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Transcriptional regulation of a co-expressed gene network often relies on adoption of a 

three-dimensional conformation, dubbed a ‘chromatin hub’ or ‘regulatory archipelago’, 

which radically reduces spatial distances between genomically remote enhancers and gene 

targets, as well as among enhancers. While the advantage of spatial proximity for fostering 

pairwise interactions is self-evident, there has been limited exploration within archipelagos 

of higher-order interactions.  Here we probe the evidence for a novel and group-level 

mechanism which, we hypothesize, is emergent when numerous coordinately-acting 

regulatory enhancers, mediated by chromatin, converge in space. Based on functional 

human genomic data and biophysical modeling, and using a set of 40 enhancer 

archipelagos we identified through shared activity across 37 tissues, we show that three-

dimensional juxtaposition of dozens of genomically dispersed binding sites for a given 

transcription factor (TF) can briefly ‘trap’ diffusing TF proteins, eliciting a spike in local 

TF concentration and a two-fold boost in its DNA occupancy at member enhancers. We 

find substantial evidence for the role of this ‘crowdsourcing’ effect in tissue-specific gene-
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complex activation, and in the process, offer the first evidence for a predictable group-level 

modulator of TF occupancy that operates independently of genomic distance. In turn, 

crowd-sourcing proves a surprising answer to the paradoxical source of binding specificity 

for degenerate TFs, in general, and various master regulator TFs, in particular. 

Additionally, we show that crowdsourcing likely contributes to super-enhancer 

functionality and speculate on crowdsourcing’s role in coordinating collectives of super-

enhancers in cell lineage determination. Finally, we ask whether the biophysical impact of 

crowdsourcing also flows in the opposite direction. Here we find, likely mediated by 

elevated TF concentrations, that coordinately acting enhancers adopt a more compact 

conformation, stereotypical of activated gene complexes. Together, we find compelling 

evidence for a novel and pervasive regulatory mechanism that is emergent at the level of 

co-expressed gene module and which, both, mediates and is mediated by higher-order 

chromatin structure. 
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Preface 
 

When Watson and Crick’s Central Dogma posited that life was inscribed in a 4-letter 

alphabet, it sparked a revolution that has since privileged an informatics and linear 

perspective in the study of the genome. The advent of high-throughput sequencing has 

done little to change this. 

In the last decade, however, there has been a rapidly growing appetite in the community 

to look beyond sequence. While it has always been clear to some that a full understanding 

of transcriptional regulation required both structure-based and sequence-based insights, 

there have been technical challenges in integrating data from the two domains. With the 

introduction and rapid adoption of chromatin conformation capture (3C) techniques, 

however, it has become possible to not only probe chromatin’s three-dimensional 

structure in unprecedented detail and scale, but to do so through the lens of sequence. 

Based on this technology several novel mechanisms have been elucidated though which 

the genome’s topology during interphase is directly implicated in transcriptional 

regulation. It is in this young tradition that the current work is situated.  
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Crowdsourcing: the practice of obtaining needed services, ideas, or content by soliciting 

contributions from a large group rather than from traditional suppliers. 

--redacted from Merriam Webster 

 Introduction Chapter 1:

Non-coding regions 

Recent work has exposed the tension between the pinpoint spatiotemporal control of cell 

fate determination and the  far “leakier” elements of transcriptional regulation underlying 

it (Spitz and Furlong, 2012). But this noise should not obscure the deep causal link 

between development and transcriptional regulation. In mouse, by one estimate, 

variability in overall transcript abundance among individuals accounts for 60% of 

variation in protein abundance (Maier et al., 2009), the building blocks of cells, while 

more than 40% of variability in protein abundance among species can be explained by 

variability in orthologous transcript levels (Vogel and Marcotte, 2012). Eukaryotes have 

evolved complex mechanisms to modulate transcriptional output in response to integrated 

developmental and environmental cues (Adelman and Lis, 2012). Elucidating these 

regulatory mechanisms has been the focus of considerable attention since the first such 

mechanism was characterized more than 50 years ago, for the lactase-coding lac operon 

in E. coli (Jacob and Monod, 1961). Due largely to the relatively low proportion of 

candidate regulatory elements in non-coding regions, combined with a dearth of sequence 

data, this work, until recent decades, focused overwhelmingly on the promoter region 

immediately upstream of the transcription start site, where the enzyme polymerase II is 

initially recruited as a required step before elongation. Reinforcing this promoter-centric 
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paradigm, arguably, was a prevailing informatic, one-dimensional view of the genome, 

ushered in with the discovery of DNA’s secondary structure in 1953. 

A key corrective to this promoter-centric viewpoint, thanks to greater availability of data, 

has been multi-species sequence alignment. By comparing observed conservation levels 

to levels predicted by a neutral model of mutation, non-coding regions covering 5 to 10 

percent of the genome have been identified, many quite distant from any known gene, 

that are subject to high levels of purifying selection (Dermitzakis et al., 2005; Lindblad-

Toh et al., 2011). Further strengthening the case for their in vivo functionality, a 

significant percentage of the conserved non-coding regions tested drive reporter gene 

expression (Li et al., 2010; Nobrega et al., 2003), while many others harbor disease-

associated single nucleotide polymorphisms identified by genome-wide association 

studies (Cooper and Shendure, 2011). To be sure, the correlation between sequence 

conservation and functional conservation appears to be modest, with each, alternately, 

overly and insufficiently conservative in predicting the other, depending on tissue and 

other factors (Blow et al., 2010; Nelson and Wardle, 2013). The recent ENCODE project, 

however, challenged the existence of correlation altogether when, based on evidence of 

TF binding and transcription, they asserted that as much as 90% of the human genome 

was ‘functional’ (Bernstein et al., 2012), despite minimal conservation. The ensuing 

outcry ignited a conversation on how best to define ‘functional’ in a genomic context 

(Doolittle, 2013). Regardless of where the science settles, far richer data together with 

heightened awareness of distal regions’ potential in a three-dimensional framework to 

regulate transcription has led to unprecedented attention on non-coding regions. 
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Trans-acting factors and binding 

The recruitment in mammals of RNA polymerase to the promoter depends on a minimal 

set of six general DNA-binding proteins, or transcription factors – TFIIA, TFIIB, TFIID, 

TFIIE, TFIIF, and TFIIH (Orphanides et al., 1996). The remainder of the 1500 known 

TFs (Boyle et al., 2011) have a more conditional role in recruiting RNA polII: they 

encode, through their nuclear abundance, the environmental and developmental state of 

the cell and its milieu (Levine, 2010). These signals are then translated by promoters and 

distal cis-regulatory regions into output that modulates polII recruitment or elongation 

(Figure 1-1). For example, estrogen receptor ER-alpha, a model steroid receptor TF, is 

expressed in a number of tissues where it recognizes estrogen. Upon binding in the 

 

Figure 1-1. Flow of environmental and development state information through 

transcription factors in mediating gene transcription. 
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cytoplasm, ER-alpha relocates to the nucleus where, together with co-activators, it binds 

DNA as a dimer, fostering up- or down-regulation of  dozens of genes (Moggs and 

Orphanides, 2001).  

Transcription factors are extraordinarily evolutionarily conserved, particularly their 

binding domains, with relatively few TFs novel in human alone (Neph et al., 2012a; 

Stergachis et al., 2014; Stewart et al., 2012). TFs are organized into families on the basis 

of shared DNA-binding domain morphology, which can often be traced to ancient 

duplication events of their encoding genes. The family of homeotic (HOX) TFs, which 

together guide selection among alternative pathways in elaborating the body plan, is a 

classic example whose 60-nucleotide homeodomain exhibits particularly deep homology. 

This phylogenetic conservation was substantiated in a well-known experiment wherein 

fly HOX-gene null mutants were rescued by insertion of the orthologous coding region 

extracted from chicken (Lutz et al., 1996). 

Not surprisingly, TFs in the same family recognize similar binding sites. Decades of 

exploring transcription factor binding domain preferences have revealed that a domain 

recognizes DNA through a combination of a sequence’s ‘base readout’ and its ‘shape 

readout.’ Base readout dictates the formation of hydrogen bonds and hydrophobic 

attractions between TF amino acid side chains and the edges of a given base pair. Shape 

readout, conversely, arises from interaction among base pairs, and the higher-order 3-D 

structure (e.g. location in major vs. minor groove)  (Slattery et al., 2014).  
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There have been dozens of computational models published for predicting TF binding 

preference, many of which eschew mechanistic complexity in favor of empiricism 

(Hannenhalli, 2008). The most prevalent model, the position weight matrix, is also likely 

the simplest (Stormo and Zhao, 2010): after clustering sequences linked to observed 

binding events (from microarray, ChIP-Seq or, more recently, ChIP-exo), sequences in a 

cluster are aligned and a probability derived at each position for each nucleotide. Despite 

the oversimplifications of this model – for example, it does not explicitly account for the 

likely interdependence between neighboring positions – the position weight matrices 

(PWMs), or ‘motifs’, predict with reasonable accuracy in vitro binding of isolated TFs to 

naked DNA (Stormo and Zhao, 2010) .  

Due to a complex binding landscape, however, which includes factors such as 

dependency on cooperative binding, predictive accuracy of PWMs in vivo is much lower 

(Hannenhalli, 2008; Yáñez-Cuna et al., 2012). Nonetheless, as their sensitivity in vivo is 

much higher than their specificity (D’haeseleer, 2006), motifs can be used with a 

threshold for match quality as an initial screen for putative binding sites (Levy and 

Hannenhalli, 2002). As such, TFs are modeled as interacting with only a discrete set of 

sites. Model predictions can then be compared with in vivo TF binding that has been 

observed directly. In a high-throughput environment, this often means evidence from a 

ChIP-Seq assay, in which DNA-protein complexes are cross-linked, sheared, then 

retrieved by chromatin immunoprecipitation with an appropriate antibody, and the 

resulting library of bound DNA sequenced. ‘Peaks’ of overlapping sequence reads that 

rise significantly above background level signal a DNA-bound protein (Furey, 2012).  
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Histone modifications & chromatin accessibility 

TFs compete against not only other TFs for DNA recognition sites, but against histone 

proteins (Levo and Segal, 2014). Ubiquitous histone octamers provide the genome its 

lowest-order of organization – 157 bp of DNA is spooled around each complex at semi-

regular intervals – while also providing a way for TF accessibility to the DNA to be 

regulated through their dynamic displacement (Lelli et al., 2012). Histones – primarily 

lysine residues in the H3 member of the histone octamer – are often adorned with a 

number of biochemical modifications such as methylation, acetylation, and 

ubiquitination, which further impact the local chromatin’s accessibility to TF binding. 

There has been great interest in interpreting this ‘histone code’, and to date, there have 

been partial successes, for example marks or combinations of marks have been associated 

with inactive heterochromatin, active enhancers, and an enhancer state ‘poised’ between 

active and inactive’ (Jaenisch and Bird, 2003). Importantly, though, histone modifications 

are not root causal agents but are deposited and removed by chromatin modifying 

enzymes that have been recruited by bound TFs, RNA polymerase, or other proteins. 

Hence their presence, and interpretability, is inevitably noisy (Henikoff and Shilatifard, 

2011; Wang et al., 2011).  

Fortunately, chromatin’s overall accessibility can be measured directly. The most widely 

used technique for this is the DNase-hypersensitivity assay, in which DNA is subjected to 

DNase I enzyme and the cleaved fragment ends aligned to the genome. Based on 

enrichment for cleaved ends, Dnase hypersensitive (DHS) regions are identified. Ranging 

in length from a few hundred to a few thousand base pairs, such DHS regions are 
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stereotypically de-condensed and transcriptionally active euchromatin, often featuring TF 

binding.  

By substantially increasing the DHS assay’s depth of coverage, it becomes tractable to 

resolve ‘footprints’ of individual TF binding events. By carefully matching these single-

base resolution footprints to independently identified motif instances for a set of TFs, 

individual TF binding events can be estimated (Neph et al., 2012a). While ChIP-based 

methods remain the gold standard for identifying bound TFs (Adli and Bernstein, 2011), 

digital footprinting is an excellent complement, as it can simultaneously estimate binding 

by hundreds of distinct TFs with a known motif, all in a single experiment per tissue. 

Enhancers (distal cis-regulatory modules) 

During development and beyond, gene networks interpret cellular and developmental 

state through the combinatorial interactions between TFs and DNA. Less than 10 percent 

of bound TFs, it turns out, are found in promoter regions (Neph et al., 2012a). The vast 

majority, and a large share of the imputed regulation, instead, falls to cis-regulatory 

modules (CRMs) that are distal to their target gene, each harboring dozens to several 

hundred putative binding sites stretching over 100 to several thousand base pairs (Yáñez-

Cuna et al., 2013). Distal CRMs can be classified by function –insulators, tethering 

elements, enhancers, and silencers (Spitz and Furlong, 2012). Following common 

practice, I will refer collectively to distal CRMs that act as enhancers or silencers of 

target gene expression as ‘enhancers.’  

Enhancers were discovered in 1981 and earned their name from the observation that a 

cloned beta-globin gene expressed 200-fold more transcripts when it was accompanied 
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by a 72bp sequence that, in its native virus, ‘enhanced’ expression (Banerji et al., 1981). 

Most animal genes are thought to interact with at least one such enhancer region. This 

dependence is, up to a point, distance and orientation independent with respect to the 

promoter (Bulger and Groudine, 2011). When removed, transcription stereotypically 

drops to a basal level far below wild type levels, but does not cease (Bulger and 

Groudine, 2011).  

Identifying enhancers 

Interestingly, enhancers bear much in common with promoters (Andersson et al., 2015). 

It has been argued that, as regulatory complexity increased in metazoa, enhancers were 

an evolutionary response to the increasing inadequacy of the limited ‘real estate’ 

available next to the transcription start site. This is consistent with the observations that 

genes that are highly responsive to variation in spatiotemporal cues interact with 

enhancers far more often than do housekeeping genes, with their relatively constitutive 

expression (Pan et al., 2010a). 

Because enhancers are not constrained to flank their target gene, identifying them has 

been more challenging than identifying promoters. Complicating the task further, in stark 

contrast to the high conservation exhibited by TFs and their binding motifs, enhancer 

sequences have experienced massive turnover in mammals over the last 100 million years 

(Stergachis et al., 2014). This is deceptive, though. Even when an enhancer is 

functionally conserved across phyla – active in the same embryonic domain and 

responsive to the same TFs – the motif arrangement, or grammar, may not be conserved 

(Junion et al., 2012). This suggests a model of enhancer activity in which bound TFs 

interact with the transcription apparatus somewhat independently of one another (i.e., the 
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‘billboard’ model) (Yáñez-Cuna et al., 2013).  In a related scenario (the ‘TF collective’ 

model), there is tight interdependence among a cohort of TFs, however protein-protein 

interactions among them bestow flexibility as to which cohort members bind the 

enhancer directly and which TFs merely bind a cohort member (Junion et al., 2012).  

Currently, the most-used high-throughput approaches to detect enhancers involve               

1. searching for accessible chromatin (Sheffield et al., 2013); 2. ChIP-Seq identification 

of indirectly enhancer-bound co-activator P300 (Visel et al., 2009); and 3. unsupervised 

machine learning based on a set of chromatin features that include 1. and 2., followed by 

identification of the non-coding cluster(s) with high neighbor gene transcription (Ernst 

and Kellis, 2012). The current gold standard for verifying an enhancer calls for 

transfecting into an embryo a putative enhancer sequence fused to a reporter gene with a 

minimal promoter (Nelson and Wardle, 2013; Pennacchio et al., 2006). Of course, no 

method is without weaknesses. Where the computational evidence is noisy and somewhat 

indirect, transgenic approaches fail to account for an enhancer’s in vivo context. But in 

combination, where computational identification is followed by transgenic validation, the 

individual weaknesses are significantly mitigated (Nelson and Wardle, 2013). Even in the 

face of positive enhancer identification, however, part of an enhancer may remain 

obscured. For example, a minimal enhancer can be defined for the eve gene in fly capable 

of recapitulating expression patterns seen for the endogenous gene. But without an 

additional 1-2Kb of flanking region, the enhancer will not recapitulate stereotypical 

robustness to typical temperature fluctuations (Ludwig et al., 2011). This points to a long-

distance regulatory landscape that may be even more widespread than often assumed, 
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with numerous enhancer elements contributing either modularly or continuously to 

refining gene expression (Spitz and Furlong, 2012). 

Enhancer–promoter interaction 

Via selective TF recognition, enhancers effectively integrate, and integrate over, the 

myriad state values of the cell, and interpret them for their target gene(s) (Slattery et al., 

2014).  This enhancers do by increasing the presence of select TFs in the vicinity of the 

targeted promoter (Pombo and Dillon, 2015). While a detailed mechanistic understanding 

of enhancer function and enhancer-promoter interaction are still lacking, clues have 

emerged, such as the aforementioned independence of distance and orientation, and the 

oft-seen flexibility in motif grammar. Primarily, two non-mutually exclusive models are 

invoked to account for how enhancers and gene promoters bridge their intervening 

distance to interact: 

1. promoter tracking, in which TFs are first recruited to an enhancer and then slide along 

the chromatin until reaching the proximal promoter (Hatzis and Talianidis, 2002), 

consistent with the facilitated diffusion model of TF dynamics (Wunderlich and Mirny, 

2008). 

2. chromatin looping, in which the intervening chromatin is looped out and the enhancer 

comes into physical proximity of the promoter (Ptashne, 1986) 

The presence of looping, in particular, has been substantiated by numerous reports 

(Ptashne, 1986) (Vakoc et al., 2005) (Deng et al., 2012) (Tolhuis et al., 2002), with 

significant insight into mechanistic details (Song et al., 2010) (Kagey et al., 2010a). 

Ultimately, which of the two mechanisms underlies communication between an enhancer 
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and promoter may be a function of such factors as the genomic distance between the pair. 

Of the two mechanisms, chromatin looping alone is associated with higher-order 

chromatin topology – critical for this work – hence, I will not discuss tracking further. 

Chromatin looping between an enhancer and promoter appears, ultimately, to be an 

instance of a more generalized phenomenon. Loops also form between an enhancer and 

an insulator as a way to pre-empt enhancer regulatory activity (Wallace and Felsenfeld, 

2007). Moreover, insulator-mediated looping, has been shown to contribute to the higher 

order structuring of the genome, imposing modularity on genomic interaction through the 

creation of ‘topologically associated domains’ averaging 1-3 Mb each (Dixon et al., 

2012) (Junier et al., 2010) (Filippova et al., 2013).  

The single known insulator protein in mammals, CTCF, has been intimately linked to 

loop formation through its recruitment of cohesin which, together with Mediator complex 

are largely responsible for forming and stabilizing chromatin loops in metazoans (Kagey 

et al., 2010a; Seitan et al., 2013). This includes loops that are highly tissue-specific as 

well as loops that appear to be retained across multiple cell types (DeMare et al., 2013). 

Recent work has also highlighted the recruitment of cohesin in the absence of CTCF 

(Schmidt et al., 2010). 

Determining higher order chromatin structure using Hi-C 

These and other recent findings highlighting 3-dimensional chromatin structure have 

been largely enabled by the introduction of chromatin conformation capture techniques 

by (Dekker et al., 2002), with a high-throughput version(s) coming out a few years later 

(Dostie et al., 2006). These techniques use formaldehyde-mediated cross-linking to 
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identify contact between genomic loci. After restriction enzyme digestion and extraction 

of the cross-linked chromatin fragments, fragments are ligated, and ligation products that 

align to non-contiguous regions – marking a putative interaction – tallied. By measuring 

the population-normalized frequencies of such interaction pairs, a global view emerges of 

genome-wide interaction. The disadvantage of this technology is its low sensitivity to 

interactions that are short-lived or highly specialized, as interactions must be detectable 

when averaged over tens of thousands of cells (Mercer and Mattick, 2013). Nonetheless, 

this technique has been instrumental in confirming and identifying de novo stable 

contacts between pairs of loci, ranging from contacts between the model beta-globin 

locus control region and gene promoter 60kb downstream (Vakoc et al., 2005), to the 

dense skein of interactions characteristic among super-enhancer sub-components (Heinz 

et al., 2015). 

Higher order coordination and regulatory archipelagos 

As confirmed by Hi-C, enhancers often interact with more than one gene, while genes 

typically receive input from multiple enhancers (Sanyal et al., 2012). This is a symptom 

of a deeper truth: across all clades of life, genes tend to be expressed as elements of larger 

interdependent networks. Early efforts to elucidate networks of coordinately-active genes 

applied cDNA micro-array data to identify genes with expression levels correlated across 

a series of conditions or cell types (Bar-Joseph et al., 2003). Genes within a co-expressed 

module, in turn, exhibited high functional coherence and their promoters recognized 

common ‘master-regulator’ TFs (Bar-Joseph et al., 2003). In a similar vein, co-active 

cardiac enhancers have been found to recognize similar TFs (Narlikar et al., 2010). This 

is broadly consistent with a coordinating role for an enhancer network that underlies a 
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gene network (Taher et al., 2013). But establishing a link between enhancers and target 

genes is non-trivial. Moreover, to date, no network-level analysis has been reported for 

enhancers, i.e. no regulatory analog to gene module analysis. We propose such an 

analysis, starting by identifying pairs and then clusters of enhancers with correlated 

activity across multiple tissues, where activity will be estimated by chromatin 

accessibility (DHS). 

Regulatory archipelagos 

There have been various recent reports, based on chromosomal conformation capture 

(4C, 5C, HiC, ChIA-PET) of chromatin looping combining at a higher-level of 

organization (Markenscoff-Papadimitriou et al., 2014; Montavon et al., 2011; 

Vernimmen, 2014). As a chromatin loop suggests a pairwise functional interaction, a 

network, or ‘archipelago’, of pairwise loops is suggestive of higher-order interactions. At 

the mouse HoxD gene cluster in digit cells, many-to-many interactions were observed 

between the Hoxd genes and enhancers in the flanking gene desert, in addition to 

interactions among enhancers (Montavon et al., 2011). In five human cell lines,  in 

addition to enhancer-promoter and enhancer-enhancer interactions, abundant promoter-

promoter interactions were detected (Li et al., 2012) (Zhang et al., 2013). Although, it is 

not possible to distinguish between transient, dynamic interactions and simultaneous, 

stable interactions, this does not substantively alter the functional interpretation of 

archipelagos. Together, the observed cis-cooperativity has been shown to be a source of 

regulatory buffering against environmentally-mediated fluctuations in TF abundance 

(Perry et al. 2010). The combinatorial actions of enhancers with shared but non-identical 

TF BS are also thought to further refine target gene expression more than a single 
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enhancer (Montavon and Duboule, 2012). Based largely on ‘super-enhancers’ – 

regulatory regions dense with constituent enhancers, and implicated in cell fate 

determination – an additional model posits that as the number of interacting enhancers 

increases, so too does aggregate enhancer output and total target gene expression. The 

mechanism underlying this last relationship, however, has not been identified (Andersson 

et al., 2015).  

While spatial proximity is the norm for active and actively transcribing archipelagos, the 

same enhancers show substantially decreased proximity in embryonic domains and 

mature tissues where they are not active (Montavon et al., 2011; Schwarzer and Spitz, 

2014; Spitz and Furlong, 2012). The spatial proximity thus appears to be conditional, 

however it is not clear what drives the enhancers to co-localize: while there have been 

intriguing insights into the roles of cohesin and Mediator in chromatin loop formation, 

these alone do not account for the coordinated loop formation that defines archipelagos. 

Regulatory complexity and the challenge of specificity 

The recent identification of regulatory archipelagos through chromatin capture 

techniques, in fact, mirrors two decades of experimental findings based on imaging that 

show the bulk of transcriptional activity occurs in discrete nuclear foci. Termed 

‘transcription factories’, these subnuclear compartments concentrate polymerases and 

other transcriptional resources, and feature unusually high levels of RNA transcription 

(Chakalova and Fraser, 2010; Cook, 1995). Indeed, the presence of targeted chromatin 

looping and, at a higher organizational level, three-dimensional archipelagos and 

transcription factories appears to be a signal difference between eukaryotes and 

prokaryotes. Complete reliance on one-dimensional regulatory mechanisms such as the 
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bacterial operon is simply not compatible with the much higher combinatorial complexity 

characteristic of eukaryotic gene regulation (Daniel et al., 2014).  

TF specificity 

Regardless of organization, with greater complexity comes a larger genome (albeit the 

converse is not true (Pagel and Johnstone, 1992)) and with a larger genome, the increased 

challenge of specificity – ensuring the precise spatiotemporal targeting of regulatory 

actions. For a transcription factor, specificity encapsulates the unlikelihood an instance of 

the motif is found in a genome by chance. This is usually calculated as relative entropy, 

an information theoretic quantity that measures divergence between a motif’s base 

frequencies and those in the genomic background (D’haeseleer, 2006). Notably, there is a 

strong positive relationship between a motif’s specificity and its affinity for its best-

matched sequence. Longer motifs containing more of the rarer, and double-hydrogen 

bond forming, guanine and cytosine tend to be more specific and bind more strongly, 

while shorter motifs containing more adenine and thymine tend to be more degenerate 

and bind more weakly.  

Interestingly, BS for TFs with degenerate motifs and, hence, which are weakly binding, 

numerically dominate the regulatory landscape (He et al., 2012). A number of hypotheses 

have been advanced, including evolutionary expedience (He et al., 2012); a consequence 

of mutation-selection balance (Stewart and Plotkin, 2013); and greater compatibility of 

weak binding with transient or context-specific events (Spitz and Furlong, 2012). 

Notwithstanding the driving force, it presents a clear paradox which begs explanation – 

how do TFs with degenerate motifs distinguish between their bona fide sites and the 

many (10
3
 to 10

5
) other promiscuous, but energetically equivalent sites (Levine, 2010; Z 
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Wunderlich, 2009)? This challenge is limited mainly to metazoans. Binding motifs in 

bacteria and yeast have higher mean information content (higher relative entropy) and, 

more centrally, they are often sufficiently informative to specify a unique binding site 

given the vastly smaller genome (Stewart and Plotkin, 2013; Z Wunderlich, 2009). 

It turns out that only a small fraction of metazoan recognition sites, particularly for 

degenerate motifs, functionally bind their cognate TF (Dror et al., 2015; Levine, 2010), 

despite relatively high nuclear abundances of TF proteins (Biggin, 2011). This suggests 

that there are other factors mediating in vivo recognition of a TF’s functional target. 

Recent work has, indeed, highlighted several such factors: 

1. GC-content: High GC content in the flanking sequence surrounding a putative site, or 

more generally, base composition in the flanking sequence that mirrors the base 

composition of the putative site greatly increase likelihood of occupancy (Dror et al., 

2015; White et al., 2013). 

2. Cooperative  binding: Protein-protein interactions with a neighboring TF serve to 

stabilize binding and, hence, increase occupancy (Kazemian et al., 2013) (Slattery et al., 

2014). 

3. Homotypic clusters of BS: Genomic clusters of binding sites for the same TF, based on 

a facilitated diffusion model of TF dynamics, effectively trap a transcription factor into 

diffusing back and forth along the 1-D chromatin, thereby increasing both occupancy and 

the local TF concentration (Ezer et al. 2014; Brackley et al. 2012; Dror et al. 2015). 

Cooperative binding and homotypic clusters of TF BS are particularly common among 

degenerate TFs. Notably, these additional features all reside in a binding site’s genomic 
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flanking region. No study to date, however, has examined the effect on a binding site’s 

occupancy of its spatial context. 

Specifically, a homotypic cluster’s impact on binding is governed by its binding site 

abundance in a limited genomic region (Brackley et al., 2012). The impact of binding site 

abundance in a limited nuclear space, such as a regulatory archipelago, is not known. 

Homotypic clusters are predominantly degenerate motifs (Dror et al., 2015), hence, the 

‘crowding’ of BS expected from increased spatial proximity in an archipelago should 

accrue predominantly for degenerate BS (Figure 1-2).   

Figure 1-2. Cartoon comparing predicted BS ‘crowding’ in a regulatory archipelago for 

specific TFs and degenerate TFs. HCT: homotypic cluster of TF BS 

 

Organization of Thesis 

In Chapter 2, using data from the ENCODE project, we test a novel algorithm that 

resolves pairs of coordinately active enhancers based on their activity profiles across 
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several dozen representative cell types. From correlated pairs, we identify correlated 

clusters of enhancers, which exhibit multiple hallmarks of coordinate regulation, 

including spatial proximity. 

In Chapter 3, we test whether spatially proximate but genomically distal homotypic 

binding sites impact occupancy observed at a given TF BS. We find that, indeed 

occupancy scales with the abundance of spatially proximate homotypic BS or, similarly, 

the degeneracy of the TF’s motif. Through biophysical modelling we show that spatial 

proximity induces a stronger, generalized 3-D version of the mechanism known to boost 

TF occupancy and concentration in 1-D homotypic clusters, consistent with our 

observations. Moreover, in contrast to the genomically hard-wired 1D version, spatial 

homotypic clusters are conditioned on the chromatin’s conformation. Accordingly, we 

find that the archipelago-centered occupancy boost is much more cell type-specific. 

In Chapter 4, we scale up from binding sites to enhancers and whole archipelagos in 

order to test for downstream functional impact of the occupancy boost observed in 

Chapter 2. We find evidence of strongly divergent behavior between enhancers enriched, 

and alternatively, depleted for degenerate motifs; enriched enhancers have much higher 

chromatin accessibility, putative target gene expression, and are subject to much higher 

purifying selection. Together with the unusually high responsiveness of archipelago-wide 

activity to degenerate TF availability, we infer that the occupancy boost characteristic of 

spatial homotypic clusters fosters archipelago upregulation. 

Active archipelagos have been shown to be more spatially compact compared to their 

ground state conformation. In chapter 5, we ask whether this compaction can be 
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explained by a feedback loop involving the demonstrated occupancy boost. Specifically, 

we test whether the increase in local degenerate TF occupancy and TF concentration 

demonstrated in Chapter 3, in turn, induce increased chromatin looping through either of 

two mechanisms. We present preliminary evidence that it does, resulting in a more 

compact archipelago in its active state. Finally, in chapter 6 we conclude with overall 

perspective and potential future directions. 
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 Enhancer networks revealed by correlated DNAse Chapter 2:

hypersensitivity states of enhancers 
 

Abstract 

Mammalian gene expression is often regulated by distal enhancers. However, little is 

known about higher order functional organization of enhancers. Using ~100K P300-

bound regions as candidate enhancers, we investigated their correlated activity across 72 

cell types based on DNAse hypersensitivity (DHS). We found widespread correlated 

activity between enhancers, which decreases with increasing inter-enhancer genomic 

distance. We found that correlated enhancers tend to share common transcription factor 

(TF) binding motifs, and several chromatin modification enzymes preferentially interact 

with these TFs. Presence of shared motifs in enhancer pairs can predict correlated activity 

with 73% accuracy. Also, genes near correlated enhancers exhibit correlated expression 

and share common function. Correlated enhancers tend to be spatially proximal. 

Interestingly, weak enhancers tend to correlate with significantly greater numbers of 

other enhancers relative to strong enhancers. Furthermore, strong/weak enhancers 

preferentially correlate with strong/weak enhancers respectively. We constructed 

enhancer networks based on shared motif and correlated activity and show significant 

functional enrichment in their putative target gene clusters. Overall, our analyses shows 

extensive correlated activity among enhancers and reveals clusters of enhancers whose 

activities are coordinately regulated by multiple potential mechanisms involving shared 

TF binding, chromatin modifying enzymes and 3D chromatin structure, that ultimately 

co-regulate functionally linked genes. 
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Introduction 

Eukaryotic transcription is intricately regulated at multiple levels, including epigenomic 

modifications, chromatin reorganization, and sequence specific binding of TF to either 

proximal promoter regions or to distal enhancer/repressor regions of a gene (Maston et 

al., 2006; White, 2011). Distal enhancers can regulate their target genes from long 

distances, the most extreme case being the Shh gene’s enhancer at ~1Mb away, and are 

especially important in regulating critical developmental genes (Lettice, 2003; Naranjo et 

al., 2010). Recent advances in sequencing technologies have revealed that cell-specific 

enhancers are often marked by P300 binding (a histone acetyltransferase and 

transcription coactivator) (May et al., 2011; Visel et al., 2009), as well as other 

epigenomic marks such as DNAse hypersensitivity (DHS), H3K4me1, H3K27ac, etc. 

(Heintzman et al., 2009a; Zentner et al., 2011). Various combinations of these marks 

have been used to generate genome-wide catalogs of potential cell type specific distal 

enhancers (Heintzman et al., 2009b). However, the target genes of the distal enhancers 

remain unknown for the most part. Moreover, the mechanisms by which distal enhancers 

regulate the expression of their target genes are not completely understood. 

 Functionally linked genes, e.g., components of a biological pathway or a protein 

complex, tend to be co-expressed and are presumed to be co-regulated (Berman et al., 

2004; Liu et al., 2009; Stuart, 2003; Wasserman and Fickett, 1998) Gene networks based 

on co-expression patterns of gene pairs across multiple conditions and/or cell types reveal 

intricate organization of genes into pathways and functional groups (Dewey et al., 2011). 

Similar to functionally related genes, functionally related enhancers, i.e., those regulating 

functionally related genes, share TF binding sites and are likely to have spatio-temporal 
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coordinated activity (Narlikar et al., 2010). A network-level analysis of coordinated 

activities of distal enhancers has not been reported and such an analysis is likely to reveal 

higher order organization of a global transcriptional regulatory network mediated by 

distal enhancers. Analogous to using expression level to quantify transcriptional activity 

of a gene, DHS of an enhancer region has been proposed as a proxy for its condition-

specific regulatory (Heintzman et al., 2009b; Li et al., 2011; Pique-Regi et al., 2011) 

Under the ENCODE project, whole genome DHS profiles have been generated for 

dozens of human cell type (Bernstein et al., 2012). Analogous to using cross-condition 

expression correlation to infer gene networks, cross-condition DHS correlation can be 

used to infer enhancer networks. Indeed, a recent report has shown the effectiveness of 

using cross-condition DHS correlation between distal enhancers and gene promoters to 

identify distal enhancers of genes (Sanyal et al., 2012). 

Tissue-specific enhancers are often marked by P300 binding.  Most of the tested 

P300 bound regions in mouse embryonic forebrain, midbrain and limb tissue were shown 

to function as enhancers in transgenic mice (Visel et al., 2009). Thus, a genome-wide 

profile of P300 bound regions provides a reasonable approximation for candidate 

enhancer regions. Starting with ~100,000 P300 bound regions in one or more out of 4 cell 

types as candidate enhancers, here we perform a detailed network-level analysis of 

enhancers based on their DHS correlation across 72 cell types. We identified a large set 

of enhancer pairs whose DHS level was significantly correlated across cell types, even 

after controlling for autocorrelation of DHS along the chromosome. We found that (i) 

correlated enhancers tend to share common TF binding motifs. (ii) Several chromatin 

modification enzymes preferentially interact with TFs whose binding sites co-occur in 
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pairs of correlated enhancers. (iii) Presence of shared motifs can discriminate between 

correlated and uncorrelated enhancer pairs with 73% accuracy. (iv) Using the gene 

closest to an enhancer as its putative target, we found that the targets of correlated 

enhancers have correlated expression and are involved in common biological processes. 

(v) Based on Hi-C data on chromatin spatial interaction in two different cell types, we 

found that correlated enhancers are spatially proximal significantly more often than 

expected. (vi) Strong enhancers, those with higher expression levels of the nearest gene, 

tend to be correlated with fewer enhancers than weak enhancers but preferentially 

correlate with other strong enhancers, while weak enhancers are correlated with a greater 

number of enhancers and preferentially correlate with other weak enhancers. (vii) We 

constructed enhancer networks based on correlated activity and shared TF motifs, and 

found significant enrichment of specific biological processes among the putative gene 

targets of the enhancer modules. 

Overall, our analysis suggests that functionally linked genes may be co-regulated 

by distal enhancers whose activities are regulated by common sets of TFs and mediated 

by both 3D chromatin structure as well as chromatin modification enzymes. Our work 

represents the first investigation of enhancer networks based on correlated activity across 

multiple cell types. 

Results 

Data overview 

P300 binding has been shown to be a reliable marker of tissue specific enhancers (Visel 

et al., 2009). As a starting set of candidate enhancers we obtained 98,353 P300 peaks in 4 

different cell types (see M&M). We extracted genome-wide DHS broad peak data for 72 
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tissue types in the ENCODE database (Bernstein et al., 2012) and clustered the 72 tissues 

into 37 representatives (Appendix Table 1) based on genome-wide correlation (see 

M&M).  Enhancers vary broadly (0-37 tissues) in the number of tissues in which they 

overlap a DHS peak (Figure 2-1). For each enhancer, we constructed a DHS profile as a 

binary vector of length 37 corresponding to 37 cell types, by setting the DHS value to 1 if 

the enhancer region overlapped a DHS peak in the particular tissue; otherwise it was set 

to 0. This procedure yielded a 98,353 x 37 enhancer ‘activity’ matrix, with rows 

corresponding to enhancers, columns to tissue (or cell) types.  

Figure 2-1. Activity per enhancer. Histogram shows the number of tissues (x-axis) in 

which a given enhancer is active (out of 37 tissues possible).  

 

 

 Identifying enhancers with correlated activity 

We quantified correlated activity for a pair of enhancers using the information theoretic 

measure Mutual Information (MI) using DHS in 37 tissues (see M&M). However, MI can 

be biased towards enhancer pairs that are near each other on the genome, if DHS regions 

are long or tend to cluster on the genome. We tested this by selecting intra-chromosomal 
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pairs using 100,000 random genomic segments and computing their MI. Figure 2-2 shows 

that the fraction of segment-pairs with MI > 0.4 decays monotonically with increasing 

inter-segment distance, suggesting autocorrelation of DHS along the genome; the same 

trend holds for other MI thresholds. The same trend also holds for the 35 million 

enhancer pairs tested, but crucially, the fraction of enhancer pairs with high MI is greater 

than that of random genomic segments (represented by yellow and gray bars, 

respectively, in Figure 2-2). We controlled for the observed cell type-specific DHS 

autocorrelation to detect significantly correlated enhancer pairs  (see M&M and Figure 2-

3). We consider six distance-bins ranging from 20 Kb to ‘>12.5 Mb’ (Figure 2-4) and 

within each distance-bin, we identify significantly correlated enhancer pairs by 

estimating a nominal False Discovery Rate (FDR) (Reiner et al., 2003) by comparing MI 

scores for actual and control pairs (see M&M). 

 

Figure 2-2. Generating the synthetic enhancer data to account for autocorrelation.  

(A) Starting with a large set of random genomic regions and their DHS profiles across 37 cell 

types, we estimate, for each cell type separately, the conditional probability of observing DHS at 

a location Y’ given the DHS status at another location X at distance d from X. (B) Given a pair of 

enhancer DHS profiles (X,Y), we generate a synthetic pair of DHS profiles as (X,Y’) where Y’ is 

randomly generated from X and the conditional probabilities estimated in (A). See text for further 

details. Blue: DHS=1 (open chromatin); white: DHS = 0 (closed chromatin) 
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Figure 2-3. Mutual information of chromatin states is higher among enhancer pairs 

than background pairs, and it decreases monotonically with increasing distance. Plot 

shows the relationship between inter-enhancer genomic distance and the number of 

actual and synthetic enhancer pairs with MI above 0.4 across 37 representative cell 

types. Enhancer pairs (yellow) were selected from 98,000 enhancers identified based on 

P300 ChIP-Seq peaks by exhaustively pairing all enhancers sharing the same 

chromosome and <12.5 Mb apart. Five million additional pairs were sampled for 

distances >12.5 Mb, as well as 1 million inter-chromosomal pairs. As a negative control 

the DHS vector of a randomly chosen member of each enhancer pair was used as a seed 

to generate a paired synthetic DHS vector by conditioning on observed cell type -

specific DHS autocorrelation along the genome. This resulted in 1 synthetic enhancer 

pair (black) for each enhancer pair; pairs of random genomic segments (gray) were 

generated in the same fashion as enhancer pairs by drawing from 100,000 random 

genomic segments of mean length 500 bp. MI of 0.4 roughly corresponds to FDR 0.01 

(see text). 
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Figure 2-4. Chromatin states of a large number of enhancer pairs are significantly 

correlated.The plot shows the fraction of pairs with significant mutual information 

(MI) as a function of inter-enhancer distance. Significant enhancer pairs were identified 

by setting a threshold MI for each bin that corresponded to a nominal false discover rate 

of 0.1% (see text). The plot is based on significant pairs  after greedily removing pairs 

inducing transitive relationships. The percentage of significant enhancer pairs drops 

with pairwise distance, but stabilizes at ~2 Mb. Moreover, if one of the enhancers in 

our set overlapped both with a strong and weak chromHMM enhancer, we excluded that 

enhancer as well as the overlapping chromHMM enhancers from our calculations.  
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A sizable fraction of enhancer pairs have correlated activity across cell types 

We exhaustively assessed ~35 million intra-chromosomal enhancer pairs separated by 

less than 12.5 Mb; additional sampling at larger distances and across chromosomes 

suggested that 12.5 Mb ceiling is sufficient to capture general patterns. Despite distance 

bin-specific FDR control, the fraction of enhancers that are significantly correlated 

declines with increasing distance (Figure 2-4); after removing transitive relationships 

(M&M), at FDR of 0.1%, the fraction decreases from 1.7% pairs at 20 Kb to 0.1% for 

pairs separated by more than 12.5Mb. The corresponding fractions at 5% FDR are 4.8% 

to 1.3%. A similar trend is also observed when background pairs are pooled across 

distance bins and a single FDR test is conducted (Figure 2-5 left). Similarly, these trends 

are preserved when we used random trans-chromosomal enhancer pairs as the 

background to calculate the FDR (Figure 2-5 right).  Across all bins, at an FDR of 1% we 

detect a total of 313,757 significant enhancer pairs, covering 32% of enhancers.  
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Figure 2-5. Fraction of significantly correlated enhancer pairs decreases 

monotonically with increasing distance between the enhancers  when an FDR test is 

conducted on a common pooled background ( top), and on a background of trans-

chromosomal pairs (bottom). Bin-wise fractions (y-axis) reflect partitioning of enhancer 

pairs after significance screen. 
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Strong and weak enhancers have different degrees of connectivity and are 

assortative  

Previous studies have shown that low affinity binding sites for individual TFs tend to 

cluster on the genome (Essien et al., 2009a) and such clustering of binding sites in 

regulatory regions has been suggested to cooperate to promote overall functionality via 

multiple mechanisms (Anderson and Freytag, 1991; Coleman and Pugh, 1995; Giniger 

and Ptashne, 1988; He et al., 2011). Extending this notion to the level of enhancers, we 

assessed whether weak enhancers have a greater proclivity to cooperate. Ernst et al have 

previously predicted enhancers in the genome based on histone modification patterns 

using the ChromHMM tool and further classified the enhancers into ‘strong’ and ‘weak’ 

based on cell type-specific expression level of the proximal gene (Ernst and Kellis, 

2012). We calculated each enhancer’s degree as the number of other enhancers it is 

correlated with and partitioned enhancers into 5 bins based on degrees: 0, 1-4, 5-8, ≥ 9 

(other binning schemes do not affect the conclusion). For each bin we calculated the 

fraction of 'strong' enhancers out of all enhancers overlapping with a ChromHMM 

enhancer. Figure 2-6 shows that weak enhancers tend to have correlated activity with 

several other enhancers whereas strong enhancers tend to function in smaller groups. For 

instance, the percentage of strong enhancers having no correlation partners (44%) is 

significantly higher than that for the weak enhancers (35%) (Fisher exact test p-value = 

1.8e-56). Next we checked whether strong/weak enhancers preferentially interact with 

other strong/weak enhancers. Even though strong enhancers have fewer interactions, we 

found that strong enhancers are twice as likely to be correlated with another strong 

enhancer than expected by chance (Fisher exact test p-value =1.6e-7). Similarly, weak 

enhancers preferentially interact with other weak enhancers (Fisher exact test p-value = 
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0.0002).  The above results are based on a MI FDR threshold of 0.01 but the trend 

remains significant at FDR = 0.05. Thus, strong and weak enhancers assort with other 

strong and weak enhancers, respectively. 

 

Figure 2-6. Relative to strong enhancers, weak enhancers are more likely to be 

coordinately activated with other enhancers.  Bar plot shows the relative fractions of 

all enhancers that are non-ambiguously classified in chromHMM data base as 'weak' or 

'strong' enhancers partitioned into 4 groups, based on thei r degree, i.e., the number of 

other enhancers with which they are epigenetically highly correlated (FDR 0.0001), 

which is recorded along top row of x-axis. Numbers on bottom row indicate the total 

number of non-ambiguously classified chromHMM enhancers in that bin. Note that the 

determination of whether an enhancer has 0 neighbors was made at a more relaxed FDR 

0.05. 

 

Potential roles of TFs and chromatin modification enzymes in correlated enhancer 

activity 

It is possible that correlated activities of enhancers are mediated by common TFs, as has 

been shown widely for promoters of co-expressed genes (Liu et al., 2009). We therefore 

tested whether correlated enhancer pairs harbor common TF binding sites. We created 

two sets of enhancer pairs: the foreground included the significantly correlated enhancer 

pairs at FDR = 5% (conclusions remain the same at other thresholds) in each distance bin. 
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Background enhancer pairs were randomly chosen from enhancer pairs in each distance 

bin with MI < 0.01. Note that, in this context and in what follows, the term Background is 

used to refer to uncorrelated enhancer pairs as opposed to non-enhancer pairs.  Next we 

identified high-scoring binding sites in each enhancer for each of the 981 vertebrate 

motifs (see M&M) and quantified the tendency of a motif to co-occur in correlated 

enhancers based on a co-occurrence score (see M&M). We found that the overall co-

occurrence score distribution for all motifs was significantly higher in the foreground 

than the background (Figure 2-7; Wilcoxon test p-value = 6.7e-18). Next, we estimated 

the significance of co-occurrence for each motif in the foreground by comparing 

observed and expected co-occurrence frequency using a Chi-squared test. After 

controlling for multiple  

Figure 2-7. Motif co-occurrence is greater among correlated enhancers than 

background non-correlated enhancer pairs. Histogram shows the log enrichment of 

motif co-occurrence above random expectation for significantly correlated enhancer 

pairs (FDR 0.01) (green) compared with the same for background pairs (red). The x -

axis shows the log of enrichment values, where 0 denotes random expectation, and more 

positive scores indicate higher enrichment, while nega tive scores indicate higher 

depletion. The y-axis show the number of motifs with the indicated level of log 

enrichment. Background pairs were selected based on mutual information scores < 0.01. 

“10-1” on the y-axis is an artifact of the drawing tool and simply represents 0. 
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testing, at FDR = 0.05, we found 153 motifs with significant co-occurrence (M&M). An 

identical analysis of background enhancer pairs yielded only 39 motifs. We further 

filtered the 153 motifs down to the 62 most significant motifs by directly comparing the 

co-occurrence p-values in the foreground and the background using the nominal FDR 

approach (25) at 5% FDR. Of the 62, 10 were significant in the background. The 

remaining 52 motifs (Table 1) were used for further analyses.  

 

 

TABLE 2-1. Motifs with significantly greater co-occurrence in correlated enhancers 

than expected Col 1: TRANSFAC motif ID, col 2: co-occurrence score (see text), col 3: 

p-value, col 4: multiple testing corrected q-value, col 5: TF name. 
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Motif 

Cooccurrence  

Score 

p-value q-value Gene 

M00649 9.80E-02 0 1.70E-04 MAZ 
M01742 1.20E+00 0 2.10E-04 Zfp206 
M00986 3.90E-02 0 3.00E-04 Churchill 
M00915 5.40E-01 0 3.80E-04 AP-2 
M01028 2.70E+00 0 4.30E-04 NRSF 
M01783 6.30E-01 0 4.70E-04 SP2 
M00431 1.30E-01 0 5.10E-04 E2F-1 
M00008 3.30E-01 0 5.60E-04 Sp1 
M01199 6.90E-01 0 6.00E-04 RNF96 
M01219 4.60E-01 0 6.40E-04 SP1:SP3 
M00925 5.40E-02 0 7.30E-04 AP-1 
M01253 7.50E-01 0 8.10E-04 CNOT3 
M00189 6.80E-01 0 9.00E-04 AP-2 
M00255 3.70E-01 0 9.40E-04 GC_box 
M01482 2.60E+00 0 9.80E-04 Nkx3-2 
M00716 8.20E-01 0 1.00E-03 ZF5 
M01267 6.40E-02 0 1.10E-03 FRA1 
M00199 9.20E-02 0 1.10E-03 AP-1 
M00196 6.30E-01 0 1.20E-03 Sp1 
M00800 8.00E-01 0 1.20E-03 AP-2 
M00807 3.20E-01 0 1.30E-03 Egr 
M00931 4.80E-01 0 1.30E-03 Sp1 
M00933 3.20E-01 0 1.40E-03 Sp1 
M00932 5.90E-01 0 1.40E-03 Sp1 
M00615 1.90E+00 0 1.50E-03 c-Myc:Max 
M01303 3.10E-01 0 1.50E-03 SP1 
M01588 2.90E-01 0 1.50E-03 GKLF_(KLF4) 
M00322 4.30E-01 0 1.60E-03 c-Myc:Max 
M00976 2.20E-01 0 1.60E-03 AhR,_Arnt,_HIF-1 
M00720 7.80E-02 0 1.70E-03 CAC-

binding_protein 

M01273 4.50E-01 0 1.70E-03 SP4 
M01837 1.70E-01 0 1.80E-03 FKLF 
M00174 1.10E-01 1.10E-

16 

1.90E-03 AP-1 
M00926 3.80E-02 4.40E-

16 

1.90E-03 AP-1 
M00428 4.60E-02 6.70E-

16 

2.00E-03 E2F-1 
M01593 9.50E-01 1.20E-

15 

2.10E-03 Zfx 
M01104 4.60E-02 2.20E-

14 

2.10E-03 MOVO-B 
M01177 3.20E-01 1.50E-

11 

2.10E-03 SREBP2 
M01230 2.40E-02 1.60E-

11 

2.20E-03 ZNF333 
M01816 1.30E-01 5.60E-

11 

2.20E-03 ZBP89 

M00940 5.50E-01 4.10E-

10 

2.30E-03 E2F-1 
M01597 2.20E-01 9.70E-

10 

2.30E-03 Zfp281 
M01045 3.90E-01 2.70E-

09 

2.40E-03 AP-2alphaA 
M01162 3.00E-02 1.20E-

08 

2.40E-03 OG-2 
M01292 2.00E-02 1.50E-

08 

2.40E-03 HOXA13 
M00378 9.90E-02 1.30E-

07 

2.50E-03 Pax-4 
M00982 6.80E-01 2.00E-

07 

2.60E-03 KROX 
M00644 3.30E-02 3.70E-

07 

2.60E-03 LBP-1 
M01714 3.50E-01 4.70E-

07 

2.70E-03 KLF15 
M01275 2.40E-02 9.80E-

07 

2.70E-03 IPF1 
M01318 1.40E+00 1.60E-

06 

2.70E-03 Irx-3 
M00175 4.70E-02 1.90E-

06 

2.80E-03 AP-4 
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Motif co-occurrence among correlated enhancer pairs confirmed when cell type-

specific TF availability screened for 

To make the test of co-occurrence more targeted, instances of co-occurrence in a pair 

were only counted when there was at least one tissue in which both pair members were 

active and the cognate TF expressed. Motifs were not considered for which binding TF 

information was not available or that bind to TFs coded for by two or more genes. 

Approximately one-half (509) of the 981 motifs qualified. TFs were considered expressed 

in a given tissue if the normalized tag count density exceeded 0, where 0 was chosen due 

to the lack of any discontinuity in the distribution of tag count densities. (Based on this 

criterion, on average < 30% of TFs are expressed in each tissue). Under these conditions, 

there were a total of 67 motifs that co-occurred significantly more often than expected 

(FDR 5%, based on p-values from Fisher Exact Test) and present in at least 20 pairs, 

compared to zero motifs that occurred more often than expected in uncorrelated pairs. 20 

of the 52 motifs previously found to co-occur out of 981 motifs were among the set of 67, 

in spite of the reduced test set of motifs. When thresholds of expression higher than 0 

were used similar, if fewer, sets of significant motifs resulted (while still no motifs in 

random pairs significantly co-occurred). Thus, the co-occurrence of motifs is reinforced 

when cell-type activity is screened for.  

Extending test of correlated motifs to enhancer clusters 

We next extended the pair-wise motif co-occurrence analyses to clusters of correlated 

enhancers. Disjoint clusters with at least 10 enhancers were greedily identified such that 

mean MI for all pairs within the cluster was at least 0.2 (other thresholds do not change 

the conclusion). Each TRANSFAC motif was assessed for enrichment in each cluster 

relative to other clusters based on a Fisher Exact Test, and significance was corrected for 
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multiple testing. At a FDR threshold of 5%, for the 415 clusters, there were 44 instances 

of cluster-specific enrichments.  In contrast, for a background set of 415 clusters using 

randomly chosen enhancers (mean pairwise I within a cluster << 0.1) sampled to match 

total motif occupancy, mean GC content, and the cluster size of the foreground, there 

were only 2 instances of cluster-specific enrichment  (Figure 2-8).  

Correlated enhancer pairs are potentially co-regulated  

Co-regulated enhancers tend to share common motifs (Berman et al., 2004). To 

investigate whether the enhancer pairs with correlated activity are potentially co-

regulated, next we tested whether correlated enhancers share significantly greater 

numbers of motifs than expected. We quantified motif overlap between the two 

enhancers using Jaccard index, defined as the ratio of the sizes of the intersection and the 

union of the two motifs sets. Separately for each distance-bin we compared Jaccard index 

values for the highly correlated enhancer pairs with those for pairs in the background 

using a Wilcoxon rank-sum test. The foreground and the background enhancer pairs were 

selected as for Result section 5 above. We found that in every distance bin the foreground 

pairs have a significantly greater fraction of shared motifs, with p-values ranging from 

1.6e-04 to 6.1e-33 (Table 2a). The result remains highly significant when we repeated the 

analysis at the level of motif clusters instead of individual motifs (see M&M). As 

expected, the difference between foreground and background is amplified when only 52 

significantly co-occurring motifs (see above) were used to calculate Jaccard index (Table 

2b). These results suggest that not only are co-occurring motifs present more often than 

expected in correlated enhancer pairs, but that correlated enhancer pairs also share overall 

greater numbers of motifs than expected. Taken together, this analysis shows that 
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epigenetically correlated enhancers share TF binding motifs significantly more frequently 

than expected, suggesting a role for these TFs in co-regulation of the correlated 

enhancers.  

 

Figure 2-8. Illustrative example of an enhancer cluster.  The Figure shows on the 

genome browser a representative cluster of enhancers comprising 117 enhancer spread 

throughout chromosome 2. This cluster includes 12 strong (blue ticks) and 54 weak 

enhancers (red ticks) as annotated by ChromHMM. DHS (black ticks) in 5 

representative cell types are shown for all enhancers. The Figure clearly illustrates the 

correlated activity of these enhancers across the cell types. In addition, this cluster, 

which was constructed without regard to motif co-occurrence, in fact broadly shared 2 

motifs (magenta ticks).  

 

 

 

 

TABLE 2-2. Motif sharing between coordinated enhancer pairs and the 

background. (a) Results of Wilcoxon rank-sum tests comparing the extent of motif 

overlap in correlated enhancer pairs (FDR 0.0001) to that in background pairs, with one 

test per distance bin. All 981 vertebrate motifs in the TRANSFAC database were used. 

(b) same as (a) except that overlap is evaluated only for the significantly co -occurring 

motifs in correlated enhancers. 
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(a) 

Max dist 

between  

Enhancers 

(kB) 

Correlated enhancer pairs 

(FDR 0.0001) 

    Background enhancer pairs              

(I < 0.01) 

  

Mean Jaccard  

(all motifs) 

Median Jaccard  

(all motifs) 

Mean Jaccard  

(all motifs) 

Median Jaccard  

(all motifs) 

20 0.32 0.32 0.3 0.3 
200 0.32 0.32 0.29 0.28 
1000 0.31 0.31 0.29 0.29 
20000 0.31 0.31 0.28 0.28 
Overall 0.31 0.31 0.29 0.29 
(b) 

Max dist between  

Enhancers (kB) 

Correlated enhancer pairs      

(FDR 0.0001) 

    Background enhancer pairs              

(I < 0.01) 

  

Mean Jaccard  

(significant 

motifs) 

Median Jaccard 

(significant 

motifs) 

Mean Jaccard  

(significant motifs) 

Median Jaccard  

(significant motifs) 

20 0.22 0.14 0.12 0 
200 0.28 0.2 0.11 0 
1000 0.29 0.2 0.11 0 
20000 0.3 0.25 0.11 0 
Overall 0.28 0.2 0.11 0 

 

Presence of shared motifs is predictive of enhancer DHS correlation 

Additionally, we assessed, using machine learning, whether the presence of common 

motifs can predict correlated activity of a pair of enhancers. For each enhancer pair we 
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assigned one attribute per motif. The value of the attribute was set to 1 if both enhancers 

had a motif instance and 0 otherwise. We then trained and tested a support vector 

machine (SVM) to discriminate between the foreground (FDR 0.01% was used for 

computational tractability) and the background enhancer pairs, using 10-fold cross 

validation. When using all 981 motifs as attributes, the SVM achieved an overall average 

classification accuracy of 73%. Importantly, there was very little reduction in 

performance (70%) when the model used only the 52 significantly co-occurring motifs 

(section 5).  However, when we used 52 random motifs, the SVM accuracy was reduced 

to 55%, not much greater than random expectation of 50%. This result suggests that 

shared occurrence of a specific set of motifs is predictive of correlated enhancer activity. 

Interactions between enhancer motifs and chromatin modification enzymes  

To further probe the potential involvement of chromatin modification enzymes (CME) in 

regulating correlated enhancer activities, we assessed CMEs for their preferential 

interactions with the 52 motifs (Table 1) that significantly co-occur in correlated 

enhancers. The 52 motifs mapped to 146 unique proteins using TRANSFAC and 

ENSEMBL databases, while the remaining motifs mapped to 2227 proteins. There are 

more proteins than motifs due to ambiguous mapping of motifs to isoforms. A list of 828 

CMEs was extracted from ENSEMBL database (version 67) based on GO term 

'chromatin modification’. Protein-protein interactions were obtained from STRING 

database using the ‘experimental’ track. We assessed each of the 828 CMEs for 

preferential interaction with 146 TFs corresponding to significant motifs relative to the 

other 2227 TFs, using a Fisher Exact test, followed by multiple testing correction. At 

FDR = 5% we detected 28 CMEs to preferentially interact with significant TFs (Table 3). 
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In contrast, there was no CME that preferentially interacted with non-significant TF. This 

result is especially interesting given that overall, the 146 significant TFs do not interact 

with CMEs any more than the other 2227 TFs. Overall, this analysis implicates CMEs in 

correlated enhancer activity. 

 

TABLE 2-3. Chromatin modifying enzymes (CME) that preferentially interact with 

significantly co-occurring motifs (Table 2-1).  Column 3 denotes the percent of 

significant motifs interacting with the CME.  

CME 
P-

value 

Interaction 

Frequency 
Description 

ENSP00000336750 5.50E-

04 

5.50% suppressor of Ty 7 (S. 

cerevisiae)-like 
ENSP00000308227 5.90E-

04 

9.60% high mobility group AT-hook 
ENSP00000264709 9.60E-

04 

8.20% DNA (cytosine-5-)-

methyltransferase 3 alpha 
ENSP00000362649 1.20E-

03 

16.00% histone deacetylase 1 
ENSP00000231509 1.60E-

03 

12.00% nuclear receptor subfamily "3," 

group "C," member 1 
ENSP00000349508 2.30E-

03 

6.80% chromodomain helicase DNA 

binding protein 4 
ENSP00000278823 2.40E-

03 

6.20% metastasis associated 1 

"family," member 2 
ENSP00000367207 2.90E-

03 

15.00% v-myc myelocytomatosis viral 

oncogene homolog (avian) 
ENSP00000343325 2.90E-

03 

5.50% protein kinase N1 
ENSP00000263119 4.20E-

03 

6.20% calcineurin binding protein 1 
ENSP00000362674 5.30E-

03 

5.50% histone deacetylase 8 
ENSP00000334061 5.40E-

03 

6.20% histone deacetylase 6 
ENSP00000386759 7.30E-

03 

6.80% SET domain containing 2 
ENSP00000302967 9.20E-

03 

10.00% histone deacetylase 3 
ENSP00000352516 9.50E-

03 

8.20% DNA (cytosine-5-)-

methyltransferase 1 
ENSP00000284384 1.20E-

02 

6.80% protein kinase "C," alpha 
ENSP00000349049 1.30E-

02 

5.50% lysine (K)-specific demethylase 

1A 
ENSP00000225983 1.40E-

02 

8.20% histone deacetylase 5 
ENSP00000381331 1.50E-

02 

9.60% histone deacetylase 2 
ENSP00000371067 2.30E-

02 

8.20% Janus kinase 2 
ENSP00000264606 2.40E-

02 

7.50% histone deacetylase 4 
ENSP00000264010 2.50E-

02 

6.20% CCCTC-binding factor (zinc 

finger protein) 
ENSP00000268712 2.50E-

02 

9.60% nuclear receptor corepressor 1 
ENSP00000337088 2.70E-

02 

6.20% multiple endocrine neoplasia I 
ENSP00000356480 2.80E-

02 

5.50% ring finger protein 2 
ENSP00000231487 2.90E-

02 

6.20% S-phase kinase-associated 

protein 1 
ENSP00000263253 3.00E-

02 

15.00% E1A binding protein p300 
ENSP00000267163 3.10E-

02 

9.60% retinoblastoma 1 
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Correlated enhancers are spatially proximal  

We expect the correlated activity of non-proximal enhancers to be associated with their 

spatial proximity in the nucleus. We estimated the fraction of correlated enhancer pairs 

that are spatially proximal based on Hi-C data (GSE18199) (Lieberman-Aiden et al., 

2009). We note that the Hi-C data was obtained from human K562 and HIC_gm06690 

cell lines, while DHS correlation was obtained across 37 primary cell types. It is known 

that spatially interacting regions are enriched for DHS (Fang et al., 2009). We controlled 

for this by ensuring that in each distance bin, the background enhancer pairs were 

selected such that their average pair-mean DHS across cell types was within 2% of the 

corresponding average for foreground pairs. We compared foreground and background 

enhancer pairs in terms of the fraction of pairs that are spatially proximal according to the 

K562 Hi-C experiment, using a Fisher Exact Test. We found that overall, the foreground 

enhancer pairs showed a greater coincidence with Hi-C data (p-value = 0.01). Even when 

we include only the top 10% most confident Hi-C pairs, the p-value = 0.03. When we 

repeated the above tests using the HIC_gm06690 Hi-C data, the corresponding p-values 

are 0.02 and 0.009. These results suggest that spatial proximity of the chromosomal 

regions is associated, albeit weakly, with correlated enhancer activities. The weak 

association may be due to cell type specificity of spatial proximity (see Discussion). 

Genes near correlated enhancers have correlated expression and shared function 

We hypothesized that the gene targets of highly correlated enhancers are themselves 

correlated in their expression. Although the targets of enhancers are largely unknown, as 

a first approximation, we mapped each enhancer to its nearest gene as a putative target 

(Thurman et al., 2012). For each gene we obtained from GEO (Barrett et al., 2010) the 
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normalized RNA-seq transcript counts from 15 of the 72 tissue-types and calculated the 

Spearman correlation between vectors of transcript counts. For the foreground enhancer 

pairs at FDR 1% (results are comparable for other FDR thresholds), we found that the 

median Spearman correlation of expression of the target genes was 0.31, while for the 

background it was only 0.18 (Wilcoxon rank-sum test p-value = 2.1e-74). It indicates that 

epigenetically correlated enhancers tend to have co-expressed target genes. 

 Our analyses thus far suggest that correlated enhancer pairs have (A) a greater 

motif co-occurrence (section 5), and (B) greater co-expression between their target genes 

(section 7). Therefore, we assessed directly whether motif co-occurrence in enhancers is 

predictive of correlated expression in their target genes, regardless of correlated activity 

of the enhancers. 10,000 enhancer pairs were sampled without regard for their 

correlation. The Jaccard index for motif sharing between enhancers and gene co-

expression for putative target genes was estimated as above. Based on linear regression of 

expression correlation against the corresponding enhancer pairs' Jaccard indices, we 

found the two to be highly positively associated with a slope of 0.26 (p-value = 4.4e-26 

for null hypothesis that slope = 0), suggesting that shared motifs in enhancers is 

predictive of their target genes’ co-expression. 

Next we tested whether targets of correlated enhancers are functionally related. 

For each enhancer pair, we checked whether target genes, if they are different, share a 

Gene Ontology (GO) biological process. We only considered specific GO terms 

including at most 200 genes (this threshold was varied from 200 to 2000). We found that 

the foreground enhancer pairs consistently share a GO term more frequently than the 

background; the difference between them varying between 11% and 30%. This difference 
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is significant (Fisher Exact test p-value < 0.05) for all but one thresholds where it was 

marginally significant with p-value = 0.06. This suggests that gene targets of correlated 

enhancer pairs tend to be functionally related. 

Targets of correlated enhancer clusters have correlated expression and shared 

function 

We extended our analyses previous sections to ‘clusters’ of correlated enhancers.  We 

identified clusters of five or more enhancers that were mutually correlated (various 

thresholds from 0.2 to 0.5 were used), while enriched for at least one of the previously 

identified significantly enriched motif cluster.  For each enhancer cluster a control cluster 

was created from non-correlated enhancers that mirrored the former's size and genomic 

footprint (i.e. intra-cluster genomic distances). As was true for correlated enhancer pairs, 

putative targets of correlated clusters (i.e., the set of genes nearest to each enhancer), 

were more highly correlated in their normalized RNA-seq transcript counts than were 

background clusters. For each triplet of thresholds for (i) minimum cluster size (5-20), 

(ii) minimum pairwise I (0.2-0.5) within a cluster, and (iii) minimum fraction of cluster 

members (0.7-0.8) harboring the most enriched meta-motif, the genes targeted by 

enhancers in clusters had higher Spearman correlation of transcription levels than the 

matching set of background enhancer clusters. For each parameter triplet, we compared 

the foreground and background for mean pair-wise correlation of expression within 

clusters. For the entire range of parameters, mean expression correlation within 

foreground clusters was consistently greater that for corresponding expression 

correlations within background clusters. Due to the variability in cluster counts for 

different parameters, p-values ranged from 0.02 to 4.1e-15 (Wilcoxon rank-sum test). 
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These results suggest that gene targets of correlated enhancer clusters with shared motifs 

are co-expressed and presumably co-regulated. 

 Next we assessed enrichment of GO biological processes amongst the targets of 

an enhancer cluster using R’s GOstats package. Enhancer clusters also revealed 

consistently greater GO functional enrichment than the background clusters. Across 10 

parameter settings, the ratio of enriched GO terms (at FDR 0.01) per foreground cluster 

to enriched GO terms per background cluster ranges from 1.3-fold to 4.8-fold. On 

average, there is almost 3-fold higher GO term enrichment in the foreground (19.1 terms 

per cluster). When the FDR threshold is set to ~0 (i.e., p < 1e-8), there is 5-fold higher 

enrichment, on average, in the foreground (7.5 terms per cluster). As an example, for the 

parameter setting with the greatest fold enrichment of GO terms, the enriched terms are 

shown, separated by cluster, in Appendix Table 3. These terms are consistently revealed 

across all parameters settings. Together, the GO enrichment and gene expression results 

illustrate that co-expression of genes with shared function is coordinately regulated 

across tissues by enhancers that share motifs and are epigenetically correlated across the 

same tissues. 

Concordant cell type specificity of enhancer clusters and their target genes 

Enhancers are believed to regulate cell type specific gene expression. We tested whether 

there is cell-specificity among the gene targets of correlated enhancers. For identifying 

cell type specificity of gene expression, we used the online tool CTen (35), which 

compares input genes to a database of highly expressed cell-specific genes found in 

public microarray databases, and reports any significant overlaps. Enhancer clusters and 

associated target genes were identified with three parameter settings resulting in 42, 122, 

and 182 clusters, with average cluster sizes 64, 31, and 19 genes respectively. 
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Background gene sets were obtained as in previous section. Our results indicated high 

tissue enrichment in the gene targets of correlated enhancer clusters. For instance, with 

42 clusters, we found enrichment (FDR = 1%) for 23 tissue-specific gene sets involving 

16 clusters while no enrichment was detected in the corresponding background clusters; 

results are qualitatively similar for other parameter settings.  

Next we hypothesized that if the genes targeted by an enhancer cluster are 

expressed in specific cell types then the enhancers in the cluster should have high DHS in 

the same cell type(s). We determined the average DHS of an enhancer cluster in 

ENCODE cell types and obtained the DHS-based rank of the cell type in which the 

corresponding gene cluster was specifically expressed according to CTen; mapping 

between CTen tissue types and ENCODE cell types was manually determined and 

organized into classes (Appendix Table 4). For a clustering parameter, we obtained the 

median rank for the resulting enhancer clusters as well as median rank for an equivalent 

set of background clusters. We found that across 8 different clusterings the median ranks 

of enhancer clusters ranged from 4 to 8 with a mean of 6, whereas the expected median 

rank is 11.5. Overall, this result suggests that there is, indeed, concordance between 

enhancer clusters and targeted gene clusters in their tissue-specific activity.  

Figure 2-9 shows an illustrative example of an enhancer cluster (179 enhancers) 

and corresponding gene cluster (98 genes) with tissue specific activities across 15 cell 

types. The DHS profiles of the enhancers (Figure 2-9, left panel) mirror the expression 

profiles of the genes (Figure 2-9, right panel). These genes are highly expressed in a 

number of cancer cell lines and an embryonic stem cell line, combined with markedly 

lower expression in normal adult somatic cells and are highly enriched for terms related 
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to intra- and inter-cellular signal processing, and regulation of transcription (Appendix 

Table 5).  
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Figure 2-9: Tissue activity profile of an enhancer cluster and the corresponding target genes. Left Panel: The tissue-specific DHS 

activity for 179 coordinately activated enhancers. The data is show only for 15 cell types for which RNA-seq data is also available. Rows 

(enhancers) and hierarchically clustered. Right Panel: Corresponding expression of the 98 target genes in the same 15 cell types. The 

gene symbol and a representative GO term for the gene are given to the right of each row. Gene rows have been clustered independently, 

however, column order is preserved from the enhancer heatmap above. In both maps, deeper shades of color indicate higher values.  
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Discussion 

Based on a systematic analysis of correlated enhancer activities across 72 cell types we 

found a broad range of evidence that support coordinated enhancer activities, potentially 

mediated by transcription factors, chromatin modification enzymes, and spatial chromatin 

structure. Our analyses are based on stringent controls at various stages to maximize the 

robustness of our conclusions. First, we explicitly control for observed autocorrelation 

along the genome in DHS levels, which would otherwise inappropriately make 

neighboring enhancers seem correlated. Second, when appropriate we remove transitive 

correlations between enhancers. Third, when analyzing a group of enhancer pairs we 

create an appropriate negative control by selecting uncorrelated enhancer pairs with 

similar inter-enhancer distances. Fourth, to control for cell type similarities, 37 

representative cell types were selected from 72 cell types. Fifth, significantly co-

occurring motifs in enhancer pairs were screened for high likelihood of active tissue-

specific TF binding. Sixth, dependencies due to motif similarity were addressed by 

clustering motifs. Seventh, clustering parameters settings that included cutoff for mutual 

information, minimum size, and minimum level of motif enrichment, were varied to 

ensure robustness of pattern discovery at the network level. For individual analyses 

additional controls were employed to ensure robustness of our conclusions. 

P300 binding has been shown to be an accurate marker of tissue relevant 

enhancers (5). The base set of 98,000 enhancers was identified based on P300 binding in 

one of the 4 cell types. P300 binding is a reasonable marker of candidate enhancer for the 

intended aim of our work, namely, to investigate coordinated enhancer activities and test 

hypotheses concerning its functional underpinning and consequences. Although there are 
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alternative ways of identifying the candidate enhancers, such as ChromHMM (31), the 

combination of DHS and 5C (34), and other epigenomic marks (7), they all can have 

false positives. Moreover, using DHS as a proxy for an enhancer’s tissue-specific activity 

allowed us to take advantage of the many tissues for which DHS data is currently 

available, without introducing circular dependence. Even though individual enhancers 

may be false positives, we infer correlated activity based on highly significant DHS 

correlation across 37 independent cell types after controlling for potential autocorrelation. 

Despite noise at the level of individual enhancers, we observe significant patterns when 

comparing enhancers with coordinated activities with background enhancer pairs, which 

notably are derived from the same set of enhancers. Approximately 53% of our enhancers 

overlap with those predicted by ChromHMM. To further ensure the robustness of our 

conclusions, we repeated some of our analyses separately on the subset of enhancers 

supported by ChromHMM and the ones not predicted by ChromHMM. In both disjoint 

datasets, we still observed that correlated enhancers had significant motif co-occurrence, 

and that the potential targets of correlated enhancers were significantly correlated in their 

expression and function.    

The goal of identifying the full complement of enhancers that drive transcriptional 

regulation in a specific context remains largely unmet. This work suggests a useful 

paradigm for organizing enhancers into clusters of coordinated activities. These clusters 

of enhancers, given their high cross-tissue concordance in epigenetic state, are likely to 

participate in coordinate transcription regulation of specific genes, or more likely, 

pathways. Presently, researchers treat enhancers and their gene targets predominantly as 
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independent edges in a graph.  By leveraging prior knowledge of these clusters, searches 

for enhancer-target genes will benefit from both greater sensitivity and greater specificity. 

 In addition to finding clusters of enhancers ostensibly involved in coordinate 

regulation of gene transcription, we also examined the nature of the clusters. We asked, 

for example, whether there was a pattern in clusters with regard to enhancer strength, as 

manifest in the expression level of target genes. We found that strong enhancers are much 

more likely to function in isolation than are weak enhancers. Moreover, strong and weak 

enhancers assort with enhancers of the same kind: strong (weak) enhancers prefer to 

interact with strong (weak) enhancers. 

TF binding motifs can exert influence on enhancer activity. We found that shared 

motifs can predict correlated activities of a pair of enhancers. Even though, there is no 

qualitative difference in density and composition of motifs between enhancers that are 

involved in coordinate regulation and enhancers that are not, certain motifs preferentially 

co-occur in correlated enhancers. This could be explained if enhancers with shared motifs 

respond in unison to a common modulator, such as an allosterically regulated TF, or a 

pioneer TF that can interact with and recruit CMEs. Indeed, we found that co-occurring 

motifs do preferentially interact with a subset of CMEs.  

We found that correlated enhancers that are in genomic proximity share fewer 

significantly co-occurring motifs relative to those that are far apart (Table 3b). This, in 

conjunction with a greater propensity for coordinated activity for nearby enhancers 

(Figure 2-3), suggests alternative mechanisms for proximal and distal enhancer pairs’ 

coordinated activities. Greater motif sharing between distant enhancer pairs is consistent 



51 
 

with a more active role of motifs in establishing coordinated activity, with or without 

influencing spatial proximity.  

 Overall, our analysis suggests that mirroring the known organization of genes into 

functionally linked co-expressed modules, distal enhancers regulating such genes are also 

organized into modules of correlated activity across cell types. Strong and weak 

enhancers exhibit differential correlated activity and assortativity with strong and weak 

enhancers, respectively. The observed organization of mammalian enhancers into 

correlated networks is likely mediated by the joint action of TFs through shared motifs, 

chromatin modification enzymes, and spatial chromatin structure. 

 

Material and Methods 

P300 and DHS Data overview:  

P300 binding has been shown to be a reliable marker of tissue specific enhancers (Visel 

et al., 2009). As a starting set of candidate enhancers we extracted from Gene Expression 

Omnibus (GEO) (Barrett et al., 2010) the genomic regions bound by P300 in at least one 

of the 4 cell types – HepG2 (GEO accession Id GSM758575), GM12878 (GEO 

Id GSM803387), H1-HESC (GEO Id GSM803542) and SK-N-SH_RA (GEO 

Id GSM803495). For each of the 4 datasets, we extracted the P300 peaks and, in case of 

overlaps, used the center of merged overlapping regions. We thus obtained 98,353 

enhancer regions, with an average length of 500 bps centered at the center of the P300 

peaks, less than 5% (7%) of which overlap with 2kb (5kb) upstream of annotated 

ENSEMBL transcripts. From the ENCODE database (Bernstein et al., 2012), we 

extracted the genome-wide DHS broad peak data for each of the 72 tissue types 
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represented; for tissue types with more than one data set available, we chose the set with 

the greatest number of peaks. For each enhancer, with respect to each tissue, DHS was set 

to 1 if the 500 bp enhancer region overlapped a DHS peak; otherwise it was set to 0. This 

procedure yielded a 98,353 x 72 binary matrix, with rows corresponding to enhancers, 

columns to tissue (or cell) types, and matrix entries reflecting the ‘activity state’ of an 

enhancer in a tissue. In order to minimize dependencies, tissues were clustered based on 

similarity, into 37 clusters, including 25 singletons (Appendix Table 1) and only the most 

representative tissue from each cluster was retained for further analyses. Accordingly, the 

DHS matrix was reduced from 72 columns to 37. 

Mutual Information:  

Mutual information between two binary vectors X and Y is defined as  

𝑀𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈0,1𝑥∈0,1  ,  

where p(x) is the probability of x in X, p(y) is probability of y in Y and p(x,y) is the joint 

probability that x and y co-occur in vectors X and Y. Informally, mutual information 

quantifies  how much knowing one of the two vectors helps determine the other. Relative 

advantages of using mutual information over other measures such as correlation have 

been discussed previously, e.g., (21). 

Controlling for DHS autocorrelation:  

We controlled for the observed cell type-specific DHS autocorrelation to detect 

significantly correlated enhancer pairs (Figure 2-1).Separately for each of the 37 cell 

types, based on 100,000 random genomic segments, we estimated the autocorrelation 

probability of DHS at a location conditional on DHS at another location at specific 
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distance-range (or, distance-bin). In particular, given a cell type, enhancer X and 

enhancer Y at distance-bin d from X, we estimate the probability that Y is DHS 

conditional on DHS status of X. This tissue-specific and distance-specific autocorrelation 

probability was then used to create a 'synthetic’ enhancer pair corresponding to each of 

the actual enhancer pairs. Each synthetic pair consists of the DHS vector for one member 

of the actual pair and a randomly generated vector of 37 binary DHS values replacing the 

other member (Figure 2-1). The autocorrelation conditional probabilities estimated above 

are used to generate the synthetic vector, conditioned on cell type and distance bin. As a 

consequence, DHS data for synthetic pairs preserves for each tissue type both the mean 

DHS and extent of autocorrelation observed in the real genome, resulting in a MI profile 

that is virtually identical to that of random genomic segment pairs (Figure 2-2). 

TF binding site identification:  

For each enhancer sequence and each of the 981 positional weight matrix (PWM) for 

vertebrate transcription factors in TRANSFAC database (Matys, 2003), we used our 

previously published tool (Levy and Hannenhalli, 2002) to identify binding sites based on 

a score threshold of 95th percentile. For each enhancer only presence/absence of a motif 

was noted. 

Motif co-occurrence score:  

We quantified the tendency of each motif to co-occur in correlated pairs of enhancers 

relative to its expected co-occurrence frequency, assuming independent occurrence of 

motifs among enhancers. If p represents the fraction of enhancers in which a motif occurs 

then assuming independence the motif is expected to co-occur in p
2
 of the enhancer pairs. 
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The motif co-occurrence score is defined as the ratio of the observed co-occurrence 

frequency and the expected frequency p
2
. 

Removing dependencies among pairs:  

In both the foreground and the background, transitive dependencies were removed; 

enhancer pairs were excluded if either of the enhancers was part of a previously included 

pair. In addition, we ensured that the distribution of inter-enhancer distances was 

identical for the foreground and the background. 

Motif clustering:  

Motifs were clustered based on similarity due to structural similarities between the 

corresponding TFs. All pairwise motif similarity scores for the 981 vertebrate motifs 

were obtained from the author of STAMP too (Mahony et al., 2005). Using pairwise 

similarity, the motifs were hierarchically clustered using the 'hierarchy' module in 

SciPy's cluster package (www.scipy.org) for Python based on Euclidean distance and 

complete linkage.  The resulting tree was trimmed using the module's 'fcluster' function 

with a maximum co-phenetic distance criterion that produced 142 disjoint clusters.   

Tissue clustering:  

We computed the pairwise similarity between tissues based on their genome-wide DHS 

profiles for all enhancers. We used the linkage method in Scipy's hierarchy.cluster class 

to perform hierarchical clustering based on average linkage in combination with Russell-

Rao pairwise distance (i.e., the fraction of enhancers with a DHS state of 1 in the two 

tissues). The resulting tree was trimmed using the class's fcluster method and with an 

inconsistency criterion that resulted in 37 clusters, including 25 singletons. In each cluster 

of size 3 or larger, the tissue with the lowest mean distance to other cluster members was 
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retained, while in clusters of size 2, it was the tissue with the greatest mean separation 

from all other tissues in the sample.  

Determination of concordance between enhancer cluster’s and target gene cluster’s 

tissue-specific activity: 

 We clustered the 84 tissue types in the CTen database and the 72 cell/tissue types in the 

DHS database into 34 and 23 cytologically motivated classes, respectively. (Class sizes 

ranged from 1 to 19 (brain) for CTen tissues and 1 to 15 (endothelium and blood) for 

DHS cell types). Agreement in tissue specific activity was assessed based on the 17 

classes shared between the two domains; tissues falling outside of these classes were not 

considered. For each target gene cluster we first identified the tissue in which the genes 

exhibit tissue-specific activity according to CTen (FDR 0.01). Then we obtained the 

corresponding tissue class in the DHS dataset and determined the rank of that tissue class 

for the corresponding enhancer cluster activity as follows. For an enhancer cluster, and 

for each tissue class, we determine the ratio between (i) the fraction of enhancers in the 

particular cluster having DHS in that tissue class and (ii) the fraction of ‘all’ enhancers 

with DHS in that tissue class. We then use this tissue-specific fold enrichment to rank all 

23 tissue classes. We are interested in the rank of the specific tissue class in which the 

corresponding genes had robust and specific activity according to CTen. We thus obtain a 

rank for each cluster and we determined the median rank among all clusters in a 

clustering. We applied 8 different clustering parameters and for each clustering obtained 

the median rank for the actual clusters as well as for randomly generated background 

clusters with same size. Finally we compared the median ranks for the foreground and 

background clusters using paired Wilcoxon test. 
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 Crowdsourcing: spatial clustering of low-affinity Chapter 3:

binding sites amplifies in vivo transcription factor occupancy 
 

Abstract 

To predict in vivo occupancy of a transcription factor (TF), current models 

consider only the immediate genomic context of a putative binding site (BS) – 

impact of the site’s spatial chromatin context is not known. Using clusters of 

spatially proximal enhancers, or archipelagos, and DNase footprints and ChIP-

Seq to quantify TF occupancy, we report for the first time an emergent group-

level effect on occupancy, whereby BS within an archipelago experience greater 

in vivo occupancy than rigorously matched BS outside archipelagos. A TF’s 

occupancy boost in an archipelago is tissue-specific and scales robustly with the 

total number of archipelago BS for the TF. We explain these results through 

biophysical modelling, which suggests that a collective of spatially proximal 

homotypic BS briefly ‘trap’ a TF inside an archipelago, thereby inducing boosts 

in local TF concentration and occupancy. Together, we demonstrate for the first 

time, consistent with a facilitated TF diffusion model, synergism among 

genomically remote but spatially proximal homotypic BS.  We propose that by 

leveraging three-dimensional chromatin structure and TF availability, weak yet 

abundant archipelago binding sites crowdsource their own occupancy context-

specifically. 
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Introduction 

Eukaryotic transcriptional regulation is critically mediated by the binding of 

specific transcription factors (TF) to their cognate DNA binding sites in the 

genome (Spitz and Furlong, 2012). A TF’s in vivo DNA binding varies 

dramatically over developmental time and across tissues (Plank and Dean, 2014; 

Yáñez-Cuna et al., 2012), and as such, a TF’s in vitro binding preference, or 

motif, does not accurately predict its in vivo binding   (Yáñez-Cuna et al., 2012; 

Zinzen et al., 2009). Thus, a TF’s DNA binding motif suffers from being, both 

insufficiently informative to precisely specify binding in the large genomic 

substrate and insensitive to the in vivo environment, making it essential to 

characterize additional determinants of in vivo TF-DNA binding (Heinz et al., 

2013; Moses et al., 2004). 

Spatio-temporal variation in TF binding has been shown to be, in part, 

mediated by the local chromatin state of a binding site (BS) (Hesselberth et al., 

2009). High nucleosomal density is typically unfavorable to TF binding (Jiang 

and Pugh, 2009). Recent work has highlighted three additional features of  in vivo 

binding: (1) GC content in the flanking region that resembles the GC content of 

the putative target site (Dror et al., 2015; White et al., 2013), (2) cooperative 

binding (Smith et al., 2013; Yáñez-Cuna et al., 2012) and (3) genomic clusters of 

homotypic BS for a common TF, or HCTs (Ezer et al., 2014a; Gotea et al., 2010). 

These three features have been shown to be enriched in gene promoters and distal 

enhancers and to contribute to functional in vivo binding leading to transcriptional 

activation (Arvey et al., 2012; Gotea et al., 2010; Sharon et al., 2012; White et al., 
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2013). Still, most BS predicted by current models are not bound in vivo (Arvey et 

al., 2012; Moses et al., 2004; Slattery et al., 2014).  

To date, research on determinants of functional TF binding have focused 

on a putative BS and its proximal genomic context, as described above. In 

parallel, the three-dimensional organization of the genome has emerged as an 

important mediator of transcriptional regulation, where, as opposed to genomic 

proximity, spatial proximity is determinative (Babaei et al., 2015; Filippova et al., 

2013; Fullwood et al., 2009; Ing-simmons et al., 2014). Chromatin looping can 

bring into proximity functionally related genes and their genomically distal 

regulatory regions (Fraser, 2006; Fullwood et al., 2009; Li et al., 2012; 

Lieberman-Aiden et al., 2009; Schwarzer and Spitz, 2014). In vertebrates, for 

example, Hox genes, globin genes, and olfactory receptors, along with their distal 

enhancers, adopt a spatially clustered conformation, termed as ‘regulatory 

Archipelago’ (AP), as a prerequisite for robust transcriptional activation 

(Markenscoff-Papadimitriou et al., 2014; Montavon and Duboule, 2012; 

Schoenfelder et al., 2010a; Schwarzer and Spitz, 2014; Vernimmen, 2014). 

Despite mounting evidence supporting functional criticality of chromatin 

interactions in context-specific transcriptional regulation, the potential impact of 

spatial clustering of BS on their individual TF occupancy has not been 

investigated. Recent findings that spatially clustered enhancers (we borrow the 

term ‘archipelago’ to refer to such spatially clustered enhancers) often share BS 

for the same TF, i.e., homotypic sites (Taher et al., 2013; Malin et al., 2013) make 

such enquiry even more compelling. Notably, these findings echo observations in 
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enhancer-rich regions of the genome known as super enhancers where BS cognate 

to key lineage determining TFs have been found to be enriched (Whyte et al., 

2013), and three-dimensional interactions among the constituent enhancers 

unusually frequent (Heinz et al., 2015). Interestingly, super enhancers display 

extremely high cell type-specific occupancy of certain TFs (Whyte et al., 2013), 

however the mechanism underlying this is not well characterized (Andersson et 

al., 2015).   

In what follows, it's crucial to distinguish binding affinity of a TF for a 

BS, which is typically assessed in vitro, from TF occupancy at a BS, which is an 

in vivo state and depends on additional factors – most directly, TF concentration 

(Foat et al., 2006). Importantly, TF concentration and, hence, TF occupancy, may 

be distributed non-uniformly in the nuclear space (Chakalova and Fraser, 2010; 

Schoenfelder et al., 2010a). Indeed, as described by facilitated TF diffusion, BS 

for a common TF in a HCT may act together to briefly 'trap' a TF into diffusing 

back and forth amongst themselves along the chromatin (Brackley et al., 2012; 

Ezer et al., 2014a, 2014b), resulting in higher-than-expected occupancy in the 

HCT. This explains how a genomic HCT synergistically impacts in vivo binding 

at individual BS within the cluster (Ezer et al., 2014a; He et al., 2012). Critically, 

here, we generalize the notion of “genomic” HCT to investigate the impact of 

“spatial” HCT – that is, spatially clustered but genomically distant BS for a 

mutual TF – on the in vivo occupancy at individual BS in the cluster. 

Based on clusters of spatially proximal enhancers, or APs (Malin et al 

2013, Sheffield et al 2013), and using nucleotide-resolution DNase footprints as 
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well as ChIP-Seq data to quantify context-specific in vivo TF occupancy (Neph et 

al., 2012b), we demonstrate a strong group-level effect on TF occupancy whereby 

individual BS within an AP experience greater in vivo occupancy than their 

counterparts outside APs, i.e., enhancers that are not in spatial proximity with 

other enhancers, although their local genomic contexts have been  carefully 

matched to their AP counterparts for motif composition and chromatin 

accessibility. We refer to the differential occupancy in AP enhancer BS relative to 

the controlled non-AP enhancer BS as ‘occupancy boost’. Strikingly, occupancy 

boost for a TF in an AP scales robustly with the number of putative BS in the AP, 

suggesting a strong synergistic impact of spatial HCT on TF occupancy. TFs with 

degenerate motifs, which are expected to have abundant putative BS, are 

consistently among the TFs experiencing the greatest occupancy boosts; in large 

APs, mean occupancy boosts for homotypic BS corresponding to degenerate 

motifs are between 2 and 3-fold.  

Based on these results, we propose that in vivo occupancy at particular BS 

in an AP is amplified by the presence of homotypic BS in spatial proximity, i.e., 

BS ‘crowdsource’ their own occupancy boost along with other homotypic BS in 

their spatial proximity. We extend the previous biophysical model of facilitated 

diffusion of TFs explaining the occupancy boost in a genomic HCT to explain 

spatial HCTs. Our model shows, with striking concordance, that the observed 

occupancy boost in spatial HCTs can result from TFs briefly ‘trapped’ into 

diffusing among multiple spatially proximal BS. In sum, our study shows, for the 

first time, how hundreds of weak BS, spanning megabases, can leverage 
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chromatin structure to dramatically boost their own occupancy context-

specifically, and in turn, induce higher-order transcriptional changes.  

Results   

Data and Analysis overview 

Archipelagos. Our analysis is based on previously identified enhancer clusters 

(Malin et al., 2013) comprising ~1600 enhancers in 40 clusters. Enhancers were 

clustered based on correlated DNase hypersensitivity (DHS) profiles across 37 

cell lines (representing 82 cell lines). Enhancers in the same cluster were shown to 

(i) have functionally related gene neighbors with correlated expression, indicative 

of coordinated regulation, (ii) share BS for several TFs, and (iii) be spatially 

proximal to one another. We will refer to such enhancer clusters as 'archipelagos' 

(APs) borrowing from (Spitz and Furlong, 2012). We refined the APs identified in 

(Malin et al., 2013) to ensure tight spatial proximity among AP enhancers (see 

Methods). Note that properties (ii) and (iii) above together imply a higher spatial 

density of homotypic BS within an AP, particularly for TFs with degenerate 

motifs, which typically have abundant putative BS (Figures 3-1, 3-2); we quantify 

a motif’s degeneracy by its relative entropy (RE) (see Methods). For additional 

validation, key tests were repeated using an alternative set of previously published 

APs (Sheffield et al., 2013). 

Figure 3-1. Spatial homotypic clusters.  The combination of spatial proximity and 

genomic homotypic clusters of TFBS produce high homotypic TF BS concentration. As 

illustrated, low-RE (degenerate) motif BS have a higher expected frequency in the 

genome than high-RE motif BS, including more frequent HCTs. In a spatially proximal 

chromatin context, effective homotypic BS concentrations are particularly elevated for 

low-RE motif BS. This effect is further accentuated in archipelagos of enhancers, which 

have been shown to be enriched for HCTs for shared TFs.  High effective homotypic BS 
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concentration is likely a pre-requisite for the crowdsourcing effect. Large ovals denote 

archipelagos of functionally related enhancers and target genes. Darkness of 

background color approximates the maximum expected homotypic BS concentration. 

Not drawn to scale. Green: DNA. Black: BS. BS=binding site; RE=relative entropy; 

HCT = homotypic (genomic) cluster of TFBS. 

 

 

 

 

 

 

 

 

Figure 3-2. TF motif degeneracy is positively associated with frequency of its 

putative BS in the genome. Degeneracy for each of ~2500 TRANSFAC TF motifs (i.e. 

position weight matrices) was estimated by its RE (x-axis). Putative BS were identified 

and tallied in ~40K background (non-AP) enhancers, having mean length ~ 500bp. 

Putative BS for a TF mapping to multiple motifs were pooled and plotted against the 

RE of the motif with the lowest. BS: binding site(s), AP: archipelago, RE: relative 

entropy, TF: transcription factor. 
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In vivo occupancy. For a putative BS, an initial estimate of its in vivo occupancy 

was determined using high-resolution curated cell type-specific DNase footprint 

data (Neph et al., 2012b) as well as, data permitting, ChIP-Seq data from 

ENCODE (see Methods). When using footprint data, we applied highly stringent 

criteria to ascribe the footprint to a specific TF, similar to (Neph et al., 2012b), 

while accounting for multiple motifs mapped to a TF (Methods).  

Non-archipelago control enhancers. Recognizing the inherent technical challenges 

in inferring occupancy, especially from footprint data, “raw” estimated AP 

occupancies were not compared directly with each other. Instead, we quantified 

occupancy in each AP enhancer, for a given TF, in relation to occupancy in a 

stringently matched ‘non-AP’ enhancer, in the same tissue. The non-AP control 

enhancers are not spatially clustered (Malin et al 2013), but are otherwise 

carefully matched with the AP enhancers for each TF in terms of motif 

composition (motif number and kind) and chromatin accessibility (see Methods). 

All our results, therefore, marginalize out the contribution of genomic homotypic 

clusters, while also preempting technical biases due to motif-specific differences 

in occupancy detection. Additional analyses obviate the need for the non-AP 

background by comparing an AP BS’s occupancy across cell types.  

Organization of the Results. We have organized our results into four sections as 

follows. (1) We first establish our central hypothesis - a TF’s in vivo  DNA 

occupancy in an AP is ‘boosted’, relative to  ‘non-AP’ control enhancers, and the 

occupancy boost robustly scales with the number of BS for the TF in the AP. (2) 

Given the apparent similarities between APs and super enhancers, we compare the 
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two and show that the occupancy boost in APs can act independently of super-

enhancers, as well as independently of protein-protein cooperative binding (3) We 

show, via a biophysical model based on facilitated TF diffusion that the observed 

occupancy boost can be explained by “trapping” of the TF in a restricted nuclear 

space. (4) Thus far, in vivo occupancy of a TF and other functional analyses were 

primarily rendered in each AP’s most active cell line – its so-called ‘AP-active’ 

tissue (see Methods). Here, we establish context-specificity of the occupancy 

boost by comparing the boosts in AP-active tissue with those in ‘AP-inactive’ 

tissues.  

Occupancy boost at AP BS increases with homotypic BS density within AP, 

supporting crowdsourcing of in vivo TF occupancy 

We tested our central hypothesis at the level of a TF-AP pair, in the AP-active cell 

line (Methods). For a given TF and AP, we calculated the TF’s coverage as the 

total number of its cognate BS in the AP, and calculated its occupancy boost as the 

difference in occupancy between AP BS and BS in matched non-AP enhancers, 

normalized by the latter (Methods;  Figure 3-3); for instance, an occupancy boost 

of 100% corresponds to a 2-fold difference. In comparing mean occupancy boosts 

of distinct TF-AP pair classes, then, we effectively compare means of AP 

occupancies normalized by matched non-AP pairs. Because background levels of 

BS occupancy in the genome are generally low (3-5%), the occupancy is zero in 

both AP and control non-AP enhancer sets for a majority (65%) of the ~25k TF-

AP pairs; these pairs were excluded for this analysis. Of the remaining TF-AP 

pairs, ~3.6k have non-zero occupancy in both AP and non-AP, encompassing 

~95K enhancer-TF pairs and ~205K BS (we call this the reciprocal set), and 
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additional ~5k TF-AP have non-zero occupancy in either AP or in matched non-

AP BS (non-reciprocal set). We analyze the two sets of TF-AP pairs separately.  

 

Figure 3-3. Calculating differential TF occupancy boost based on curated digital 

DNase footprint data. Shown is the procedure for calculating occupancy boost for each 

(AP, TF) pair. For each enhancer in an AP, and each TF with one or more putative BS 

in the enhancer, a non-AP enhancer is chosen (with replacement) after controlling for 

mean enhancer-wide chromatin accessibility (DHS) in the AP’s most active tissue, and 

for the number of putative BS. For each TF-AP pair, then, occupancy boost is 

calculated as the percent difference in the number of putatively bound BS, where 

binding is determined in a binary manner: 1, if a curated footprint tightly overlaps a 

given motif instance, 0, otherwise. If multiple TF motifs tightly overlap a given 

footprint, conservatively, all are classified as bound.  Putative BS are indicated by a 

‘1’, or ‘2’, respectively, for example TFs SOX and XBP1. A circle around a BS 

signifies it is imputed as bound by its cognate TF. Note that the toy calculation of 

occupancy boost does not correspond to the data displayed.  AP = archipelago; TF = 

transcription factor, BS = binding site. DNase digital footprint scans from Neph et al 

2012. 

 

 

We stratified the reciprocally occupied TF-APs into 8 bins with exponentially 

increasing coverage cutoffs and calculated the overall occupancy boost for each 
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bin as the mean occupancy boost among member TF-APs. As shown in Figure            

3-4A, the occupancy boost robustly increases with the TF coverage in the AP. 

Specifically, we found a substantial difference in occupancy boost between TF-

APs with the highest and lowest 50% coverage (mean of 77.7 % versus 2.1 %; 

Wilcoxon p-value = 1.4e-5). This trend also holds when coverage was 

alternatively quantified as the number of enhancers in an AP with at least one BS 

for the TF ( Figure 3-4B), suggesting that the boost is not due to disproportionate 

contribution from a few enhancers, but instead relies on widely dispersed BS 

across the AP’s enhancers. Interestingly, the boosts for high coverage TF-APs 

increase when the digital footprint binding criterion for assessing occupancy is 

made more stringent (Figure 3-5). This highlights the robustness of occupancy 

estimation, as well as the fidelity of our experimental design. As an alternative 

measure of occupancy, at the enhancer-wide scale, we used ChIP-Seq data in an 

independent set of 9 tissues. Despite drastically fewer potentially bound sites 

analyzed (on average, ~30 fold fewer TFs per cell type), we observed a highly 

consistent and significant trend ( Figures 3-6A, 3-6B).  

 

Figure 3-4. A, B. Differential AP occupancy ‘boost’ scales with TF coverage in the 

AP. TF-AP combinations were sorted on the basis of coverage and mean occupancy 

boost was determined for each group of TF-APs, where occupancy boost refers to 

differential occupancy in AP and non-AP enhancers matched 1-to-1 for the TF’s motif 

signature (the number and type of motifs) in a given enhancer, as well as for mean DHS 

across the AP. Occupancy was calculated based on the overlap of curated DNase digital 

footprints (Neph et al 2012) with high-confidence TRANSFAC motif instances. TF-APs 

and their non-AP counterparts were included in this analysis only if they both had non-

zero occupancy (See also Figures S1, S2, S3, S4). Coverage was calculated as, 

alternatively, the number of cognate BS for a given TF in a given AP (A), or the 

number of enhancers with one or more cognate BS (B).   
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Figure 3-5. Occupancy boost trend improves with a more stringent digital footprint 

significance threshold, i.e. the ‘FOS’ (Footprint Occupancy Score) threshold (Neph et 

al 2012), for curation of high-resolution DNAse hypersensitivity reads. In the top and 

middle plot, relative lax thresholds of 0.90 and 0.75, respectively, are used, in contrast 

to the 0.6 threshold (bottom) used for all analyses performed in this work, including 

Figure 1. TF-AP pairs were binned by ‘coverage’ (x-axis), i.e. the number of cognate 

BS in a given AP for a given TF. Occupancy boost with respect to matched non -AP 

pairs shown on the y-axis. 95% confidence intervals are based on 50K bootstrap 

samples. . AP: archipelago, BS: binding site(s), TF: transcription factor. 
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Figure 3-6. (A) Boost in per-enhancer occupancy for reciprocally occupied TF-AP 

pairs based on 206 ChIP-Seq experiments in 9 cell types. Horizontal arrow 

represents test comparing first and third coverage bins; remaining tests compare 

sampled boosts with the null expectation of zero. P -values and 95% confidence 

intervals computed with bootstrap procedures. ***** p < 1 x10 -6, **** p < 1 x10-4, 

*** p < 5 x10-4, ** p ≤ 1 x10-2, * p < .05.  (B) Comparison of ChIP-Seq peaks 

recorded in AP and in non-AP control enhancers of reciprocally occupied TF-AP pairs. 

Shown are significance levels comparing coverage bins 1 to 3 (horizontal arrow), and 

bound vs unbound enhancers within each bin. P-values using Fisher Exact tests. *** p < 

5 x10-6, ** p < 5 x10-3, * p < 5 x10-2, • p > 0.1.  
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Abundance of a TF’s cognate BS is strongly correlated with its motif degeneracy 

(Figure 3-2). Given this association, we also directly assessed the relationship 

between TF motif degeneracy and occupancy and found consistent trends (Figure 

3-7). Taken together, the above analyses strongly suggest that binding sites for 

high coverage TFs experience a substantial occupancy boost in AP enhancers 

relative to BS in comparable non-AP enhancers.  

 

Figure 3-7. Occupancy boost increases with greater TF motif degeneracy. Top: 

Distribution of RE for vertebrate TF motifs.  Counts are shown for the ~1K 

TRANSFAC vertebrate TFs used in analysis. TFs with more than one identified motif 

were mapped to that motif having the lowest RE. Bottom: TF RE vs. occupancy boost. 

TFs partitioned into disjoint RE classes based on RE threshold. For each TF -AP pair, 

its ‘occupancy boost’ was estimated as the difference between its occupancy in AP and 

matched non-AP enhancers, normalized by its occupancy in non-AP enhancers. RE = 

relative entropy. 

 

A B 
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The overall TF coverage is affected by both the mean number of BS per 

AP enhancer ('homotypicity') and the number of enhancers per AP ('AP size'). 

Next, we assessed the relative contributions of these two constituents of coverage 

on the occupancy boost. As shown in Figure 3-8, for the reciprocal set, AP size 

and homotypicity independently and robustly impact the magnitude of occupancy 

boost (p-value = 4.2E-6). A similar analysis on 5K non-reciprocal TF-AP pairs 

shows a similar and significant trend (Figure 3-9; p-value 8.1E-5). There was 

insufficient ChIP-Seq occupancy data to analyze non-reciprocal TF-AP pairs 

separately, however, we continued to find a highly significant trend for ChIP-Seq-
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derived occupancy boost when non-reciprocally and reciprocally bound TF-APs 

were pooled (p-value = 2.2E-4 Figure 3-10).  

Results supported with alternative AP data set 

For additional validation, we used alternative sets of AP enhancer clusters 

reported in (Sheffield et al, 2013). After processing the data to match closely to 

the data from Malin et al. described in the main text, we obtained 472 AP clusters 

averaging 15 enhancers per cluster, along with a pool of 18K ‘nonAP’ enhancers 

which were then matched to AP enhancers, as described (see Methods). 

Consistent with the results based on data from Malin et al., we observed a 

substantial difference (p=1x10
-23

) between high and low coverage occupancy 

boosts (47% vs 8%, respectively) (Figure 3-11A bottom). After Lowess 

smoothing (with stats.model Python package) using default settings, mean boosts 

exceeded 100% for TF-AP pairs with the highest coverage (Figure 3-11B). 

Consistent with the crowdsourcing model, we also note that occupancy boosts for 

AP-TFs with the highest coverage were significantly higher after screening out 

enhancers in each AP with low mean spatial proximity to fellow AP members, 

based on Hi-C data from embryonic stem cell (for top 2% coverage, 47% vs. 29% 

boost p= 5x10
-4

) (see Methods) (Figure 3-11A). This aligns with the established 

relationship between Hi-C scores and relative spatial distance (Lieberman-Aiden 

et al., 2009; Mifsud et al., 2015), and with the importance of spatial proximity to 

occupancy boost.  

While these trends based on the Sheffield et al (2013) data are highly 

significant, the maximum boosts are approximately half of those observed with 
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the 40 APs from Malin et al. (2013). The most likely explanation centers on a key 

difference in the two approaches to identify correlated enhancers; Specifically, 

Malin et al. explicitly controlled for the genome-wide autocorrelation in tissue-

specific activity (estimated by DHS), thus screening out many enhancer pairs with 

high correlation that was nominally due to their genomic proximity. The Sheffield 

approach did not control for autocorrelation, which results in higher sensitivity for 

detecting correlated activity, but is also likely to detect a large fraction of 

enhancer pairs due to their genomic proximity without true coordinate regulation. 

Nonetheless, their data offers independent evidence of occupancy boost for TFs 

with degenerate motifs in large APs. 

 

Figure 3-8. Mean occupancy boost versus coverage that has been decomposed along 

two axes. Each TF-AP pair was binned based on the number of enhancers in an AP 

(column) and the mean number of BS per AP enhancer (row). Plots to the left of and 

below the heatplot show mean boost for each row and column, respectively. Red (green) 

heatmap cells indicate high (low) percentage occupancy boost after Lowess smoothing. 

Grey cells indicate no data. In the right panel, for all TF-AP pairs in the selected 

heatmap cell, significant digital DNase hypersensitivity footprints in member AP and 

matched non-AP enhancers are shown, where the numbers of BS for AP and non -AP 

enhancer-TF pairs are identical; a blue line indicates a significant footprint overlapping 

a putative BS. Enhancers are sorted from bottom to top in order of increasing chromatin 

accessibility. TF: transcription factor, BS: binding site(s), AP: archipelago  
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Figure 3-9. Occupancy boost observed in cases of ‘non-reciprocal’ occupancy -- 

where exactly one of the AP and matched non-AP enhancer have non-zero occupancy.  

Given that percent differential occupancy, or ‘occupancy boost ’ , as previously 

calculated, is not as meaningful in the event that either AP or non -AP occupancy for a 

given TF-AP = 0, such TF-AP pairs were excluded from the previous calculation and 

analyzed separately (cases where both occupancy values were zero were  excluded). As 

in the previous analysis, TF-AP pairs were binned based on the combination of AP size 

(columns) and mean TF homotypicity per enhancer (rows), and for each heatmap cell, 

the normalized difference was computed between counts of TF-AP pairs exhibiting non-

reciprocal AP occupancy (TF-AP occupancy > 0, non-AP synthetic TF-AP occupancy = 

0) and counts of pairs exhibiting non-reciprocal non-AP occupancy (TF-AP occupancy 

= 0, synthetic TF-AP occupancy > 0). This difference was then normalized by |TF -APs| 

in the cell, and the resulting values Lowess -smoothed along both x- and y-axes using 

default settings (stats.model Python package). Red hues indicate either 0 or negative 

differences, while colors spanning orange to green indicate increasingly higher 

normalized differences, respectively (see scale. Gray indicates no data). P -value based 

on Wilcoxon test comparing boosts for TF-APs with the lowest and highest 50% 

coverage.  
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Figure 3-10. Additional validation of occupancy boosts using ChIP-Seq derived 

occupancy. ENCODE ChIP-Seq data was used for all cell types in which at least one 

AP was active, that is, for which at least 90% of an AP’s enhancers were chromatin 

accessible. This resulted in 206 Chip-Seq experiments for 89 unique TFs across 9 cell 

types. (A) Reciprocally and non-reciprocally bound TF-AP combinations were pooled, 

thereby encompassing TF-AP combinations without mathematically defined occupancy 

boost. Shown are overall numbers of specifically bound AP (pale blue) and stringently 

matched non-AP (grey) enhancers, partitioned into coverage bins. Results of two tests 

are shown: comparing AP/non-AP ratios in the lowest and highest coverage bins (two-

sided arrow); and comparing specifically bound and unbound enhancers in the highest 

coverage bin. P-values are from Fisher Exact tests.  Specific occupancy was calculated 

on a per-enhancer basis, where binding for a given TF was determined based on overlap 

between a +50bp window surrounding the ChIP-Seq peak and a motif instance in the 

enhancer. AP: archipelago. (B) Occupancy boost was compared in AP -active cell types 

to boost in minimally active cell types. Cell type activity for a given AP was computed 

as the fraction of member enhancers that were DNase  hypersensitive.  In top plot (same 

as Fig. 3-6A), minimum AP activity is 90%; in bottom plot, AP activity ranges from 1% 

to 85%. A Wilcoxon test was used to compare the respective sets of occupancy boosts 

for TF-AP combinations in the highest coverage bin. 
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Figure 3-11. Validation of occupancy boosts using alternative archipelago data 

sets. Occupancy boost was determined for APs comprising sets of coordinately active 

regions from (Sheffield et al 2013) that were then overlapped with putative enhancers 

(P300 ChIP-Seq peaks). Boost was calculated with respect to a background of ‘non -AP’ 

enhancers, which did not belong to any Sheffield set of co -active regions of size five or 

greater.  (A) Top: Plot shows percentage difference in TF BS occupancy between each 

TF-AP pair and its matched non-AP enhancer TF BS (y-axis) as a function of coverage 

– the total number of BS in the AP for a given TF (x-axis).      Bottom: In each AP, 

enhancers with the lowest mean spatial proximity with fellow AP members were 

A 

B 
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excluded, based on human stem cell Hi-C.  Shown are  Wilcoxon test p-values from 

comparing boosts for TF-AP pairs in the bottom four and top two coverage bins (top p -

value); comparing boosts in Hi-C screened (bottom plot) and unscreened  TF-APs (top 

plot) with the highest two percent coverage, which approximately corresponds to the 

top two coverage bins, as indicated by pink shading (bottom p -value). 95% confidence 

interval shown based on a bootstrap procedure . (B)  Coverage for each TF-AP was 

decomposed into orthogonal components for mean number of BS per enhancer (row) 

and mean number of enhancers per AP (column). Percentage occupancy boost for cells 

missing data was interpolated by averaging values in the four or two neighboring cells. 

Heatmap cells were then Lowess smoothed along both axes.   
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Occupancy boost can act independently of cooperative binding and of super-

enhancers  

Higher occupancy boost for cooperatively binding TFs explained by higher coverage 

We reasoned that the observed link between spatial BS abundance and occupancy 

may partly be mediated by cooperativity among the bound TFs within an AP 

(Martinez and Rao, 2012; Pombo and Dillon, 2015) We therefore assessed 

whether the occupancy boost varies among TFs in different structural classes. We 

assigned the analyzed TFs to one of 42 structural families based on the 

TRANSFAC (version 2013.4). We found that, consistent with the crowdsourcing 

model, there is an overall significant correlation between family-wise occupancy 

boost and BS coverage (R
2
 = 0.22, p-value = 0.003). Of the 42 families, 14 

families included TFs that are known to form heterodimers, often with a member 

of the same family. Notably, 11 of 14 heterodimerizing (HD) families display 

B 
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greater-than-expected boost (i.e. above the regression line), with MADS and bZIP 

families showing the highest boosts (Figures 3-12A). However, many families 

lacking heterodimer members display robust occupancy boosts and also possess 

high mean coverage – including Tea, Rel/Nfat, Grainyhead, AT-hook, NF1, 

bHSH, and Nk2/Nkx.  

In order to more directly test for a potential link between cooperative 

binding and occupancy boost, we compared occupancy boost in TF-AP pairs for 

HD TFs to that in TF-APs that are not HD. Based on boosts for TF-AP pairs 

among the top 20% (50%) in coverage, HD TFs do, in fact, display higher boost, 

with a mean of 135% (120%) versus 110% (102%) for all other TFs (p-value = 

0.007 (0.0018) Mann-Whitney rank sum test). However this test does not control 

for differences in coverage between HD and non-HD TFs. Upon closer 

inspection, we found that indeed, HD TFs have higher coverage than non-HD TFs 

(159 vs 137 BS per AP, for TF-APs in top 20% by coverage). Within each family 

however, we found that TFs with higher coverage exhibit higher occupancy boost 

(Figure 3-12B). Thus, occupancy boost differential between HD and non-HD TFs 

is largely explained by their inherently different degeneracy and, hence, coverage. 

Overall, occupancy boosts scale closely with coverage for a majority of TF 

domain families, and for both cooperatively binding and non-cooperatively 

binding TFs. Hence, the observed occupancy boost cannot be explained by TF 

cooperativity alone.  
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Figure 3-12. Crowdsourcing behavior spans TF domain families with and without 

strong heterodimerizing tendencies. (A) TF family-wise occupancy boost vs. mean 

coverage. For a given TF-AP pair, coverage is defined here as the total number of 

cognate BS in the AP.  Plot is based only on TF-APs for APs with > 40 enhancers. 

Linear regression line (R2 = 0.22, p-value = 0.003) shown in blue. Size of red dot in 

plot is proportional to the fraction of family members that are heterodimers, as 

classified by TRANSFAC. Note that 10 of 14 families with heterodimer TFs have 

occupancy boosts that lie above the regression line, although the fraction of HD 

members was not significantly associated with the family’s mean boost.  

(B) Mean occupancy boost stratified by TF family and AP size. TF-APs sorted based on 

TF domain family were further divided into two classes, based on a cutoff for AP size 

of 20 enhancers. X-axis shows families sorted by their boost in large APs. Hue of 

column is proportional to the fraction of TFs in fami ly that are heterodimers – deeper 

green indicates a larger fraction. Green trace: mean family -wide occupancy boosts in 

large APs. Red trace: mean boosts in small APs.  
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Non-superenhancer AP enhancers exhibit large occupancy boosts  

We next probed the potential relationship between occupancy boost in APs and 

high occupancies of key lineage-determining TFs reported in so-called super 

enhancers  -- compound enhancers extending up to 100Kb or more (Whyte et al., 

2013). First, we observed a six-fold greater overlap of cell type-specific super 

enhancers (downloaded from (Hnisz et al., 2013)) with AP-active enhancers 

relative to non-AP enhancers, in seven cell types (Figure 3-13A, left). This is 

consistent with the hypothesized association between AP occupancy boost and 

super enhancer function.  

In order to test whether AP occupancy boost is limited to super-enhancers 

or, conversely, acts more generally, we calculated occupancy boost exclusively at 

B 
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the 45% of AP enhancers that do not overlap a super-enhancer in any of 86 cell 

types (Figure 3-13A, right). Indeed, the number of cognate BS in just these 

screened AP enhancers is a highly robust predictor of their own occupancy boost, 

with mean boost exceeding 140% for the TF-AP pairs with the highest screened 

coverage (Figure 3-13B top, 3-13C top). The analogous non-reciprocal binding 

trend for these AP enhancers was less robust, due largely to few non-reciprocal 

TF-AP pairs with high coverage, but still significant (AP/non-AP ratio > 3.0 in 

highest coverage bin, p-value = 0.01, Figure 3-13B top, 3-13C bottom). In sum, 

the observed occupancy boost appears to be a general phenomenon not limited to 

super-enhancers. 

Taken together, our extensive analyses based on multiple alternative data 

sources, both for APs and for inferring occupancy, strongly suggest a group-level 

effect on TF occupancy, whereby in a spatial cluster of homotypic BS for a TF, 

occupancy at an individual BS is ‘crowdsourced’ by the collective contribution of 

myriad homotypic BS across an AP. 
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Figure 3-13. Super-enhancers appear to be one instance of crowdsourcing.  While 

there is high enrichment for AP enhancers in super-enhancer (SE) regions, occupancy 

boost is as well-predicted by non-SE-associated as by SE-associated AP enhancer 

coverage.  (A) Left: Genomic overlap was quantified between cell type -matched SE and 

(i) AP enhancers in which at least 90% of member enhancers were hypersensitive in the 

given cell type; (ii) a set of ~40K non-AP enhancers. Overlap was considered anywhere 

in the span of a super-enhancer region, as annotated in (Hnisz et al 2013), and was 

found in NHDF-Ad, NHLF, HUVEC, MCF7, HMEC, HeLa, and hESC. P-value based 

on a Fisher exact test. Right: SEs from 86 cell types and tissues (Hnisz et al 2013) were 

pooled and overlapped with AP and non-AP enhancers, independent of cell type. (B) 

Occupancy boost was tested for reciprocally (top) and non -reciprocally (bottom) bound 

TF-AP combinations for screened AP enhancers. Both occupancy and coverage 

(numbers of cognate BS) were calculated using the subset of AP enhancers that, 

conservatively, did not overlap an SE from any of 86 cell types (without regard to cell 

type), along with an AP enhancer’s matched non-AP enhancer for a given TF. 5% 

confidence intervals determined using a bootstrap method. P -value determined with a 

Fisher Exact test. (C) Occupancy boost as a function of coverage was determined at 

those AP enhancers not analyzed in (B), namely AP enhancers that do overlap an SE. 

(D) Top: Genomic overlap was identified for active APs and cell type -matched SEs. 

Bottom: Histogram showing number of overlapped SEs per AP for APs overlapping at 

least one SE. (E) Enhancers in three AP-tissue pairs (red) along with their overlapping 

SEs. (E) Enhancers in three AP-tissue pairs (red) along with their overlapping SEs.  
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TF occupancy boost in spatial clusters of BS is consistent with a facilitated-diffusion 

model  

Many biophysical simulations and experiments have strongly suggested that 

facilitated diffusion can have a large influence on TF binding dynamics (Brackley et al., 

2012, 2013b; Elf et al., 2007; Hammar et al., 2012; Leith et al., 2012; Mirny et al., 2009; 

Wunderlich and Mirny, 2008; Zabet and Adryan, 2012). In particular, previous studies 

have shown that a facilitated diffusion model can explain the greater occupancy in 

genomic homotypic clusters of TFBS (Brackley et al., 2012). Here we simulated an 

extended version of the biophysical model for HCTs in isolation in order to determine 

whether the crowdsourcing effect is sufficient to explain the observed AP-specific 
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occupancy boost. The crowdsourcing effect was simulated using a modified form of the 

facilitated diffusion modeling framework fastGRiP (Ezer et al., 2014).  While the original 

implementation of fastGRiP incorporates the influence of the positioning of binding sites 

along the DNA, it ignores how the 3D organization of the DNA can influence the TF 

search process.  In order to simulate the crowdsourcing effect, TF diffusion between 

nearby DNA strands was incorporated, by integrating the diffusion equations previously 

derived by (Carslaw and Jaeger, 1959; Elf et al., 2007; Paramanathan et al., 2014) into 

the simulation.  All details pertaining to the model, algorithms, parameter selection and 

results are provided in Appendix 'FD-Model'.  Centrally, our simulations show that 

occupancy boost increases with, both, the number of homotypic BS in an HCT (i.e., 

enhancer) and, novelly, the number of enhancers in an AP.  For instance, in the case of 

four clustered enhancers 100nm to 200nm apart (equivalent to 300 to 600 nucleotide 

lengths), versus 10000nm apart (approximating non-AP), where each enhancer contained 

a pair of homotypic binding sites, there was a 60% to 170% increase in TF occupancy, 

and in the case of eight enhancers containing pairs of homotypic binding sites, there was 

an 118% to 277% increase in occupancy (Figure 3-14). TF occupancy, consistent with a 

previous model (Brackley et al., 2012), scaled with the number of BS in an HCT. Less 

expectedly, the genomic inter-BS distance within an HCT did not significantly impact 

occupancy – in stark contrast to the large positive effect on occupancy from reduced 

spatial distance between HCTs ( Figures 1C-1E in Appendix FD-Model; Figure 3-14). 

Together, our simulations demonstrate that inter-strand jumping between HCTs 

substantially amplifies the occupancy boost experienced at an isolated HCT, and this 

effect increases robustly with the number of homotypic clusters engaged in 3D 
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interactions. Indeed, simulation results suggest that the crowdsourcing effect is a 

biophysically sound strategy for increasing local TF occupancy in APs at a biologically 

meaningful scale. 

Figure 3-14. Biophysically modeling crowdsourcing effect.  TF diffusion was 

simulated for four geometric arrangements of binding sites, and the probability density 

functions of TF occupancy are shown. The TF occupancy is defined as the average 

probability that each site is bound. The four simulated scenarios are: a tetrahedron with 

(A) one binding site or (B) a pair of binding sites in each corner, which contain 4 or 8 

binding sites, respectively; a cube with (C) a single binding site or (D) a pair of binding 

sites in each corner, which contain 8 and 16 binding sites respectively. For an 

additional figure and details on the simulation, see Appendix.  
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Cell type-specificity of AP enhancer occupancy boost and activity 

Given the link between occupancy boost and spatial clustering of BS, and given 

the context-specificity of spatial proximity (Ay et al., 2014), we expect the 

occupancy boost to exhibit cell type specificity. In addition to identifying the cell 

type where an AP is deemed active (as employed in analyses thus far), we also 

identified the cell types where an AP is deemed inactive, namely those where less 

than 40% of the AP enhancers were DNase I hypersensitive. To offset the paucity 
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of bound sites in inactive tissues, all qualifying inactive tissues for each AP were 

pooled. We found that for the TF-AP pairs in the highest coverage bin, occupancy 

boost dropped from ~112% in its AP-active cell type down to 38% in inactive cell 

types ( Figure 3-15A). This trend was also observed when occupancy was 

computed with ChIP-Seq data (Figure 3-10B). In addition, we estimated tissue 

specificity of each TF as the cross-tissue dynamic range of its footprint-based 

occupancy, defined as the ratio of its occupancy in AP-active tissue(s) to that in 

AP-inactive tissues, calculated over the identical AP BS. Notably, this provides 

evidence of the occupancy boost’s tight association with coverage without the 

need for non-AP occupancy as a baseline. After controlling for DHS across 

coverage bins, we find that the TF-APs with top 10% coverage display 135% 

greater occupancy in active relative to inactive tissues, while in the matched non-

AP context it is 38% ( Figure 3-15B). Even larger differentials between AP and 

non-AP contexts were observed for their respective ratios of non-reciprocal 

binding in active and inactive tissues (Figure 3-16A). Interestingly, we found that 

high coverage TF-AP pairs for heterodimerizing TFs exhibit substantially higher 

specificity than other TFs (225% vs. 140%) (Figure 3-16B), particularly TFs in 

MADS and bZIP domain families, suggesting an augmented level of cooperative 

binding in APs. This, we suspect, is due to the relatively binary nature of 

cooperative binding: in response to small increments in TF concentrations, 

heterodimers exhibit disproportionately large changes in occupancy (Giorgetti et 

al 2010). These results strongly suggest that occupancy boost in AP enhancers is 

cell type-specific and leverages context-specific chromatin structure. 
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Figure 3-15. Occupancy boost is tissue-specific. (A) Occupancy boost in cell types 

with reduced AP activity. Occupancy was computed as a function of coverage in 

‘inactive’ cell types – those in which fewer than 40% of the AP’s enhancers were 

DNase hypersensitive (bottom). For comparison, the plot for active cell types from 2A 

is reproduced (top) (B) Tissue specificity of occupancy for TF-AP and matched non-

TF-AP pairs as a function of TF-AP coverage. Dynamic range (y-axis) for occupancy 

was calculated for each TF-AP pair as the percentage difference between mean 

occupancy in the AP’s most active and inactive cell types. Identical BS in active and 

inactive cell types were tested. Serving as a control, dynamic range was also computed 

for non-TF-APs that were matched to TF-APs. A TF-AP was required to have non-zero 

occupancy in both inactive and active cell types. Only TF-APs shared in AP and non-

AP contexts were used for analysis. Shown are results for TF-APs and for non-TF-APs 

each sorted into 4 bins with exponentially increasing coverage cutoffs. Red: AP, Gray: 

non-AP. 90% and 99% confidence intervals are shown with variable hue. AP -wide DHS 

as a function of context-specific TF availability.  
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Figure 3-16. Tissue-specificity of occupancy boost. (A) Non-reciprocal tissue-

specificity as a function of coverage. The percentage difference between an TF -AP’s 

occupancy in its AP-active tissue and that in AP-inactive tissues was previously 

computed (Figure 11).  TF-APs with zero occupancy in either active or inactive tissues, 

which were excluded from that analysis, are analyzed here. TF-APs were sorted based 

on coverage into 8 uniform-sized bins. In each bin, the ratio was computed between the 

number of TF-AP pairs exhibiting non-reciprocal active-tissue occupancy (active tissue 

occupancy > 0, inactive tissue occupancy = 0) and the number of pairs exhibiting non -

reciprocal inactive-tissue occupancy (active tissue occupancy = 0, inactive tissue 

occupancy > 0). Unlike Figure 11, where TF-APs are binned based on exponentially 

increasing coverage cutoff, TF-APs are, instead, binned here uniformly to offset what 

would otherwise be low sample size in high coverage bins. Red: AP, Gray: non -AP. 

90% and 99% confidence intervals are shown with deeper and lighter hue respectively 

and were computed with bootstrapping. (B) Heterodimers exhibit an elevated trend in 

cell type specificity, which here, is estimated as the percent difference in occupancy 

between AP-inactive and AP-active cell types. Left: Differential occupancy (y-axis) 

between AP-inactive tissues and AP-active tissue was computed for each TF-AP and 

plotted as a function of TF-AP coverage after partitioning TF-APs based on those with 

a TF classified as heterodimer (TRANSFAC 2014.3) (red) and all remaining TF-APs 

(blue). TF-APs were sorted into bins with exponentially increasing coverage cutoffs (x -

axis). Right:  same as Left except differential occupancy boost between inactive and 

active tissues was computed for matched non-AP enhancers. Note the different scaling 

on y-axis compared to in (A). 90% and 99% confidence intervals are shown with deeper 

and lighter hue respectively. 
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Discussion 

Summary. Here, we have shown that a TF’s in vivo occupancy at a particular cognate BS 

is much greater when the BS is in spatial clustered with other homotypic BS (i.e., in an 

AP) than when it is not.  Strikingly, the size of the occupancy boost robustly scales with 

the number of homotypic BS in the AP, suggesting, for the first time, that the BS in an 

AP cooperatively crowdsource their own occupancy. To ensure the robustness of our 

conclusions, we used stringent controls and employed multiple (i) sources for AP 

enhancers (Malin et al 2013, Sheffield et al 2013), (ii) experimental backgrounds (non-

AP enhancers in the AP-active tissue, the same enhancer in AP-inactive tissues), (iii) 

occupancy scales (per BS, per enhancer), and (iv) types of occupancy data (curated 
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digital footprints, ChIP-Seq. These observations are not adequately explained by current 

models, however, they closely agree with a standard biophysical model of facilitated TF 

diffusion that duly accounts for the augmented diffusion of TFs among spatially proximal 

homotypic BS. Effectively, a collective of spatial homotypic clusters of TF BS (spatial 

HCTs) cooperatively alter their microenvironment, raising the local concentration of their 

cognate TF.  

Genomic versus Spatial homotypicity. Our work synthesizes the regulatory roles of 

HCTs (e.g. Crocker et al 2015), and of stable chromatin structures (e.g. Dowen et al., 

2014), by showing that it is precisely the interplay  of numerous HCTs mediated by 

chromatin folding that gives rise to the hitherto undocumented biophysical effect that we 

have termed crowdsourcing. Enhancer-enhancer interactions have been reported in the 

context of HOX and globin gene regulation as well as in high-throughput ChIA-PET 

assays, but their functional nature has remained elusive. A notable exception,  spatial 

clustering of enhancers around an olfactory receptor gene have been associated with 

removal of repressive H3K9me3 (Markenscoff-Papadimitriou et al., 2014); it is plausible 

that crowdsourcing is an upstream trigger of this change – through a general remodeling 

of the local chromatin state, or through increased binding of a TF that mediates chromatin 

remodeling.   

Tissue specificity and cooperative binding. We found that crowdsourcing is highly 

tissue-specific, as high-coverage AP BS exhibit several-fold greater occupancy in AP-

active relative to AP-inactive tissues. Such tissue specificity is consistent with the 

dependence of crowdsourcing on chromatin context and TF availability, where 

differential TF availability likely acts not only directly but also by influencing higher-
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order chromatin conformation (Pombo and Dillon, 2015). Crowdsourcing endows the cell 

with a high degree of fine-grained regulatory control, as occupancy boost magnitude is 

shaped by the collective availability of multiple TFs and conditioned on the chromatin-

induced spatial proximity of their cognate sites. Fundamentally, crowdsourcing provides 

an alternative mechanism of cooperativity to direct cooperative binding of 

heterodimerizing TFs, an established source of tissue-specificity. Indeed, crowdsourcing 

acts complementarily to cooperative binding.  

Differential occupancy as a vehicle for specificity. In contrast to previous work 

underscoring the functional importance of weak (low occupancy) binding that typical 

ChIP-Seq processing tends to miss due to stringent cutoffs (Tanay 2006; Biggin 2011), 

crowdsourcing leverages spatial chromatin context to imbue inherently low-affinity sites 

with unexpectedly high-occupancy binding. Crowdsourcing may thus explain previous 

reports linking particular low-affinity sites with context-specific regulation (e.g. (Gaudet, 

2002) ), or linking unusually robust binding to supposedly individual HCTs, for example 

. Indeed, occupancy boosts that we observed at spatially clustered HCTs were computed 

with respect to ‘isolated’ genomic HCTs. As shown by Crocker et al (2015), occupancy is 

more robust where degenerate homotypic sites are located in genomic clusters. HCTs, 

however,  are highly abundant in the genome (He et al., 2012) as well as, 

spatiotemporally invariant, which raises a well-known conundrum, viz. how a TF 

discriminates among a multitude of candidate BS (Z Wunderlich, 2009). In contrast to the 

static and relatively low specificity of an individual genomic HCT, a large collective of 

homotypic low-affinity sites can attain high specificity and spatiotemporal 

responsiveness precisely by their capacity to configure the local TF environment en 
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masse – in specific favorable chromatin contexts. That is, loci may be coordinately 

targeted not through a hardwired address on the one-dimensional genome, but as a 

dynamic nexus dependent on three-dimensional plurality.   

Potential implications for transcription factories, superenhancers. An archipelago, as 

described here, represents a group of spatially clustered enhancers and their likely target 

genes, which are often functionally related (Malin et al., 2013; Sheffield et al., 2013). 

Meeting this same general description are subnuclear compartments known as 

transcription factories (Edelman and Fraser, 2012).  Transcription factories have been 

shown to concentrate resources such as RNA PolII, core components of transcription, as 

well as some master TF regulators (Schoenfelder et al., 2010b).  However, it is unclear 

precisely how distinct factories achieve specific and differential concentrations of master 

regulator TFs (Schoenfelder et al., 2010a). Crowdsourcing offers a possible explanation, 

and is consistent with a speculated role for resident sequences (Andersson et al., 2015; 

Schoenfelder et al., 2010a). While it is generally assumed that high concentrations of TFs 

are critical in recruiting genes and their distal regulatory regions to the factory, our work 

suggests alternative causality, as supported by formal biophysical simulations.  Although 

not confirmed, our characterization of archipelagos suggests their operational overlap 

with factories. 

Our findings are broadly consistent with a mechanistic role for crowdsourcing in 

super-enhancer (SE) function. Each SE, comprising a contiguous cluster of enhancers, 

can further form spatial clusters with isolated enhancers (Heinz et al., 2015) as well as 

with other SEs. We speculate that such spatial clustering of SEs with auxiliary non-SE 

enhancers may supplement an SE’s already-ample BS, thereby further amplifying 
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occupancy of (typically degenerate) master regulator TFs. Intriguingly, active APs, 

whose many tens of regulatory elements often span much of a chromosome or potentially 

many chromosomes (Sheffield et al., 2013), typically overlap multiple active SE (Figure 

3-13D, 3-13E). This is consistent with a role for  crowdsourcing in coordinating a 

collective of SEs regulating cell lineage-commitment, interactions currently not well-

characterized. 

Materials and Methods 

Enhancer clusters ('APs'): 

In previous work, genomically dispersed clusters of enhancers with correlated 

activity across cell lines showed evidence of spatial proximity, particularly in 

tissues in which the enhancers were active, where spatial proximity between two 

genomic segments was inferred from Hi-C (Malin et al., 2013). Starting with 

previously published 40 enhancer clusters, we iteratively filtered out the 

enhancers from each cluster whose mean spatial proximity in stem cell to other 

enhancers was at least one standard deviation below the original mean across all 

enhancers in the cluster. This results in 40 APs with a total of 1480 enhancers 

(Appendix Archipelago enhancers) with ~37 per AP, ranging from 6 to 89 

enhancers per AP. Processing of alternative set of APs obtained from Sheffield et 

al. is described later.  

Estimating in vivo occupancy at a BS using digital footprint data:  

Putative BS in each enhancer were identified using TRANSFAC vertebrate motifs 

(Matys et al., 2006) and motif scanning tool PWM_SCAN (Levy and 

Hannenhalli, 2002) at 95 percentile score cutoff. We estimated in vivo TF 
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occupancy by overlapping putative BS with the high-confidence genome-wide 

digital DNase hypersensitivity footprints identified in 38 human cell lines (Neph 

et al., 2012b), using a procedure similar to, but more stringent, than (Neph et al., 

2012b). Digital footprints are a single-base-pair resolution readout in which the 

absence of aligned reads in a particular segment of open chromatin has been 

shown to predict binding of a protein (Neph et al., 2012b). For a TF, a particular 

putative BS was considered bound by the cognate TF if there was specific overlap 

between the BS and a footprint, with further requirement that (i) the midpoint of a 

footprint must overlap the BS; (ii) the midpoint of the BS must overlap the 

footprint; and (iii) BS length + 1 > footprint length > BS length - 4. The latter 

criteria excludes otherwise significant footprints that are either too short or too 

long to confidently be associated with a given motif instance. When a footprint 

strongly overlaps sites for multiple TFs, it was included in the analysis for all 

such TFs; fewer than 25% of the overlapped BS stringently mapped to multiple 

distinct TFs. These highly stringent criteria were applied identically to AP and to 

non-AP data.  

AP-active and AP-inactive cell lines: 

 For each AP, we identified the cell line in which it was most active.  Cell lines 

deemed active for a given AP are those in which at least 80% of the AP's 

enhancers are in open chromatin regions, based on overlap with DHS narrow 

peaks. In case of more than one such tissue, except where noted, we selected the 

tissue with the highest percentage of open enhancers (see Figure 1A). 

Approximately 95 percent of AP enhancers were found to be accessible in an AP's 
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'most active tissue', which for the 40 APs, span 15 distinct cell types out of 34 

tested. 

Establishing non-AP control for occupancy boost: 

To establish a non-AP control, for each combination of TF and AP enhancer we 

identified a non-AP enhancer (sampled with replacement) with an identical motif 

profile, i.e. the vector containing the number of instances of each motif mapping 

to the given TF. This is an important control, as the number of homotypic BS in 

an enhancer that are cognate to a given TF impacts occupancy (He et al., 2012). 

We note that AP and non-AP enhancer have very similar distributions of total BS 

and length. Additionally, for each TF motif and AP, AP enhancers’ mean DHS in 

the AP's most active tissue was matched to within 5% in the corresponding non-

AP enhancers’ mean DHS in the same tissue. Any TF-AP enhancer pair for which 

a non-AP could not be found meeting these tight controls was excluded. This 

procedure yielded 430K AP and non-AP TF-enhancer pairs that harbored 730K 

BS, of which 31K BS had a DNase footprint suggestive of a binding event.  

Determining TF occupancy at enhancer resolution with ChIP-Seq data:  

We downloaded ENCODE ChiP-Seq data for 294 experiments in human, including 135 

unique TFs in 11 cell types for which there was accompanying DNase hypersensitivity 

data. This data was then screened to include only cell types in which at least one AP was 

active, that is, for which at least 90% of an AP’s enhancers were found to be chromatin 

accessible (as per ENCODE DNase hypersensitivity data).  This screen resulted in 206 

Chip-Seq experiments for 89 unique TFs across 9 cell types – NT2-D1, IMR90, 

GM12878, Hct-116, MCF-7, Hela-S3, PANC-1, A549, and HUVEC. (Using an AP 
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activity cutoff of, alternately, 80% or 100% did not change the observed trend). Enhancer 

occupancy by a given TF was determined based on overlap between a ±50bp window 

surrounding the ChIP-Seq peak and one or more putative motif instances detected within 

the enhancer. To mitigate concerns over systematic biases stemming from variability in 

protocols or labs of origin, we note that all ChIP-Seq data had identical de facto 

weighting for AP and non-AP enhancer-TF pairs, since these were matched by motif for 

BS counts. 

Estimating TF’s degeneracy: 

 A motif’s degeneracy was quantified using its relative entropy (RE) (D’haeseleer, 

2006). Higher degeneracy corresponds with lower relative entropy. RE was 

calculated for each TF motif (i.e., position weight matrix) using TRANSFAC 

(version 2014.3) (Hannenhalli, 2008).  In cases where there were multiple motifs 

associated with a particular TF (coming from different publications etc.), the 

motif with the lowest RE was chosen, because it is expected to numerically 

dominate the genome-wide BS for the TF, given its higher 

degeneracy. Throughout the manuscript the term ‘degeneracy’ refers to RE and 

‘degenerate’ motif refers to motifs with low RE (at certain RE threshold) and 

‘specific’ motif refers to motifs not deemed to be degenerate, or in some case this 

whose with RE above certain threshold. 

Determining occupancy boost with alternative set of AP enhancers: 

 We obtained sets of correlated regions generated in (Sheffield et al 2013). Each 

Sheffield cluster of DNase hypersensitive (HS) regions initially spanned multiple 

chromosomes. To make them consistent with enhancer clusters from Malin et al 
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(2013), regions from a single Sheffield cluster located on distinct chromosomes 

were treated as distinct clusters, and we retained at most the two largest such 

clusters from each Sheffield cluster. Consistent with previous procedures, we 

derived enhancer clusters from each Sheffield cluster by only retaining the 

regions that overlapped a putative enhancer represented by a large pooled set of 

98,000 P300 ChIP-Seq peaks used previously (Malin et al 2013).  

To further cull the thousands of resulting enhancer clusters, we excluded 

those with < 10 enhancers or with mean enhancer DHS < 100 in their most active 

tissue. We further excluded Sheffield clusters in which fewer than 90% of 

enhancers were DNase hypersensitive in their most active tissue, resulting in 474 

clusters – averaging ~16 enhancers each, though ranging to over 100. Similar to 

above (see ‘AP Enhancers’) we used Hi-C data to screen enhancers in each AP 

that were less spatially proximal, on average, to the remaining members. To 

prevent excessive removal of additional enhancers, given the already modest 

mean pre-screen AP size, we implemented the Hi-C screen in a single pass, 

without recursively updating each enhancer’s mean Hi-C score after removal of a 

fellow AP member. This resulted in 472 non-empty APs with an average of ~15 

enhancers each. 

For background control, we used the complement of P300 ChIP-Seq peaks 

overlapping any of the screened set of approximately 2.6M Sheffield et al DNase 

hypersensitive regions. This resulted in too few putative enhancers, and so to this 

we added back ChIP-Seq peaks overlapping any cluster (on one chromosome) of 

hypersensitive regions with fewer than five members and with mean DHS > 50 in 
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its most active cell type; this produced a background pool of ~18K enhancers. 

Non-AP enhancers from this set were matched with AP enhancers as described 

above. In order to accommodate the smaller APs in this alternative dataset, we 

loosened the stringency on DHS control such that at a group level AP and non-AP 

sets’ mean DHS was matched to within 1% while at individual TF-AP 

combinations, the mean DHS for AP and non-AP enhancers was within 50%.  
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 Crowdsourcing: functional impact and gene Chapter 4:

complex activation 

Abstract 

In the previous chapter, we demonstrated an emergent effect among highly 

spatially clustered BS for the same TF, as may be found in a regulatory 

archipelago – a cluster of coordinately regulated genes and enhancers. Genomic 

data and biophysical simulations suggest that such a spatial homotypic cluster of 

sites may briefly trap a diffusing TF molecule, elevating the TF’s observed DNA 

occupancy within the archipelago. TFs consistently exhibiting the highest 

occupancy boost were those with degenerate motifs, which tend to have highly 

abundant cognate sites.  

In this chapter we scale up and investigate the functional impact of 

occupancy boosts on an enhancer and on the archipelago, overall. Based on 

additional analysis, we find that the functional impact, and the magnitude of the 

boost, itself, strongly diverge among enhancers within an archipelago. 

Specifically, archipelago enhancers enriched for BS that recognize degenerate 

motifs exhibit two-fold higher occupancy boost than BS recognizing specific 

motifs, in addition to far greater overall chromatin accessibility, evolutionary 

conservation, as well as expression at neighboring gene loci. In order to decouple 

enhancer chromatin accessibility from enhancer TF occupancy, we tracked 

accessibility as TF gene expression increased across cell types. Strikingly, 

archipelago-wide activity scaled with expression of TFs with degenerate motifs, 

but not TFs with specific motifs. In sum, we find strong evidence suggesting that 
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the crowdsourcing effect is experienced at a number of scales – binding site, 

enhancer, and archipelago. At the level of archipelago, crowdsourcing can 

contribute to switch-like and coordinated activation, mediated by context-specific 

TF availability and higher-order chromatin structure. 

Introduction  

Previously we reported a novel group-level phenomenon emergent among homotypic 

binding sites for the same TF. Mediated by higher-order chromatin structure,  spatially 

concentrated homotypic BS exhibit higher-than-expected TF occupancy. While changes 

in DNA occupancy at promoters or enhancers appears to frequently precede function 

(Yáñez-Cuna et al., 2012) – most conspicuously, transcription of coding genes – no 

obvious function has, to date, been identified for the vast majority of TF binding 

(Doolittle, 2013; Graur et al., 2013). Hence, for instances of DNA binding, the burden of 

proof lies in demonstrating their functionality. 

The class of TFs for which crowdsourcing is most active, those with degenerate 

motifs, may have the heaviest burden. Until fairly recently, function was thought to 

accrue exclusively to stably bound proteins (Chen and Rajewsky, 2007; Spitz and 

Furlong, 2012). TFs with degenerate motifs tend to be weak binders due to the motif’s 

combination of short length and relatively low levels of adenine and thymine (Pan et al., 

2010b), nucleotides that form only single hydrogen bonds with their respective 

complement. Indeed, it was shown that sites that were bound weakly during fly 

development were not able to drive a luciferase reporter construct, in contrast to the 

majority of strongly bound sites tested (Fisher et al., 2012). And among sites bound by 

the TF RAP1 in a modified yeast strain, those with the highest rates of turnover 
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(disassociation followed by re-association) were the most likely to incur nucleosome 

incursion and least likely to induce transcription (Lickwar et al., 2012). Interestingly, 

RAP1 turnover rate was poorly correlated with occupancy (0.14), as determined by ChIP-

Seq, suggesting that high occupancy alone is not a guarantee of function. 

 Conversely, stereotypically weak binding subject to rapid turnover does not 

ensure absence of function (Segal et al., 2008). Dynamic binding, by its nature, is often 

associated with developmentally significant regulation (Cao et al., 2010; Wilczyński and 

Furlong, 2010). Moreover, there is long-standing evidence that binding affinity does not 

necessarily correlate with function (Davis et al., 1990). For example, in yeast a 

significant percentage of sites under purifying selection are of lower predicted affinity 

than consensus sites that bind the same TF (Tanay, 2006). Similarly, in human T cells, 

conserved CTCF-bound sites exhibit a wide range of affinities; indeed, the lowest 

occupancy class is the most strongly identified with cell type-specific function (Essien et 

al., 2009a) 

Putative sites that recognize degenerate motifs, in particular, have gained wider 

recognition for their importance (Ramos and Barolo, 2013). From an evolutionary 

perspective, binding sites recognizing small, low-information motifs are critical to 

maintaining stabilizing selection as the size of cis-regulatory modules has expanded 

(Stewart and Plotkin 2012; Stewart et al. 2013). In the context of  homotypic clusters of 

BS, such sites are, in fact, unexpectedly prominent in promoters and in enhancers (Gotea 

et al., 2010). As a likely function of their modest but significant capacity to increase 

binding robustness as a function of the number of BS they contain (Brackley et al., 2012), 

homotypic clusters have been implicated in timing of enhancer activation during 
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development (Rowan et al., 2010); controlling whether TF binding induces activation or 

repression (Ramos and Barolo, 2013); and shown to be necessary for functional binding 

at bona-fide sites for the Hox TF Ubx while simultaneously preempting ectopic binding 

at sites for closely related Hox proteins (Crocker et al., 2015).  

In the previous chapter, we demonstrated a substantial boost in occupancy relative 

to stereotypical homotypic clusters in spatial homotypic clusters. In order to test for 

functional impact of this occupancy boost, we expanded the scale of observation from 

binding site to enhancer- and archipelago-wide. Occupancy boost is overwhelmingly 

centered in BS recognizing degenerate motifs, so we screened archipelago enhancers on 

the basis of their enrichment for such BS. When the resulting classes were compared, 

they displayed a striking divergence in character, with AP enhancers enriched in 

degenerate motifs (‘enriched enhancers’) substantially more affected than AP enhancers 

depleted for degenerate motifs (‘depleted enhancers’), after being normalized against 

matched non-archipelago (non-AP) enhancers. Specifically, enriched enhancers exhibited 

several-fold greater boost in activity, their neighboring genes exhibited several-fold 

greater expression and, consistent with higher functional significance, they exhibited 

several-fold greater normalized evolutionary conservation. Finally, we found that tissue-

specific AP-wide activity (estimated as chromatin accessibility) scales with the tissue-

specific expression of cognate TFs with degenerate – but, not specific – motifs. These 

results implicate crowdsourcing in: (i) initiating a positive feedback loop whereby greater 

TF occupancy at enriched enhancer BS increases the overall accessibility at these 

enhancers, thus facilitating further occupancy; (ii) endowing enriched enhancers with 

switch-like behavior, activating them in specifically those tissues where chromatin 
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structure and TF availability together result in sufficient occupancy boost. Together, we 

find strong evidence for the crowdsourcing occupancy boost’s functional role in tissue-

specific gene complex activation. 

Results 

AP enhancers enriched for degenerate motifs have greater occupancy boost  

Previous results (Chapter 3) showed that a TF’s occupancy boost scales with its 

BS abundance, or equivalently, its motif degeneracy in an AP. This led us to 

hypothesize that occupancy boost due to crowdsourcing may not uniformly 

impact all AP enhancers, but rather predominate in AP enhancers that are enriched 

for degenerate motif BS. For a specific dichotomous threshold for motif 

degeneracy, we defined ‘enriched’ enhancers as those having significantly 

greater-than-expected degenerate motif BS; ‘depleted’ enhancers are at the other 

end of the spectrum and, hence, have greater-than-expected non-degenerate motif 

BS. Note that, a priori, enriched enhancers are not expected to have a greater 

occupancy boost for a given TF compared to a fellow AP member with the same 

number of cognate sites but which, overall, is depleted for degenerate motifs. 

Unexpectedly, however, the enriched enhancers displayed boosts of up to 50% 

higher magnitude than those observed in depleted enhancers for the same mean 

coverage (for the given TF) despite no significant differences in either total BS 

per enhancer or chromatin accessibility.   

We reasoned that if enriched enhancers were disproportionately larger 

contributors to the occupancy boost than depleted enhancers, then coverage 

(number of cognate BS) tallied based on enriched enhancers alone would be a 
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more direct predictor of occupancy boost. As shown in Figure 4-1 in the highest 

coverage bin, occupancy boost was two-fold higher in enriched than in depleted 

enhancers (~160% vs ~80%). We observed a similar trend when occupancy was 

determined using ChIP-Seq data (135% vs. 70%) (Figure 4-2), and in an 

alternative set of APs (Sheffield et al., 2013), where there was more than a 2-fold 

difference in footprint-based occupancy boost between enriched and depleted 

enhancers (70% vs. 33% occupancy boost for top 5% coverage,  p=3x10
-3

, Figure 

4-3). To account for these unexpectedly high boosts, we address the potential for 

higher-order interactions within enriched enhancers among BS for distinct TF (see 

Discussion). 

 

Figure 4-1. Enhancer enriched for degenerate motifs feature higher occupancy 

boost than enhancers depleted for degenerate motifs.  Percentage occupancy boost is 

shown as a function of coverage for AP enhancers with the highest 20% enrichment 

(blue line) and the highest 20% depletion (green line) for low-RE BS, along with their 

95% confidence intervals. Coverage for a given TF-AP pair was calculated as the 

number of cognate BS in the AP among enriched (depleted) enhancers only. A p -value 

is given for a Wilcoxon test comparing boosts among TF-APs with top 20% coverage. 

RE cutoff = 5.   
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Figure 4-2. Validation using ChIP-Seq derived occupancy of higher boost in 

degenerate motif-enriched than depleted AP enhancers. ENCODE ChIP-Seq data 

was used for all cell types in which at least one AP was active, that is, for which at 

least 90% of an AP’s enhancers were chromatin accessible. This resulted in 206 Chip -

Seq experiments for 89 unique TFs across 9 cell types.. Enhancers with more 

degenerate motifs than expected (‘enriched’ enhancers) have higher occupancy boost 

than enhancers with fewer than expected (‘depleted enhancers’). TF -AP coverage (x-

axis) was computed as the number of cognate BS in just their enric hed or depleted 

enhancers, respectively. Test result shown is for comparison of occupancy boosts 

computed in enhancers with the highest 50% in enrichment (green) to occupancy boosts 

computed in enhancers with the lowest 50% enrichment (grey), pooled across  the three 

topmost coverage bins. An RE threshold of 5 was used to classify motif instances as 

degenerate for the purpose of computing enrichment, based on a Fisher Exact test. RE: 

relative entropy; BS: binding sites.  

 

Figure 4-3. Validation of occupancy boosts using alternative archipelago data sets.  

Occupancy boost was determined for APs comprising sets of coordinately active 
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regions from (Sheffield et al 2013) that were then overlapped with putative enhan cers 

(P300 ChIP-Seq peaks). Boost was calculated with respect to a background of ‘non -AP’ 

enhancers, which did not belong to any Sheffield set of co -active regions of size five or 

greater.  Occupancy boost is more robust in enriched than in depleted AP enh ancers, 

where ‘enriched’ and ‘depleted’ refer to the balance of low-RE BS. Percentage 

occupancy boost is shown for AP enhancers with the highest 20% enrichment (blue 

line) and the highest 20% depletion (green line) for low-RE BS, along with their 95% 

confidence intervals. Coverage for a given TF-AP pair was calculated as the number of 

cognate BS in in the AP among enriched (depleted) enhancers only. A p -value is given 

for a Wilcoxon test comparing occupancy boosts between enriched and depleted 

enhancers in TF-APs having top 20% coverage. 95% confidence interval shown based 

on a bootstrap procedure. RE threshold of 5 was used to calculate enhancer enrichment 

for low-RE BS. RE: relative entropy; BS: binding sites.  

 

 

Enriched enhancers exhibit greater activity and evolutionary conservation  

Enriched enhancers are more strongly associated with strong neighbor gene 

expression 

Given the elevated occupancy boosts at degenerate motif enriched enhancers, we 

assessed whether such enhancers are associated with a greater expression of their 

target genes (Fisher et al., 2012; Smith et al., 2013). For each AP enhancer, 

assuming its closest gene neighbor to be its putative target (Djebali et al., 2012), 

we calculated its ‘expression boost’, as the relative difference in expression 

between its target gene and the target gene of  the control non-AP enhancer. In 
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contrast to the determination of occupancy boost (Chapter 3), in the following 

analyses each enhancer is mapped to exactly one non-AP (control) enhancer on 

the basis of enhancer-wide distribution of degenerate and non-degenerate sites, 

using a variable threshold of degeneracy (Methods). We then compared 

expression boost for enriched enhancers to that for depleted enhancers (Methods). 

As shown in Figure 4-4 (row 2), the putative targets of enriched enhancers have 

much greater expression than their non-AP counterparts, while the depleted 

enhancers do not. Moreover, as the degree of enrichment increases from top 50% 

to top 10%, the relative expression boost increases from 62% to 196% (for 

degeneracy cutoff of 5, indicated by the pink loop); In contrast, genes near 

depleted AP enhancers have lower expression than their non-AP counterparts 

(discussed later) GC content differences between enriched and depleted enhancers 

do not explain these trends, as GC content in non-AP enriched (respectively, 

depleted) enhancers is on average <10% (respectively, 15%) higher than in 

corresponding AP enhancers. Note that at higher degeneracy cutoff (being more 

permissive) the observed effect weakens and eventually disappears.  

AP enhancers near highly expressed genes bind a disproportionately high fraction of 

degenerate motifs. 

As a complementary test of our hypothesized link between degenerate site 

enrichment in an AP enhancer and its target gene expression, we assessed whether 

degenerate BS are more abundant in AP enhancers driving highly expressed genes 

than in AP enhancers driving weakly expressed genes. We compared the ratios of 

bound degenerate sites to bound specific sites in enhancers that were within 50Kb 

of genes with, alternatively, top and bottom 25% expression. Each BS was 
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classified as degenerate, specific, or neither based on its putative TF and two 

variable degeneracy thresholds for degenerate and specific BS.  We found that the 

ratio of degenerate to specific occupancy is consistently greater in enhancers 

neighboring highly expressed genes by 1.8 to 3-fold compared to enhancers 

neighboring low-expressed genes, and monotonically increases for more stringent 

thresholds for specific motifs. In contrast, for a control set of non-AP enhancers 

chosen based on the same proximity criteria as AP enhancers, the ratio of two 

classes of TF binding do not deviate significantly from 1.0. Taken together, these 

results suggest that degenerate binding specifically at enriched AP enhancers has a 

significant impact on downstream gene expression.  

Figure 4-4. Enhancers enriched for degenerate BS are more functional than 

expected. Enhancers enriched and depleted for low-RE BS were compared in terms of 

DNase hypersensitivity (row 2), evolutionary constraint (row 3), and neighbor gene 

expression (row 4). Readouts on y-axes indicate values normalized against carefully 

matched non-AP enhancers for the given RE cutoff (column). Within each plot, the 

10%, 20%, and 50% (x-axis) most enriched enhancers are indicated in non-grey, while 

the most depleted enhancers are shown in grey. Note that 50% most depleted enhancers 

for degenerate motifs are synonymous with the 50% most enriched for enhancers 

specific motifs. The histograms in the top row indicate the fraction (green ) of all TFs 

deemed low-RE for the purpose of calculating each enhancer’s low-RE BS enrichment.  

The pink loop shows the consensus degeneracy (RE) level at which all metrics are most 

divergent between enriched and degenerate enhancers.   RE = relative entropy
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Enriched enhancers are more accessible and more highly acetylated than expected 

TF binding and chromatin accessibility are intimately connected; higher 

accessibility typically leads to higher occupancy, while TF binding can help 

displace a nucleosome and increase accessibility (Teif and Rippe, 2012). We 

therefore assessed whether enriched enhancers exhibit a greater boost in overall 

accessibility compared with depleted enhancers. For this analysis, we normalized 

AP enhancer accessibility by that of stringently matched non-AP enhancers as 

described previously, except the variable of interest, DHS, was explicitly left 

uncontrolled for this analysis. As shown in Figure 4-4A (row 3) and Figure 4-5, at 

the stringent degeneracy threshold of 5 (higher thresholds are more permissive), 

the most enriched enhancers exhibit ~10-fold greater DHS boost with respect to 

matched non-AP enhancers than do depleted enhancers. To further resolve the 

effect degeneracy on enhancer accessibility, we tracked changes in accessibility as 

we increased the number of degenerate (specific) sites, while holding relatively 

constant the number of specific (degenerate) sites. As shown in Figure 4-6, 

increasing the number of degenerate BS has a substantial positive impact on 

enhancer’s accessibility – especially when the number of specific BS is low, while 

increasing the number of specific BS does not. In addition, we found that histone 

acetylation level (H3K27Ac), which is associated with active enhancers, also is 

~3-fold higher in enriched enhancers than expected (Figure 4-7). 
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Figure 4-5. Enhancers enriched for degenerate motifs exhibit the largest fold -

change in accessibility from non-archipelago to archipelago state. Chromatin 

accessibility shown for AP and non-AP enhancers within 50KB of a highly expressed 

gene that were matched one-to-one for motif composition with an AP enhancer. 

Enhancers sorted by degenerate motif enrichment. Aligned heatplots display one 

enhancer per row (most enriched at top). (Left) heatplot  in which red signifies a low-RE 

motif and blue a high-RE motif. Low-RE motif enrichment based on Fisher exact test 

against a background that included all non-AP enhancers. For visualization purposes, 

enhancer lengths and BS lengths standardized. (Middle, right). Log of non-AP and AP 

enhancer DHS, respectively. RE cutoff for low-high degeneracy  

 

 

Figure 4-6. The ratio of AP to non-AP enhancer DHS rises with increasing 

numbers of low-RE BS, but not high-RE BS. Plot indicates trend in DHS ratio as the 

count of degenerate (low-RE) BS increases (along axis labeled ‘|Low-RE-sites|’), and 

the count of non-degenerate (high-RE) motifs is held roughly constant -- or vice versa. 

AP enhancers were partitioned into equal  sized bins along each of two axes based on 

degenerate and non-degenerate motif counts, as shown. y-axis gives the mean AP DHS 

normalized by non-AP DHS. The trend remained strong when enhancers were 

subdivided into a greater number of bins (3 or 4, not shown). Motif degeneracy 

classification  was based on an RE threshold of 5. RE: relative entropy.  
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Figure 4-7. Acetylation levels in enriched vs. depleted enhancers.  Juxtaposed views of H3K27Ac ChIP-Seq in HUVEC 

are shown for 40 (100) AP enhancers in the top row that are in an AP that is active and in the top 10% for enrichment 

(depletion). Shown in the bottom row are views for matched non -AP enhancers. Motif degeneracy classification was based 

on an RE threshold of 5. RE = Relative entropy 
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Evolutionary conservation for enriched enhancers greater than expected 

As an additional ascertainment of the functional importance of enriched AP 

enhancers, we found such enhancers to be up to 120% more evolutionarily 

conserved (using 20-species PhastCons scores (Siepel et al., 2005)) than matched 

non-AP enhancers; indeed, the greater their enrichment, the greater the 

evolutionary constraint we observed (Figure 4-4, row 4). Depleted AP enhancers, 

by contrast, were at most 40% more conserved than their non-AP counterparts. 

Finally, we observed that there is a substantially higher proportion of enriched 

enhancers in AP than non-AP (Figure 4-8). These results – the relatively  higher 

occupancy boosts, chromatin accessibility, downstream gene expression, and 

evolutionary constraint in enriched enhancers,  along with greater prevalence of 

enriched enhancers among AP than non-AP enhancers – strongly suggest a 

hitherto unreported special functional relevance of AP enhancers that are enriched 

for degenerate binding sites. 

 

Figure 4-8. Ratio of low-RE to high-RE motifs in AP enhancers vs. non-AP 

enhancers. AP and non-AP enhancers were matched one-to-one for DHS in each AP 

enhancer’s most active tissue. Putative BS were identified based on 95 percentile motif 

match threshold. The x-axis shows the ratio of low-RE to high-RE motif sites in each 

enhancer. Y-axis shows percentage of enhancers analyzed. P-value from a Wilcoxon 

test comparing ratios in AP and non-AP enhancers. 
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AP enhancer activity is correlated with availability of TFs with degenerate motifs 

only 

Our results thus far suggest that crowdsourcing may be intimately connected to 

the regulation of AP enhancer-gene complexes, as it provides a way for the cell to 

prime or induce activity in multiple genomic elements simultaneously, in a 

specific spatial and tissue context. As shown above, the boost in overall activity 

(approximated by DHS) of an AP enhancer is in fact far higher in AP enhancers 

enriched for degenerate (high coverage) BS. However, the direction of causality is 

not clear – that is, whether the binding of TFs corresponding to the degenerate 

motifs increases overall accessibility at enriched enhancers, or alternatively, 

already increased accessibility at enriched enhancers (by some unknown 

mechanism) fosters greater occupancy of particular TFs at those enhancer. In 

order to resolve this circularity, we tracked tissue-specific gene expression of TFs 

in 9 cell types and studied its relationship with tissue-specific AP enhancer 

accessibility (Methods). As shown in Figure 4-9A, mean AP enhancer 
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accessibility increases robustly (up to 400%) with increasing expression of TFs 

comprising high-coverage (red), but not low-coverage, (gray) TF-APs.   In non-

AP enhancer sets controlled for degenerate and specific BS counts, no such 

associations were observed at all (Figure 4-9B). Thus, AP enhancer accessibility 

and activity is highly responsive to the levels of high-coverage TF-APs as they 

vary across tissues. Together, these results strongly suggest that crowdsourced 

boosts in TF occupancy, through the context-specific binding of high coverage 

TFs, may help drive tissue-specific activation of enhancer networks and their 

target gene complexes.  

 

 

 

Figure 4-9. Mean AP accessibility scales with context-specific availability of TFs 

with degenerate motifs but not TFs with specific motifs.  For each TF-AP, tissue 

specific DHS was compared across each of 15 tissues for which there was RNA -Seq 

data available. (TF, AP, tissue) triplets were segregated into lowest-20%-coverage 

(cyan) and highest-20%-coverage (red) classes based on TF-AP, and then further 

subdivided into low and high expression based on tissue-specific TF expression.  Bar 

height indicates the percentage increase in DHS level associ ated with an increase in TF 

expression from bottom <x> to top <x> percentage levels, where <x> is read off the x -

axis. 1% confidence intervals from a bootstrap procedure.  (D) same as (C) except 

matched non-AP triplets were used. 
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Figure 4-10. Model of crowdsourcing effect. (a) The yellow highlighted region 

represents a regulatory archipelago (AP) consisting of genes and distal enhancers. 

Within an AP, spatially proximal binding sites (BS) for a common TF 'cr owdsource' an 

increase in their own occupancy. Facilitated by increased TF diffusion among large 

numbers of spatially proximal BS, a spatial homotypic BS cluster favorably alters TF 

protein concentration in its microenvironment. Predictably, TFs with degen erate motifs, 

and hence pervasive BS, exhibit the highest occupancy boosts. (b) In turn, AP 

enhancers enriched in degenerate motifs experience switch-like multi-fold boosts in 

accessibility and target gene expression. Overall, a context -specific increase in 

availability of TFs with degenerate motifs – but not high-specificity motifs – drives a 

multi-fold boost in chromatin accessibility, thereby underscoring crowdsourcing's likely 

role in AP activation.  (c) In contrast, a non-AP enhancer does not experience an 

occupancy boost and activation. The crowdsourcing mechanism integrates well with the 

two prevailing models of context-specific gene module activation: in a targeted tissue, 

higher expression of TFs with a degenerate motif may (d) induce chromatin loop  

formation; or alternatively (e) facilitate release of paused polymerase in pre -formed 

enhancer-promoter loops. In both cases, crowdsourcing ensures a high degree of 

context-specificity, mitigating spurious occupancy outside of or AP -active tissue or AP 

enhancers enriched for degenerate motifs.  
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Discussion 

Summary. In a previous work, we demonstrated a previously undescribed occupancy 

boost that is broadly emergent in spatially concentrated clusters of homotypic BS – 

typical of sites cognate to a degenerate motif TF in an active regulatory archipelago.  

Here, we have probed the functional importance, if any, of this crowdsourcing occupancy 

boost, by comparing whole enhancers that are, alternatively, enriched or depleted for 

degenerate motifs. Consistent with functional significance for the observed occupancy 

boost, we detected at least two-fold higher gene expression of neighbor gene loci, 

normalized evolutionary conservation, and chromatin accessibility among the enriched 

enhancers. 
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Higher order impact of crowdsourcing. Unexpectedly, we observed up to two-fold 

higher occupancy boost in addition to 10-fold greater normalized chromatin accessibility 

in AP enhancers enriched for degenerate motifs (‘enriched enhancers’) than in depleted 

enhancers. A likely explanation is the emergence of an aggregate occupancy effect 

among an enriched enhancer’s abundant degenerate BS, which serves to remodel the 

local chromatin state. Under inactive conditions – that is, in AP-inactive tissues or 

outside of APs – we found that enriched enhancers (which inherently tend toward far 

lower GC content than depleted enhancers) display substantially higher chromatin 

accessibility compared to depleted enhancers. This is  consistent with previous work 

suggesting that nucleosomes favor unbound, low GC-content sequence, yet  are readily 

displaced  by strongly binding pioneer factors, or, as in the case of crowdsourcing, by an 

aggregate of distinct TFs (Barozzi et al., 2014; Wasson and Hartemink, 2009).  

In an AP-active tissue, enriched AP enhancers experience a widespread surge in 

binding, thereby displacing the nucleosome and boosting occupancy further, in a positive 

feedback loop (Figure 4-10). Taken together, the markedly divergent accessibility inside 

versus outside an active AP confer to enriched enhancers switch-like behavior, where 

their state is determined by their context: included in an AP replete with degenerate 

homotypic BS, their accessibility increases – but only in tissues in which the cognate TFs 

are available. In light of this highly context-specific activation and the rapid evolutionary 

gain of BS for degenerate motifs, we suggest that enriched AP enhancers can evolve 

adaptively relatively free of consequences from spurious binding. This is the first work to 

highlight the special functional significance of AP enhancers enriched for abundant, 

degenerate motif BS. Intriguingly though, we found that the genes near depleted AP 
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enhancers are expressed at up to three-fold lower levels than their non-AP counterparts 

(Figure 4-4A row 2). Further work is needed to investigate to what extent depleted 

enhancers have a unique, perhaps repressive, role. Interestingly, genes controlling cell 

identity in stabilized chromatin structures were found accompanied by repressed genes 

that coded for yet other lineage-specifying regulators (Dowen et al., 2014), while certain 

super-enhancer constituent enhancers, confounded expectation by not inducing 

transcription when cloned into reporter constructs (Hnisz et al., 2015). 

Crowdsourcing integrates well with the two prevailing models of coordinated 

activation of spatially co-localized gene complexes (Figure 4-10), while providing a 

missing piece of the puzzle. Whether (a) long-range enhancer-gene loops form de novo 

upon (or along with) activation of a gene cluster (Deng et al., 2012), or (b) the loops are 

pre-formed and the paused polymerase is released due to a change in TF availability 

(Ghavi-Helm et al., 2014), the cell requires TFs to functionally bind and activate 

elements specifically in a targeted gene cluster. Crowdsourcing of low-affinity BS is 

well-suited for such targeting, as it can induce specificity through emergent switch-like 

binding behavior, discussed in Chapter 3. Interestingly, a recent study showed a strong 

correlation between pathway-level gene activity and pathway-level spatial proximity 

across cell types (Karathia, Hannenhalli et al., under review), suggesting that chromatin 

structure is intimately connected with gene complex activation. In contrast to direct 

enhancer-gene interactions in the standard model for distal transcriptional regulation, 

crowdsourcing and its downstream impact are not observable at the level of single 

enhancer-gene interaction, but instead emerges only at higher levels of chromatin 

organization and co-regulated gene modules. 



123 
 

Materials and Methods 

Enhancer clusters ('APs'). See Chapter 3 Methods 

Estimating in vivo occupancy at a BS using digital footprint data. See Chapter 

3 Methods 

AP-active and AP-inactive cell lines. See Chapter 3 Methods 

Establishing non-AP control for occupancy boost. See Chapter 3 Methods 

Determining TF occupancy at enhancer resolution with ChIP-Seq data. See 

Chapter 3 Methods 

Estimating TF’s degeneracy. See Chapter 3 Methods 

Determining occupancy boost with alternative set of AP enhancers. See Chapter 3 

Methods 

Identifying degenerate motif enriched and depleted AP enhancers. For a 

specific RE cutoff each putative BS in an enhancer was classified as either 

degenerate or specific (complement of degenerate). This cutoff was varied from 

RE = 4 (classifies ~2% enhancers as low-RE) to RE = 9 (classifies > 50% 

enhancers as low-RE). For each AP enhancer, after tallying the number of 

degenerate and specific motif BS, an enrichment p-value was generated by 

applying a Fisher Exact test comparing the numbers of BS in each class in the 

enhancer to those in the pooled set of control (non-AP) enhancers. Based on this 

enrichment p-value, enhancers were sorted, and the top (enriched) and bottom 

(depleted) ranked x% of enhancers compared in subsequent analysis (x in {10, 20, 

50}).  
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Creating a non-AP control for enriched and depleted AP enhancers. We 

paired each AP enhancer with one of the remaining non-AP enhancers while 

controlling for DHS peak height (within 2%) and numbers of both degenerate and 

specific motif sites (within 2%), where degeneracy class is based on a (variable) 

degeneracy threshold. This yielded ~1200 pairs of AP and matched non-AP 

enhancers; the exact number varied with the degeneracy threshold. 

Comparing neighbor gene expression between AP and non-AP enhancers. As 

a proxy for an enhancer's target gene, following the convention (Djebali et al., 

2012), we used the gene closest to the enhancer.  As an extra measure of 

stringency, in case of non-AP enhancer, we excluded those enhancers that were 

farther than 50kb from the nearest gene promoter. For gene expression, five cell 

types were used for which overall AP activity, calculated as described above, was 

at or near its maximum as observed in 15 cell types for which we had digital 

DNase footprint and RNA-Seq data (www.encodeproject.org/ENCODE).  These 

were HSMM, A549, NHLF, Ag04450, and Bj. 

Calculating a normalized conservation score. To compare evolutionary 

conservation of degenerate BS enriched AP enhancers to  depleted AP enhancers, 

we used PhastCons scores, based on 20 mammalian species (Siepel et al., 2005), 

which are resolved to the individual base. Mean scores across the two classes of 

enhancers were normalized with respect to non-AP enhancers matched one-to-one 

with an AP enhancer, as elsewhere in the manuscript. Additionally, we ensured 

that non-AP enhancers were within 50Kb of the promoter of a highly expressed 

http://www.encodeproject.org/ENCODE
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gene (fpkm > 1.0), which includes approximately the ten percent most highly 

expressed genes. 

TF expression-AP activity correlation. This analysis used data from each of 15 

cell lines for every AP, encompassing ~2.4 million BS. Each (TF, AP enhancer, 

cell line) triplet was assigned (i) a DHS value, corresponding to AP enhancer and 

cell line; (ii) a coverage score, corresponding to AP enhancer and TF; (iii) a 

normalized RNA-Seq value corresponding to TF and cell line. Analysis was 

limited to triplets with a coverage score in the top and bottom 20%. In each of 

these coverage classes, triplets were further sorted based on the TF’s expression 

in the given cell line and screened to include only triplets with top or, 

alternatively, bottom 20 (or 25 or 50) percent TF expression. For each coverage 

class, the percentage difference in mean cell-type specific DHS between the low 

TF expression and high TF expression cohorts was plotted.  Confidence intervals 

for each percentage difference were computed on the basis of 50K bootstrap 

replicates.  

H3H27Ac levels. We downloaded Encode ChIP-Seq peaks from human umbilical 

vein cells (HUVEC) for histone mark H3K27Ac, known to be associated with 

active enhancer states (Calo and Wysocka, 2013). This cell line was chosen for its 

combination of available data and a large number of enhancers in APs that are 

active in the cell line. We compared the ratio in mean ChIP-Seq levels between 

top 10% enriched and top 10% depleted AP enhancers to the same ratio for non-

AP enhancers, matched one-to-one with the AP enhancers as described above. An 

AP enhancer and its matched non-AP enhancer were included only if the AP 
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enhancer belonged to an AP that was ‘active’ in HUVEC (>80% of its enhancers 

was DNase hypersensitive). This resulted in ~40 enriched and ~100 depleted AP 

enhancers, and the same number of non-AP enhancers. 
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 Crowdsourcing fosters archipelago compaction Chapter 5:
 

Abstract  

Chromatin's three dimensional topology has emerged as a critical facilitator of 

transcriptional regulation. In particular, spatial proximity among genes and distal 

enhancers in a co-regulated complex appears to be a prerequisite for strong expression. 

Little is known, however, about the extent to which spatial proximity, itself, is 

functionally regulated across tissues, let alone the mechanisms responsible.  

In our previous work, using known chromatin hubs, or ‘archipelagos’, of spatially 

colocalized enhancers, we demonstrated that spatially concentrated binding sites (BS) for 

a shared, typically degenerate motif transcription factor (TF), can reshape the TF’s local 

micro-environment and ‘crowdsource’ higher TF concentration and BS occupancy. Here, 

we test whether this crowdsourced increase in local TF concentration, through a positive 

feedback loop, itself augments chromatin looping and, consequently, spatial proximity 

among archipelago BS. Specifically, we seek evidence for two complementary 

mechanisms: (1) increased interactions between non-contiguously DNA-bound 

heterodimer TFs, which create anchor points for chromatin loops; and (2) increased 

recruitment of proteins implicated in chromatin looping – cohesin and Mediator complex 

– and various chromatin modifying enzymes (CME).  

Based on high resolution Hi-C data and consistent with previous reports limited to 

a few isolated systems, we find that, indeed, there is a generalized tendency for 

archipelagos to significantly compact in ‘active’ cell types relative to less active cell 

types; this is achieved through increased formation of chromatin loops. As predicted by 
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the crowd-sourcing effect, the increased looping that accompanies transition from an 

inactive to active cellular context occurs at a several-fold higher rate between enhancers 

enriched for degenerate BS than between enhancers across different archipelago, 

generally. To test whether degenerate motif TF binding is a principal driver of the 

observed compaction, we next assayed changes in looping as a function of increasing TF 

availability across cell types, as estimated by TF gene expression. Consistent with the 

crowdsourcing effect, looping increased more in lockstep with increased expression of 

degenerate TFs than of specific TFs. In turn, supporting TF-TF interactions as a 

contributing mechanism, we found that as cell type-specific expression of heterodimer 

TFs with degenerate motifs increases, their involvement in indirect ChIP-Seq interactions 

grows – in contrast to non-heterodimer TFs.  

While more work remains, our preliminary findings  suggest that the 

crowdsourcing effect exerts a positive feedback loop between BS concentration and TF 

concentration. This manifests as an increased local abundance of chromatin loops and 

thus greater spatial proximity among co-regulated archipelago enhancers. As such, this 

work reveals how DNA sequence, mediated by tissue-specific TF availability, contributes 

to the higher-order chromatin structure that underlies coordinate gene complex activation. 

Introduction 

Chromatin’s spatial component has proven indispensable to understanding regulation of 

gene transcription. Genes encoding developmental regulators, for example, must integrate 

a complex set of regulatory inputs, many quite distal. By displacing intervening 

chromatin, chromatin loops foster spatial proximity, and interaction, between regulators 

and the transcriptional unit (Mukherjee et al. 1988; Montavon and Duboule 2012). In the 
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comprehensive picture of higher-order chromatin structure during interphase offered by 

the chromosomal conformation capture technique Hi-C, thousands of ‘topological 

domains’ ranging up to several megabases and demarcated by loops have been identified 

that are largely maintained across cell types – suggesting such domains represent a 

fundamental organizing unit of chromatin (Dixon et al., 2012; Shen et al., 2012; Vietri 

Rudan and Hadjur, 2015). Chromatin loops have also been found to aggregate into 

chromatin hubs or ‘archipelagos’ in a variety of species and model systems, including 

HOXD, olfactory receptor, and alpha-globin (Markenscoff-Papadimitriou et al., 2014; 

Montavon et al., 2013; Vernimmen, 2014). An important insight into the source of tissue-

specific regulation comes from the most resolved examination of chromatin structure to 

date (Rao et al., 2014), in which so-called topologically associating domains (TAD) 

colocalizing in a nuclear compartment broadly share chromatin state, indicative of co-

regulation, but colocalize with a changing cast of TADs across cell types. To understand 

cell type-specific regulation, therefore, particularly of coordinately regulated complexes, 

greater insights are required into the forces which contribute to the higher-order 

chromatin organization (Schwarzer and Spitz, 2014).  

There is a long tradition of seeking the roots of fine-grained DNA structure in 

DNA sequence (Burge et al. 2006) and in sequence-protein interactions (Schultz et al., 

1991). Indeed, DNA-protein interaction is thought to largely account for chromatin 

looping. Specifically, the ring-forming cohesin complex, best known for tethering sister 

chromatids after DNA replication (Nasmyth and Haering 2009) has more recently been 

shown to anchor loops critical to transcription, in complex with Mediator, when recruited 

by DNA-bound proteins, particularly CCCTC binding factor (CTCF) (Hadjur et al. 2009; 
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Mifsud et al. 2015; Kagey et al. 2010). Intriguingly, cohesin has recently been shown to 

bind tissue-specifically to non-CTCF TFs (Schmidt et al., 2010). However, at the level of 

archipelago and the context-specific coordination of multiple loops, mechanistic results 

are missing.  

Notwithstanding, a consensus is emerging that protein binding likely holds the 

key to higher-order DNA organization (Bickmore and van Steensel, 2013; Dekker et al., 

2013; Feuerborn and Cook, 2015a; Pombo and Dillon, 2015; Sexton and Cavalli, 2015). 

Recent biophysical simulations have successfully modeled broad patterns of DNA 

folding based on generic interactions between a polymer representing DNA and a 

collection of protein-like particles, each with two ‘sticky’ ends for binding DNA. In the 

‘String and binders switch’ model, Barbieri et al (2012) found through Monte Carlo 

simulations that as the concentration of particles is increased, a threshold is reached 

where DNA exhibits a switch-like compaction into a structure replete with loops, 

recapitulating the power law that describes DNA contact probabilities observed in vivo. 

The non-specific TF-bridging model (Brackley et al., 2013a), based on molecular 

dynamical simulations, also produced compact DNA folding. Crucially, neither these nor 

related biophysical models, to our knowledge have been tested in vivo, perhaps due to the 

abstracted quality of their predictions. This stands in contrast to the concrete predictions 

made by the model we offer in this work. 

Previously, we proposed and found functional genomic evidence for a novel 

group-level biophysical effect we named ‘crowdsourcing’, which augments local TF 

occupancy and TF concentration levels tissue-specifically, ultimately inducing gene 

complex activation. Briefly, we showed that such occupancy boosts are the likely 
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consequence for a TF in an archipelago that features a large number of cognate sites: TF 

proteins are briefly ‘trapped’ as they sequentially disassociate and re-associate amid the 

many spatially proximal, if genomically distal, BS. Here we ask, ‘Does the 

accompanying local boost in TF concentration, mediated by tissue-specific chromatin 

conformation, result in further compaction of the chromatin structure? As the 

concentration boost is both spatially local and tissue-specific, it is a logical candidate for 

providing the needed coordination among archipelago enhancers to increase compaction. 

Based on observation in several distinct systems, such compaction appears to characterize 

the main difference in regulatory configurations of active and inactive gene complexes 

(Markenscoff-Papadimitriou et al., 2014; Montavon et al., 2011). 

Testing this model leverages the expected divergence in behavior between, on the 

one hand, TFs with degenerate BS and their cognate BS, and on the other hand, TFs with 

higher information content and more specifically-binding motifs. Degenerate TFs 

stereotypically have very high abundances of cognate sites and hence, per the 

crowdsourcing model, should exhibit far higher effect size than TFs with specific motifs. 

Similarly, enhancers enriched for degenerate motifs are expected to be more intimately 

associated with tissue-specific changes in looping.  

Additionally, we propose two complementary mechanisms through which 

increase in concentration and DNA occupancy for TFs with degenerate motifs, 

specifically, leads to increased archipelago compaction and, ultimately, transcriptional 

activation: (i) increased interactions between non-contiguously DNA-bound heterodimer 

TFs, consistent with the String and binders switch model; (ii) increased recruitment of the 

chromatin proteins cohesin and Mediator complex, as well as chromatin modifying 
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enzymes (CMEs) and co-factors, such as P300, critical to complex activation. Together 

with previous findings, this work aims to show that archipelago BS for degenerate motif 

TFs experience a virtuous cycle that drives increased TF concentration and cognate 

binding site concentration, in the form of increased archipelago compaction.  We suggest 

this is mediated by tissue-specific TF availability, and premised on a nominal degree of 

spatial proximity in the ‘ground state’, i.e. in inactive cell types.  

Indeed, preliminary results, as laid out in this chapter, are consistent with the 

described sequence-based mechanism for context-specific archipelago compaction. 

Specifically, we have found that (i) degenerate BS-enriched enhancers exhibit several-

fold higher ratio of active-to-inactive state archipelago compaction (estimated by Hi-C 

interaction frequency) than archipelago enhancers, generally; (ii) archipelago loop 

formation occurs in closer lockstep with expression of degenerate TFs than of specific 

TFs; and (iii) heterodimers appear to form bridges between distal chromatin far more 

often within APs than outside of APs, and at rates that scale with the availability of 

degenerate TFs alone. Pending work, described below, aims to provide additional support 

for crowdsourcing’s role in archipelago compaction, generally, and in boosting local 

recruitment of cohesin and chromatin modifying enzymes, specifically. 

Results 

In Chapters 3 and 4, we found spatial proximity among archipelago enhancers, as 

estimated by Hi-C, to be a pre-requisite for TF occupancy amplification. In this chapter 

this spatial proximity, or compactness, is treated as a dependent variable. Specifically, we 

hypothesize and test for a positive feedback mechanism in which increased TF 

concentration represents one half of a virtuous cycle, and increased BS concentration, 
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estimated by chromatin compactness, represents the other. To estimate compactness of an 

AP in a given cell type, we use its Hi-C based edge fraction – the fraction of all possible 

pairs of AP enhancers with evidence of significant interaction. 

AP adopts more compact conformation in active tissues than in inactive tissues 

Previous reports have shown that spatial proximity among an archipelago of enhancer 

elements is required for stereotypical gene activation (Markenscoff-Papadimitriou et al., 

2014; Montavon et al., 2011). To test whether this is exhibited more generally across the 

genome, we analyzed 40 previously identified archipelagos (AP) using published 5-Kb 

resolution Hi-C data for 6 cell types: HUVEC, HMEC, IMR90, NHEK, K562, and 

GM12878 (Rao et al., 2014). Among the set of enhancers in each AP, we compared the 

combinatorial interaction frequency in active cell types to interaction frequency in 

inactive cell types, where AP activity was defined as the fraction of member enhancers 

that are DNase hypersensitive (DHS > 0). As in previous chapters, we used thresholds of 

>0.90 and <0.50, respectively. APs without at least one active and one inactive cell type 

were excluded, leaving 25 APs (~900 enhancers in total) for analysis. Within an AP, 

individual enhancer pairings within 100Kb of one another were excluded. Finally, we 

used a paired Wilcoxon test across the aggregate of ~21K enhancer pairs to compare 

interaction presence in active and inactive cell types. Surprisingly, interaction frequency 

was significantly lower in active than in inactive AP-cell type combinations – 0.046 vs. 

0.067 (p-value = 4.5e-65). This can putatively be explained by the far greater presence in 

the inactive archipelagos of heterochromatic enhancers (Figure 5.1). Heterochromatin not 

only adopts a highly condensed configuration, locally but, critically, also co-localizes to a 

common nuclear compartment (Dixon et al., 2012, 2015; Rao et al., 2014). Genomic 



134 
 

regions in such a shared compartment often appear in Hi-C assays to have high contact 

frequencies (Dixon et al., 2012; Ulianov et al., 2015).
 

In Chapter 4, we observed that as cell type-specific AP activity fell below 90%, 

occupancy boost quickly dropped; at AP activity = 50%, crowdsourcing occupancy boost 

is nearly dormant (data not shown). We therefore repeated the above analysis with the 

same ‘active’ AP threshold of 90%, but with an inactive window now ranging from 50% 

to 90% AP activity. We now observe a highly significant increase in enhancer-enhancer 

interactions in active cell types with respect to inactive (0.051 vs. 0.037, p-value 1.6e-17) 

(Figure 5-2), with compaction occurring in 15 of the 19 APs with sufficient data. 

Moreover, and consistent with crowdsourcing mechanism, when enhancer-enhancer 

interaction are screened to include only enriched enhancers, the average compaction from 

inactive to active cell types for any given AP monotonically increases to more than two-

fold for top-20% enriched enhancers ( 0.058 vs. 0.027, p=0.006) (Figure 5-2, top). As a 

control, we compared these results to those for inter-AP interactions, albeit on the same 

chromosome.  Here, we see that, in contrast, and consistent with the absence of 

crowdsourcing effect, the compaction ratio does not increase among enhancers enriched 

for degenerate BS (Figure 5-2, bottom) 

 

Figure 5-1.   Percentage of enhancers in a given AP-tissue combination that are 

heterochromatic. Determination based on overlap between an enhancer and a region 

classified by ChromHMM as ‘heterochromatin’ (processed ChromHMM genome 

segmentation data for 5 cell types downloaded from ENCODE).  
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Figure 5-2. (Top) Fraction of interactions among AP enhancers in active vs. 

inactive cell types. Results shown for all enhancer pairs, as well after screening for 

enhancers enriched for degenerate BS at two enrichment levels. One-sided p-values 

based on paired Wilcoxon test across relevant enhancer pairs.  (Middle) Same as Top 

but with enhancer depleted for degenerate motifs.  (Bottom) Same as Top, except 

interactions are between enhancers residing in different APs, rather than enhancers 

within the same AP, and p-values are two-sided. 
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AP compactness scales more closely with expression of degenerate than specific TFs 

If crowdsourcing does indeed help drive AP compaction, then we expect that TFs with 

degenerate BS contributed more to the compaction than non-degenerate TFs. To test this, 

we tracked AP compactness as a function of TF expression for ~400 TFs whose motif 

placed them in the top or bottom 20% of TFs for degeneracy. For each AP-cell type 

combo, mean TF expression was calculated separately for degenerate and specific TFs, 

while tailored to include only those TFs recognized by at least one enhancer in the AP.  
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Finally, for each of the two degeneracy classes and for each AP, we computed the 

correlation across all 6 cell types between cell type-specific mean TF fpkm and mean AP 

compactness (edge fraction). As seen in Figure 5-3, correlations for degenerate TFs trend 

higher than those for specific TFs, consistent with our hypothesis.   

 

Figure 5-3.  (Left) tallies of correlation values (x-axis) computed across 6 cell types 

between mean TF expression and AP compactness (estimated by its edge fraction) 

for each of 40 APs, where TFs were segregated into degenerate and non-degenerate. 

(Right) An illustrative AP. AP = archipelago 

 

 

There is greater heterodimer-induced DNA-bridging than expected in active APs 

We propose two mechanisms to account for the greater correlation between TF 

expression and AP compactness for degenerate TFs. Here we test the first: elevated AP 

TF concentrations boost the rate of protein-protein bridges formed between degenerate 

heterodimers bound at non-contiguous DNA loci.  Such bridges form de facto chromatin 

loops, as described in the Strings and Binders model, described above. To estimate the 
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relative change in heterodimer bridges formed, we used fraction of binding that was 

indirect, that is, binding to another TF which is, itself, bound to the DNA. Indirect 

binding is frequently inferred through identification of ChIP-Seq peaks for a TF in the 

absence of any corresponding motif instances under the peak (Jothi et al., 2008). As 

above, we tracked the level of indirect binding against TF expression. We did this for 

heterodimers and non-heterodimers in both AP and non-AP enhancers. As can be seen in 

Figure 5-4, results support the hypothesized increase in heterodimer-induced TF bridging 

in APs, as indirect binding scales robustly with expression of degenerate motifs TFs, but 

not non-degenerate motifs. 

 

Figure 5-4. TF chromatin bridging depends on TF motif degeneracy, TF expression, and AP 

context. (A) Cartoon of the experimental proxy used to detect heterodimer –anchored TF 

chromatin bridging. (B) Plots comparing fraction of indirect ChIP-Seq peaks in AP-cell type 

combinations with high TF expression to the corresponding fraction in AP-cell type combinations 

with low TF expression.  The percent difference is plotted on the y-axis as a function of 

cutoffs for high/low TF expression (x-axis) for heterodimers in APs (top-left); non-

dimers in APs (top-right); heterodimers in matched non-AP enhancers (bottom-left).  
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Pending work 

To further address concerns about high Hi-C edge fractions for the least active AP-cell 

type combinations (activity from 0% to 50%), we will try to determine whether these 3D 

contacts can be explained by a common heterochromatic compartment(s). Specifically, 
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we will examine Hi-C interactions between APs on distinct chromosomes and (i) test 

whether these interactions are disproportionately frequent in the least active AP-cell type 

combinations; and (ii) cluster these cross-chromosomal interactions to show an 

unexpectedly high proportion colocalize in the least active AP-cell type combos. Both 

observations would best be explained by incidental contact in a shared, highly compacted 

compartment, typical of heterochromatin. 

We will repeat the analysis in Figure 5-3 that assays the correlation between 3-D 

interactions and expression of TFs classified on the basis of degeneracy, however, at the 

level of enhancer instead of AP in order to increase statistical power.  

We will use ENCODE histone modification data to mimic published results in the 

context of our APs and show that spatially proximate enhancer pairs (within an AP) have 

more similar chromatin/histone state than non-AP pairs matched with AP pairs for 

pairwise genomic distance and chromatin accessibility. To test whether this observation 

can be explained by crowdsourcing-boosted recruitment of cohesin and chromatin 

proteins, we will use available ChIP-Seq data to ascertain whether cohesin, relevant co-

factors, and CMEs are disproportionately recruited in APs by the most degenerate TF 

recruiters, as predicted by crowdsourcing.  We will also test whether CME-recruiting TFs 

are more degenerate than expected by chance, and the extent to which the degenerate 

recruiters have deeper evolutionary conservation than the non-degenerate recruiters. 

Finally, we will compare impacts on a given CME’s presence when degenerate TF 

recruiters are knocked down compared to when a specific TF recruiter is knocked down, 

using published experimental data.  
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Complementing these genomic results, our collaborators Daphne Ezer and 

Xiaoyan Ma at the University of Cambridge will provide results from a biophysical 

simulation whose goal is to model the crowdsourcing-induced boost in local TF 

concentration as a function, effectively, of BS concentration. 
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 Perspective and future work Chapter 6:
 

The contribution of chromatin structure to regulating cellular processes, such as gene 

expression, is an active area of research (Pombo and Dillon 2015; Zhang et al. 2013). 

There is also keen interest by the community in uncovering factors that, conversely, 

shape chromatin and can account for its structural variation across cell (Bickmore and 

van Steensel, 2013; Sexton and Cavalli, 2015). In this work, we describe and offer the 

first evidence of a general biophysical mechanism that provides insights on both fronts, 

whereby a high spatial concentration of genomically remote binding sites for a given 

transcription factor serves to remodel the protein’s microenvironment, increasing its 

concentration. This, in turn, further compacts chromatin, elevating the spatial 

concentration of binding sites, and likely setting up a feedback loop. As a direct 

consequence, occupancy is boosted for TFs (typically degenerate) with abundant 

archipelago BS, and expression multiplies for genes near enhancers enriched in such BS. 

Crowdsourcing, then, mechanistically bridges effects at two starkly different scales – 

single BS versus chromatin structure spanning megabases – through ‘mass action’ of tens 

to hundreds of binding sites, with the resulting dialog between TF binding and chromatin 

structure contributing to gene complex activation.  

TF occupancy, specificity, and superenhancers 

To date, there has not been work synthesizing the flanking region perspective that 

dominates modeling of TF-DNA binding, on the one hand, and the spatial perspective 

now common in study of coordinate regulation, on the other. Our work suggests that 

occupancy is much more accurately modeled, and false positives mitigated, when spatial 
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context is accounted for – namely, the quantity of spatially proximal homotypic sites – 

particularly for TFs with degenerate motifs. 

The impact of crowdsourcing on occupancy also holds surprising implications for 

binding specificity. There is a well-documented dearth of binding information encoded in 

the transcription factor motifs of higher eukaryotes, which tend to have, at once, larger 

genomes yet shorter motifs (Stewart and Plotkin, 2013). The challenge for a TF to 

discriminate between its bona fide sites and the many inevitable duplicate but non-

functional sites is only exacerbated for degenerate motifs – which are recognized by up to 

millions of putative sites (Mirny et al., 2009). One solution to this conundrum, as 

employed by the cell, is to require added information in the form of cooperative binders, 

which must recognize their own binding site nearby. A 3-dimensional and more diffuse 

version of this approach, as suggested by our results, is to require a spatial plurality of 

similar sites in a given regulatory compartment. In its absence, binding is too weak to 

induce complex-wide activation. Hence, a degenerate TF discriminates on the basis of 

genomic sequence in addition to higher-order chromatin structure. The result is, 

effectively, mobile and context-specific area codes within the nucleus. 

Degenerate motifs, and weak binding, more generally, have gained notice for their 

unexpectedly high contribution to cell- and condition-specific regulation of gene (Essien 

et al., 2009b; Segal et al., 2008; Tanay, 2006) Master regulator TFs, which are 

hierarchically situated at the beginnings of regulatory cascades, tend to be degenerate 

(Heinz et al., 2015). Master regulators bind in strikingly high occupancy in super-

enhancers at levels, interestingly, that scale with superenhancer size (typically from 10-

100Kb) (Whyte et al., 2013). It has also been recently learned that superenhancers feature 
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a dense thicket of chromatin contacts within their borders (Heinz et al., 2015). A 

mechanistic explanation connecting these observations, however, has not been offered 

(Andersson et al., 2015). Here we have shown that superenhancer function is likely 

informed by crowdsourcing, even as crowdsourcing also acts widely as a general 

mechanism among standard enhancers.  Additionally, we observed that small 

superenhancers were several times more likely to co-inhabit the same archipelago than 

large enhancers (data not shown), which echoes our results showing enhances classified 

as ‘weak’ (chromHMM – Ernst and Kellis 2012) interacted with significantly larger 

networks of correlated enhancers than ‘strong’ enhancers. Future work could explore a 

potential role for crowdsourcing in coordinating the many and widely-dispersed 

superenhancers that collectively govern lineage  

determination. 

Archipelagos, transcription factories, and meta-enhancers 

The dependency of coordinate regulation and co-expression of functionally related genes 

on the activity of regulatory archipelagos has now been demonstrated  in model systems 

such as HOX, alpha- and beta-globin (Montavon et al. 2013; Fang et al. 2009). In 

olfactory neural receptors, archipelagos are critical for expression of even a single coding 

gene (Markenscoff-Papadimitriou et al. 2014). While enhancer-promoter proximity is 

well-established to be critical for transfer of information encoded in TFs (Krivega and 

Dean, 2012), there has been an absence of well-elaborated mechanisms explaining the 

adaptive role, if any, of observed enhancer-enhancer contacts (Li et al., 2012; Sandhu et 

al., 2012) of the type that lie at the heart of crowdsourcing. Moreover, our findings 

suggest a refinement of the widely-held view of coordinate gene regulation wherein 
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enhancers and genes are recruited by high concentrations of (master) TFs. Rather, the 

truth appears to be more circular, as enhancers also concentrate TFs. In the literature on 

transcription factories – nuclear sub-compartments that concentrate transcriptional 

resources and feature high transcriptional output –  several have proposed similar ideas 

(Eskiw et al., 2010; Feuerborn and Cook, 2015b) , but without empirical support. 

Transcription factories to date have been explored primarily with bench science 

and microscopy, with minimal if any sequence-related results. This raises a challenge in 

applying factory-gleaned results to archipelagos, and vice versa, two research tracks that 

have advanced with negligible crossing despite indications suggesting ‘archipelago’ and 

‘factory’ are two descriptions of the same biological phenomenon. A first step toward 

integration might be to expand use of fluorescent labeling in factories to include enhancer 

elements identified in computational archipelago analyses, including 3C. Transcription 

factories are often subject to proximal promoter pausing of polymerase elongation 

(Buckley and Lis, 2014). By applying ChIP-Seq data with a polII antibody to the area 

near transcription start sites, high levels of stalled polymerase would ostensibly show up 

in archipelagos, helping cement archipelagos’ ‘hidden identity’ as transcription factories. 

Factories show evidence of being customized to particular transcriptional outputs, 

with the distribution of resources, such as TFs, similarly customized by factory (Babu et 

al., 2008; Bulger and Groudine, 2010). The source of this customization, however, has 

not been resolved  (Sutherland and Bickmore, 2009). Crowdsourcing is a good candidate 

mechanism, as it ostensibly recruits TFs in proportions similar to motif instances in their 

member enhancers (and less numerous promoters). In this work, we treated APs, except 

for their size, as generic. But, in fact, we observed large variation among APs in their 
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relative TF-specific coverage levels not predicted by degeneracy (data not shown). It 

would be straightforward to test whether differences in binding site enrichment in a given 

AP are consistent with the functional enrichment of the AP’s genes. Further predictions 

could be tested through fluorescent labeling and bench experimentation. 

Interestingly, we also observed across archipelagos, generally, an unexpected 

dearth of motif instances for degenerate binding sites, relative to non-archipelago regions. 

To be sure, there were relatively more AP sites, overall, that recognized degenerate 

motifs, however there were fewer sites per given TF in each enhancer (ie, each genomic 

homotypic cluster). This could be explained by the limitations of evolutionary selection 

to functionally preserve a regulatory region from the vagaries of mutations if it is too 

large (Stewart and Plotkin, 2013). Evolution appears to have leveraged the (spatial) 

proximity of enhancers and their collective abundance of sites for a TF to reduce the 

quantity of its sites in any individual enhancer. Instead, we find, this expensive real estate 

accommodates sites for a wider variety of TFs – consistent with the more complex 

regulatory demands of archipelagos compared to non-AP transcription.  As further 

evidence for this unique example of group level purifying selection, we observed, 

counter-intuitively, far greater sharing of binding motifs among AP enhancers separated 

by megabases than by AP enhancers separated by 20Kb or less; sharing of motifs climbs 

monotonically as inter-enhancer grows. This finding is consistent with the inevitably high 

spatial proximity of enhancers separated by relatively negligible genomic distance. 

Unique to archipelagos, genomically proximal enhancers thus have motif composition 

suggestive of their membership in larger, ‘meta-enhancers’.  These may, interestingly, 



147 
 

turn out to consist largely of super-enhancer regions, although on the other hand, super-

enhancers have, in fact, been shown to be enriched for motifs of master regulator TFs. 

Higher higher order transcriptional regulation 

In the domain of spatial chromatin structure, scale may be defining. At the scale of 1-3 

Mb (or 200Kb-500Kb, as per Rao et al), topologically associated domains (TAD) remain 

intact across cell types (Dixon et al., 2012). Rao found that TADs came together in a 

nuclear compartment tissue-specifically, where they shared histone marks, a strong 

indicator of co-regulation, only to co-localize with a different set of TADs in other cell 

types. Based on this description, these co-regulated domains appear to be related to the 

archipelagos we identified. (Shared histone state among enhancers is a predicted 

consequence of crowdsourcing and compartment-wide recruitment by bound degenerate 

TFs of chromatin modifying enzymes). Interestingly, this view of regulation suggests that 

enhancers are repurposed under different cellular contexts – a view that dovetails with the 

prevailing view of evolution as endlessly resourceful, evidenced by the numerous 

genomic structures coopted over time for new or added functions. Indeed, in (Sheffield et 

al., 2013) where archipelago enhancers clusters were identified without requiring they be 

disjoint, many enhancers appear in multiple such clusters.  

Hence, enhancers appear to be frequently subject to reuse, rather than constrained 

to a single archipelago/transcription factory and function. This could account for 

enhancers’ strikingly high abundance of putative binding sites, typically numbering in the 

hundreds. But this raises the question of how enhancers ensure a binding regime specific 

to a given factory. In principle, crowdsourcing can account for this. Depending on fellow 

factory members, and consistent with the factory’s function, only required TFs would be 
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raised to functional concentrations, while remaining TFs would not. Cognate sites for 

such TFs would hence remain effectively dormant and unbound. Confirming this model 

requires showing specialized occupancy patterns as a function of cell-type specific 

factory activity. Importantly, in addition to testing enhancer clusters identified based on 

shared (correlated) activity across cell types as done in Sheffield and Malin – 

representing, in essence, constitutive regulatory archipelagos – clusters identified based 

on single-tissue activity should be identified and tested. If the model is verified, it would 

highlight crowdsourcing’s role in organizing this highest level of transcriptional 

coordination, while providing direct evidence for the Rao and Dixon models of modular 

TAD function. 

 

 

 

 

 

 

 

 

 

 

 

 



149 
 

Appendices 
 

Appendix 1: Author contributions 

 

Chapter 2: 

Conceived: SH 

Designed analysis: SH, JM 

Performed analysis: JM with help from Radhouane Aniba 

Wrote manuscript from which chapter taken:  SH, JM 

 

Chapter 3, 4: 

Crowdsourcing mechanism and functional implications: JM 

Designed genomic analysis JM with help from SH, Steve Mount 

Biophysical Modeling with Simulations: Daphne Ezer, Xiaoyan Ma 

Performed genomic analysis: JM with help from Hiren Karathia 

Wrote manuscript from which chapter taken: JM, SH, DE 

Help with illustrations: Seung Gu Park 

 

Chapter 5: 

Conceived: JM 

Designed computational analysis JM with help from Hiren Karathia, SH, Kan Cao 

Performed genomic analysis: JM, HK 

Hi-C data processing: Hiren Karathia 

 

 



150 
 

Appendix 2: Tables for correlated enhancer analysis 

 

Appendix Table 1. 73 cell types sorted into 37 clusters.  

One cell type from each cluster (first in row) was used as the representative for the 

cluster. See text (Chapter 2) for how the representative was selected.  

 

   

Cluster 

  Representative    

    Cell Type 

Cluster 

Members                     

1 A549 

           2 Aoaf M059j                     

3 Be2c 

           4 Cd20ro01778                       

5 Gm04503 

           6 Gm04504                       

7 Hah 

           8 Hasp Nt2d1                     

9 Hbmec Hff 

          10 Hipe                       

11 Hmf 

           12 Hmvecdad                       

13 Hmvecdblneo 

           14 Hmvecdlyneo                       

15 Hmveclly 

           16 Hpaf Hsmmt                     

17 Hrgec Th1wb54553204 

         18 Hs5                       

19 Hsmm 

           20 Huvec Hbvp Hct116 Hmec Hmvecdblad Hmvecdneo Hpdlf Nhek Rpmi7951 Th1 Tregwb83319432 Wi38 
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21 Jurkat 

           22 Mcf7 Lhcnm2                     

23 Monocd14ro1746 

          24 Msc                       

25 Nha 

           26 Nhbera                       

27 Nhdfad Hmveclbl Hpaec 

         28 Prec                       

29 Gm12864 Hac Hcfaa Hconf Rptec Th17 

      30 Sknmc                       

31 Cd34mobilized T47d 

          32 Th1wb33676984                       

33 Th2 

           34 Th2wb33676984                       

35 Cd4naivewb78495824 Th2wb54553204 

        36 Cd4naivewb11970640 H7es Hbvsmc Hffmyc Hmvecdlyad Hpf Hs27a Hvmf Lncap Tregwb78495824   

37 Werirb1 
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Appendix Table 2. 153 significantly co-occurring motifs sorted into 51 disjoint 

clusters based on motif similarity.  

 

Cluster Motifs 

1  M00762 

2  M00497 

3  M00431  M00428   M00940   M00427   M00430   M00919   M00425   

M00736        M00920   M00739   M00426   M00738 

4  M01240 

5  M01199  M01253   M01593 

6  M00646 

7  M01721  M01598 

8  M01298 

9  M00925  M01267   M00199   M00174   M00926   M00821   M00188   

M00173 

10  M00801 

11  M01201 

12  M01747  M01798 

13  M01756  M00789   M00347 

14  M00644  M00175   M00277   M01288   M00176   M00804   M00927   

M01716     M01287 

15  M01072 

16  M01147  M01016 

17  M01292  M00471   M00980   M00216 

18  M00100 

19  M01275 

20  M00145 
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21  M01759  M01658   M00722 

22  M01117 

23  M00775 

24  M00075 

25  M00332 

26  M01177 

27  M00641  M01023 

28  M00648  M00032   M01258   M01197   M00743   M00771 

29  M01020 

30  M01653 

31 M01118  M00649   M01783   M00008   M01219   M01100   M01175   

M00695   M00255   M00716   M00196   M00803   M00807   M00931   

M00933  M00932   M01303   M00720   M01273   M01837   M01104   

M01816   M01597   M00982   M01714   M00706   M00491   M01231   

M00333   M01835   M01587   M01122 

32  M01733  M00083 

33  M01028 

34  M01220 

35  M00466 

36 M00615  M00322   M00976   M00799   M00055   M00217   M01249   

M01116   M00726 

37  M01482  M00468 

38  M00967 

39  M00470  M00469   M00915   M00189   M00800   M01045   M01047 

40  M01742  M00652 

41  M01243 

42  M00986 
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43  M01113  M01588   M00378   M01657   M01042   M00749 

44  M01318 

45  M01261  M01599   M00724   M01765 

46  M00492 

47  M01162  M01654 

48  M01294 

49  M00076 

50  M01230  M00489 

51  M01169 
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Appendix Table 3. GO enrichment of enhancer cluster target genes 

Gene Ontology (GO) annotation terms for the clusters of target genes corresponding 

to correlated enhancer clustering with the highest ratio of enrichment terms 

between itself and a background gene cluster. In this list are GO terms separated by 

targeted gene cluster with adjusted p-values < 0.0005 and that are supported by three or 

more genes in the cluster. 7 of 52 clusters were enriched for at least one term that met this 

highly stringent standard. There were 149 separate instances of enrichment. This 

enhancer cluster was identified using the following parameters: min mean mutual 

information = 0.2, minimum cluster size = 20, minimum percent occupancy for most 

enriched motif = 0.0. Background clusters are matched for chromosome, the number of 

enhancers and signature of inter-enhancer distances, but consist of otherwise random 

enhancers. GO enrichment analysis performed with R's GOstats package. Adjusted p-

value = 0.05*p-value/ q-value. 

________________ 

cluster size:  65 genes 

 

Enriched term    #genes     Adjusted p-value       Description 

GO:0009790  4 3.3e-04 embryo development 

GO:0007411  3 3.3e-04 axon guidance 

GO:0051179  10 3.3e-04 localization 

GO:0009605  5 3.3e-04 response to external stimulus 

GO:0051093  3 3.5e-04 negative regulation of developmental process 

GO:0048519  8 3.5e-04 negative regulation of biological process 

GO:0045597  3 3.5e-04 positive regulation of cell differentiation 

GO:0016337  3 3.5e-04 cell-cell adhesion 

GO:0001775  4 3.5e-04 cell activation 

GO:0060284  3 3.6e-04 regulation of cell development 

GO:0051960  3 4.0e-04 regulation of nervous system development 

GO:0048523  8 4.2e-04 negative regulation of cellular process 

GO:0065008  8 4.2e-04 regulation of biological quality 

GO:0072358  4 4.2e-04 cardiovascular system development 

GO:0072359  4 4.2e-04 circulatory system development 

GO:0045596  3 4.2e-04 negative regulation of cell differentiation 

GO:0051129                       3           4.3e-04  negative regulation of cellular component organization 

GO:0048568  3 4.3e-04 embryonic organ development 

GO:0071845  3 4.3e-04 cellular component disassembly at cellular level 

GO:0051239  6 4.3e-04 regulation of multicellular organismal process 

GO:0022411  3 4.3e-04 cellular component disassembly 

GO:0050767  3 4.3e-04 regulation of neurogenesis 

GO:0007155  5 4.3e-04 cell adhesion 

GO:0022610  5 4.3e-04 biological adhesion 

GO:0007507  3 4.3e-04 heart development 

GO:0050793  5 4.3e-04 regulation of developmental process 

GO:0030182  5 4.5e-04 neuron differentiation 
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GO:2000026  5 5.0e-04 regulation of multicellular organismal development 

___________________ 

 

cluster size:  141 genes 

 

GO:0048812  4 2.3e-04 neuron projection morphogenesis 

GO:0048667  4 2.3e-04 cell morphogenesis involved in neuron  

differentiation 

GO:0001525  3 2.3e-04 angiogenesis 

GO:0051172  5 2.3e-04 negative regulation of nitrogen compound  

metabolic process 

GO:0048585  4 2.3e-04 negative regulation of response to stimulus 

GO:0048568  3 2.3e-04 embryonic organ development 

GO:0007409  4 2.3e-04 axonogenesis 

GO:0001558  3 2.3e-04 regulation of cell growth 

GO:0051090  3 2.3e-04 regulation of transcription factor activity 

GO:0048468  6 2.3e-04 cell development 

GO:0002009  3 2.3e-04 morphogenesis of an epithelium 

GO:0050767  3 2.3e-04 regulation of neurogenesis 

GO:0090046  3 2.3e-04 regulation of transcription regulator activity 

GO:0010629  5 2.3e-04 negative regulation of gene expression 

GO:0007507  3 2.3e-04 heart development 

GO:0007399  7 2.3e-04 nervous system development 

GO:0045934  5 2.3e-04 negative regulation of nucleobase, nucleoside,  

nucleotide and nucleic acid metabolic process 

GO:0016481  5 2.4e-04 negative regulation of transcription 

GO:0032501  16 2.5e-04 multicellular organismal process 

GO:0001503  3 2.7e-04 ossification 

GO:0035239  3 2.7e-04 tube morphogenesis 

GO:0006357  6 2.8e-04 regulation of transcription from RNA polymerase II  

       promoter 

GO:0042127  6 2.9e-04 regulation of cell proliferation 

GO:0032582  3 3.0e-04 negative regulation of gene-specific transcription 

GO:0008283  7 3.0e-04 cell proliferation 

GO:0050673  3 3.3e-04 epithelial cell proliferation 

GO:0009887  5 3.3e-04 organ morphogenesis 

GO:0042692  3 3.3e-04 muscle cell differentiation 

GO:0007411  4 3.7e-04 axon guidance 

GO:0009890  6 3.7e-04 negative regulation of biosynthetic process 

GO:0002697  3 3.8e-04 regulation of immune effector process 

GO:0048869  10 3.9e-04 cellular developmental process 

GO:0031327  6 3.9e-04 negative regulation of cellular biosynthetic process 

GO:0010553  3 3.9e-04 negative regulation of gene-specific transcription  

from RNA polymerase II promoter 

GO:0009892  7 4.1e-04 negative regulation of metabolic process 

GO:0031324  7 4.2e-04 negative regulation of cellular metabolic process 

GO:0035295  4 4.2e-04 tube development 

GO:0010605  7 4.2e-04 negative regulation of macromolecule metabolic process 

GO:0045892  5 4.2e-04 negative regulation of transcription, DNA-dependent 

GO:0051253  5 4.2e-04 negative regulation of RNA metabolic process 

GO:0009605  7 4.2e-04 response to external stimulus 
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GO:2000113 6 4.2e-04 negative regulation of cellular macromolecule 

      biosynthetic process 

GO:0022603  4 4.2e-04 regulation of anatomical structure morphogenesis 

GO:0060284  4 4.2e-04 regulation of cell development 

GO:0001763  3 4.2e-04 morphogenesis of a branching structure 

GO:0019216  3 4.2e-04 regulation of lipid metabolic process 

GO:0030154  10 4.2e-04 cell differentiation 

GO:0050678  3 4.2e-04 regulation of epithelial cell proliferation 

GO:0031347  4 4.2e-04 regulation of defense response 

GO:0006935  5 4.2e-04 chemotaxis 

GO:0042330  5 4.2e-04 taxis 

GO:0072358  5 4.2e-04 cardiovascular system development 

GO:0072359  5 4.2e-04 circulatory system development 

GO:0061061  4 4.2e-04 muscle structure development 

GO:0010558 6 4.2e-04 negative regulation of macromolecule  

   biosynthetic process 

GO:0061138  3 4.2e-04 morphogenesis of a branching epithelium 

GO:0050727  3 4.9e-04 regulation of inflammatory response 

GO:0051146  3 4.9e-04 striated muscle cell differentiation 

GO:0048754  3 5.0e-04 branching morphogenesis of a tube 

______________ 

 

cluster size:  33 genes 

 

GO:0006936  3 0  muscle contraction 

GO:0051259  3 0  protein oligomerization 

GO:0003012  3 0  muscle system process 

GO:0003013  3 0  circulatory system process 

GO:0008015  3 0  blood circulation 

GO:0061061  3 0  muscle structure development 

GO:0035556  6 0  intracellular signal transduction 

GO:0022607  5 0  cellular component assembly 

GO:0010627  3 0  regulation of intracellular protein kinase cascade 

GO:0050794  13 0  regulation of cellular process 

GO:0044085  5 0  cellular component biogenesis 

________________ 

 

cluster size:  6 genes 

 

GO:0007268  4 0  synaptic transmission 

GO:0019226  4 0  transmission of nerve impulse 

GO:0035637  4 0  multicellular organismal signaling 

_______________ 

 

cluster size:  27 genes 

 

GO:0001775  5 0  cell activation 

GO:0001568  4 0  blood vessel development 

GO:0001944  4 0  vasculature development 

GO:0051716  11 0  cellular response to stimulus 

GO:0007265  3 0  Ras protein signal transduction 
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GO:0007166  7 0  cell surface receptor linked signaling pathway 

GO:0072358  4 0  cardiovascular system development 

GO:0072359  4 0  circulatory system development 

GO:0007165  9 0  signal transduction 

GO:0006928  4 0  cellular component movement 

GO:0007167 4 0  enzyme linked receptor protein signaling  

pathway 

GO:0023052  9 0  signaling 

________________ 

 

cluster size:  53 genes 

 

GO:0045785  3 0  positive regulation of cell adhesion 

GO:0007167  6 0  enzyme linked receptor protein signaling  

      pathway 

GO:0071844  6 0  cellular component assembly at cellular level 

GO:0040007  5 0  growth 

GO:0030155  3 0  regulation of cell adhesion 

GO:0032268  6 0  regulation of cellular protein metabolic process 

GO:0051246  6 0  regulation of protein metabolic process 

GO:0048589  3 0  developmental growth 

GO:0031399  5 0  regulation of protein modification process 

GO:0034622  4 0  cellular macromolecular complex assembly 

GO:0071845  3 0  cellular component disassembly at cellular level 

GO:0022411  3 0  cellular component disassembly 

GO:0009967  4 0  positive regulation of signal transduction 

GO:0048584  5 0  positive regulation of response to stimulus 

GO:0043623  3 0  cellular protein complex assembly 

GO:0022607  6 0  cellular component assembly 

GO:0010647  4 0  positive regulation of cell communication 

GO:0023056  4 0  positive regulation of signaling 

GO:0031401  3 0  positive regulation of protein modification  

      process 

GO:0007169                4 0  transmembrane receptor protein tyrosine kinase  

      signaling pathway 

GO:0044085  6 0  cellular component biogenesis 

GO:0042060  4 0  wound healing 

GO:0001932  4 0  regulation of protein phosphorylation 

_____________________ 

 

clusterID 38 cluster size:  53 genes 

 

GO:0048583  4 3.5e-04 regulation of response to stimulus 

GO:0007267  3 3.5e-04 cell-cell signaling 

GO:0022008  3 3.6e-04 neurogenesis 

GO:0050793  3 3.6e-04 regulation of developmental process 

GO:0048731  5 3.7e-04 system development 

GO:0048699  3 3.8e-04 generation of neurons 

GO:0030182  3 4.0e-04 neuron differentiation 

GO:0048518  5 4.0e-04 positive regulation of biological process 

GO:0051128  3 4.0e-04 regulation of cellular component organization 
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GO:2000026  3 4.1e-04 regulation of multicellular organismal development 

GO:0030030  3 4.2e-04 cell projection organization 

GO:0048522  5 4.4e-04 positive regulation of cellular process 

GO:0045595  3 4.8e-04 regulation of cell differentiation 

GO:0048666  3 4.9e-04 neuron development 
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Appendix Table 4. Mapping of tissues between CTen and ENCODE databases.  

We clustered the 84 tissue types in the CTen database and the 72 types in the ENCODE 

DHS database into 34 and 23 cytologically motivated classes, respectively. Agreement in 

tissue enrichment was assessed based on the 17 classes, shown below, that are shared 

between CTen and ENCODE. 

Encode cell 

type 

 (enhancer 

domain) 

Tissue class 
Cten cell type  

(gene domain) 

Cd20ro01778 

blood 

721 b lymphoblasts 

Cd34mobilized bdca4+ dentritic cells 

Cd4naivewb11

970640 cd19+ b cells 

Cd4naivewb78

495824 cd33+ myeloid 

Gm12864 cd34+ 

Jurkat cd4+ t cells 

Th1 cd56+ nk cells 

Th17 cd71+ early erythroid 

Th1wb336769

84 cd8+ t cells 

Th1wb545532

04 

leukemia chronic myelogenous 

k-562 

Th2 leukemia lymphoblastic (molt-4) 

Th2wb336769

84 leukemia promyelocytic hl-60 

Th2wb545532

04 lymph node 

Tregwb784958

24 lymphoma burkitts (daudi) 

Tregwb833194

32 lymphoma burkitts (raji) 

  whole blood 
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Nhbera bronchial epithelium bronchial epithelial cells 

Hs27a 

bone marrow 

bone marrow 

Hs5   

Be2c 

brain 

amygdala 

Hah caudate nucleus 

M059j cingulate cortex 

Nha globus pallidus 

Sknmc hypothalamus 

  medulla oblongata 

  occipital lobe 

  olfactory bulb 

  parietal lobe 

  pineal day 

  pineal night 

  pituitary 

  pons 

  prefrontal cortex 

  subthalamic nucleus 

  temporal lobe 

  thalamus 

  whole brain 

Hac 

cerebellum 

cerebellum 

  cerebellum peduncles 

Hct116 

colon 

colorectal adenocarcinoma 

  colon 

Aoaf 

endothelium 

cd105+ endothelium 

Hbmec   

Hbvp   
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Hbvsmc   

Hmvecdad   

Hmvecdblad   

Hmvecdblneo   

Hmvecdlyad   

Hmvecdlyneo   

Hmvecdneo   

Hmveclbl   

Hmveclly   

Hpaec   

Hpaf   

Huvec   

Hconf 

eye 

ciliary ganglion 

Werirb1 retina 

Hcfaa 

heart 

atrioventricular node 

  cardiac myocytes 

  heart 

Hrgec kidney kidney 

Hpf 

lung 

fetal lung 

Nhbera lung 

Wi38   

Monocd14ro17

46 
monocytes 

cd14+ monocytes 

Hsmm 

muscle 

skeletal muscle 

Hsmmt smooth muscle 

Lhcnm2   

Lncap 

prostate 

prostate 

Prec   

Gm04503 skin skin 
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Gm04504   

Nhdfad   

Nhek   

Rpmi7951   

Hasp 

spine 

dorsal root ganglion 

  spine 

  superior cervical ganglion 

  trigeminal ganglion 

Nt2d1 

testis 

testis 

  testis germ cell 

  testis intersitial 

  testis leydig cell 

  testis seminiferous tubule 
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Appendix Table 5.  Genes targeted by the illustrative enhancer cluster 

(see legend in Chapter 2 Figure 2-6 for more information). 

 

 

 

 

Gene Symbol Gene Description GO Slim Terms 

STK38L protein_kinase_activity   *                 

SSPN cell_junction                     

DIP2B transcription_factor_binding                     

PPM1H catalytic_activity                     

KITLG signal_transduction   *   * * *     *   

KCNA5 transmembrane_transport *           *     * 

PLEKHA5 phospholipid_binding                     

WNK1 protein_kinase_activity * *       *         

ADAMTS20 proteolysis   *     * *         

SRGAP1 signal_transduction   *       *   *     

CCDC91 protein_transport *                   

IFNG cytokine-mediated_signaling_pathway * * *   * * * * *   

BTBD11 DNA_binding                     

TMTC2 endoplasmic_reticulum                     

E2F7 regulation_of_transcription_DNA-dependent   *   *   *   * *   

CDK17 protein_kinase_activity                     

PPTC7 metal_ion_binding                     

ETNK1 ATP_binding                     

VEZT cell_junction       *             

PRICKLE1 transcription_factor_binding * * * *   *   *     

CALCOCO1 signal_transduction   *                 

LIMA1 cell_junction                     

IFT81 cell_differentiation           *         

SYT1 cell_junction *           *       

PTPRQ receptor_activity       *   *   *     

CACNA1C transmembrane_transport *         * * *     

ERC1 Golgi_membrane * *                 

KRR1 RNA_binding                     

TMEM117 integral_to_membrane                     

AEBP2 regulation_of_transcription_DNA-dependent                     

DRAM1 apoptotic_process         *           

NUDT4 intracellular_signal_transduction * * *               

EPS8 signal_transduction   *             *   

IFLTD1 cell_proliferation                 *   

ANO6 ion_transport *                 * 

DDX47 ATP_binding         *           

SLC6A15 transmembrane_transport *                 * 

HPD Golgi_membrane                     

PTHLH Golgi_apparatus   *       * * * *   

IGF1 signal_transduction * * *   * *   * *   

STAB2 receptor_activity *             *     

EEA1 membrane_fraction *           *       

C1R proteolysis                     

* transport

* signal transduction

* nucleocytoplasmic transport

* embryo development

* cell death

* cell differentiation

* cell signaling

* anatomical structure formation involved In morphogenesis

* cell proliferation

* transmembrane support
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TMEM119 integral_to_membrane                     

TSPAN11 membrane                     

PPFIA2 receptor_activity                     

NCOR2 negative_regulation_of_transcription_ 

DNA-dependent 

  *                 

ATP2B1 transmembrane_transport *                 * 

MLXIP regulation_of_transcription_DNA-dependent *   *               

GLIPR1L2 integral_to_membrane                     

EPYC extracellular_region                     

PPP1R12A signal_transducer_activity * * *               

AMIGO2 cell_adhesion         *           

FAR2 endoplasmic_reticulum_membrane                     

BICD1 transport * *                 

NUAK1 protein_kinase_activity                 *   

SLC38A2 transmembrane_transport *           *     * 

CRADD signal_transduction   *     *           

EP400 nucleotide_binding                     

DYRK2 protein_kinase_activity * * *   *           

DCN extracellular_space                     

ZNF664 regulation_of_transcription_DNA-dependent                     

SLC41A2 transmembrane_transport *                 * 

HMGA2 negative_regulation_of_transcription_ 

DNA-dependent 

*     * * * * * *   

PDE3A signal_transduction   *     * *         

CHST11 transferase_activity   *   * * *   * *   

PLEKHG6 phospholipid_binding   *                 

TMTC3 integral_to_membrane                     

ANO4 ion_transport                     

NAV3 ATP_binding                     

SLC38A4 transmembrane_transport *                 * 

ANKS1B cell_junction                     

C12orf70 integral_to_membrane                     

PLCZ1 intracellular_signal_transduction * *                 

HCAR1 G-protein_coupled_receptor_activity                     

CKAP4 perinuclear_region_of_cytoplasm                     

USP15 proteolysis   *                 

ITPR2 transmembrane_transport * *         *       

TBX3 negative_regulation_of_transcription_ 

DNA-dependent 

*     * * * * * *   

PTPRR receptor_activity       *   *         

WNT5B receptor_binding   *   *   *   *     

TSPAN8 signal_transducer_activity   *                 

ST8SIA1 Golgi_membrane                 *   

RASSF9 signal_transduction * *                 

TSFM intracellular                     

TEAD4 regulation_of_transcription_from_RNA_pol_II_pro

moter 

  *   *   *   *     

TMEM132B integral_to_membrane                     

PHLDA1 regulation_of_transcription_from_RNA_polII_prom

oter 

        *           
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Appendix 3: Enhancer coordinates for 40 archipelagos 

AP ID chrm start  stop 

 
24 chr1 95164417 95164990 

24 chr1 64292181 64292559 

24 chr1 68444790 68445268 

24 chr1 60169236 60169669 

24 chr1 115732459 115733152 

24 chr1 60731878 60732134 

24 chr1 115973287 115973736 

24 chr1 60598553 60599033 

24 chr1 78622648 78623135 

24 chr1 120490104 120490512 

24 chr1 95500965 95501522 

24 chr1 112005979 112006315 

24 chr1 64636945 64637982 

24 chr1 115872698 115873416 

24 chr1 51536339 51536786 

24 chr1 56038885 56039096 

24 chr1 64504984 64505702 

24 chr1 77836420 77837040 

24 chr1 56184343 56185108 

24 chr1 56097743 56098133 

24 chr1 59840890 59841404 

24 chr1 55909167 55909671 

24 chr1 112106280 112106659 

24 chr1 98623601 98623908 

24 chr1 78005294 78005892 

25 chr1 94263880 94264343 

25 chr1 94134742 94135281 

25 chr1 109739985 109740365 

25 chr1 94269939 94270369 

25 chr1 94791950 94792244 

25 chr1 94510972 94511623 

25 chr1 94087786 94088194 

25 chr1 15683492 15683671 

25 chr1 94736296 94736703 

25 chr1 58861009 58861375 

25 chr1 68355587 68355924 

25 chr1 68306107 68306399 

25 chr1 87691978 87692472 

25 chr1 78957353 78957707 

25 chr1 84831150 84831766 

25 chr1 67090077 67090486 

25 chr1 117635800 117636209 

25 chr1 77980799 77981121 

25 chr1 85794343 85795136 

25 chr1 85796497 85797013 

25 chr1 85779637 85780145 

25 chr1 94725107 94725515 

25 chr1 94724323 94724845 

25 chr1 59083976 59084404 

25 chr1 59639399 59639827 

25 chr1 85809925 85810291 

25 chr1 77977045 77977566 

25 chr1 8262119 8262695 

25 chr1 67029766 67030435 

25 chr1 25051303 25052018 

25 chr1 8121237 8121658 
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25 chr1 22091187 22091852 

25 chr1 16471562 16471984 

25 chr1 16472673 16473256 

25 chr1 120188458 120188846 

25 chr1 36602196 36602457 

25 chr1 39576554 39576986 

25 chr1 94791092 94791836 

25 chr1 100056376 100056822 

25 chr1 94790696 94791081 

25 chr1 96828051 96828577 

25 chr1 95552663 95553087 

25 chr1 85832159 85832465 

25 chr1 64240629 64241296 

25 chr1 67029084 67029542 

25 chr1 59228798 59229247 

25 chr1 59058194 59058572 

25 chr1 112275837 112276365 

25 chr1 67410299 67410672 

25 chr1 52364034 52364332 

25 chr1 39857734 39858075 

25 chr1 85755184 85755475 

25 chr1 68639710 68640111 

25 chr1 59229797 59230355 

25 chr1 77939451 77939710 

25 chr1 16508297 16508896 

25 chr1 68190504 68191046 

25 chr1 55776276 55776744 

25 chr1 55776756 55777308 

25 chr1 64508093 64508795 

25 chr1 86072787 86073459 

25 chr1 77787887 77788256 

25 chr1 95329248 95329903 

25 chr1 8197745 8198274 

25 chr1 115721930 115722556 

25 chr1 39513392 39513831 

25 chr1 39644671 39644936 

25 chr1 86044065 86044579 

25 chr1 64196797 64197513 

26 chr10 24498248 24498721 

26 chr10 4812873 4814515 

26 chr10 3269102 3269837 

26 chr10 34722168 34722650 

26 chr10 64342468 64343190 

26 chr10 93100545 93101157 

26 chr10 4414792 4415283 

26 chr10 63222803 63223399 

26 chr10 63223409 63223776 

26 chr10 17104013 17104336 

26 chr10 17007974 17008508 

26 chr10 34612169 34612443 

26 chr10 117696736 117697026 

26 chr10 62587627 62588496 

26 chr10 23113868 23114211 

26 chr10 14003025 14003546 

26 chr10 13923903 13924675 

26 chr10 65426709 65427074 

26 chr10 92690690 92691602 

26 chr10 44352738 44353448 

26 chr10 14032923 14033335 

26 chr10 123551892 123552204 

26 chr10 17029319 17029655 

26 chr10 116629249 116629562 
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26 chr10 13966391 13966755 

26 chr10 63854889 63855896 

26 chr10 63853361 63854104 

26 chr10 13726283 13727166 

26 chr10 63991160 63991461 

26 chr10 31109193 31109561 

26 chr10 4285810 4286241 

27 chr10 4746234 4746828 

27 chr10 98783923 98784227 

27 chr10 121439596 121439934 

27 chr10 21581629 21582206 

27 chr10 21623903 21624386 

27 chr10 25155478 25155739 

27 chr10 73631049 73631487 

27 chr10 116398514 116399072 

27 chr10 116031245 116031933 

27 chr10 93347751 93348406 

27 chr10 97067477 97067675 

27 chr10 75647443 75647808 

27 chr10 97068397 97068947 

27 chr10 59783398 59783804 

27 chr10 116383467 116384052 

27 chr10 123886826 123887178 

27 chr10 14116361 14116840 

27 chr10 30073196 30073703 

27 chr10 123900607 123900999 

27 chr10 73526408 73526879 

27 chr10 29824077 29824717 

27 chr10 74075275 74075698 

27 chr10 33552379 33553678 

27 chr10 34413618 34413984 

27 chr10 80917233 80917781 

27 chr10 73015123 73015880 

27 chr10 95228178 95228675 

27 chr10 33595684 33596055 

27 chr10 5986399 5986699 

27 chr10 34815575 34816449 

27 chr10 123942594 123943026 

27 chr10 21625800 21626171 

27 chr10 21655033 21655223 

27 chr10 124060437 124060876 

27 chr10 78801584 78801958 

27 chr10 3290968 3291459 

27 chr10 124067375 124067819 

27 chr10 3581246 3581651 

27 chr10 80720185 80720528 

27 chr10 33274531 33274986 

27 chr10 84741766 84742210 

27 chr10 76951864 76952130 

27 chr10 12887168 12887547 

27 chr10 6763386 6763848 

27 chr10 6764097 6764479 

27 chr10 97033145 97033719 

27 chr10 124264142 124264479 

27 chr10 93364940 93365398 

27 chr10 29273323 29273656 

27 chr10 45297365 45297672 

27 chr10 103699043 103699341 

27 chr10 65498159 65498614 

27 chr10 104364195 104364505 

27 chr10 95226051 95226409 

27 chr10 95225536 95225917 
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27 chr10 62240686 62241203 

27 chr10 102650334 102650814 

27 chr10 3928641 3929481 

27 chr10 33626346 33626723 

27 chr10 80872843 80873226 

27 chr10 95218492 95218942 

27 chr10 3966518 3966864 

27 chr10 103127361 103127700 

20 chr8 40929580 40929758 

20 chr8 126340768 126341065 

20 chr8 98194112 98194386 

20 chr8 38770183 38770543 

20 chr8 106998269 106998592 

20 chr8 40381741 40382508 

20 chr8 130492481 130492818 

20 chr8 98446369 98446792 

20 chr8 98102693 98103262 

20 chr8 58663405 58663757 

20 chr8 58503247 58503675 

20 chr8 96817838 96818268 

20 chr8 122101585 122102096 

20 chr8 123330843 123331309 

20 chr8 117587096 117587507 

20 chr8 131245061 131245387 

20 chr8 123199833 123200264 

20 chr8 126082325 126082992 

20 chr8 98102189 98102667 

20 chr8 102300197 102300515 

20 chr8 118632011 118632240 

20 chr8 118631640 118632006 

20 chr8 41053940 41054490 

20 chr8 82106037 82106662 

20 chr8 51052146 51052586 

20 chr8 41092900 41093745 

20 chr8 49236833 49237057 

20 chr8 96820364 96820911 

20 chr8 51096075 51096421 

20 chr8 75690270 75690631 

20 chr8 50968879 50969932 

20 chr8 41228936 41229246 

20 chr8 95232609 95233011 

20 chr8 90962952 90963307 

20 chr8 98995989 98996350 

20 chr8 76661626 76662229 

20 chr8 129912815 129913283 

21 chr8 40032030 40032971 

21 chr8 143757421 143757799 

21 chr8 141489755 141490062 

21 chr8 61911690 61912123 

21 chr8 22131646 22132000 

21 chr8 118922271 118922581 

21 chr8 39916949 39917474 

21 chr8 49320307 49320695 

21 chr8 27474519 27475113 

21 chr8 141655904 141656283 

21 chr8 49541191 49541440 

21 chr8 8870858 8871599 

21 chr8 119023688 119023960 

21 chr8 26122968 26123156 

21 chr8 49321857 49322146 

21 chr8 8395193 8395619 

21 chr8 49320986 49321351 
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21 chr8 8167941 8168532 

21 chr8 23268946 23269278 

21 chr8 8153392 8154059 

21 chr8 141001417 141001762 

21 chr8 128961833 128962243 

21 chr8 129188725 129189659 

22 chr12 67040776 67041367 

22 chr12 88865439 88865738 

22 chr12 68110798 68111166 

22 chr12 104571218 104572214 

22 chr12 80427224 80427581 

22 chr12 78019180 78019476 

22 chr12 47392783 47393174 

22 chr12 67928487 67928985 

22 chr12 47353232 47353683 

22 chr12 47315105 47315834 

22 chr12 71950389 71950990 

22 chr12 91417114 91417466 

22 chr12 116966861 116967211 

22 chr12 91492679 91493114 

22 chr12 65858732 65859103 

22 chr12 77257716 77258254 

22 chr12 18853240 18853589 

22 chr12 106316343 106316796 

22 chr12 25340802 25341089 

22 chr12 105651118 105651637 

22 chr12 26522578 26522916 

22 chr12 102961042 102961282 

22 chr12 106381183 106381483 

22 chr12 66430077 66430498 

22 chr12 102933336 102933572 

22 chr12 26392242 26393260 

22 chr12 78836263 78836891 

22 chr12 65721267 65721889 

22 chr12 2378210 2378467 

22 chr12 2353225 2353611 

22 chr12 75709356 75709526 

22 chr12 103954367 103954871 

22 chr12 80377098 80377862 

22 chr12 80378010 80378437 

22 chr12 89018766 89019032 

22 chr12 88956772 88957193 

22 chr12 95720244 95720527 

22 chr12 66008969 66009276 

22 chr12 89058934 89059103 

22 chr12 64495324 64495603 

22 chr12 58881417 58881855 

22 chr12 58923581 58924292 

22 chr12 77583034 77584168 

22 chr12 102921260 102921583 

22 chr12 20131073 20131541 

22 chr12 66158809 66159172 

23 chr12 66286471 66287125 

23 chr12 66285650 66286336 

23 chr12 66284926 66285347 

23 chr12 75979145 75979454 

23 chr12 66050013 66051167 

23 chr12 86531658 86532089 

23 chr12 92955377 92955681 

23 chr12 65930503 65931457 

23 chr12 93139664 93140297 

23 chr12 63126817 63127123 
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23 chr12 65824728 65824963 

23 chr12 66089200 66089982 

23 chr12 47408269 47408623 

23 chr12 66329839 66331604 

23 chr12 14989145 14989552 

23 chr12 95512175 95512489 

23 chr12 58808160 58808497 

23 chr12 89340081 89340739 

23 chr12 80662703 80663038 

23 chr12 15815520 15815885 

23 chr12 79837967 79838230 

23 chr12 15781075 15781371 

23 chr12 15781885 15782423 

23 chr12 75840514 75840899 

23 chr12 15490049 15490481 

23 chr12 26150497 26150832 

23 chr12 71055578 71055900 

23 chr12 71039175 71040088 

23 chr12 78333363 78334239 

23 chr12 93349796 93350106 

23 chr12 27726923 27727311 

23 chr12 89845098 89845403 

23 chr12 65997673 65998085 

23 chr12 58951212 58951519 

23 chr12 26939888 26940477 

23 chr12 18615331 18615773 

23 chr12 66220552 66221018 

23 chr12 26164101 26164532 

23 chr12 101412258 101412647 

23 chr12 86020150 86020607 

23 chr12 15933242 15933881 

23 chr12 89767970 89768291 

23 chr12 12550910 12551680 

28 chr1 184807733 184808184 

28 chr1 246168304 246168825 

28 chr1 215130501 215131558 

28 chr1 240405802 240406327 

28 chr1 246755984 246756332 

28 chr1 222252370 222252775 

28 chr1 244275964 244276315 

28 chr1 232246236 232246943 

28 chr1 240562711 240563023 

28 chr1 240549400 240550041 

28 chr1 221290827 221291475 

28 chr1 168457262 168457754 

28 chr1 183681182 183681552 

28 chr1 169843429 169843742 

28 chr1 240422157 240422736 

28 chr1 244229397 244229694 

28 chr1 201665103 201665977 

28 chr1 215959040 215959335 

28 chr1 219214582 219214869 

28 chr1 203526490 203526910 

28 chr1 232613479 232613852 

28 chr1 246035118 246035596 

28 chr1 164613874 164614415 

28 chr1 245951510 245951982 

28 chr1 221441653 221441990 

28 chr1 217735707 217736261 

28 chr1 243368510 243368844 

28 chr1 170514633 170514988 

28 chr1 201735128 201735631 
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28 chr1 170278626 170279163 

28 chr1 224780872 224781242 

28 chr1 164573663 164574003 

28 chr1 168475747 168476097 

28 chr1 203527106 203527902 

28 chr1 149958310 149958832 

28 chr1 202474960 202475384 

28 chr1 229099854 229100610 

28 chr1 202548932 202549449 

28 chr1 168622712 168623147 

28 chr1 161972916 161973223 

29 chr1 167597232 167597674 

29 chr1 171407591 171407910 

29 chr1 214724825 214725519 

29 chr1 201683595 201684174 

29 chr1 218879266 218880097 

29 chr1 157989302 157989643 

29 chr1 218553764 218554262 

29 chr1 244524901 244525537 

29 chr1 157979524 157979783 

29 chr1 234767309 234767897 

29 chr1 201430254 201430632 

29 chr1 183239788 183240270 

29 chr1 183203569 183204008 

29 chr1 165868074 165868308 

29 chr1 178207776 178208362 

29 chr1 178021982 178022484 

29 chr1 177980579 177980846 

1 chr2 18595019 18595328 

1 chr2 180325308 180325601 

1 chr2 73291030 73291314 

1 chr2 20714624 20714933 

1 chr2 98950812 98951154 

1 chr2 33329066 33329365 

1 chr2 173096649 173097083 

1 chr2 216576113 216576415 

1 chr2 7198041 7198409 

1 chr2 69525395 69525778 

1 chr2 56114969 56115400 

1 chr2 98485776 98486183 

1 chr2 150982264 150983184 

1 chr2 10715997 10716376 

1 chr2 150518437 150518662 

1 chr2 56089838 56090252 

1 chr2 173647772 173648337 

1 chr2 216394998 216395286 

1 chr2 18480691 18481157 

1 chr2 239552687 239553175 

1 chr2 239553238 239553778 

1 chr2 33650740 33651195 

1 chr2 202013780 202014285 

1 chr2 106020583 106020915 

1 chr2 36665599 36666069 

1 chr2 69365641 69365943 

1 chr2 45355813 45356255 

1 chr2 223709024 223709343 

1 chr2 9319179 9319669 

1 chr2 216708278 216708609 

1 chr2 225086318 225086718 

1 chr2 224330490 224330884 

1 chr2 20001154 20001508 

1 chr2 19911185 19911634 
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1 chr2 162949264 162949999 

1 chr2 235158366 235158914 

1 chr2 114575978 114576372 

1 chr2 204549696 204550394 

1 chr2 180136813 180137649 

1 chr2 171382011 171382381 

1 chr2 62805872 62806456 

1 chr2 47082188 47083021 

1 chr2 161084843 161085558 

1 chr2 208258765 208260127 

1 chr2 46165902 46166339 

1 chr2 20348844 20349308 

1 chr2 19340465 19340896 

1 chr2 9778636 9778987 

1 chr2 225133127 225133504 

1 chr2 187755850 187756256 

1 chr2 54860418 54860786 

1 chr2 17824406 17824850 

1 chr2 33294769 33295284 

1 chr2 10423384 10423788 

1 chr2 230309617 230310043 

1 chr2 228682666 228684045 

1 chr2 9427687 9428218 

1 chr2 192030694 192031158 

1 chr2 163100948 163101429 

1 chr2 228727418 228727650 

1 chr2 9450450 9450875 

1 chr2 47077904 47078237 

1 chr2 69273280 69273754 

1 chr2 36788598 36788962 

1 chr2 235160498 235160976 

1 chr2 36683586 36684030 

1 chr2 236239698 236239988 

1 chr2 39721844 39722340 

1 chr2 25039885 25040164 

1 chr2 36599176 36599514 

1 chr2 225965612 225966076 

1 chr2 234395659 234396089 

1 chr2 191624424 191624889 

1 chr2 173860476 173860890 

1 chr2 47182018 47182504 

1 chr2 233853179 233853457 

0 chr2 119496057 119496468 

0 chr2 54893814 54894475 

0 chr2 216393241 216393619 

0 chr2 101383304 101384162 

0 chr2 216396105 216396327 

0 chr2 159992450 159992870 

0 chr2 159991824 159992319 

0 chr2 216565607 216566010 

0 chr2 216558058 216558674 

0 chr2 202519818 202520176 

0 chr2 55390350 55390661 

0 chr2 207986522 207986910 

0 chr2 201642772 201643038 

0 chr2 192722164 192722525 

0 chr2 45543054 45543382 

0 chr2 190212131 190212651 

0 chr2 190075476 190075817 

0 chr2 159793466 159793905 

0 chr2 181388664 181389057 

0 chr2 203182092 203182561 



174 
 

0 chr2 141778701 141779040 

0 chr2 102051839 102052268 

0 chr2 114518018 114518332 

0 chr2 216405355 216405743 

0 chr2 192743367 192743643 

0 chr2 216529526 216529916 

0 chr2 36713703 36714277 

0 chr2 36677985 36678424 

0 chr2 191700068 191700290 

0 chr2 161785243 161785723 

0 chr2 178261307 178261874 

0 chr2 159887086 159887889 

0 chr2 36598133 36598766 

0 chr2 33516376 33516781 

0 chr2 109788336 109788837 

0 chr2 114519999 114520267 

0 chr2 191656338 191656606 

0 chr2 106005498 106005850 

0 chr2 109901311 109901644 

3 chr2 121692321 121692720 

3 chr2 43861656 43862320 

3 chr2 162941597 162942114 

3 chr2 217447885 217448207 

3 chr2 101358773 101359734 

3 chr2 33378165 33378458 

3 chr2 45405113 45405393 

3 chr2 202662838 202663503 

3 chr2 147739837 147740320 

3 chr2 19238349 19238857 

3 chr2 19455857 19456426 

3 chr2 227354523 227354848 

3 chr2 227292236 227292629 

3 chr2 147784136 147784573 

3 chr2 38241888 38242156 

3 chr2 67516874 67517865 

3 chr2 221089869 221090264 

3 chr2 19237763 19238307 

3 chr2 181486687 181487133 

3 chr2 38373282 38374826 

3 chr2 19106690 19106907 

3 chr2 45346982 45347361 

3 chr2 191702039 191702513 

3 chr2 33523188 33523586 

3 chr2 19807579 19808286 

3 chr2 162847107 162847619 

3 chr2 203000056 203000605 

3 chr2 37699078 37699477 

3 chr2 121487329 121487607 

3 chr2 189064365 189064677 

3 chr2 187321741 187322098 

3 chr2 28453880 28454328 

3 chr2 19376661 19377044 

3 chr2 208929209 208929569 

3 chr2 19738011 19738767 

3 chr2 235150656 235151107 

3 chr2 163089803 163090131 

3 chr2 221144444 221145007 

3 chr2 227050272 227051041 

3 chr2 12461104 12461800 

3 chr2 67487766 67488446 

3 chr2 40630539 40631015 

3 chr2 190399471 190399962 
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3 chr2 227291142 227291494 

3 chr2 221143950 221144336 

3 chr2 234397003 234397361 

3 chr2 36565861 36566178 

3 chr2 238208502 238208925 

2 chr2 189488958 189489403 

2 chr2 189879376 189879984 

2 chr2 198774035 198774458 

2 chr2 220941495 220941931 

2 chr2 180904765 180905596 

2 chr2 232878378 232879085 

2 chr2 189844603 189845120 

2 chr2 223958194 223958584 

2 chr2 33370486 33370889 

2 chr2 196763183 196763625 

2 chr2 180881105 180881481 

2 chr2 19157453 19158237 

2 chr2 149950765 149951116 

2 chr2 158089996 158090417 

2 chr2 216518856 216519209 

2 chr2 39643287 39643665 

2 chr2 216763948 216764194 

2 chr2 55087435 55087758 

2 chr2 72642527 72642876 

2 chr2 226943942 226944944 

2 chr2 161725809 161726291 

2 chr2 161693224 161693716 

2 chr2 39608041 39608359 

2 chr2 152213825 152214309 

2 chr2 162962606 162962890 

2 chr2 146997137 146997550 

2 chr2 216592453 216592900 

2 chr2 189718052 189718438 

2 chr2 189833978 189834379 

2 chr2 189673603 189674061 

2 chr2 159927985 159928349 

2 chr2 45639755 45640302 

2 chr2 227658201 227658644 

2 chr2 192575078 192575459 

2 chr2 139466070 139466611 

2 chr2 139464924 139465729 

2 chr2 216266564 216267190 

2 chr2 190133028 190133282 

2 chr2 238144417 238144717 

2 chr2 163113103 163113571 

2 chr2 238131848 238132270 

2 chr2 238130767 238131048 

2 chr2 238117000 238117805 

2 chr2 72505184 72505643 

2 chr2 191723625 191723935 

2 chr2 227565897 227566389 

2 chr2 19015512 19016031 

2 chr2 151466318 151466698 

5 chr3 134082770 134083454 

5 chr3 160881073 160881379 

5 chr3 130682817 130683083 

5 chr3 189782006 189782236 

5 chr3 189949552 189950022 

5 chr3 149104437 149105244 

5 chr3 134046478 134046792 

5 chr3 37986847 37987828 

5 chr3 189729977 189730363 
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5 chr3 160984754 160985035 

5 chr3 193523236 193523619 

5 chr3 64671378 64671863 

4 chr3 55223453 55223758 

4 chr3 18140251 18140851 

4 chr3 64250068 64250431 

4 chr3 55201662 55202080 

4 chr3 79216714 79217079 

4 chr3 79346344 79346908 

4 chr3 147892960 147893327 

4 chr3 20663677 20664209 

4 chr3 12478109 12478406 

4 chr3 16482889 16483450 

4 chr3 115553025 115553243 

4 chr3 61912787 61913538 

4 chr3 155108878 155109264 

4 chr3 155109279 155109809 

4 chr3 22286578 22286906 

4 chr3 123535453 123535836 

4 chr3 61941927 61942463 

4 chr3 55203447 55204258 

4 chr3 60565471 60565820 

4 chr3 55525256 55525817 

4 chr3 24237962 24238365 

4 chr3 73649159 73650055 

4 chr3 45126696 45127118 

4 chr3 61616138 61616499 

4 chr3 146831031 146831400 

4 chr3 73651264 73651748 

4 chr3 112530341 112530761 

4 chr3 61623369 61623735 

4 chr3 114225752 114226210 

4 chr3 146685914 146686514 

4 chr3 8597329 8597802 

4 chr3 37115860 37116096 

4 chr3 64329171 64330026 

4 chr3 61770012 61770384 

4 chr3 64331053 64331446 

4 chr3 104078987 104079208 

4 chr3 64429410 64429849 

4 chr3 115719053 115719546 

4 chr3 12264171 12264572 

4 chr3 16024069 16024687 

4 chr3 105231879 105232171 

4 chr3 54988015 54988421 

4 chr3 36705444 36705740 

4 chr3 16165994 16166629 

4 chr3 62095304 62095722 

4 chr3 54904429 54904790 

4 chr3 112967942 112968421 

4 chr3 21880993 21881420 

4 chr3 105192366 105192647 

4 chr3 21662869 21663110 

4 chr3 63710599 63710992 

4 chr3 55195925 55196496 

4 chr3 27208439 27208728 

4 chr3 64447908 64448283 

4 chr3 24296184 24296529 

4 chr3 136069011 136069295 

4 chr3 73776644 73776942 

4 chr3 25891222 25891547 

4 chr3 59545390 59545863 



177 
 

4 chr3 55034584 55034889 

4 chr3 147724297 147724674 

4 chr3 21488311 21489402 

4 chr3 16781309 16781664 

4 chr3 114482956 114483380 

4 chr3 25078474 25078951 

4 chr3 43736991 43737299 

4 chr3 9256194 9256560 

4 chr3 8531719 8532330 

4 chr3 73815609 73816031 

4 chr3 154497365 154497717 

4 chr3 37240578 37240856 

7 chr3 191130547 191130894 

7 chr3 123407050 123407563 

7 chr3 123377012 123377243 

7 chr3 143021455 143022064 

7 chr3 127453514 127453956 

7 chr3 171024458 171024843 

7 chr3 106446995 106447637 

7 chr3 23727075 23727750 

7 chr3 123967276 123967833 

7 chr3 105077852 105078377 

7 chr3 194931007 194931341 

7 chr3 58614720 58615178 

7 chr3 110133758 110134032 

7 chr3 187990156 187991092 

7 chr3 14493567 14494020 

7 chr3 14513908 14514277 

7 chr3 134092385 134092837 

7 chr3 177650707 177651075 

7 chr3 187980630 187981349 

7 chr3 98827317 98827898 

7 chr3 18799577 18799965 

7 chr3 171591969 171592827 

7 chr3 126191107 126191475 

7 chr3 129370444 129370971 

7 chr3 15676654 15677266 

7 chr3 158443047 158443815 

7 chr3 114958456 114959003 

7 chr3 158420899 158421250 

7 chr3 114271163 114271573 

7 chr3 11494930 11495323 

7 chr3 99759204 99759601 

7 chr3 114343520 114344064 

7 chr3 149057687 149058506 

7 chr3 149864850 149865167 

7 chr3 150166893 150167547 

7 chr3 170715581 170716201 

7 chr3 129107670 129108047 

7 chr3 129213860 129214224 

7 chr3 123469501 123470000 

7 chr3 70898991 70899349 

7 chr3 11550538 11550973 

7 chr3 11609901 11610389 

7 chr3 106787760 106788097 

7 chr3 70881958 70882356 

7 chr3 176843783 176844128 

7 chr3 99764389 99764866 

7 chr3 99760107 99760653 

7 chr3 123976812 123977246 

7 chr3 126645479 126645906 

7 chr3 187785770 187786123 
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7 chr3 159493264 159493688 

7 chr3 11590216 11590511 

7 chr3 61834576 61835034 

7 chr3 124277824 124278543 

7 chr3 16101607 16102350 

7 chr3 194085390 194086103 

7 chr3 11555704 11556365 

7 chr3 170520160 170520844 

6 chr3 23710054 23710376 

6 chr3 111593237 111593569 

6 chr3 58147395 58147867 

6 chr3 57015347 57015902 

6 chr3 56960519 56960990 

6 chr3 111458004 111458500 

6 chr3 30327268 30327885 

6 chr3 159590143 159590553 

6 chr3 45677084 45677605 

6 chr3 16181918 16182279 

6 chr3 111583891 111584491 

6 chr3 110245599 110245949 

6 chr3 67660933 67661161 

6 chr3 71586115 71586865 

6 chr3 29800952 29801280 

6 chr3 71160995 71161223 

6 chr3 31316434 31317108 

6 chr3 158486113 158486437 

6 chr3 101645435 101645866 

6 chr3 29373475 29373868 

6 chr3 45175223 45175678 

6 chr3 43911561 43911936 

6 chr3 53271995 53272502 

6 chr3 141086041 141086572 

6 chr3 12791663 12791929 

6 chr3 188003721 188004325 

6 chr3 40546104 40546433 

6 chr3 5036531 5036998 

6 chr3 189721468 189721817 

6 chr3 29281727 29282124 

6 chr3 39680698 39681187 

6 chr3 183088656 183088936 

6 chr3 43795243 43795544 

6 chr3 170444372 170444794 

9 chr6 106043764 106044079 

9 chr6 106044106 106044681 

9 chr6 122021300 122021563 

9 chr6 136990364 136990732 

9 chr6 136931295 136931838 

9 chr6 80310589 80310940 

9 chr6 148588929 148589313 

9 chr6 47002714 47003088 

9 chr6 128828500 128829393 

9 chr6 2688667 2688943 

9 chr6 25193851 25194164 

9 chr6 25192704 25193798 

9 chr6 82732280 82732641 

9 chr6 105876319 105876953 

9 chr6 81317471 81318131 

9 chr6 2630565 2630983 

9 chr6 116879025 116879366 

8 chr6 140382946 140383514 

8 chr6 140383567 140383963 

8 chr6 139908617 139909024 
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8 chr6 132511976 132512330 

8 chr6 126860255 126860514 

8 chr6 140399645 140400290 

8 chr6 45618210 45618787 

8 chr6 132509950 132510406 

8 chr6 131174544 131175102 

8 chr6 113697361 113698108 

8 chr6 54482514 54483010 

8 chr6 45558426 45558843 

8 chr6 163950612 163951061 

8 chr6 9482208 9482683 

8 chr6 102254044 102254481 

8 chr6 132384781 132385326 

8 chr6 55955840 55956306 

8 chr6 148829497 148829937 

8 chr6 148822215 148822630 

8 chr6 118872907 118873208 

8 chr6 52405344 52405651 

8 chr6 132303871 132304401 

8 chr6 126304658 126305083 

8 chr6 132474335 132474703 

8 chr6 9523718 9524040 

8 chr6 56393136 56393577 

8 chr6 142737328 142737646 

8 chr6 113706146 113706578 

8 chr6 148593224 148593518 

13 chr5 38783213 38783747 

13 chr5 38845714 38846305 

13 chr5 73611781 73612442 

13 chr5 14185691 14186032 

13 chr5 150017103 150017485 

13 chr5 72661048 72661662 

13 chr5 72592583 72592906 

13 chr5 172330830 172331139 

13 chr5 148608543 148608851 

13 chr5 148865207 148866182 

13 chr5 148941370 148941763 

13 chr5 149318549 149318863 

13 chr5 15500068 15500299 

13 chr5 148825380 148825867 

13 chr5 148352627 148352891 

13 chr5 68816869 68817255 

13 chr5 149896781 149897547 

13 chr5 173191368 173191852 

13 chr5 148442664 148443001 

13 chr5 172882348 172882665 

12 chr5 52658217 52658850 

12 chr5 92608881 92609399 

12 chr5 92839370 92839754 

12 chr5 124429305 124429858 

12 chr5 157841800 157842025 

12 chr5 124470320 124470737 

12 chr5 92498696 92499187 

12 chr5 109201217 109202139 

12 chr5 89226586 89226988 

12 chr5 102786093 102786518 

12 chr5 148515082 148515485 

12 chr5 13985829 13986180 

12 chr5 72666346 72666861 

12 chr5 89226278 89226566 

12 chr5 72666876 72667513 

12 chr5 97803845 97804186 
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12 chr5 169122788 169123619 

12 chr5 169053807 169054104 

12 chr5 57137911 57138214 

12 chr5 131599387 131600157 

12 chr5 169133809 169134138 

12 chr5 14038441 14038859 

12 chr5 140900640 140901272 

12 chr5 159510143 159510484 

12 chr5 71683906 71684149 

12 chr5 89316973 89317361 

12 chr5 34608803 34609806 

12 chr5 60870936 60871282 

12 chr5 56737228 56737831 

12 chr5 121464967 121465422 

12 chr5 108791196 108791947 

12 chr5 39501508 39501888 

12 chr5 33807134 33807433 

12 chr5 33343840 33344069 

12 chr5 52674486 52674788 

12 chr5 58375731 58376106 

12 chr5 33321062 33321600 

12 chr5 38601930 38602341 

12 chr5 144875329 144875633 

12 chr5 144858831 144859119 

12 chr5 139365299 139365675 

12 chr5 129885494 129886013 

12 chr5 60347088 60347399 

12 chr5 141825733 141826078 

12 chr5 124822155 124822607 

12 chr5 159276598 159276873 

12 chr5 53358833 53359174 

12 chr5 38468366 38468658 

12 chr5 34587710 34588272 

12 chr5 75996980 75997534 

12 chr5 157809492 157809891 

12 chr5 123043737 123044247 

12 chr5 102294785 102295134 

12 chr5 74936075 74936602 

11 chr5 158419401 158419625 

11 chr5 156814563 156814994 

11 chr5 111083832 111084327 

11 chr5 125338065 125338581 

11 chr5 57031531 57032020 

11 chr5 149849215 149849549 

11 chr5 156815020 156815584 

11 chr5 125338620 125338939 

11 chr5 123120483 123121200 

11 chr5 135329431 135330641 

11 chr5 158444886 158445233 

11 chr5 57111930 57112418 

11 chr5 146933767 146934228 

11 chr5 146915087 146915665 

11 chr5 157811849 157812517 

11 chr5 17000380 17000745 

11 chr5 156990345 156990742 

10 chr6 151766622 151766953 

10 chr6 54200611 54201066 

10 chr6 134742007 134742381 

10 chr6 53848908 53849406 

10 chr6 54155915 54156210 

10 chr6 8083578 8084088 

10 chr6 113672319 113672827 
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10 chr6 144736158 144736504 

10 chr6 132511175 132511542 

10 chr6 86161573 86162069 

10 chr6 161678789 161679155 

10 chr6 150176091 150176821 

10 chr6 147384586 147385220 

10 chr6 56614405 56614609 

10 chr6 82723662 82723971 

10 chr6 4358754 4359331 

10 chr6 12490904 12491644 

10 chr6 82853609 82854996 

10 chr6 54546852 54547075 

10 chr6 112537872 112538805 

10 chr6 132405957 132406263 

10 chr6 121803218 121803508 

10 chr6 76463734 76463970 

10 chr6 8108455 8108948 

10 chr6 121844061 121844472 

10 chr6 154830010 154830424 

10 chr6 72188476 72188833 

10 chr6 140887816 140888358 

10 chr6 79316912 79317319 

10 chr6 90021701 90022097 

10 chr6 112525064 112525607 

10 chr6 112526617 112527067 

10 chr6 112527176 112527571 

10 chr6 71791997 71792219 

10 chr6 52794042 52794481 

10 chr6 154800572 154800939 

10 chr6 86173814 86174957 

10 chr6 86070764 86071344 

10 chr6 110114959 110115330 

10 chr6 145000166 145000480 

10 chr6 142618990 142619709 

10 chr6 151381018 151381768 

10 chr6 121759273 121759815 

10 chr6 56235236 56236240 

10 chr6 11650404 11650923 

10 chr6 151390016 151390415 

10 chr6 151388735 151389923 

10 chr6 151384388 151384860 

10 chr6 100748276 100748697 

10 chr6 56715915 56716241 

10 chr6 56728195 56728558 

10 chr6 56234833 56235196 

10 chr6 54058890 54059288 

10 chr6 56579624 56580240 

10 chr6 113735715 113736041 

10 chr6 82575371 82575725 

10 chr6 4607401 4608042 

10 chr6 4600135 4600552 

10 chr6 149884689 149885013 

10 chr6 1821918 1822477 

10 chr6 81167003 81167503 

10 chr6 153488069 153488794 

10 chr6 113880116 113880549 

10 chr6 17865437 17865792 

10 chr6 57130440 57130880 

10 chr6 17865951 17866326 

10 chr6 148685192 148685491 

10 chr6 132301303 132301596 

10 chr6 148735969 148736379 
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10 chr6 3797696 3798414 

10 chr6 110111313 110111595 

10 chr6 132272187 132272914 

10 chr6 117819292 117819788 

10 chr6 153413686 153414180 

10 chr6 85333637 85333981 

10 chr6 113123361 113123740 

10 chr6 143718339 143719152 

10 chr6 113882108 113882468 

39 chr20 4206396 4206782 

39 chr20 36796352 36796806 

39 chr20 19973624 19974353 

39 chr20 45887592 45888066 

39 chr20 45944280 45944803 

39 chr20 10903545 10904041 

39 chr20 19766991 19767281 

39 chr20 11098470 11098810 

39 chr20 30300251 30301082 

39 chr20 19716130 19716477 

39 chr20 11247824 11248466 

39 chr20 10579322 10579940 

39 chr20 10585040 10585667 

39 chr20 4493571 4493848 

39 chr20 4487952 4488370 

39 chr20 19955119 19955624 

39 chr20 11435635 11435910 

39 chr20 1789803 1790118 

39 chr20 1793703 1794062 

39 chr20 10844325 10844597 

39 chr20 1810949 1811314 

39 chr20 46196652 46197032 

39 chr20 10829707 10830085 

38 chr16 19201820 19202177 

38 chr16 75278704 75279718 

38 chr16 84565631 84566341 

38 chr16 11295373 11296122 

38 chr16 24681874 24682557 

38 chr16 14493141 14493846 

15 chr4 125099064 125099477 

15 chr4 13922525 13922971 

15 chr4 79567515 79567914 

15 chr4 86932350 86932699 

15 chr4 13908906 13909414 

15 chr4 125861549 125861945 

15 chr4 74982759 74983075 

15 chr4 177714977 177715664 

15 chr4 107504614 107505097 

15 chr4 125825344 125825618 

15 chr4 75133977 75134359 

15 chr4 177909377 177909786 

15 chr4 169445155 169445412 

15 chr4 126310900 126311276 

14 chr5 124678829 124679253 

14 chr5 77973477 77974155 

14 chr5 77189205 77189883 

14 chr5 110918881 110920064 

14 chr5 143267794 143268329 

14 chr5 53625696 53626238 

14 chr5 58429846 58430044 

14 chr5 35047012 35047267 

14 chr5 120114205 120114616 

14 chr5 31364795 31365782 
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14 chr5 130639285 130639586 

14 chr5 123679081 123679592 

14 chr5 123789358 123789792 

14 chr5 159354947 159355523 

14 chr5 111290521 111290817 

14 chr5 78102240 78102874 

14 chr5 80718525 80718868 

14 chr5 107148225 107148662 

14 chr5 98098902 98099360 

14 chr5 36502526 36503136 

14 chr5 121501227 121501598 

14 chr5 126706829 126707341 

14 chr5 121485846 121486289 

14 chr5 135352539 135353374 

14 chr5 134726845 134727206 

14 chr5 39400725 39401260 

14 chr5 119790095 119790407 

14 chr5 72606986 72607712 

14 chr5 52721519 52721781 

14 chr5 81628787 81629106 

14 chr5 143300997 143301406 

14 chr5 159310666 159310946 

14 chr5 33310709 33310954 

14 chr5 52541812 52542281 

14 chr5 9456509 9456844 

14 chr5 135393207 135394733 

14 chr5 52630465 52630826 

14 chr5 97967317 97967833 

14 chr5 9440532 9440840 

14 chr5 77974166 77974508 

14 chr5 125807794 125808300 

14 chr5 82771293 82772258 

14 chr5 31361982 31362508 

14 chr5 123529011 123529514 

14 chr5 168078723 168078992 

14 chr5 125720652 125721047 

14 chr5 114750058 114750507 

14 chr5 114734404 114734790 

14 chr5 36402773 36403840 

14 chr5 158878204 158878641 

14 chr5 76111968 76112244 

14 chr5 111265506 111266029 

14 chr5 111266324 111267226 

14 chr5 153656403 153656841 

14 chr5 149416041 149416474 

14 chr5 120534892 120535215 

14 chr5 97793691 97794066 

14 chr5 168588074 168588752 

14 chr5 9055236 9055521 

14 chr5 37771685 37772161 

14 chr5 9350345 9350799 

14 chr5 9468016 9468584 

14 chr5 109814609 109814929 

14 chr5 167170770 167171040 

14 chr5 77929597 77929897 

14 chr5 156942816 156943503 

14 chr5 108665411 108665864 

14 chr5 82617380 82617796 

14 chr5 167851575 167852033 

14 chr5 71520634 71521243 

14 chr5 130958328 130958602 

14 chr5 81709542 81710223 
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14 chr5 111333100 111333929 

14 chr5 111334551 111334986 

14 chr5 153280690 153280881 

14 chr5 115790056 115790693 

14 chr5 111312380 111312882 

14 chr5 72670243 72671018 

14 chr5 72669543 72670139 

14 chr5 72672476 72672806 

14 chr5 32811051 32811343 

14 chr5 32790611 32791133 

14 chr5 146548844 146549568 

14 chr5 119640392 119640788 

14 chr5 102014042 102014346 

14 chr5 119629480 119629810 

14 chr5 122493333 122493787 

14 chr5 122492507 122493009 

14 chr5 168777656 168778296 

17 chr4 48604273 48604595 

17 chr4 151052160 151052429 

17 chr4 169559122 169559321 

17 chr4 147363987 147364297 

17 chr4 127837745 127838295 

17 chr4 174365361 174365693 

17 chr4 28773670 28773964 

17 chr4 177468249 177468460 

17 chr4 101906086 101906404 

17 chr4 24107416 24107672 

17 chr4 182889523 182889758 

17 chr4 26328382 26328739 

17 chr4 54721507 54722428 

17 chr4 54728321 54728768 

17 chr4 15453263 15454026 

17 chr4 38121289 38121678 

17 chr4 38950039 38950509 

17 chr4 169472384 169472757 

17 chr4 125829114 125829370 

17 chr4 153511455 153511896 

17 chr4 87260181 87260490 

17 chr4 47553662 47553960 

17 chr4 177191713 177192277 

17 chr4 138231792 138232059 

17 chr4 138228945 138229304 

17 chr4 87013799 87014163 

17 chr4 173772000 173772363 

17 chr4 33838657 33839007 

17 chr4 156525829 156526267 

17 chr4 177688249 177688571 

17 chr4 157898510 157898939 

17 chr4 54345253 54345556 

17 chr4 169785893 169786387 

17 chr4 54629896 54630386 

17 chr4 177761268 177761692 

17 chr4 54554260 54554920 

17 chr4 169059265 169059681 

17 chr4 138882249 138882623 

17 chr4 182582247 182582510 

17 chr4 15236338 15236795 

17 chr4 53719592 53719874 

17 chr4 183110582 183111070 

17 chr4 94315599 94315918 

17 chr4 169505673 169505940 

17 chr4 157607192 157607671 
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17 chr4 38152366 38152740 

17 chr4 138077171 138077523 

17 chr4 178040140 178040498 

17 chr4 78500985 78501237 

17 chr4 28289336 28289887 

17 chr4 138445950 138446558 

17 chr4 170304827 170305255 

17 chr4 158972523 158972822 

17 chr4 66378562 66378961 

17 chr4 13981916 13982371 

17 chr4 129490720 129491026 

17 chr4 157243757 157244115 

17 chr4 138676076 138676336 

16 chr4 111462101 111462300 

16 chr4 111462338 111462720 

16 chr4 107286687 107287163 

16 chr4 27007168 27007421 

16 chr4 107462388 107462640 

16 chr4 169525671 169526123 

16 chr4 54600621 54601082 

16 chr4 169724914 169725399 

16 chr4 123704268 123704905 

16 chr4 77905860 77906462 

16 chr4 53967015 53967259 

16 chr4 17143889 17144364 

16 chr4 107508694 107509052 

16 chr4 109513305 109513580 

16 chr4 126242997 126243429 

16 chr4 126243562 126243830 

16 chr4 154434717 154435122 

16 chr4 154435266 154435688 

16 chr4 170175108 170175415 

16 chr4 16628560 16628926 

16 chr4 124620894 124621238 

16 chr4 114388741 114389084 

16 chr4 186713826 186714266 

16 chr4 158941888 158942306 

16 chr4 158941178 158941824 

16 chr4 126354530 126354855 

16 chr4 114357040 114357415 

16 chr4 114365515 114365912 

16 chr4 126289710 126290140 

16 chr4 115008698 115008984 

16 chr4 114304242 114304684 

16 chr4 186760237 186760908 

16 chr4 126289320 126289667 

16 chr4 126656309 126656606 

19 chr7 46851069 46851476 

19 chr7 46949119 46949765 

19 chr7 20263040 20263364 

19 chr7 151006544 151006786 

19 chr7 93977149 93977811 

19 chr7 80412872 80413246 

19 chr7 18801819 18802148 

19 chr7 40611312 40611911 

19 chr7 43575428 43575819 

19 chr7 13985191 13986047 

19 chr7 18818135 18818733 

19 chr7 41960893 41961344 

19 chr7 34135725 34136247 

19 chr7 33893746 33894145 

19 chr7 33914540 33914872 
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19 chr7 41068600 41069132 

19 chr7 41136444 41136814 

19 chr7 132422972 132423463 

19 chr7 132424188 132424709 

19 chr7 13914436 13914791 

19 chr7 43824941 43825386 

19 chr7 18793478 18794173 

19 chr7 93926656 93927133 

19 chr7 80456116 80456550 

19 chr7 46948306 46948801 

19 chr7 73406375 73406711 

19 chr7 30264259 30264616 

18 chr7 116141463 116141789 

18 chr7 43609017 43609255 

18 chr7 115911951 115912412 

18 chr7 17639852 17640308 

18 chr7 115994860 115995583 

18 chr7 116083029 116083506 

18 chr7 32627155 32627612 

18 chr7 112124718 112125163 

18 chr7 123273572 123274007 

18 chr7 22600868 22601307 

18 chr7 16168936 16169418 

18 chr7 7900793 7901167 

18 chr7 16779805 16780151 

18 chr7 129995915 129996582 

18 chr7 22626501 22626705 

18 chr7 98048148 98048781 

18 chr7 55200296 55200959 

18 chr7 30843999 30844374 

18 chr7 47644314 47644980 

18 chr7 116346693 116346954 

18 chr7 99684608 99685074 

18 chr7 116356686 116357127 

18 chr7 73693828 73694341 

18 chr7 55132673 55133174 

18 chr7 55133225 55133859 

18 chr7 7478571 7478935 

18 chr7 47492944 47493402 

18 chr7 7532048 7532504 

18 chr7 23374088 23374733 

18 chr7 30315721 30316314 

18 chr7 130576201 130576633 

18 chr7 43733526 43733868 

18 chr7 130571896 130572452 

31 chr11 95846461 95846821 

31 chr11 33394047 33394408 

31 chr11 86976309 86976496 

31 chr11 12221857 12222269 

31 chr11 12204078 12205174 

31 chr11 86448756 86449194 

31 chr11 101981981 101983096 

31 chr11 86171012 86171324 

31 chr11 44787687 44788177 

31 chr11 12714123 12714654 

31 chr11 95895912 95896350 

31 chr11 19617850 19618362 

31 chr11 12222368 12223160 

31 chr11 11994944 11995289 

31 chr11 122059893 122060397 

31 chr11 29328105 29328378 

31 chr11 11998717 11999215 
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31 chr11 19617432 19617799 

31 chr11 122080630 122081001 

31 chr11 121955982 121956411 

31 chr11 27739857 27740298 

31 chr11 12011593 12012104 

31 chr11 73045519 73046053 

31 chr11 36094975 36095380 

31 chr11 130347930 130348478 

31 chr11 130767139 130767514 

31 chr11 73032675 73033295 

31 chr11 73034508 73034858 

31 chr11 69311905 69312450 

31 chr11 114166847 114167324 

31 chr11 114165456 114166206 

31 chr11 114178156 114178616 

31 chr11 86451615 86451977 

31 chr11 130392077 130392522 

31 chr11 12000673 12001706 

31 chr11 96044212 96044803 

31 chr11 36033928 36034318 

31 chr11 86235008 86236037 

31 chr11 44008900 44009525 

31 chr11 28855190 28855603 

31 chr11 122051032 122051659 

31 chr11 122067571 122068243 

31 chr11 102866942 102867334 

31 chr11 27955628 27956183 

31 chr11 122007612 122008127 

31 chr11 19736501 19737395 

30 chr11 101737308 101737744 

30 chr11 77056649 77056981 

30 chr11 128287481 128287924 

30 chr11 86719052 86719270 

30 chr11 128351072 128351376 

30 chr11 129119352 129119573 

30 chr11 26864051 26864435 

30 chr11 123045318 123045844 

30 chr11 123043970 123044580 

30 chr11 35551403 35552148 

30 chr11 102473661 102474196 

30 chr11 102107767 102108035 

30 chr11 111428230 111428970 

30 chr11 12527976 12528344 

30 chr11 35310727 35311029 

30 chr11 111506400 111506832 

30 chr11 122214912 122215367 

30 chr11 119438909 119439360 

30 chr11 12455227 12455589 

30 chr11 121807782 121808120 

30 chr11 122011258 122011755 

30 chr11 121806846 121807403 

30 chr11 26842274 26842614 

30 chr11 12419489 12420023 

30 chr11 130668133 130668524 

30 chr11 106911891 106912141 

37 chr18 56246822 56247346 

37 chr18 42596440 42596988 

37 chr18 56248444 56248844 

37 chr18 41242656 41242979 

37 chr18 18697326 18697624 

37 chr18 42406392 42406854 

37 chr18 74157211 74157510 
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37 chr18 65450694 65451156 

37 chr18 68086788 68087133 

37 chr18 39518397 39518786 

37 chr18 42181451 42181778 

37 chr18 42182282 42182661 

37 chr18 67713465 67713877 

37 chr18 65092834 65093423 

37 chr18 42630823 42631279 

37 chr18 42835364 42835789 

36 chr14 62031332 62031701 

36 chr14 57849129 57849381 

36 chr14 59204993 59205218 

36 chr14 100223815 100224196 

36 chr14 29705959 29706504 

36 chr14 55263777 55263984 

36 chr14 58549227 58549531 

36 chr14 69161905 69162434 

36 chr14 85881611 85882041 

36 chr14 106465433 106465944 

36 chr14 62087241 62087688 

36 chr14 69010524 69011121 

36 chr14 85996280 85996574 

36 chr14 55981467 55981868 

36 chr14 50441894 50442306 

36 chr14 85982552 85983453 

35 chr15 67417701 67418424 

35 chr15 99440009 99440597 

35 chr15 71385714 71385930 

35 chr15 44394798 44395482 

35 chr15 74532210 74532799 

35 chr15 71587230 71588219 

35 chr15 71149065 71149546 

35 chr15 99270795 99271215 

35 chr15 44205452 44205874 

35 chr15 62405020 62405471 

35 chr15 63189088 63189673 

35 chr15 33571057 33571370 

35 chr15 91229682 91230150 

35 chr15 63311600 63311901 

35 chr15 71588239 71588621 

35 chr15 33116922 33117288 

35 chr15 71570995 71571844 

35 chr15 67175624 67176199 

35 chr15 67224339 67224833 

34 chr13 47789875 47790272 

34 chr13 94725224 94725634 

34 chr13 48235237 48235604 

34 chr13 91137773 91138094 

34 chr13 48247161 48247505 

34 chr13 48246694 48247083 

34 chr13 44892386 44892651 

34 chr13 31293051 31294030 

34 chr13 49349917 49350395 

34 chr13 49349276 49349892 

34 chr13 32324045 32324468 

34 chr13 30096118 30096458 

34 chr13 47613279 47613589 

34 chr13 48432662 48432915 

34 chr13 51163225 51164403 

34 chr13 51149153 51149616 

34 chr13 94764513 94764818 

34 chr13 45629484 45630309 
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34 chr13 76207429 76207828 

34 chr13 110527262 110527756 

34 chr13 75346086 75346376 

34 chr13 75335841 75336220 

34 chr13 31424886 31425388 

34 chr13 74825029 74825371 

33 chr9 81835994 81836356 

33 chr9 81839492 81839995 

33 chr9 118135643 118136139 

33 chr9 84946838 84947428 

33 chr9 118377922 118378475 

33 chr9 84635960 84636483 

33 chr9 118434879 118435798 

33 chr9 118863810 118864191 

33 chr9 104344814 104345127 

33 chr9 118789820 118790076 

33 chr9 117878243 117878577 

33 chr9 117821225 117821521 

33 chr9 89808686 89809707 

33 chr9 117797104 117797393 

33 chr9 106838599 106839018 

33 chr9 84521551 84521858 

33 chr9 112533385 112533772 

33 chr9 112555404 112555917 

33 chr9 110470169 110470620 

33 chr9 110469352 110470130 

33 chr9 113531939 113532277 

33 chr9 112578611 112579270 

33 chr9 89598180 89598441 

33 chr9 89598470 89599243 

33 chr9 89816299 89816543 

33 chr9 118131821 118132311 

33 chr9 110014075 110014646 

33 chr9 117996344 117996744 

33 chr9 118012928 118013371 

33 chr9 84738973 84739295 

33 chr9 119311609 119312025 

33 chr9 113205732 113206072 

33 chr9 118760205 118760508 

33 chr9 95324928 95325333 

33 chr9 118453912 118454328 

33 chr9 118452931 118453876 

33 chr9 85104816 85105172 

33 chr9 118701260 118702131 

33 chr9 106838031 106838415 

33 chr9 119038260 119038519 

33 chr9 89409224 89409685 

33 chr9 117974113 117974471 

33 chr9 113412596 113412983 

33 chr9 111149238 111149679 

33 chr9 118293704 118294100 

33 chr9 118367326 118367905 

33 chr9 112562080 112562349 

33 chr9 111313567 111314014 

33 chr9 117908872 117909262 

32 chr9 133837918 133838360 

32 chr9 116382700 116383161 

32 chr9 114812784 114813267 

32 chr9 114714880 114715226 

32 chr9 133712495 133712974 

32 chr9 116383756 116384099 
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Appendix 4: Facilitated Diffusion Model 



Biophysical model of simulations of the crowd-

sourcing effect

We used simulations of the transcription factor (TF) target finding process
to evaluate the hypothesis that the crowdsourcing effect has a measurable
impact on TF occupancy. This is largely uncharacterized territory, so we
derive biologically plausible biophysical parameters, given the scarce experi-
mental data. We implemented an extension of fastGRiP [Ezer et al., 2014],
which allows for compute-efficient simulation of the facilitated diffusion pro-
cess, with an additional translocation mode in which TFs can jump between
DNA strands. In the original fastGRiP implementation, there is an interval
surrounding each binding site along the DNA called the sliding window (as
in: allowing for sliding), and any TF that binds to the DNA within this range
will almost certainly reach the binding site by 1D diffusion. In the improved
simulation, we introduced an absorbing sphere around each binding site, and
if a TF enters this sphere it will almost certainly reach the binding site (See
Figure 1AI). The equation that describes the probability of a TF distance
r away reaching the absorbing sphere at time t has been previously derived
[Carslaw and Jaeger, 1959] [Paramanathan et al., 2014]. In this equation, s
is the radius of the absorbing sphere, and Deff is the effective diffusion rate.

φ(r, t) =
s(r − s)

2r
√
πDeff t3

exp(−(r − s)2

4Deff t
) (1)

In analogy to our sliding window, we adjust the diameter of the absorbing
sphere s to 30nm for absorbing TFs from outside of the clusters. In the
case of internal jumps within homotypic clusters, the absorbing sphere is set
to be 2nm [Wunderlich and Mirny, 2008] (representing directly reaching the
binding site from 3D diffusion), because fastGRiP already incorporates the
TFs’ sliding between nearby binding sites, and we must be careful not to
double-count this effect. We calculate the diffusion coefficient Deff using the
following equation, as previously described [Elf et al., 2007].

Deff = (1 − a)D + a
D1

3
(2)

where Deff is the effective diffusion coefficient, a is the proportion of time
the TF spends sliding on the DNA non-specifically, D is the 3-dimensional
diffusion coefficient, and D1 is the 1-dimensional diffusion coefficient of the
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TF on DNA. In the following analysis, we choose D to be 3µm2/s, D1 to
be 0.046µm2/s,and a to be 90%, as estimated by single molecule tracking of
LacI in live E.coli. [Elf et al., 2007]. In the absence of experimental data, we
are acting under the assumption that TFs in eukaryotic nuclei have similar
diffusion parameters.

In the original simulation, we assumed that any unbound TF is equally
likely to bind to any other binding site, so when a TF dissociates from a
binding site it enters a pool of TFs. In the updated simulation, a recently
dissociated TF is more likely to bind to a nearby site than a far away site, as
described by the probability density functions depicted in Figure 1B. Figure
1B illustrates that even after 0.1 seconds, the probability density functions
for TFs jumping between DNA strands that are 100nm, 200nm, and 2000nm
apart nearly converge. After 10 seconds, the probability of the TF binding to
a DNA strand 100nm, 200nm, or 2000nm away is less than 1% for all cases,
so we replace an TF that is still free floating after 10 seconds into the TF
pool.

The other parameters we used were identical to those described by Ezer
et al, 2014; we set τ0 = 3.3, cn = 100, and the distance between binding sites
in a cluster to 5 bp, unless otherwise stated.

Modifications to fastGRiP

The fastGRiP simulation tool (available in http://logic.sysbiol.cam.ac.uk/fgrip/)
is a stochastic simulation that models TF binding and unbinding using the
Gillespie algorithm. It models each unique combination of bound TFs as a
state, which can transition to another state through either a TF association,
dissociation or (in the case of homotypic cluster) translocation to neighbor-
ing sites, but it does not allow TFs to jump between strands. In our updated
fastGRiP, we incorporate the jumping probability from one strand to another
by combining pre-computed diffusion probability look-up table with Gillespie
algorithm.

Given a set of possible reactions, the Gillespie algorithm can (i) randomly
select the time when the next reaction will occur (ii) randomly select which
reaction will most likely happen next. A core assumption of the Gillespie
algorithm is that the distribution of reaction events must approximate an
exponential distribution, which implies that the probability of a reaction
event is time-independent. However, the diffusion of a TF from one DNA
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strand varies with time; for instance, it is impossible for a TF to immediately
detach from one strand and attach to another, because the TF must have
enough time to travel the distance between the two DNA strands. Equation
(1) in the supplements describes how the probability density function for TF
jumping varies with time. Selecting the time of the next reaction requires
sampling a value from the averaged probability density function of the re-
action times for all of the possible reactions, which is easy in the case of
exponential functions, but would require time consuming steps such as aver-
aging custom functions and sampling values from this distribution. Selecting
the next reaction would be even more time consuming when the probabil-
ity density functions are not exponential, since it would require a numerical
integration step for the custom distribution.

Instead, we modify fastGRiP as follows to allow diffusion between DNA
strands to be incorporated without substantially decreasing the runtime of
the simulation. In the earlier version of fastGRiP, once a TF became dissoci-
ated from the DNA, it enters a pool where the TF is equally likely to bind to
any location along the DNA. Now, once a TF dissociates, it enters a second
pool of diffusible TFs. It samples the time of its next expected jump from
a 100,000 element pre-computed lookup table generated in Matlab. All of
the possible TF jumps are stored in a PriorityQueue, a data structure that
efficiently stores these values in sorted order. When the Gillespie algorithm
reaches the step in which it selects the time of the next TF association, dis-
sociation or intra-cluster translocation reaction, it first checks the pool of
diffusible TFs to see if any TF jumping events have happened in the mean-
time, and updates the state of the system accordingly. Sometimes, a TF jump
event can no longer occur, because that DNA binding site is already occupied
by the time the new TF diffused to it. In these cases, we recomputed a new
location for the TF to diffuse to and add it to the PriorityQueue again. If at
any time, the sampled TF jump time is greater than 10 seconds, we do not
store this TF in the pool of diffusible TFs, because it has nearly equal likeli-
hood of diffusing to any binding site, and we place the TF in the original TF
pool. This algorithm modification allows us to model TF jump events, even
though the probability density function is not exponential, without substan-
tially increasing the runtime of the algorithm. The code for this modification
is available at https://github.com/ezer/DiffusionMarkovModelJumping.
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Simple scenarios for occupancy boost in two

binding site clusters of spatial proximity

We compare three scenarios 1) First, we look at a pair of homotypic clusters
that are on two different strands, as shown in Figure 1AII, and we vary the
distance between two DNA strands 2) Then, we take the same scenario and
adjust the distance between TF binding sites within the homotypic cluster
(Figure 1AIII). 3) Finally, we vary the number of TF binding sites within
the homotypic cluster (Figure 1AIV).

In each of these cases, we are interested in determining how these binding
site organizations influence TF occupancy, which we define here as the aver-
age probability that each TF binding site is bound. For instance, if the TF
occupancy is 0.05, it means that (on average) each TF binding site is bound
5% of the time. Of course, if there are 20 binding sites in the simulation,
this would mean that on average 1 TF is bound at any given time.

In the first scenario with two binding site clusters located at different dis-
tances from each other, we see that the closer these two clusters are in 3D, the
higher average occupancy they have, which shows jumping between strands
substantially increases the average TF occupancy of the region (Figure 1C).

Next, we vary the distance between binding sites within homotypic clus-
ters, and discover that this only slightly influences overall TF occupancy, at
least given the parameters that we simulated (Figure 1D). This result is a
reflection that there are two opposite effects influencing TF binding site oc-
cupancy. On one hand, there is increased translocation of TFs between two
binding sites in a cluster as the distance between binding sites decrease. On
the other hand, the absorbing spheres around each of the TF binding sites
will intersect if the two sites are very close together in a homotypic cluster,
so the overall chance that a TF jumps to another binding site is reduced.
This is comparable to playing a game of darts with two dartboards that are
partially overlapping - the chance of scoring is higher the less they overlap.
Therefore, the distance between binding sites in homotypic clusters might
not have very much influence on TF occupancy.

Finally, we consider homotypic clusters with four binding sites (Figure
1E). Homotypic clusters with more binding sites are more greatly impacted
by having 3D jumping between strands, with a 58% improvement in TF
occupancy when DNA strands are 100nm apart in the quadruple TF binding
sites homotypic cluster case as opposed to a 42% improvement in the double
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Figure 1: Biophysical simulations of the crowdsourcing effect. We assess the
biophysical plausibility of the crowdsource effect using fastGRiP simulations.
Subfigure AI demonstrates how fastGRiP’s sliding length concept is extended
to an absorbing sphere as we consider 3D diffusion. AII-AIV illustrate the
simulated scenarios that were evaluated. The shape of the probability density
function φ from equation 2 is shown in B. The results from the simulated
scenarios AII-AIV are depicted in C-E, respectively, as probability density
plots of the TF occupancy, which is the probability of each TF binding site
being bound. Note that the TF occupancy, as defined by fastGRiP, includes
not only the time at which a binding site is occupied, but also the time when
the TF is within 90bp of the binding site.
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TF binding site cluster case.
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