure  7-47 through 

Figure  7-52. Figure  7-47 and Figure  7-50 show the variation of the first stress component 

σ1 at a point and along the pile depth, respectively, in some selected layers in the pile 

shell. As can be seen, the layers with 0-degree orientation angles showed the highest 

stress values among other layers. That is because the 0-degree fibers are in the direction 

of loading also the layer has its highest stiffness in this direction. On the contrary, the 

second stress component σ2 showed the highest stress values in layers with 90-degree 

orientation angles as shown in Figure  7-48 and Figure  7-51. The shear stress values are 

found to be maximum in the layers with 45-dgree fiber orientation angles as shown in 

Figure  7-49 and Figure  7-52. 
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Figure  7-43: Normalized deformation curves for piles with different fibers structure. 
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Figure  7-44: First stress component (σ1) envelopes along a pile made of 0-degree fibers. 
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Figure  7-45: Second stress component (σ2) envelopes along a pile made of 0-degree 
fibers. 
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Figure  7-46: Shear stress (τ12) envelopes along a pile made of 0-degree fibers. 
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Figure  7-47: First stress component variation in different layers within the same pile. 
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Figure  7-48: Second stress component variation in different layers within the same pile.  
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Figure  7-49: Third stress component variation in different layers within the same pile.  
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Figure  7-50: Stress (σ1) envelopes for different layer orientations. 
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Figure  7-51: Stress (σ2) envelopes for different layer orientations. 
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Figure  7-52: Stress (τ12) envelopes for different layer orientations. 
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Pile information sheet 3: 

Composite type: Glass epoxy 

Property ksi Property ksi 
Ex 4500 Xt 90 
Ey 1100 Yt 3.9 
Gxy 550 Xc -80 
Vxy 0.26 Yc -17.5 
  S 6.2 
 

Number of layers: 12 

Layer thickness: 0.025 in. 

Radius, R=4.88 in. 

Laminate structure:[0,0,45,-45,0,0,60,-60,90,90,0,0] 

Filling: Plain concrete fc’=4 ksi 

Height = 20 ft 

Soil type: Dense sand 

Loading: 

Case 1: 

Axial dead load: 1000 kips [steps 1 to 12] 

Case 2: 

Axial dead load: 400 kips [steps 1 to 6] 

Lateral head movement: 2 in. [steps 7 to 12] 

R
   T

H H
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Figure  7-53: Stress variation with time in different FRP layers in a multi-layer pile 
subjected to axial compression only. 

 

Figure  7-53 and Figure  7-54 show the stress variation with time for a point at the 

extreme compression side of a pile made of a multi-layer composite shell filled with 

concrete. The pile has a circular cross section and is subjected to axial compression and 

lateral head movement as described in pile information sheet 3. The composite shell 

consists of 12 layers with different fiber orientations that vary between 0 and 90-degrees 

measured with respect to the pile axis. As can be seen, the layers with small orientation 
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angles (close to 0) have their first stress component σ1 higher than those with larger 

orientation angles. The second stress component σ2 has its peak values in the layers with 

high fiber orientation angles (close to 90).  
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Figure  7-54: Stress variation with time in different FRP layers in a multi-layer pile 
subjected to axial compression and lateral movement. 
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The last model in this section will be as shown in the following information sheet 

Pile information sheet 4: 

Composite type: Carbon epoxy 

Property ksi Property ksi 

Ex 20500 Xt 330 

Ey 1500 Yt 8.3 

Gxy 1040 Xc -209 

Vxy 0.28 Yc -33 

  S 10.3 

 

Number of layers: 12 

Layer thickness: 0.01667 in. 

Laminate structure: [variable] 

Filling: Hollow 

Height = 20 ft 

Soil type: Dense sand 

Axial dead load: 200 kips [step 1 ] 

Lateral head movement: 2 in. [step 2] 

Laminate structure: 

Set 1: [76,-76,41-41,35,-35,62,-62,48,-48,55,-55] 

Set 2: [76,-76,90,90,42,-42,29,-29,71,-71,52,-52] 

Set 3: [86,-86,0.3,-0.3,9,-9,4.7,-4.7,20,-20,0.85,-0.85] 

H H

 4. in
0.2

8
0.2

0.2

8 in.

Hollow
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In this model, only the fiber structure was changed in each single run to monitor 

the effect of the fiber orientation on the stresses developed during and after loading. All 

other parameters were kept constant. The three major stress components are plotted at 

each case and illustrated in Figure  7-55. As can be seen, at a certain fiber orientation 

angle for each layer in the shell, the stresses are minimized to the lowest values as shown 

in set 3 graphs. The fiber structure which gives the lowest stress values in all directions is 

called the optimum design. The designer will have the flexibility to arrange the layers 

with different reinforcing angles to maximize or minimize the desired properties based on 

the loading and boundary conditions. Reducing the layer stresses will allow the pile to 

handle more axial loads and lateral displacements.  
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Figure  7-55: Effect of variation of fiber orientations on the different stresses. 
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7.4.5 CROSS-SECTION AREA 

The size of the section is also a point of consideration when designing piles for 

integral bridges. The size of the pile can be decided by the designer based on the loads 

and the expected lateral deformations of the bridge super structure. The choice may come 

to install many piles with small section size or a few piles with larger cross sections. The 

decision will be based on several factors mostly economical such as manufacturing and 

installation costs, and practical aspects such as transportation and driving.  

As an illustrative example, consider a cylindrical pile of radius R to carry the 

Load P and the lateral displacement D. For an existing load of 3P, three piles will be 

needed or a single pile with triple the section area to replace the 3 piles.  

Table  7-1: Effect of the section size on the moment of inertia 

Pile A 2A 3A 

Radius R 2 R 3 R 

Area 2Rπ  22 Rπ  23 Rπ  

Inertia 4

4
Rπ  

44.
4
Rπ  

49.
4
Rπ  

 

As can be seen from Table  7-1 a pile with twice the section size, 2A has 4 times 

the moment of inertia and the one with triple the size, 3A has 9 times the inertia. On the 

other hand, multiple piles with the size A set in a row next to each other to bend about 

one axis will have a moment of inertial of nI where I is the moment of inertia of the pile 

of the size A and n is the number of piles.  
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Pile information: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy 0.26 Yc -17.5 

  S 6.2 

 

Number of layers: 12 

Layer thickness: 0.025 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0] 

Filling: Plain concrete fc’=3 ksi 

Height = 30 ft 

Soil type: Soft clay, very stiff clay 

Loading: 

Axial dead load: 300,600,900 kips [steps 1 to 6] 

Lateral displacement: 2 in. [steps 7 to 12] 

   

   

   

 concrete
       A

R=4.88 in

T=0.3 in

 concrete
     2A

R=6.9 in

T=0.424 

 concrete
      3A

R=8.45 in

T=0.52 

 

 

H H
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To investigate the effect of pile cross-sectional size on the stiffness against lateral 

movement, one large pile with a cross-section size of 3A is compared with 3 small piles 

of size A each. The large pile has a concrete and FRP material size equivalent to the three 

small ones. All piles are assumed to be driven in the same soil and subjected to axial and 

lateral loading such that the large pile is subjected to 3 times the load of the single small 

pile. Figure  7-56 and Figure  7-57 show the deformation curves for the two sets of piles in 

very stiff clay and soft clay environments, respectively, with no predrilled holes. As can 

be seen, the single large pile experienced larger lateral displacements than the equivalent 

three small piles. The displacements are as twice of that of the small piles in very stiff 

clay and much more than that in piles driven in the soft clay. On the contrary, when the 

two pile sets are driven in very stiff clay but with 6-ft deep predrilled holes at the top, the 

3 small piles showed higher lateral displacements than the single large pile as shown in 

Figure  7-58.  

The lateral resistance of a pile is a combination of the stiffness of both the pile 

shaft and the surrounding soil. In the case of 1 large pile, the area projection that faces the 

soil is equal to 2 3 R and in the case of 3 small piles; the total area projection is equal to 

6R. This simple calculation shows that the area projection for the 3 small piles is about 

1.7 times that of the single large pile. As a result, the combination of the pile flexural 

rigidity and the lateral soil resistance will determine the flexibility of the soil-pile system.  

In the case of a predrilled hole at the upper portion of the pile Figure  7-58, the 

total stiffness of the soil-pile system is in the favor of the large pile which ended with 

fewer lateral displacements than that of the 3 small piles. 
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Figure  7-59 shows a group of stress envelopes for the three piles of cross sectional 

areas, A, 2A, and 3A loaded with P, 2P, and 3P axial load respectively and each is 

subjected to a 2 inches lateral displacement. As can be seen, the stresses in the smallest 

pile have the highest values and for the largest pile have the lowest values. That can be 

explained based on the deformed shapes in Figure  7-60, which shows that the piles with 

the smaller diameters have sharper curvature that increases the bending moments, and 

then the stresses at the upper portion of the piles.  
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Figure  7-56: Comparison of lateral displacements for different pile sizes in very stiff clay. 
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Figure  7-57: Comparison of lateral displacements for different pile sizes in soft clay. 
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Figure  7-58: Comparison of lateral displacements for different pile sizes in very stiff clay 
and 6-ft predrilled holes.  
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Figure  7-59: Effect of cross sectional area on stresses (no predrilled holes). 
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Lateral displacement curves for piles 
with different radius
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Figure  7-60: Lateral displacement curves for piles with different radius. 

 

7.4.6 PREDRILLED HOLE 

Piles driven in stiff soils such as dense sands and very stiff clays experience 

higher bending stresses than those driven in medium or soft soils when subjected to 

lateral head displacements. To reduce the stress magnitude, the upper portion of the pile 

can be released laterally by removing the surrounding soil or replacing it with loose sand 

or any other soft soil. This can be done by making a predrilled hole that has adequate 

depth and diameter around the pile to provide less lateral resistance in the direction of the 

bridge axis. Predrilled holes are a common technique usually used to reduce pile stresses 

in jointless bridges.
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Piles information:  

Composite type: Glass epoxy 

Property ksi Property ksi 
Ex 4500 Xt 90 
Ey 1100 Yt 3.9 
Gxy 550 Xc -80 
Vxy 0.26 Yc -17.5 
  S 6.2 
 

Number of layers: 12  Height = 20 ft  

Layer thickness: 0.0208 in. Soil type: very stiff clay 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0]  

 
First Model : 

Axial dead load: 300 kips [steps 1 to 6] 

Lateral load: 130 kips [steps 7 to 12] 

Predrilled holes: 0, 2, and 4 ft 

10 in
0.25

0.25 6

0.25

11 in.

Concrete

 

Filling: concrete fc’=3 ksi 

Second Model : 

Filling: Plain concrete fc’=4 ksi 

Axial dead load: 300 kips [steps 1 to 4] 

Lateral displacement: 2 inches [steps 5 to 8] 

Axial live load: 200 kips [steps 9 to 12] 

8 in
0.25

8
0.25

0.25

9 in.

Concrete

 

Filling: concrete fc’=4 ksi 

H H
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To study the effect of predrilled holes on the stresses and stiffness of FRP 

composite piles, two soil-pile models were analyzed with different predrilled-hole depths. 

The first model was used for lateral stiffness comparison and the second was for stress 

comparisons. Figure  7-61 shows the normalized load-deformation curves for a point on a 

pile with different predrilled holes subjected to both axial and horizontal loads to 

compare the soil-pile stiffness as the hole depth changes. Figure  7-62 also shows the 

normalized deformed curves along the pile depth for the same three cases of Figure  7-61. 

As can be seen, the pile with the 4-ft predrilled hole showed very low lateral resistance 

compared to that of 0-ft predrilled hole. The flexibility of the soil-pile system is directly 

proportional to the depth of the predrilled hole. 

The effect of predrilled hole depth on pile stresses can be investigated by 

subjecting the pile to a specified axial load and lateral displacement to simulate the actual 

bridged load. The piles in consideration were subjected to axial compression and then 

followed by lateral head displacement incremented up to 2 inches. The axial load that 

represents the live load was then applied. The second model which is described in the pile 

information sheet will be used for this comparison. As can be seen in Figure  7-63, all pile 

heads are displaced 2 inches but the rest of the pile lengths have different deformed 

shapes from each other. Also it can be noted that piles with deeper predrilled holes 

experienced lateral displacements on longer portions of their shafts compared to those 

with shallow or without predrilled holes. In other words, the point of fixation depth for a 

pile is directly proportional to the depth of the predrilled hole. 
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Lateral head displacements for a pile with different predrilled 
holes
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Figure  7-61: Load-displacement curves for a pile with different predrilled holes. 

 

   

Normalized lateral displacements for 
different predrilled hole depths

-240

-190

-140

-90

-40

10

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Normalized lateral displacement 

de
pt

h 
(in

)

(1) 0-ft predrilled hole

(2) 2-ft predrilled hole

(3) 4-ft predrilled hole

 13

2

1

 
Figure  7-62: Effect of predrilled hole depth on lateral stiffness. 
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Lateral displacements for piles with different 
predrilled holes subjected to 2 in. head 
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Figure  7-63: Lateral displacements along the pile depth for different predrilled holes. 

 

Figure  7-64 through Figure  7-72 show the effect of predrilled holes on the stresses 

of concrete-filled FRP composite piles. Each set of curves presents the stress variation 

from different view. Figure  7-64 shows a stress comparison at point for a pile with 

different predrilled holes. The point is located at the extreme stress location with 0-ft 

depth on the pile shaft. The curves illustrate the stress development as the load increases 

with time. As can be seen, the pile without predrilled hole developed much higher 

stresses than those with predrilled holes. For this point location, the stress value is 

inversely proportional to the depth of the predrilled hole. 
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The stress variations at a point are also illustrated at two other locations; 1-ft 

depth and 2-ft depth, Figure  7-65 and Figure  7-66 respectively. The stress behavior with 

the predrilled hole depth did not show the same trend that was noticed in the curves of 0-

ft depth location. As can be seen, the pile without a predrilled hole did not show the 

highest stress value; instead another pile with a predrilled hole experienced the highest 

stress. The explanation of this change can be seen in Figure  7-67 which shows the stress 

variation for the same pile over the whole depth. This figure includes illustrations for the 

tension and compression sides of the pile at selected loading stages. It can be clearly seen 

that the behaviors of the different curves are not consistent. They are intersecting more 

than one time over the depth of the pile shaft which means no pile keeps the extreme 

behavior along its depth.  

Another comparison is also shown in Figure  7-68 and Figure  7-69. The curves in 

these two figures show the stress at a point and its variation with the depth of the 

predrilled hole. The point located at 0-ft depth on the pile shaft shows a significant stress 

reduction as the predrilled hole depth increases. The point at 1-ft depth shows a slight 

decrease in stress while the points at 2 and 4-ft depths show a stress increase as the 

predrilled hole depth increases.  

The stress envelopes for the piles are shown in Figure  7-70 through Figure  7-72. 

The envelopes of the first stress component, σ1, for a single layer in the different piles are 

plotted in Figure  7-70. The graph numbers show that the maximum stress in the layer 

reduced from -109 ksi in the pile without predrilled hole to about -45.5 ksi in the pile 

with 6-ft predrilled hole. A reduction of about 60% in the stress is achieved by using a 

predrilled hole at the pile top. Figure  7-71 and Figure  7-72 show the envelopes of first 
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and second stress components; σ1 and σ2 respectively for all layers. The stress reduction 

appears clearly in the 6 and 8-ft predrilled holes envelopes. A stress reduction up to 75% 

can be achieved when a predrilled hole is used. 

The effect of the predrilled holes on the crack patterns in the concrete fill is 

illustrated in Figure  7-73. As can be seen, the cracks density is very high in the pile 

without predrilled hole and very low in the pile of 8-ft predrilled hole.  

In conclusion it can be said that providing a predrilled hole with adequate depth 

for piles driven in stiff soils will reduce the stresses resulting from the lateral movement 

of the pile head. Stress reduction will reduce the crack intensity in the concrete fill which 

will keep it intact to support more axial loads.  
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Figure  7-64: Effect of predrilled hole depth on pile stresses (0-ft depth). 
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Figure  7-65: Effect of predrilled hole depth on pile stresses (1-ft depth). 
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Figure  7-66: Effect of predrilled hole depth on pile stresses (2-ft depth). 
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Figure  7-67: Stress variation along the depth of the pile shaft in both tension and 
compression sides for different predrilled holes. 
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Effect of predrilled holes on pile stresses at different 
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Figure  7-68: Variation of stress at point for a pile with different predrilled holes. 
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Figure  7-69: Variation of stress at point for a pile with different predrilled holes. 
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Figure  7-70: Variation of FRP Stress (σ1) in a single layer with the depth of the predrilled 
hole. 
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Stress envelope along the pile 
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Figure  7-71: Variation of FRP Stress (σ1) with the depth of the predrilled hole. 
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Figure  7-72: Variation of FRP Stress (σ2) with the depth of the predrilled hole. 
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Figure  7-73: Crack patterns in piles with different predrilled holes. 
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7.4.7 SECTION GEOMETRY 

The lateral resistance of a pile group against the lateral displacements of a bridge 

deck depends on several factors some of which are number of piles, pile geometry, and 

the stiffness of both the pile’s material and soil properties. As discussed earlier, the piles 

in integral abutment bridges are recommended to be aligned in a single row to minimize 

their lateral resistance. The pile cross section also has a contribution to the lateral 

stiffness of the pile group. The section can be chosen to provide minimal stiffness. 

Effect of Section Orientation on Pile Flexibility 

Consider a pile with the basic cross-sectional shape; circular or a square cross 

section with dimensions given as shown in the figure below.  

     D

           

b

b  

The square section has a cross sectional area equal to A=b2, where b is the side 

length of the square. A circle with an equivalent square area will have a diameter of 

D=
π
b2 . The circle’s dimensions can not be modified while maintaining a constant area. 

On the other hand, the square section can have its dimensions modified while maintaining 

either the original area or perimeter. Since our goal is to achieve lower moment of inertia 

and less stresses, a rectangular section may satisfy that objective.  

Again if we consider the same square section that has a side length b to be the 

cross section of a structural member with a length L and fixed ended at both sides.  
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L

 

If one end of the member is subjected to a support settlement of magnitude ∆, the 

resulting moment at each end support will be 

2

6
L
EIM ∆

=  

This section can be modified to a rectangle with the same area b2 and with a width 

to height ratio 2:1.  

Table  7-2: Variation of stresses with cross-sectional geometry 
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It can be seen from the calculations of Table  7-2 that after modifying the cross 

sectional dimensions while maintaining the original area, the section moment of inertia is 

reduced to 50% of the original section. As a result, the moment is also reduced to 50% of 
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the original moment. The variation of moment of inertia with b/h ratio is shown in the 

figure below.  
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Figure  7-74: Variation of moment of inertia of a rectangular section with variation of 

(b/h) 

Two cases of loading were used to study the effect of the section geometry on the 

soil-pile behavior. The pile information sheet includes all the information about the pile 

sections, their properties and cases of loading.  

The first case was for stiffness comparison of the different pile sections driven 

with and without a predrilled hole. All piles are subjected to the axial dead load then 

followed by the lateral force. Figure  7-75 shows a lateral deformation comparison for all 

piles that have equal cross-sectional areas but different geometrical shapes. It can be seen 

that the pile deformations for the different cross-section shapes vary within a narrow 

range which indicates that the section geometry has a minor effect on the flexibility of the 

soil-pile system when the pile is fully embedded in stiff soils.  

Similar comparison of the same pile sections was also carried out in the same 

environment but with a 4-ft deep predrilled hole at the top of each pile. The piles were 

also subjected to axial and lateral loads to compare their lateral stiffness when there is no 
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soil resistance at a certain depth of the pile. The load-deformation curves for all piles are 

plotted as shown in Figure  7-76. As can be seen, the piles’ responses are different from 

the previous case, which did not have a predrilled hole. The pile that has the smallest 

moment of inertia, DS=6 in., showed the maximum flexibility compared to the rest. The 

pile that has the highest moment of inertia, DS=10 in., showed the highest stiffness and 

as a result experienced the lowest lateral displacements under the same loading 

conditions.  

The two soil-pile models showed different behaviors when a predrilled hole was 

provided at the top of the pile. In the first case when the piles were fully embedded in the 

soil, the lateral stiffness was a combination of both the pile and the soil stiffness. As the 

pile geometry was modified to minimize the moment of inertia about its bending axis, the 

area of lateral soil resistance increased. The increase in the lateral stiffness depends on 

both the pile width and the soil stiffness. If the amount of the stiffness (gained from an 

increase in the lateral soil resistance when the cross-section geometry changed) is less 

than that lost because of the reduction in the pile’s moment of inertia, then the soil-pile 

system will be more flexible and vise versa.  

Reducing the flexural rigidity of a fully embedded pile by modifying its 

geometrical shape does not guarantee a reduction in the stiffness of the soil-pile system.  

This can be true if the cross-sections are moving freely without any additional resistance 

other than their stiffness. But in the case of driven piles, the soil stiffness provides 

additional resistance to the lateral displacements. The p-y curves which represent the 

lateral stiffness of the soil are generated based on several parameters one of which is the 

projected area on contact with the soil when the deformation takes place. Because of the 
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combined stiffness, the pile section should be proportioned to provide the least resistance 

for both soil and inertia.  

The second case was for stress comparison when the piles were subjected to axial 

load and lateral head movement as described in case 2 of the pile information sheet. Both 

pile groups, with and without predrilled holes were investigated. Figure  7-77 shows a 

comparison of the first and second stress components’ envelopes for the four piles 

without predrilled holes. The different pile sections showed very close stress profiles with 

no significant difference to be noticed. Figure  7-78 and Figure  7-79 also show a 

comparison of the first stress component at a point and at a line respectively along the 

pile depth for all piles. As can be seen, the pile with the circular cross-section showed the 

highest stress values and the pile with the lowest moment of inertia showed the lowest 

stress values. This does not imply that the circular section pile is the stiffest, because a 

stress comparison at a point is not adequate to describe the whole pile behavior. The 

stress envelopes are more global and reflect the behaviors of all nodes.  

Figure  7-80 and Figure  7-81 show the stress variations at a point and at a line 

respectively along the piles’ depths for piles with 6-ft predrilled holes. It can be seen that 

the pile with the largest moment of inertia, DS=10in. experienced the highest stress 

values and the pile with the smallest moment of inertia, DS=6in. experienced the lowest 

stress values. The stress envelopes in Figure  7-82 also show a reduction in the stress 

values as the moment of inertia of the section reduced.  

 

 

 



 244

Piles information: 

Composite type: Glass epoxy 

Property ksi Property ksi 
Ex 4500 Xt 90 
Ey 1100 Yt 3.9 
Gxy 550 Xc -80 
Vxy 0.26 Yc -17.5 
  S 6.2 
 

Number of layers: 12  

Layer thickness: 0.0208 in. 

Laminate structure:[0,0,90,90,0,0,0,0,90,90,0,0]  

All sections have the same FRP and concrete area 

Filling: Plain concrete fc’=3ksi 

Height = 20 ft  

Soil type: very stiff clay 

Loading: 

Case 1: 

       Axial dead load: 300 kips [steps 1 to 6] 

       Lateral force: 130 kips [steps 7 to 12] 

Case 2: 

      Axial dead load: 300 kips [steps 1 to 4] 

      Lateral displacement: 2 inches [steps 5 to 8]  

      Axial live load: 200 kips [steps 9 to 12] 
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0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2
Normalized lateral head displacement

Lo
ad

 S
te

p

(1) DS=6 in
(2)DS=8 in
(3) DS= 10 in
(4) Circular
(5) Circ. hole= 2 in rad.

NO 
Predrilled 

1
2

5
4

3

 
Figure  7-75: Normalized lateral head displacements for different section geometries  

with no predrilled hole. 
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Figure  7-76: Normalized lateral head displacements for different section geometries  

with 4-ft predrilled hole. 
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Figure  7-77: Stress envelopes for piles with different section geometries. 
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Figure  7-77: Stress envelopes for piles with different section geometries (cont’d). 
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Figure  7-78: Stress variation at a point located at 0-ft from the top (0o- layer). 
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Figure  7-79: Stress variation along the pile’s depth at the compression side. 
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Figure  7-80: Stress variation at a point for located at 0-ft from the top (0o- layer). 
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Figure  7-81: Stress variation along the pile’s depth at the compression side. 
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Figure  7-82: Stress envelopes for piles with different cross-sectional shapes and 6-ft 
predrilled hole. 
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Figure  7-82: Stress envelopes for piles with different cross-sectional shapes and 6-ft 
predrilled hole (cont’d).  
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Figure  7-82: Stress envelopes for piles with different cross-sectional shapes and 6-ft 
predrilled hole (cont’d). 
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CHAPTER 8  

OPTIMIZATION OF COMPOSITE PILES 

The goal of a designer is to get the best performance with the minimum cost for 

his design. There is always a continuous demand on design engineers to reduce 

production costs and raise efficiency to withstand the increasing market competitions. 

Optimization techniques have reached a remarkable point in the past few years with the 

continuous advancement in computers and computer programming. Optimization is a 

searching technique to find the best results under certain conditions. It is a process to find 

the conditions that give the maximum or minimum value of a function. The optimum 

seeking method is a part of operation search which is a branch of mathematics that 

usually is concerned with applying scientific method and techniques in decision making 

matters (Rao 1996). This method is also known as mathematical programming 

techniques.  

8.1 COMPOSITE MATERIALS OPTIMIZATION  

Optimization is a mathematical procedure by which the best configuration to fit 

certain requirements can be achieved. In structural design, optimization is needed to 

satisfy functional requirements such as strength and stiffness. Structural members can be 

configured for optimum strength and stiffness within the cost margin. The constituent 
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materials can be arranged or proportioned in a way such that the member will have higher 

performance.  

Like other construction materials, composite materials also have the advantage of 

being optimized through different combinations of the constituent materials; fibers, resins 

and cores. They can be proportioned to produce sections with variable stiffness and 

strength. Another advantage of composites over isotropic materials is that strength and 

stiffness can also be optimized by changing the fiber architecture in the composite matrix. 

The fibers can be oriented such that they will provide the optimum section property in the 

desired direction. The properties of a composite are a function of its fiber content and 

direction. The stiffness and strength for composites can be maximized per unit weight. 

The mechanical properties in the fiber direction are different from those in the transverse 

direction. For a unidirectional layer, the longitudinal direction provides the highest 

strength and stiffness. Other direction properties can be improved by using multiple 

layers in different directions. A composite section may have multiple layers with 

different fiber orientations.  

Many publications have pointed out that fiber composites may be designed for 

optimal performance by identifying the optimal laminate configuration. Onada (1985) 

tried to find the optimum laminate configuration for laminated cylindrical shells under 

axial compression. Based on his numerical results, he derived semi-empirically, his 

optimal laminate configuration. One of the best configurations that he found is [when an 

infinite number of layers are arranged so that the shell becomes quasi-isotropic in the 

shell surface and quasi-homogenous through the shell thickness. Nshanian (1983) 

proposed a method for optimal ply angle design through the thickness of symmetric 
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angle-ply shells of uniform thickness. He applied a special mathematical programming 

(MP) algorithm to determine the optimal ply angle. The ply angle distribution was 

approximated by means of continuous piecewise-linear functions or discontinuous 

piecewise-constant functions. His new configuration showed good results on maximizing 

buckling loads of thin shell structures.  

Computational studies on optimizing laminated cylindrical shells for bucking 

using uni and multi-dimensional formulations has been reported by Smerdov (2000). He 

conducted a comparison on one, two and multi-dimensional optimization formulations 

for shells. Also he found that there is maximum buckling load to be reached after a 

certain number of layers of different orientation. Increasing the number of layers after 

that will not increase the buckling load.  

It can be seen that composites have the potential to be optimized and 

manufactured to achieve certain structural requirements. A structural member can be 

custom designed to handle any structural behavior. The goal of the designer is to find the 

minimum number of layers and the ply orientation angles that will result in the best 

performance of the structure for the desired loading conditions.  

8.2 ELEMENTS OF OPTIMIZATION PROBLEM 

Optimization process in ANSYS utilizes three types of variables that characterize 

the design process: design variables, state variables, and the objective function. These 

variables are represented by scalar parameters in ANSYS Parametric Design language 

(APDL). 
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8.2.1 DESIGN VARIABLES 

Design variables are those parameters that describe the design space of the system 

to be optimized. They are independent quantities which vary within defined intervals 

with a specified range of values. The intervals have an upper and lower limit to serve as 

constraints on the design variables. The vector of the design variables is defined by: 
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   ( 8-1) 

The upper and lower limits of the design constraints are: 

 ),.....3,2,1(            nixxx iii =≤≤  ( 8-2) 

where: n is the number of design variables.  

The design variable constraints are often referred to as side constraints and define what is 

commonly called feasible design space (Ansys5.7). 

Now, minimize 

 ( )f f x=  ( 8-3) 

subject to  

 1( )       ( 1, 2,3,..., )i ig x g i m≤ =  ( 8-4) 

 2( )       ( 1, 2,3,..., )i ih x h i m≤ =  ( 8-5) 

 3( )       ( 1, 2,3,..., )i iw x w i m≤ =  ( 8-6) 

where: 

f = objective function 

gi, hi, wi = state variables containing the design, with underbars and overbars representing 

lower and upper bounds respectively.  
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m1+m2+m3 = number of state variables constraints with various upper and lower limit 

values 

8.2.2 DESING CONSTRAINTS 

Design constraints which are referred by ANSYS as state variables are response 

quantities that constrain the design. They are dependent on the design variables and must 

have a defined minimum and maximum value.  

8.2.3 OBJECTIVE FUNCTION 

The objective function is the quantity that the designer is trying to minimize or 

maximize in the optimization processes.  

8.3 DESIGN SETS 

A design set is simply a unique set of parameter values that represents a particular 

model configuration. Typically, a design set is characterized by the optimization variable 

values; however, all model parameters (including those not identified as optimization 

variables) are included in the set (Ansys ). The number of design sets for any 

optimization process is usually assigned in the optimization data file. 

8.4 OPTIMAL LAMINATE CONFIGURATIONS 

Laminate configurations have a great effect on the structural capacity of the 

composite element. For composite shells with layers of small thickness, the problem of 

searching for optimum structural configuration for maximum capacity is formulated as a 

problem of mathematical programming. In such problems, design parameters are usually 

the reinforcing angles of each individual layer in the laminate while the objective is to 
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maximize the section capacity and flexibility. Such an objective is distributed in a 

complicated manner in the multi-dimensional search space.  

The following presentation deals with full size thin-walled composite piles 

consisting of several unidirectional layers with equal number of fibers in the –θ and +θ 

directions. All layers have the same thickness and are made of the same composite 

material. All angles are given in degrees which vary between 0 and 90o and measured 

from the pile axis. 

As the number of layers increases, the number of variable parameters increases, 

which gives more space to search for optimum design. Increasing the dimensionality of 

the search space complicates the process and may not reach one unique solution. Results 

may show different angle combinations that lead to the same optimum design. For 

manufacturing simplifications, Zimmermann (1995) considered the optimization of the 

shells including only standard orientation angles, namely 0, -45, +45, and 90 degrees. 

This limited selection reduced the number of variables in the design space. He sought for 

optimum structures including from two to four different groups of the layers (axial, 

circumferential, and angle-plied). 

8.5 FAILURE CRITERIA 

Failure criteria are used to assess the possibility of failure of a material. This 

allows the consideration of orthotropic materials, which might be much weaker in one 

direction than another (ANSYS). In analyzing unidirectional layered composite 

structures, ANSYS considers the material properties of each layer to be orthotropic in the 

plane of the element. The material X-direction corresponds to the local layer x-direction. 

Failure criteria are used to learn if a layer has failed due to the applied loads. The criteria 
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are orthotropic, so the failure stress or failure strain values should be provided for all 

directions.  

According to the maximum stress criterion, for a failure not to occur, all the 

following conditions have to be satisfied: 

 

tX≤1σ  tY≤2σ  

cX≥1σ  cY≥2σ  
 S≤12τ  

 

Where 

σ1 = Stress in the fiber direction 

σ2 = Stress perpendicular to the fiber direction 

τ12 = Shear stress 

Xt = Tensile strength in the fiber direction 

Xc = Compressive strength in the fiber direction 

Yt = Tensile strength in the transverse direction 

Yc = Compressive strength in the transverse direction 

S = Shear strength 

 

This definition implies that the stress ratios should be maintained as follows for 

the failure not to occur: 

1 1
tX

σ
≤  2 1

tY
σ

≤  

1 1
cX

σ
≤  2 1

cY
σ

≤  
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 12 1
S

τ
≤  

 

Based on this, the stress ratio for all stresses in each layer should be maintained 

less than or equal to 1 to avoid layer failure. Through the analysis, the maximum stress 

ratio for all stresses in all layers will be considered the failure criterion of the structure. 

8.6 OPTIMIZATION OF LAYER ORIENTATIONS 

For laminated shells with layers of finite thickness, the process of searching for 

optimum structures for a desired behavior can be formulated as a problem of 

mathematical programming. Consider a laminate with a fixed total given thickness T. In 

such a problem, the variable parameters are usually the reinforcing angles of the 

individual layers while the objective function is maximum load capacity. Such an 

objective function is distributed in a complicated manner in the multi-dimensional search 

space and it may end with many extreme values. Formulation of such an optimization 

problem leads to many difficulties. The multi-dimensional search space can not be 

studied in detail. To minimize the dimensionality of the search space (the number of 

variable parameters) uni-dimensional optimization can be utilized in which a single 

parameter will be variable and the rest will be assigned fixed values. This approach in 

optimization will not be accurate enough to give the best design set of parameters 

because only one layer will be assigned a variable and the rest will be assigned fixed 

values. The difficulty here will be in picking the right values for the fixed parameters 

especially when there are multiple layers in the pile shell. 
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8.6.1 OPTIMIZATION OF THE HOLLOW DOUBLE-WEB PILE  

In this model the pile is made of carbon epoxy composite and is assumed to be 

hollow. It is subjected to axial load then followed by lateral deformation at the abutment 

location. The combination of the axial and bending stresses will cause the pile to develop 

different types of stresses which mainly include: compression, tension, and shear stresses. 

Excess of any of these stresses above the allowable criteria will cause the pile to fail 

according to the “first layer failure” approach. The objective here is to arrange the fibers 

in each layer so that the resulting stresses will be at a minimum.  

For the optimization process, the fiber orientation angles are considered as design 

variables (DVs), the failure criteria for the different types of stresses are considered the 

state variables (SV’s), and the axial deformation which has to be minimum is set as the 

objective function (OBJ). 

The composite pile properties including the shell total thickness will be kept fixed 

over the whole process. The number of layers will be changed to increase the number of 

parameters in the design space.  

Layer thickness= T
NL

 

Where  

 T: is the total thickness of the composite shell 

 NL: is the number of layers in the shell 
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Piles information: 

Composite type: Carbon epoxy 

Property ksi Property ksi 

Ex 20500 Xt 330 

Ey 1500 Yt 8.3 

Gxy 1040 Xc -209 

Vxy 0.28 Yc -33 

  S 10.3 

 

Number of layers: variable [ NL= 2 up to 12]  

Layer thickness: 0.2 in./NL 

Laminate structure:[to be determined by 

optimization]  

Filling: Hollow 

Height = 20 ft  

Soil type: dense sand 

Loading: 

Axial dead load: 200 kips [step 1] 

Lateral displacement: 2 inches [step 2]  

 

H H

 

4.5 in
0.2

8
0.2

0.2

9 in.

Hollow
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2-Layer Optimization 

The simplest form of layer lay-up of the form [θ, –θ] configuration is a 2-layer 

laminate composite shell. This is a case of uni-dimensional optimization with no fixed 

angles. Instead, both angles are variables. The laminate will be designed for minimal 

stresses and minimal axial deformations. As discussed in section  8.5, all stress values 

should remain within the allowable limits (failure criteria) such that the stress ratios are 

always equal to or less than 1. During the optimization process, the fibers’ orientations 

(DVs) will continue to change until the objective function is satisfied. The optimization 

process usually produces many output sets, each of which has new values of the objective 

function based on the change in the design variables. Figure  8-1 shows a plot of the 

variation of stress ratio values with fiber orientation angle θ. The curve shows two 

extremes: a minimum value close to 10 degrees and a maximum value located between 

50 and 60 degrees. The maximum value indicates that the stress values at certain 

locations in the composite shell are very high compared to limits provided by the failure 

criteria. The values in the curve may represent any of the six stress values indicated 

earlier in this chapter. 
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Figure  8-1: Variation of stress ratios with the fiber angles for a 2-layer laminate (1-
variable). 

4-Layer Optimization 

The second step in this process is to use a 4-layer composite laminate with the 

following laminate structure: [0, θ, -θ, 0]. In this case the two outer layers were assigned 

fixed and the inner two layers were variables. The fibers in the two outer layers were set 

to 0 degrees such that they align with the pile axis for maximum axial and bending 

strength as well as stiffness. The inner two layers were allowed to vary between 0 and 90 

degrees searching for the lowest stress ratios. As can be seen from Figure  8-2 the fiber 

angle that gave the lowest stress with the combination of the existing 0-degree layers was 

around 75 degrees. Other angle combinations are also shown in Figure  8-3 and Figure  8-4 

in which the outer layers of the pile shell are assigned fixed to a specific orientation, θ1 

and the interior layers, θ2 are varying between 0 and 90 degrees. As can be seen, the best 
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results were with those layers that have orientation angles that range between (0 to 20) 

degrees and (70 to 90) degrees. 
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Figure  8-2: Variation of stress ratios with the fiber angles for a 4-layer laminate (1-

variable). 

4-layer laminate (θ1,θ2,-θ2,-θ1)

0.5

1

1.5

2

2.5

3

3.5

0 15 30 45 60 75 90 105
Fiber angle (θ2)

St
re

ss
 R

at
io

s θ1=30

θ1=15

θ1=0

Best 
angle

 
Figure  8-3: Variation of stress ratios with the fiber angle for a 4-layer laminate (2-

variables). 
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Figure  8-4: Variation of stress ratios with the fiber angles for a 4-layer laminate (2-

variables). 

6-Layer Optimization 

For the 6-layer laminate, one, two and three variable optimization processes were 

performed. In the first run, the outer layers were set to 0-degrees, the intermediate layers 

were set to 90-degress and the inner two layers were allowed to vary from 0 to 90-

degrees. As can be seen in Figure  8-5, the variable angle was found to be very close to 

20-degrees. The best layer lay-up for this optimization loop was found to be the [0,90,-

20,20,90,0] structure. 

In the second run, the outer two layers were set to 0-degrees and the inner four 

layers were set to vary between 0 and 90 degrees. The variation of stress ratios with the 

angle θ for the two variable angles is shown in Figure  8-6. As can be seen from the 

figure, the best layer lay-up was found to be the [0,-88,-20,20,88,0] structure.  
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The last run was with all three orientation angles for the 6-layer shell set to vary 

from 0 to 90-degrees. The best layer lay-up was found to be in the form: [-86,-14,-

16,16,14,86] structure. The variation of the stress ratios with the three orientation angles 

is shown in Figure  8-7. 
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Figure  8-5: Variation of stress ratios with the fiber angles for a 6-layer laminate (1-

variable). 
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Figure  8-6: Variation of stress ratios with the fiber angles for a 6-layer laminate (2-

variables). 
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Figure  8-7: Variation of stress ratios with the fiber angles for a 6-layer laminate (3-

variables). 

 

8-Layer Optimization 

Several optimization runs were performed for an 8-layer laminate. The four 

orientation angles were also used as the design variables. The first run was with a single 

variable and the other three were assigned fixed. The second run was with two variables, 

the third with three variables and the last run was with all four orientation angles were 

assigned variables.  

Figure  8-8 shows the graph for the first case in which the layers lay-up has the 

[0,90,30,-θ4,θ4,-30,90,0] structure. The orientation angle for the inner two layers (-θ4,θ4) 

was allowed to vary between 0 and 90 degrees. The minimum stress ratio obtained for 

this case was at θ4=0, but it was greater than 1 which means that the stresses in some 

layers were above the allowable limit. The second case has the [0,90, -θ3,-θ4,θ4, θ3,90,0] 

structure with the inner four layers allowed to vary between 0 and 90 degrees.  
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Figure  8-9 shows the variation of stress ratios with respect to the layers’ 

orientations. The best angle lay-up was found to be in the following structure: [0,90,0,-

35,35,0,90,0]. The third case was of the [0, -θ2, -θ3,-θ4,θ4, θ3, θ2,0] structure in which 

three variables were used to search for the best orientations. Figure  8-10 shows the 

variation of the stress ratios with the angles’ orientations for the three variables. The best 

layer lay-up was found to be of the [0,-76,90,-15,15,90,76,0] structure. 

The last case was performed with the orientations of the 8 layers varying during 

the optimization process, allowing for maximum flexibility in the search for the best lay-

up. The best layer lay-up was of the [-77,-89,-13,-5,5,13,89,77] structure. The variation 

of the angles versus the stress ratios for the four variables is illustrated in Figure  8-11 . 

Figure  8-12 shows the stress envelopes of the three major stress components for 

some selected sets of the 8-layer optimization results, including the best set. As can be 

seen in sets 1 and 4, the shear stresses exceeded the allowable limits, while in set 16 all 

stresses were within the allowable limits, a condition which is already defined in each 

graph.  

Figure  8-13 shows the maximum stress ratios for all FRP elements in the pile for 

some selected optimization sets. It can be seen that the optimization process was able to 

reach an optimum configuration for the layers orientation angles that satisfies the design 

requirements.  
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Figure  8-8: Variation of stress ratios with the fiber angles for an 8-layer laminate (1- 

variable). 
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Figure  8-9: Variation of stress ratios with the fiber angles for an 8-layer laminate (2-

variables). 
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8-layer laminate (0,-θ2,-θ3,-θ4,θ4,θ3,θ2,0)
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Figure  8-10: Variation of stress ratios with the fiber angle for an 8-layer laminate (3-

variables). 
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Figure  8-11: Variation of stress ratios with the fiber angles for an 8-layer laminate (4-

variables). 
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Figure  8-12: Effect of layer-orientation’s optimization on pile stresses. 



 273

Stress ratio for all elements

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200

Element Number

St
re

ss
 R

at
io

Set 16

Set 4

Set 1

Set 9

 
Figure  8-13: Variation of element stresses during optimization. 

 

12-Layer Optimization 

To study the effect of the number of layers on the optimization process, the same 

pile was analyzed using a12-layer composite shell of the [-θ,θ]6 structure. All layer 

orientations were allowed to vary between 0 and 90 degrees during the optimization 

process. After several optimization loops, the best set of angles was found to be of the [-

14,90,0,-12,-76,-14,14,76,12,0,90,14] structure. The variation of stress ratios versus the 

orientation angles is shown in Figure  8-14. As can be seen, the figure gets very congested 

as the number of variables increases which makes the graphic representation of such 

processes not very clear.  
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Figure  8-14: Variation of stress ratios with the fiber angles for a 12-layer laminate (6-

variables). 

 

In this optimization process, several configurations were used trying to reach the 

best and fastest optimization approach to satisfy our goals. The 2-layer approach did not 

give good results because the number of variables was limited to 1. In the 4-layer 

approach, several runs were performed trying to reach the best laminate structure. The 4-

layer approach gave better results than those of the 2-layer approach. As the number of 

variable increased, the search for the best design set got more complicated and time 

consuming. Each variable was searching in a complex manner within a wide domain. The 

sensitivity of the optimum design to the variations of the reinforcing angles decreased as 

the number of layers exceeded 4 layers. Similar results were obtained for 4, 6, 8, and 12-

layer optimizations. Results collected from the different approaches showed similar 

patterns in which orientation angles for the reinforcing fibers were found in the [0 to 20] 
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and [70 to 90] degrees intervals. It can be concluded that optimum solutions can be found 

among the fiber architecture composed of axial and hoop reinforcing angles.  

8.7 OPTIMIZATION OF THE SECTION GEOMETRY FOR MINIMUM 

STRESSES 

Rectangular sections have advantages over circular sections in that their 

dimensions can be proportioned to obtain a specific moment of inertia while maintaining 

a fixed cross-sectional area. These advantages give flexibility to the designer to optimize 

the pile cross-section for best performance of the desired properties.  

In this section, the design variables are the section’s dimensions; DS, DS2, DZ1 

and the concrete filling area Ac. The FRP stresses were set as the design constraints (the 

state variables) such that the stresses should not exceed the allowable limits. The pile 

vertical deformations were set as the objective function. The rest of the parameters were 

not changed. The pile was assumed to be in a dense sand environment.  

In this optimization process, the goal was to minimize the pile’s flexural rigidity 

through the cross-section geometry and the size of the concrete filling. The size of the 

FRP shell and the configuration of the layers lay-up were assigned fixed to reduce the 

number of the design variables. The design variables were allowed to vary within a 

limited domain so that the pile cross-sectional dimensions remain reasonable. Also the 

size of the concrete filling was allowed to vary within a limited range during the 

optimization to maintain a minimum size that satisfies the objective function. 

Figure  8-15 shows a group of curves that represent the maximum stress ratios for 

the pile as the geometry and the concrete volume changes during the optimization 

process. As can be seen, the stress ratios were more than 1.0 in all curves except for set 7 
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in which the stresses were reduced to fall within the allowable ratio. This set can be 

considered as the best design set. 

The cross-section that satisfied the best design had a width-to-height ratio greater 

than 2.0 as shown in set 7 graph of Figure  8-15. The cross-sections with width-to-height 

ratios less than 2.0 showed higher stress ratios, exceeding the allowable criteria. 

However, these results can not be generalized to include every FRP concrete-filled pile in 

an integral abutment bridge. The pile behaviors are not unique and are usually depending 

on many factors already discussed in the previous chapter. The soil profile is the factor 

that has the most influence on the pile behaviors. The term soil-pile is used to describe 

the pile behaviors because the pile is one part of the soil-pile system and the soil is the 

other part.  
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Pile information: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy 0.26 Yc -17.5 

  S 6.2 

 

Number of layers: 8 

Shell thickness: T1=T2=0.3 in.  

FRP volume: [assigned to be fixed] 

Concrete volume: [variable] 

Layer thickness: 0.025 in. 

Laminate structure:[0,0,90,90,0,0,0,0] 

Filling: Plain concrete fc’=3 ksi 

Height = 20 ft 

Soil type: Dense Sand 

Axial dead load: P=300 kips [step 1 ] 

Lateral displacement: 2 in. [steps 2 to 3] 

H H

T1

DS
 T2

T1

  DZ1 DS2 DZ1
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Figure  8-15: Effect of section geometry and concrete filling size on stresses developed 
after lateral displacements. 
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Variation of Stress Ratio for all sets
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Figure  8-15: Effect of section geometry and concrete filling size on stresses developed 
after lateral displacements. (cont’d). 
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8.8 OPTIMIZATION OF THE PILE SECTION FOR BEST AXIAL LOAD 

Effect of the Dead Load on the Behavior of FRP Concrete Filled Piles 

The sequence of load application on an integral bridge pile has a dramatic effect 

on the resulting stresses after the lateral deformations. This is caused by the bridge deck 

expansion or contraction. The dead loads are permanent and they will be active as soon as 

the super structure is installed. This load will keep the pile under constant and permanent 

axial compressive stresses. 

As soon as a significant change in temperature occurs, the pile head will 

experience a lateral deformation as a result of the expansion or contraction. This 

deformation will develop bending moments at the pile head and will increase as the 

temperature increases. Since the pile is initially stressed in compression, the application 

of bending moment will cause additional compressive stresses at some portions of the 

pile section and a reduction in the compressive stresses at the rest of the pile section as 

described earlier in section  7.3. Based on this, the pile should be designed such that the 

total stresses at any point after all loads application are within the allowable criteria 

Figure  8-16 and Figure  8-17 show a group of curves that represent the maximum 

stress ratios for all FRP elements in a pile subjected to dead load and lateral deformation 

respectively. The pile was assumed to be in a dense sand environment and subjected to an 

axial load then followed by lateral deformations. The load was increased from 0 kips up 

to 500 kips and all stress results were recorded. As can be seen in Figure  8-16 and, Figure 

 8-17, the pile shell experienced higher stresses at smaller dead loads. As the dead load 

increased, the stresses started to get lower up to a certain value of loading then started to 

increase again.  
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Pile information: 

Composite type: Glass epoxy 

Property ksi Property ksi 

Ex 4500 Xt 90 

Ey 1100 Yt 3.9 

Gxy 550 Xc -80 

Vxy  Yc -17.5 

  S 6.2 

 

Number of layers: 8 

Layer thickness: 0.0314 in. 

Laminate structure:[11, -11, 65, -65, 21, -21, 66, -66] 

Filling: Plain concrete fc’=3 ksi 

Height = 20 ft 

Soil type: Dense sand 

 

Loading: 

Axial dead load: [0 to 500] kips [step 1 ] 

Lateral displacement: 2 in. [steps 2 to 3] 

 

H H

 8 in
0.25

8
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0.25

9 in.
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The graphs for the 300 kips dead load showed the least stress values among other 

loads. This concludes that the pile has an optimum value of dead load to be applied so 

that the pile stresses will be minimal. Figure  8-17 shows a comparison for the peaks in all 

load cases. The case with the 300 kips dead load appears to have the lowest stress values.  

Figure  8-18 includes a set of stress envelopes for all load cases for comparison 

purposes. The curves show the variation of the 3 stress components; σ1, σ2, and τ12 as the 

axial load changes. This concludes that an increase in the axial dead load does not always 

lead to an increase in stresses. In this case which includes a combination of axial 

compression and bending, the stresses reached their optimum at a certain value of axial 

load. Any change to this value, either increase or decrease, will lead to an increase in the 

stress values.  
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Variation of Stress Ratio for P=0 kips
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Variation of Stress Ratio for P=100 kips
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Variation of Stress Ratio for P=200 kips

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

Element Number

St
re

ss
 R

at
io

(1)- P only
(2)- P+ 1in. displ.
(3)- P+ 2in displ.

P=200
A

llo
w

ab
le

 
cr

ite
ri

a

3

2

1

 

Variation of Stress Ratio for P=300 kips
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Variation of Stress Ratio for P=400 kips
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Variation of Stress Ratio for P=500 kips
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Figure  8-16: Effect of dead load value on stresses developed after lateral deformations. 
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Variation of Stress Ratio for all Ps
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Figure  8-17: Comparison of stress ratios in the pile shell for different dead load values. 
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Figure  8-18: Stress envelopes for axial load optimization. 
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Figure  8-18: Stress envelopes for axial load optimization (cont’d). 
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CHAPTER 9  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

9.1 SUMMARY 

Bridges with integral abutments have several advantages over conventional 

jointed bridges and sometimes are recommended by design engineers for certain types of 

bridges. Regular bridges are usually designed to have joints at the deck-abutment 

connection to provide free expansion and contraction for the deck. In integral abutment 

bridges, the expansion joints are eliminated so that the bridge deck is built integrally with 

the abutments. Such change will dramatically affect the supporting piles under the 

abutments. As the temperature changes, the bridge will either expand or contract, which 

produces pushing or pulling forces on the abutment and piles connected to it. This form 

of lateral displacements on the pile heads will produce bending moments and bending 

stresses in addition to the compressive stresses already existing because of the dead loads. 

The pile group under the abutment will resist the lateral displacements which will 

produce stresses on both the sub and super structures. This additional stress may reduce 

the axial capacity of the pile. They have to be designed to provide maximum flexibility 

but with minimal loss in their axial capacity.  
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The most common piles used in integral abutment bridges are H-steel piles. They 

are driven in a single row oriented to allow bending about their weak axis. Steel is a very 

strong and stiff material but it is not suitable for all environments, especially locations 

with corrosive soils. Alternative substitutes for steel in such environments are fiber 

reinforced composite materials.  

Three-dimensional finite element models were developed and analyzed using the 

finite element package ANSYS. Each model consists of three major parts: 

1. Composite shell which consists of multi layer unidirectional fibers which 

have all material properties defined in the three different directions. 

2. Concrete filling which is represented by a 3-D element capable of 

cracking and crushing. The material properties were defined through non-

linear stress-strain curves.  

3. 3-D spring elements representing the soil resistance in three different 

locations.  

9.2 CONCLUSIONS 

An extensive investigation for piles made of FRP composites has been performed 

in this work. A complex three-dimensional finite element model has been built to 

simulate the soil-pile interaction process for different types of piles and soils. Based on 

that investigation, the following conclusions can be drawn: 

9.2.1 LITERATURE AND MARKET SURVEY: 

• Fiber reinforced composites (FRPs) are the newest construction materials 

that have been introduced to the construction market recently. The use of 
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FRPs in rehabilitation and retrofitting of existing structures has achieved 

a remarkable success in the past decades. Post strengthening of a structure 

in service becomes essential when its safety and serviceability become 

suspicious and no longer guaranteed. 

• FRP composites have many advantages over conventional materials, 

especially its high specific strength and resistance to corrosion and 

chemical attacks. 

• Studies on FRP composites as piling materials showed some signs of 

encouragement that pushed researchers to proceed in that field. Extensive 

research programs have been performed in several institutes and research 

centers in the United States (Lampo 1998a and Hardcore 1997). 

Experimental investigations of FRP composite piles under different types 

of loading showed that composites are highly competitive to conventional 

piling materials. Their unique properties such as light weight, specific 

strength and resistance to corrosion and chemicals make them practical 

for some applications. 

• Composite piles have been installed in multiple locations of 

demonstration projects in the United States and around the world. Most of 

its usage was by the navy as marine fenders. They showed better 

performance over other piles due to their high strength and durability.  

9.2.2 PRESENT STUDY 

• Stress evaluation in fiber reinforced composites is different from isotropic 

materials. While stresses are calculated in any direction in structures 
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made of isotropic material, they have to be calculated in the layer 

principal material directions in unidirectional laminated structures.  

• Structural failure in unidirectional laminated composites can not be 

decided globally based on the extreme stress locations in the structure; 

instead it has to be determined locally for each layer based on the failure 

criteria in layer local coordinates. 

• Maximum stresses are concentrated in the upper portions of the pile 

sections specifically at the points of connection with the abutment.  

• Soil properties have a major effect on the behavior of laterally loaded 

piles. Stiff soils produce higher stresses on the upper portion of the pile. 

The effect of soil stiffness can be reduced by replacing the upper soil 

layers with softer soil. 

• Fiber glass composites have low stiffness compared to steel and have 

higher cost compared to concrete. Combining both materials in a form of 

FRP composite shell filled with concrete will be an economical solution. 

Concrete confinement with FRP composite materials increases its 

strength and ductility. Confinement effectiveness depends on the strength 

and stiffness of the confining material in the hoops direction. Therefore, it 

is recommended to have some FRP layers with their fibers at 90 degrees 

with the pile axis.  

• Changing concrete compressive strength showed a noticeable effect on 

the axial stiffness and axial deformations of the pile, but the influence on 

bending stiffness was minor. Increasing concrete stiffness helped in 
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reducing the FRP stresses in the compression side of the pile but 

increased the stresses in the tension side.  

• Concrete filling produces more cracks in stiffer soils and stiffer FRP 

composite shells.  

• Composite materials do not have standard mechanical properties like steel 

and other isotropic materials. The mechanical properties for any 

composite material depend mainly on the properties of the individual 

constituents and their fiber volume fraction in the lamina. Polyester and 

vinyl ester fiber composites are lower in strength and stiffness than epoxy 

composites. Also carbon fibers composites are stronger and stiffer than 

glass fiber composites. Based on this, piles made of polyester and vinyl 

ester glass composite produce lower stresses than piles made of epoxy 

carbon composites.  

• The axial dead load which is applied at the beginning is of a major 

importance in increasing the capacity of the laterally deformed pile. The 

dead load stores pre-stressing forces in the installed pile in a compression 

form so that when the pile is subjected to the bending moments of the 

lateral deformations, it will release some or all the compression stresses at 

the tension side of the pile before any tension stresses have started.  

• Changing the section geometry of the pile to reduce its moment of inertia 

while maintaining constant area has a minor effect on the stresses if the 

pile is fully driven in stiff soils. Reducing the section’s inertia in the 

bending direction will increase the section’s width against the soil lateral 
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resistance. The pile moment of inertia will decrease while the lateral soil 

resistance increases. However, in piles with predrilled holes the geometry 

change is more significant on the developed stresses. Sections with 

smaller moments of inertia produce less stresses even in stiff soils. 

• Piles with larger cross-sectional areas produce lower stresses compared to 

smaller piles with equivalent loading. However, a large pile has much 

higher stiffness than an equivalent number of small piles.  

• The soil-pile stiffness for a single large pile is lower than that of multiple 

piles with an equivalent capacity when driven without predrilled holes. 

• It is recommended to use piles with larger cross-sectional areas when no 

predrilled holes are provided. When predrilled holes are provided, 

multiple piles with small cross-sectional areas are recommended.  

• Predrilled holes have a dramatic effect on stress reduction in piles in stiff 

soils. The stress reduction depends on the depth of the predrilled hole. A 

stress reduction of 70% or more can be achieved by using predrilled holes 

filled with loose sands. However, predrilled holes are disadvantageous in 

friction piles because they will decrease the size of the contact area with 

the pile and result in reducing the pile axial capacity.  

• Rectangular piles were found better than circular piles for geometrical 

optimization purposes. The section dimensions can be proportioned for 

lowest stress and stiffness.  

• Rectangular hollow piles are better than circular when subjected to lateral 

displacements. A hollow pile with a circular section experienced local 
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buckling at some locations along its depth. Rectangular sections 

performed better without local buckling because the two sides parallel to 

the displacement direction (the webs) provided lateral support to the pile 

against local buckling. 

• The fiber orientations in the layers have a strong effect on the pile 

behavior. It is strongly recommended to have multiple layers with 

different fiber orientations. Increasing the number of layers up to a certain 

limit will improve the pile properties. The fiber orientations should be 

selected for best performance.  

• Due to the nature of concrete and its cracking under tension stresses, the 

section properties will not be stable under continuous lateral 

displacements. The loss of section under cracking increases the stresses 

on the composite shell which requires a change of fiber orientation for 

best performance as cracks keep growing.  

• The directional material properties have a major effect on the 

optimization results of layer orientations. The optimum fiber directions in 

each layer in the stack for the desired objective function change with the 

mechanical properties and their ratios in the composite material.  

• Plain concrete improves the pile axial stiffness and increases its load 

capacity when used as filler with FRP shells. 

• FRP improves the strength and the stiffness of confined concrete. The 

FRP shell strength, stiffness, thickness, and fiber structure are major 

factors in the percentage of the increase. 



 294

• The new pile section has several advantages over traditional pile sections. 

Its geometrical structure which includes two flanges and two webs gives 

the cross-section the flexibility to be proportioned for the desired 

properties. The distance between the two webs is variable and can be 

changed such that the section can go from a wide flange section when the 

distance between the webs is zero to a rectangular section when the 

distance between the webs is the flange width.  

• Optimization of the pile section for best fiber orientation is achievable. 

The best set of layer orientations is not unique, especially when the 

number of layers is high. It changes based on the load and the resistance 

magnitudes. It also changes with the mechanical properties of the 

composite layer.  

• Global optimization for a soil-pile system can be achieved by optimizing 

the following: 

1. The cross-section geometry including the size of concrete filling. 

2. The fiber architecture for all layers. 

3. The dead load magnitude that gives minimum stresses.  

• The maximum load capacity of FRP composite pile is dramatically 

affected by the lateral movement of the pile head. The stress-strain 

behaviors of fiber reinforced composites are linearly elastic; therefore, pile 

stresses from different types of loading are added numerically.  

• The stress capacity of any FRP pile is constant and can be reached by: 

axial compression, lateral movement or a combination of both. 
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9.3 RECOMMENDATIONS FOR FUTURE WORK 

• The current study utilized the Winkler method and the modified Ramberg-Osgood 

model in representing the soil properties. It is recommended that future studies in 

the same area can use methods other than Winkler’s in representing the soil-pile 

interaction such as the elastic continuum approach. 

• The piles in the present study were assumed to be installed in a fully integral 

abutment with the bridge structure. Future research should have to consider piles 

in semi integral bridges. 

• The soil properties used in this study were of two different profiles from Iowa 

soils (Amde et al 1982). It is recommended to use more soil profiles from 

different locations.  

• The finite element model in the current study dealt with piles in non-skewed 

bridges. Studies on composite piles in skewed bridges are recommended in the 

future.  
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APPENDIX A  

Table A-1: Properties of typical unidirectional composite materials (Daneil 1994) 

 E-glass/ 
epoxy 

 
S-glass/ epoxy Carbon/ epoxy 

Density [lb/in.3] 
 0.076 0.072 0.057 

Longitudinal 
modulus E1, [Msi] 

5.7 6.3 20.5 

Transverse modulus, 
E2 [Msi] 

1.24 1.29 1.5 

In-plane shear 
modulus G12 [Msi] 

0.54 0.66 1.04 

Major Poisson’s 
ratio v12 

0.28 0.27 0.27 

Longitudinal tensile 
strength, F1t [ksi] 

157 185 330 

Transverse tensile 
strength,  F2t [ksi]  

5.7 7.1 8.3 

In-plane shear 
strength, F6 [ksi] 

12.9 10 10.3 

Longitudinal 
compressive 
strength, F1c [ksi] 

90 100 209 

Transverse 
compressive 
strength, F2c [ksi] 

18.6 22.9 33 
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Table A-2: Properties of typical unidirectional composite materials (Vectorply) 

 
 
 

E-glass/ 
epoxy 

S-glass/ 
epoxy 

Carbon/ 
polyester 

Density [lb/in.3] 
 0.064 0.063 0.053 

Longitudinal modulus E1, 
[Msi] 

4.5 5.3 12.75 

Transverse modulus, E2 
[Msi] 

1.1 1.1 0.69 

In-plane shear modulus G12 
[Msi] 

0.55 0.55 0.32 

Major Poisson’s ratio v12 0.26 0.26 0.28 

Longitudinal tensile 
strength, F1t [ksi] 

90 141 153 

Transverse tensile strength,  
F2t [ksi]  

3.9 4 13 

In-plane shear strength, F6 
[ksi] 

6.2 6 9 

Longitudinal compressive 
strength, F1c [ksi] 

80 119 98 

Transverse compressive 
strength, F2c [ksi] 

17.5 18 17 
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Table A-3: Properties of experimentally tested unidirectional  

composite materials (Yoon 1993) 

 

 
Glass/ 
vinylester

 

Glass/ 
polyester 

Longitudinal modulus E1, [Msi] 2.579 2.4 

Transverse modulus, E2 [Msi] 1.459 1.2 

In-plane shear modulus G12 
[Msi] 

0.528 0.52 

Major Poisson’s ratio v12 0.312 0.3 

Longitudinal tensile strength, 
F1t [ksi] 

32.3 39.5 

Transverse tensile strength,  F2t 
[ksi]  

7.6 7 

In-plane shear strength, F6 [ksi] 5.4 5.4 

Longitudinal compressive 
strength, F1c [ksi] 

38.7 34.2 

Transverse compressive 
strength, F2c [ksi] 

18.9 14.6 
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APPENDIX B  

FORTRAN PROGRAM  

This code is part of the model generation which reads its input from the ANSYS 

main batch file that generates the model. It creates multiple output files to be used by the 

ANSYS main file. The code generates the load-deformation data points for all springs 

and all soil types in the model for any pile geometry and mesh size.   

 CHARACTER*51 stype 
 character*10 st 
        REAL KX,yi(1000) 
 common ii,EH 
 DIMENSION ND(1000),X(1000),Y1(1000),Z(1000),n1(1000),ND1(1000) 
 dimension ND2(1000),ND3(1000) 
C INP1.DAT HAS THE NO. OF NEW NODES 
 OPEN(8,FILE='input.dat',STATUS='OLD') 
c OPEN(5,FILE='nodes.inp',status='old') 
 open(6,file='b1.dat',status='unknown') 
        open(7,file='b11.dat',status='unknown') 
 open(10,file='b22.dat',status='unknown') 
 open(12,file='py.dat',status='unknown') 
 open(15,file='b33.dat',status='unknown') 
 open(16,file='b44.dat',status='unknown') 
 OPEN(18,FILE='b55.dat',STATUS='UNKNOWN') 
c------------------------ 
c EH: EXPOSED LENGTH OF PILE 
C H : TOTAL LENGTH OF PILE 
 read(8,*)st 
 read(8,*)XNT,Xnmax,Bpile,Dpile,perpile,H,divl,EH,FAC,AREA 
 READ(8,*)XNODY,XDEPTH 
      nt=2*xnt 
 nmax=xnmax 
 NODY=XNODY 
 IFAC=FAC 
 Bpile=Bpile/12. 
 Dpile=Dpile/12. 
 H=H/12. 
 perpile=perpile/12. 
 if(st.eq.'densand')stype='densesand' 
 if(st.eq.'lossand')stype='loosesand' 
 if(st.eq.'medsand')stype='mediumsand' 
 if(st.eq.'sftclay')stype='softclay' 
 if(st.eq.'stfclay')stype='stiffclay' 
 if(st.eq.'vstclay')stype='vstiffclay' 
c  stype='mediumsand' 
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c stype='loosesand' 
c  EH IN INCHES AND Y1() IN INCHES 
C EH=24 
 
  
c ii: real constants 
C ii=4 
 N2=4 
 LOOP=0 
 i1=0 
 mn=0 
c do 5,i=1,2*NT 
c5 read(5,*)ND(i) 
c call pudata 
  CALL SORT(ND,NT,1,Y1,NT1,divl) 
  
 IR=5 
  ii=IR 
C IF (EH.GT.0)THEN 
C WRITE(6,*)'R,',ii,',',1,',',0. 
C WRITE(7,30)ii 
C WRITE(10,30)ii 
C WRITE(15,30)ii 
C WRITE(16,30)ii 
C ii=ii+1 
C IR=IR+1 
C ENDIF 
C------------------------------------------- 
C SPRING ELEMENTS FOR P-Y  X-DIRECTION  
   NT2=NT1 
        i2=-1 
   do 2 i=1,NT1,2 
 i2=i2+2 
 IF(ABS(Y1(i2)).LT.EH)GOTO 301 
 write(7,30)IR 
 IR=IR+1 
30 format('REAL,',I4) 
301 write(7,10)ND(I)-NMAX,ND(I) 
 write(7,10)ND(I+1)-NMAX,ND(I+1) 
10 FORMAT('E,',I7,',',I7) 
2 CONTINUE 
C------------------------------------------- 
C SPRING ELEMENTS FOR F-Z Y-DIRECTION BOTH SIDES 
 CALL SORT(ND2,NT,3,Y1,NT1,divl) 
  
 
 inn=0 
 i2=-1 
 do 6 i=1,NT1,2 
 i 2=i2+2 
      IF(ABS(Y1(i2)).LT.EH)THEN 
      write(10,10)ND(I)-NMAX,ND(I) 
 write(10,10)ND(I+1)-NMAX,ND(I+1) 
 WRITE(16,10)ND2(I)-NMAX,ND2(I) 
 WRITE(16,10)ND2(I+1)-NMAX,ND2(I+1) 
 Else 
  if (inn.eq.1)goto 303 
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 write(10,30)IR 
 WRITE(16,30)IR 
  inn=1 
303  write(10,10)ND(I)-NMAX,ND(I) 
  write(10,10)ND(I+1)-NMAX,ND(I+1) 
  WRITE(16,10)ND2(I)-NMAX,ND2(I) 
  WRITE(16,10)ND2(I+1)-NMAX,ND2(I+1) 
  
 endif 
6 CONTINUE 
C-------------------------------------------- 
C SPRING ELEMENTS FOR Q-Z BOTTOM 
 CALL SORT(ND3,NODY,4,Y1,NT1,0) 
 IR=IR+1 
 WRITE(18,30)IR 
      DO 145 I=1,NODY 
 WRITE(18,10)ND3(I)-IFAC*NMAX,ND3(I) 
145 CONTINUE           
C--------------------------------------------- 
C SPRING ELEMENTS FOR P-Y Z-DIRECTION 
 CALL SORT(ND1,NT,2,Y1,NT1,divl) 
 IR=IR+1 
 i2=-1 
 do 7 i=1,NT1,2 
 i2=i2+2 
 IF(ABS(Y1(i2)).LT.EH)GOTO 304 
 write(15,30)IR 
 IR=IR+1 
304 write(15,10)ND1(I)-NMAX,ND1(I) 
 WRITE(15,10)ND1(I+1)-NMAX,ND1(I+1) 
7 CONTINUE 
C--------------------------------------------- 
 XX=XDEPTH 
 call py(Bpile,H,nt2,divl,Y1,XX,stype) 
 call fz(PERPILE,divl,stype,alfa) 
 call qz(AREA,NODY,stype) 
 XX=XDEPTH 
 call py(Dpile,H,nt2,divl,Y1,XX,stype) 
c end 
c 
c subroutine pudata 
c dimension y(20),p(20) 
c h=50 
c j=4 
c do 101,x=0,h 
c gama=110. 
c c=15 
c eps50=0.005 
c b=12 
c y50=2.5*eps50*b 
c pu1=(3+gama/c*x+j/b*x)*c*b 
c pu2=9*c*b 
c pu=min(pu1,pu2) 
c i=1 
c do 102,y1=0,10 
c p1=pu*.5*(y1/y50)**(1/3.) 
c y(i)=y1 
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c p(i)=p1/1000. 
c i=i+1 
c write(6,*)y,p 
c102 continue 
c write(6,110)j,(y(i),p(i),i=1,10) 
c j=j+1 
c101 continue 
110 format('R,',I2,',',10(f4.1,',',f7.2,',')) 
c 
c call ramberg 
 END  
c-----------------------------------------------------  
C p-y curves 
* x: ft 
* gama: lb/ft^3 
* B: ft 
* Pu: lb/ft 
 subroutine py(B,H,nt,divl,Y1,x,stype) 
 character*51 stype 
 common ii,EH 
 real J,ka,kp,ko,kh,Y1(1000) 
 write(6,*)'! p-y curve:' 
 pi=3.141592654 
  
C  Soil properties: 
c---------------------------------- 
c Soft clay 
 if(stype.eq.'softclay')then 
 gama=100 
 N=3 
 J =0.5 
 eps50=0.02 
 fk=1 
 fk2=2.5 
 n1=1 
 alfa=1. 
 elseif(stype.eq.'stiffclay')then 
 N=15 
 gama=120 
 J=0.5 
 eps50=0.01 
 fk=1 
 fk2=2.5 
 n1=1 
 alfa=.5 
 elseif(stype.eq.'vstiffclay')then 
 N=50 
 gama=130 
 J=2.0  
 eps50=0.005 
 fk=2. 
 fk2=2 
  n1=2 
 alfa=0.25 
 elseif(stype.eq.'densesand')then  
 phi=40*pi/180. 
 alpha=phi/2. 
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 gama=130. 
 kp=(TAN(pi/4.+phi/2.))**2. 
 ka=(TAN(pi/4.-phi/2.))**2. 
 ko=1-SIN(phi) 
 beta=(pi/4.)+(phi/2.)       
 N=30 
 n1=3 
 JJ=1500 
 elseif(stype.eq.'mediumsand')then 
 phi=35*pi/180. 
 alpha=phi/2. 
 gama=120. 
 kp=(TAN(pi/4.+phi/2.))**2. 
 ka=(TAN(pi/4.-phi/2.))**2. 
 ko=1-SIN(phi) 
 beta=(pi/4.)+(phi/2.)       
 N=15 
 n1=3 
 JJ=600 
 elseif(stype.eq.'loosesand')then 
 phi=30*pi/180 
 alpha=phi/3. 
 gama=110 
 kp=(TAN(pi/4.+phi/2.))**2. 
  ka=(TAN(pi/4.-phi/2.))**2. 
 ko=1-SIN(phi) 
 beta=(pi/4.)+(phi/2.)       
 N=5 
 n1=3 
 jj=200 
      endif 
 Cu=97.*N+114. 
C x=0. 
 i2=-1 
 do 31,i=1,nt/2 
 i2=i2+2 
 IF(ABS(Y1(i2)).LT.EH)GOTO 31 
   if(stype.eq.'softclay'.or.stype.eq.'stiffclay' 
     &  .or.stype.eq.'vstiffclay')then 
     Pu1=(3+(gama/Cu)*x+(J/B)*x)*Cu*B 
     Pu2=9*Cu*B 
     Pu=min(Pu1,Pu2) 
      
   elseif(stype.eq.'densesand'.or.stype.eq.'loosesand' 
     & .or.stype.eq.'mediumsand')then  
c Units are in lb-ft 
     Pu1=gama*x*(B*(kp-ka)+x*kp*TAN(alpha)*TAN(beta) 
     &    +x*ko*TAN(beta)*(TAN(phi)-TAN(alpha))) 
     Pu2=gama*x*(kp**3.+2*kp**2.*ko*TAN(phi)-ka)*B 
     Pu=min(Pu1,Pu2) 
 endif 
  
 if(stype.eq.'densesand'.or.stype.eq.'loosesand' 
     & .or.stype.eq.'mediumsand') then 
 kh=JJ*gama*x/1.35 
 else 
 y50=fk2*B*eps50 
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 kh=Pu/(fk*y50) 
 endif 
 WRITE(6,*)'! x=',x 
c write(6,*)'! Pu1,Pu2=',Pu1,Pu2 
c write(6,*)'! kp,ka,ko,gama,B=',kp,ka,ko,gama,B 
c write(6,*)'! tbeta,tphi,talpha=',tan(beta),tan(phi),tan(alpha) 
 write(6,*)'! Pu=',Pu*divl/1000. 
 write(12,*)'x=',x 
      x=x+divl 
 if(kh.eq.0.)kh=1  
 yu=Pu/kh 
c    kh for the division divided by 2 for 2 springs 
at each level 
 kh=kh*divl/2. 
 call ramberg(kh,Pu,n1,yu) 
31 continue 
 end 
  
 
C-------------------------------------------------------- 
C f-z curves 
 subroutine fz(lg,divl,stype,alfa) 
 character*51 stype 
 real lg,kv 
 common ii,EH 
 write(6,*)'! f-z curve:' 
 
c d=15/12. 
c bf=15/12. 
* fmax:lb/ft 
c fmax=500 
* kv:lb/ft^2 
c kv=150000 
c For sand: 
 if(stype.eq.'densesand')then 
 n=1 
 NN=30 
 zc=0.033 
 fmax=0.04*lg*NN*1000 
c  kv=10*fmax/zc 
 elseif(stype.eq.'mediumsand')then 
 n=1 
 NN=15 
 zc=0.033 
 fmax=0.04*lg*NN*1000. 
c kv=10*fmax/zc 
 elseif(stype.eq.'loosesand')then 
 n=1 
 NN=5 
 zc=0.033 
c fmax multiplied by 1000 to covert to lbs. 
 fmax=0.04*lg*NN*1000 
c kv=10*fmax/zc 
 elseif(stype.eq.'softclay')then 
 alfa=1.0 
 NN=3 
 fcmax1=lg*alfa*(97*NN+114) 



 305

 fcmax2=lg*(97*NN+114) 
 zc=0.021 
 fmax=min(fcmax1,fcmax2) 
 elseif(stype.eq.'stiffclay')then 
 alfa=0.5 
 NN=15 
 fcmax1=lg*alfa*(97*NN+114) 
  fcmax2=lg*(97*NN+114) 
  zc=0.021 
  fmax=min(fcmax1,fcmax2) 
 elseif(stype.eq.'vstiffclay')then 
 alfa=0.25 
 NN=50 
 fcmax1=lg*alfa*(97*NN+114) 
  fcmax2=lg*(97*NN+114) 
 zc=0.021 
 fmax=min(fcmax1,fcmax2) 
 endif 
 kv=10*fmax/zc 
      write(6,*)'! Pu (f-z)kips=',fmax/1000 
 yu=fmax/kv 
c multiply by spring active strip length and divid by number of 
springs 
 kv=kv*divl/4. 
 n=1 
 write(12,*)'f-z' 
 call ramberg(kv,fmax,n,yu) 
 end 
 
C q-z curves 
 subroutine qz(AREA,NODY,stype) 
 character*51 stype 
 common ii,EH 
 real kq 
 write(6,*)'! q-z curve:' 
C qmax=40000 
C kq=12000000 
c qmax=8*NN 
 if(stype.eq.'densesand')then 
 NN=30 
 zc=0.033 
  if(NN.gt.15)Ncor=15+0.5*(NN-15) 
 qmax=8*Ncor*1000. 
 elseif(stype.eq.'mediumsand')then 
 NN=15 
 zc=0.33 
 Ncor=NN 
 if(NN.gt.15)Ncor=15+0.5*(NN-15) 
 qmax=8*Ncor*1000. 
 elseif(stype.eq.'loosesand')then 
 NN=5 
 zc=0.033 
 qmax=8.*NN*1000. 
 write(6,*)'!Pu (q-z)kips=',qmax/1000. 
 elseif(stype.eq.'softclay')then 
 NN=3 
      qmax=9*(97*NN+114) 
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 zc=0.021 
 elseif(stype.eq.'stiffclay')then 
 NN=15 
 qmax=9*(97*NN+114) 
 zc=0.021 
 elseif(stype.eq.'vstiffclay')then 
 NN=50 
 qmax=9*(97*NN+114) 
 zc=0.021 
 endif 
 kq=10*qmax/zc 
  
 n=1 
 yu=qmax/kq 
c kq=(kq*AREA/144.)/(NODY-2) 
 kq=(kq*AREA/144.)/(NODY) 
 
 write(12,*)'q-z)' 
 call ramberg(kq,qmax,n,yu) 
 end 
 
 subroutine ramberg(kh,Pu,n,yu) 
 COMMON ii,EH 
 real y1(20),p1(20),kh 
 if(kh.eq.0.)kh=1. 
c yu=Pu/kh 
 write(6,*)'yu=',yu*12 
 if(yu.eq.0.)yu=1. 
 i=1 
 do 21, y11=0.,18./48,(1/48.) 
 p1(i)=(kh*y11/(1+abs(y11/yu)**n)**(1./n))/1000. 
 y1(i)=y11 
 pp=p1(i) 
 write(12,*)y1(i)*12,p1(i) 
 i=i+1 
21 continue 
 write(6,111)ii,(y1(j)*12,p1(j),j=1,3) 
111 format('R,',I3,',',3(f7.4,',',f10.6,',')) 
 write(6,113)(y1(j)*12,p1(j),j=4,6) 
 write(6,113)(y1(j)*12,p1(j),j=7,9) 
 write(6,113)(y1(j)*12,p1(j),j=10,12) 
 write(6,113)(y1(j)*12,p1(j),j=13,15) 
 write(6,113)(y1(j)*12,p1(j),j=16,18) 
113 format('RMORE,',3(F7.4,',',F10.6,',')) 
 ii=ii+1 
 end 
 
C SUBROUTINE SORT (NO1,N,KK,Y1) 
 SUBROUTINE SORT (NO2,N,KK,Y2,NT1,divl) 
C        PARAMETER (N=102) 
 COMMON ii,EH 
        REAL X(N),Y(1000),Z(N) 
        REAL X1(N),Y1(N),Z1(N) 
   REAL Y2(1000) 
 DIMENSION NO(1000),NO1(1000),NO2(1000) 
 IF(KK.EQ.1)THEN 
 NF=9 
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 open(9,file='NODES.OUT',status='old') 
 ELSEIF(KK.EQ.2)THEN 
 NF=14 
 open(14,file='NODES1.OUT',status='old') 
 elseif(KK.EQ.3)then 
 NF=17 
 OPEN(17,FILE='NODES2.OUT',STATUS='OLD') 
 ELSEIF(KK.EQ.4)THEN 
 NF=19 
 OPEN(19,FILE='NODES3.OUT',STATUS='OLD') 
 endif 
        DO 100,I=1,N 
        READ(NF,*)NO(I),X(I),Y(I),Z(I) 
100       CONTINUE 
C        CLOSE #1 
        NO1(1)=NO(1) 
        X1(1)=X(1) 
 Y1(1)=Y(1) 
 Z1(1)=Z(1) 
        DO 201,L=2,N 
        DO 301, M=L-1,1,-1 
        IF (Y(L).LE.Y1(M)) GOTO 300 
        Y1(M+1)=Y1(M) 
        NO1(M+1)=NO1(M) 
 X1(M+1)=X1(M) 
 Z1(M+1)=Z1(M) 
301      CONTINUE 
300      Y1(M+1)=Y(L) 
        NO1(M+1)=NO(L) 
 X1(M+1)=X(L) 
 Z1(M+1)=Z(L) 
201      CONTINUE 
C    -------------------- 
 
c DIVL=2. 
 YR=EH 
 if(kk.eq.4)YR=abs(Y1(1)) 
 K=1 
        DO 501, J=1,N,2 
 YI=ABS(Y1(J)) 
 IF(ABS(YI-YR).LT.0.1)THEN 
 Y2(K)=Y1(J) 
 Y2(K+1)=Y1(J+1) 
 NO2(K)=NO1(J) 
 NO2(K+1)=NO1(J+1) 
 K=K+2 
 YR=YR+DIVL*12 
 ENDIF 
 
C WRITE(12,*)NO1(J),X1(J),Y1(J),Z1(J) 
501      CONTINUE 
 WRITE(12,*)'KK=',KK,'N=',K-1 
 DO 502, J=1,K-1 
502 WRITE(12,*)NO2(J),Y2(J) 
 NT1=K-1 
505   END 
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APPENDIX C 

ANSYS INPUT FILE 

This file is written using the ANSYS Parametric Design Language (APDL) that’s 

capable of modeling the FRP pile-soil system with different variable paramteres. 

 

finish 
/clear,nostart 
/PREP7 
 
!*DIM,THETA,ARRAY,NL,1,0  
*CFOPEN,input,dat 
!------------------ 
NL=12 
NL2=6 
H=10*12/1    !pile height 
EH=0*12     !inches 
DXX=100 
XDEPTH=EH/12.    !feet 
P=400 
U2=2.   !Lateral movement 
Pinc=50 
PX=10 
fc=3.0  !fc'=3.0 ksi 
DSS=6 
Lcomp=37 !40 
Ac=64.8 
T=0.3/NL 
T2=T 
MT1=1 
MTN=1 
!/input,glass_epoxy1,dat   !Composite type 
*vwrite,'vstclay'    !Soil type 
(a7) 
 
    !--------------- 
    !Afrp=3157.16/H 
    !T=(Afrp/Lcomp)/NL 
 
 THETA1=0  
 THETA2=0  
!-------------------------- 
 
 THETA3=90    
 THETA4=0      
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 THETA5=15     
 THETA6=0  
 
 THETA7=-30 
 THETA8=30 
 THETA9=-30 
THETA10=0      
THETA11=0 
THETA12=0 
       
PHI1=0 
PHI2=0 
PHI3=90 
 
PHI4=90 
PHI5=45 
PHI6=-45  
PHI7=75 
PHI8=-75 
PHI9=60 
PHI10=-60 
PHI11=0 
PHI12=0 
 !-------------------- 
 
REAL1=1     !REAL CONSTANT FOR THE FLANGES 
REAL2=2     !REAL CONSTANT FOR THE WEBS 
topmat=3  !2:3000ksi 3:29e11ksi  
iconcrete=2   ! 2:concrete core ,  else: hollow core 
itype=0    ! 0:Load bearing   1:friction 
ishape=1    ! 0:H or II        1: square or rectangle 
!----------------------------------------------------------------------
--------------- 
TP1=NL*T  !PILES THICKNESS=0.5 IN. 
TP2=NL*T 
DX1=60.  
DY1=0. 
DZ1=10. 
DS=DSS 
DS2=Ac/DS 
DZ2=((Lcomp-2*(DS+DS2+2*tp1))/4) 
!DZ2=0.1 
DS2=DS2  !-2*NL*T 
DZ3=DZ2 
!----------------------- 
BPILE=DZ2+2*TP2+DS2+DZ3   !pile-section width 
DPILE=DS+2*TP1    !pile-section depth 
PERPILE=2*(BPILE+DPILE) !+4*DZ2  !PILE PERIMETER 
DX2=10. 
!H=300.     !PIECE HEIGHT=20 IN 
!L=2*TP1+DS 
!DY=WP1-2*(DX2+TP2) 
DP=40     !PILE EMBEDMENT IN PIER = 6 INCHS 
w1=1 
w2=4 
w3=1 
w4=8/2 



 310

w5=12./2 
divl=w5/12. 
!AREA=2*DS*TP2+2*BPILE**TP1 
AREA=BPILE*DPILE 
!-------------------------------- 
!soiltype: 
!*vwrite,'lossand' 
!(a7) 
!*vwrite,'medsand' 
!(A7) 
!*vwrite,'densand' 
!(a7) 
!*vwrite,'sftclay' 
!(a7) 
!*vwrite,'stfclay' 
!(A7) 
!*vwrite,'vstclay' 
!(a7) 
 
/input,glass_epoxy1,dat 
*if,REAL2,EQ,1,THEN 
/INPUT,anglesrectangleEj,dat 
*ELSEIF,REAL2,EQ,2,THEN 
/INPUT,anglesrectangleEjvar,dat 
*ENDIF 
 
!/OUTPUT,out,out 
ET,1,SOLID46,,,,,2,4 
keyopt,1,5,2 
keyopt,1,8,1 
keyopt,1,9,1 
ET,2,COMBIN39,,,1    !displ. in the x-direction 
ET,3,COMBIN39,,,2 
ET,4,COMBIN39,,,3    
ET,5,SOLID65  !65 !CONCRETE 
ET,6,SOLID45 
!ET,1,SOLID65,,,,,2 
!ET,6,solid45 
keyopt,5,5,1 
keyopt,5,6,3 
keyopt,5,7,1 
!*do,theta1,0,90,5 
R,1,NL 
RMORE 
RMORE,1,THETA1,T,1,-THETA1,T 
RMORE,1,THETA2,T,1,-THETA2,T 
RMORE,1,THETA3,T,1,-THETA3,T 
RMORE,1,THETA4,T,1,-THETA4,T 
RMORE,1,THETA5,T,1,-THETA5,T 
RMORE,1,THETA6,T,1,-THETA6,T 
R,2,NL2 
RMORE 
RMORE,1,PHI1,T2,1,-PHI1,T2 
RMORE,1,PHI2,T2,1,-PHI2,T2 
RMORE,1,PHI5 ,T2,1,PHI6,T2 
RMORE,1,PHI7,T2,1,PHI8,T2 
RMORE,1,PHI9,T2,1,PHI10,T2 



 311

RMORE,1,PHI11,T2,1,PHI12,T2 
 
!MT1=1 
!MTN=1 
!/input,glass_vinyl2,dat 
!/input,glass_epoxy1,dat 
!/input,glass_polyester,dat 
!/input,carbon_polyester,dat 
!/input,glass_vinyl,dat 
!/input,glass_polyester1,dat 
!/INPUT,STRONGWELL,DAT 
!MP,EX,2,7271.3178  !3000 
!MP,EY,2,3000 
MP,NUXY,2,.18 
MP,EX,3,29e11 
MP,NUXY,3,.3 
MP,EX,4,29000     !STEEL 
R,4,1,1,1,1 
MTN=4 
!/input,carbon_epoxy,dat 
!/input,carbon_polyester,dat 
 
R,3 
Ec=57*(fc*1000)**0.5 
MP,EX,2,Ec 
fct=(7.5*(fc*1000)**0.5)/1000. 
!Ffrpu=34    
t_frp=NL*T     
d=DSS 
fcop=fc     
Epscop=0.002 
f1=2*Ffrpu*t_frp/d 
fccp=fcop*(-1.254+2.254*sqrt(1+(7.94*f1/fcop))-2*f1/fcop) 
TB,CONCR,2 
TBTEMP,0     
TBDATA,1,0.2 
TBDATA,2,0.5 
TBDATA,3,fct 
TBDATA,4,-1  !fccp !fc 
!/input,MISO1,dat 
!/input,mander,dat 
!/input,parkpauly,dat 
/input,mirmiranKsi,dat 
!----------------------------------------------------------------------
--------------------------- 
C**************************** 
K,1,DX1,DY1,DZ1 
K,2,DX1+TP1,DY1,DZ1 
K,3,DX1,DY1-H,DZ1  
K,4,DX1+TP1,DY1-H,DZ1 
KGEN,2,1,4,1,,,DZ2,4 
KGEN,2,5,8,1,,,TP2,4 
KGEN,2,9,12,1,,,DS2,4 
KGEN,2,13,16,1,,,TP2,4 
KGEN,2,17,20,1,,,DZ2,4 
L,1,2   !LINE 1 
LESIZE,1,,,1 
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L,2,4   !LINE 2 
LESIZE,2,w5 
L,3,4   !LINE 3 
LESIZE,3,,,1 
L,3,1   !LINE 4 
LESIZE,4,w5 
LGEN,2,1,4,1,,,DZ2,4 
LGEN,2,5,8,1,,,TP2,4 
LGEN,2,9,12,1,,,DS2,4 
LGEN,2,13,16,1,,,TP2,4 
LGEN,2,17,20,1,,,DZ2,4     !LINES 21-24 
L,2,6    !LINE 25 
LESIZE,25,,,w1 
L,6,10 
LESIZE,26,,,1 
L,10,14 
LESIZE,27,,,w2  !DS2/2 
L,14,18 
LESIZE,28,,,1 
L,18,22 
LESIZE,29,,,w3 
LGEN,2,25,29,1,-TP1,,,-1  !LINES 30-34 
LGEN,2,25,34,1,,-H,,2  !LINES 35-44 
KGEN,2,1,24,1,TP1+DS,,,24 
LGEN,2,1,44,1,TP1+DS,,,24  !LINES 45-88 
L,6,29 
LESIZE,89,,,w4 
L,10,33 
LESIZE,90,,,w4 
LGEN,2,89,90,1,,,TP2+DS2,8 !LINES 91-92 
LGEN,2,89,92,1,,-H,,2 
 
TYPE,1 
MAT,1 
REAL,REAL1 
!ESYS,11 
 !V,4,8,6,2,3,7,5,1   !volume 1 
V,8,6,2,4,7,5,1,3 
 !V,8,12,10,6,7,11,9,5  !volume 2 
V,12,10,6,8,11,9,5,7 
 !V,12,16,14,10,11,15,13,9 
V,16,14,10,12,15,13,9,11 !volume 3 
 !V,16,20,18,14,15,19,17,13 
V,20,18,14,16,19,17,13,15 !volume 4 
 !V,20,24,22,18,19,23,21,17 !volume 5 
V,24,22,18,20,23,21,17,19 !volueme 5 
KGEN,2,1,24,1,DS+TP1,,,24 
 !V,31,27,25,29,32,28,26,30 !voluem 6 
V,27,25,29,31,28,26,30,32 
 !V,35,31,29,33,36,32,30,34 
V,31,29,33,35,32,30,34,36  
 !V,39,35,33,37,40,36,34,38 
V,35,33,37,39,36,34,38,40 
 !V,43,39,37,41,44,40,38,42 
V,39,37,41,43,40,38,42,44 
 !V,47,43,41,45,48,44,42,46 !volume 10 
V,43,41,45,47,44,42,46,48 
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 !V,35,12,10,33,31,8,6,29 
V,12,10,33,35,8,6,29,31 
 !V,16,39,37,14,20,43,41,18 !volume 12 
V,39,37,14,16,43,41,18,20 
Real,REAL1 
VMESH,1,10   !FLANGES 
REAL,REAL2 
VMESH,11,12   !WEBS 
 
!------------------ 
*get,nod,node,,num,max 
*get,NOE,ELEM,,count 
 
 
TYPE,5 
MAT,2  
REAL,3  
  !V,10,14,16,12,33,37,39,35  !CORE VOLUME 
V,12,35,33,10,16,39,37,14 
*if,iconcrete,eq,2,then 
VMESH,13 
*endif 
*get,nod1,node,,num,max 
*get,NOE1,ELEM,,count 
!-------------------- 
ksel,s,loc,y,0 
kgen,2,all,,1,,2*dp 
ksel,all 
v,2,6,52,50,1,5,51,49  !volume 14 
v,6,10,54,52,5,9,53,51 
v,10,14,56,54,9,13,55,53 
v,14,18,58,56,13,17,57,55 
v,18,22,60,58,17,21,59,57 
v,26,30,64,62,25,29,63,61 
v,30,34,66,64,29,33,65,63 
v,34,38,68,66,33,37,67,65 
v,38,42,70,68,37,41,69,67 
v,42,46,72,70,41,45,71,69 
v,25,29,63,61,2,6,52,50 
v,29,33,65,63,6,10,54,52 
v,33,37,67,65,10,14,56,54 
v,37,41,69,67,14,18,58,56 
v,41,45,71,69,18,22,60,58 !volume 28 
L,1,49,5     !concrete top 
type,6 
mat,topmat      !top 
vmesh,14,28 
*get,NOE2,ELEM,,count 
 
NUMCMP,NODE 
!-------------------- 
 
C***NSEL,S,LOC,X,DX1+L 
!NSEL,S,LOC,Y,-H 
C***NSEL,R,LOC,Z,DZ1 
C***NSEL,S,LOC,Z,DZ1+DZ2 
*GET,MAXNODE,NODE,,NUM,MAX  !GET THE HIGHEST NUMBER NODE 
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NINC=MAXNODE 
NSEL,S,LOC,X,DX1+2*TP1+DS-0.01,DX1+2*TP1+DS+0.01 
NSEL,R,LOC,Z,DZ1+DZ2-.01,DZ1+DZ2+.01 
NSEL,R,LOC,Y,-H,-EH 
*GET,MINNODE,NODE,,NUM,MIN  !find the lowest node number in the 
selected set 
*GET,MAXND,NODE,,NUM,MAX  !FIND THE HIGHEST NODE NUMBER IN 
THE SELECTED SET 
!NINC=MAXNODE-MINNODE+5   !DIFFERENCE TO BE ADD TO GENERATE 
NEW NODES 
!DXX=H/3      !distance of spring node from 
pile edge in the x-dirc. 
NGEN,2,NINC,ALL,,,DXX   !GENERATE  SPRINGS NODES 
NSEL,S,NODE,,MINNODE+NINC,MAXND+NINC 
D,ALL,ALL 
*GET,NNODES,NODE,,COUNT  !NUMBER OF NODES IN THE SELECTED SET 
NLIST,ALL,,,,Y,Z 
*VWRITE,NNODES,NINC,BPILE,DPILE,PERPILE,H,divl,EH,1.,AREA   !WRITES 
DATA INTO FILE OPEND BY *CFOPEN:INP1.DAT 
(2(F5.0,2X),8(F5.1,2X))      !FROMAT FOR 
VWRITE 
NSEL,ALL 
NSEL,S,LOC,X,DX1+2*TP1+DS-0.01,DX1+2*TP1+DS+0.01 
NSEL,R,LOC,Z,DZ1+DZ2+2*TP2+DS2-0.01,DZ1+DZ2+2*TP2+DS2+0.01 
NSEL,R,LOC,Y,-H,-EH 
*GET,MAXND1,NODE,,NUM,MAX 
*GET,MINND1,NODE,,NUM,MIN 
NGEN,2,NINC,ALL,,,DXX   !GENERATE SPRINGS NODES 
nlist,all 
NSEL,S,NODE,,MINND1+NINC,MAXND1+NINC 
D,ALL,ALL 
NSEL,ALL 
NSEL,S,LOC,X,DX1+2*TP1+DS+DXX 
nlist,all 
NSEL,R,NODE,,MINNODE+NINC,MAXND1+NINC 
NLIST,ALL,,,,Y,Z 
NWRITE,NODES,OUT 
NSEL,ALL 
!---------------------------------------- 
NSEL,S,LOC,X,DX1-.001,DX1+0.001 
NSEL,R,LOC,Z,DZ1+DZ2-0.001,DZ1+DZ2+0.001 
NSEL,R,LOC,Y,-H,-EH 
*GET,MINND4,NODE,,NUM,MIN 
*GET,MAXND4,NODE,,NUM,MAX 
NGEN,2,NINC,ALL,,,-DXX 
NSEL,S,NODE,,MINND4+NINC,MAXND4+NINC 
D,ALL,ALL 
NSEL,ALL 
NSEL,S,LOC,X,DX1-.001,DX1+0.001 
NSEL,R,LOC,Z,DZ1+DZ2+2*TP2+DS2-.001,DZ1+DZ2+2*TP2+DS2+.001 
NSEL,R,LOC,Y,-H,-EH 
*GET,MINND5,NODE,,NUM,MIN 
*GET,MAXND5,NODE,,NUM,MAX 
NGEN,2,NINC,ALL,,,-DXX 
NSEL,S,NODE,,MINND5+NINC,MAXND5+NINC 
D,ALL,ALL 
NSEL,ALL 
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NSEL,S,LOC,X,DX1-DXX 
NSEL,R,NODE,,MINND4+NINC,MAXND5+NINC 
NWRITE,NODES2,OUT 
NSEL,ALL 
!---------------------------------------- 
! GENERATING NODES FOR SPRINGS IN THE Z-DIRECTION  
NSEL,S,LOC,X,DX1-0.001,DX1+0.001 
NSEL,R,LOC,Z,DZ1-0.001,DZ1+0.001 
NSEL,R,LOC,Y,-H,-EH 
nlist,all 
*GET,MINND2,NODE,,NUM,MIN 
*GET,MAXND2,NODE,,NUM,MAX 
DZZ=-DXX      !distance of spring nodes 
from pile edge z-axis 
NGEN,2,NINC,ALL,,,,,DZZ 
nlist,all 
NSEL,S,NODE,,MINND2+NINC,MAXND2+NINC 
nlist,all 
D,ALL,ALL 
NSEL,ALL 
NSEL,S,LOC,X,DX1+DS+2*TP1-.001,DX1+DS+2*TP1+.001 
NSEL,R,LOC,Z,DZ1-0.001,DZ1+0.001 
NSEL,R,LOC,Y,-H,-EH 
nlist,all 
*GET,MINND3,NODE,,NUM,MIN 
*GET,MAXND3,NODE,,NUM,MAX 
NGEN,2,NINC,ALL,,,,,DZZ 
nlist,all 
NSEL,S,NODE,,MINND3+NINC,MAXND3+NINC 
nlist,all 
D,ALL,ALL 
NSEL,ALL 
NSEL,S,LOC,Z,DZ1+DZZ 
nlist,all 
NSEL,R,NODE,,MINND2+NINC,MAXND3+NINC 
NLIST,ALL,,,,Y,Z 
NWRITE,NODES1,OUT 
NSEL,ALL 
!--------------------------------------- 
! q-z curves 
!------------ 
DYY=-DXX 
NSEL,S,LOC,X,DX1+TP1-0.001,DX1+TP1+0.001 
NSEL,R,LOC,Y,-H 
*GET,MINND6,NODE,,NUM,MIN 
*GET,MAXND6,NODE,,NUM,MAX 
NGEN,2,NINC,ALL,,,,DYY 
NSEL,S,NODE,,MINND6+NINC,MAXND6+NINC 
nlist,all 
!D,ALL,ALL      !q-z DOF 
NSEL,ALL 
NSEL,S,LOC,X,DX1+DS+TP1-.001,DX1+DS+TP1+.001 
NSEL,R,LOC,Y,-H 
*GET,MINND7,NODE,,NUM,MIN 
*GET,MAXND7,NODE,,NUM,MAX 
NGEN,2,NINC,ALL,,,,DYY 
NSEL,S,NODE,,MINND7+NINC,MAXND7+NINC 
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!D,ALL,ALL      !q-z DOF 
NSEL,ALL 
NSEL,S,LOC,Y,-H+DYY 
NSEL,R,NODE,,MINND6+NINC,MAXND7+NINC 
NWRITE,NODES3,OUT 
*GET,NOFNODES,NODE,,COUNT  !NUMBER OF NODES IN THE SELECTED 
SET 
*VWRITE,NOFNODES,XDEPTH 
(F6.0,1x,F6.1) 
NSEL,ALL 
!----------------------------- 
 
 
!NSEL,S,LOC,X,DX1+TP1 
!NSEL,R,LOC,Z,DZ1+DZ2 
!NSEL,R,LOC,Y,-H 
!*GET,ND1,NODE,,NUM,MIN 
!NGEN,2,NINC,ALL,,,,DYY 
!NSEL,ALL 
!NSEL,S,LOC,X,DX1+TP1 
!NSEL,R,LOC,Z,DZ1+DZ2+DS2+2*TP2 
!NSEL,R,LOC,Y,-H 
!*GET,ND2,NODE,,NUM,MIN 
!NGEN,2,NINC,ALL,,,,DYY 
!NSEL,ALL 
!NSEL,S,LOC,X,DX1+TP1+DS 
!NSEL,R,LOC,Z,DZ1+DZ2 
!NSEL,R,LOC,Y,-H 
!*GET,ND3,NODE,,NUM,MIN 
!NGEN,2,NINC,ALL,,,,DYY 
!NSEL,ALL 
!NSEL,S,LOC,X,DX1+TP1+DS 
!NSEL,R,LOC,Z,DZ1+DZ2+DS2+2*TP2 
!NSEL,R,LOC,Y,-H 
!*GET,ND4,NODE,,NUM,MIN 
!NGEN,2,NINC,ALL,,,,DYY 
!NSEL,ALL 
!*VWRITE,ND1,ND2,ND3,ND4 
!(4(F6.0,1X)) 
/sys,del 111.dat 
/SYS,soilpile 
/input,b1,dat 
!TYPE,3 
!REAL,11 
!E,ND1,ND1+NINC 
!E,ND2,ND2+NINC 
!E,ND3,ND3+NINC 
!E,ND4,ND4+NINC 
!D,ND1+NINC,ALL 
!D,ND2+NINC,ALL 
!D,ND3+NINC,ALL 
!D,ND4+NINC,ALL 
 
!--------------------------------- 
 
!*MWRITE,MAXNODE,NODES,OUT 
TYPE,2 
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/INPUT,b11,dat  !springs in the x-direction 
TYPE,3 
/INPUT,b22,dat  !springs in the y-direction, f-z 
/input,b44,dat 
!/input,b55,dat 
TYPE,4 
/INPUT,b33,dat  !springs in the z-direction 
NSEL,ALL 
outpr,all,1 
!/PBC,U,,0 
finish 
!-------------------------------------- 
/SOLU 
!------------------------------------- 
/NERR,10,50000 
OUTRES,ALL,ALL 
AUTOTS,ON 
SOLCONTROL,ON 
!NSUBST,5 
EQSLV,FRONT 
!NLGEOM,ON 
CNVTOL,U,1,.29 
neqit,50 
NROPT,full 
 
!SOLCONTROL,0 
!NEQIT,5                   ! MAXIMUM 5 EQUILIBRIUM ITERATIONS PER STEP 
!NCNV,0                    ! DO NOT TERMINATE THE ANALYSIS IF THE 
SOLUTION FAILS  
!CNVTOL,U                  ! CONVERGENCE CRITERION BASED UPON 
DISPLACEMENTS AND 
!---------------------------- 
NSEL,S,LOC,Y,2*dp 
 NSEL,R,NODE,,1,NINC 
 *GET,NND1,NODE,,COUNT 
!  F,ALL,FY,-P/NND1 
  D,ALL,UZ 
  D,all,ux 
    !F,ALL,FX,1 
  nsel,all 
!Asel,s,loc,y,2*dp 
!sfa,all,1,pres,P/10/10 
!allsel 
 
!------------------  
!Load bearing pile 
 
*if,itype,eq,0,then 
nsel,s,loc,y,-h 
d,all,uy 
nsel,all 
esel,all 
*endif 
!------------------- 
*DO,i,12,12,3 
!nsubst,8 
!Asel,s,loc,y,2*dp 
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!sfa,all,1,pres,(P/(DPILE-(2*NL*T))/BPILE)*(i/10) 
 nsel,s,loc,y,(1/5)*2*dp,2*dp 
 NSEL,R,NODE,,1,NINC 
 *GET,NND22,NODE,,COUNT 
 F,all,fy,-(P/NND22)*i/12 
 
allsel 
solve 
*enddo 
save 
!------------------ 
*DO,i,12,12,3 
 nsel,s,loc,z,dz1 
 nsel,s,loc,y,0/5*2*dp,2*dp 
 NSEL,R,NODE,,1,NINC 
 D,all,ux,U2*i/12 
      !D,all,uz,-2.  
allsel, 
solve 
*enddo 
save 
!------------------ 
!P=600 
*DO,i,4,4 
P=P+Pinc 
 !nsubst,8 
 !Asel,s,loc,y,2*dp 
 !sfa,all,1,pres,(P/(DPILE-(2*NL*T))/BPILE)*(i/10) 
nsel,s,loc,y,(1/5)*2*dp,2*dp 
NSEL,R,NODE,,1,NINC 
*GET,NND22,NODE,,COUNT 
F,all,fy,-(P/NND22)      !*i/12 
 
allsel 
solve 
*enddo 
save 
 
!------------------ 
 
!allsel 
!SOLVE 
!*enddo 
!save 
FINISH 
!---------------------------------- 
/POST1 
!NSEL,S,LOC,X,DX1+2*TP1+DS 
NSORT,U,Y 
*GET,DELTAMXY,SORT,,MAX 
*GET,DELTAMNY,SORT,,MIN 
NSORT,U,Z 
*GET,DELTAMXZ,SORT,,MAX 
*GET,DELTAMNZ,SORT,,MIN 
NSORT,U,X 
*GET,DELTAMXX,SORT,,MAX 
*GET,DELTAMNX,SORT,,MIN 
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ETABLE,VOLU,VOLU 
SSUM 
*GET,VOLUME,SSUM,,ITEM,VOLU 
ETABLE,FC_ALL,NMISC,1 
ETABLE,VALUE1,NMISC,2 
ETABLE,LAYER_NO,NMISC,3 
etable,fci,nmisc,4*NL+8+1 
etable,valuei,nmisc,4*NL+8+2 
etable,lni,nmisc,4*NL+8+3 
ETABLE,SF_X,NMISC,4*NL+8+10 
ETABLE,SF_Y,NMISC,4*NL+8+11 
ETABLE,SF_Z,NMISC,4*NL+8+12 
ETABLE,SF_XY,NMISC,4*NL+8+13 
ETABLE,SF_YZ,NMISC,4*NL+8+14 
ETABLE,SF_XZ,NMISC,4*NL+8+15 
 
etable,sff,nmisc,40 
ESORT,ETAB,SF_X,,1 
*GET,SFXMAX,SORT,,MAX 
!ESORT,ETAB,LAYER_NO,,1 
!*GET,LAYERS,SORT,,MAX 
!SMAX=SMAXI>SMAXJ 
!ESEL,S,ELEM,,1,5 
!PRESOL,S 
ETABLE,STRESS,S,Y 
!PRETAB,STRESS 
ESORT,ETAB,STRESS,,1 
*GET,NN,ETAB,,NCOL,MAX 
*GET,SM,SORT,,MAX 
*GET,SM,SORT,,MIN 
finish 
!NSEL,S,LOC,Y,-H 
!nsel,all 
!show,HPGL 
/POST1 
!/psymb,esys,1 
!eplot 
/post1 
 
abbres,new,toolbar 
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