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Abstract

A model of profile analysis is proposed in which a spectral profile is assumed to
be represented by a weighted sum of sinusoidally modulated spectra (ripples). The
analysis is performed by a bank of bandpass filters, each tuned to a particular ripple
frequency and ripple phase. The parameters of the model are estimated using data
from ripple detection experiments in [Green, 1986; Hillier, 1991]. Detection thresh-
olds are computed from the filter outputs and compared with perceptual thresholds,
for profile detection experiments with step, single component increment, and the
alternating profiles. The model accounts well for the measured thresholds in these
experiments. Physiological and psychophysical evidences from the auditory and vi-
sual systems in support of this type of a model are also reviewed. The implications
of this model for pitch and timbre perception are briefly discussed.

INTRODUCTION

In characterizing the perception of spectral profiles, a basic objective is to select a
model representation upon which an appropriate metric can be defined. Several such
models have been proposed to account for data from a wide range of psychoacoustical
tests — including profile analysis experiments and discriminations of simultaneous
vowels. Examples are the independent channels model [Durlach, Braida and Ito,
1986], the maximum difference model [Bernstein and Green, 1987], the Ewaif model
[Feth, O’Malley and Ramsey, 1982], the weighted slope model [Klatt, 1982}, and
the spectral peak model [Assmann and Summerfield, 1989]. Despite their unique
characteristics, all models share the same fundamental starting point that the spec-
tral profile is represented by the acoustic spectrum on a logarithmic frequency axis.
Relative to this profile, various operations are defined to predict the perceptual
thresholds.

In this paper, an alternative model of profile analysis is proposed which does
not operate upon the profile directly, but rather upon its Fourier transformation.
Specifically, it is hypothesized that an arbitrary profile is represented in the auditory
system by a collection of weighted elementary sinusoidal profiles (ripples) of different
frequencies and phases. Such a ripple analysis would be effectively accomplished
via a bank of filters tuned to different ripple frequencies and phases. Detection
thresholds would then be computed from this representation of the profile.

The primary motivations for such a ripple analysis model were findings from
physiological mappings in the primary auditory cortex, Al [Schreiner and Mendel-
son, 1990; Shamma et al., 1993]. The results revealed that Al potentially encodes,
at each point along the tonotopic axis, an explicit measure of the local bandwidth
and asymmetry of the acoustic spectrum. A broader interpretation of these two
response measures (as we shall elaborate below) led to the notion that they may,
respectively, correspond to the magnitude and phase of a Fourier transformation



of the profile. Recent neurophysiological results in Al are consistent with this hy-
pothesis in that cortical cells are tuned to specific (characteristic) ripple frequencies
and phases [Calhoun and Schreiner, 1993; Shamma, Versnel and Kowalski, 1993].
Furthermore, these two response properties are columnarly organized and topo-
graphically mapped along the isofrequency planes in a manner similar to that of the
response area bandwidths and asymmetry eluded to above.

The idea that the brain analyzes and perceives its sensory patterns in this man-
ner is relatively common in the vision literature where it has been variously called
multi-resolution or multi-scale representation, and spatial frequency analysis [ Camp-
bell and Robson, 1968; Levine, 1985]. It is, however, the elegant anatomical and
physiological work of [DeValois and DeValois, 1990] that has provided the most
immediate inspiration to pursue this type of model for the auditory system.

In the psychoacoustical literature, it is a curious fact that the first doubts about
the competence of the independent channels model were raised for ripple profile
stimuli [Green, 1986]. Specifically, the detection thresholds were found to be re-
markably constant and relatively high compared to what would be expected from
the channel model. Furthermore, the thresholds could well be accounted for by the
maximum difference model [Bernstein and Green, 1987] which assumes only two
independent channels of information.

These issues will be examined here in the context of an auditory ripple analysis
model. Essential to the development of such a model are basic psychoacoustical
sensitivity measurements with simple ripple profiles. A few such experiments have
already been performed [Green, 1986; Hillier, 1991; Houtgast and Veen, 1982]. Using
these data and the conceptual framework outlined above, an explicit computational
model is developed to interpret the results of various profile analysis experiments.

In the following sections, we first outline the computational model (Sec. I). Its
various parameters are estimated in Secs. I C and II from experimental results
reported here and in [Green, 1986; Hillier, 1991]. The model is used in Sec. I
to predict the detection thresholds for several profile analysis experiments. Finally,
the model is discussed in contrast to other profile analysis prediction models and in
relation to auditory percepts such as timbre and pitch.

A. Terminology and notation

The following terms are frequently used here to describe the ripple analysis rep-
resentation of profiles:

Ripple: refers to a sinusoidal spectral profile (e.g., p(w) = sin(27Qw + §)) on the
logarithmic frequency axis w. A ripple has a ripple frequency Q (in cycle/octave)
and a ripple phase 6 (in radians or degrees).

Ripple spectrum, P(): refers strictly to the Fourier transform of the profile
p(w).

Ripple analysis filter, H(;8,,®,): refers to a bandpass filter that is tuned




around a characteristic ripple frequency (£2,) and phase (®,).
Ripple transform, r(-): refers to the output of a bank of ripple analysis filters.

I. GENERAL DESCRIPTION OF THE RIPPLE ANALYSIS MODEL

The ripple analysis model can be conceptually divided into two stages. The first
(Sec. I A) is a ripple transformation stage which simply converts the input spectral
profile p(w) into its corresponding ripple transform 7(-). The second stage (Sec. II) is
a detection model which operates on the magnitude or phase of the ripple transform,
or on selected features of it such as its maxima and edges.

A. Computing the ripple transform of a spectral profile

This stage consists of a bank of ripple selective filters analogous to the frequency
selective filters of the cochlea (Figs. 1). The impulse response of each filter, h(w —
wo; Do, ®,) (Fig. 1(a)), is centered around w, and is assumed to be a Gaussian shaped
ripple of a particular ripple frequency {2, and ripple phase ®, ([Gabor, 1946]). In
particular, the filters centered around w, = 0 are defined as:

h(w; R, ®,) = 2 go(w) cos(27Nw — @,), (1)
where ¢,(w) = V270 e~ o , and o determines the width of the Gaussian envelope.
In the Fourier transform domain, these filters are Gaussian shaped (Fig. 1(b) and
(c)) and:

H(;Q,,8,) = H(Q;Q,) cos(B,) + H(D;Q,) sin(P,)
= H(Q;Q,) e~ 59N
where H(Q;Q,) is the Hilbert transform of H((;€,) and H(§%;,) is the Fourier
transform of 2 g,(w) cos(27Q,w). Note that H (% Q,) (H(Q;,)) is pure real (imag-
inary).
In general, for each {2, and @, there is a whole range of (identical) filters which

are centered at different w,’s along the tonotopic w axis. Therefore, each impulse
response is characterized by three parameters: Q,,®,, and w,, and is given by:
h(w; o, By, ws) = h(w — w,; Ny, B,).

The ripple transform at some w, is evaluated from the convolution of the impulse
response and the input profile. For an arbitrary (real) input profile p(w) with ripple
spectrum P(Q) = |P(Q)]e?*®| the response is:

r(Q, Do, w,) = /oo h(w, — w; R, D, ) p(w)dw (2)
_ / © H(Q;Q,, 8,)P(Q)et? ™ 40
=2 / " H(Q;9) |P(Q)] - cos(®, — 6(2) — 27w, )dS2.
0
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Figure 1: (a) Impulse responses of three filters with characteristic ripple frequen-
cies 3, = 1,3, and 8 cycle/octave, and characteristic phase ®, = 0. Filters are
centered at w, = 0 octave. The impulse response is computed as h(w;Q,) =

rwo(lo 2
2 27!'0'(90)6_9_(20_»_ cos(2nQw) for o(2,) = 0.3 N,. (b) Fourier transform of
the three impulse responses of the filters in (a) plotted on a linear (2 axis. (c) Same
as (b) but plotted on a logarithmic § axis.



This equation can be simplified for profiles which are even or odd symmetric around
their center (arbitrarily designated at w,), or otherwise have a constant phase 6,
around it so that 6(Q) = sign(0)0, — 27Qw,. This assumption applies approxi-
mately to all profiles discussed here and in the companion paper [Vranié-Sowers
and Shamma, 19xx]. The ripple transform computed at such a point w, is:

(o, B,) = cos(®, — 6,) / “ H(Q:0,) |P(Q)|dQ = cos(®, — 6,) 7(2),  (3)
where r(£,) is a “magnitude” part:
() = [ H®) IP@)de, ®)

and ®,—0, is a “phase” part of the ripple transform. The majority of profile analysis
tasks reported in the literature and considered here can be effectively described either

as a change in the magnitude or in the phase of the ripple transform, as shown in
Sec. II.

B. The representation of the input spectral profile

It is uncertain whether the auditory system represents its input spectral profile
on a linear or a logarithmic amplitude scale [Hillier, 1991; Shannon, 1992]. For the
model, the input profile p(w) is taken to be the linear amplitude spectrum normalized
by the amplitude of the base. Like the logarithmic spectrum, this representation
is scale-normalized preserving only the level-independent features of the spectrum.
Other possible inputs range from a simple scale-normalized power spectrum to more
complicated biologically and psychoacoustically inspired representations, such as the
excitation pattern model [Glasberg and Moore, 1990] and the auditory filter models
of [Hillier, 1991; Patterson, 1986; Shamma et al., 1986; Slaney and Lyon, 1990;
Yang, Wang and Shamma, 1992).

In general, an inappropriate profile representation distorts its intended ripple
spectrum P(€). In some cases the distortions are small, as demonstrated in Fig. 1(d)
for spectral peaks or as in the case of small amplitude ripples where linear and
logarithmic spectra look very similar and their perceptual thresholds are closely
matched [Green, 1986; Hillier, 1991; Houtgast and Veen, 1982]. In other cases, the
distortion is large but inconsequential in the context of the ripple analysis model as
will be discussed in more detail in Sec. IV A.1.

C. Parameters of the filter bank

The filter bank depicted in Figs. 1(b) and (c) is assumed to be a constant-Q)
bank, i.e., its filters have constant widths on a logarithmic §) axis or, equivalently,
have linearly increasing widths (¢’s) with ,. This choice is primarily justified by
data from adaptation experiments (both with ripples [Hillier, 1991] and visual grat-
ings [DeValois and DeValois, 1990]) and neurophysiological experiments [De Valois,
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Figure 1: (d) Three input representations of a symmetric peak profile (left) and the
corresponding ripple spectra magnitudes (right). There are little differences between
the three representations or their ripple spectra. The solid line is the normalized (by
the base) linear representation of the peak (right ordinate). The dotted line is the
same peak profile represented on a logarithmic amplitude scale (left ordinate). The
dashed line depicts the output of the excitation pattern model (no corrections were
applied in the model, and the base was 0 dB amplitude; see [Glasberg and Moore,
1990] for details).

Albrecht and Thorell, 1982; Shamma, Versnel and Kowalski, 1993], in which filter
tuning was estimated around various §2,’s to be around 1 octave (measured at the
half amplitude points). This corresponds approximately to o(€2,) = 0.3 £,.

A fundamental consequence of the constant-@) property of the filters is that,
a dilation (or a stretching) of the input profile (around w,) by a factor «, i.e.,
p(w) — p(a w) or P(Q) — 1/aP(Ql/a) causes only a simple translation of r(£,)
by log, o octaves along the logarithmic 2, axis, leaving the shape of the ripple
transform unaltered'. This property is illustrated in Figs. 2 for the ripple input at
1 = 2 cycle/octave and its dilated version (a = 1.5) at , = 3 cycle/octave. The
corresponding magnitudes of the ripple transforms are identical apart from a 0.58
octave shift (Fig. 2(c)). Note also that, a pure input dilation leaves the response as
a function of ®, unaltered, i.e., it is largest at ®, = 8, as before.

1To see this, consider the effect on the ripple transform r(-) of dilating its input by a factor a.
The response becomes:

oo}
(R, ®o) = cos(P, — 0,) / H(Q2;92,)|P(2/a)|d/a.
Evaluating 7(-) at Q,/a = @/ and letting Q/a = ', we get:
(@), 8,) = cos(®, — 6,) / H(S;90)| P(Q)]d,

which is identical in shape to r(2,, ®,) prior to dilation, except for a translation to €.
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Figure 2: (a) Two ripple profiles with amplitudes 0.1 and frequencies §); = 2 cy-
cle/octave and 2, = 3 cycle/octave. (b) Ripple spectra magnitudes corresponding
to the two ripple profiles. (c) Ripple transform magnitudes r(£2,) of the profiles in
(a) (solid lines). The dashed line is a polynomial approximation to the measured
data points idl(Q2, = Q) (denoted by circles) reproduced from Fig. 3.27 in [Hillier,
1991]. The detection threshold K (,) reflects the shape of the perceptual threshold
idl(Q), = Q). Maxima of r(£2,) are at their just detectable levels.



II. DETECTION PROCEDURES

Various detection procedures are developed in this section so as to predict per-
ceptual thresholds from the ripple transform r(:). Two types of profile analysis
paradigms will be distinguished: (A) Those in which the profile is to be detected
against a flat standard, i.e., the task is to detect the existence of the profile. Most
profile detection experiments fall in this category including those described by [Bern-
stein and Green, 1987; Bernstein, Richards and Green, 1987] and by [Green, 1986;
Hillier, 1991]. The latter are the ripple detection experiments called here ripple
intensity-difference-limen experiments or ripple-idl); (B) Those for which the stan-
dard is not flat. Instead, the subject is to detect a change in some parameter of an
audible profile, for instance, in the frequency [Hillier, 1991] or phase of a ripple, or,
in the height of a pedestal profile [Green, 1988].

A. Detection procedures for tests with flat standards

In such tests, the amplitude of the profile p(w) is gradually increased until detec-
tion occurs. Therefore, in the context of the ripple analysis model, detection occurs
when the magnitude of the ripple transform r({,) (according to Eq. (4)) exceeds
some perceptual threshold level K(f,) (Fig. 2(c)). In order to determine K((,), we
use the results of the ripple-idl threshold measurements reported in [Hillier, 1991].
Figure 2(c) illustrates r(f,) for two just detectable ripples ; and Q, with ampli-
tudes 0.1. In order to obtain the same detection results from the model, we define
K(Q,) = idl(Q, = Q) as shown in Fig. 2(c)%.

In Sec. III, we compute r(§,) at perceptual thresholds for several profiles and
compare them to K({2,), in order to evaluate the performance of the model.

B. Detection procedures for tests with non—flat standards

Tests with non-flat standards involve threshold measurements of a parameter
change in an audible profile. Detection procedures for three types of such tests
are considered in this paper: (1) Dilation of a profile, exemplified by frequency-
difference-limen (fdl) measurements for ripples profiles [Hillier, 1991]; (2) Ripple
phase shift, such as the phase-difference-limen (pdl) measurements for ripple profiles
(Sec. II B.2); (3) Change in overall amplitude, e.g., the pedestal-type experiments
with single increment profiles [Green, 1988]. In relation to the ripple transform
r(Q, ®,) in Eq. (3), these three tests correspond, respectively, to a translation in
the magnitude of the ripple transform r(£2,), a translation in the phase @, —#6,, and
a change in the amplitude of the ripple transform.

2This detection procedure is only the simplest of many possible schemes. For instance, one may
assume K to be constant and instead weight the input profile or the filter heights by the inverse
of the idl bowl [Hillier, 1991]. While these procedures are equivalent with respect to the single
ripple idl’s, they generally have different consequences for arbitrary input profiles. In the absence
of additional supporting data, we adopt the simplest approach taking K to be a function of €, as
shown in Fig. 2(c).



1. Detection of a profile dilation

As discussed earlier, dilation of a profile causes the magnitude of its ripple trans-
form to translate along the logarithmic , axis without an overall change in shape.
In the ripple analysis model, it is assumed that subjects detect this shift in ~(£,).
Since the shift can be measured anywhere on the pattern, e.g., at its maximum or
at its right or left edges, we choose to measure it in the steepest lowpass edge in
r(9,)3.

In order to predict the dilation thresholds in arbitrary profiles, we use the ripple-
fdl measurements of [Hillier, 1991]. The data are reproduced by the dashed line
in Fig. 3(c). The solid curve in Fig. 3(c) is the same data but translated by ap-
proximately 0.3 octaves (i.e., log, %l}, where ); = 0.8Q)) to compensate for the

misalingment between the location of the lowpass edge of r(2,) relative to the rip-
ple frequency Q. The detectable shift is computed as A(f),) = log,(1 + £d1(0.8 €2,))
octave, where ) = 0.8(), is the ripple frequency.

Therefore, the dilation threshold can be estimated for any arbitrary profile as
follows: (1) Compute the magnitude of the ripple transform |r(,, ®,)| of the profile;
(2) Locate the steepest lowpass edge of the pattern along the {2, axis; (3) Determine
the shift A(Q,) based on the solid curve in Fig. 3(c) and the dilation threshold «
from A = log, a*.

2. Detection procedure for phase shift in the ripple transform

In this test, the phase of the ripple transform, ®,— 6,, is translated while holding
the magnitude r(£2,) constant (see Eq. (3)). For an arbitrary profile, threshold is
defined as the minimum detectable phase angle added to all components of the ripple
spectrum. For a single ripple profile, this simply entails measuring the sensitivity
to a phase shift in the profile, i.e., the phase-difference-limen of the ripple (pdl).
Just as with the ripple-fdl measurements above, the ripple-pdl can be incorporated
in the model to predict perceptual thresholds for arbitrary profiles. Experiments to
obtain such pdl data are briefly described below.

3While other features of r(-) may be equivalent, our choice is motivated by the fact that the
ripple transforms of arbitrary profiles are necessarily bandlimited (i.e., have lowpass edges) but
may not always exhibit clear maxima.

“There are more explicit (and elaborate) schemes to incorporate the fdl curve into the model.
For instance, one can set a constant detectable shift in the output and change the model parameters
so as to require larger profile dilations to produce this (constant) output shift for ripples < 0.7
cycle/octave and > 6 cycle/octave (Fig. 3(c)). One way to accomplish this is to add a constant to
the o (e.g., (Q2,) = 0.3 Q, + 0.05). This increases the relative width of the filters substantially in
the low §, region (< 1 cycle/octave) in effect increasing the fdl’s in this range as observed in the
data. Similarly, the fdl increase in the high Q, region (> 6 cycle/octave) may be related to the
increasing idl’s there (Fig. 2(c)) and, hence, can be accounted for by introducing level-sensitive
procedures for the detection of shifts in r().
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Figure 3: (a) Ripple spectra magnitudes of two ripple profiles at ; = 2 cycle/octave
and (); = 2.4 cycle/octave. (b) Corresponding ripple transform magnitudes, r(€,).
Both ripples are well above their detectable levels (i.e., r(,) maxima significantly
exceed K(€,)). The two ripple frequencies are 20% apart, which is the fdl threshold
at }; = 2 cycle/octave. This corresponds to a dilation factor of & = 1.2 or a r(£2,)
translation of A = log, a &~ 1/4 octave. The dashed lines denote the locations of the
steepest lowpass edges in r(,) (Q] and Q). (c) Dashed line is the interpolated fdl-
threshold of data (denoted by circles) reproduced from Fig. 3.30 in [Hillier, 1991].
The values are shown on the right ordinate. Note that for the fdl curve, Q, = Q
denotes the ripple frequency. Solid line represents the shifts (A) observed in the
lowpass edges of r({1,) corresponding to the same fdl data (see text for details).
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(i) Methods

Sensitivity to ripple phase changes was measured in ripple profiles on a dB am-
plitude scale (Fig. 4(a)) and the pdl thresholds are reported in the units of degrees.

Sounds were generated at 25 kHz sampling rate via a Data Acquisition/Control
Unit — HP3852A and two 16 bit 2-Channel Arbitrary Waveform DAC - HP44726A.
They were low-pass filtered at 10 kHz and passed through an equalizer (IEQ One/Third
Octave Intelligent Programmable) for level adjustment. Before presentation to lis-
teners, sounds were gated for a 110 ms duration including 10 ms rise and decay
ramps. Sounds were delivered inside an acoustic chamber through a speaker (ADS
L470), i.e., without headphones.

A “two-alternative two-interval” forced choice adaptive procedure was used to
estimate the thresholds. Each trial consisted of two 110 ms long observation intervals
separated by 500 ms pause. After listener’s response, a short visual feedback was.
provided and a new trial started until all 50 trials that comprise one block were
presented.

The discrimination task was to distinguish between the standard, which did not
change over a block of trials, and the signal, which resembled the standard except
for an adaptive change in the ripple phase in each trial. The step size was defined
in terms of a change in the ripple phase and it varied from 0.6° — 4° depending on
the testing condition.

On the first trial the signal was three step sizes away from the standard. On
each subsequent trial the signal was changed according to the “two down-one up”
procedure in order to estimate the level that produces 70.7% correct answers ([ Lewvitt,
1971]). The step size was halved after 3 reversals and the threshold was estimated
as the average of the signal across the last even number of reversals excluding the
first three. Signal and standard occurred with equal a priori probability in one of
the two intervals.

The overall presentation level was randomized across trials and within a trial
over a 20 dB range in 1 dB resolution, in order to ensure that listeners based their
judgement on a change in spectral shape rather than on absolute level change in a
particular frequency band ([Green, 1988]).

The results reported are based on data from two normal hearing subjects. Sub-
jects were trained for about a week (four days a week, 60 — 90 minutes per day)
before the actual recording took place.

(i1) Stimulus

For all testing conditions the number of frequency components was 161 (34 per
octave) and the frequency components were equally spaced on a logarithmic scale
between 0.2-5 kHz. The starting ripple phase was kept constant at zero degrees

for the data reported here. Other starting phases were also tested and results were
very similar. The ripple frequency () was fixed over a set of trials. The peak-to-
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valley ratio was defined as 20 log %mff, where a,,,, and a,,, are the peak and valley
amplitudes of the profile (Fig. 4(a).
(iii) Results

The average data for two subjects are presented in Fig. 4(b) as a function of
ripple frequency for two ripple levels. The results show that pdl’s are constant
below about 2 cycle/octave at both levels tested, achieving a minimum of about 6°
for the larger level. Phase sensitivity decreases with increasing ripple frequencies
beyond 2 cycle/octave.

Figure 4(c) depicts the data for individual subjects as a function of ripple level.
Thresholds saturate with increasing level at all ripple frequencies tested.

(iv) Discussion

Data in Fig. 4(b) suggest that, at low (’s, subjects detect a constant phase
shift and not a constant displacement of the peaks, as is probably the case for
higher than 2 cycle/octave ripple frequencies. Since the slope of the pdl curves for
2 > 2 cycle/octave (Fig. 4(b)) is approximately 3.8° per octave, then the constant
positional shift can be estimated to be approximately 0.73% (or 0.01 octaves).

In summary, given any arbitrary profile whose ripple transform contains signifi-
cant energy below 1 cycle/octave, the model predicts a constant phase shift detec-
tion threshold of approximately 6°. Thresholds should slowly begin to increase if
the ripple transform is shifted to ripple frequencies greater than 1 cycle/octave.

3. Detection procedure for pedestal-type experiments

In pedestal-type experiments, an audible profile is increased in amplitude until
the change is detected. Since the ripple analysis model presented here is linear, then
the ripple transform of the profile increases proportionately with the input profile.
In order to specify the detection thresholds, it is necessary to collect idl-like data for
different ripples at various ripple pedestals. Such data are not available at present.

As an approximate measure, one can utilize the data from single component
pedestal experiments [Green, 1988]. This narrow profile has a broadband ripple
transform and, hence, its detection threshold might be assumed to be due to the most
sensitive ripple components. Thus, one can at least predict that arbitrary profiles
with similarly broad ripple transforms should exhibit comparable thresholds. This
conjecture will be tested later in Part II of this paper [ Vranié-Sowers and Shammea,
19xx].

C. Stochastic detection procedures

The filter bank of the ripple analysis model can be viewed as a set of independent
channels conveying information about the ripple spectrum of the profile P(2). In
this sense, it is analogous to the classical view of the critical band channels operat-
ing upon the spectral profile. Hence, the independent channels model of [Durlach,
Braida and Ito, 1986] and the more specific model of [Bernstein and Green, 1987]

12
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Figure 4: (a) A sinusoidal ripple profile with 2 = 2 cycle/octave and 15 dB peak-
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shifted version. (b) Phase difference limen threshold (pdl) as a function of ripple
frequency for 15 dB and 25 dB peak-to-valley amplitudes (or ripple levels) averaged
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can be formally adapted and applied to the outputs of the ripple filter bank. This
strategy is not pursued here because of the lack of sufficient data on such parameters
of the channels as their variances.

D. Summary of the ripple analysis model

The ripple analysis model consists of the following computational steps:

(1) Compute P(f2), the ripple spectrum of the input profile p(w) as: P(Q2) =
f p(w)e—ﬂwﬂwdw.

(2) Compute r(,,®P,), the output of the filter bank using Eq. (2) (or, in the
special case Eq. (3)). The width of the filter H(£;,) centered at €1, is determined
from o(92,) = 0.3 Q,.

(3) For flat standard profile experiments, compare the magnitude of the ripple
transform |r(Q,, ®,)| to the perceptual threshold curve K(f,) as shown in Fig. 2(c).

(4) For non—flat standard profile experiments, three types of tests are considered
in the model: (a) fdl-type tests: Threshold is estimated from A(f,) in Fig. 3(c),
where 1, is the location of the steepest lowpass edge in |r(,, ®.)|; (b) pdl-type
tests: Threshold is estimated from the pdl curve in Fig. 4(b); (c) pedestal-type ex-
periments: For broad profiles, threshold is the smallest detectable percentage change
in [r(9,®,)]. It is assumed to be approximately equal to the single component
pedestal thresholds given in Fig. 5.4 in [Green, 1988).

III. PREDICTIONS OF THE RIPPLE ANALYSIS MODEL FOR VAR-
IOUS INPUT PROFILES

In this section, the model is used to account for the perceptual thresholds mea-
sured in several profile analysis experiments. Since the ripple profile data of [Green,
1986; Hillier, 1991] have been used to estimate the model parameters, the only other
reported profile experiments that we can consider here are of the idl-type. These are
the detection of three profiles against a flat standard: the alternating, the step, and
the single component increment profiles. In Part II of this paper, we shall present
new data to test model predictions in the three examples of non-flat standard tests
outlined above.

A. Predicting detection thresholds for an alternating profile

The alternating profile [Bernstein and Green, 1987] consists of 21 uniformly
distributed components (0.2-5 kHz) that alternate above and below a flat (unit)
base (Figs. 5). Thresholds for detection of such a profile are reported at -21.7 dB
(= 20log(a) = 20log 0.08), where da is the amplitude of an alternating component
relative to the unit base. Such a profile can be considered approximately a ripple
at the highest possible frequency representable by this complex, i.e., at 10 cycles
per 4.64 octaves, or approximately 2.15 cycle/octave. The amplitude éa of the just
detectable ripple at this frequency can be predicted from K(,) as éa = 2K(Q, =

14



2.15 cycle/octave) = 0.1 (or -20.0 dB), which is close to the measured amplitude
(Fig. 5(c)).

1
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Figure 5: (a) The alternating profile at threshold amplitude (0.08, or -21.7 dB). (b)
Ripple spectrum magnitude of the alternating profile in (a). (c) Ripple transform
magnitude of the profile in (a). The detection threshold K(£2,) in (c) is reached
near 2.2 cycle/octave.

B. Predicting detection thresholds for a step profile

The task in this experiment is to detect the presence of a (linear) step in
a 21 component flat standard [Bernstein and Green, 1987] (Fig. 6(a)). For a
step-up that is centralized (located at 1 kHz), threshold is reached at -23.1 dB
(= 20log a = 201og 0.07), where ba is the height of the step (relative to the unit
base). Figure 6(b) (solid line) illustrates the ripple spectrum of this (idealized) pro-
file. The corresponding model output r(£2,) is a constant because of the constant-Q
property of the filters®(Fig. 6(c), solid line). The predicted threshold is smaller than
measured (0.05 or —26 dB). However, a more realistic representation of the step is
with a gradual (or ramped) transition because of cochlear filter smoothing (dashed
lines in Figs. 6). The smoothing of the ideal profile lowers the P(Q2) (Fig. 6(b))
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and the corresponding r(€2,) is more lowpass filtered and just detectable near 2
cycle/octave. Note, however, that the model predicts that more heavily smoothed
step profiles should become less detectable.

Since the phase of the ripple spectrum does not play a role here, predicted
thresholds remain the same for the reversed (step-down) profile as is indeed mea-
sured. Finally, the simplified model cannot account for the rise in thresholds as the
step is moved towards the edges of the spectrum [Bernstein and Green, 1987). It
may be possible, however, to account for this trend by including the effects of the
base edge in p(w) and by using the complete model (i.e., Eq. (2)).

C. Predicting detection thresholds for a single component increment pro-
file

In this experiment, a single component in the profile is incremented relative
to the base [Green, 1988] (Fig. 7(a)). The threshold is approximately -20.1 dB
(= 20logba = 20log0.09), where éa is the height of component relative to the
(unit) base. In order to apply this profile to the ripple analysis model, it is assumed
that the finite bandwidth of the cochlear filters broadens the impulse-like profile,
making it appear as a narrow symmetric peak profile, e.g., with approximately 0.1
octave bandwidth (measured at the 3 dB points) with same height as before (=
0.09). Figure 7(c) illustrates that for such a peak the corresponding output r(£,)
just reaches perceptual threshold K(2,) near £, = 2.3 cycle/octave. Note that,
approximating the increment by a peak with slightly different bandwidths causes
small shifts in the broad r(,) without affecting the above estimated thresholds
significantly.

IV. DISCUSSION

A. Summary of the ripple analysis model and underlying assumptions

A simplified ripple analysis model is presented to integrate findings from various
profile analysis experiments. The basic operation implied by the model is a transfor-
mation of the profile into its ripple transform domain. Various manipulations on the
profile are then interpreted and detected in this domain. Two sets of assumptions
underlie the model: the nature and linearity of the input representation and the
parameters of the ripple analysis filters.

5This assertion can be verified as follows. Consider a constant-Q filter (o(2,) = 0re1 €2,). For
a step profile input (with magnitude of ripple spectrum |P(Q)| = 1/|Q]), the filter outputs r(-) are
given by:

00 Q—0.)3 00 - -/, )3 00 _(-a)?
r()=2 / %e‘imﬁ'ﬁdgz 9 ée g dQ =2 %e e dQY,

where Q' = Q/Q, and ¢ is a small positive number. Therefore, r(-) is a function of 7,.; only and,
specifically, it is independent of .
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Figure 6: (a) Profile of a step function (solid line) at threshold amplitude (0.07, or -
23.1 dB) and its smoothed version (dashed line). (The smoothed version is obtained
by convolving the step with the narrow symmetric peak profile of bandwidth 0.1
octave and amplitude -30 dB with respect to the base). Magnitudes of (b) ripple
spectra and (c) ripple transforms corresponding to the idealized (solid lines) and
smoothed (dashed lines) step. The ripple spectrum magnitude of the idealized step
is computed as: |P(Q)] = 2-6a/|j 27Q M|, where éa is the amplitude at threshold.
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Figure 7: (a) A smoothed version of a single increment profile on a flat base. The
amplitude is set at its perceptual threshold (0.09, or —20.1 dB). The single increment
is approximated with the narrow symmetric peak of 0.1 octave bandwidth and -20.1
dB amplitude. The ripple spectrum and ripple transform magnitudes are shown in
(b) and (c), respectively.
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1. The representation and linearity of the input profiles

It is assumed in this model that the auditory system analyzes the amplitude
spectrum on a linear, rather than on a logarithmic, scale. Neither is known to
be the true auditory representation and other representations such as the power
spectrum or some output of a cochlear filter model might be more appropriate. The
effects of using a distorted representation are minimal in the cases examined in this
paper because it usually creates distortion components of smaller amplitudes that,
for idl tests, are effectively sub-threshold at their corresponding filters.

The exact nature of the input profile is more consequential in cases where met-
rics between different complex profiles are considered (see discussion later) or when
profiles are added linearly. This brings up a fundamental assumption of the ripple
analysis model, that the auditory system analyzes linearly a profile in terms of rip-
ples. How does the cochlea with all of its nonlinearities preserve the principle of
superposition of spectral ripples? And if not, in what form is the linearity preserved
so as to permit this type of ripple analysis? Hillier attempted to address this issue
using adaptation experiments [Hillier, 1991]. Recent models of cochlear processing
have also tackled this question [Wang and Shamma, 1994]. However, the valida-
tion of the linearity hypothesis must await direct tests from psychoacoustical and
neurophysiological experiments in search of systematic interactions among a small
number of simultaneously presented ripples.

2. The parameters of the ripple analysis filters

The filters determine the shape of the ripple transform r(f,,®,) and, hence,
the interpretation of the results. The choices made here regarding the parameters
and shape of these filters satisfy two basic experimental findings reported in [Hillier,
1991] (Secs. 4.4 and 4.5) and in psychophysical experiments in vision using analogous
stimuli (summarized in [DeValois and DeValois, 1990]). These are: (1) the filters
are roughly of a constant-¢) factor, and (2) their width is approximately 1 octave
(i.e., 0(,) = 0.3 Q,). It might be argued that other details of the filter shapes (such
as their heights and form) can be inferred from the idl and fdl measurements. Such
an inference, however, is uncertain as discussed in Sec. II since other parameters can
be readily adjusted with similar effects on the model outputs. To avoid making such
specific commitments in the model, the filters are defined in as general and simple
a form as possible.

B. Distinguishing the ripple analysis model from other profile analysis
models

The computations outlined in this paper served to illustrate the competence of
the ripple analysis model in accounting for several profile analysis measurements.
However, other models such as the independent channels models [Durlach, Braida
and Ito, 1986] and the maximum difference model {Bernstein and Green, 1987] can
account for a significant portion of the same data. It is, therefore, important to
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come up with specific tests that can distinguish these models. Two such tests follow
from the fundamental predictions which emerge from the ripple analysis model:

Consider any arbitrary spectral profile whose ripple transform magnitude |r(Q,, ®,)|
is large relative to the perceptual threshold K(§,). Then:

(1) If |r(-)| has a lowpass edge approzimately in the range 0.85-7 cycle/octave,
dilation thresholds are predicted to be constant at 20-30%.

(2) If |r(-)] contains at least some large low frequency ripples (< 1 cycle/octave),
phase sensitivity is expected to be constant at approximately 6°.

Both of these predictions are unintuitive and, hence, their confirmation reflects
well on the model. They are directly tested in the companion paper [ Vranié-Sowers
and Shamma, 19xx], where dilation and phase thresholds are measured for a complex
(i.e., not a single ripple) profile.

C. Relevance to timbre perception

So far we have focused on the model output around the center of a profile at w,.
In general, for an arbitrary profile p(w) the simplifications leading to Eq. (4) do not
necessarily apply. In that case, a spectral profile should be expanded along all three
independent axes: §2,, ®,, and w,.

An important aspect of the complete representation is its locality with respect
to the tonotopic axis. This is analogous to the locality in time of a spectrogram
of running speech. Computationally, the locality of the ripple analysis is implied
by the relatively broad bandwidths of the ripple filters or, equivalently, the limited
extent of the impulse response of the filters (Fig. 1(a)).

Since changes along any of the three axes are perceptually detectable, then com-
paring two arbitrary profiles must be done along all three dimensions of the ripple
representation. Metrics based on this representation (e.g., simple Eucledian dis-
tance) might be considerably simpler than other metrics (based on the spectral
domain representation), since other metrics often imply “conditioning” operations
which are included in the ripple transform representation. For example, the metric
suggested by [Assmann and Summerfield, 1989] applies (among other things) a sec-
ond derivative upon the profile, effectively de-emphasizing the slow variations (or,
equivalently, the low frequency ripples) of the profile. Such an operation is implied
in the model by the “highpass” (left) edge of the idl curve.

D. Relation to rippled noise stimuli and the pitch of complex sounds

A different rippled spectrum stimulus that has been widely used in studies of
pitch perception is the so-called rippled noise [Yost and Hill, 1979]. It has a si-
nusoidal spectral envelope defined against a linear, rather than a logarithmic fre-
quency, axis, i.e., is similar to a harmonic spectrum. On a logarithmic frequency
axis, however, a harmonic spectrum appears to have an exponentially increasing
ripple frequency.

The representation of harmonic spectra in the ripple analysis model leads to
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many interesting hypotheses regarding the encoding of complex pitch in the audi-
tory system. Of immediate relevance to the focus of this paper, however, is the
interpretation of the “dominance region” in pitch models. Specifically, it has long
been known that the 2", 3™, and 4** harmonics in a series are dominant in conveying
the pitch of the complex [Plomp, 1976]. From a computational point of view, pitch
models have accounted for this phenomenon by emphasizing (or weighting more
heavily) these regions of the spectral profile prior to estimating the pitch strength
and value [Yost and Hill, 1979).

The dominance region can be viewed in the context of the ripple analysis model
as a correlate of the ripple-idl sensitivity curve (Fig. 2(c)), which has its lowest
thresholds for ripples around 2 cycle/octave. In a harmonic spectrum defined against
a logarithmic axis, the spectral profile around the 2"¢ — 4** harmonics has the same
ripple frequencies. Thus, the emergence of the ripple-idl curve may share the same
origins as those responsible for the dominance region, namely a combination of
suppressive and other interactions at relatively peripheral stages of the auditory
system [Bilsen et al., 1975; Wang and Shamma, 1994; Yost and Hill, 1979)].

E. Relation to visual processing

An appealing aspect of the ripple analysis model is that it shares the conceptual
framework of spatial frequency analysis that has long been prevalent in visual pro-
cessing. While having its critics (see reviews in [DeValois and DeValois, 1990]), this
approach has been supported by substantial anatomical, neurophysiological, and
psychophysical evidence, elegantly detailed in [De Valois and DeValois, 1990]. Inter-
estingly, in the vision community, the idea that the brain performs a local Fourier
transformation is motivated by its similarity to the cochlear transformations of the
auditory system! From the perspective of the auditory system, however, the cochlea
and early auditory stages simply transform a sound into an input spectral profile.
The auditory nervous system then treats this profile the same way the visual system
treats its retinal image.

The notion of a Fourier transformation of a spectrum is common in engineering
speech applications and is known as convolutional homomorphic processing. It in-
volves computing Fourier-like coefficients of the spectral profile known as cepstral
coefficients [Oppenheim and Schafer, 1990]. While quite different in details, the
cepstral coeflicients encode roughly similar types of information about the shape
of the spectrum as the ripple transform, and have been found especially useful in
automatic speech recognition systems.

Finally, the correspondence between the auditory ripple analysis and the visual
spatial frequency analysis goes deeper than a mere analogy. As evidence to this
claim, consider the closely matched values of the filter parameters and detection
thresholds measured in the auditory and visual systems, e.g., roughly constant-Q
and 1 octave wide filters, and the constant 6° phase sensitivity which increases at
higher ripple frequencies (Table 6.1 and Figs. 6.11 and 8.3 in [DeValois and DeVal-
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ois, 1990]). These remarkable equivalences may simply reflect modality-independent
limitations imposed by identically structured sensory areas in the central nervous
system. For instance, the resolution of the analysis filters may be dictated by devel-
opmental rules limiting the minimum divergence or convergence of dendritic fields
along the sensory epithelium. Clearly, exploring further equivalences and differ-
ences between similarly defined psychophysical measures, e.g., fdl’s for ripples ver-
sus gratings (which apparently have not been reported in the literature), would shed
considerable light on the underlying functional organization of both systems.
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