
SYMMETRIC CAUCHY-LIKE PRECONDITIONERS FOR THEREGULARIZED SOLUTION OF 1-D ILL-POSED PROBLEMS �MISHA E. KILMERyAbstract. The discretization of integral equations can lead to systems involving symmetricToeplitz matrices. We describe a preconditioning technique for the regularized solution of the relateddiscrete ill-posed problem. We use discrete sine transforms to transform the system to one involving aCauchy-likematrix. Based on the approachof Kilmer and O'Leary, the preconditioner is a symmetric,rank m� approximation to the Cauchy-like matrix augmented by the identity. We shall show thatif the kernel of the integral equation is smooth then the preconditioned matrix has two desirableproperties; namely, the largest m� magnitude eigenvalues are clustered around and bounded belowby one, and that small magnitude eigenvalues remain small. We also show that the initializationcost is less than the initialization cost for the preconditioner introduced by Kilmer and O'Leary.Further, we describe a method for applying the preconditioner in O((n + 1) lg(n + 1)) operationswhen n+1 is a power of 2, and describe a variant of the MINRES algorithm to solve the symmetricallypreconditioned problem. The preconditioned method is tested on two examples.Key words. Regularization, ill-posed problems, Toeplitz, Cauchy-like, preconditioner, conju-gate gradient, minimal residual, normal equations, image processing, deblurringAMS(MOS) subject classi�cations. 65R20, 45L10, 94A12December 4, 19971. Introduction. In many applications, a one-dimensional �rst kind integralequation of the form Z �u�l t(�; �)f(�)d� = g(�)is used to model the output response of an instrument or system to input data. Theseone-dimensional integral equations are often solved using a discretization that resultsin a least squares problems or a linear system. The corresponding discrete, noisysystem is of the form Tf = g = ĝ + e(1)where T is symmetric and Toeplitz, ĝ represents the noise free data, e represents noise,and g is the actual measured data. (We shall assume that T is n� n, but note thatthe preconditioning scheme to be introduced in this paper could be adjusted for therectangular case as described in [16]).Given only T and the noisy data g, one would like to approximate the exactsolution f̂ to the noise-free problem T f̂ = ĝ. However, since the continuous problemis ill-posed, the matrix T is ill-conditioned. It is easy to show that the exact solutionto (1) is hopelessly contaminated by noise since the small singular values magnify thenoise components in g. Therefore some form of regularization needs to be used todetermine an approximate solution to f̂ .Since a number of computations involve discrete sine transforms, we shall assumethat n+1 is a power of 2 so that the related operations counts can be written in terms� This work was supported by the National Science Foundation under Grant CCR 95-03126.y Applied Mathematics Program, University of Maryland, College Park, MD 20742(mkilmer@cs.umd.edu) 1



of O(N lgN ) where N = n+ 1. If n + 1 is not a power of two, we can augment thematrix T by an identity matrix of appropriate size, so that now T is Toeplitz blockwith 2 Toeplitz matrices on the block diagonal. However, the displacement rank ofthe augmented matrix will remain the same as the original matrix (� 4).Iterative Krylov subspace methods can be used as regularization techniques [16,15, 8, 7]. They can be particularly e�cient on problems involving Toeplitz matricessince multiplication of a Toeplitz matrix times a vector can be done quickly (see[14]). However, algorithms such as CGLS (conjugate gradient for least squares) andMINRES (minimal residual, [17]) can be slow to converge to a regularized solutionof (1). Therefore, we look for preconditioners which will speed convergence to aregularized solution while �ltering noise in early iterates.As in [16], the idea is to use the rank revealing properties of a factorization of Tto develop a preconditioner. However, when the necessary pivoting is incorporatedinto the fast or super-fast LDU factorization algorithms for Toeplitz matrices, thesemethods can become too expensive for our purposes, often requiring O(n3) operationsto factor an n � n Toeplitz matrix [18, 6, 1]. To circumvent this problem, in [16]we advocated transforming T to a Cauchy-like matrix C using a particular unitarytransformation. However, if T was symmetric,C in that case was no longer symmetric.This lack of symmetry prevents one from applying such algorithms as MINRES orMR-II [7] to solve the transformed system | rather, an algorithm such as CGLS,which requires roughly twice as much work per iteration, must be used.To overcome this di�culty, we note that a Toeplitz matrix T is orthogonallyrelated to a partially reconstructible (PR) Cauchy-like matrix C via discrete trigono-metric transforms [14]. One such relation considered here uses discrete sine transformsand allows us to preserve symmetry and to determine a fast algorithm for applyingthe preconditioner. If the kernel of the integral equation is smooth, then we observethat C has the property that its largest magnitude elements lie in its leading principalsubmatrix of dimension m� � m� (see x6). This implies that no pivoting is neededto partially factor C as it was in [16]. Since the m� � m� submatrix is itself a PRCauchy-like matrix, it is possible to compute the LDU factorization in O((m�)2) op-erations; thus our method requires less initialization overhead than the method in[16].This paper is organized as follows. In x2, we de�ne a partially reconstructibleCauchy-like matrix and give some of its properties. In x3, we give some backgroundon regularization and preconditioning in the context of regularization. We introduceour preconditioner in x4 and give theoretical results in x5. We discuss the propertiesof the transformation in x6 which allow us by-pass the pivoting stage. Algorithmicissues are addressed in x7 and a preconditioned variant of MINRES is given. Numericalresults are the subject of x8 and conclusions are given in x9.2. Partially reconstructibleCauchy-likematrices. A partially reconstructibleCauchy-like matrix can be represented in the form:Cij = ( ~aTi ~bj!i�!j i 6= jci i = j2



where ci denote the diagonals of the matrix C, and ~ai;~bj 2 C`�n. The matrices~A = 264 ~aT1...~aTn 375 and ~B = 264 ~bT1...~bTn 375are called the generators of the matrix and ` is called the displacement rank. Notethat the entries of C are completely characterized in terms of the generators, the nnumbers !i, and the n diagonal entries of the matrix.The following property shows how a Toeplitz matrix can be transformed into apartially reconstructible Cauchy-like matrix [12, 14]:Property 1. Every Toeplitz matrix T satis�es an equation of the formHT � TH = ABT(2)where where A 2 Cn�`, B 2 Cn�`, 1 � ` � 4, andH = 12tridiag(1; 0; 1):The Toeplitz matrix T is orthogonally related to a partially reconstructible Cauchy-like matrix C = STSthat satis�es the displacement equationDC � CD = ~A ~BT ; ~A = SA; ~B = SB;(3)where D = diag�cos� �n+ 1� ; cos� 2�n+ 1� ; : : : ; cos� n�n+ 1��and S is the normalized discrete sine transform matrixS =r 2n+ 1 �sin� kj�n + 1��nk;j=1 :The authors of [12] give an explicit formula for computing the diagonal entriesof C which are unspeci�ed by (3). Alternately, these entries can be computed bydiagonalizing the corresponding T. Chan-type preconditioner described in [14]. For-tunately, since we have assumed N = n+1 is a power of 2, this can be done quickly bymeans of fast sine (and cosine in the case of [12]) transforms in O(N lgN ) operations.Note that the generators of T are readily determined from (2) and the generators ofC can be determined with fast sine transforms.The next property gives some insight into howmatrix-vectormultiplicationsmightbe computed.Property 2. Let C0 be the Cauchy matrix(C0)ij = � 1!i�!j ; ii 6= j0 i = j3



Following [2], we observeC = (X̀i=1 diag( ~A(i))C0diag( ~B(i)) + diag(c);(4)where the superscript on ~A and ~B denotes the ith column of the generators, c denotesthe vector with components ci, and diag(�) means the diagonal matrix formed byplacing the vector argument along the diagonal.We will make use of (4) to determine a fast algorithm for applying the precondi-tioner (see x7).There are two other properties of Cauchy-like matrices which we will be able toexploit; namely, that the inverse of a PR Cauchy-like matrix is PR Cauchy-like andthat the leading principal submatrix of a PR Cauchy-like matrix is PR Cauchy-like.Both of these two properties can be observed by appropriately manipulating (3). From(3) we can also deduce that the generators X and W for C�1 can be found by solvingCX = ~A; W TC = ~BT :(5) 3. Regularizationand preconditioning. Throughout this paper, we will makethe following four assumptions:1. The matrix T has been normalized so that its largest eigenvalue is of order 1.2. The uncontaminated data vector ĝ satis�es the discrete Picard condition; i.e.,the spectral coe�cients of ĝ decay in absolute value faster than the singularvalues [20, 10].3. The additive noise is zero-mean white Gaussian. In this case, the componentsof the error e are independent random variables normally distributed withmean zero and variance �2.4. The noise level, kek2kĝk2 , is strictly less than one.Since T is symmetric, let T = V �V T be the eigendecomposition of T , wherethe entries in the diagonal matrix � are the eigenvalues �i; i = 1; : : : ; n with j�1j �j�2j : : : � j�nj: The spectral coe�cients of the exact data ĝ and noise e are � = V T ĝand � = V T e, respectively.It is easy to show that the exact solution to (1) is given in spectral coordinatesby f = nXi=1 �i + �i�i vi;(6)where vi denotes the ith column of V .Under the white noise assumption, j�ij � �; i = 1; : : :r so that the noise coe�cientsare roughly constant, while the discrete Picard condition tells us that the �i go to zeroat least as fast as the singular values �i. Thus, components for which �i is of the sameorder or less than �i are obscured by noise.By assumptions 2 and 4, there exists �m > 0 such that for all i > �m, the �i areindeed indistinguishable from the �i. Further, there exists 0 < m� � �m such thatfor i > m� it is never the case that j�ij � j�ij. As in [16], we therefore choose topartition the columns of V into bases for the upper, lower, and transition subspacesas follows. We say that the upper subspace is the space spanned by the �rst m�columns of V . Hence the upper subspace corresponds to the largest m� singularvalues. The lower subspace is the space spanned by the last n � �m columns for V ;4



i.e. those columns of V corresponding to the smallest singular values. Finally, thetransition subspace is the space spanned by the remaining �m�m� columns of V . Sincethese columns correspond to the mid-range singular values, the transition subspace isgenerally di�cult to resolve unless there is a gap in the singular value spectrum.The exact solution to the noise-free least squares problem can also be expandedin terms of the eigendecomposition of T :f̂ = nXi=1 �i�i vi:(7)Comparing (7) with (6) we see that f resembles f̂ on the upper subspace, yet ourassumptions also require that f and f̂ di�er greatly in the magnitude of their com-ponents in the lower subspace; the components of f̂ in the lower subspace are smallwhile the components of f in the lower subspace are large and increase in magnitudeas i approaches n. We would therefore like our regularization method to produce aregularized solution with small components in the lower subspace and which resem-bles f̂ in the upper subspace. Fortunately, Krylov subspace methods such as MINRESand CGLS tend to produce this type of solution, with the iteration index taking therole of the regularization parameter. To speed convergence to a regularized solution,we must develop a preconditioner which clusters the �rst m� eigenvalues (in absolutevalue) around one (see [19]); however, to keep the preconditioner from mixing noiseinto early iterates, we also want the small singular values, and with them, the lowersubspace, to be unchanged.4. The preconditioner. Let C = STS be the partially reconstructible (PR)Cauchy-like matrix corresponding to the Toeplitz matrix T . Solving Tf = g is equiv-alent to solving CSf = Sg;Let T = V �V T be the singular value decomposition of T . Since S is an orthogonalmatrix, C = SV �V TST ;where S = ST , so that C and T have the same eigenvalues and there is no mixing ofthe upper and lower subspaces by changing to the new coordinate system.In [16], in order to determine the preconditioner one �rst had to perform a partialfactorization of the corresponding Cauchy-like matrix in order to permute the largestmagnitude components of C to the leading principal submatrix. We show in x6 thatas a property of the transformation, the leading principal submatrix already containsthe large magnitude entries. Therefore we save the cost of performing the partialfactorization.Setting z = Sf and g = Sg, the problem Tf = g is equivalent toCy = z:If we desire to use CGLS, we would choose, as in [16], a preconditioner for the left sothat M�1Cy =M�1z:(8) 5



If T , and hence C, is symmetric, however, we may want to �nd a symmetric pre-conditioner M and apply MINRES or MR-II to the symmetrically preconditionedsystem M�1=2CM�1=2ŷ = M�1=2z(9)where ŷ = M1=2y. It turns out that in this case, both MINRES and MR-II for thesymmetrically preconditioned problem can be written in terms of the matrix M�1rather than M�1=2 (see x7.4).Writing C in block form we have� C1 C2CT2 C4 � ;where C1 is m� � m�. The permutation ensures that C1 is well-conditioned havingthe largest magnitude elements of C. The preconditioner M is then de�ned as in [16]:M = � C1 00 I � :5. Properties of the Preconditioner. Since M is de�ned in the same way asin [16], the theory in [16] tells us that the left preconditioned matrix has the desiredproperties; namely, that the largest m� singular values are clustered around 1, whilethe lower subspace, and the small singular values, remain relatively untouched. There-fore we expect CGLS to give reasonable regularized solutions after only a relativelysmall number of iterations.However, if C is symmetric, we may want to apply MINRES or MR-II to thesymmetrically preconditioned problem (9). Thus, we need to show that the largestmagnitude eigenvalues of M�1=2CM�1=2 are clustered around one while the small-est magnitude eigenvalues remain small. If T is symmetric than so are C;M , andM�1=2CM�1=2. Since M�1=2CM�1=2 is symmetric, the absolute values of its eigen-values are precisely its singular values. Similarly, the absolute values of the eigenvaluesof C are its singular values. Since we are interested in clustering eigenvalues by mag-nitude, it will be convenient to show the appropriate clustering results for the singularvalues of M�1=2CM�1=2 instead.Observe that M�1C and M�1=2CM�1=2 have the same eigenvalues since the twomatrices are related via a similarity transform. De�ne ŝ = maxfkC�11 C2k1; kC2k1g.It will be convenient to decompose the matrix (M�1=2CM�1=2)2 as� ICT2 C�1=21 �hI; C�1=21 C2i+ � C�1=21 C2C4 � hCT2 C�1=21 ; C4i = E1M +E2M :(10)Theorem 5.1. j�i(M�1=2CM�1=2)j; i = 1; : : : ;m� are bounded below by 1 andabove by 1 + ŝ.Proof: Proceed as in Theorem 3.1 of [16] to deduce that m� of the singular valuesof M�1=2CM�1=2 are bounded below by 1. The upper bound comes from applyingGershgorin's Theorem to M�1C and using the similarity transform. 2To show that the small magnitude eigenvalues remain small, decompose C�C as� C1CT2 � [C1; C2] + � C2C4 � �CT2 ; C4� = E1C + E2C:(11)We have the following theorem: 6



Theorem 5.2. Let cm� = maxf1;q 1�m� (C1)g. Then the (m� + i)th largest mag-nitude eigenvalue of M�1=2CM�1=2 lies in the interval [0; cm�p�i(E2C)] and the(m� + i)th largest magnitude eigenvalue of C lies in the interval [0;p�i(E2C)].Proof: Proceeding as in Theorem 3.3 of [16], we can show�i+m� (C2) � �i(E2C); i = 1; : : : ;m�and �i+m� ((M�1=2CM�1=2)2) � �i(E2M); i = 1; : : : ;m�:Now E2M = M�1=2E2CM�1=2. Thus two applications of Theorem 3.3.16d to theright hand side of the above equation yields�2i+m� (M�1=2CM�1=2) � �1(M�1)�i(E2C); i = 1; : : : ;m�:We also have �2i+m� (C) � �i(E2C); i = 1; : : : ;m�The proof is completed by taking square roots. 26. Properties of the Transformation. These theorems show that the precon-ditioner will be e�ective if C1 is well-conditioned and if the row sums of C�11 C2 andE2C are small. We now discuss to what extent we expect these conditions to hold forintegral equation discretizations. We shall assume C is symmetric.Let ~A and ~B be the generators of C. From Property 1 we have(C)ij = ( ~aTi ~bj!i�!j ; i 6= jcj ; otherwise ;where the values cj denote the diagonal entries of C. The values cj for a symmetricmatrix C are the entries of the diagonal matrix SCSS, where CS is the Chan-typepreconditioner in [14]. Using this relationship, an exact formula can be determinedfor computing the cj (see [14]): Let ti; i = 0; : : : ; n� 1 denote the diagonals of T andde�ne sjk = sin(jk�=(n+ 1)), tn = 0, andrk = � t0 � n�2n+1 t2; k = 1n�k+3n+1 tk�1 � n�k�1n+1 tk+1; k > 1 :Then cj = 1sin(j�=(n + 1)) nXk=1 rksjk:(12)Now Heinig and Bojanczyk [12] show that the o�-diagonal elements Cij for whichi + j is odd are 0 while if i + j is even, we haveCij = 1cos( i�n+1) � cos( j�n+1 ) ( 2n+ 1) sin( j�n+ 1) nXk=1 siktk � sin( i�n+ 1) nXk=1 sjktk! :7



Therefore, for i 6= j, i+ j even,jCijj � 1cos( i�n+1) � cos( j�n+1 ) ( 2n+ 1) j nXk=1 siktkj+ j nXk=1 sjktkj! :From (12), jCiij = 1j sin( i�n+1 )j j nXk=1sikrkj:NowPnk=1 siktk is the ith coe�cient of the (unnormalized) discrete sine transform(DST) of the vector v = [0; t1; t2; : : : ; tn�1; 0]. But this is, up to a factor 2p�1, theith coe�cient of the discrete Fourier transform of the vector ve, the odd-extensionof v about vn+1 = 0 [13]. If the kernel of the integral equation is smooth, then theFourier coe�cients tend to decrease in magnitude quickly as i approaches n. Thus,the DST coe�cients vi of v tend to decrease in i. Since jPnk=1 siktkj �Pnk=1 jtkj, iftk < 1, this implies many of the DST coe�cients of v are small. Likewise, as the rkcorrespond to a linear combination of the tk, the magnitude of the DST coe�cientsof the vector r decrease with i. SincenXk=1 jrkj � jt0j+ n� 2n+ 1 jt2j+  nXk=2 n� k + 3n+ 1 jtk�1j+ n� k � 1n+ 1 jtk+1j! ;the magnitude of the DST coe�cients of r get small as i increases.Next, consider 1=�cos( i�n+1) � cos( j�n+1 )� as a function of i and j, for i 6= j, i+ jeven. Clearly this expression decays rapidly away from the diagonal when n is large(see Figure 1 for an illustration). Recalling that the DST coe�cients of v become smallas i and j increase, this means that the trailing submatrix of C and the upper rightand lower left corners of C contain the smallest components of the matrix. Figure2 plots 2n+1 (jPnk=1 siktkj+ jPnk=1 sjktkj) for j = 1; : : : ; n for a few �xed values ofi for the vector t de�ned in Example 2. (The spy plot in Figure 9 shows the actualmagnitudes of the entries of C for Example 2.)Now consider 1= sin(i�=(n+1)). For su�ciently large n, this quantity is large forsmall i, decays quickly toward 1 as i increases toward (n + 1)=2, and becomes largeas i approaches n (see Figure 3). A plot of jPnk=1 rksikj for the rk of Example 2 (seeFig 4) is included for comparison. Since the DST coe�cients of r become small as iincreases, clearly the diagonal elements of C are large only for the �rst few values ofi. Hence, there exists a leading principal submatrix of C which contains most of thelarge magnitude elements of C.7. Algorithmic Issues. For a symmetric matrix T , our algorithm is as follows:8
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Algorithm 3: Solving Tf = g for symmetric T1. Compute the generators ~A and ~B for the matrix C = STS.2. Compute the diagonal entries of C according to (12).3. Determine the index m� to de�ne the size of C1.4. Compute the generators A1 and B1 of C1.5. Factor C1, and use forward and back substitution to determine the generators Xand W of C�11 .6. Solve C�11 C1 = I for the diagonal entries of C�11 ( see x7.1).7. Compute an approximate solution ~y to M�1=2CM�1=2(M1=2y) = M�1=2z using afew steps of MINRES or MR-II.8. The approximate solution in the original coordinate system isf = S~y:We note that we do not address the problem of determining when it is best to stopiterating to get a good solution. The interested reader is referred to [8] for a discussionof how the L-curve method can be used to determine an appropriate regularizationparameter for MR-II and to [7] for how Morozov's discrepancy principle can be usedto �nd a regularization parameter for MINRES (see also [11]).7.1. DeterminingM�1. Since C satis�es the displacement equation (3), it fol-lows that C1 is a partially reconstructible Cauchy-like matrix satisfying
1C1 � C1
1 = A1BT1where 
1 is the leading m� � m� principal submatrix of D in (3) and A1 and B1contain the �rst m� columns of ~A and ~B, respectively.Thus, the matrix C�11 is partially reconstructible, with o� diagonal entries givenby (C�11 )ij = � xTi wj!i � !j ; i 6= jwhere the vectors xTi and wTj are rows of X1 and W1 de�ned asC1X1 = A1; WT1 C1 = BT1 :Computing X1 and W1 costs O((m�)2) operations, given the factorization of C1 andthe matrices A1 and B1. To get A1 and B1, we simply need ~A and ~B, which we canobtain from the generators of T in O(N lgN ) operations using the fast sine transform.Since C�11 is partially reconstructible, its diagonal entries ĉj cannot be determinedfrom its displacement equation. However, the ĉj, can be computed from the simplerelation C�11 C1 = I in O((m�)2) operations since we know the o�-diagonal elementsof C�11 and all the elements of C1. The total initialization cost of the preconditioner,which includes the time to determine ~A and ~B and solving for X1 and W1 is thereforeO((m�)2 +N lgN ) operations.7.2. Applying the preconditioner. Since we are using a di�erent transfor-mation to Cauchy-like than that used in [16], we need a di�erent method for quicklyapplying the preconditioner. Let v be a vector of length m�, and assume that thepermutation matrix is the identity. Now from (4) applied to C�11 , we see matrix11



vector products with C�11 can be formed asC�11 v =  X̀i=1 �X(i)1 � (Ĉ0(W (i)1 � v))! + diag(ĉ)vwhere Ĉ0 is the m� � m� leading principle submatrix of C0, X(i)1 , W (i)1 are the ithcolumns of X1 and W1, ĉ is the vector with components ĉi, and � denotes component-wise multiplication. Computing a matrix-vector product with a Cauchy matrix of theformC0 is known as Trummer's problem. Suppose we extend the vector u = W (i)1 �v ton dimensions and replace Ĉ0 with C0. Then it is possible to computeC0u inO(N lgN )operations using fast sine and cosine transformations via a variant of the algorithmof Gerasoulis et al [4] for solving Trummer's problem, which we now describe.Let the polynomials h(x) and s(x) be de�ned according toh(x)s(x) = nXi=1 uix� !i :Note that h(!i) = uis0(!i). Now Gerasoulis in [3] shows that the jth component ofC0u can be determined through an appropriate evaluation of polynomials:zj = (h0(!j) � 12ujs00(!j))=s0(!j):(13)Now s(x) = Qni=1(x�!i). But the !i are just the roots of the Chebyshev polynomialof the second kind of degree n + 1, denoted Un+1(x). Thus, s(x) can be written interms of an nth degree polynomial of the second kind as s(x) = 2�nUn(x) [3]. Usingthis formula for s(x), it is easy to shows0(!j) = 2�n(�1)j+1(n+ 1)= sin2(j�=(n+ 1))(14)and s00(!j)=s0(!j) = 3 cos(j�=(n + 1))= sin2(j�=(n + 1)), so (13) reduces tozj = h0(!j)=s0(!j) � 3 cos(j�=(n + 1))2 sin2(j�=(n + 1))uj(15)and it remains to �nd an expression for h0(!j)=s0(!j).To determine h0(x), we �rst set h(x) =Pnk=1 akUk�1(x). The coe�cients ak cannow be found using the fact that h(!i) = uis0(!i); i = 1; : : : ; n: From h(!i) = uis0(!i),close inspection shows thatak = 2�n(n+ 1) 2n+ 1 nXi=1 sin(ki�=(n+ 1))sin(i�=(n + 1)) ui:(16)Since the ak are known, we can use the relation h(x) = Pnk=1 akUk�1(x) todetermine h0(!j). We obtainh0(!j) = 1sin2(j�=(n+ 1)) nXk=1�akk cos(kj�=(n + 1))+ cos(j�=(n + 1))sin3(j�=(n + 1)) nXk=1ak sin(kj�=(n + 1)):(17) 12



Next, substitute (16) for ak and factor the constants 2�n(n + 1) out in front of thesum. Dividing this expression by (14) and setting yi = (�1)i+1sin(i�=(n+1))ui, we obtainh0(!j)=s0(!j) = cos(j�=(n+ 1))sin3(j�=(n+ 1))yj� 2(�1)j+1n+ 1 nXk=1k cos� kj�n+ 1� nXi=1 sin� ij�n+ 1�ui:(18)Together with (15), this means that the components of zj can be computed si-multaneously by means of fast O(N lgN ) sine and cosine transforms of dimension n.This observation leads us to develop an algorithm for computing C�11 v which costsonly O(N lgN ) operations:Algorithm 4: Forming ẑ  C�11 vSet v̂ = 0.For j = 1; : : : ; `, do1. Compute v̂ =Wj � v.2. Extend v̂ by zeros so that v̂ is of length n.3. Set v̂  C0v̂ (see above).4. Truncate v̂ to length m.5. Set ẑ = ẑ +Xj � v̂.End for6. Compute ẑ = ẑ + diag(cj)v.7.3. Matrix-vector products with C. By relating C back to the originalToeplitz matrix, we note that matrix vector products with C can be computed asCv = STSv. To multiply the matrix T with a vector, we could use the method ofembedding T into a circulant matrix and using Fourier transforms. However, thisrequires that complex arithmetic be used to compute the product when T is real.Rather, we make use of the fast, real-arithmetic approach suggested in [14] for com-puting these products in O(N lgN ) operations.7.4. Variant of MINRES. In this subsection we present a variant of MIN-RES for solving the symmetrically preconditioned problemM�1=2CM�1=2(M1=2y) =M�1=2z which involves matrix vector multiplies withM�1 rather thanM�1=2 (see [5,Section 10.3.1] and [7]). A variant of MR-II (see [8, 7]) for the symmetrically precon-ditioned problem involving only matrix vector multiplies with M�1 can be similarlyderived.
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Algorithm 5: Preconditioned MINRESy0 = 0; r0 = z; v0 = M�1r0; d0 = v0w0 = Cv0; s0 = w0For k = 0; : : : ; until convergence do� = vTk skwTkM�1wkyk+1 = yk + �dkrk+1 = rk � �wkvk+1 = M�1rk+1sk+1 = Cvk+1� = vTk+1sk+1vTk skdk+1 = vk+1 + �dkwk = sk+1 + �wkEnd for8. Numerical Results. We compare the results of the preconditioned and un-preconditioned MINRES algorithm with the preconditioned and unpreconditionedCGLS algorithm. The numerical results were generated using Matlab and IEEE
oating point double precision arithmetic. Since in our examples the exact solutionto the noise-free problem was available, our measure of success in �ltering noise isthe relative error between the computed solution and the noise-free solution. In theexperiments, we compare the results of MINRES with CGLS for Cauchy-like pre-conditioners of size m� de�ned in this paper. The value of m� = 0 corresponds tono preconditioning. In each example, we also give the results for the preconditionedmethod of Kilmer and O'Leary [16] and the method of Hanke, et al [9], for variousvalues of m�.8.1. Example 1. For this example, we modi�ed the matrix and exact solutionof the signal processing example in [16] by dropping the last row and column of Tand the last row of f̂ and ĝ. The condition number of the new 255� 255 matrix T is4:4� 105. We computed a noise vector e with Matlab's randn function and scaled itso that the noise level was 10�3. We then computed g = ĝ + e.Figure 5 is a sparsity plot of the magnitude of the entries of C. Note that notonly is C nearly diagonally dominant, but pivoting need not be performed to permutethe largest components of C to the leading principal submatrix.The convergence of MINRES on the unpreconditioned system is indicated by thesolid line in Fig 6. MINRES reaches its minimum relative error value of :232 at41 iterations. The dashed line in the �gure shows the convergence of CGLS on theunpreconditioned problem. After 119 iterations CGLS reaches its minimum relativeerror value of :223.Table 1 compares the sensitivity of CGLS and MINRES to m�. The results in thetable illustrate that, for both methods, the number of iterations for the preconditionedsystem is substantially less than for the unpreconditioned system when m� is chosenappropriately. Note that the preconditioned MINRES can yield a regularized solutionwith lower minimum relative error than unpreconditioned MINRES. The table alsoindicates that unpreconditioned CGLS can yield a slightly better, in terms of min-imum relative error, regularized solution than MINRES, although it requires muchmore work to compute. Likewise, preconditioned CGLS, depending on m�, can yieldbetter regularized solutions the preconditioned MINRES in about the same number of14



MINRES CGLSminimum achieved minimum achievedm� rel. error at iter. rel. error. at iter.0 .232 41 .223 11940 .233 13 .224 2447 .225 9 .224 1354 .242 6 .224 761 .256 7 .221 768 .237 5 .228 8Table 1Convergence comparison of MINRES and CGLS for various values of m� for Example 1.Method of [16] Method of [9]minimum achieved minimum achievedm� rel. error at iter. rel. error. at iter.0 .223 11940 .224 75 .224 5347 .224 58 .224 4054 .224 82 .224 3161 .238 105 .229 3068 .289 13 .236 34Table 2Convergence comparison of preconditioned CGLS scheme of Kilmer and O'Leary and methodof Hanke, et al for various values of m�, Example 1.iterations | however, each iteration of CGLS requires an extra matrix-vector productwith C. The condition number of C1 for m� = 47 is about 87; the condition numberof C1 for m� = 61 is about 2:5� 104.Table 2 gives the convergence results for the preconditioned CGLS scheme of [16]and for the preconditioned scheme of [9] for comparison purposes. Note that neithermethod does as well as the preconditioned MINRES or CGLS schemes mentionedin this paper in terms of reducing the error to a su�cient level within few enoughiterations. Also, these methods are more expensive (by a constant factor) per iterationthan preconditioned MINRES since they require an additional matrix-vector productwith the Cauchy-like matrix or the Toeplitz matrix, respectively, and they computeusing complex arithmetic. Further, the initialization cost of the preconditioner of [16]is higher. We note that since n + 1 is a power of 2 and these latter 2 methods useFFT's, it would have been more e�cient to augment T by a 1�1 identity and appenda number to g, and solve the resulting system (see the footnote in the introduction of[16]).8.2. Example 2. In this example, we used Hansen's Regularization Toolbox togenerate a 512�512 symmetric Phillips Toeplitz matrix, and set T to be the 511�511leading principal submatrix. The vector f̂ was generated using Matlab's sin, cos andsquare functions in the following Matlab notation:f̂ = (1� abs(s)): � (1 + cos(s � pi=3)) + sin(s � pi=8): � (s+ 3) + 9 � square(:4 � s:2=50)15
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Fig. 5. Spy plot of the magnitude of elements of C, Example 1.
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Fig. 6. Convergence of MINRES (solid) and CGLS (dashed) for m� = 0; preconditionedMINRES (dash-dot) with m� = 47; and preconditioned CGLS (dotted) with m� = 54.16



100 200 300 400 500
−60

−50

−40

−30

−20

−10

0

10

20

index

va
lue

100 200 300 400 500
−80

−60

−40

−20

0

20

40

60

index
va

lue

Fig. 7. Uncontaminated data vector (right) and exact solution (left) for Example 2.where s was the vector of length 511 s = [�25:5 : :1 : 25:5]. The vectors f̂ and ĝ = T f̂are is displayed in Figure 7. The noisy data g was formed by adding noise to thevector ĝ where the noise level was 10�3.Figure 9 is a spy plot illustrating the magnitude of the elements in C. As in theprevious example, no pivoting is needed to permute the largest magnitude entries intothe leading principal submatrix of C.Table 3 compares the minimum relative errors achieved for MINRES and CGLSwith and without preconditioning. Note again that unpreconditioned CGLS achievesa lower minimum relative error than unpreconditioned MINRES. However, for severalvalues of m�, MINRES is able to reach a regularized solution with relative error lessthan unpreconditioned MINRES. With m� = 19, preconditioned MINRES reaches arelative error of :162 after only 2 iterations, and it improves in 7 iterations to a mini-mum relative error of :088 (see Figure 7). On the other hand, for no value of m� couldpreconditioned CGLS achieve a relative error of less than :107. In general, precon-ditioned CGLS required more iterations to achieve comparable regularized solutions,and at more work per iteration.The results for the preconditioned scheme of [16] and for the method of [9] appliedto Example 2 are shown in Table 4. The previous method can generate regularizedsolutions with smaller relative error than for unpreconditioned MINRES within 2 iter-ations (for example, ifm� = 25, the relative error is :149 after 2 iterations), but for novalue of m� do they achieve better minimum relative error values than preconditionedMINRES for m� = 19. The method of Hanke et al is not very competitive with theother methods since it requires so many more iterations for each value of m�.Finally, Figure 10 illustrates how well our preconditioner clusters the eigenvaluesand the singular values of the left preconditioned matrix.9. Conclusions and Future Work. Preliminary results show that we havedeveloped an e�cient preconditioner for the regularized solution of discrete ill-posed17
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Fig. 8. Convergence of MINRES (solid) and CGLS (dashed) for m� = 0; preconditionedMINRES (dash-dot) with m� = 19; preconditioned CGLS (dotted) with m� = 31.
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Fig. 10. Largest (magnitude) 70 eigenvalues ('+') and singular values ('o') of the left pre-conditioned matrix for m� = 19. Dotted line connects singular values (or absolute eigenvalues) ofC. MINRES CGLSminimum achieved minimum achievedm� rel. error at iter. rel. error. at iter.0 .185 36 .112 4116 .177 11 .111 2119 .088 7 .107 1722 .116 4 .117 1425 .205 5 .121 1428 .174 10 .116 1131 .241 8 .116 934 .187 5 .164 13Table 3Convergence comparison of MINRES and CGLS for various values of m�, Example 2.19
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