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Abstract

We propose a new multicast routing and scheduling algorithm called multipurpose
multicast routing and scheduling algorithm (MMRS). The routing policy load balances
amongst various possible routes between the source and the destinations, relying its
decisions on the message queue lengths at the source node. The scheduling amongst
various sessions sharing links is devised such that the flow of a session depends on the
congestion of the next hop links. MMRS is throughput optimal and computationally
simple. It can be implemented in a distributed, asynchronous manner. It has several
parameters which can be suitably modified to control the end to end delay, packet
loss in a topology specific manner. These parameters can be adjusted to offer limited
priorities to some desired sessions. MMRS is expected to play a significant role in end
to end congestion control in the multicast scenario.

1 Introduction

Multicasting provides an efficient way of transmitting data from a sender to a group of re-
ceivers. A single source node or a group of source nodes sends identical messages simultane-
ously to multiple destination nodes. Single destination or unicast and broadcast to the entire
network are special cases of multicast. Multicast applications include collaborative applica-
tions like audio or video teleconferencing, video-on-demand services, distributed databases,
distribution of software, financial information, electronic newspapers, billing records, med-
ical images, weather maps and experimental data, distributed interactive simulation (DIS)
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activities such as tank battle simulations. Many distributed systems such as the V System[3]
and the Andrew distributed computing environment[23], popular protocol suites like Sun’s
broadcast RPC service[21] and IBMs NetBIOS[12] are using multicasting. Multicasting has
been used primarily in the Internet, but future ATM networks are likely to deploy multi-
casting in a large scale, particularly in applications like broadcast video, video-conferencing,
multiparty telephony and workgroup applications[4].

There may be more than one possible route between a source and a group of destinations.
More than one multicast session may share the same link. This gives rise to the fundamental
issues of routing and scheduling in multicast communications. Until now scheduling in
multicast networks has primarily been best effort service. With increase in traffic, congestion
control and class based scheduling would be required to improve performance. MMRS uses
a scheduling policy which can be tuned to distinguish amongst various classes.

Significant amount of research has been directed towards multicast routing. Tree con-
struction is the commonly used approach in solving the multicast routing problem. Mul-
ticast trees minimize data replication; messages need only be replicated at forking nodes.
This differs from multicast attained through multiple unicasts where every unicast requires
a copy of the message. Multiple unicasts may result in many copies of the same message
traversing the same network links and thus waste network resources. Multicast trees can
be broadly classified into shortest-path trees (SPT’s), also known as source based trees and
group shared trees[32]. SPT is currently used in distance-vector multicast routing proto-
col (DVMRP)[5] for Internet multicast traffic on the virtual multicast backbone (Mbone)
network[8],[11] and multicast extensions for open shortest path first OSPF(MOSPF)[17].
The core-based tree(CBT)[1] uses a group shared tree also known as the center based tree.
Recently some hybrid routing protocols like the protocol independent multicast (PIM)[6]
and the multicast internet protocol MIP[18] have been proposed. These allow the system to
switch modes between SPT and group shared trees.

However none of these routing policies support more than one tree per source-destination
pair at a time. Thus only a single route is determined depending upon the topology and
then the messages are sent along the same route till the topology or the destination group
changes. PIM and MIP allow the system to switch to a different tree mode, but not on a very
dynamic basis, that is for example PIM supports center based trees for low data rate sources
or sparse multicast groups and allows receivers to switch over to an SPT mode when low
delay is important or the multicast group is densely populated. When the switch over takes
place, the core based tree is modified to replace the core based routes by the shortest path
routes between a source and some destinations. Thus these protocols do not provide for load
balancing i.e., having more than one possible tree simultaneously and allowing the system to
dynamically choose amongst them, the routing decisions being taken not too infrequently.
However load balancing can meet very effectively the technical challenge of minimizing the
link loads given some network load and thus serve as an important weapon for congestion
control. This would increase throughput, decrease delay and message loss in the network.
Congestion control is critically important in various real time resource expensive applications
in internet and various data applications and other services like LAN emulation in ATM ABR
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services. Many envisioned applications in ATM ABR traffic are multicast in nature[28].

Load balancing may cause out of order delivery of messages. However some applications
do not need ordered delivery of messages, e.g., many audio and video conferencing appli-
cations like vic[14], vat[30], nv[9], rat[10] and freephone[2] (audio packets are reordered in
application play out buffer), workspace applications like Wb[33]. Application level protocols
can be used to enforce a particular delivery order, if necessary. However ATM applications
need ordered delivery. So load balancing can be done per session. Besides out of order
delivery can be reduced by choosing large routing decision intervals, depending upon the
requirement of the application. Load balancing would increase the routing table entries in
the routers because more than one routing tree may be used simultaneously; however the
network can choose the number of simultaneously active trees depending upon the router
memories and a tradeoff can be reached.

However to do load balancing effectively the network needs to route a message through
a tree selected judiciously amongst many possible trees. Choice of the least total cost tree
amongst all possible trees between a source and a group of destinations is the usual approach.
The tree cost is usually the sum of the link costs and the link costs may be a measure of a
number of possible parameters, e.g., actual or anticipated congestion, error rate, propagation
delay etc. So computation of a good or rather near optimal route based on the total tree cost
at reasonably regular intervals is computationally very expensive if the set of possible trees
is even a moderately large subset of all possible trees between a source and the destinations.

We propose a novel routing and scheduling policy which retains the benefits of load
balancing, yet overcomes the above difficulty. We call this policy the Multipurpose Multicast
Routing and Scheduling policy (MMRS). The routing scheme takes routing decisions at
possibly random, but bounded intervals and base the decision only on the message queue
lengths of the different possible trees at the source node. It takes routing decisions in favor
of the tree with least queue length or rather a least scaled queue length at the source node.
The scheduling policy has been so chosen that this quantity represents the congestion state
of the tree. At any link the scheduling policy gives priority to sessions which have the
congestion2 at downstream3 buffers less than that at the upstream buffer and does not serve
any session at a link if all the sessions have the downstream buffers more congested than
the corresponding upstream buffer at the link. This spreads the congestion to the upstream
nodes. Thus if a tree is congested then after some time the congestion would be reflected
in the source node, more precisely the source node will soon have a large message queue for
the tree and the routing policy would route message through other trees with less message
queue length at the source node and hence better congestion state throughout. This attains
load balancing without any intensive computation based on the state of the entire tree.

MMRS has various parameters. If the parameters are properly chosen the scheduling

2Intuitively congestion at a buffer obviously depends on the queue length at the buffer. More technically
it is some quantity which our scheduling policy uses. We describe our scheduling policy more rigorously
later.

3“Downstream” here means destination of a link and “upstream” means source of a link.
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policy becomes computationally simply and needs only local information4 and not the state
of the entire network. The parameters can be further adjusted to obtain low delay, and
low message loss characteristics. The parameters can be modified suitably to give limited
priority to flows which fetch a greater revenue to the network and also to those which
demand a particular quality of service from the nature of their application, e.g., real time
traffic (voice, video) must have very low delays, but this is not a stringent requirement for
data traffic. We discuss these in detail later. Finally we would like to point out another
significant advantage of MMRS. Since the message queue lengths at the source reflect the
congestion status of the possible routes and hence that of the session, end to end congestion
control measures may be based on this observation. Thus the message queue lengths at the
source of the session give implicit feedback about the congestion state of the paths followed.
This is a significant advantage for multicast applications because explicit feedbacks often
lead to feedback implosion. Thus MMRS has various convenient features which render it
attractive from implementational point of view.

Under some statistical assumptions on the message arrival and service process, MMRS
attains maximum possible throughput in an arbitrary multicast network. Thus MMRS is
optimal in some sense. MMRS retains this throughput optimality even if the routing and the
scheduling decisions are not taken every slot but at bounded intervals. Also as we point out
later MMRS is flexible and can be tuned to suit the hardware/software limitations of many
real life multicast networks. It may be used in both the internet and the ATM networks.

The rest of the paper is organized as follows. We describe the multicast network model in
Section 2. Section 3 describes the general routing, scheduling and congestion control problem
in multicast networks. Section 4 describes MMRS in detail. We discuss some interesting
aspects of MMRS in Section 5. We describe our stability criterion for any network in Section 6
and prove the maximum throughput property of MMRS in Section 7. We prove a necessary
condition for stability in a multicast network in Section 8.

2 Multicast transport network model

The network is modelled by an arbitrary topology directed graph G = (V,E). V represents
the set of nodes and E the set of directed links. There exists an edge directed from u1 to u2 in
G iff there exists a directed link between the corresponding nodes in the network. A multicast
session is identified by the pair (v, U), where v is the source node of the session and U is the
group of intended destination nodes. There are N multicast sessions (v1, U1), . . . , (vN , UN).
We define a directed tree TUv , v ∈ V , U ⊆ V to be a subgraph of G, G′ = (V ′, E′), V ′ ⊆ V ,
E′ ⊆ E, v ∪ U ⊆ V ′, which satisfies the following properties:

4Our scheduling policy requires the knowledge of the queue lengths at both source and destination of a
link whereas the scheduler generally resides at the source. So strictly speaking some amount of nonlocal
information is necessary, but the scheduler can compute this “nonlocal” information from binary bits sent
from the destination buffers sometime during the scheduling decision interval. We discuss this in detail later.
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Figure 1: A directed graph representing a network.

1. There exists a unique directed path from v to u, for all u ∈ V ′,

2. v has no incoming edge,

3. No vertex in U has an outgoing edge,

4. Every vertex in V ′ \ {v, U} has both incoming and outgoing edges.

v is the root node or the source and U is the destination set of the multicast tree, TUv . A
directed tree TUnvn can carry the traffic of session n. A collection T n of eligible multicast
trees are prespecified as the trees through which session n traffic can be transported. T n
may include all possible trees TUnvn which can carry the traffic from vn to Un, or a proper
subset thereof. |T n| = Mn. The mth tree in T n can be described by an indicator vector,
Tmn = (te, e ∈ E), where te = 1 if edge e is a part of Tmn and te = 0 otherwise. We now
illustrate the model with an example.

Example 2.1: Consider the network represented by the directed graph in figure 1. There are
9 nodes represented by the vertices and 15 links represented by the edges. There are two mul-
ticast sessions, session 1 and 2. 4 and 7 are the source nodes of sessions 1 and 2 respectively.
The destination nodes are {2, 5, 9} and {3, 6, 8} respectively. Thus (v1, U1) = (4, {2, 5, 9})
and (v2, U2) = (7, {3, 6, 8}). T 1 = {T1, T2} T 2 = {T3, T4}. T1 = {(4, 2), (4, 5), (5, 9)}. T2 =
{(4, 1), (1, 2), (4, 6), (6, 5), (6, 8), (8, 9)}. T3 = {(7, 8), (7, 6), (6, 3)}, T4 = {(7, 8), (8, 6), (6, 3)},
where (v1, v2) represents the directed edge from v1 to v2. Note that neither T 1 nor T 2 con-
tains all possible trees for the respective sessions, e.g., T5 = {(4, 3), (3, 1), (1, 2), (4, 6), (6, 5),
(6, 8), (8, 9)} can also carry session 1 traffic but is not included in T 1. The indicator vector
for T1 is (1, 1, 1, 0, . . . , 0), if (4, 2), (4, 5), (5, 9) correspond to the first 3 edges.
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We do not impose any particular structure on T n. T n can consist of all directed trees TUnvn
between source vn and the set of destinations Un. However in a virtual circuit like scenario,
where the packets contain only route identifiers and not the entire route, this would generate
huge routing table entries at the routers because the total number of possible multicast
trees TUnvn is considerably large. So it is realistic to assume that T n will be a proper subset
of the set of all directed trees TUnvn . The actual size of this subset should depend on the
available router memories. In a datagram like scenario, packets contain the entire path
to be followed in the header and routers need only have entries regarding currently active
trees. Thus memory constraint may not force T n to be a proper subset of the set of all
directed trees TUnvn . But there may be other constraints, e.g., all multicast trees TUnvn may not
satisfy the requirements of session n, e.g., session n may demand certain quality of service
gurantees in terms of the end-to-end delay along the individual paths from the source to
each of the destination nodes and possibly a bound on the variation among the delays along
the individual source destination paths. For instance during a teleconference it is important
that all participants hear the speaker around the same time, else the communication lacks
the feeling of an interactive face-to-face discussion[19]. In high speed environments the end
to end delays depend primarily on the propagation delays. So T n can consist of only those
trees which satisfy the requirements of session n, or a proper subset thereof.

Informally the necessary condition for system stability5 is that the sum of arrival rates
of traffic in all the trees of the same or different sessions passing through a link e does not
exceed the link capacity, i.e.,

N∑
n=1

Mn∑
m=1

amn T
m
n ≤ (C1, . . . , C|E|) (capacity condition),

where amn is the traffic arrival rate in the mth tree of the nth session, Tmn is the indicator
vector for the mth tree of the nth session and Ce is the capacity of the eth link. However it
is not obvious whether this condition gurantees stability in any arbitrary network. A major
contribution of this paper is to prove that it is indeed so or rather “almost” so, that is if
we allocate the resources as per MMRS the necessary condition for system stability with
strict inequality, turns out to be sufficient as well. It is in this sense that MMRS maximizes
throughput. We investigate this issue later.

3 Routing, Scheduling and Congestion Control in Mul-

ticast Networks

Session n traffic can reach the destinations through one of the many possible trees in T n, e.g.,
incoming session 1 traffic can reach its destination via trees T1 and T2 in Example 2.1. The
resource allocation policy would decide at the appropriate time which tree the traffic would
follow. It should load balance, that is respond to congestion in the currently active trees and

5We defer the formal definition of “arrival rate” and “system stability” till Section 6.
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route incoming traffic to relatively lightly loaded trees. It is also expected to compute the
congestion status of the trees efficiently. This is not likely to be the case if the decision is
based on any suitably defined weight of the entire tree as per the discussion in Section 1.

In general the trees of the same or different sessions would overlap on the links and at
most one of them can be served at one time, e.g., trees T3 and T4 overlap on link (7, 8)
in Example 2.1. So the resource allocation policy would decide at the appropriate time
the trees that should be scheduled on the links. Intuitively, it should “spread out” the
congestion in the network, i.e., if an upstream node of a session is heavily congested, while
the downstream node is not, then traffic from that session should be served on the link.
This would decrease the congestion in the heavily loaded upstream node at the expense of
increasing the congestion at the lightly loaded downstream node.

Another interesting question worth investigating is how often the routing and scheduling
decisions should be taken. These decisions can be taken at intervals of fixed or bounded
length. These decisions can also be taken based on the queue lengths at the nodes.

To the best of our knowledge there does not exist any generalized routing and scheduling
policy which effectively addresses the above issues in multicast networks. Some of these
issues have been addressed in the unicast scenario in [26]. However multicast networks are
inherently different from unicast networks because of “traffic multiplication”. The same unit
of traffic is transmitted from a multicast node across various links. Thus the traffic flow
rate in the network exceeds the arrival rate. The issue of routing is also different in the
unicast context. We would discuss the policy we propose in perspective of existing work in
the unicast and broadcast context in Section 9.

The multipurpose multicast routing and scheduling policy (MMRS) addresses all of the
above issues in a flexible manner. We describe MMRS in the following section. MMRS
consists of various parameters which can be adjusted to suit the requirements of various
networks. Thus MMRS may also be thought of as a class of routing and scheduling policies
rather than a single policy.

4 Multipurpose Multicast Routing and Scheduling Pol-

icy

We first present an informal description of MMRS. It takes routing and scheduling decisions
at intervals, the intervals satisfy some properties to be described later. Routing decision is
to route an incoming session n message to the tree which has the shortest weighted queue
length at the origin, vn, at the decision instant (ignoring some constant bias terms for
the moment). The routing policy for session n remains valid till the next routing decision
instant. The scheduling decision is to schedule service at a link to the tree which has the
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maximum difference between the queue lengths of its upstream buffer weighted by a scale
factor and a weighted sum of the queue lengths of its downstream buffers, amongst all the
trees with nonempty buffers contending for service on the same outgoing link (ignoring some
bias terms for the moment), at the decision instant. The scheduling policy for trees on the
same outgoing link remains the same till the next scheduling decision instant (assuming that
the scheduled tree does not empty in between). The buffers we have referred to need not
be physical buffers but are rather logical buffers. We explain our concept of logical buffers
below.

Consider session n, (vn, Un) and edge e of G = (V,E). Every directed edge e of G has an
origin vertex o(e) and a destination vertex d(e), e.g., o(e1) = 1 and d(e1) = 2 in Figure 1.
Bmne(t) is the number of session n packets6 travelling through the mth tree in T n waiting
at o(e) at the end of slot t (or the beginning of slot t+ 1) for travelling to d(e) through link
e in slot t+ 1. Bmnes are the backlogs of the logical buffers.

Example 4.1: Consider Figures 2 and 3. Tree T1 of session 1 passes through link L1, L2,
L3 and T2 of session 2 passes through link L1, L2, L3, L4 in Figure 2. Figure 3 shows
the Bmne(t)s. B1(t) is actually BT11L1(t) and B2(t) is actually BT22L1(t). Similarly B3(t) is
BT22L2(t), B4(t) is BT11L2(t) B5(t) is BT11L3(t), B6(t) is BT22L3(t), and B7(t) is BT22L4(t).

We would like to point out that the logical buffers may not always represent separate
memory locations, particularly for the different edges with the same origin node. It may be
necessary to transmit the same packet over multiple links originating from the same node

6For simplicity we state MMRS for slotted arrival and service, i.e., consider packetized traffic only. It can
be easily generalized to more general cases.
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on account of multicast, e.g., in Figure 2 any T1 packet must be transmitted across links L2

and L3 from node 2. Similarly any T2 packet at Node 2 must be transmitted across links L1,
L2 and L3 from node 2. It is wasteful to store copies of the same packet in different physical
buffers Bmne meant for different links at the same node (BT11L2(t) and BT11L3(t) i.e., B4(t)
and B5(t) respectively in Figure 3). However it is necessary to keep track of the Bmne(t)s
for the implementation of the policy we shall describe shortly. This can be done without
storing multiple copies of the same packet in separate memory locations. There can be a
single physical buffer at each node for storing all packets (one copy each) of a tree travelling
through the node. A packet remains in the buffer till it has been transmitted across all
the necessary links originating from the same node. Each link can easily keep track of the
number of packets of each tree, it has still to transmit using pointers, i.e., by maintaining a
pointer at the first packet it needs to transmit and sliding the pointer backwards when the
packet is transmitted. These numbers are precisely the Bmne(t)s.

Example 4.2: Figure 4 shows the physical buffer at Node 2 for tree T2 of Example 4.1. This
buffer contains the tree T2 packets at Node 2. It currently has packets numbered k− j,. . . ,k.
All of them need to be transmitted across link L2. L2 maintains a pointer at the first packet
it has to transmit, packet k− j. Link L3 has transmitted packets k− j,. . . , k− l− 1. It has
still to transmit packets k− l to k. So it maintains a pointer at the k− lth packet. Similarly
L4 has already transmitted packets k− j,. . . , k−m−1 but needs to transmit packets k−m
to k. It has a pointer at the k − mth packet. Figure 3 shows the contents of the sepa-
rate logical buffers for this tree at Node 2 (B3, B6 and B7). k+ 1th and subsequent packets
of T2 are still waiting at Node 1 for transmission across Link L1 to Node 2 (Refer to figure 3).

For simplicity, we will refer to Bmne(t)s, m = 1, . . . ,Mn, e ∈ E, n = 1, . . . , N as
B1(t), B2(t), . . . , BM(t). (e.g., B1(t) denotes BT11L1(t) in figure 3.). We assume there are M
logical buffers. Also unless otherwise mentioned buffers indicate logical buffers.

Note that the packets in the logical buffer Bi belongs to the same session for every slot
t. We denote this session by n(i). Also all packets in Bi are physically located at the same
vertex, u(i) and all packets in Bi will be transmitted through the same link, e(i). Since all
the packets in Bi travel through the same tree, they had been at the same buffer Bj before
they reached Bi. We denote j by p(i) (predecessor of i). Also a packet will move to a set
of buffers after transmission from Bi. For example if e1, e2 are in the mth tree in T n(i),
and e1, e2 are incident from d(e(i)), then a packet traversing along the mth tree will have
to be transmitted across e1 and e2 from d(e(i)) and hence must reach buffers Bj1 and Bj2

at d(e(i)) after transmission from Bi, where p(j1) = p(j2) = i, n(j1) = n(j2) = n(i) and
u(j1) = u(j2) = d(e(i)), e(jl) = el, l ∈ {1, 2}. Thus for every buffer Bi, there exists a set of
buffers, Zi, such that any packet transmitted from buffer Bi reaches every buffer in Zi, at
the end of the transmission time. Zi = φ, if the mth tree terminates at d(e(i)).

Example 4.3: Refer to Example 4.1. n(1) = n(4) = n(5) = 1. n(2) = n(3) = n(6) = n(7) = 2
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because buffers B1, B4, B5 carry session 1 packets and the other buffers carry session 2 pack-
ets. u(1) = u(2) = 1 and u(3) = . . . = u(7) = 2, e(1) = e(2) = L1, e(3) = e(4) = L2,
e(5) = e(6) = L3, e(7) = L4. All packets in tree T2 move from B2 at node 1 to node 2 through
L1. All of these packets must be transmitted across L2, L3, L4. Thus any packet transmitted
from B2 reaches B3, B6, B7. Thus Z2 = {B3, B6, B7}. Also p(3) = p(6) = p(7) = 2, since any
packet in B3, B6, B7 comes from B2. Similarly p(4) = p(5) = 1. Z1 = {B4, B5}.

Every tree can be described by a sequence of logical buffers and every buffer Bi corre-
sponds to a unique tree in T n(i). We denote this tree by m(i). The logical buffers corre-
sponding to different trees are mutually disjoint.

Routing policy is necessary for exogeneous arrivals. Exogeneous arrivals for session n are
routed to trees in T n and thereafter it is only scheduling service to contending buffers, i.e.,
buffers at the origin of the same link.

The routing policy can be described as follows. For simplicity let the trees be denoted
by integers, i.e., T n is a subset of integers. The routing vector, ~Γ(t) = (T1(t), . . . , TN(t)),
1 ≤ Tn(t) ≤Mn. Let Omn be the set of buffers of the mth tree of T n at vn, the source node
of seesion n, i.e., Omn = {Bi : n(i) = n,m(i) = m,u(i) = vn}. Consider Example 4.1. Let
T1, T2 be the first trees of the respective sessions. Let node 1 be the source nodes of both
sessions 1 and 2. O11 = {B1} and O12 = {B2}. Omn may consist of multiple buffers, e.g., if
T1 had originated from node 2 instead of node 1, then O11 = {B4, B5}. When a session n
packet arrives at slot t+ 1, it is routed to the Tn(t+ 1)th tree in T n and it arrives at every
buffer in OTn(t+1)n. Tn(t) is updated at time instants ωnι , i.e.,

Tn(t+ 1) =

{
arg min1≤m≤Mn

(
(
∑
Bk∈Omn ckBk(t)) + Cmn

)
t+ 1 ∈ {ωnι }

∞
ι=1

Tn(t) otherwise
(1)

where ci is a positive constant for all i and Cmn is any constant associated with the mth tree
of the nth session. {ωnι }

∞
ι=1 are the time instants at which routing decisions are taken for

session n. If Cmn = 0 for all m ∈ T n, then the routing decision taken at {ωnι } is to route a
session n packet arriving exogeneously at a slot t, ωnι ≤ t < ωnι+1, to the tree which has the
shortest weighted queue lengths at ωnι at the origin buffer vn. Cmns are constant bias terms
added to

∑
Bk∈Omn ckBk(t). We would discuss the significance of cis and Cmns later.

The routing times {ωnι } may be:

1. At fixed intervals ωnι+1 − ω
n
ι = Tr. R1

2. Of bounded difference 0 ≤ ωnι+1 − ω
n
ι ≤ Tr, ω

n
ι+1 − ω

n
ι i.i.d.7 R2

7ωnι+1 − ω
n
ι i.i.d. ∀ι. We do not need ωn1

ι+1 − ω
n1
ι to be identically distributed as ωn2

ι+1 − ω
n2
ι . We also

allow dependence amongst the residual times ωn1
ι+1 − t, and ωn2

ι+1 − t, ∀n1, n2, where ωn1
ι ≤ t < ωn1

ι+1 and
ωn2
ι ≤ t < ωn2

ι+1.
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3. Depend on the queue lengths. A routing decision will be taken for session n at t+ 1 if
the weighted queue lengths at the origin buffer, vn of the currently active tree (Tn(t)th
tree) exceeds that of another tree by a certain amount, %n ≥ 0, i.e., t+ 1 ∈ {ωnι }

∞
ι=1

if there exists m ∈Mn s.t.

 ∑
Bi∈OTn(t)n

ciBi(t)

+CTn(t)n >

 ∑
Bi∈Omn

ciBi(t)

+Cmn+%n R3

Informally this means that routing decision is not taken for session n until the currently
active tree is “sufficiently” congested, and the congestion is reflected in the origin buffer
lengths. Routing decision always brings about a change in the currently active tree.

(Note that R1 is a subset of R2, we mention it explicitly to highlight its importance.)

Example 4.4: Refer to Example 4.1. Now let both T1 and T2 be session 1 trees numbered
1, 2 respectively. Let node 1 be the source of session 1. O11 = {B1}, O21 = {B2}. Let
c1 = c2 = 1, C11 = C21 = 0. Let figure 3 show the buffers just prior to ω1

ι (a routing decision
instant for session 1). B1(ω

1
ι − 1) = g, B2(ω

1
ι − 1) = h. Let g < h. T1(t) = 1, for all t such

that ω1
ι ≤ t < ω1

ι+1. Every session 1 packet which arrives at t, ω1
ι ≤ t < ω1

ι+1 is routed to
tree T1. A fresh routing decision is taken at ω1

ι+1. T1(t) = 2 if B1(ω
1
ι+1 − 1) > B2(ω

1
ι+1 − 1)

and T1(t) = 1 if B1(ω
1
ι+1 − 1) < B2(ω

1
ι+1 − 1), ω1

ι+1 ≤ t < ω1
ι+2. If T1(t) = 2 at t = ω1

ι+1

then all new packets of session 1 are routed to T2 till the next routing decision is made,
else all new packets are still routed to T1. Note that T1(t) always changes value at the
routing decision instants, if the routing decision intervals follow property (R3). In general
all session 1 packets arriving in [ω1

ι , ω
1
ι+1) are routed to tree T1 iff c1g + C11 ≤ c2h + C21.

A fresh decision is taken at ω1
ι+1 on the basis of c1B1(ω

1
ι+1−1)+C11 and c2B2(ω

1
ι+1−1)+C21.

This routing policy applies to all datagram like networks, including the internet. It does
not apply to networks where routing decision is taken once for every session.

Next we describe the scheduling. ~E(t+1) is the activation vector with M compnents, at
the t+ 1th slot.

Ei(t+ 1) =

{
1, if a packet from Bi is served at e(i) at slot t+ 1
0 otherwise.

In other words, Ei(t + 1) = 1 iff the ith buffer is scheduled for packet transmission on
e(i) at the (t + 1)th slot. If Zi 6= φ, this packet reaches every buffer in Zi, and also a
destination if d(e(i)) is a destination of session n. If Zi = φ, then d(e(i)) is in Un(i) and the

packet reaches its destination. ~E is updated at time instants Ωe
ι , e ∈ E. Let Pe(t) be the

set of nonempty buffers in slot t whose packets have to be transmitted across link e ∈ E.
Pe(t+ 1) = {Bi : e(i) = e, Bi(t) > 0}

Di(t+ 1) = ciBi(t)−
∑

Bk∈Zi

ckBk(t) i = 1, . . . ,M
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se(t+ 1) = arg max
i:Bi∈Pe(t+1)

(li(t+ 1) +Di(t+ 1)) , if Pe(t+ 1) 6= φ

se(t+ 1) = −1, if Pe(t+ 1) = φ

Di(t) is the difference between the queue length of buffer i weighted by a scale factor and
a weighted sum of the queue lengths of the destination buffers of buffer i at the beginning
of slot t. li can be interpreted as a ~B dependent or a constant bias added to Di. Let
Se = {i : e(i) = e, 1 ≤ i ≤ M} (the set of buffers contending for service from link e). For
example SL1 = {1, 2}, SL4 = {7} in Example 4.3.

If t+ 1 ∈ {Ωe
ι}
∞
ι=1, i ∈ Se, Ei(t+ 1) =


1, i = se(i)(t+ 1),

li(t+ 1) +Di(t+ 1) > 0
0 otherwise.

(2)

If t+ 1 6∈ {Ωe
ι}
∞
ι=1, i ∈ Se, Ei(t+ 1) =

{
Ei(t), Bi(t) > 0,
0 otherwise.

(3)

A packet is transmitted across link e(i) ∈ E, at slot t+ 1, if Ei(t+ 1) = 1, for some Bi, such
that e(i) = e, else the link idles, i.e., no packet is transmitted across the link.

{Ωe
ι}
∞
ι=1 are the time instants at which the scheduling decisions are taken for the link

e. The scheduling decision is to choose a buffer Bi which has maximum Di + li at Ωι

amongst all the buffers nonempty at Ωι and contending for service from outgoing link e.
If Di(Ω

e
ι ) + li(Ω

e
ι ) > 0, i ∈ Se, then the scheduling decision is to serve a packet from Bi

at each slot t, Ωe
ι ≤ t < Ωe

ι+1, unless Bi becomes empty at some t, Ωe
ι < t < Ωe

ι+1. If Bi

becomes empty at some t, Ωe
ι < t < Ωe

ι+1, then the link idles till the next scheduling slot
Ωe
ι+1. If Di(Ω

e
ι )+ li(Ω

e
ι ) ≤ 0, then the link idles during the entire scheduling decision interval

[Ωe
ι ,Ω

e
ι+1).

Like the routing times {ωnι }, the scheduling times {Ωe
ι} may be:

1. At fixed intervals Ωe
ι+1 − Ωe

ι = Ts. S1

2. Of bounded difference Ωe
ι+1 − Ωe

ι ≤ Ts, Ωe
ι+1 −Ωe

ι i.i.d. S2

3. Depend on the Di + lis, i ∈ Se. S3

je(t) = arg max
i∈Se

Ei(t)

pe(t) = arg max
i∈Pe(t)

(Di(t) + li(t))

A scheduling decision is taken for link e at the beginning of slot t + 1 if any of the
following conditions is satisfied:

7We had used the term “congestion” at a buffer in Section 1 rather loosely. ciBi(t)+ li(t) can be thought
of as a measure of “congestion” (as used in Section 1) at logical buffer Bi when it is considered as the source
buffer of a link and ciBi(t) as the measure when it is considered as the destination buffer.
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(a) Currently scheduled buffer has Di + li sufficiently less than that of some other
contending buffer. Eje(t)(t) = 1, Dje(t)(t + 1) + lje(t)(t + 1) ≤ Dpe(t+1)(t + 1) +
lpe(t+1)(t+ 1)− ςe1 S3a

(b) TheDi+li of the currently scheduled buffer becomes sufficiently negative. Eje(t)(t) =
1, Dje(t)(t+ 1) + lje(t)(t+ 1) ≤ −ςe2 S3b

(c) The link is currently idle but the Di + li of some nonempty buffer which can
possibly be served by the link becomes sufficiently positive. Eje(t)(t) = 0,
Dpe(t+1)(t+ 1) + lpe(t+1)(t+ 1) ≥ ςe3 S3c

ςe1, ςe2, ςe3 are prespecified positive real numbers. Again informally this means that
scheduling decision is not taken for a link till the last scheduling decision becomes “too
bad” for the current state of the network.

(Note that S1 is a subset of S2.). Unlike the routing policy the scheduling policy can be
used both for the internet and the ATM networks.

ci > 0 ∀i. ~c = (
√
c1, . . . ,

√
cM), ~l(t+ 1) = (l1(t+ 1), . . . , lM(t+ 1)), li(t+ 1) = gi( ~B(t))s,

where ~B(t) = (B1(t), . . . , BM(t))T . gi : RM → R, i = 1, . . . ,M . gis can be any arbitrary
function satisfying the following property.

lim
||c~b||→∞

gi(~b)

||c~b||
= 0, ∀i, where ||c~b|| =

√√√√ M∑
i=1

cib
2
i (4)

Note that a large class of gis satisfies the above property, e.g., any bounded function g, any
linear function of

√
b1, . . . ,

√
bM , etc. Typically all gi(~b)s would be constants. We would

discuss the use of gi(~b)s in Section 5.

We explain the scheduling policy with an example.

Example 4.5: Refer to Example 4.1. Let Figure 3 show the buffers just prior to ΩL1
ι (a

scheduling decision instant for link L1). B1(Ω
L1
ι −1) = g, B2(Ω

L1
ι −1) = h, B3(Ω

L1
ι −1) = j+1,

B4(Ω
L1
ι − 1) = p + 1, B5(Ω

L1
ι − 1) = q + 1, B6(Ω

L1
ι − 1) = l + 1, B7(Ω

L1
ι − 1) = m + 1.

Let ci = 1 and gi(~b) = 0 ∀i, i.e., li(t) = 0, for all i, t. D1(Ω
L1
ι ) = g − p − q − 2.

D2(Ω
L1
ι ) = h − j − l − m − 3. Let p = q = j = l = m = 1, g = 5, h = 8. Thus

D1(Ω
L1
ι )+ l1(Ω

L1
ι ) = 1 and D2(Ω

L1
ι )+ l2(Ω

L1
ι ) = 2. Thus the scheduling decision is to serve a

packet from B2 in every slot till the next scheduling decision instant assuming that B2 does
not empty in between. If B2 empties in between, then L1 idles till the next scheduling deci-
sion instant. Now let g = h = 1. Both D1(Ω

L1
ι )+ l1(Ω

L1
ι ) and D2(Ω

L1
ι )+ l2(Ω

L1
ι ) are negative

and hence L1 idles till the next scheduling instant, independent of the Di + lis in between.
Now let g1(~b) = 4, g2(~b) = 0. In both the above cases the scheduling decision is to serve a
packet from B1 in every slot till the next scheduling decision instant assuming that B1 does
not empty in between. If B1 empties in between, then again L1 idles till the next scheduling
decision instant. This change in the bias term g1(~b) gives limited priority to session 1 on
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link L1. Again if p = q = j = l = m = 1, g = 5, h = 8, gi(~b) = 0 ∀i, but c1 = c4 = c5 = 3
and c2 = c3 = c6 = c7 = 1, then D1(Ω

L1
ι ) + l1(Ω

L1
ι ) = 3, D2(Ω

L1
ι ) + l2(Ω

L1
ι ) = 2. Thus the

scheduling decision is taken in favor of B1.

Whenever a packet arrives at a node (not necessarily exogeneously) the node must know
the logical buffers Bis (or Bmnes) to which the packet belongs. This is necessary to keep
track of the Bi(t)s. Thus the packet header must contain information specifying its session
and the tree it has been routed to. Every node may know the outgoing links of every tree
traversing through it. This is so if there is a connection setup phase associated with every
session initiation, like in virtual circuit scenario. In that case the tree information may be
contained in a number identifying the tree and the node can determine the outgoing edges
along which the packet must travel from the tree and the session numbers. This enables
the node to determine the Bmnes to which the packet belongs. However in datagram like
scenario there is no connection establishment process. Thus the nodes do not necessarily
know the outgoing links of the trees passing through them. The packet header must contain
explicit information about the edge sequences of the tree in addition to the tree and the
session number. Immediately after the packet arrives exogeneously it is routed to a tree as
per the last routing decision and the necessary information is incorporated in the packet
header. The necessary information can be the tree and the session numbers or the explicit
tree path, the tree number and the session number depending upon whether the nodes know
the tree paths or not.

5 Discussion

• Informally speaking, MMRS attains the maximum throughput for any arbitrary net-
work (the precise technical statement is given in Section 6). We prove this in Section 7.

• It is interesting to note that the congestion in the entire tree need not be taken into
account for routing. However any congestion downstream will ultimately cause con-
gestion in the origin buffers and will prevent arrivals at the tree and this would help to
clear the downstream congestion. One can think of policies which take congestion in
the entire tree into account while routing and thus respond early to downstream con-
gestion. These policies can not generate greater throughput. However it is not clear
how MMRS would compare with those with respect to other performance criteria, e.g.,
delay, expected queue lengths at the buffers, etc. As we discussed in Section 1 that
taking routing decision on the basis of congestion in the entire trees is computationally
expensive even if the routing decision intervals are long. Besides it is unrealistic to
assume that the routers will have access to the necessary current global information
particularly in large networks.

• cis can be used to give limited priority to some sessions over others without affecting
the throughput. It is generally expected that cis for all buffers of a particular session
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would be equal. However they may be chosen differently in accordance with the physical
buffer sizes, so as to bring down the packet loss, as explained later. Increasing the cis
for a session over others decreases the delay of the packets of the session at the expense
of greater delay experienced by packets of other sessions. Thus one would expect the
cis to be higher for real time sessions like audio, video and possibly for applications
which fetch greater revenue. lis can serve the same purpose, i.e., give limited priority
to sessions over each other. A judicious choice of gi(~b)s can decrease the expected delay
of the packets in the entire network.

• If gi(~b) is a function of bi only and not of the entire vector ~b, then MMRS can be
implemented in a decentralized manner, because the scheduler at every link need only
know the queue lengths of the logical buffers Bi at the source and destination of the
link at the scheduling instants. If the scheduler of link e is located at the source,
and Ej(Ω

e(j)
ιj

) is available to it before Ωe
ι , for each buffer Bj at the destination node

of e, d(e), where Ωe(j)
ιj

is the last scheduling decision slot for e(j) before Ωe
ι , it can

compute Bj(t) for each buffer Bj at its destination in a recursive fashion and take the
scheduling decision accordingly at Ωe

ι . Since Ej(t) ∈ {0, 1}, it may be relatively simple
to communicate the necessary Ej(t)s instead of the corresponding Bj(t)s, especially if
Ωe
ι − Ωe(j)

ιj
is small for some j. Note that Ωe(j)

ιj
< Ωe

ι , i.e., Ej(t) at the last scheduling
decision slot strictly before Ωe

ι is necessary for recursive computation. So there is at
least 1 slot for propagation of a binary number. The recursive computation takes
negligible time.

• If gi(~b) is a computationally efficient function of bi, then MMRS can be implemented
in real time. Typically we would expect the lis to be constants independent of bis.

• Cmns can be used to give limited priority to some trees of a session n over some other
trees, while taking routing decision. A multicast tree m of session n may not be a desir-
able route for a session for various reasons, e.g., it may be very long thereby incurring
a large propagation delay. Typically the network may want to use it for the session
only when other trees of the session are significantly congested. This purpose can be
achieved by setting a high threshold Cmn for the tree, so that

∑
Bi∈Omn ciBi(t) + Cmn

is the minimum amongst all trees of session n, only when other trees have high con-
gestion. Manipulation of cis can serve the same purpose, but cis also affect scheduling
whereas Cmns affect routing in the desirable manner without affecting scheduling. In
fact MMRS retains its throughput optimality, even if Cmns are replaced by queue

length dependent bias, e.g., fmn(~b) as long as lim||c~b||→∞
fmn(~b)

||c~b||
= 0, ∀m,n, but again

computation of fmn(~b) may require global information while taking routing decisions
or computation may be expensive depending on the nature of the functions. So we
suggest the usage of constant and queue length independent bias while taking routing
decisions.

• The scheduling policy spreads the congestion in the system. A link would not serve
a tree if the corresponding buffer at the destination of the link has a large message
queue length as compared to the source buffer, even if it has to idle. Again if a source
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buffer at a link has a large queue length as compared to the destination buffer, then the
corresponding tree would be served by the link, even if there exists other contending
trees with destination buffers not so overcrowded as compared to source buffers. This
reduces the congestion at an already congested buffer at the expense of that at a
possibly lightly loaded buffer. This would reduce packet loss. The parameters cis and
gi(~b)s can be suitably modified to reduce packet loss even further, if necessary. If a
physical buffer is small in size as compared to those upstream8 and downstream9 then
the cis corresponding to the relevant logical buffers, (e.g., logical buffers B3, B6, B7

correspond to the physical buffer at Node 2 for tree T2 in Example 4.2, Figures 3
and 4) can be set higher than the corresponding ones at upstream and downstream.
Thus the scaled queue lengths (ciBi(t)s) of the corresponding logical buffers would be
high even if the actual queue lengths Bi(t)s are not so high. Thus the links bringing
packets to the physical buffer would idle frequently and the links serving messages
stored in the physical buffer would idle rarely. Thus the queue length at the physical
buffer would be small at the expense of larger queue lengths at larger sized physical
buffers upstream and downstream. This would reduce the overall packet loss. If a
physical buffer is small as compared to its downstream ones only, the lis of the relevant
logical buffers can be chosen to be large positive constants. Similarly lis of the relevant
logical buffers should be made small positive or even negative constants if a physical
buffer is large as compared to its downstream ones to bring down the packet loss. Note
that choice of ci for a logical buffer Bi, affects the queue length of the corresponding
physical buffer and its upstream and downstream ones, whereas that of li affects the
queue length of the corresponding physical buffer and its downstream ones only.

• As explained above the scheduling policy spreads the congestion in the system. Thus
any congestion downstream will be reflected in large queue lengths at the source node
of the corresponding session. Thus the queue lengths at the source node can serve
as an useful indicator of the congestion state of the source destination paths used by
the session. Thus end-to-end congestion control schemes may be applied based on
the queue lengths at the source node, e.g., if the queue lengths are high then the
source may be asked to slow down. For instance, if the source is a video source,
then the quantization may be made coarse when these queue lengths exceed a certain
threshold, and the encoding scheme can revert to fine grained quantization when the
queue lengths fall below a certain threshold. The video quality obviously suffers when
the quantization is coarse, but this produces graceful degradation in perceptual image
quality during periods of congestion. This degradation is less than that produced by cell
or packet loss[31]. Thus the queue lengths at the source node provide implicit feedback
as to the congestion state of the network. Of course the congestion propagates to the
source node after some time, but any explicit feedback will also take time to reach the

8A physical buffer receives messages from one or more physical buffers. These are its upstream physical
buffers. If a node maintains different memory partitions for different trees passing through it as in Exam-
ple 4.2, then the physical buffers are separate for diffrent trees and a physical buffer has only one upstream
physical buffer.

9A physical buffer sends packets to some other physical buffers. These physical buffer are its downstream
physical buffer.
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source node, particularly if the network is large. Besides usage of explicit feedback
often gives rise to the problem of feedback implosion in the multicast scenario[31]. This
solution of implicit feedback is inherently scalable. However this implicit feedback may
not be able to substitute the need for explicit feedback entirely, but may be used in
conjunction, so that much more infrequent explicit feedback may serve the purpose.

• MMRS is completely adaptive, in the sense that its implementation is independent of
the statistics of the arrival process. However if the parameters ci, gi, Cmns are selected
to minimize delay, etc., then the knowledge of the statistics of the arrival process may
help in making better choices.

• Routing and scheduling decisions can be taken at every slot, i.e., ωnι+1 − ωnι = 1,
Ωe
ι+1−Ωe

ι = 1 or at random or deterministic intervals. The exact choice must be made
on a case by case basis, but we briefly discuss the points to consider while making such
a choice. The advantages of taking scheduling decision at intervals are as follows. If
the scheduling decision instants are the same for all the links, then taking scheduling
decisions at intervals would help decentralized scheduling decisions. This would facili-
tate the communication of Ei(Ωι)s of the downstream buffers at d(e) of a link e to the
scheduler at the source, o(e), before Ωι+1. Taking scheduling decision at intervals is

also advantageous from computational complexity point of view if the relevant gi(~b)s

for the link are computationally intensive functions of ~b. This advantage is not there
if gi(~b)s are constants or computationally simple functions. Besides reconfigurring the
system every slot on account of rescheduling may not be possible for the system hard-
ware. This observation applies for routing decisions also. By taking routing decisions
at sufficiently long intervals, out of order delivery of packets of the same session can
be substantially reduced, if necessary, without affecting the throughput. The penalty
for taking routing and/or scheduling decision at intervals is possible increase in source
to destination delay for the sessions.

• The size of the decision intervals may or may not depend on queue lengths. Former is
the case when routing, scheduling decision intervals follow property (R3), (S3) respec-
tively. Latter takes place when routing decision intervals follow property (R1) or (R2)
and scheduling decision intervals follow property (S1) or (S2). Again the choice should
be made on a case by case basis. The following are the points to consider. If (R3) or
(S3) is followed (decision interval depending on queue lengths) then some queue length
dependent computation must be performed every slot to determine whether routing
or scheduling decision should be taken at the slot. If the intervals are deterministic
or random but independent of queue lengths, ((R1), (R2), (S1), (S2)) then there is a
computational overhead once per decision interval and this computation is for making
the decision and not just for calculating the interval size. The advantage of (R3) over
(R1), (R2), or (S3) over (S1), (S2) is that some unnecessary switchings are avoided, and
some necessary switchings are made i.e., a fresh routing/scheduling decision is taken
only when the current decision becomes “unacceptably bad”. This is a significant ad-
vantage when there is a cost associated with changing the current routing or scheduling
decision. How undesirable can the system allow the current decision to be before a
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switch is made can be precisely controlled through the parameters %n, n = 1, . . . , N
and ςi, i = 1 . . .M .

• Taking scheduling decisions for the entire system at the same instants may facilitate
decentralized scheduling as discussed before. This is not difficult to achieve if the
scheduling intervals satisfy property (S1). This can also be achieved by synchronizing
the random number generators, if the scheduling intervals are generated randomly as
per property (S2). However implementation would become difficult if the scheduling
intervals are generated as per property (S3) and in order to attain uniform scheduling
instants for the entire system, the entire system is rescheduled if any of the properties
(S3a) to (S3c) are satisfied for any link. It is so because this would require propagation
of a lot of information in a short time to all links in a large network. There is no partic-
ular advantage associated with taking routing decisions for all sessions simultaneously,
and hence these decisions can be taken at the same or different instants.

• MMRS can be used for broadcasting. In this case the collection of multicast trees for
the broadcast sessions may include all spanning trees rooted at the source node. In
that case it may be infeasible to maintain simultaneously a buffer for each one of those
trees in the source node. If that is so the minimum weight spanning tree has to be
computed from time to time for each broadcast session and this tree should be used for
routing the information. There exists efficient algorithms for computation of minimum
weight spanning trees unlike that for minimum weight multicast trees which is an NP
complete problem (Steiner problem). If the collection of trees for the broadcast session
includes only a few spanning trees routed at the respective source nodes, then a logical
buffer can be maintained for each one of those trees at the respective source nodes
and our usual routing policy applies. Also in parallel with the broadcast session some
sessions may multicast to some destination nodes. Usual routing policy applies to those
sessions as well. The scheduling policy remains the same in all these cases.

6 Formal Throughput Properties of MMRS

Intuitively the concept of stability of a queueing system is associated with the queue length
process at the physical buffers (buffers corresponding to actual storage locations). Let Xu(t)
be the number of packets in a physical buffer u by the end of slot t (or the beginning of slot
t + 1). We define the system to be stable if there exists a family of random vectors, X̂(i,j)

i = 0, . . . , P − 1, j = 0, . . . , Q − 1, EX̂(i,j) < ∞, ∀i, j, P , Q finite, such that { ~X(t)}∞t=0

can be partitioned into Q subsequences { ~X(td + θ)}∞t=0, θ = 0, . . . , Q − 1, and ~X(td + θ)
converges weakly to a random vector X̂(i,j+θ%Q), where (i, j) are uniquely specified given
the initial phase of the system. The phase, of the system should contain some information
not contained in the queue lengths at the physical or the logical buffers. For example the
phase of the system could be the residual times for the next routing, scheduling decisions
for MMRS with routing, scheduling decision intervals satisfying R1 or R2 and S1 or S2
respectively. In that case the initial phase (phase at t = 0) indicates the residual times for
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the first routing, scheduling decisions, and given this information, (i, j) should be known
uniquely. If the routing and scheduling decision intervals follow R3, S3, then the residual
times for the next routing, scheduling decisions can be determined from the logical buffer
queue lengths and hence should not represent the phase of the system. The system may not
have any phase (as in the last case) and then P = Q = 1, i.e., { ~X(t)}∞t=0 should converge
weakly to a random vector X̂, with EX̂ <∞. The intuition behind this definition is that we
generally consider a system to be stable, as long as the physical buffers do not ”blow up” and
that would not happen if ~X(t) converges weakly to one of finitely many finite mean random
vectors and hence those systems should be considered stable. The particular random vector
~X(t) converges to (in distribution) should be uniquely determined from some initial phase
of the system. Next we relate the stability of the system to logical buffer queue lengths. For
this purpose, we describe the possible relations between physical buffer and logical buffer
queue lengths, ~X(t) and ~B(t) respectively, in the following discussion.

A node is a possibly multi-input multi-output multicast switch with the ability to serve
packets to several outgoing links simultaneously. Figure 2 shows a node, Node 2 with one
incoming link and three outgoing links. Refer to Example 4.1. Packets reach Node 2 via
trees T1 and T2. The node can simultaneously transmit a T2 packet into L4 and a T1 packet
into L3. Both packets reach Node 2 via link L1. The packets can be queued at the input or
at the output of the node or queueed in a shared memory mode. The physical buffers are
the memory locations which store these packets. The relation between the physical buffers
and the logical buffers depend upon whether the packets are input queued or output queued
or stored in a shared memory mode.

• If the packets are input queued, then the physical buffers are as those described
in page 10. Note that here packets are replicated10 (if at all) only when they are
transmitted to the output. Upon arrival only a single copy of the packet is stored.
Replication coincides with transmission to the outputs. This mode of replication is
known as replication-at-sending (RAS)[4]. Let ETi be the set of outgoing links of
tree T at node i, e.g., ET12 = {L2, L3}, ET11 = {L1}, ET22 = {L2, L3, L4} in Exam-
ple 4.1, Figure 2. Let physical buffer u store packets of tree T of session n at node i.
Xu(t) = maxe∈ETi BTne(t).

Example 6.1: Refer to Example 4.1, Figure 4. It shows the physical buffer storing tree
T2, session 2 packets at node 2. It has j + 1 packets. B3 has j + 1 packets, B6 has
l+1 packets and B7 has m+1 packets (refer to Example 4.2), where j > l > m. From
Example 4.1 and ET22 = {L2, L3, L4}, Xu(t) = max(B3(t), B6(t), B7(t)) = j + 1.

Packets travelling along different trees must occupy different memory locations. Thus
whether packets of the different trees passing through the same node are stored in the
same or different physical buffers make no essential difference in our case. Thus we
could assume the existence of a physical buffer for each tree at each node without any
loss in generality.

10Replication occurs only when the corresponding tree forks at the node
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• If the packets are output queued, then every outgoing link has a physical buffer to
store all packets transmitted to it from its origin node. Recall that Bmne(t) is the
number of session n, tree m packets output queued at the outgoing link e of node o(e)
at the end of slot t. If physical buffer u stores the packets output queued at e, then
Xu(t) =

∑
Bmne(t), where the summation is over all trees m of all sessions n which

pass through link e. Note that here packets are replicated (again replication occurs if
the corresponding tree forks at the node ) immediately upon arrival and subsequently
transmitted to the output queue. This mode of replication is known as replication-at-
receiving (RAR)[4].

• The node may be a shared memory switch with the memory fully shared between all
queues. There is only a single physical buffer per node. Replication can be RAR or
RAS. In the former a multicast packet is physically replicated in front of the shared
buffer, the multiple copies of the packet are stored in the buffer, each copy of the
packet is queued till it is served by its requisite link. The RAR scheme has been used
in several shared-memory multicast ATM switches[13]. Let the physical buffer w store
the packets at node w, Xw(t) =

∑
i:u(i)=w Bi(t). In the latter (RAS), a single instance

of the multicast packet is stored in the buffer and is physically replicated only as it is
transmitted to the respective output link. The RAS scheme has been recently adopted
in shared-memory switches[22]. Xw(t) =

∑
T∈V maxe∈ETw BTnT e(t), where V= ∪Nn=1T n,

ETw is the set of outgoing links of tree T at node w, nT is the session corresponding
to tree T .

It follows from the relation between physical buffer and logical buffer queue lengths that if
there exists a family of random vectors, B̂(i,j) i = 0, . . . , P−1, j = 0, . . . , Q−1, EB̂(i,j) <∞,
∀i, j, P , Q finite, and { ~B(t)}∞t=0 can be partitioned into Q subsequences { ~B(td + θ)}∞t=0,

θ = 0, . . . , Q − 1, such that ~B(td + θ) converges weakly to a random vector B̂(i,j+θ%Q),
i ∈ {0, . . . , P − 1}, j ∈ {0, . . . , Q− 1}, i, j uniquely determined given the initial phase of the
system, then the system is stable.

Let an be the expected number of session n packets arriving in a slot. We call (a1, a2, . . . , aN)
the arrival rate vector. Informally speaking throughput is the traffic carried by the system.
A system is said to “carry” a traffic, if it is stable under the traffic. We denote the arrival
rate vector as the throughput of the system if it is stable. If the system is not stable, then
throughput becomes meaningless, and can be arbitrarily defined as the 0 vector. We call an
arrival rate vector feasible if for each session n the total traffic an can be split in portions
amn , amn ≥ 0, m = 1, . . . ,Mn, and

∑Mn
m=1 a

m
n = an, where Mn is the total number of trees in T n

and amn , m = 1, . . . ,Mn, n = 1, . . . , N satisfies the capacity condition with strict inequality.
Intuitively amn is the amount of traffic routed through tree m in T n.

For simplicity assume that each packet has a deterministic service time equal to 1 slot.
In that case an arrival rate vector is feasible if

N∑
n=1

Mn∑
m=1

amn T
m
n < (1, . . . , 1) (5)
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Tmn is the indicator vector of the mth tree in Tn. MMRS renders the system stable for every
feasible arrival rate vector. We prove this in the next section.

We shall prove in Section 8 that the system is not stable if the arrival rate for session
an can not be split in portions amn such that the amn s satisfy the capacity condition stated
in Section 2. This gives the necessary condition for stability. The condition for feasibility
of an arrival rate vector is the same as the necessary condition for stability for all practical
purposes. Technically speaking, if an arrival rate vector (a1, . . . , aN) satisfies the necessary
condition for stability, then MMRS renders the system stable for any arrival vector (a1 −
ε, . . . , aN − ε), for any arbitrarily small ε. Quite possibly, MMRS renders the system stable
for arrival vector (a1, . . . , aN) itself (that is if it satisfies the capacity condition with strict
inequality). Thus MMRS is throughput optimal for all practical purposes.

7 Proof of Throughput Optimality of MMRS

We make the following assumptions for the purpose of analysis. Arrival and service are
slotted. Each session has its own exogeneous i.i.d. arrival stream of packets, {An(t)}∞t=1,
where An(t) is the number of session n packets arriving in slot t. An(t) ≤ Kn, ∀n, t. Kn is a
positive integer for all n. As mentioned in Section 6, each packet has a deterministic service
time equal to 1 unit. Note that the dependences between An1(t) and An2(t) have not been
ruled out for any n1 6= n2.

Let the arrival rate vector be feasible and let MMRS be followed. Let Ãi(t) be the number
of exogeneous packet arrivals at Bi at slot t.

Ãi(t) =

{
An(t) if Bi ∈ OTn(t)n(i)

0 otherwise.
(6)

Rab =


−1 a = b

1 a ∈ Zb
0 otherwise.

R represents the routing matrix.

~B(t+ 1) = ~B(t) +R~E(t+ 1) + Ã(t+ 1) (7)

Initially assume that the routing policy satisfies either (R1) or (R2) and the scheduling
policy satisfies either (S1) or either (S2). We would discuss the case for other routing and
scheduling policies towards the end of this section.

Ξe(t) = Ωe
ι+1 − t, where Ωe

ι ≤ t < Ωe
ι+1

Ξe(t) is the residual time for the next scheduling decision at link e.

ξn(t) = ωnι+1 − t, where ωnι ≤ t < ωnι+1
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ξn(t) is the residual time for the next routing decision for the nth session. Both ξn(t) and
Ξe(t) take values in a finite set.

Let ~Y (t) = ( ~B(t), ~E(t), ~Γ(t), ~Ξ(t), ~ξ(t)). (~Ξ(t), ~ξ(t)) is the phase of the system . It

contains some information not in ~B(t) for any t. The main result of this section is contained
in Theorem 1 stated below.

Theorem 1 There exists random vectors B̂(k,l), k = 0, 1, . . . , P − 1, l = 0, 1, . . . , d − 1,
EB̂(k,l) <∞ such that given (~Ξ(0), ~ξ(0)), { ~B(td+ i)}∞t=0, i = 0, 1, . . . , d−1, converges weakly

to B̂(k,l+i%d), k, l uniquely known given (~Ξ(0), ~ξ(0)), k = 0, 1, . . . , P − 1, l = 0, 1, . . . , d− 1.

We prove the above theorem towards the end of this section using Proposition 1 and Lem-
mas 1 and 2 stated below.

Proposition 1 Let ~Y (t) be an aperiodic discrete time countable state Markov chain with
state space X , and a single closed communication class accessible from all states. If there
exists real nonnegative functions φ1(~y), φ2(~y) such that φ1(~y) ≥ 1, φ2(~y) finite for all ~y ∈ X .
and

E(φ2(~Y (t+ 1))/~Y (t) = ~y) < φ2(~y)− φ1(~y), ∀~y ∈ A
c

where A is a finite subset of X , then {~Y (t)}∞t=0 converges weakly to a random vector Ŷ , such
that Eφ1(Ŷ ) <∞.

This proposition have been stated in a manner appropriate to our context. It follows from
a theorem in [15] which we describe in Appendix B. Basically it states that if a “negative
drift condition” (stated in Lemma 2) holds, then the system is stable.

Lemma 1 Given (~Ξ(0), ~ξ(0)), {~Y (td + i)}∞t=0, i = 0, . . . , d − 1, is a discrete time count-
able state aperiodic Markov chain with state space X (I(0),J(0)+i%d). (I(0), J(0)) is uniquely

known given (~Ξ(0), ~ξ(0)). X (I(0),J(0)+i%d) has a single closed communication class for all
(I(0), J(0)), i. This class is accessible from all states in X (I(0),J(0)+i%d).

We prove this lemma later in this section.

Lemma 2 (Negative Drift Condition) There exists real nonnegative functions φ1(~y), φ2(~y)
such that φ1(~y) ≥ 1, φ2(~y) finite for all ~y ∈ X and

E(φ2(~Y ((t+ 1)d+ i))/~Y (td+ i) = ~y) < φ2(~y)− φ1(~y), ∀~y ∈ A
c

where A is a finite subset of X .
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Lemma 2 is crucial to the proof of our main result of this section, that is the throughput
optimality of MMRS. We call this lemma the negative drift condition, because it proves
that for a large number of ~Y s the expected conditional drift of a function φ2(~Y ) is bounded

above by a function −φ1(~Y ) with negative values. We prove this negative drift condition in
Appendix A.

Proof of Lemma 1: ~Y (t), (~Ξ(t), ~ξ(t)) are discrete time countable state Markov chains
with state space X and C respectively. We assume that C can be partitioned in C0, . . . , CP−1,
such that Cis are closed communication classes of periodicity d. This is a fairly general
assumption on the structure of C, which incorporates the cases when {Ξe(t)}

|E|
e=1, {ξn(t)}

N
n=1s

are mutually independent and also holds in case of most common dependencies amongst
the Ξe(t)s and ξn(t)s, e.g., a subset of Ξe(t)s, ξn(t)s are always equal, etc. Thus Ci can

be partitioned into periodicity classes C(i,0), . . . , C(i,d−1), such that if (~Ξ(t), ~ξ(t)) ∈ C(i,j),

(~Ξ(t+1), ~ξ(t+1)) ∈ C(i,j+1%d), w.p. 1. It follows that X can be partitioned into X 0, . . . ,X P−1,
~Y (t) ∈ X i iff (~Ξ(t), ~ξ(t)) ∈ Ci. Since Cis are closed communication classes and the state ~B = ~0

is reachable from any ~B = ~B0, it follows that X i consists of only one closed communication
class accessible11 from every state and has periodicity d for all i. The periodicity classes of
X i are X (i,0), . . . ,X (i,d−1), where ~Y (t) ∈ X (i,j) iff (~Ξ(t), ~ξ(t)) ∈ C(i,j). Let

I(t) = l
J(t) = m

}
iff (~Ξ(t), ~ξ(t)) ∈ C(l,m)

Hence proved. 2

Proof of Theorem 1: It follows from Lemmas 1 and 2 and Proposition 1 that there
exists random vectors {Ŷ (k,l)}, EŶ (k,l) < ∞, k ∈ {0, . . . , P − 1}, l ∈ {0, . . . , d − 1}
such that given (~Ξ(0), ~ξ(0)), {~Y (td + i)}∞t=0 converges in distribution to a random vector

Ŷ (I(0),J(0)+i%d), Eφ1(Ŷ
(I(0),J(0)+i%d)) < ∞. Since ~Y (t) = ( ~B(t), ~E(t), ~Γ(t), ~Ξ(t), ~ξ(t)), given

(~Ξ(0), ~ξ(0)), { ~B(td + i)}∞t=0 converges in distribution to a random vector B̂(I(0),J(0)+i%d),

I(0) ∈ {0, . . . , P−1}, J(0) ∈ {0, . . . , d−1}. We used function φ1(~y) = max(1,
2λ′
√∑M

i=1
ciB

2
i

κ
),

κ > 1, λ′ > 0 are constants. cis are strictly positive constants. Thus Eφ1(Ŷ
(I(0),J(0)+i%d)) <

∞ implies that EB̂(I(0),J(0)+i%d) <∞. Hence the result follows. 2

If the routing policy satisfies either (R1) or (R2) and the scheduling policy satisfies (S3),

then the Markov chain ~Y (t) = ( ~B(t), ~E(t), ~Γ(t), ~ξ(t)) represents the system. If the routing
policy satisfies (R3) and the scheduling policy satisfies either (S1) or (S2), then the Markov

chain ~Y (t) = ( ~B(t), ~E(t), ~Γ(t), ~Ξ(t)) represents the system. Finally if the routing policy satis-

fies (R3) and the scheduling policy satisfies (S3), the Markov chain ~Y (t) = ( ~B(t), ~E(t), ~Γ(t))
represents the system. In the first two cases Lemma 1 holds with the periodicity determined
by that of ~ξ(t) and ~Ξ(t) respectively. The phase of the system are determined by ~ξ(t) and
~Ξ(t) accordingly. In the last case the Markov chain ~Y (t) is aperiodic and has a single closed

11A set S is accessible from a state ~x, if Pr(~Y (t) ∈ S/~Y (0) = ~x) > 0, for some t.
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communication class accessible from all states, i.e., d = P = 1. Thus Lemma 1 holds in this
case as well. As we shall discuss in the appendix A that Lemma 2 holds in all these cases.
Thus Theorem 1 holds in all these cases. Thus the proof of stability for feasible arrival rate
vector generalizes. Also, the proof of stability for feasible arrival rate vector holds even if
the maximum number of exogeneous arrivals per slot is unbounded, if the routing policy
satisfies (R3) and the scheduling policy satisfies (S3) or the routing and scheduling decisions
are taken every slot. Finally, we made some statistical assumptions in the beginning of this
section. Many of the assumptions are not critical to the result. For example, MMRS is
throughput optimal even when the arrival process is not i.i.d., but markov modulated. The
proof is presented in Appendix C. We believe that the maximum throughput property of
MMRS does not depend on the assumptions and holds for much more general arrival and
service processes.

8 Proof for Necessity

We proceed to prove that the system is not stable if the arrival rate for session an can not
be split in portions amn such that the amn s satisfy the capacity condition stated in Section 2.
All symbols introduced in this section have been listed in symbol table of page 60. We make
the following assumptions for the purpose of analysis. Arrival and service are slotted. Each
session has its own exogeneous arrival stream of packets, {An(t)}∞t=1, where An(t) is the
number of session n packets arriving in slot t. {(A1(t), . . . , AN(t)}∞t=1 can be a stationary
ergodic process or a probabilistic function of a finite state irreducible aperiodic discrete time
Markov Process.12 As mentioned in Section 6, we assume that each packet has a deterministic
service time equal to 1 unit.

We shall use the following propositions later. The first is the well known Birkhoffs
ergodic theorem and the second follows from a trivial extension of a similar result for positive
recurrent discrete time Markov chains[20].

Proposition 2 If X(t) is a stationary ergodic random process, then

1

n

n∑
i=1

Xi(ω)→ EX =
∫
XdP w.p. 1

Proposition 3 If S(t) is a positive recurrent periodic discrete time Markov chain, and A(t)
is a random process such that Pr(A(t) = l/S(t) = m) does not depend on t and given S(t),
A(t) is conditionally independent of all past future S(t)s and A(t)s, then

1

n

n∑
i=1

Ai(ω)→ EA w.p. 1

12A probabilistic function of a finite state irreducible aperiodic Markov Process can be a stationary ergodic
process as well but not necessarily so.
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where EA = E(E(A(t)/S(t))), where the outer expectation is over the stationary distribution
of S(t).

We first introduce certain terminologies we use throughout. f̃ = (f1, . . . , fM) will be
denoted as a buffer discharge vector. A valid buffer discharge vector is one in which fi ≥ 0,∑
i∈Se fi ≤ 1. Se as defined before is the set of buffers sharing the same outgoing link e. Let

F be the set of valid buffer discharge vectors. â = (a1
1, . . . , a

M1
1 , a1

2, . . . , a
M2
2 , . . . , a1

N , . . . , a
MN
N )

will be denoted tree arrival rate vector. Intuitively amn denotes the arrival rate to the mth
tree of the nth session. However technically speaking we are not assuming that amn is the
long term rate of arrival of packets to the mth tree of the nth session and in fact we do
not even assume the existence of these long term averages. tree arrival rate vector is just a
nomenclature. If ã = (a1, a2, . . . , aN) is the arrival rate vector,

A(ã) = {â :
Mn∑
m=1

amn = an, a
m
n ≥ 0,m = 1, . . .Mn, n = 1, . . .N}

is a set of valid tree arrival rate vectors for the arrival rate vector ã, i.e., we denote a tree
arrival rate vector valid, if it belongs to A(ã).

C = {â :
N∑
n=1

Mn∑
m=1

amn T
m
n ≤ (1, . . . , 1)}

where Tmn is the indicator vector for the mth tree of the nth session. We call an arrival rate
vector unstable if C ∩ A(ã) = φ. We shall prove that the system can not be stable if the
arrival rate vector is unstable.

A buffer graph is a directed graph in which each node represents a logical buffer (node
i represents buffer Bi) and there is an edge from vertex i to j, if Bj is a destination of
Bi, i.e., Bj ∈ Zi. A buffer graph consists of disconnected trees. Each multicast tree in
the network corresponds to a unique set of disconnected trees in the buffer graph. Let
fmn = mini:m(i)=m,n(i)=n fi, i.e., fmn is the minimum buffer discharge component amongst
those corresponding to logical buffers belonging to the mth multicast tree of the nth session.
Let lT = arg mini:m(i)=T fi (if there are more than one buffers attaining this minimum, the
tie is broken arbitrarily in favor of any one of them). Let oT be the root node of the tree in
the buffer graph containing node lT . Let PT be the unique directed path from oT to lT in
the buffer graph.

Q(n) = {i : node i lies on PT , T ∈ T n}

Observe that

∑
l∈Q(n)

Zl∩Q(n)=φ

fl =
Mn∑
m=1

fmn (8)

∑
l∈Q(n)

Ãl(θ) = An(θ) (9)
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Figure 5: A network with a single session, source S and destinations D1, D2.

(Ãi(t), as defined before in page 7 is the number of exogeneous packet arrivals at Bi at slot
t.) We illustrate the concept of the buffer graph with the following example.

Example 8.1: Figure 5 shows a multicast network with a single session, source S and desti-
nations D1, D2. The session has two trees T1 and T2. Figure 5 shows the trees T1 and T2 and
the corresponding logical buffers. Logical buffers B1, B4, B6, B8, B11, B12, B15 correspond to
tree T2 and B2, B3, B5, B7, B9, B10, B13, B14 correspond to tree T1. Figure 6 shows the corre-
sponding buffer graph. Each buffer in Figure 5 corresponds to a vertex in the buffer graph
shown in Figure 6. Buffers numbered 4 and 6 are destinations of buffer numbered 1 in the
multicast network. Thus there are directed edges from vertex 1 to vertices 4, 6 in the buffer
graph. The buffer graph consists of disconnected trees. Trees J1, J2 correspond to tree T1

and tree J3 corresponds to tree T2 of the multicast network. Let f8 = .3, f10 = .1. fi = .4,
i 6∈ {8, 10}. Thus f10 is the minimum amongst the buffer discharge components of tree T1 of
the multicast network and f8 is the minimum amongst the buffer discharge components of
tree T2. Vertex 3 is the root node of tree J1 and vertex 10 is on tree J1 corresponding to tree
T1 of the multicast network. Thus the vertices on the path from vertex 3 to vertex 10, i.e.,
vertices 3, 7, 10 belong to Q. Similarly vertices 1, 4, 8 on the path from vertex 1, the root
node of tree J3 containing vertex 8, to vertex 8 are in the set Q. Any exogeneous arrival in
the session in the multicast network is routed to either tree T1 or T2. If it is routed to T1, it
arrives at buffers B2 and B3. If it is routed to tree T2 it arrives at buffer B1. Observe that
Q contains vertices 1, 3. Thus total number of exogeneous arrivals of the session at any slot
equals that at the logical buffers corresponding to set Q. Similarly buffers 8, 10 are the only
ones in Q that have none of their destinations in Q and f8 + f10 = fT2 + fT1 .
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Figure 6: Buffer graph of the multicast network shown in Figure 5. Trees J1, J2 correspond
to tree T1 and tree J3 corresponds to tree T2 of the multicast network. The set Q for a
particular f̃ given in Example 8.1 has been shown.

Lemma 3 If the arrival rate vector is unstable, then there exists ε > 0, such that every valid
buffer discharge vector, f̃ , satisfies the following property.∑

l∈Q(n(f̃))

Zl∩Q(n(f̃))=φ

fl ≤ an(f̃) − ε

Zl is the set of destinations of buffer Bl. n(f̃) is a particular session associated with f̃ .

Proof of Lemma 3: Let f̃ ∈ F . Let ã be unstable.

Uãâf̃ = max
m,n

(amn − f
m
n ) â ∈ A(ã)

Vãf̃ = min
â∈A(ã)

Uãâf̃

Vãf̃ is well defined as A(ã) is a closed and bounded set for every ã and Uãâf̃ is a continuous

function of â for every ã and f̃ . Vãf̃ > 0. Otherwise, there exists â ∈ A(ã), such that Uãâf̃ ≤ 0,
i.e., amn ≤ fmn , ∀m,n.

N∑
n=1

Mn∑
m=1

amn T
m
n ≤

N∑
n=1

Mn∑
m=1

fmn T
m
n
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≤ (. . . ,
∑
i∈Se

fi, . . .) (10)

Thus
N∑
n=1

Mn∑
m=1

amn T
m
n ≤ (1, . . . , 1)

Inequality 10 follows because the eth component of
∑N
n=1

∑Mn
m=1 f

m
n T

m
n , is the sum of the fmn s

of those multicast trees of the network which pass through e and every multicast tree passing
through e has one logical buffer which sends its traffic across e, and finally as per definition
fmn ≤ fi where Bi is a buffer of the mth tree of the nth session, i.e., m(i) = m,n(i) = n.

However then â ∈ C and we know that â ∈ A(ã). This contradicts the assumption that
ã is unstable. Thus Vãf̃ > 0.

Next we show that there exists a session n such that an−
∑Mn
m=1 f

m
n > 0. Consider â which

attains Vãf̃ . Let Uãâf̃ be attained by trees T1 . . . , Tp of session n. Uãâf̃ = Vãf̃ > 0. Hence

aTin − f
Ti
n > 0, i = 1, . . . , p. If there does not exist a session q such that aq −

∑Mq

m=1 f
m
q > 0,

then
∑Mq

m=1 a
m
q −

∑Mq

m=1 f
m
q ≤ 0, ∀q, â ∈ A(ã). It follows that there exists a tree Tr of the

nth multicast session of the network, such that aTrn − fTrn < 0. aTin , i = 1, . . . , p could be
decreased, increasing aTrn , still maintaining the sum of the amn s equal to an, yet decreasing
the maxm(amn − f

m
n ). If the process, is repeated with other sessions attaining Uãâf̃ , we would

obtain a â′ ∈ A(ã), such that Uãâ′f̃ < Uãâf̃ = Vãf̃ which contradicts the definition of Vãf̃ .

Thus maxn(an−
∑Mn
m=1 f

m
n ) > 0 for all f̃ ∈ F . F is a closed and bounded set. maxn(an−∑Mn

m=1 f
m
n ) is a continuous function of f̃ . Hence minf̃∈F maxn(an −

∑Mn
m=1 f

m
n ) exists. Let

ε = minf̃∈F maxn(an−
∑Mn
m=1 f

m
n ). ε > 0 since maxn(an −

∑Mn
m=1 f

m
n ) > 0 for all f̃ ∈ F . Thus

maxn(an −
∑Mn
m=1 f

m
n ) ≥ ε > 0 for all f̃ ∈ F . If n(f̃) be the session which attains the above

maximum for f̃ , then an(f̃) −
∑Mn(f̃)

m=1 fm
n(f̃)
≥ ε > 0. The result follows from equation (8). 2

Theorem 2 If arrival rate vector ã is unstable, then

M∑
i=1

Bi(t)→t→∞ ∞ a.s.

Proof of Theorem 2: Let the arrival rate vector ã be unstable. Let W ⊆ {1, . . . ,M}.∑
i∈W

Bi(t) =
∑
i∈W

(
Bi(t− 1) + (R~E(t))i + Ãi(t)

)
from (7). (11)

∑
i∈W

(R~E(t))i =
∑
i∈W

((|Zi ∩W | − 1)Ei(t))

≥ −
∑

i∈W,Zi∩W=φ

Ei(t) (12)
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∑
i∈W

Bi(t) ≥
t∑

θ=1

(
∑
i∈W

Ãi(θ))− (
∑

i∈W,Zi∩W=φ

Ei(θ))

 (13)

from recursive substitution using relations (11) and (12).

(Note that (7) holds for any arbitrary scheduling policy. However ~E(t) is not updated as

per (2) and (3) for any arbitrary scheduling policy. ~Γ(t) is also not updated as per (1) for
any arbitrary routing policy. We do not assume these relations in this proof.)

Let ~λ(t) =
1

t

t∑
θ=1

~E(θ)

∑
i∈Se

λi(t) =
1

t

t∑
θ=1

∑
i∈Se

Ei(θ)

≤ 1 since
∑
i∈Se

Ei(θ) ≤ 1 ∀θ

λi(t) ≥ 0

Thus ~λ(t) ∈ F , i.e., ~λ(t) is a valid buffer flow vector.

M∑
i=1

Bi(t) ≥
∑

i∈Q(n(~λ(t)))

Bi(t)

≥
t∑

θ=1

(
∑

i∈Q(n(~λ(t)))

Ãi(θ))− (
∑

i∈Q(n(~λ(t)))

Zi∩Q(n(~λ(t)))=φ

Ei(θ))

 from (13)

=

(
t∑

θ=1

An(~λ(t))(θ)

)
− t


∑

i∈Q(n(~λ(t)))

Zi∩Q(n(~λ(t)))=φ

λi(t)


from (9) and the definition of ~λ(t)

≥
t∑

θ=1

An(~λ(t))(θ)− tan(~λ(t)) + tε from Lemma 3.

= t

(
1

t
(
t∑

θ=1

An(~λ(t))(θ))− an(~λ(t))

)
+ tε

≥ tε− t|
1

t
(
t∑

θ=1

An(~λ(t))(θ))− an(~λ(t))| (14)

Since there are only a finite number of sessions, it follows from trivial extensions of Propo-
sitions 2 and 3 to vector valued random processes that given any δ > 0, there exists a t0
such that |1

t
(
∑t
θ=1An(θ))− an| < δ a.s., ∀n ∈ {1, . . .N}, ∀t ≥ t0. Letting δ = ε/2, it follows

from (14) that a.s.
M∑
i=1

Bi(t) ≥
tε

2
∀t ≥ t0
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The result follows. 2

If Xu(t)s represent the physical buffer queue lengths, then it follows from the discussion
in Section 6 that ∑

u

Xu(t) =
∑
j

max
i∈Wj

Bi(t)

where W1,W2, . . . constitute a partition of {1, . . . ,M}, Wi 6= φ, ∀i. Thus

∑
u

Xu(t) ≥
∑
j

1

|Wj|
(
∑
i∈Wj

Bi(t))

≥
1

maxj |Wj|

M∑
i=1

Bi(t)

Thus it follows from Theorem 2 that if the arrival rate vector is unstable,
∑
uXu(t)→t→∞ ∞

a.s. Thus the system can not be stable if the arrival rate vector is unstable.

9 Conclusion

As discussed in Section 1, most of the existing research in multicast routing have advocated
the use of a single multicast tree per session. Significant amount of research have been
directed towards the construction and the nature of the tree, e.g., whether the tree should
be a shortest path tree or a core based tree and how to form these trees for a source and
a set of destinations. No existing routing protocol provides for load balancing. We have
assumed that the set of possible multicast trees are known for a session and have focussed
on the selection in a dynamic manner of the appropriate tree for an incoming packet. The
scheduling in current multicast network is still best effort service. We have proposed a
scheduling based on local information. The maximum throughputs attained by existing
multicast routing protocols like DVMRP[5], CBT[1], PIM[6], MIP[18] are not known. We
proposed a throughput optimal routing and scheduling. Throughput optimal algorithms in
generalized multicast networks were not known before. However some previous work exists
for broadcast networks. [16] proposes a throughput optimal algorithm for broadcasts in a
mesh network. [29] proposes a routing policy which attains at least 50% of the maximum
possible throughput in an arbitrary broadcast network. Since unicast and broadcast are
special cases of multicast, MMRS applies to both unicast and broadcast networks as well.

Throughput optimal routing and scheduling policies are known for unicast networks[26],
[25]. [26] considers an arbitrary unicast network with N servers and B buffers. Each server
i can serve any buffer from a given set Bi. Traffic from buffer j can be directed to any one
buffer in a given set Rj . It proposes the following routing and scheduling policy, called the
parametric back pressure policy (PBP). At time t, server i serves the buffer j, that has the
maximum difference of backlog with one of its destinations, i.e., Xj(t) − min

k∈Rk
Xk(t) is
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the maximum amongst all buffers in Bi,13 Xi(t) is the backlog of buffer i at time t. Server i
directs the traffic from buffer j to the buffer in its destination set with the minimum backlog,
i.e., the one which attains min

k∈Rk
Xk(t). Our scheduling policy is somewhat similar to this

scheduling. However the intricacies of traffic multiplication in the multicast scenario can not
be captured by the system model introduced in [26] because as opposed to traffic from a
buffer j reaching one of many buffers in Rj in unicast scenario, traffic from a buffer may
need to reach multiple buffers in the multicast case. Thus scheduling needs to be modified
suitably to take this into account. Besides the routing policies are inherently different in the
two cases. In MMRS routing, the entire path which the packet follows is decided once for
each packet and immediately after its arrival and as we have discussed before this decision
is computationally simple. In PBP, the routing decision is taken freshly at every buffer.
None of these decisions determine the entire path alone, but all these decisions cumulatively
determine the entire path. This makes MMRS simpler to implement.

We have not considered dependency amongst the servers (links) here. Dependency
amongst servers arises in several computer and communication systems using multicast,
e.g., wireless multicast multihop radio networks. [25] proposes a maximum throughput re-
source allocation policy for unicast networks in presence of server dependencies. There exists
a straight forward generalization of MMRS to the case where the servers are interdependent.
The generalization is to adopt the activation vector which attains max~γ∈H ~D(t)~γ, where H
is the set of activation vectors. The routing policy is not affected by server dependencies.
Again without going into details, the routings of this generalization of MMRS differ from
that of the policy proposed in [25] but the schedulings are similar. However the system model
of [25] can not capture the multicast scenario. Besides, our scheduling policy is more general
even in the unicast context, because we allow taking scheduling decision at intervals whereas
[25] advocates taking scheduling decision every slot. We also introduce the use of some scale
factors and queue length dependent or constant bias terms in making scheduling decisions.
These scale factors and bias terms can be used to allow limited priority to sessions over one
another, reduce overall delay, packet loss etc. Neither [25] nor [26] uses these scale factors
and bias terms. This generalization of MMRS retains the maximum throughput property
but requires global information and is not amenable to real time applications because the
optimization over all possible activation vectors can become very complex. Development of
computationally simple and local information based maximum throughput algorithms for
arbitrary multicast networks with server dependencies is a topic of future research.

A Proof of the Negative Drift Condition (Lemma 2)

We first introduce some terminologies. H is the set of possible activation vectors, ~Es. Note
that H = {~γ : γi ∈ {0, 1},

∑
i∈Se γi ≤ 1}., where Se = {i : e(i) = e, 1 ≤ i ≤ M} (the set of

buffers contending for service from link e). V (t) =
∑M
i=1 ciB

2
i (t). We prove the negative drift

13The policy takes into account service rates and switching delays. We have not stated the policy very
precisely here, but have described the basic idea.
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condition (Lemma 2) using Lemmas 4, 5 and 6. We state them below but prove them later.

Lemma 4 There exists a function ψ : R → R associated with the Markov chain ~Y (t) such
that

~D(t+ 1)T ~E(t+ 1) ≥ max
~γ∈H

~D(t+ 1)T~γ − ψ(t)

where ψ satisfies the property that for any δ′ > 0, there exists a constant L(δ′) such that

ψ(t) ≤ δ′
√
V (t), if V (t) ≥ L(δ′).

Informally speaking Lemma 4 states that the cross product between the vector of difference
of scaled backlogs of source and destination buffers (~D(t)) and the activation vector does not
differ significantly from the maximum possible value of such a cross product. The difference
is upper bounded by a function associated with the markov chain, ~Y (t), whose growth rate
is less than that of V (t). We will prove this lemma precisely later but the proof follows
from the fact that, scheduling decisions are taken not too infrequently and when a link is
scheduled, trees with large difference of source destination buffer backlogs is preferred over
others (bias terms are also taken into account while making a decision but they are small
compared to V (t), for large V (t)).

Lemma 5 There exists a constant εn for each session n such that∑
Bi∈OTn(t+1)n

ciBi(t) ≤
∑

Bi∈Omn

ciBi(t) + εn, ∀m, 1 ≤ m ≤Mn.

Informally speaking Lemma 5 states that the sum of the scaled backlogs of source buffers
of the currently active tree of a session is not significantly greater than that of any other
tree of the session, if at all. The scaled backlogs of the source buffers of the currently active
tree of a session can exceed that of any other tree of the session by at most a constant.
Intuitively this lemma holds because routing decisions are taken not too infrequently and
when routing decision is taken for a session the trees with small queue lengths at source
buffers are preferred over others (again scale factors and constant bias terms are taken into
account).

Lemma 6 For any t1, t2, |t2 − t1| ≤ Λ, Λ any finite constant, given any δ > 0, there exists
a finite L(T, δ) such that

(1− δ2)V (t1) ≤ V (t2) ≤ (1 + δ2)V (t1) if V (t1) ≥ L(Λ, δ).

Lemma 6 states that the relative difference between V (t1) and V (t2) becomes negligible as
V (t1) increases if length of the interval |t2 − t1| is bounded. We prove this lemma more
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precisely later, but intuitively the result holds, because there can be at most one packet
departure from and bounded number of arrivals (by assumption) to any buffer in a slot.

Proof of Lemma 2: Let φ2(~y) =
∑M
i=1 cib

2
i , φ2(~Y (t)) = V (t), where V (t) =

∑M
i=1 ciB

2
i (t)

Clearly φ2(~y) <∞, ∀~y ∈ X , (15)

where X is the state space of ~Y (t).

V (t) = (K ~B(t))T (K ~B(t))

K = diag(
√
c1, . . . ,

√
cN)

V (t+ 1)− V (t) = (K( ~B(t+ 1)− ~B(t)))T (K( ~B(t+ 1) + ~B(t)))

= (K(R~E(t+ 1) + Ã(t+ 1)))T (K(2 ~B(t) +

R~E(t+ 1) + Ã(t+ 1)))

= (R~E(t+ 1) + Ã(t+ 1))TKTK(R~E(t+ 1) +

Ã(t+ 1)) + 2(KTK ~B(t))T (R~E(t+ 1) + Ã(t+ 1))

E(V (t+ 1)− V (t)/~Y (t)) = E((R~E(t+ 1) + Ã(t+ 1))TKTK(R~E(t+ 1) +

Ã(t+ 1))/~Y (t)) + 2E((KTK ~B(t))T (R~E(t+ 1) +

Ã(t+ 1))/~Y (t)) (16)

Since Ãi(t) ≤ Kn(i), ∀i, t and Ei(t) ≤ 1, ∀i, t,

(R~E(t+ 1) + Ã(t+ 1))TKTK(R~E(t+ 1) + Ã(t+ 1)) ≤ α w.p. 1

E((R~E(t+ 1) + Ã(t+ 1))TKTK(R~E(t+ 1) + Ã(t+ 1))/~Y (t)) ≤ α ∀~Y (t) (17)

(α is a finite positive constant)

E((KTK ~B(t))T (R~E(t+ 1) + Ã(t+ 1))/~Y (t)) = (KTK ~B(t))T (R~E(t+ 1) +

E(Ã(t+ 1)/~Y (t))) (18)

( ~E(t+ 1) is uniquely known given ~Y (t)).

E(Ãi(t+ 1)/~Y (t)) =
an if Bi ∈ OTn(t+1)n(i)

0 otherwise.
(19)

(~Γ(t+ 1) is uniquely known given ~Y (t)).

(KTK ~B(t))TR = −~D(t+ 1)

−~D(t+ 1)T ~E(t+ 1) ≤ −max
~γ∈H

~D(t+ 1)T~γ + ψ(t) from Lemma 4

(KTK ~B(t))TR~E(t+ 1) ≤ −max
~γ∈H

D(t+ 1)T~γ + ψ(t) (20)
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R~f = −â (21)

where fi = a
m(i)
n(i) (22)

and âi =

{
fi Bi ∈ Om(i)n(i)

0 otherwise.

where ~f and â are column vectors with fi and âi as the ith components respectively, 1 ≤
i ≤M .

If i ∈ Om(i)n(i), there does not exist j such that p(i) = j. Thus (R~f)i = −fi = −âi. If

i 6∈ Om(i)n(i), (R~f)i = −fi+fp(i), and n(i) = n(p(i)), m(i) = m(p(i)). Thus fi = fp(i) = a
m(i)
n(i) .

Thus (R~f)i = 0 = −âi, if i 6∈ Om(i)n(i).

If the arrival rate vector is feasible,
∑
i∈Se fi =

∑N
n=1

∑Mn
m=1 a

m
n (Tmn (e)) < 1, (equation (5))

where Tmn (e) = 1, if the mth tree of the nth session passes through link e and 0 otherwise.

Also ~γ ∈ H, iff
∑
i∈Se γi ≤ 1 and γi ∈ {0, 1}. This means that ~f =

∑
~γ∈H λ~γ~γ,

∑
~γ∈H λ~γ < 1,

λ~γ ≥ 0, if the arrival rate vector is feasible.

â = −
∑
~γ∈H

λ~γR~γ (23)

(KTK ~B(t))TE(Ã(t+ 1)/~Y (t)) =
N∑
n=1

an
∑

Bi∈OTn(t+1)n

ciBi(t)

≤
N∑
n=1

∑
Bi∈On

ficiBi(t) + ε,

On = ∪1≤l≤MnOln, ε =
n∑
i=1

anεn (24)

(Using Lemma 5 and (22))
N∑
n=1

∑
Bi∈On

ficiBi(t) = (KTK ~B(t))T â

=
∑
~γ∈H

λ~γ(−(KTK ~B(t))TR)~γ (from (23))

=
∑
~γ∈H

λ~γ ~D
T (t+ 1)~γ

≤ λmax
~γ∈H

~DT (t+ 1)~γ (25)

λ =
∑
~γ∈H

λ~γ

λ < 1

From equation (18), inequalities (20), (24) and (25), we have

E((KTK ~B(t))T (R~E(t+ 1) + Ã(t+ 1))/~Y (t)) ≤ −(1− λ) max
~γ∈H

~DT (t+ 1)~γ + ψ(t) + ε (26)
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Let m = arg max
1≤i≤M

√
ciBi(t)

√
cmBm(t) ≥

√
V (t)

M

cmBm(t) ≥
√
cm

√
V (t)

M

≥ ( min
1≤i≤M

√
ci)

√
V (t)

M
(27)

Consider a function s : Z → P (Z), Z is the set of logical buffers, P (Z) is the power set
of Z. s(Bi) = Zi. Consider a sequence of buffers constructed as follows. Bm is the first
element. The second set of elements are those in s(Bm). The next set of elements consists
of buffers in s(Bj), for all Bjs in the set s(Bm) and so on. This sequence is finite and would
end in the Bjs for which s(Bj) = Zj = φ. Let Qi(t) = ciBi(t) −

∑
Bj∈Zj cjBj(t). Observe

that cmBm(t) =
∑
i:Bi∈ sequence Qi(t). Let the sequence have X terms. X ≤M . Thus

cmBm(t) ≤ X max
1≤i≤X

Qi(t)

≤ M max
1≤i≤M

ciBi(t)−
∑
Bk∈Zi

ckBk(t)


≤ M max

~γ∈H
~DT (t+ 1)~γ (28)

max
~γ∈H

~DT (t+ 1)~γ ≥ ( min
1≤i≤M

√
ci)

√
V (t)

M3
from equations (27) and (28) (29)

From Lemma 4

ψ(t) ≤ λ′
√
V (t) if V (t) ≥ L(λ′),

λ′ = 1
2

(1−λ) min1≤i≤M
√
ci

M3/2 , L(λ′) is a constant depending upon λ′.

 (30)

Since λ < 1, (30) follows from Lemma 4. From inequalities (26), (29) and (30)

E((KTK ~B(t))T (R~E(t+ 1) + Ã(t+ 1))/~Y (t)) ≤ −λ′
√
V (t) + ε if V (t) ≥ L(λ′). (31)

Using equations (16), (17) and (31)

E(V (t+ 1)− V (t)/~Y (t)) ≤ α+ 2ε− 2λ′
√
V (t) for all sufficiently large V (t) (32)

Let φ1(~Y (t)) = max(1,
2λ′
√
V (t)

κ
), κ > 1,
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where λ′ is the same as that in equation (30).

φ1(~Y (t)) ≥ 1, ∀~Y (t) ∈ X (33)

tk = (t+ 1)d+ i− k − 1

(t+ 1)d+ i = t0 + 1

td+ i = td−1

E(V (t0 + 1)− V (td−1)/~Y (td−1)) = E(V (td−1 + 1)− V (td−1)/~Y (td−1))

+
d−2∑
k=0

E(V (tk + 1)− V (tk)/~Y (td−1))

E(V (tk + 1)− V (tk)/~Y (td−1)) =
∑
ỹ∈X

E(V (tk + 1)− V (tk)/~Y (tk) = ỹ)

Pr(~Y (tk) = ỹ/~Y (td−1)) (34)

since ~Y (t) is Markovian and td−1 ≤ tk

E(V (tk+1)−V (tk)/~Y (tk)) < 0, if V (tk) > max(L(λ′), α+2ε
2λ′

) (equation 32). Since |tk−td−1| <
d (bounded), it follows from Lemma 6 that the above holds w.p. 1 if V (td−1) is sufficiently
large. Thus every term in the summation in equation (34) is nonpositive if V (td−1) is
sufficiently large. Now it follows from equation (32) that

Thus E(V (t0 + 1)− V (td−1)/~Y (td−1)) ≤ α+ 2ε− 2λ′
√
V (td−1) (35)

for all sufficiently large V (td−1)

E(φ2(~Y (t0 + 1))/~Y (td−1))− φ2(~Y (td−1)) = E(V (t0 + 1)− V (td−1)/~Y (td−1))

≤ α+ 2ε− 2λ′
√
V (td−1)

≤ −
2λ′

κ

√
V (td−1) since κ > 1, λ′ > 0

for all sufficiently large V (td−1).

= −φ1(~Y (td−1)) for all

sufficiently large V (td−1).

E(φ2(~Y ((t+ 1)d+ i))/~Y (td+ i)) ≤ φ2(~Y (td+ i))− φ1(~Y (td+ i)), ∀~Y (td+ i) ∈ Ac,

A = {~y : φ2(~y) ≤ β, ~y ∈ X}

A is a finite set because { ~B(td+ i) : V (td+ i) ≤ µ} is a finite set for all µ ∈ R and ~E(td+ i),
~Γ(td+ i), ~Ξ(td+ i), ~ξ(td+ i) take values in finite sets only.

Thus E(φ2(~Y ((t+ 1)d+ i))/~Y (td+ i) = ~y) ≤ φ2(~y)− φ1(~y), ∀~y ∈ A
c, |A| <∞ (36)
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Equations (15), (33), (36) and the fact that A is a finite set ∀ β show that the functions φ1,
φ2 satisfies the properties mentioned in Lemma 2. 2

We proved that Lemma 2 holds when the routing policy satisfies either (R1) or (R2) and
the scheduling policy satisfies either (S1) or (S2). We shall prove later that Lemmas 4, 5

and 6 hold for other cases as well, with the Markov chain ~Y (t) suitably defined in each case
as discussed before. Thus Lemma 2 holds in all these cases.

A.1 Proof of Lemma 6

Proof of Lemma 6:

|Bi(t+ T )−Bi(t)| ≤

{
T Bi 6∈ On(i)

Kn(i)T Bi ∈ On(i)
(On defined in (24)) (37)

This follows from the fact that there can be at most one arrival to a nonorigin buffer (buffer
not at vn for some n) and at most Kn(i) arrival to a buffer at the origin node of its session,
in one slot. At most one packet can depart from a buffer in a slot. It follows that

∀i |Bi(t+ T )−Bi(t)| ≤ σT (38)

|Di(t+ T )−Di(t)| ≤ ΥσT, (39)

where Υ =
M∑
i=1

ci, σ = max
1≤n≤N

Kn (40)

|V (t1)− V (t2)|

V (t1)
≤

2
∑M
i=1 ciBi(t1)σ|t2 − t1|+MΥσ2(t2 − t1)2∑M

i=1 ciBi(t1)2
(41)

≤ δ ∀t1 s.t. V (t1) ≥ L(Λ, δ), since |t2 − t1| ≤ Λ

Thus for all δ > 0, there exists L(Λ, δ) such that

(1− δ)V (t1) ≤ V (t2) ≤ (1 + δ)V (t1) ∀t s.t. V (t1) ≥ L(Λ, δ)

(41) follows from (38) 2

The proof nowhere makes any assumption about which property the routing and schedul-
ing intervals satisfy.

A.2 Proof of Lemma 4

Proof of Lemma 4: Initially we do not make any assumption about which property the
routing and scheduling intervals satisfy. Let

W1 = {e : Ei(t+ 1) = 0, ∀i ∈ Se}
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W2 = {e : Di(t+ 1) ≤ 0, ∀i ∈ Se}

W3 = {e : je(t+ 1) 6= ke(t+ 1)}

where je(t+ 1) = arg max
i∈Se

Ei(t+ 1)

and ke(t+ 1) = arg max
i∈Se

Di(t+ 1)

~D(t+ 1)T ~E(t+ 1) = max
~γ∈H

~D(t+ 1)T~γ −
∑

e∈W1∩W c
2

Dke(t+1)(t+ 1) +

∑
e∈W c

1∩W
c
2∩W3

(
Dje(t+1)(t+ 1)−Dke(t+1)(t+ 1)

)
+

∑
e∈W c

1∩W2

Dje(t+1)(t+ 1) (42)

Now let the scheduling intervals follow property (S1) or (S2). Let νe(t) = arg maxΩeι≤t Ω
e
ι .

νe1(t) = νe(t+ 1)− 1. Let e ∈W c
1 ∩W2.

~Eje(t+1)(ν
e(t+ 1)) = 1

Dje(t+1)(ν
e(t+ 1)) + lje(t+1)(ν

e(t+ 1)) > 0

Dje(t+1)(ν
e(t+ 1)) ≥ −lje(t+1)(ν

e(t+ 1))

lje(t+1)(ν
e(t+ 1)) = gje(t+1)( ~B(νe1(t)))

Thus from (39) and since t+ 1− νe(t+ 1) ≤ Ts from (S1), (S2)

∀e ∈W c
1 ∩W2, Dje(t+1)(t+ 1) ≥ −ΥσTs − gje(t+1)( ~B(νe1(t)))

≥ −ΥσTs − max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))| (43)

Let e ∈W c
1 ∩W

c
2 ∩W3.

Dje(t+1)(t+ 1)−Dke(t+1)(t+ 1) ≥ Dje(t+1)(ν
e(t+ 1))−Dke(t+1)(ν

e(t+ 1))− 2ΥσTs

Dje(t+1)(ν
e(t+ 1)) + lje(t+1)(ν

e(t+ 1)) > 0

Let ke(t+ 1) 6∈ Pe(νe(t+ 1)), i.e., Bke(t+1)(ν
e(t+ 1)− 1) = 0

Dke(t+1)(ν
e(t+ 1)) = −

∑
m∈Zke(t+1)

cmBm(νe(t+ 1)− 1)

Dje(t+1)(ν
e(t+ 1))−Dke(t+1)(ν

e(t+ 1)) ≥ Dje(t+1)(ν
e(t+ 1))

> −gje(t+1)( ~B(νe1(t)))

If ke(t+ 1) ∈ Pe(νe(t+ 1)),

Dje(t+1)(ν
e(t+ 1)) + lje(t+1)(ν

e(t+ 1)) ≥ Dke(t+1)(ν
e(t+ 1)) + lke(t+1)(ν

e(t+ 1))

Dje(t+1)(ν
e(t+ 1)−Dke(t+1)(ν

e(t+ 1)) ≥ gke(t+1)( ~B(νe1(t))− gje(t+1)( ~B(νe1(t)))
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∀e ∈W c
1 ∩W

c
2 ∩W3,

Dje(t+1)(t+ 1)−Dke(t+1)(t+ 1) ≥ −2ΥσTs + min
(
−gje(t+1)( ~B(νe1(t))),

−gje(t+1)( ~B(νe1(t))) + gke(t+1)( ~B(νe1(t)))
)

≥ −2ΥσTs − 2 max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))| (44)

Let e ∈W1 ∩W c
2 . Consider the case when Eje(νe(t+1))(ν

e(t+ 1)) = 0.

Dke(t+1)(ν
e(t+ 1)) ≤

{
−gke(t+1)( ~B(νe1(t))) ke(t+ 1) ∈ Pe(νe(t+ 1))
0 otherwise.

Now consider the case when Eje(νe(t+1))(ν
e(t + 1)) = 1. Bje(νe(t+1))(t

′) = 0, for some νe(t +
1)−1 ≤ t′ ≤ t Thus Bje(νe(t+1))(ν

e(t+1)−1) ≤ t′−νe(t+1)+1 ≤ Ts (since at most 1 packet
can be served from Bje(νe(t+1)) in a slot). Thus Dje(νe(t+1))(ν

e(t+ 1)) ≤ cje(νe(t+1))Ts ≤ ΥTs.
Let ke(t+ 1) ∈ Pe(νe(t+ 1)).

Dke(t+1)(ν
e(t+ 1)) + lke(t+1)(ν

e(t+ 1)) ≤ Dje(νe(t+1))(ν
e(t+ 1)) + lje(νe(t+1))(ν

e(t+ 1))

Dke(t+1)(ν
e(t+ 1)) ≤ ΥTs + lje(νe(t+1))(ν

e(t+ 1))− lke(t+1)(ν
e(t+ 1))

If ke(t + 1) 6∈ Pe(ν
e(t + 1)), Dke(t+1)(ν

e(t + 1)) ≤ 0. Thus Dke(t+1)(ν
e(t + 1)) ≤ max(0,

−gke(t+1)( ~B(νe1(t))), ΥTs + gje(νe(t+1))( ~B(νe1(t))) − gke(t+1)( ~B(νe1(t))). From (39) and since
t+ 1− νe(t+ 1) ≤ Ts from (S1), (S2)

∀e ∈W1 ∩W
c
2 , Dke(t+1)(t+ 1) ≤ ΥσTs + max

(
0,−gke(t+1)( ~B(νe1(t))),

ΥTs + gje(νe(t+1))( ~B(νe1(t)))−

gke(t+1)( ~B(νe1(t)))
)

≤ Υ(σ + 1)Ts + 2 max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))| (45)

From (42), (43), (44), (45)

~D(t+ 1)T ~E(t+ 1) ≥ max~γ∈H ~D(t+ 1)T~γ − ζ1−

5|E|max1≤i≤M
e∈E
|gi( ~B(νe1(t)))|

ζ1 = 4|E|Υ(σ + 1
4
)Ts

 (46)

ψ(t) = ζ1 + 5|E| max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))| (47)

(̂i(t), ê(t)) = arg max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))|
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From (4), for any δ1 > 0 there exists L1(δ1), such that

ψ(t)√
V (ν ê(t)1 (t))

≤ δ1 ∀t s.t. V (ν
ê(t)
1 (t)) ≥ L1(δ1) (48)

Let δ2 > 0. From Lemma 6 that there exists L2(Ts, δ2) such that

(1− δ2)V (t) ≤ V (ν
ê(t)
1 (t)) ≤ (1 + δ2)V (t) ∀t s.t. V (t) ≥ L2(Ts, δ2) (49)

since |t − ν
ê(t)
1 (t)| ≤ Ts. Given any δ′, choose δ1, δ2, such that δ1

√
1 + δ2 ≤ δ′. It follows

from (48) and (49) that ψ(t) ≤ δ′
√
V (t), for all t such that V (t) is sufficiently large (V (t) ≥

max(L1(δ1)/(1−δ2), L2(Ts, δ2)), where δ1, δ2 have been chosen to satisfy δ1

√
1 + δ2 ≤ δ′) and

~D(t+ 1)T ~E(t+ 1) ≥ max~γ∈H ~D(t+ 1)T~γ − ψ(t) from (46) and (47).

Now let the scheduling intervals follow property (S3).

∀e ∈W1 ∩W
c
2 , Dke(t+1)(t+ 1) ≤ max

(
−gke(t+1)( ~B(t)),

−gke(t+1)( ~B(t)) + gje(t)( ~B(t)) +

ςe1, −gke(t+1)( ~B(t)) + ςe3
)

(50)

≤ max(ςe1, ςe3) + 2 max
1≤i≤M

|gi( ~B(t))|

(51)

∀e ∈W c
1 ∩W

c
2 ∩W3,

Dje(t+1)(t+ 1)−Dke(t+1)(t+ 1) ≥ gke(t+1)( ~B(t))− gje(t+1)( ~B(t))

−ςe1 (52)

≥ −2 max
1≤i≤M

|gi( ~B(t))| − ςe1 (53)

∀e ∈W c
1 ∩W2, Dje(t+1)(t+ 1) > −gje(t+1)( ~B(t))− ςe2 (54)

≥ − max
1≤i≤M

|gi( ~B(t))| − ςe2 (55)

(50) can be shown as follows. Dke(t+1)(t+ 1) ≤ 0 if ke(t+ 1) 6∈ Pe(t+ 1), but since e ∈W c
2 ,

Dke(t+1) > 0. Hence ke(t+1) ∈ Pe(t+1). If t+1 ∈ {Ωe
ι}, thenDke(t+1)(t+1)+lke(t+1)(t+1) ≤ 0,

since the link idles. If t+ 1 6∈ {Ωe
ι}, then consider two cases: Eje(t)(t) = 1 and Eje(t)(t) = 0.

Let Eje(t)(t) = 1. Now Eje(t+1)(t+1) = 0 can occur only because Bje(t)(t) = 0. Thus we have

Dje(t)(t+ 1) ≤ 0

Di(t+ 1) + li(t+ 1) < Dje(t)(t+ 1) + lje(t)(t+ 1) + ςe1,

∀i ∈ Pe(t+m+ 1) from (S3a).

Dke(t+1)(t+ 1) + lke(t+1)(t+ 1) < lje(t)(t+ 1) + ςe1

Now let Eje(t)(t) = 0. From (S3c) Di(t+ 1) + li(t+ 1) < ςe3, ∀i ∈ Pe(t+ 1). Thus

Dke(t+1)(t+ 1) + lke(t+1)(t+ 1) ≤ ςe3
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Thus Dke(t+1)(t+ 1) ≤ max(−lke(t+1)(t+ 1),−lke(t+1)(t+ 1) +

lje(t)(t+ 1) + ςe1,−lke(t+1)(t+ 1) + ςe3)

Hence (50) follows.

(52) can be justified as follows. If ke(t + 1) 6∈ Pe(t + 1), Dke(t+1)(t + 1) ≤ 0, but since
e ∈ W c

2 , Dke(t+1)(t + 1) > 0. Thus ke(t + 1) ∈ Pe(t + 1). If t + 1 ∈ {Ωe
ι}, from the

scheduling mechanism, Dje(t+1)(t + 1) − Dke(t+1)(t + 1) ≥ lke(t+1)(t + 1) − lje(t+1)(t + 1). If
t+1 6∈ {Ωe

ι}, since Eje(t+1)(t+1) = 1, je(t+1) = je(t). Using this it follows from (S3a) that
Dje(t+1)(t+ 1)−Dke(t+1)(t+ 1) ≥ lke(t+1)(t+ 1)− lje(t+1)(t+ 1)− ςe1.

Let t+ 1 ∈ {Ωe
ι}. Eje(t+1)(t+ 1) = 1 implies that Dje(t+1)(t+ 1) > −lje(t+1)(t+ 1). Now

let t+ 1 6∈ {Ωe
ι}. Again since Eje(t+1)(t+ 1) = 1, je(t+ 1) = je(t). From (S3b) and the fact

that je(t+ 1) = je(t), Dje(t+1)(t+ 1) > −lje(t+1)(t+ 1)− ςe2. Hence (54) follows.

From (42), (51), (53), (55)

~D(t+ 1)T ~E(t+ 1) ≥ max~γ∈H ~D(t+ 1)T~γ − ζ2 − 5|E|max1≤i≤M |gi( ~B(t))|
where ζ2 =

∑
e∈E max(ςe1, ςe2, ςe3)

}
(56)

With ψ(t) = ζ2 + 5|E| max
1≤i≤M

|gi( ~B(t))|

~D(t+ 1)T ~E(t+ 1) ≥ max
~γ∈H

~D(t+ 1)T~γ − ψ(t)

It follows from (4) that given any δ′ > 0, there exists L(δ′) such that ψ(t) ≤ δ′
√
V (t) if

V (t) ≥ L(δ′). 2

A.3 Proof of Lemma 5

Proof of Lemma 5: If t+ 1 ∈ {ωnι }, from the routing policy,∑
Bi∈OTn(t+1)n

ciBi(t) ≤ (
∑

Bi∈Omn

ciBi(t)) + Cmn − CTn(t+1)n ∀m ∈ {1, . . .Mn}

≤ (
∑

Bi∈Omn

ciBi(t)) + υn ∀m, 1 ≤ m ≤Mn (57)

where υn = max
m1,m2∈{1,...Mn}

(Cm1n − Cm2n) (58)

Let t+ 1 6∈ {ωnι }.
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First let the routing decision intervals satisfy property (R1) or (R2).∑
Bi∈OTn(t+1)n

ciBi(t) ≤
∑

Bi∈OTn(t+1)n

ciBi(ν1(t)) + ΥKnTr

( from (37), (40) and (R1), (R2))

≤
∑

Bi∈OΓmn

ciBi(ν1(t)) + υn + ΥKnTr

(OTn(t+1)n = OTn(ν1(t)+1), ν1(t) + 1 ∈ {ωnι }and (57)).

≤
∑

Bi∈OΓmn

ciBi(t) + υn + 2ΥKnTr (59)

( from (37), (40) and (R1), (R2))

Thus if the routing decision intervals satisfy property (R1) or (R2) the result follows from
(57) and (59) with εn = υn + 2ΥKnTr.

Now let the routing decision intervals satisfy property (R3). For t + 1 6∈ {ωnι }, Tn(t) =
Tn(t+ 1) and hence from (R3)∑

Bi∈OTn(t+1)n

ciBi(t) ≤
∑

Bi∈Omn

ciBi(t) + %n + Cmn − CTn(t+1)n (60)

The result follows from (58), (57) and (60) with εn = %n + υn. 2

B Justiification of Proposition 1

Here we show that Proposition 1 follows from the f-Norm Ergodic Theorem of Meyn and
Tweedie [15] that is stated next.

Theorem 3 (pp 330− 331 [15]) Let a discrete time markov chain ~Y (t) (state space X ) be
ψ-irreducible and aperiodic, and let φ1 ≥ 1 be a function on X . Then the following conditions
are equivalent:

1. The chain is positive recurrent with invariant probability measure π and π(φ1) =∫
π(d~x)φ1(~x) <∞.

2. There exists some petite set C and some extended-valued non-negative function φ2

satisfying φ2(~x0) <∞, for some ~x0 ∈ X , and

5φ2(~x) ≤ −φ1(~x) + b1C(~x), ~x ∈ X

where 5φ2(~x) =
∫
P (~x, d~y)φ2(~y)− φ2(~x), ~x ∈ X
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Let SV = {~x : φ2(~x) <∞}. Any of these conditions imply that for any ~x ∈ SV ,

||P n(~x, .)− π(.)||φ1 → 0 as n→∞

where P t(~x,A) = Pr(~Y (t) ∈ A/~Y (0) = ~x), A ∈ B(X ) and ||ν||f = supg:|g|≤f |ν(g)|,
ν(g) =

∫
gd(ν) for any signed measure ν and any measurable function f .

1. A Markov chain state space X is ϕ-irreducible, if there exists a measure ϕ on B(X )
such that whenever ϕ(A) > 0, L(~x,A) > 0, for all ~x ∈ X , where L(~x,A) is the
probability that the chain reaches A starting from ~x. Clearly if there exists a single
closed communication class S accessible from all other states, then the chain is ϕ-
irreducible for all ϕ with ϕ(X\S) = 0. If a chain is ϕ-irreducible for some ϕ, then it
is called ψ-irreducible, where ψ is a unique ”maximal” irreducibility measure amongst
the ϕs for which the chain is ϕ-irreducible.

2. A set A ∈ B(X ) is called νa-petite set if Ka(~x,B) ≥ νa(B), for all ~x ∈ A, B ∈ B(X ),
where νa is a non-trivial measure on B(X ) and Ka(~x,B) =

∑∞
n=0 P

n(~x,B)a(n), where
{a(n)} is a distribution on Z+. Clearly a singleton {~x} is always a petite set (a(1) =
1, a(n) = 0, n 6= 1, γa(A) = P (x,A), ∀A ∈ B(X ).). Petiteness of any finite set follows
from the fact that the union of two petite sets is petite (Proposition 5.5.5 (ii), page
122, [15]).

3. A chain is recurrent if it is ψ-irreducible and Expected number of visits to a set A,
starting from a state ~x is∞ for all ~x ∈ X , and for all A for which ψ(A) > 0. A chain is
positive recurrent if it is ψ-irreducible, recurrent and admits an invariant probability
measure π.

Thus a markov chain with a single closed communication class accessible from any other state
is ψ-irreducible. It follows from 2 that the φ2 function of Proposition 1 satisfies the require-
ments of 2 of the theorem above, with the petite set being the finite set A of Proposition 1
and b be a real number satisfying

b > max
~y∈A

(
E(φ2(~Y (t+ 1))/~Y (t) = ~y)− φ2(~y) + φ1(~y)

)
(Note that the maximum exists finitely because A is a finite set and the φ1, φ2 functions
are everywhere finite.) Sφ2 = X . It follows that any markov chain which satisfies the

requirements of Proposition 1 admits an invariant probability measure π with E(φ1(~Y (t)) <
∞, where the expectation is taken w.r.t probability measure π.

g(t,~x)(~y) =
1 if P t(~x, ~y) ≥ π(~y)
−1 otherwise.

Clearly |g(t,~x)(~y)| = 1 ≤ φ1(~x) for all t and ~x, ~y ∈ X . Also
∫
g(t,~x)d(ν) =

∑
~y∈X |P

t(~x, ~y) −
π(~y)| Thus it follows from the later parts of the theorem that the sequence of probability

measures {πt}, where πt(A) = Pr(~Y (t) ∈ A/~Y (0) = ~x), A ∈ B(X ) converges to π where the
convergence metric being

∑
~y∈X |πt(~y)− π(~y)|. Thus Proposition 1 follows.
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C Proof of throughput optimality of MMRS for markov

modulated arrivals

We proceed to prove the throughput optimality of MMRS for markov modulated arrival
process. The motivation behind this proof is that arrival process in many networks is not
i.i.d in general. However these arrival processes can be modelled reasonably accurately by
markov modulated processes.

Here we assume that the arrival process for session n, An(t) is a markov modulated
process, i.e., {(A1(t), . . . , AN(t)}∞t=1 is a probabilistic function of a finite state irreducible
aperiodic discrete time markov process, S(t). S(t) is the state of the underlying markov
process at the end of slot t. S(t) statistically determines the number of arrivals (A1(t +
1), . . . , AN(t + 1)) in slot t + 1, i.e., given S(t), (A1(t + 1), . . . , AN(t + 1)) is independent

of S(l), (A1(p), . . . , AN(p)), l 6= t, p 6= t + 1. We assume that S(t) is independent of ~Y (t),
where Y (t) is as defined in Section 7. Arrival and service are slotted. Each packet has a
deterministic service time equal to 1 unit. An(t) ≤ Kn, ∀ n, t. Kn is a positive integer for
all n. Let ~p be the stationary distribution for the markov process S(t). p(s) is the steady
state probability of S(t) being in state s. an is the expected number of arrivals for session
n, the expectation taken w.r.t. ~p. Let the arrival rate vector (a1, . . . , aN) be feasible. an(s)
denotes E(An(t)/S(t) = s).

Now ~Π(t) = (~Y (t), S(t)). ~Y (t) is as in Section 7. If the routing policy satisfies either

(R1) or (R2) and the scheduling policy satisfies (S1) or (S2), (~Ξ(t), ~ξ(t)) is the phase of the
system. If the routing policy satisfies either (R1) or (R2) and the scheduling policy satisfies

(S3), ~ξ(t) is the phase of the system. If the routing policy satisfies (R3) and the scheduling

policy satisfies (S1) or (S2), ~Ξ(t) is the phase of the system. Finally if the routing policy
satisfies (R3) and the scheduling policy satisfies (S3), then the system has no phase.

The main result of this section is again Theorem 1 stated in Section 7. We use the
following lemmas to prove Theorem 1 for this generalized arrival model.

Lemma 7 Given the initial phase of the system (if phase exists), {~Π(tΦd + i)}∞t=0, i =
0, . . . ,Φd − 1, is a discrete time countable state aperiodic Markov chain for all integer Φ,
with state space X (I(0),J(0)+i%d)∪S. S is the state space of S(t). X (I(0),J(0)+i%d), d have the
same significance as in Lemma 7. (I(0), J(0)) is uniquely known given the initial phase of
the system. X (I(0),J(0)+i%d)∪S has a single closed communication class for all (I(0), J(0)), i.
This class is accessible from all states in X (I(0),J(0)+i%d)∪S. If phase does not exist, then
d = 1 and (I(0), J(0)) can be arbitrarily assumed to be (1, 1) always.

We argue this lemma later in this section.
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Lemma 8 (Negative Drift Condition for Markov Modulated Arrival Process ) There
exists real nonnegative functions φ1(~z), φ2(~z) such that φ1(~z) ≥ 1, φ2(~z) finite for all
~z ∈ (X×S) and

E(φ2(~Π((t+ 1)Φd+ i))/~Π(tΦd + i) = ~z) < φ2(~z)− φ1(~z), ∀~z ∈ A
c

for some integer Φ. A is a finite subset of (X × S)

Like Lemma 2, Lemma 8 is crucial to the proof of our main result of this section. Lemma 8
holds for all sufficiently large integers Φ, but may not hold for all integers Φ. Arrival rate
may be very high in some states of S(t). Consequently the expected conditional drift in
those states may be positive. However when Φ becomes sufficiently large, expected arrival
rate over all Φ consecutive states is very close to that under the steady state distribution of
S(t) and the expected conditional drift becomes negative. This idea was introduced in [27].
However there the stability results were obtained for markov modulated service process in
unicast network. The set A is always finite but may depend on the value of Φ chosen. We
prove this negative drift condition in the following subsection.

Now clearly Theorem 1 would follow from Lemmas 7, 8 and Proposition 1, if d were
replaced by Φd. Theorem 1 follows without this replacement also, from the observation
that the structure of the markov chains {~Π(tΦd+ i)}∞t=0 and {~Π(tΦd+ j)}∞t=0 are the same if

i%d = j%d. So given the initial phase (if phase exists), { ~B(tΦd+i)}∞t=0 and { ~B(tΦd+j)}∞t=0,
must converge to stochastically equivalent random variables, if i%d = j%d. If the system
does not have phase, d = 1, i%d = j%d, for all i, j and {~Π(tΦd + i)}∞t=0 have the same

structutre for all i. { ~B(tΦd+ i)}∞t=0 converges to the same random variable, ∀i, independent

of ~B(0).

The proof of Lemma 7 follows in the same lines as that of Lemma 1, using the fact that
S(t) is an irreducible aperiodic finite state markov chain independent of ~Y (t). X (I(0),J(0)+i%d)∪S
has a single closed communication class for all (I(0), J(0)), i and that the class is accessible
from all states in X (I(0),J(0)+i%d)∪S follows from the following technical assumption on S(t).
S(t) has a cycle of states s1, . . . , sl, s1 with Pr((A1(t+1), . . . , An(t+1)) = (0, . . . , 0)/S(t) =
si) > 0, ∀si in the cycle. Most markov modulated arrival processes, e.g., on-off sources,
markov modulated bernoulli processes satisfy this property, etc..

C.1 Proof of the Negative Drift Condition (Lemma 8)

We prove the negative drift condition (Lemma 8) using Lemmas 6, 9 and 10. Lemma 6 have
been stated in Section A and proved in Subsection A.1. We state Lemmas 9 and 10 below
but prove them later.
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Lemma 9 There exists a function ψ : R× Z+ → R associated with the Markov chain ~Π(t)
such that

~D(t+ 1)T ~E(t+m+ 1) ≥ max
~γ∈H

~D(t+ 1)T~γ − ψ(t,m)

where ψ satisfies the property that for any δ′ > 0, there exists a constant L(δ′,m) such that

ψ(t,m) ≤ δ′
√
V (t), if V (t) ≥ L(δ′,m). V (t) =

√∑M
j=1 cjB

2
j (t) as before. Z+ is the set of

nonnegative integers.

Lemma 10 There exists constants χn1 and χn2 for each session n and every nonnegative
integer m such that ∑

Bj∈OTn(t+m+1)n

cjBj(t) ≤
∑

Bj∈OTn(t+1)n

cjBj(t) + χn1 +mχn2

χn1, χn2 are constants independent of m.

Proof of Lemma 2: Let φ2(~z) =
∑M
i=1 cib

2
i , ~z ∈ X× S φ2(~Π(t)) = V (t), where V (t) =∑M

j=1 cjB
2
j (t)

Clearly φ2(~z) <∞, ∀~z ∈ X × S, (61)

where X × S is the state space of ~Π(t).

V (t) = (K ~B(t))T (K ~B(t))

K = diag(
√
c1, . . . ,

√
cN )

V ((t+ 1)Φd+ i)− V (tΦd + i) =
Φd−1∑
m=0

(V (tΦd + i+m+ 1)− V (tΦd+ i+m)) (62)

tm = tΦd+ i+m (63)

V (tm + 1)− V (tm) = (K( ~B(tm + 1)− ~B(tm)))T (K( ~B(tm + 1) + ~B(tm)))

= (K(R~E(tm + 1) + Ã(tm + 1)))T (K(2 ~B(tm) +

R~E(tm + 1) + Ã(tm + 1)))

= (R~E(tm + 1) + Ã(tm + 1))TKTK(R~E(tm + 1) +

Ã(tm + 1)) + 2(KTK ~B(tm))T (R~E(tm + 1) + Ã(tm + 1)) (64)

Since Ãi(t) ≤ Kn(i), ∀i, t and Ei(t) ≤ 1, ∀i, t,

(R~E(tl + 1) + Ã(tl + 1))TKTK(R~E(tm + 1) + Ã(tm + 1)) ≤ α w.p. 1 ∀ l,m (65)

α is a finite positive constant and the same as that used in page 34.

~B(tm) = ~B(t0) +
m−1∑
l=0

(
(R~E(tl + 1) + Ã(tl + 1)

)
(66)
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(KTK ~B(tm))T (R~E(tm + 1) + Ã(tm + 1)) = (KTK ~B(t0))
T (R~E(tm + 1) + Ã(tm + 1)) +

m−1∑
l=0

[(R~E(tl + 1) + Ã(tl + 1))T

KTK( ~E(tm + 1) + Ã(tm + 1))] (from 66)

≤ (KTK ~B(t0))
T (R~E(tm + 1) + Ã(tm + 1))

+mα (from (65)) (67)

From (64), (65) and (67)

E(V (tm+1)−V (tm)/~Π(t0)) ≤ (m+1)α+2E((KTK ~B(t0))
T (R~E(tm+1)+Ã(tm+1))/~Π(t0))

(68)

(KTK ~B(t0))
TR~E(tm + 1) = −~DT (t0 + 1) ~E(t0 +m+ 1)

≤ −max
~γ∈H

~D(t0 + 1)T~γ + δ′V (t0) if V (t0) ≥ L(δ′,m)

(from Lemma 9)

E((KTK ~B(t0))
TR~E(tm + 1)/~Π(t0)) ≤ −max

~γ∈H
~D(t0 + 1)T~γ + δ′V (t0) if V (t0) ≥ L(δ′,m)(69)

E((KTK ~B(t0))
T Ã(tm + 1)/~Π(t0)) = (KTK ~B(t0))

TE(Ã(tm + 1)/~Π(t0))

= (KTK ~B(t0))
TE[E(Ã(tm + 1)/~Π(tm))/~Π(t0)]

E(Ã(tm + 1)j/~Π(tm)) = an(j)(S(tm)) if Bj ∈ OTn(tm+1)n(j)

0 otherwise.

E((KTK ~B(t0))
T Ã(tm + 1)/~Π(t0)) =

∑
~y∈X

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(tm+1)n

cjBj(t0)

Pr(~Y (tm) = ~y,

S(tm) = s/~Π(t0))

≤
∑
~y∈X

∑
s∈S

 N∑
n=1

an(s)(χn1 +mχn2 +
∑

j:Bj∈OTn(t0+1)n

cjBj(t0))


Pr(~Y (tm) = ~y, S(tm) = s/~Π(t0)) w.p. 1

(from Lemma 2)

=

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

Pr(S(tm) = s/~Π(t0))

+

N∑
n=1

an(χn1 +mχn2)

=

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

Pr(S(tm) = s/S(t0))

+

N∑
n=1

an(χn1 +mχn2)
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≤
∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

 p(s) +

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

Ψ(m, s, S(t0)) +

N∑
n=1

an(χn1 +mχn2)

where Ψ(m, s, S(t0)) = |Pr(S(tm) = s/S(t0))− p(s)|

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

 p(s) =
N∑
n=1

(
∑

j:Bj∈OTn(t0+1)n

cjBj(t0))(
∑
s∈S

an(s)p(s))

=
N∑
n=1

(
∑

j:Bj∈OTn(t0+1)n

cjBj(t0))an

Thus E((KTK ~B(t0))
T Ã(tm + 1)/~Π(t0)) ≤

N∑
n=1

an
∑

j:Bj∈OTn(t0+1)n

cjBj(t0) +
N∑
n=1

an(χn1 +mχn2) +

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

Ψ(m, s, S(t0)) (70)

Since the arrival rate vector is feasible, from (24) and (25)

N∑
n=1

an
∑

j:Bj∈OTn(t0+1)n

cjBj(t0) ≤ λmax
~γ∈H

~D(t0 + 1)T~γ + ε (71)

λ is as defined on page 35. From (68), (69), (70) and (71) if V (t0) ≥ L(δ′,m),

E(V (tm + 1)− V (tm)/~Π(t0)) ≤ α1 +mα2 − 2(1− λ) max
~γ∈H

~D(t0 + 1)T~γ +

2δ′V (t0) + 2
∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t)

Ψ(m, s, S(t0))

α1 = α+ 2ε+ 2
N∑
n=1

anχn1

α2 = α+ 2
N∑
n=1

anχn2

max
~γ∈H

~DT (t+ 1)~γ ≥ ( min
1≤j≤M

√
cj)

√
V (t)

M3
(from (29))

Let δ′ =
1

2

(1− λ) min1≤j≤M
√
cj

M1.5
)
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E(V (tm + 1)− V (tm)/~Π(t0)) ≤ α1 +mα2 − 2λ′
√
V (t0) +

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t)

Ψ(m, s, S(t0)) (72)

λ′ = 1
2

(1−λ) min1≤j≤M
√
cj

M1.5 as defined in (30). δ′ = λ′ > 0.

E(V ((t+ 1)Φd+ i)− V (tΦd + i)/~Π(t0)) =
Φd−1∑
m=0

E(V (tm + 1)− V (tm)/~Π(t0)) (from (62) and (63)

≤ Φdα1 +
Φd(Φd− 1)

2
α2 − 2Φdλ′

√
V (t0) +

Φd−1∑
m=0

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t0)

Ψ(m, s, S(t0)) (73)

(from (72)), if V (t0) ≥ max
0≤m<Φd

L(λ′,m)

∑
j:Bj∈OTn(t0+1)n

ciBi(t) ≤
M∑
j=1

cjBj(t)

≤ τ1

√
V (t) for some constant τ1, ∀t (74)

(from equivalence of metrics)

Let τ2 =
∑
s∈S

N∑
n=1

an(s) (75)

Let Θ(m) = max
s∈S

S(t0)∈S

Ψ(m, s, S(t0)) (76)

Θ(m) ≤ 1 (77)

Since S(t) is an irreducible, aperiodic markov chain limm→∞ Pr(S(tm) = s/S(t0) = s′) =
p(s), independent of s′. Since S(t) has finite number of states, this means limm→∞Θ(m) = 0,
i.e.

3 m0 s.t. ∀m ≥ m0,Θ(m) <
λ′

2τ1τ2
(78)

From (74), (75) and (76)

Φd−1∑
m=0

∑
s∈S

 N∑
n=1

an(s)
∑

j:Bj∈OTn(t0+1)n

cjBj(t)

Ψ(m, s, S(t0)) = τ1τ2

√
V (t0)

Φd−1∑
m=0

Θ(m) (79)

= τ1τ2

√
V (t0)(

m0−1∑
m=0

Θ(m) +
Φd−1∑
m=m0

Θ(m))

< (Φd−m0)
λ′

2

√
V (t0) +m0τ1τ2

√
V (t0) (80)

if Φd > m0 (from (77) and (78))
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If V (t0) ≥ max0≤m<Φd L(λ′,m), and Φd > m0, then from (73) and (80)

E(V ((t+ 1)Φd+ i)− V (tΦd + i)/~Π(t0) ≤ Φdα1 +
Φd(Φd− 1)

2
α2 − Φdλ′

√
V (t0) +

2m0(τ1τ2 −
λ′

2
)
√
V (t0)

Let Φ = dmax(
m0 + 1

d
,
m0

d
(2
τ1τ2

λ′
− 1) +

χ

dλ′
)e (81)

and α3 = Φdα1 +
Φd(Φd− 1)

2
α2 (82)

χ is a positive real number. Note that Φ as defined in (81) is a positive integer and m0 < Φd.

Let φ1(~z) = max(1,
χ

√∑M

i=1
cib

2
i

κ
) ~z ∈ X × S, κ > 1. φ1(~Π(t)) = max(1,

χ
√
V (t)

κ
)

E(V ((t+ 1)Φd+ i)− V (tΦd+ i)/~Π(t0)) ≤ α3 − χ
√
V (t0)

≤ φ1(~Π(t0)) for all sufficiently large V (t0)(83)

The last inequality holds if V (t0) ≥ β = (max(κ/χ, α3/(χ∗(1−κ−1)),max0≤m<Φd L(λ′,m))2,

where α3,Φ have been defined in (82) and (81) respectively. Since φ2(~Π(t)) = V (t), this is
true for all ~z ∈ Ac ⊆ X × S, where A = {~z : φ2(~z) < β, ~z ∈ X × S} is a finite set. Since
t0 = tΦd+ i, we have

E(φ2(Π((t+1)Φd+ i))−φ2(Π(tΦd+ i))/~Π(tΦd+ i) = ~z) ≤ φ1(Π(tΦd+ i)) ∀~z ∈ Ac, |A| <∞

The result follows from (61) and since φ1(~z) ≥ 1, ∀~z ∈ X×S. 2

C.2 Proof of Lemma 9

Proof of Lemma 9: Initially we do not make any assumption about which property the
routing and scheduling intervals satisfy. Let

W1 = {e : Ei(t+m+ 1) = 0, ∀i ∈ Se}

W2 = {e : Di(t+ 1) ≤ 0, ∀i ∈ Se}

W3 = {e : je(t+m+ 1) 6= ke(t+ 1)}

where je(t) = arg max
i∈Se

Ei(t)

and ke(t) = arg max
i∈Se

Di(t)

~D(t+ 1)T ~E(t+m+ 1) = max
~γ∈H

~D(t+ 1)T~γ −
∑

e∈W1∩W c
2

Dke(t+1)(t+ 1) +

∑
e∈W c

1∩W
c
2∩W3

(
Dje(t+m+1)(t+ 1)−Dke(t+1)(t+ 1)

)
+

∑
e∈W c

1∩W2

Dje(t+m+1)(t+ 1) (84)
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Now let the scheduling intervals follow property (S1) or (S2). Let νe(t) = arg maxΩeι≤t Ω
e
ι .

νe1(t) = νe(t+ 1)− 1. Let e ∈ W c
1 ∩W2.

~Eje(t+m+1)(ν
e(t+m+ 1)) = 1

Dje(t+m+1)(ν
e(t+m+ 1)) + lje(t+m+1)(ν

e(t+m+ 1)) > 0

Dje(t+m+1)(ν
e(t+m+ 1)) ≥ −lje(t+m+1)(ν

e(t+m+ 1))

lje(t+m+1)(ν
e(t+m+ 1)) = gje(t+m+1)( ~B(νe1(t+m)))

Thus from (39) and since |t+ 1− νe(t+m+ 1)| ≤ max(m,Ts) from (S1), (S2)

∀e ∈W c
1 ∩W2, Dje(t+m+1)(t+ 1) ≥ −Υσmax(m,Ts)− gje(t+m+1)( ~B(νe1(t+m)))

≥ −Υσmax(m,Ts)− max
1≤i≤M
e∈E

|gi( ~B(νe1(t+m)))| (85)

Let e ∈W c
1 ∩W

c
2 ∩W3. Since |t+ 1− νe(t+m+ 1)| ≤ max(m,Ts),

Dje(t+m+1)(t+1)−Dke(t+1)(t+1) ≥ Dje(t+m+1)(ν
e(t+m+1))−Dke(t+1)(ν

e(t+m+1))−2Υσmax(m,Ts)

Dje(t+m+1)(ν
e(t+m+ 1)) + lje(t+m+1)(ν

e(t+m+ 1)) > 0

Let ke(t+ 1) 6∈ Pe(νe(t+m+ 1)), i.e., Bke(t+1)(ν
e(t+m+ 1)− 1) = 0

Dke(t+1)(ν
e(t+m+ 1)) = −

∑
r∈Zke(t+1)

crBr(ν
e(t+m+ 1)− 1)

Dje(t+m+1)(ν
e(t+m+ 1))−Dke(t+1)(ν

e(t+m+ 1)) ≥ Dje(t+m+1)(ν
e(t+m+ 1))

> −gje(t+m+1)( ~B(νe1(t+m)))

If ke(t+ 1) ∈ Pe(νe(t+m+ 1)),

Dje(t+m+1)(ν
e(t+m+ 1)) + lje(t+m+1)(ν

e(t+m+ 1)) ≥ Dke(t+1)(ν
e(t+m+ 1)) +

lke(t+1)(ν
e(t+m+ 1))

Dje(t+m+1)(ν
e(t+m+ 1)−Dke(t+1)(ν

e(t+m+ 1)) ≥ gke(t+m+1)( ~B(νe1(t+m))−

gje(t+m+1)( ~B(νe1(t+m)))

∀e ∈W c
1 ∩W

c
2 ∩W3,

Dje(t+m+1)(t+ 1)−Dke(t+1)(t+ 1) ≥ −2Υσmax(m,Ts) + min
(
−gje(t+m+1)( ~B(νe1(t+m))),

−gje(t+m+1)( ~B(νe1(t+m))) + gke(t+1)( ~B(νe1(t+m)))
)

≥ −2Υσmax(m,Ts)− 2 max
1≤i≤M
e∈E

|gi( ~B(νe1(t+m)))| (86)

Let e ∈W1 ∩W c
2 . Consider the case when Eje(νe(t+m+1))(ν

e(t+m+ 1)) = 0.

Dke(t+1)(ν
e(t+m+ 1)) ≤

{
−gke(t+1)( ~B(νe1(t+m))) ke(t+ 1) ∈ Pe(νe(t+m+ 1))
0 otherwise.
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Now consider the case when Eje(νe(t+m+1))(ν
e(t + m + 1)) = 1. Bje(νe(t+m+1))(t

′) = 0, for
some νe(t + m + 1) − 1 ≤ t′ ≤ t + m Thus Bje(νe(t+m+1))(ν

e(t + m + 1) − 1) ≤ t′ − νe(t +
m + 1) + 1 ≤ Ts (since at most 1 packet can be served from Bje(νe(t+m+1)) in a slot). Thus
Dje(νe(t+m+1))(ν

e(t+m+ 1)) ≤ cje(νe(t+m+1))Ts ≤ ΥTs.
Let ke(t+ 1) ∈ Pe(νe(t+m+ 1)).

Dke(t+1)(ν
e(t+m+ 1)) + lke(t+1)(ν

e(t+m+ 1)) ≤ Dje(νe(t+m+1))(ν
e(t+m+ 1)) +

lje(νe(t+m+1))(ν
e(t+m+ 1))

Dke(t+1)(ν
e(t+m+ 1)) ≤ ΥTs + lje(νe(t+m+1))(ν

e(t+m+ 1))−

lke(t+1)(ν
e(t+m+ 1))

If ke(t+ 1) 6∈ Pe(νe(t+m+ 1)), Dke(t+1)(ν
e(t+m+ 1)) ≤ 0. Thus Dke(t+1)(ν

e(t+m+ 1)) ≤

max(0,−gke(t+1)( ~B(νe1(t+m))),ΥTs + gje(νe(t+m+1))( ~B(νe1(t+m)))− gke(t+1)( ~B(νe1(t+m))).
From (39) and since t+ 1− νe(t+m+ 1) ≤ max(m,Ts) from (S1), (S2)

∀e ∈W1 ∩W
c
2 , Dke(t+1)(t+ 1) ≤ Υσmax(m,Ts) + max

(
0,−gke(t+1)( ~B(νe1(t+m))),

ΥTs + gje(νe1(t+m+1))( ~B(νe1(t+m)))−

gke(t+1)( ~B(νe1(t+m)))
)

≤ Υ(σ + 1) max(m,Ts) + 2 max
1≤i≤M
e∈E

|gi( ~B(νe1(t+m)))| (87)

From (84), (85), (86), (87)

~D(t+ 1)T ~E(t+m+ 1) ≥ max~γ∈H ~D(t+ 1)T~γ − ζ1−

5|E|max1≤i≤M
e∈E
|gi( ~B(νe1(t+m)))|

ζ1 = 4|E|Υ(σ + 1
4
) max(m,Ts)

 (88)

ψ(t,m) = ζ1 + 5|E| max
1≤i≤M
e∈E

|gi( ~B(νe1(t+m)))| (89)

(̂i(t), ê(t)) = arg max
1≤i≤M
e∈E

|gi( ~B(νe1(t)))|

From (4), for any m ≥ 0, δ1 > 0 there exists L1(δ1), such that

ψ(t,m)√
V (ν

ê(t+m)
1 (t+m))

≤ δ1 ∀t s.t. V (ν
ê(t+m)
1 (t+m)) ≥ L1(δ1) (90)

Let δ2 > 0. From Lemma 6 there exists L2(max(Ts,m), δ2) such that

(1− δ2)V (t) ≤ V (ν ê(t+m)
1 (t+m)) ≤ (1 + δ2)V (t) ∀t s.t. V (t) ≥ L2(max(Ts,m), δ2) (91)

since |t−ν ê(t+m)
1 (t+m)| ≤ max(Ts,m). Given any δ′, choose δ1, δ2, such that δ1

√
1 + δ2 ≤ δ′.

It follows from (90) and (91) that ψ(t,m) ≤ δ′
√
V (t), for all t such that V (t) is sufficiently
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large (V (t) ≥ max(L1(δ1)/(1 − δ2), L2(max(Ts,m), δ2)), where δ1, δ2 have been chosen to

satisfy δ1

√
1 + δ2 ≤ δ′) and ~D(t+1)T ~E(t+m+1) ≥ max~γ∈H ~D(t+1)T~γ−ψ(t,m) from (88)

and (89).

Now let the scheduling intervals follow property (S3).

∀e ∈W1 ∩W
c
2 , Dke(t+1)(t+ 1) ≤ Υσm+ max

(
0,−gke(t+1)( ~B(t+m)),

−gke(t+1)( ~B(t+m)) + gje(t+m)( ~B(t+m)) +

ςe1, −gke(t+1)( ~B(t+m)) + ςe3
)

(92)

≤ Υσm+ max(ςe1, ςe3) + 2 max
1≤i≤M

|gi( ~B(t+m))| (93)

∀e ∈W c
1 ∩W

c
2 ∩W3,

Dje(t+m+1)(t+m+ 1)−Dke(t+1)(t+m+ 1) ≥ −2Υσm+ min(gke(t+1)( ~B(t+m)), 0)−

max(ςe1, ςe2)− gje(t+m+1)( ~B(t+m)) (94)

≥ −2 max
1≤i≤M

|gi( ~B(t+m))| −max(ςe1, ςe2)− 2Υσm (95)

∀e ∈W c
1 ∩W2, Dje(t+m+1)(t+m+ 1) > −Υσm− gje(t+m+1)( ~B(t+m))− ςe2 (96)

≥ −Υσm− max
1≤i≤M

|gi( ~B(t+m))| − ςe2 (97)

(92) can be shown as follows. Dke(t+1)(t + m + 1) ≤ 0 if ke(t + 1) 6∈ Pe(t + m + 1). Let
ke(t+1) ∈ Pe(t+m+1). If t+m+1 ∈ {Ωe

ι}, then Dke(t+1)(t+m+1)+ lke(t+1)(t+m+1) ≤ 0,
since the link idles. If t +m + 1 6∈ {Ωe

ι}, then consider two cases: Eje(t+m)(t +m) = 1 and
Eje(t+m)(t+m) = 0. Let Eje(t+m)(t+m) = 1. Now Eje(t+m+1)(t+m+ 1) = 0 can occur only
because Bje(t+m)(t+m) = 0. Thus we have

Dje(t+m)(t+m+ 1) ≤ 0

Di(t+m+ 1) + li(t+m+ 1) < Dje(t+m)(t+m+ 1) + lje(t+m)(t+ 1) + ςe1,

∀i ∈ Pe(t+m+ 1) from (S3a).

Dke(t+1)(t+m+ 1) + lke(t+1)(t+m+ 1) < lje(t+m)(t+m+ 1) + ςe1

Now let Eje(t+m)(t) = 0. From (S3c) Di(t+m+ 1) + li(t+m+ 1) < ςe3, ∀i ∈ Pe(t+m+ 1).
Thus

Dke(t+1)(t+m+ 1) + lke(t+1)(t+m+ 1) ≤ ςe3

Thus Dke(t+1)(t+m+ 1) ≤ max(0,−lke(t+1)(t+m+ 1),−lke(t+1)(t+m+ 1) +

lje(t+m)(t+m+ 1) + ςe1,−lke(t+1)(t+m+ 1) + ςe3)

(92) follows from (39).

(94) can be justified as follows. Let ke(t + 1) 6∈ Pe(t +m + 1). Dke(t+1)(t +m + 1) ≤ 0.
If je(t + m + 1) 6∈ Pe(t + m + 1), Bje(t+m+1)(t +m) = 0. From the scheduling mechanism,
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Eje(t+m+1)(t+m+1) = 0, but since e ∈W c
1 , Eje(t+m+1)(t+m+1) = 1. Thus je(t+m+1) ∈

Pe(t+m+ 1). If t+m+ 1 ∈ {Ωe
ι}, since Eje(t+m+1)(t+m+ 1) = 1 Dje(t+m+1)(t+m+ 1) +

lje(t+m+1)(t+m+ 1) > 0. Thus

Dje(t+m+1)(t+m+ 1)−Dke(t+1)(t+m+ 1) ≥ −lje(t+m+1)(t+m+ 1)

If t+m+ 1 6∈ {Ωe
ι}, since Eje(t+m+1)(t+m+ 1) = 1, je(t+m+ 1) = je(t+m). Using this

it follows from (S3b) that Dje(t+m+1)(t+m+ 1) + lje(t+m+1)(t+m+ 1) > −ςe2. Thus

Dje(t+m+1)(t+m+ 1)−Dke(t+1)(t+m+ 1) ≥ −lje(t+m+1)(t+m+ 1)− ςe2

Since ςe2 > 0, it follows that if ke(t+ 1) 6∈ Pe(t+m+ 1),

Dje(t+m+1)(t+m+ 1)−Dke(t+1)(t+m+ 1) ≥ −lje(t+m+1)(t+m+ 1)− ςe2 (98)

Now let ke(t+ 1) ∈ Pe(t+m+ 1). If t+m+ 1 ∈ {Ωe
ι}, from the scheduling mechanism,

Dje(t+m+1)(t+m+ 1)−Dke(t+1)(t+m+ 1) ≥ lke(t+1)(t+m+ 1)− lje(t+m+1)(t+m+ 1). If
t+1 6∈ {Ωe

ι}, since Eje(t+m+1)(t+m+1) = 1, je(t+m+1) = je(t+m). Using this it follows
from (S3a) that

Dje(t+m+1)(t+m+1)−Dke(t+1)(t+m+1) ≥ lke(t+1)(t+m+1)−lje(t+m+1)(t+m+1)−ςe1 (99)

From (98) and (99)

Dje(t+m+1)(t+m+1)−Dke(t+1)(t+m+1) ≥ min(lke(t+1)(t+m+1), 0)−max(ςe1, ςe2)−lje(t+m+1)(t+m+1)

From (39)Dje(t+m+1)(t+1)−Dke(t+1)(t+1) ≥ Dje(t+m+1)(t+m+1)−Dke(t+1)(t+m+1)−2Υσm.
(94) follows.

Let t +m + 1 ∈ {Ωe
ι}. Eje(t+m+1)(t + m + 1) = 1 implies that Dje(t+m+1)(t + m + 1) >

−lje(t+m+1)(t +m + 1). Now let t +m + 1 6∈ {Ωe
ι}. Again since Eje(t+m+1)(t +m + 1) = 1,

je(t + m + 1) = je(t + m). From (S3b) and the fact that je(t + m + 1) = je(t + m),
Dje(t+m+1)(t+m+ 1) > −lje(t+m+1)(t+m+ 1)− ςe2. Since ςe2 > 0, (96) follows from (39).

From (84), (93), (95), (97)

~D(t+ 1)T ~E(t+m+ 1) ≥ max~γ∈H ~D(t+ 1)T~γ − ζ2 − 5|E|max1≤i≤M |gi( ~B(t+m))|
where ζ2 = 2Υσm+

∑
e∈E max(ςe1, ςe2, ςe3)

}

With ψ(t,m) = ζ2 + 5|E| max
1≤i≤M

|gi( ~B(t+m))|

~D(t+ 1)T ~E(t+m+ 1) ≥ max
~γ∈H

~D(t+ 1)T~γ − ψ(t,m)

It follows from (4) that given any δ1 > 0, there exists L1(δ1) such that

ψ(t,m)√
V (t+m)

≤ δ1 ∀t s.t. V (t+m) ≥ L1(δ1) (100)
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Let δ2 > 0. From Lemma 6 there exists L2(m, δ2) such that

(1− δ2)V (t) ≤ V (t+m) ≤ (1 + δ2)V (t) ∀t s.t. V (t) ≥ L2(m, δ2) (101)

Given any δ′, choose δ1, δ2, such that δ1

√
1 + δ2 ≤ δ′. It follows from (100) and (101) that

ψ(t,m) ≤ δ′
√
V (t), for all t such that V (t) is sufficiently large (V (t) ≥ max(L1(δ1)/(1 −

δ2), L2(m, δ2)), where δ1, δ2 have been chosen to satisfy δ1

√
1 + δ2 ≤ δ′) 2

C.3 Proof of Lemma 10

Proof of Lemma 10:∑
Bi∈OTn(t+m+1)n

ciBi(t) ≤ (
∑

Bi∈OTn(t+m+1)n

ciBi(t+m)) + ΥKnm (from (37))

≤ (
∑

Bi∈OTn(t+1)n

ciBi(t+m)) + εn + ΥKnm (from Lemma 5)

≤ (
∑

Bi∈OTn(t+1)n

ciBi(t)) + ΥKnm+ εn +mΥKn (from (37))

The result follows with χn1 = εn and χn2 = 2ΥKn. 2
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Symbols used throughout the paper

An(t), 22
Bi(t), 10
Bmne(t), 9
Cmn, 11
Di(t+ 1), 12
E, 5
G, 5
Kn, 22
M , 10
Mn, 5
N , 5
Omn, 11
Pe(t+ 1), 12
R, 23
Se, 13
Tmn , 5
Tr, 11
Ts, 13
TUv , 5
V , 5
Xu(t), 19
Zi, 10
Γ(t), 11
T n, 5
ωnι , 11
Ãi(t), 22
~E(t+ 1), 12
an, 21
amn , 21
ci, 11
d(e), 9
e, 9
e(i), 10

gi(~b), 13
je(t), 13
n(i), 10
o(e), 9
p(i), 10
pe(t), 13
se(t+ 1), 12
u(i), 10

~B(t), 13

Ωe
ι , 13

%n ≥ 0, 11
ςe1, 13
ςe2, 13
ςe3, 14

Ξe(t), 23
ξn(t), 23
~Ξ(t), 23
~ξ(t), 23
~X(t), 19

~Y (t), 23
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Symbols used in Section 8

A(ã), 26
C, 26
F , 26
Q(n), 27
Uãâf̃ , 28
Vãf̃ , 28
ε, 28
â, 26
ã, 26
~λ(t), 30
fmn , 26
lT , 26
n(f̃), 29
oT , 26

buffer discharge vector f̃ , 26
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Symbols used in Appendix A

H, 33
K, 35
V (t), 33
je(t+ 1), 39
ke(t+ 1), 39

â, 36
α, 35

~f , 36

κ, 37

λ, 36
λ′, 37
λ~γ, 36

νe(t), 40
νe1(t), 40

φ1, 37
φ2, 35
ψ(t), 34, 41, 43

σ, 39

t0, 38
td−1, 38
tk, 37

Υ, 39
υn, 43

εn, 34
ε, 36

W1, 39
W2, 39
W3, 39
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Symbols used in Appendix C

χn1, 47
χn2, 47

φ1, 50
φ2, 47
ψ(t), 53, 55
ψ(t,m), 47

W1, 51
W3, 51
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