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Abstract. The discretization of integral equations can lead to systems involving symmetric
Toeplitz matrices. We describe a preconditioning technique for the regularized solution of the related
discrete ill-posed problem. We use discrete sine transforms to transform the system to one involving a
Cauchy-like matrix. Based on the approach of Kilmer and O’Leary, the preconditioneris a symmetric,
rank m* approximation to the Cauchy-like matrix augmented by the identity. We shall show that
if the kernel of the integral equation is smooth then the preconditioned matrix has two desirable
properties; namely, the largest m* magnitude eigenvalues are clustered around and bounded below
by one, and that small magnitude eigenvalues remain small. We also show that the initialization
cost is less than the initialization cost for the preconditioner introduced by Kilmer and O’Leary.
Further, we describe a method for applying the preconditioner in O((n + 1)lg(n + 1)) operations
when n+1 is a power of 2, and describe a variant of the MINRES algorithm to solve the symmetrically
preconditioned problem. The preconditioned method is tested on two examples.
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1. Introduction. In many applications, a one-dimensional first kind integral
equation of the form

Bu
|t s5)d5 = (@)

1s used to model the output response of an instrument or system to input data. These
one-dimensional integral equations are often solved using a discretization that results
in a least squares problems or a linear system. The corresponding discrete, noisy
system is of the form

(1) Tf=g=g+e

where T is symmetric and Toeplitz, ¢ represents the noise free data, e represents noise,
and g is the actual measured data. (We shall assume that 7' is n x n, but note that
the preconditioning scheme to be introduced in this paper could be adjusted for the
rectangular case as described in [16]).

Given only 7' and the noisy data g, one would like to approximate the exact
solution f to the noise-free problem Tf = ¢. However, since the continuous problem
is ill-posed, the matrix 7" is ill-conditioned. It is easy to show that the exact solution
to (1) is hopelessly contaminated by noise since the small singular values magnify the
noise components in g. Therefore some form of reqularization needs to be used to
determine an approximate solution to f

Since a number of computations involve discrete sine transforms, we shall assume
that n+1 is a power of 2 so that the related operations counts can be written in terms
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of O(Nlg N) where N = n+ 1. If n+ 1 is not a power of two, we can augment the
matrix 7' by an identity matrix of appropriate size, so that now T is Toeplitz block
with 2 Toeplitz matrices on the block diagonal. However, the displacement rank of
the augmented matrix will remain the same as the original matrix (< 4).

Iterative Krylov subspace methods can be used as regularization techniques [16,
15, 8, 7]. They can be particularly efficient on problems involving Toeplitz matrices
since multiplication of a Toeplitz matrix times a vector can be done quickly (see
[14]). However, algorithms such as CGLS (conjugate gradient for least squares) and
MINRES (minimal residual, [17]) can be slow to converge to a regularized solution
of (1). Therefore, we look for preconditioners which will speed convergence to a
regularized solution while filtering noise in early iterates.

As in [16], the idea is to use the rank revealing properties of a factorization of T
to develop a preconditioner. However, when the necessary pivoting is incorporated
into the fast or super-fast LDU factorization algorithms for Toeplitz matrices, these
methods can become too expensive for our purposes, often requiring O(n?) operations
to factor an n x n Toeplitz matrix [18, 6, 1]. To circumvent this problem, in [16]
we advocated transforming 7' to a Cauchy-like matrix €' using a particular unitary
transformation. However, if T" was symmetric, C' in that case was no longer symmetric.
This lack of symmetry prevents one from applying such algorithms as MINRES or
MR-II [7] to solve the transformed system — rather, an algorithm such as CGLS,
which requires roughly twice as much work per iteration, must be used.

To overcome this difficulty, we note that a Toeplitz matrix 7" is orthogonally
related to a partially reconstructible (PR) Cauchy-like matrix C' via discrete trigono-
metric transforms [14]. One such relation considered here uses discrete sine transforms
and allows us to preserve symmetry and to determine a fast algorithm for applying
the preconditioner. If the kernel of the integral equation i1s smooth, then we observe
that C has the property that its largest magnitude elements lie in its leading principal
submatrix of dimension m* x m* (see §6). This implies that no pivoting is needed
to partially factor C' as it was in [16]. Since the m* x m* submatrix is itself a PR
Cauchy-like matrix, it is possible to compute the LDU factorization in O((m*)?) op-
erations; thus our method requires less initialization overhead than the method in
[16].

This paper is organized as follows. In §2, we define a partially reconstructible
Cauchy-like matrix and give some of its properties. In §3, we give some background
on regularization and preconditioning in the context of regularization. We introduce
our preconditioner in §4 and give theoretical results in §5. We discuss the properties
of the transformation in §6 which allow us by-pass the pivoting stage. Algorithmic
issues are addressed in §7 and a preconditioned variant of MINRES is given. Numerical
results are the subject of §8 and conclusions are given in §9.

2. Partially reconstructible Cauchy-like matrices. A partially reconstructible
Cauchy-like matrix can be represented in the form:

T3
a; b]‘ . .
Cij = { ey, 17

C; i:j




where ¢; denote the diagonals of the matrix C', and a;, I;j € %" The matrices

af by
A= and B = :
dy by

are called the generators of the matrix and £ is called the displacement rank. Note
that the entries of C' are completely characterized in terms of the generators, the n
numbers w;, and the n diagonal entries of the matrix.

The following property shows how a Toeplitz matrix can be transformed into a
partially reconstructible Cauchy-like matrix [12, 14]:

PrOPERTY 1. Every Toeplitz matrix T satisfies an equation of the form

(2) HT —TH = ABT

where where A € C"*%, B € C"**, 1 < (< 4, and
1 ...
H= §tr1d1ag(1,0, 1).

The Toeplitz matrix T is orthogonally related to a partially reconstructible Cauchy-
like matrix

C=5TS
that satisfies the displacement equation

(3) DC—CD=AB", A=SA, B=SB,

2
D = diag (cos (nj—l) , COS (n—:—rl) sy COS (nnfl))

and S is the normalized discrete sine transform matrix

S =4/ sin .
n+1 n+1 k=1

The authors of [12] give an explicit formula for computing the diagonal entries
of C' which are unspecified by (3). Alternately, these entries can be computed by
diagonalizing the corresponding T. Chan-type preconditioner described in [14]. For-
tunately, since we have assumed N = n—+ 1 is a power of 2, this can be done quickly by
means of fast sine (and cosine in the case of [12]) transforms in O(N lg N') operations.
Note that the generators of T' are readily determined from (2) and the generators of
C can be determined with fast sine transforms.

The next property gives some insight into how matrix-vector multiplications might
be computed.

PrROPERTY 2. Let Cy be the Cauchy matrix

where

i
1=

1
oy ={ 5
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Following [2], we observe

(4) C = (D diag(AD)Codiag(BY) + diag(c),

i=1

where the superscript on A and B denotes the ith column of the generators, ¢ denotes
the vector with components ¢;, and diag(-) means the diagonal matrix formed by
placing the vector argument along the diagonal.

We will make use of (4) to determine a fast algorithm for applying the precondi-
tioner (see §7).

There are two other properties of Cauchy-like matrices which we will be able to
exploit; namely, that the inverse of a PR Cauchy-like matrix is PR Cauchy-like and
that the leading principal submatrix of a PR Cauchy-like matrix is PR, Cauchy-like.
Both of these two properties can be observed by appropriately manipulating (3). From
(3) we can also deduce that the generators X and W for C~1 can be found by solving

(5) CX =A, wr'c =BT,

3. Regularization and preconditioning. Throughout this paper, we will make
the following four assumptions:

1. The matrix 7" has been normalized so that its largest eigenvalue is of order 1.
2. The uncontaminated data vector ¢ satisfies the discrete Picard condition;i.e.,
the spectral coefficients of ¢ decay in absolute value faster than the singular

values [20, 10].
3. The additive noise is zero-mean white Gaussian. In this case, the components
of the error e are independent random variables normally distributed with
mean zero and variance €.

4. The noise level, %, is strictly less than one.

Since T is symmetric, let 77 = VAV7T be the eigendecomposition of 7', where
the entries in the diagonal matrix A are the eigenvalues A;;i = 1,... n with |A{| >
|A2|... > |An|. The spectral coefficients of the exact data ¢ and noise e are ¢ = V7
and 1 = V7e, respectively.

It is easy to show that the exact solution to (1) is given in spectral coordinates

by

(6) IS P
i=1 ¢

where v; denotes the ith column of V.

Under the white noise assumption, |n;| & ¢,7 = 1, ...r so that the noise coefficients
are roughly constant, while the discrete Picard condition tells us that the {; go to zero
at least as fast as the singular values ;. Thus, components for which (; is of the same
order or less than 7; are obscured by noise.

By assumptions 2 and 4, there exists m > 0 such that for all ¢ > m, the (; are
indeed indistinguishable from the 7;. Further, there exists 0 < m* < m such that
for ¢ > m™ it is never the case that |(;| > |n;|. As in [16], we therefore choose to
partition the columns of V' into bases for the upper, lower, and transition subspaces
as follows. We say that the upper subspace is the space spanned by the first m*
columns of V. Hence the upper subspace corresponds to the largest m* singular
values. The [ower subspace is the space spanned by the last n — m columns for V;
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i.e. those columns of V corresponding to the smallest singular values. Finally, the
transition subspace is the space spanned by the remaining m—m* columns of V. Since
these columns correspond to the mid-range singular values, the transition subspace is
generally difficult to resolve unless there is a gap in the singular value spectrum.

The exact solution to the noise-free least squares problem can also be expanded
in terms of the eigendecomposition of 7"

(7) f= Z /\—v

Comparing (7) with (6) we see that f resembles f on the upper subspace, yet our
assumptions also require that f and f differ greatly in the magnitude of their com-
ponents in the lower subspace; the components of f in the lower subspace are small
while the components of f in the lower subspace are large and increase in magnitude
as ¢ approaches n. We would therefore like our regularization method to produce a
regularized solution with small components in the lower subspace and which resem-
bles f in the upper subspace. Fortunately, Krylov subspace methods such as MINRES
and CGLS tend to produce this type of solution, with the iteration index taking the
role of the regularization parameter. To speed convergence to a regularized solution,
we must develop a preconditioner which clusters the first m™* eigenvalues (in absolute
value) around one (see [19]); however, to keep the preconditioner from mixing noise
into early iterates, we also want the small singular values, and with them, the lower
subspace, to be unchanged.

4. The preconditioner. Let ¢ = ST'S be the partially reconstructible (PR)
Cauchy-like matrix corresponding to the Toeplitz matrix T'. Solving T'f = g is equiv-
alent to solving

CSf =9y,

Let T = VAVY be the singular value decomposition of T'. Since S is an orthogonal
matrix,

C =SVAVTST,

where S = ST so that C' and T have the same eigenvalues and there is no mixing of
the upper and lower subspaces by changing to the new coordinate system.

In [16], in order to determine the preconditioner one first had to perform a partial
factorization of the corresponding Cauchy-like matrix in order to permute the largest
magnitude components of C' to the leading principal submatrix. We show in §6 that
as a property of the transformation, the leading principal submatrix already contains
the large magnitude entries. Therefore we save the cost of performing the partial
factorization.

Setting z = Sf and g = Syg, the problem T'f = ¢ is equivalent to

Cy=z.

If we desire to use CGLS, we would choose, as in [16], a preconditioner for the left so
that

(8) M~tCy= M1z
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If T, and hence C'| 1s symmetric, however, we may want to find a symmetric pre-
conditioner M and apply MINRES or MR-II to the symmetrically preconditioned
system

(9) M_l/sz_l/zy:M_l/zz

where § = M2y, It turns out that in this case, both MINRES and MR-II for the
symmetrically preconditioned problem can be written in terms of the matrix M !
rather than M~1/2 (see §7.4).

Writing C' in block form we have

Oy
cr o, |

where C7 is m* x m*. The permutation ensures that (] is well-conditioned having
the largest magnitude elements of C'. The preconditioner M is then defined as in [16]:

4 0]

=[G

5. Properties of the Preconditioner. Since M is defined in the same way as
in [16], the theory in [16] tells us that the left preconditioned matrix has the desired
properties; namely, that the largest m* singular values are clustered around 1, while
the lower subspace, and the small singular values, remain relatively untouched. There-
fore we expect CGLS to give reasonable regularized solutions after only a relatively
small number of iterations.

However, if C' is symmetric, we may want to apply MINRES or MR-II to the
symmetrically preconditioned problem (9). Thus, we need to show that the largest
magnitude eigenvalues of M~1/2CM~1/? are clustered around one while the small-
est magnitude eigenvalues remain small. If 7" is symmetric than so are ¢, M, and
M~=Y2CM~12 Since M~'2CM~1/? is symmetric, the absolute values of its eigen-
values are precisely 1ts singular values. Similarly, the absolute values of the eigenvalues
of C' are its singular values. Since we are interested in clustering eigenvalues by mag-
nitude, it will be convenient to show the appropriate clustering results for the singular
values of M~12CM~/? instead.

Observe that M~'C' and M ~'/2C M ~/? have the same eigenvalues since the two
matrices are related via a similarity transform. Define § = maX{HC’l_lC'znoo, [|Cal]oo }-
It will be convenient to decompose the matrix (]\4_1/20]\4_1/2)2 as

I _1/2 oo,
(10) [Cgcl_l/z ] 1,077 +[ .

] [0301‘1/2, Ca| = Evnr + Eonr.
4

THEOREM 5.1. |\(M~Y2CM~'?)|i=1,...,m* are bounded below by 1 and
above by 1 + s.

Proof: Proceed as in Theorem 3.1 of [16] to deduce that m* of the singular values
of M=Y2CM~1/% are bounded below by 1. The upper bound comes from applying
Gershgorin’s Theorem to M ~*C' and using the similarity transform. O

To show that the small magnitude eigenvalues remain small, decompose C*C' as

C C
(11) [ Cz% ] [C1, Ca] + [ Ci ] [CT,C4] = Erc + Eac.

We have the following theorem:



THEOREM 5.2. Let ¢p» = max{l, a%(cl)} Then the (m* + @)th largest mag-

nitude eigenvalue of M~'/2CM~1/? lies in the interval [0, em=+/0i(E2¢)] and the
(m* + i)th largest magnitude eigenvalue of C' lies in the interval [0, \/o;(Fac)].

Proof: Proceeding as in Theorem 3.3 of [16], we can show
Nigm=(CH) < X(Fag),i=1,...,m"
and
Xigms (MTY2OM™Y2) < N(Bapr),i=1,...,m".

Now Espyr = MY 2Es- M=% Thus two applications of Theorem 3.3.16d to the
right hand side of the above equation yields

O'z'2+m*(M—1/ZCM—1/2) < Ul(M_l)O'Z'(Ezc),iI 1...,m"
We also have
0l (C) < 0i(Bac),i=1,...,m"

The proof i1s completed by taking square roots. O

6. Properties of the Transformation. These theorems show that the precon-
ditioner will be effective if C4 is well-conditioned and if the row sums of C’l_lCz and
FEse are small. We now discuss to what extent we expect these conditions to hold for
integral equation discretizations. We shall assume (' i1s symmetric.

Let A and B be the generators of C'. From Property 1 we have

alh; .,
on={ 2 iz

¢, otherwise

where the values ¢; denote the diagonal entries of C'. The values ¢; for a symmetric
matrix C' are the entries of the diagonal matrix SCs.S, where Cs i1s the Chan-type
preconditioner in [14]. Using this relationship, an exact formula can be determined
for computing the ¢; (see [14]): Let ¢;,i =0,...,n — 1 denote the diagonals of T and
define s;5 = sin(jkn/(n+ 1)), t, = 0, and

_9 _
Tkz{to_Zth’ k=1
S k-1 — oy tet1s k>1

Then

1
(12) Cj = —ZTijk.

sin(jw/(n+ 1)) Pt

Now Heinig and Bojanczyk [12] show that the off-diagonal elements C;; for which
t+ 7 is odd are 0 while if ¢ + j is even, we have

1 2 T = PR ¥
Ci; = — —( ) (sm( ) Sinty — sin( ) sjktk) .
cos(m)—cos(n]?) n+1 n+1 ; n+1 ;




Therefore, for ¢ £ j, i + j even,

1
|Cij] < o i n_|_1 (|Zszktk|+|zsyktk|)

COS(n+1) — COS(T

From (12),

Izszwkl

Now >4 _; sixty is the ith coefficient of the (unnormalized) discrete sine transform
(DST) of the vector v = [0,%1,%2,...,t,_1,0]. But this is, up to a factor 2¢/—1, the
tth coefficient of the discrete Fourier transform of the vector v¢, the odd-extension
of v about vyy1 = 0 [13]. If the kernel of the integral equation is smooth, then the
Fourier coefficients tend to decrease in magnitude quickly as ¢ approaches n. Thus,
the DST coefficients v; of v tend to decrease in 7. Since |ZZ:1 sikty| < ZZ:1 [te], if
tr < 1, this implies many of the DST coefficients of v are small. Likewise, as the ry
correspond to a linear combination of the ¢, the magnitude of the DST coefficients
of the vector r decrease with ¢. Since

- n—2 " n—k+3 n—k—
< |t i — |l —|
3 il < ol + 2 (30 e+ P )

k=1 k=2

|Cii| =

|51 )

the magnitude of the DST coefficients of » get small as ¢ increases.
Next, consider 1/ (cos( =}

even. Clearly this expression decays rapidly away from the diagonal when n is large
(see Figure 1 for an illustration). Recalling that the DST coefficients of v become small
as ¢ and j increase, this means that the trailing submatrix of ' and the upper right
and lower left corners of C' contain the smallest components of the matrix. Figure
2 plots n%—l (13 %=y sinte] + 1> pey sjut]) for j = 1,...,n for a few fixed values of
i for the vector t defined in Example 2. (The spy plot in Figure 9 shows the actual
magnitudes of the entries of C' for Example 2.)

Now consider 1/sin(iw/(n 4+ 1)). For sufficiently large n, this quantity is large for
small ¢, decays quickly toward 1 as ¢ increases toward (n + 1)/2, and becomes large
as i approaches n (see Figure 3). A plot of | >, _, rxs;i| for the rj, of Example 2 (see
Fig 4) is included for comparison. Since the DST coefficients of » become small as ¢
increases, clearly the diagonal elements of C' are large only for the first few values of

) — cos( ]_I_l)) as a function of i and j, for i # j, i+ j

t. Hence, there exists a leading principal submatrix of C' which contains most of the
large magnitude elements of C'.

7. Algorithmic Issues. For a symmetric matrix 7', our algorithm is as follows:
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Algorithm 3: Solving T'f = ¢ for symmetric 7'
Compute the generators A and B for the matrix C' = ST'S.
Compute the diagonal entries of C' according to (12).
Determine the index m* to define the size of (.
Compute the generators A; and By of 7.
Factor C, and use forward and back substitution to determine the generators X
and W of C71.
Solve C71Cy = I for the diagonal entries of C7* ( see §7.1).
7. Compute an approximate solution g to M‘l/ZC’M_l/z(Ml/Zy) = M~'/%; using a
few steps of MINRES or MR-II.
8. The approximate solution in the original coordinate system is

f=2959.

QU s W N =

[

We note that we do not address the problem of determining when it 1s best to stop
iterating to get a good solution. The interested reader is referred to [8] for a discussion
of how the L-curve method can be used to determine an appropriate regularization
parameter for MR-IT and to [7] for how Morozov’s discrepancy principle can be used
to find a regularization parameter for MINRES (see also [11]).

7.1. Determining M ~!. Since C satisfies the displacement equation (3), it fol-
lows that C is a partially reconstructible Cauchy-like matrix satisfying

0,0, — Q) = A BT

where €2, 1s the leading m™ x m~* pringipal submatrix of D in (3) and A; and B
contain the first m* columns of A and B, respectively.
Thus, the matrix 01_1 is partially reconstructible, with off diagonal entries given

by

T
(CT i = ———i# ]

bl
wi—wj

where the vectors l‘ZT and w]»T are rows of Xy and W, defined as
Ci1 X, =A, witc, =BT,

Computing X; and Wi costs O((m*)?) operations, given the factorization of Cy and
the matrices A; and By. To get A; and Bj, we simply need A and B, which we can
obtain from the generators of T'in O(N lg N) operations using the fast sine transform.

Since 01_1 is partially reconstructible, its diagonal entries ¢; cannot be determined
from its displacement equation. However, the ¢;, can be computed from the simple
relation C71Cy = T in O((m*)?) operations since we know the off-diagonal elements
of 01_1 and all the elements of C7. The total initialization cost of the preconditioner,
which includes the time to determine A and B and solving for X7 and W is therefore
O((m*)? + N lg N) operations.

7.2. Applying the preconditioner. Since we are using a different transfor-
mation to Cauchy-like than that used in [16], we need a different method for quickly
applying the preconditioner. Let v be a vector of length m*, and assume that the
permutation matrix is the identity. Now from (4) applied to C’l_l, we see matrix
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vector products with 01_1 can be formed as

Crlo = (Z —x{ (o v>>) + diag(é)v

i=1

where Cy is the m* x m* leading principle submatrix of Cp, XY), Wl(i) are the ¢th
columns of X; and W7y, ¢ is the vector with components ¢;, and - denotes component-
wise multiplication. Computing a matrix-vector product with a Cauchy matrix of the
form CY is known as Trummer’s problem. Suppose we extend the vector u = Wl(l) -v to
n dimensions and replace Cy with Cy. Then it is possible to compute Cou in O(N lg N)
operations using fast sine and cosine transformations via a variant of the algorithm
of Gerasoulis et al [4] for solving Trummer’s problem, which we now describe.
Let the polynomials h(x) and s(z) be defined according to

h(x) - U,
s(z) _Zx—wi'

i=1

Note that h(w;) = 4;8"(w;). Now Gerasoulis in [3] shows that the jth component of
Cyu can be determined through an appropriate evaluation of polynomials:

(13) 5= (W) — s @)/ ().

Now s(z) = []i—;(z —w;). But the w; are just the roots of the Chebyshev polynomial
of the second kind of degree n + 1, denoted U, 41(x). Thus, s(x) can be written in
terms of an nth degree polynomial of the second kind as s(z) = 277U, («) [3]. Using
this formula for s(x), it is easy to show

(14) s'(wj) = 27" (=1 (n+ 1)/ sin(jm/(n + 1))
and s"(w;)/s'(w;) = 3cos(jm/(n + 1))/sin’(jr/(n + 1)), so (13) reduces to

3cos(jm/(n+ 1))

(15) zj = h'(wj)/s'(w)) — 2sin*(j7/(n + 1))uj

and it remains to find an expression for h'(w;)/s' (w;).

To determine h'(z), we first set h(z) = ZZ:1 arUp_1(x). The coefficients aj, can
now be found using the fact that h(w;) = w;s'(w;), i = 1,. .., n. From A(w;) = 438" (w;),
close inspection shows that

n

(16) ap = 2_”(71 + 1)77, _2|_ 1 Z Sslfln((]z;:/(glnjll)))) -

i=1

Since the aj are known, we can use the relation h(x) = Y p_, apUp_1(2) to
determine A'(w;). We obtain

/'——1 n—a cos(kjm/(n
W) = EGaa ) &k eoslhin/ o+ 1)
cos(jm/(n+ 1))
sin’(j/(n + 1)) =

12

n

agsin(kjm/(n + 1)).



Next, substitute (16) for a; and factor the constants 27"(n + 1) out in front of the
_1)itt

A_;sin(iﬂ'/(n-l—l))ui’ we obtain

sum. Dividing this expression by (14) and setting y; =

cosym/(n+ 1)
sin®(jr/(n+ 1))

2(—1)*! Zn kjm Z" . ijm
( 8) n 1 : COS n 1 Sin n 1 Uu

=1 i=1

R (w;j)/s' (wj)

Together with (15), this means that the components of z; can be computed si-
multaneously by means of fast O(N lg N) sine and cosine transforms of dimension n.
This observation leads us to develop an algorithm for computing C'l_lv which costs
only O(N lg N) operations:

Algorithm 4: Forming 2 — C; v
Set v = 0.
For j=1,...,¢ do
1. Compute v = W; - v.
2. Extend v by zeros so that v is of length n.
3. Set © — Cyt (see above).
4. Truncate v to length m.
5. Set z =2+ X; - 0.
End for
6. Compute z = z 4 diag(c;)v.

7.3. Matrix-vector products with C. By relating C' back to the original
Toeplitz matrix, we note that matrix vector products with C' can be computed as
Cv = STSv. To multiply the matrix T with a vector, we could use the method of
embedding 7" into a circulant matrix and using Fourier transforms. However, this
requires that complex arithmetic be used to compute the product when T is real.
Rather, we make use of the fast, real-arithmetic approach suggested in [14] for com-
puting these products in O(N lg N) operations.

7.4. Variant of MINRES. In this subsection we present a variant of MIN-
RES for solving the symmetrically preconditioned problem M_l/ZC'M_l/Z(Ml/Zy) =
M~1/2%z which involves matrix vector multiplies with M ~! rather than M ~1/2 (see [5,
Section 10.3.1] and [7]). A variant of MR-IT (see [8, 7]) for the symmetrically precon-
ditioned problem involving only matrix vector multiplies with M ~! can be similarly
derived.
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Algorithm 5: Preconditioned MINRES
Yo = 0370 = z;00 = M~ rg;do = vo
wg = C'vg; 89 = wy
For £ =0, ..., until convergence do
vask
wkTM—lwk
Yr+1 = Y + ady
Tk_|_1 =T — QW
Ukp1 = Mg
sp41 = Cvp4a
6 _ UkT+15k+1
- vask

dr41 = vp41 + Bdy,
Wi, = Sp41 + Bwy
End for

a =

8. Numerical Results. We compare the results of the preconditioned and un-
preconditioned MINRES algorithm with the preconditioned and unpreconditioned
CGLS algorithm. The numerical results were generated using Matlab and IEEE
floating point double precision arithmetic. Since in our examples the exact solution
to the noise-free problem was available, our measure of success in filtering noise is
the relative error between the computed solution and the noise-free solution. In the
experiments, we compare the results of MINRES with CGLS for Cauchy-like pre-
conditioners of size m* defined in this paper. The value of m* = 0 corresponds to
no preconditioning. In each example, we also give the results for the preconditioned
method of Kilmer and O’Leary [16] and the method of Hanke, et a/ [9], for various
values of m*.

8.1. Example 1. For this example, we modified the matrix and exact solution
of the signal processing example in [16] by dropping the last row and column of T'
and the last row off and g. The condition number of the new 255 x 255 matrix T is
4.4 x 10°. We computed a noise vector e with Matlab’s randn function and scaled it
so that the noise level was 1073. We then computed g = § + e.

Figure 5 is a sparsity plot of the magnitude of the entries of C'. Note that not
only is (' nearly diagonally dominant, but pivoting need not be performed to permute
the largest components of C' to the leading principal submatrix.

The convergence of MINRES on the unpreconditioned system is indicated by the
solid line in Fig 6. MINRES reaches its minimum relative error value of .232 at
41 iterations. The dashed line in the figure shows the convergence of CGLS on the
unpreconditioned problem. After 119 iterations CGLS reaches its minimum relative
error value of .223.

Table 1 compares the sensitivity of CGLS and MINRES to m*. The results in the
table illustrate that, for both methods, the number of iterations for the preconditioned
system is substantially less than for the unpreconditioned system when m* is chosen
appropriately. Note that the preconditioned MINRES can yield a regularized solution
with lower minimum relative error than unpreconditioned MINRES. The table also
indicates that unpreconditioned CGLS can yield a slightly better, in terms of min-
imum relative error, regularized solution than MINRES, although it requires much
more work to compute. Likewise, preconditioned CGLS, depending on m*, can yield
better regularized solutions the preconditioned MINRES in about the same number of

14



MINRES CGLS

minimum | achieved | minimum | achieved
m* | rel. error at iter. | rel. error. | at iter.
0 232 41 .223 119
40 | .233 13 .224 24
47 | .225 9 .224 13
54 | .242 6 .224 7
61 | .256 7 221 7
68 | .237 5 228 8

TABLE 1

Convergence comparison of MINRES and CGLS for various values of m™ for Fxample 1.

Method of [16] Method of [9]
minimum | achieved | minimum | achieved
m* | rel. error at iter. | rel. error. | at iter.
0 .223 119
40 | .224 75 224 53
47 | 224 58 .224 40
b4 | .224 82 .224 31
61 | .238 105 .229 30
68 | .289 13 .236 34
TABLE 2

Convergence comparison of preconditioned CGLS scheme of Kilmer and O’Leary and method
of Hanke, et al for various values of m™, Example 1.

iterations — however, each iteration of CGLS requires an extra matrix-vector product
with C'. The condition number of Cy for m* = 47 i1s about 87; the condition number
of Cy for m* = 61 is about 2.5 x 10%.

Table 2 gives the convergence results for the preconditioned CGLS scheme of [16]
and for the preconditioned scheme of [9] for comparison purposes. Note that neither
method does as well as the preconditioned MINRES or CGLS schemes mentioned
in this paper in terms of reducing the error to a sufficient level within few enough
iterations. Also, these methods are more expensive (by a constant factor) per iteration
than preconditioned MINRES since they require an additional matrix-vector product
with the Cauchy-like matrix or the Toeplitz matrix, respectively, and they compute
using complex arithmetic. Further, the initialization cost of the preconditioner of [16]
is higher. We note that since n 4+ 1 is a power of 2 and these latter 2 methods use
FFT’s, it would have been more efficient to augment 7" by a 1 x 1 identity and append
a number to g, and solve the resulting system (see the footnote in the introduction of

[16]).

8.2. Example 2. In this example, we used Hansen’s Regularization Toolbox to
generate a 512 x 512 symmetric Phillips Toeplitz matrix, and set 7" to be the 511 x 511
leading principal submatrix. The vector f was generated using Matlab’s sin, cos and
square functions in the following Matlab notation:

f = (1—abs(s)). * (1 + cos(s * pi/3)) +sin(s * pi/8). * (s + 3) + 9 * square(.4 + 5.7 /50)

15
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Fig. 7. Uncontaminated data vector (right) and ewact solution (left) for Example 2.

where s was the vector of length 511 s = [-25.5: .1 : 25.5]. The vectors f and g = Tf
are 1s displayed in Figure 7. The noisy data g was formed by adding noise to the
vector § where the noise level was 1073,

Figure 9 is a spy plot illustrating the magnitude of the elements in C'. As in the
previous example, no pivoting is needed to permute the largest magnitude entries into
the leading principal submatrix of C'.

Table 3 compares the minimum relative errors achieved for MINRES and CGLS
with and without preconditioning. Note again that unpreconditioned CGLS achieves
a lower minimum relative error than unpreconditioned MINRES. However, for several
values of m*, MINRES is able to reach a regularized solution with relative error less
than unpreconditioned MINRES. With m* = 19, preconditioned MINRES reaches a
relative error of .162 after only 2 iterations, and it improves in 7 iterations to a mini-
mum relative error of .088 (see Figure 7). On the other hand, for no value of m* could
preconditioned CGLS achieve a relative error of less than .107. In general, precon-
ditioned CGLS required more iterations to achieve comparable regularized solutions,
and at more work per iteration.

The results for the preconditioned scheme of [16] and for the method of [9] applied
to Example 2 are shown in Table 4. The previous method can generate regularized
solutions with smaller relative error than for unpreconditioned MINRES within 2 iter-
ations (for example, if m* = 25, the relative error is .149 after 2 iterations), but for no
value of m* do they achieve better minimum relative error values than preconditioned
MINRES for m* = 19. The method of Hanke et al is not very competitive with the
other methods since it requires so many more iterations for each value of m*.

Finally, Figure 10 illustrates how well our preconditioner clusters the eigenvalues
and the singular values of the left preconditioned matrix.

9. Conclusions and Future Work. Preliminary results show that we have
developed an efficient preconditioner for the regularized solution of discrete ill-posed
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MINRES CGLS

minimum | achieved | minimum | achieved
m* | rel. error at iter. | rel. error. | at iter.
0 185 36 112 41
16 | .177 11 111 21
19 | .088 7 107 17
22 | 116 4 117 14
25 | .205 5) 121 14
28 | 174 10 116 11
31 | .241 8 116 9
34 | 187 5) .164 13

TABLE 3

Convergence comparison of MINRES and CGLS for various values of m™, Example 2.
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Method of [16] Method of [9]
minimum | achieved | minimum | achieved
m* | rel. error at iter. | rel. error. | at iter.
0 112 41
16 | .110 19 114 58
19 | .109 15 108 57
22 | 115 15 .100 43
25 | 123 12 113 54
28 | .136 9 124 64
31 | .136 4 134 55
34 | .159 8 .166 68
TABLE 4

Convergence comparison of preconditioned CGLS scheme of Kilmer and O’Leary and method
of Hanke, et al for various values of m*, Fxample 2.

problems involving symmetric Toeplitz matrices. We have introduced a precondi-
tioned MINRES scheme to solve the symmetrically preconditioned problem. The the-
ory and results predict that preconditioned MINRES can be an effective and efficient
regularization scheme, with each iteration requiring fewer operations than precondi-
tioned CGLS. In both examples, preconditioned MINRES for an appropriate value
of m* could achieve regularized solutions with smaller minimum relative errors than
unpreconditioned MINRES.

We plan to generalize the results in this paper to the two-dimensional problems
involving symmetric BTTB matrices.
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